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Summary 

The 137Cs derived from the Fukushima Daiichi nuclear power plant (FDNPP) in 2011 is expected 

to contaminate the surrounding forest environment over the half-life of 30 years. Precise studies 

of 137Cs dynamics in a forest ecosystem are required for developing remediation activities in forest 

areas, determining appropriate radiation protection for local residents and workers, and resuming 

the use of the forest resources. I studied temporal changes in 137Cs dynamics in forest ecosystems 

and environmental parameters influencing the spatial heterogeneity of 137Cs after the FDNPP 

accident from August 2013 (2.3 years after the accident) to November 2015 (a period of 2.4 years). 

The survey focused on 137Cs contained in litter layers and soil to 10 cm depth in mixed deciduous 

forests located approximately 40 km northeast from the FDNPP. I focused on the following three 

topics: (1) spatial variation of 137Cs in forest soils; (2) temporal changes in the vertical distribution 

of 137Cs; and (3) downward migration of dissolved 137Cs in forest soils. Based on the 

measurements and analysis on the 137Cs in the samples, I found that almost all 137Cs deposited on 

forest ecosystems had been translocated to litter layers and surface soils (>5 cm) via litterfall and 

precipitation by the beginning of the study, accounting for approximately 65% and 25% of the 

total 137Cs, respectively. Spatial heterogeneity of soil 137Cs was predicted to be largest from shortly 

after the accident to the beginning of the study as a result of the translocation via precipitation. 

By August 2014, 80% of 137Cs in litter layers found in August 2013 had migrated into surface soil 

through litter decomposition processes and leaching, and approximately 80% of the 137Cs in the 

forest ecosystems remained in the surface soils. The spatial heterogeneity in the surface soils 

became homogenous with time because of this migration. After August 2014, 137Cs activities in 

the litter layers, the surface soils and the deeper soils (<5 cm) did not change substantially, 

suggesting that the so-called “quasi-equilibrium” state (increase or decrease in 137Cs activity was 

not observed in any compartment in an ecosystem; IAEA, 2006) may have already started in the 

forests. However, small amounts of dissolved 137Cs continued to migrate after August 2015. 

Although these migrations were of very small amounts, I recommend that long-term monitoring 

on dissolved 137Cs in forest soils should be conducted. The dissolved 137Cs shows high mobility 

and is biologically available. Moreover, although similar trends of 137Cs dynamics have also been 

reported in many studies on radioactive cesium derived from the Chernobyl accident in 1986 in 
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the former Soviet Union (now Ukraine), the temporal change found in the present study was faster 

than in Chernobyl. The difference between 137Cs dynamics in Fukushima and Chernobyl may be 

attributed to the difference in rates of carbon cycling in forest ecosystems, which is affected by 

factors such as annual temperature, forest type, and precipitation. For future nuclear energy 

development and preparedness, 137Cs dynamics need to be studied thoroughly from the 

perspective of climatic parameters.  
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Summary (In Japanese) 

福島原子力発電所近隣の落葉広葉樹林における土壌中セシウム 137の時空間変動 

2011 年の福島第一原子力発電所（以下，福島原発）によって森林生態系に放出されたセ

シウム 137は，今後長期に亘って森林環境を汚染し続けることが予想されている。森林域の

除染，地元住民や除染作業員の放射線防護，そして森林利用の再開といった観点から，森林

生態系におけるセシウム 137の詳しい動態解明は喫緊の課題である。本研究では，福島原発

由来のセシウム 137 について，森林生態系内での時空間変動を明らかにした。本研究は，

2013年 8月から 2015年 11月（福島原発事故から 2.3～4.7年後）にかけて，福島原発から

北西に約 40 km離れた落葉広葉樹林で，リター（落葉落枝）層から土壌 10 cmに存在するセ

シウム 137について，以下の 3点に関して調査を行った；(1)空間分布の特徴，(2)垂直分布

の時間変化，(3)溶存態での下方移動。これらの結果をまとめると，2013年 8月の調査開始

までに，事故時に林冠と林床に沈着したセシウム 137 の 99%以上が，落葉や降雨とともに

リター層と土壌表層（＞ 5 cm）に、それぞれ約 65%，25%の割合で移動していた。この事

故から調査開始までの降雨を介した移動によって，土壌中のセシウム 137の空間変動は，こ

の期間に最も大きかったことが推測された。2013年 8月から 1年間で，リター層のセシウ

ム 137 の約 8 割が分解や溶出によって土壌表層に移動することで，森林生態系に存在する

セシウム 137 の約 8 割が土壌表層に存在することとなり，同時にこの移動によって土壌表

層のセシウム 137の空間変動は小さくなった。2014年の 8月以降，リター層，土壌表層，

土壌下層（5–10 cm）に存在するセシウム 137の存在割合は大きく変化しなかったため，本

調査地はセシウム 137がどの場所でもあまり増減しない状態（準平衡状態；IAEA, 2016）に

達しつつある可能性が示唆された。ただし，2015年の 8月以降も微量のセシウム 137が溶

存態で依然として下方移動していることが明らかとなった。溶存態放射性セシウムは，土壌

中での移動が速く，生物に利用されやすいことから，今後長期に亘って，溶存態セシウム 137

の微量な下方移動についてのモニタリングを行う必要がある。1986 年に旧ソ連（現ウクラ

イナ）で起こったチェルノブイリ原子力発電所事故由来の放射性セシウムについて観察さ

れている多くの動態研究でも本研究の調査地と同様の傾向が観察されているが，本研究は

チェルノブイリ原発事故に関連する研究結果より森林生態系内におけるセシウム 137 の移
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動が速いことを示しており，これらのことから，気温，森林タイプ，降水量などの違い等に

大きく影響を受ける炭素動態速度の違いが原因の一つであると推測された。さらに，これら

の結果は原子力開発とその防災にあたり，気候要因の考慮が極めて重要であることを示唆

するものである。 
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Chapter 1  General Background 

1.1  Importance of Studies on Dynamics of Radioactive Cesium in Forest 
Environments 

Various radionuclides were released into the environment during the Fukushima Daiichi nuclear 

power plant (FDNPP) accident after the Great East Japan Earthquake in March 2011 (Endo et al., 

2012; Yoshida and Kanda, 2012). The accident was the most serious radiation disaster and caused 

the most widespread contamination since the Chernobyl accident in the former Soviet Union (now 

Ukraine) in April 1986 and, before that, the Three Mile Island nuclear power plant accident in the 

USA in March 1979. Many other discharges of radioactive materials from nuclear facilities to the 

environment have occurred, including discharges in the Mayak area in South Ural in the former 

Soviet Union (now Russia) in the late 1940s and the 1950s (Kryshev et al., 1998), discharges at 

the Savannah River site in the USA in the 1950s and 1960s (Carlton et al., 1992), and discharges 

from Sellafield in the UK in the 1970s (Aarkrog et al., 1983). The radioactive contamination 

discharged during these events spread over natural ecosystems, such as forests, because most 

nuclear facilities are in sparsely populated rural areas. Large areas of forest ecosystems were also 

contaminated during the Chernobyl and Fukushima accidents (IAEA, 2006; Hashimoto et al., 

2013). Contamination in forest areas not only negatively affects the ecosystem itself and people 

using the ecosystem but it can also be an important and long-lasting source of contamination to 

residential areas. Studies of radionuclide dynamics (specifically, studies of 137Cs, which has a long 

half-life of 30.17 years) in forest ecosystems, including of radionuclide cycling in the ecosystems 

and discharges to other systems, are therefore important because they provide information that 

could be useful when recovering from a radiation accident. Such studies provide evidence that is 

useful when developing plans for remediation activities in forest ecosystems and for protecting 

the workers involved in the activities. Such studies are also required before forest resources 

(timber and non-timber products) can start to be used again after an accident.  

Studies on dynamics of radioactive cesium in forest ecosystems are also essential to 

allow preparations for emergencies and plans for recovering after future radiation accidents to be 

made. Many countries including developing countries (e.g. Indonesia, Vietnam, Thailand) are 

considering and planning to build new commercial nuclear reactors (World Nuclear Association 
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from http://www.world-nuclear.org/information-library/country-profiles/others/emerging-

nuclear-energy-countries.aspx). As especially in such developing countries, the local residents 

largely rely on forest products (Siebert and Belsky, 1985), it is very important to predict 

radionuclides dynamics in various forest ecosystems and to assess the risk from radiation 

exposure for local residents associated with the dynamics information, against future nuclear 

accidents. Therefore, precise mechanisms of dynamics of radioactive cesium in forest ecosystems 

is important information.  

 

1.2  Literature Review of Radioactive Cesium Dynamics in Forest Ecosystems  
after Nuclear Power Plant Accidents 

Many previous studies of radioactive cesium dynamics in forest ecosystems have been conducted 

in Europe after the Chernobyl accident and in Fukushima after the FDNPP accident (e.g., IAEA, 

2006; Kajimoto et al., 2015). Radioactive cesium released into the atmosphere was initially 

deposited on forest floors or intercepted by the crowns, branches, and stems of trees (Bunzl et al., 

1989; Hashimoto et al., 2013; Kato et al., 2015). Approximately 70% and 20% of the total 

amounts of radioactive cesium that were deposited were expected to be intercepted by evergreen 

and deciduous forest canopies, respectively, after the FDNPP accident. The radioactive cesium 

reduction rate in plant material was expected to be shorter in deciduous forests than in evergreen 

forests (Kato et al., 2015). Forest canopies were found to intercept 70%–90% of the total amount 

of radioactive cesium that was deposited after the Chernobyl nuclear power plant accident, and 

this radioactive cesium remained in the forest canopies for several years (Bunzl et al., 1989; IAEA, 

2006). Radioactive cesium intercepted by trees is transferred to the forest floor initially through 

stemflow and throughfall (i.e., by precipitation) and then directly through litterfall (Rafferty et al., 

2000; Hisadome et al., 2013; Kato et al., 2015). Radioactive cesium in forest floor litter is released 

into the forest soil when the litter decomposes (Rafferty et al., 1997, 2000). The rate at which 

radioactive cesium will have migrated to forest soil was therefore expected to be higher in the 

Fukushima area than in the Chernobyl area because the decomposition rate is higher in the 

Fukushima area than in the Chernobyl area. Most of the radioactive cesium that entered forests 

after the FDNPP accident is now in the soil (Hashimoto et al., 2013; Ono et al., 2013). Radioactive 

cesium that was transferred to forest soil after the Chernobyl accident remained in surface soil for 
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a long time (Rafferty et al., 2000) and radioactive cesium released during the FDNPP accident is 

also expected to remain in the soil for a long time (Matsunaga et al., 2013) because radioactive 

cesium adsorbed to soil particles is poorly mobile (Schimmack et al., 1994). Little radioactive 

cesium was found to be discharged from forest ecosystems in water after the Chernobyl and 

Fukushima accidents (IAEA, 2006; Hashimoto et al., 2013). Very little radioactive cesium has 

been found in plant material compared with the amount found in forest soil (IAEA, 2006; 

Kajimoto et al., 2015). It is therefore very important that information is obtained on radioactive 

cesium dynamics in soil in forest ecosystems.  

Radioactive cesium in forest soil is mainly in water-soluble and ion-exchangeable forms, 

sorbed onto and within soil particles (Matsunaga et al., 2013). Radioactive cesium sorbed onto 

and within soil particles and ion-exchangeable radioactive cesium are poorly mobile, but water-

soluble radioactive cesium is very mobile because it is present as free ions. Sequential extractions 

of radioactive cesium from forest soil have shown that the water-soluble and ion-exchangeable 

radioactive cesium fractions contributed less than 10% of the total amount of radioactive cesium 

present (Matsunaga et al., 2013).  

 

1.3  Need for Studies on Radioactive Cesium Dynamics in Forest Soils in 
Fukushima  

Radioactive cesium dynamics in Japanese forests have been studied since the FDNPP accident in 

2011 (e.g., Ohte et al., 2013). With regard to radioactive cesium dynamics in plants, many studies 

have focused on monitoring the contamination of plants in forests (Yoshihara et al., 2013; 

Kajimoto et al., 2015) and clarifying the mechanisms through which plants absorb radioactive 

cesium. Mechanistic studies have included experiments using agricultural plants (Fujimura et al., 

2013) because of the possibility of radioactive cesium that enters agricultural plants being 

consumed by people. However, even though contamination in forest soils has been monitored in 

many studies, because forested land is one of various types of land use (e.g., Koarashi et al., 2012), 

few precise quantitative studies of radioactive cesium dynamics in soil have been conducted. The 

spatial heterogeneity of radioactive cesium in soil in forest ecosystems makes it difficult to 

determine the precise dynamics of radioactive cesium (Khomutinin et al., 2004; Korobova and 

Romanov, 2009, 2011). The purpose of the study presented here was to assess the migration of 
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radioactive cesium in soils in mixed deciduous forests and to identify changes in spatial variations 

in radioactive cesium inventories in the forests.  

 

1.4  Study Workflow 

Five studies of radioactive cesium dynamics in forest floors and soils were performed, were 

focused on spatial variations in radioactive cesium inventories, and migration of radioactive 

cesium. The relationships between the subjects are shown in Fig. 1-1. Spatial heterogeneity in the 

radioactive cesium inventories in soil was assessed in the first study (Chapter 4), and 

environmental parameters that affected spatial variations in radioactive cesium inventories were 

identified. The study allowed the spatial distributions of radioactive cesium in soil in a mixed 

deciduous forest to be determined. The sample size required to evaluate radioactive cesium 

contamination was estimated using the results of studies of other ecosystems. In the second study 

(Chapter 5), the downward migration of radioactive cesium was investigated. Temporal changes 

in the vertical distribution of radioactive cesium and spatial variations in radioactive cesium 

inventories were identified, and the downward migration of radioactive cesium in forest soils was 

assessed from the temporal changes that were found. Although this method was useful soon after 

the FDNPP accident, when large amounts of radioactive cesium were migrating and the migration 

rates were high, the method gradually became more difficult to use over time. This was because 

the mobility of the radioactive cesium in the soil decreased rapidly (Takeda et al., 2013) and 

spatial variations in the radioactive cesium inventories were large (as shown in Chapter 4). The 

focus of the study was then shifted to dissolved radioactive cesium in soil, which is very mobile 

but was found at very low concentrations. Dissolved radioactive cesium could not be assessed in 

the study described in Chapter 5. Firstly, a method for monitoring dissolved radioactive cesium 

in litter and soil seepage water was developed (Chapter 6). Lysimeters are conventionally used to 

evaluate dissolved radioactive cesium in soil (Tegen and Dӧrr, 1996; Nakanishi et al., 2014), but 

lysimeters are not used widely because they are complex to set up and use. I therefore aimed to 

develop a simple and rapid method for assessing the migration of dissolved radioactive cesium 

from soil and/or litter in forests using pieces of nonwoven fabric impregnated with copper-

substituted Prussian blue (later called Cu-NF) (Yasutaka et al., 2016). The fabric specifically 

adsorbs dissolved radioactive cesium from water containing other ions at high concentrations. 
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The equipment developed in the study described in Chapter 6 was used in a field survey that is 

described in Chapter 7. The aim of the field survey was to assess the downward migration of 

dissolved radioactive cesium and the effects of topological differences on downward migration. 

A general discussion is presented in Chapter 8. In this discussion, radioactive cesium dynamics 

on the floors and in the soils of mixed deciduous forests are summarized in terms of spatio-

temporal variations. Finally, the summarized radioactive cesium dynamics was compared with 

carbon dynamics in forest floors and soils to discuss a possibility that carbon dynamics is an 

environmental parameter for dynamics of radioactive cesium in forest ecosystems.   
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Figure 1-1  Workflow of the study.  
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Chapter 2  General Description of the Study Sites 

2.1  Mixed deciduous Forests in Fukushima region 

The study sites are four secondary mixed deciduous forests and an evergreen coniferous forest 

located in northwest of FDNPP in Fukushima prefecture (Fig. 2-1). All the study sites have not 

been subjected to any decontamination work. Table 2-1 showed that various properties of forests 

such as atmospheric deposition and slope angle were selected as the study sites. Altitudes of study 

sites were from 285 to 583 m and the distances from FDNPP was 39–49 km. The total atmospheric 

deposition of 137Cs after the accident ranged 100–600 kBq m−2, based on the third airborne 

monitoring survey by the Japanese Government (MEXT, 2011). The mean annual air temperature 

and precipitation measured in the region monitored at the meteorological station located in Iitate 

village, 9-12 km of the study sites were 10.0°C and 1361.6 mm (1981 - 2010), respectively (Fig. 

2-2). The monthly mean temperature ranged -1.3 – 22.2°C, showed the highest in January and the 

lowest in August. The highest monthly precipitation was 205.6 mm in September, and the lowest 

was 42.5 mm in December (Japan Meteorological Agency (JMA) database from 

http://www.jma.go.jp/jma/index.html). The soil types at the study sites are brown forest soils or 

kuroboku soils (Kanno et al., 2008). Densities of the soil 0-5 and 5-10 cm depths in s secondary 

mixed deciduous forests (site A, B, C and D) as of November 2014 were 0.35-0.60 and 0.46-0.74 

g cm-3 (on a dry weight basis), respectively. 

The study sites of secondary mixed deciduous forests (site A, B, C and D) are typical 

naturally regenerating forests (secondary forests), which are dominated by deciduous trees (e.g., 

Japanese oak, Quercus crispula) with sporadic evergreen coniferous trees (e.g., Japanese fir, Abies 

firma). Few herbaceous plants were present in all the study sites, and only litter constituted ground 

cover. The thickness of the litter layer was approximately 2 cm and the layer was generally 

homogeneous with no bare areas. The evergreen coniferous forest (site E) is a plantation of 

Japanese cedar (Cryptomeria japonica), and few trees except Japanese cedar were present in the 

side. A few herbaceous plants were present, and approximately 5 cm of thickness Japanese cedar 

litter layer constituted ground cover.   
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Figure 2-1  Location of the study sites (A-E) and Fukushima Daiichi nuclear power plant, in 
Fukushima prefecture. 
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Table 2-1  Environmental conditions for each study site and related chapters in the paper. 

Study site A B C D E 

Forest type Mixed 
deciduous 

Mixed 
deciduous 

Mixed 
deciduous 

Mixed 
deciduous 

Evergreen 
(plantation) 

Longitude 37°45′ N 37°43′N 37°45′N 37°44′N 37°36′ N 

Latitude 140°47′ E 140°29′ E 140°44′ E 140°43′ E 140°38′ E 

Altitude [m] 570 285 510 445 583 

Distance from 
FDNPP [km] 

44 39 46 43 40 

Total atmospheric 
deposition  
[kBq/m2] I 

100–300 100–300 300–600 300–600 300–600 

Snow coverage on 
forest floor at the 
time of the 
accident II 

A little Not at all A little Quite a lot - 

Degree of slope 
[°] 

2 30 5 20 10 

Direction of slope North North North-west South-east South 

Soil type III Brown 
forest soils 

Brown 
forest soils 

Brown 
forest soils 

Andisol Andisol 

Soil density  
[g/cm3] IV 

 

 
    

0–5 cm 0.35 0.44 0.38 0.60 - 
5–10 cm 0.49 0.59 0.46 0.74 - 

Chapters describe 
the study site  

4 5 5, 7 5 6 

I  MEXT (2011) Results of the Third Airborne Monitoring Survey. 
II Judging from a satellite image on 14 March 2011. 
III Kanno et al. (2008) Pedologist 52, 129–133. 
IV  Sampling date, November 2014 on dry weight basis. 
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Figure 2-2  Monthly precipitation and temperature in the study area region. White bars 
represent mean monthly precipitation, and bold line represents mean monthly air temperature 
from 1981 to 2010. The data were monitored at the meteorological station located in Iitate village, 
9–12 km of the study sites (JMA database from http://www.jma.go.jp/jma/index.html). 
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2.2  Tropical Rain Forests in Peninsular Malaysia 

In the present study, the relation between 137Cs dynamics and carbon dynamics in forest soils was 

discussed in different forest ecosystem including tropical forests. Two study sites were selected 

for evaluating carbon dynamics in tropical rain forests; the Pasoh Forest Reserve (2°59′N, 

102°18′E) in the state of Negeri Sembilan, and the Perak Integrated Timber Complex (PITC) 

Concession Forest (5°24′-5°34′N, 101°33′-101°39′E) in the Temengor Forest Reserve, in the state 

of Perak, Peninsular Malaysia (Fig. 2-3).  

The Pasoh Forest Reserve is a lowland dipterocarp forest (95-100 m asl, Symington, 

1943), and the dominant species are Shorea curtisii, Neobalanocarpus heimii, Dipterocarps 

costulatus, D. cornutus, D. sublamellatus, D. kunstleri, and D. crinitus (Ashton et al., 2003). The 

annual mean air temperature was 27.1°C (1992-1994; Bekku et al., 2003), and average annual 

rainfall was approximately 2000 mm (Kochummen et al., 1990). The soil type was classified as 

Haplic Acrisol (Yamashita et al., 2003). 

The Temengor Forest Reserve is a hill dipterocarp forest (400-1000 m asl, Symington 

1943) and the dominant species are Shorea platyclados, Dipterocarpus costulatus, D. crinitus, 

Intsia palembanica and some species of bamboo (PITC, 2010). Annual mean temperature was 

approximately 23.3°C. Annual precipitation was approximately 2570 mm (WorldClim database 

from http://www.worldclim.org) (Hijmans et al., 2005). The soil type was classified as Orthic 

Acrisols (FAO, 2004).  
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Figure 2-3  Location of the study sites (Pasoh Forest Reserve and Temengor Forest Reserve) 
in Peninsular Malaysia.   
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Chapter 3  General Description on Materials and Methods 

3.1  Measurements and Analysis of Radioactive Cesium  

In the present study, activity of radioactive cesium was determined included in soil samples 

(Chapter 4, 5, 6 and 7), nonwoven fabrics impregnated with copper-substituted Prussian blue (Cu-

NF, Chapter 6 and 7), and water samples (Chapter 6). Processes of preparation and measurement 

of radioactivity for each sample are as follows.  

The collected soil samples were firstly dried at 100°C for 48 h. The samples were filled 

into 100-mL plastic polypropylene containers (U-8) and analyzed for 137Cs and 134Cs using a low-

background Ge spectrometer (GEM-110225, Seiko EG&G; Shizuma et al., 2016). The 

measurement times were between 600 and 10,000 s, depending on the radioactivity of the samples.  

The Cu-NF were cut into 5 mm pieces and filled into 100-mL plastic polypropylene 

containers (U-8) to measure the 137Cs and 134Cs activities. The Cu-NF were washed with an 

ultrasonic washing machine for 15 min before the cutting to remove particulate radioactive cesium 

attached to the Cu-NF. Preliminary repeated experiments of this washing process was conducted 

to check the effectiveness of this washing process, showing that the difference in the radioactive 

cesium concentration between the Cu-NF after the 1st and 2nd washing process was negligible. 

Therefore, the Cu-NF was treated with ultrasonic washing for 15 min. The 137Cs and 134Cs 

activities in the Cu-NF were determined by a low-background Ge spectrometer (GEM-110225, 

Seiko EG&G; Shizuma et al., 2016). The measurement time was 30,000 s. 

To measure the 137Cs and 134Cs concentrations in the water samples, the water samples 

were first filtered using a 0.45 µm membrane filter (mixed cellulose ester, Advantech, Tokyo, 

Japan) to remove suspended solids. Next, 1 L of filtered water was evaporated on a Teflon sheet 

(250 × 250 mm) that was kept at 120°C by a hot plate. Thereafter, γ-ray measurements were 

performed with a low-background, well-type Ge detector (Seiko EG&G, GWL 120230-S; 

Shizuma et al., 2010; 2016). The measurement time for each sample was 10,000 s.  

The typical gamma-ray spectra are shown in Fig. 3-1. Fission products from the FDNPP, 
134Cs and 137Cs were detected. Efficiency calibration is described in detail by Shizuma et al. (2016). 

The associated errors of results measured with the low-background Ge spectrometer (GEM-

110225, Seiko EG&G) were composed of 5% from the detection efficiency and 1–10% from peak 
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counting error. Meanwhile those with the low-background, well-type Ge detector (Seiko EG&G, 

GWL 120230-S) were composed of 10% from the detection efficiency and 5–10% from peak 

counting error. 

Activity of 137Cs and 134Cs in all samples showed a similar pattern, and the ratio of 

137Cs/134Cs activity was almost constant (1.0–1.1 in March, 2011). In the present study, only 137Cs 

data was employed. The 134Cs data were not used because the relatively short half-life (2.06 years) 

is unsuitable for this analysis more than three years after the FDNPP accident.  
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Figure 3-1  Typical gamma-ray spectra of soils measured by a low-background Ge 
spectrometer (GEM-110225, Seiko EG&G). 
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3.2  Forest Carbon Dynamics in Different Climate Zones 

The 137Cs dynamics in soils obtained in mixed deciduous forest in Fukushima in the present study 

was compared with carbon dynamics in Fukushima regions in general discussion (Chapter 8). As 

radioactive cesium is known to move with several carbon dynamics processes in a forest 

ecosystem (e.g. litterfall and litter decomposition; Rafferty et al., 1997; IAEA, 2006; Kato et al., 

2015), carbon dynamics in a forest ecosystem is perhaps one of the major environmental 

parameter of dynamics of radioactive dynamics. As described in Chapter 1, preparations for 

emergencies and plans for recovering after future radiation accidents are required, and it is very 

important to predict radionuclides dynamics in various forest ecosystems. In case that carbon 

dynamics in a forest ecosystem is inseparably connected with dynamics of radioactive cesium in 

the forest ecosystem, radioactive cesium dynamics can be expected by using data of carbon 

dynamics in the forest ecosystem even in climate zone where radiation disaster have never 

occurred.  

Figure 3-2 shows that compartment models of carbon dynamics in various climate 

zones (a black spruce forest in a subarctic region, a beech forest in a cool-temperate region, and 

a dipterocarp forest in a tropical region; Nakane, 1980; Kimura and Hatano, 2005). The black 

spruce forest in a subarctic region corresponds to forests affected by the Chernobyl nuclear power 

plant accident in 1986, and the beech forest in a cool-temperate region corresponds to forests 

affected by the FDNPP accident. In tropical regions, although massive contamination with 

radioactive cesium has never been occurred by huge radiation disasters, dynamics of radioactive 

cesium was estimated according to carboy dynamics in tropical regions in Chapter 8.  

In a forest ecosystem, carbon accumulated in plants falls as litterfall. Litter in the forest 

floor migrates into soils with litter decomposition. Carbon (organic substance) in litter layer and 

soils is decomposed by microorganisms and released into atmosphere as soil respiration 

(heterotrophic respiration). Rates of litterfall, litter decomposition and soil respiration increase 

with decreasing latitudes, and carbon accumulation in litter layer and soils increase with 

increasing latitudes. Well-known temperature dependence of organic substance decomposition by 

microorganisms is the major factor to cause such latitude dependence (e.g. Luo and Zhou, 2006).   

After the FDNPP accident, several activities such as logging, thinning and removing 

litters and surface soils have been conducted as decontamination in neighboring forest ecosystems 
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of FDNPP (Ministry of the Environment from http://josen.env.go.jp/about/efforts/forest.html).  

These activities increase intensity of direct sunlight and soil temperature, and decomposition rate 

of organic substance increases (Luo and Zhou, 2006). Consequently, the rate of carbon cycle 

perhaps increases and carbon amounts in a forest ecosystem decreased. Logging operation in 

tropical regions includes similar activities of decontamination activities in forests in Fukushima 

regions such as selective logging and removing litters and surface soils in a forest. Logging 

operation in tropical regions accelerates carbon cycle and decreases carbon accumulation in a 

forest ecosystem (Takada et al., 2015a; 2015b; 2016a). 
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Figure 3-2  Compartment models of carbon dynamics in various climate zones (a black spruce 
forest in a subarctic region (a), a beech forest in a cool-temperate region (b), and a dipterocarp 
forest in a tropical regions (c); Nakane, 1980; Kimura and Hatano, 2005). The compartments 
indicate the carbon pools (tC ha–1). The arrows indicate major flows of carbon between the 
compartments (tC ha–1 year–1). Root respiration is not included in the models. 
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Chapter 4  Spatial Variation of 137Cs Inventory in Forest Soils 

4.1  Introduction 

As described in Chapter 1, the spatial heterogeneity of the soil radioactive cesium inventory (Bq 

m-2) represents a major difficulty for studying the radioactive cesium dynamics in a forest 

ecosystem. This limitation has been discussed for some years and various studies have been 

conducted that aim toward a more accurate and precise evaluation (Guillitte et al., 1990; 

Khomutinin et al., 2004; Korobova and Romanov, 2009, 2011). However, no studies have 

examined the characteristics of the spatial heterogeneity by comparing with other ecosystems 

such as open areas, grasslands and croplands. Given the transprocesses of radioactive cesium in 

the initial phase as described above in Chapter 1, spatial distribution of radioactive cesium in the 

forest soils of Fukushima Prefecture three years after the FDNPP accident is expected to be 

affected by canopy interception of initial deposition and translocation from the canopy to the 

forest floor via throughfall, stemflow and litterfall. Consequently, the spatial distribution in forest 

soil may differ with those in other ecosystems. 

Therefore, field surveys were conducted in a mixed deciduous forest in Fukushima (site 

A, Chapter 2) to evaluate the spatial variation of the soil 137Cs inventory. To clarify effects of 

canopy interception, precipitation (throughfall and stemflow) and litterfall, the study plot was 

divided into five subplot types according to canopy projection areas and the tree species, and then 

examined the spatial variation of 137Cs inventory in each of these subplot types. Finally, required 

sample size was determined to enhance the accurate evaluation of soil 137Cs inventory by 

comparing previous studies.  

 

4.2  Materials and Methods  

4.2.1  Study plot 

The study site is the site A (Fig. 2-1 and Table 2-1 in Chapter 2). The study site was positioned in 

a flat area on a mountainside to ignore effects of a steep slope such as soil erosion. At the time of 

the FDNPP accident, the radioactive plume was estimated to arrive at the present study site from 

the southeast side (Katata et al., 2012), and the ratio of wet deposition to the total 137Cs deposition 

was estimated at 0.6–0.8 (Terada et al., 2012).  
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A 20 × 20 m plot was established in the study site. Ninety-one trees were present in the 

plot with a stand density of 2275 ha−1 (only trees with a diameter at breast height (DBH) of ≥ 5 

cm were counted). The largest tree in the plot was a Japanese fir (Abies firma) with a DBH of 46 

cm. Sixteen species were recorded; Japanese oak (Quercus crispula) and Japanese fir (Abies 

firma) were dominant, accounting for 35% and 25% of total tree number, respectively. Other 

species were equal to or less than 5% of the total tree number. The crown projection diagram of 

the study plot given in Fig. 4-1a was drawn on July 28, 2015.  

To compare the effects of canopy interception, wash-out with precipitation (throughfall, 

and stemflow) on soil 137Cs inventory and its spatial variation, the study plot was divided into five 

subplot types as shown in Fig. 4-1b: tree trunk base areas of evergreen coniferous trees (hereafter 

evergreen tree base areas, EB), tree trunk base areas of deciduous trees (hereafter deciduous tree 

base areas, DB), areas under evergreen coniferous crowns excluding tree trunk base areas 

(hereafter, under evergreen crown areas, EC), areas under deciduous crowns excluding tree trunk 

base areas (hereafter under deciduous crown areas, DC), and crown gap areas (CG). The EB and 

DB subplots in the present study included an area of less than 0.5 m radius from each tree, which 

was expected to be strongly affected by stemflow (Matsubayashi et al., 1994; Nakajima and 

Kaneko, 2012). The EC and DC subplots were determined according to the canopy projection 

diagram (Fig. 4-1a). To clarify effects of stemflow and throughfall separately, EC and DC did not 

include the areas around the tree trunk base. As shown in Fig. 4-1a, some areas of EB and EC 

were overlapped with those of DB and DC. In that case, these areas were considered as EB and 

EC because the canopy interception rates and translocation amounts of 137Cs with stemflow, 

throughfall and litterfall of evergreen coniferous trees were larger than those of deciduous trees 

(Kato et al., 2015, Endo et al., 2015). The CG was considered areas other than under trees 

including trees outside the plot, and the areas was 0.9–32 m2. As the crown projection diagram at 

the time of the FDNPP accident is not expected to show large differences with this crown 

projection diagram, the crown projection diagram was used for the analysis. The DBH growth of 

the trees in the present plot is estimated to be only a few centimeters and the consequent increase 

of the canopy projection areas is estimated to be very small after the accident (Hashizume, 1989; 

Shimano, 1997).  
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Figure 4-1  Locations of soil sampling and crown projection diagram in the study plot (a), and 
the five subplot types for comparison of the soil 137Cs inventory (b): evergreen tree base areas 
(EB), deciduous tree base areas (DB), areas under evergreen coniferous crowns excluding tree 
trunk base areas (EC), areas under deciduous crowns excluding tree trunk base areas (DC), and 
crown gap areas (CG). 
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4.2.2  Collecting Soil Samples 

In the present study, only soil surface was focused on and spatial variation at the soil surface (0–

5 cm soil depth excluding the litter layer) was examined because this layer was considered to be 

more important than litter and deeper soil for the following reasons. Currently, most radioactive 

cesium within forest ecosystems in the Fukushima region is present within the upper 5 cm of soil 

(Takahashi et al., 2015). In addition, the 137Cs inventory at the soil surface (0–5 cm in depth) at 

the present study site accounted for more than 72% of that from litter layer to 10 cm of soil as on 

31 July, 2014 (Table 4-1). In addition, spatial variation of the 137Cs inventory in the litter layer 

was smaller than that in soil in mixed deciduous forests in Fukushima (Table 4-1). Finally, 

radioactive cesium in soil shows low mobility (Schimmack et al., 1994; Matsunaga et al., 2013), 

while the mobility in the litter layer is assumed to be relatively high because of the movement of 

litter around the forest floor under processes such as wind (Yamamoto and Bunzl, 1993). 

Accordingly, spatial variation of 137Cs in litter and soil should be examined separately.  

Surface soil (0–5 cm depth) samples were collected with a 100 mL-soil sampler (20 cm2 

and 5 cm depth) at 121 points in the 2-m grid plot on 31 July, 2014 (Fig. 4-1a). In addition to the 

sample collection on the grids, soil samples were also collected in tree trunk base areas (EB and 

DB) of all identified trees in the plot from 129 points on 7 November, 2014 (Fig. 4-1a). The soil 

samples were collected from the north- and south-facing sides of each tree within a distance of 

10 cm from the tree trunk, and the 137Cs activities were measured separately. Some sampling 

points from the north and south sides of trees overlapped when trees were closely positioned. As 

some Japanese oak trees in the plot had been coppiced, soil samples from these coppices were 

collected from the north and south sides of the stocks.  

Activity of 137Cs was corrected for radioactive decay to the first sampling day of this 

survey: 31 July, 2014. In this chapter, the spatial variation of soil 137Cs was discussed by inventory 

(Bq m-2). The 137Cs activity of whole the soil samples collected with the 100 mL-soil sampler was 

measured and the inventory was calculated by dividing the 137Cs activity by the area of the sampler 

(20 cm2).  
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Table 4-1  Depth distributions of 137Cs inventory as on 31 July, 2014. 

Depth Litter layer Soil 0–5 cm Soil 5–10 cm 

Geometric mean [kBq/m2] 13 164 45 

Range 5 - 22 43 - 376 20 - 230 

CVg (CVa) I 0.47 (0.04) 0.50 (0.03) 1.03 (0.07) 

n 8 8 8 

I  CVg indicates ratio of the standard deviation of log-transformed 137Cs inventory to the 
geometric mean. CVa indicates radio of the standard deviation of 137Cs inventory to the 
arithmetic mean. 

         



 

24 
 

4.2.3  Statistical Analysis 

Application of the Shapiro–Wilk normality test showed that some datasets in the present study 

were logarithmically normal distributions (P > 0.05), although the remaining datasets were 

marginally not (P < 0.05). Many studies after the Chernobyl accident showed that approximation 

of soil 137Cs inventory with logarithmically normal distribution is suitable for statistical analysis 

(Khomutinin et al., 2004; Shcheglov et al., 2001). Therefore, all the datasets in the present study 

were log-transformed and a parametric test was used for statistical analysis.  

Geometric means of the 137Cs inventory, the coefficient of variation (ratio of the standard 

deviation of log-transformed 137Cs inventory to the geometric mean, hereafter CVg), and the 

arithmetic coefficient of variation for comparisons with those in previous research (ratio of the 

standard deviation to the arithmetic mean, hereafter CVa) were calculated. The one-way analysis 

of variance (ANOVA) test with multiple comparisons (Tukey’s test) was used to compare 137Cs 

inventory between the five subplot types (EB, DB, EC, DC and CG).  

 

4.3  Results 

The geometric mean of the 137Cs inventory in the study plot and the CVg were 202 kBq m−2 and 

0.11 (0.52 in CVa), respectively. The range of the inventory was from 22 to 697 kBq m−2, showing 

a difference of approximately 30 times and large spatial heterogeneity in the 20 × 20 m area (Table 

4-2, Fig. 4-2). The 137Cs inventory in the DB subplots showed the highest value (248 kBq m−2 in 

geometric mean) and lowest was in the CG areas (156 kBq m−2). The CVg (CVa) values in the 

EB and DC subplots were relatively large at 0.12 (0.51) and 0.11 (0.53), respectively; however, 

the values for CG were small at 0.09 (0.46). The 137Cs inventories showed statistically significant 

differences between the five subplot types (one-way ANOVA; F4, 239 = 5.7, P < 0.001). The 137Cs 

inventory in the DB subplot was higher than those in the DC and CG subplots.  

Figure 4-3 shows frequency distributions of the 137Cs inventories in the study plot and 

the five subplots. The magnitudes of all the histograms showed significant spreads in values and 

right-handed asymmetry (skewness, 0.4–1.3). In CG, over 56% of the inventory was in the 100–

200 kBq m−2. In contrast, the frequent inventory varied in the under tree areas (EB, DB, EC and 

DC), and a higher number of the lowest and highest inventory samples (0–100 and > 200 kBq 

m−2) were observed under evergreen trees (EB and EC) than those under deciduous trees (DB and 
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DC) and CG.   
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Table 4-2  Descriptive statistics for soil 137Cs inventory (kBq m−2) in the entire study plot and 
the five subplot types. 

Subplot Geometric mean 
[kBq/m2] I 

Range Coefficient of 
variation II 

n Area [m2] 

Evergreen tree base 
areas (EB) 

204 ab 22–624 0.12 57 18 

Deciduous tree base 
areas (DE) 

248 a 57–697 0.09 85 30 

Evergreen crown 
areas (EC) 

189 ab 57–439 0.11 27 117 

Deciduous crown 
areas (DC) 

170 b 24–574 0.11 49 147 

Crown gap areas 
(CG) 

156 b 56–438 0.09 32 89 

Total  202  22–697 0.11 250 400 

I 

 
Different letters indicate statistically significant differences between these areas (ANOVA 
test with multiple comparisons). 

II Ratio of the standard deviation of log-transformed 137Cs inventory to the geometric mean. 
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Figure 4-2  Spatial distribution of soil 137Cs inventory (kBq m−2) in the study plot. Activity of 
137Cs was corrected for radioactive decay to the first sampling day of this survey: 31 July, 2014. 
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Figure 4-3  Frequency distributions of soil 137Cs inventory (kBq m−2) and the skewness in the 
entire study plot and the five subplot types. The five subplot types correspond to those identified 
in Fig. 4-1b.   
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4.4  Discussion 

The 137Cs inventory in the present study plot showed large spatial heterogeneity and had a CVa 

value of 0.52. The CVa of Chernobyl-derived radioactive cesium inventory in a pine and oak 

forest soil was from 0.31 to 0.58, showing large spatial variation that is similar to our results (0–

4 cm depth; Korobova and Romanov, 2009). These CVa values in forests were larger than those 

estimated for open areas (excluding forests) in Fukushima and the neighboring prefectures soon 

after the FDNPP accident (0.36 on average; Onda et al., 2015; Saito et al., 2015) collected soil 

samples in areas under homogeneous conditions (e.g. flat, no obstacles, no vegetation coverage). 

In the emergency soil sampling protocol, five soil samples within a 3 × 3 m area are recommended 

as the minimum number for reducing measurement uncertainty (Onda et al. 2015). The 

comparison with the result of the present study indicates that the spatial variation in forest soils 

is larger than those in open areas. 

The large spatial heterogeneity in the present study plot is assumed to be strongly 

affected by initial transprocesses after the accident (from initial deposition to wash-out with 

precipitation). Even in the present study plot (20 × 20 m), the spatial variation differed among the 

five subplots; the spatial variation in the CG subplots was smaller than those under trees. The 

spatial variation in CG is thought to mainly reflect initial deposition and migration with litter 

decomposition. In other subplots that were located under trees (EB, DB, EC and DC), more 

samples of lower and higher inventory were observed. This result indicates that the presence of 

trees increases the spatial variation of soil 137Cs inventory (increases heterogeneity) as of three 

years after the FDNPP accident. This larger spatial variation in EB, DB, EC and DC may be due 

to several processes including canopy interception of initial deposition and wash-out of 137Cs on 

tree bodies with precipitation. Kato et al. (2015) reported that canopy interception was 70% and 

20% of the total deposition in evergreen and deciduous forests, respectively, at the time of the 

accident in Fukushima Prefecture. The initial deposition under trees was also expected to be 

smaller than that in crown gap areas in our study site, leading to some soil samples with low 137Cs 

inventory. This also supports the finding that more of the lower inventory samples were observed 

under evergreen trees (EB and EC) than under deciduous trees (DB and DC). In addition, 137Cs 

intercepted by trees is transferred on and into forest floors and soils by precipitation through the 

processes of stemflow and throughfall (Endo et al., 2015; Kato et al., 2015). Accordingly, some 
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high inventory samples may be observed where stemflow and throughfall were likely to have 

seeped.  

The geometric mean of the inventory around tree areas was higher than that under tree 

crowns in some distance from the trees although the spatial variation under trees was very large. 

Yamamoto and Bunzl (1993) reported the similar spatial gradients in a German forest after the 

Chernobyl accident and attributed their findings to the process of radioactive cesium on trees 

washing out and seeping around tree trunk bases. The spatial gradients in the present study site 

differed between evergreen coniferous trees and deciduous trees; the inventory gradually 

decreased from the tree trunk bases of evergreen coniferous trees although there were no 

statistically significant differences (EB ≥ EC ≥ CG). In contrast for the deciduous trees, the 

inventory in DB was high and suddenly decreased under DC, showing almost the same inventory 

values to CG (DB > DC ≥ CG). A similar difference was observed by Yamamoto and Bunzl (1993) 

between beech trees (deciduous) and spruce trees (evergreen). This may be attributed to the 

phenological difference between evergreen and deciduous trees (only evergreen trees were in leaf 

at the time of the respective incidents).   

 

4.5  Conclusions 

Our result showed that the spatial variation of soil 137Cs inventory under trees (around tree trunk 

bases and under tree crowns) was larger than those in crown gap areas at our study site. The soils 

under the trees were thought to be strongly affected by some processes such as canopy 

interception and translocation by precipitation (throughfall and stemflow) soon after the accident, 

leading to areas of low and high 137Cs inventory values in the forest soil.  

Our result implies that more than five soil samples as shown in the previous study (Onda 

et al., 2015) may be required in forest ecosystems to enhance the accurate evaluation of the 137Cs 

inventory.  
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Chapter 5  Temporal Changes in the Vertical Distribution of 
137Cs in Soils 

5.1  Introduction 

Most of the 137Cs that was deposited in mixed deciduous forests in the Fukushima region after the 

FDNPP accident was transferred to the forest floors and soils within several years (Hashimoto et 

al., 2013; Kato et al., 2015), as mentioned in Chapter 1. The events after the Chernobyl accident 

led to the expectation that 137Cs in the forests in Fukushima would migrate from the litter layer to 

the surface soil and deeper soil over time because 137Cs discharges to ecosystems outside the 

forests were limited and because of the absorption of radioactive cesium by plants (Hashimoto et 

al., 2013; Kajimoto et al., 2015). Therefore, the downward migration of 137Cs in the soils will be 

the most important transport of 137Cs in a forest ecosystem to be considered on a temporal basis. 

Many studies of the vertical migration of radioactive cesium through soil were conducted after 

the Chernobyl accident (e.g., Rosen et al., 1999). However, it is difficult to simply compare 

downward migration in the Fukushima and Chernobyl areas because litter decomposes more 

quickly in Japanese forests than in forests around Chernobyl (Ono et al., 2013). Such a 

comparison is also difficult. That is because the topography in the northwest of FDNPP (the 

present study site) largely consists of steep slopes. Thus there is a possibility that large amounts 

of 137Cs deposited on forest floors are transported from ridge to valley with litter and surface 

runoff water, and consequently discharges to outside ecosystems. The 137Cs movement in a forest 

ecosystem may also be dependent on site characteristics; for example, the amount of snow fall 

that remained on the forest floors at the time of the accident was variable by site. Therefore, such 

spatial heterogeneity effects must be considered in the study of downward migration of 137Cs in 

forest soils. 

In the present study, temporal changes in the vertical distributions of 137Cs in soils in 

mixed deciduous forests in Fukushima Prefecture were examined to improve our understanding 

of the downward migration of 137Cs in forest soils. Different forest areas were selected as study 

sites and aimed to clarify the effects on the migration based on steep slope angles of the forests 

(horizontal movement along steep slopes) and the differences in total atmospheric deposition and 

snow coverage at the time of the deposition. The large spatial variations in 137Cs inventories in 
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soil and the results of the study described in Chapter 4 were taken into consideration to ensure 

that the sample size was sufficient to meet the aims of this study.  

 

5.2  Materials and Methods 

5.2.1  Sample collection 

The locations of the study sites are marked B, C, and D in Fig. 2-1 in Chapter 2, and the sites are 

described in Table 2-1 in Chapter 2. The potential for 137Cs to move horizontally because of the 

presence of a steep slope was investigated by studying sites with steep slopes (sites B and D, 

which had slopes of 30° and 20°, respectively) and a flat site (site C, which had a slope of 5°). 

Samples were collected from the middle parts of the slopes at sites B and D. 

Field surveys were continued for 25 months from August 2013 to August 2015. Sample 

collection was conducted every 3–5 months (August 2013, December 2013, March 2014, August 

2014, November 2014, March 2015 and August 2015). We collected samples of the litter layer 

(organic layer), and 0–5 and 5–10 cm soil depth because most 137Cs from the FDNPP accident 

remains within the upper 10 cm of soil (Takahashi et al., 2015). To attempt to confirm this, we 

took soil samples from the 10–15 cm soil depth in March 2015 only. On each sampling date, litter 

from the organic layer was collected from an area of 10 × 10 cm, and soil samples were collected 

with a 100 ml soil core sampler (20 cm2 and 5 cm depth). The locations for the sample collection 

at each study site were randomly chosen at each field survey, and eight samples from the litter 

layers, 0–5 and 5–10 cm soil depths were collected from each site. More than five samples, which 

is the generally recommended sample size (Onda et al., 2015), were collected because forest soils 

are more spatially heterogeneous than soils in other ecosystems, as shown in Chapter 4. Four 

samples were collected from 10–15 cm soil depth in March 2015. In the present study, the soil 

137Cs inventories were examined in 5 cm depth sections because 137Cs inventories within the 0–5 

cm soil depth have a large spatial heterogeneity (a difference of up to 30 times between the lowest 

and highest values; Takada et al., 2016b). Therefore, downward migration was discussed at a scale 

of 5 cm soil depth in the present study. 

The 137Cs and 134Cs activities in the litter and soil samples were determined as described 

in Chapter 3. The 137Cs activity was corrected for radioactive decay to the first day samples were 

collected for use in this study (1 August 2013). Temporal changes in the 137Cs inventory were 
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assessed on an inventory (Bq m−2) basis to allow the migration of 137Cs in soil to be focused on 

quantitatively dynamics study. The 137Cs activities of the whole soil samples collected with the 

100-mL soil sampler were measured, and the inventory data were calculated by dividing each 
137Cs activity by the area of the sampler (20 cm2). 

 

5.2.2  Statistical Analysis 

All the datasets produced in this study were log-transformed before statistical analyses were 

performed, as described in Chapter 4 (Shcheglov et al., 2001; Khomutinin et al., 2004). The 

Shapiro–Wilk normality test indicated that some of the datasets had log-normal distributions (P 

> 0.05) and the other datasets had distributions that were close to but not fully log-normal (P < 

0.05).  

Geometric means of the 137Cs inventory (kBq m−2) and the coefficient of variation (ratio 

of the standard deviation of log-transformed 137Cs inventory to the geometric mean, hereafter CV) 

were calculated. The one-way analysis of variance (ANOVA) test with multiple comparisons 

(Tukey’s test) was used to compare 137Cs inventories among different layers and sampling periods.   

 

5.3  Results 

Temporal changes in the 137Cs inventories in the litter layer, and at 0–5 and 5–10 cm soil depth 

for two years are shown in Figure 5-1 and Table 5-1. The highest 137Cs inventory value, 295 kBq 

m−2, was found in the 0–5 cm soil depth at site D in November 2014. The lowest 137Cs inventory 

value, 7 kBq m−2, was found in 5–10 cm soil depth at site B in August 2013. Temporal changes 

in the 137Cs inventories in each layer followed similar patterns at all three study sites despite the 

different amounts of total atmospheric deposition, slope inclinations, and snow coverage 

conditions at the time of the deposition. The 137Cs inventory in the litter layer decreased over time, 

the inventory at 0–5 cm soil depth increased over time, and the inventory at 5–10 cm soil depth 

slightly increased over time (one-way ANOVA, P < 0.001 at sites B, C and D). Large increases 

and decreases in the 137Cs inventories in the litter layer and at 0–5 cm soil depth, respectively, 

were found in 2013. The inventory in the litter layer exceeded the inventory in the soil at all three 

study sites between August and November 2013. The litter layer inventory in August 2013 was 

higher than the 0–5 cm soil depth inventory, but in November 2013, the 0–5 cm soil depth 
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inventory was higher than the litter layer inventory. The litter layer 137Cs inventory accounted for 

60%–70% of the total 137Cs inventory (for the litter and the soil to a depth of 10 cm) in August 

2013 but accounted for only around 10% one year later. The litter layer 137Cs inventory then 

remained stable for several months, but increased by a factor of two to three in 2015. The 

contributions of the 0–5 cm soil depth inventory to the total inventory increased from 20%–30% 

to 70%–80% for one year between August 2013 and August 2014. The 137Cs inventories at 5–10 

cm soil depth increased by a moderate amount overall during the study period, but then 

substantially increased by a factor of two to three between August and December 2013. No 

dramatic changes in the vertical distributions (such as those that occurred in 2013) occurred in 

any layer after 2014. Although moderate fluctuations in the total 137Cs inventories were found, 

significant changes in the total 137Cs inventories (for the litter and soil to a depth of 10 cm) were 

not found during the study period at sites B and C (one-way ANOVA, P < 0.001), which is because 

the standard deviations were large. These large standard deviations were caused by the high 

degree of spatial heterogeneity at 0–5 cm soil depth. However, at site D, the total inventory 

significantly but marginally differed during the study period (P = 0.1). The 137Cs inventory for 

10–15 cm soil depth was determined only in March 2015, and, at that time, the 137Cs inventory at 

10–15 cm soil depth was 43%–70% of the 137Cs inventory for 5–10 cm soil depth. 

Temporal changes in the CVs of the inventories for the different layers and the total 

inventories during the study period are shown in Figure 5-2 and Table 5-2. No clear differences 

were found between the CVs for the study sites with steep slopes and the flat study site, and the 

CVs were not related to the total amount of atmospheric deposition and snow coverage conditions 

that had occurred. The CVs for the litter layers did not show clear temporal changes. The CVs for 

the soils decreased most markedly in 2013. The deeper soils had larger CVs. Except at site B, the 

CVs for the litter layer were higher than the CVs for the 5–10 cm soil depth. The total inventories 

did not fluctuate substantially during the study. 
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Table 5-1  Temporal changes in geometric means of the 137Cs inventories (kBq m−2) for the 
different layers. 

 Litter layer Soil 0–5 cm Soil 5–10 
cm 

Soil 10–15 
cm 

Total (litter–
soil 10 cm) 

Site B      

August 2013 128.8 66.4 7.3 - 217.8 

November 2013 38.2 181.1 30.5 - 291.5 

March 2014 41.3 143.7 36.1 - 227.6 

August 2014 21.5 272.4 34.6 - 340.2 

November 2014 13.9 258.2 22.6 - 304.1 

March 2015 31.0 259.2 27.3 11.7 345.5 

August 2015 54.8 215.8 35.0 - 336.0 

Site C      

August 2013 111.4 28.3 9.9 - 169.3 

November 2013 38.6 78.9 18.7 - 162.1 

March 2014 20.1 155.3 12.3 - 196.2 

August 2014 20.0 143.1 20.1 - 197.8 

November 2014 14.9 205.2 21.0 - 245.2 

March 2015 66.6 124.8 25.6 18.0 228.8 

August 2015 38.1 140.8 21.4 - 216.7 

Site D      

August 2013 189.7 51.6 9.8 - 278.8 

November 2013 59.0 169.1 32.5 - 272.4 

March 2014 50.8 184.2 30.0 - 286.0 

August 2014 47.8 195.2 32.0 - 284.0 

November 2014 62.4 295.1 28.9 - 401.3 

March 2015 99.3 263.3 35.6 16.9 443.4 

August 2015 104.2 218.7 47.5 - 343.2 
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Table 5-2 Temporal changes in the coefficient of variation (CVg) I of 137Cs inventory for the 
different layers. 

 Litter layer Soil 0–5 cm Soil 5–10 
cm 

Soil 10–15 
cm 

Total (litter–
soil 10 cm) 

Site B      

August 2013 0.04 0.08 0.07 - 0.04 

November 2013 0.11 0.04 0.06 - 0.03 

March 2014 0.04 0.06 0.04 - 0.04 

August 2014 0.06 0.04 0.06 - 0.04 

November 2014 0.07 0.03 0.07 - 0.03 

March 2015 0.10 0.02 0.06 0.07 0.03 

August 2015 0.07 0.04 0.07 - 0.02 

Site C      

August 2013 0.06 0.08 0.12 - 0.05 

November 2013 0.04 0.08 0.07 - 0.04 

March 2014 0.05 0.04 0.08 - 0.04 

August 2014 0.05 0.04 0.08 - 0.03 

November 2014 0.06 0.03 0.04 - 0.03 

March 2015 0.03 0.06 0.04 0.04 0.04 

August 2015 0.05 0.07 0.08 - 0.05 

Site D      

August 2013 0.03 0.07 0.12 - 0.03 

November 2013 0.04 0.04 0.05 - 0.03 

March 2014 0.06 0.04 0.07 - 0.03 

August 2014 0.04 0.01 0.05 - 0.01 

November 2014 0.04 0.02 0.06 - 0.02 

March 2015 0.06 0.04 0.06 0.07 0.02 

August 2015 0.01 0.04 0.04 - 0.03 

I  Ratio of the standard deviation of log-transformed 137Cs inventory to the geometric mean.  
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Figure 5-1  Temporal changes in the geometric means of the 137Cs inventories for the litter 
layers, 0–5 cm soil depth, and 5–10 cm soil depth and the total inventories (for the litter and soil 
to a depth of 10 cm) from August 2013 to August 2015 at sites B, C, and D. Inventories for 10–
15 cm soil depth for March 2015 are also shown. Each vertical bar indicates the standard deviation. 
Different letters of small letters indicate statistically significant differences among layers (litter 
layers, 0–5 cm soil depth, and 5–10 cm soil depth) and sampling periods at α = 0.05 (one-way 
ANOVA with multiple comparisons). Different letters of capital letters indicate statistically 
significant differences among total inventories and sampling periods. 
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Figure 5-2  Temporal changes in the coefficients of variation of the 137Cs inventories (the ratio 
between the standard deviation of the log-transformed 137Cs inventory and the geometric mean) 
for the litter layer, 0–5 cm soil depth, and 5–10 cm soil depth, and of the total inventories (from 
the litter to 10 cm soil depth) from August 2013 to August 2015 at sites B, C, and D. Results for 
10–15 cm soil depth in March 2015 are also shown.  
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5.4  Discussion 

The 137Cs inventories for the litter layers decreased and the 137Cs inventories for the soils increased 

even though the total inventories did not change largely (one-way ANOVA, P < 0.001 at sites B 

and D; P = 0.1 at site C). These results indicated that the 137Cs in the litter layer migrated into the 

soils during the study period, as shown in many previous studies (Rafferty et al., 1997; Fujii et 

al., 2014). This pattern was observed at all three of our study sites; at sites B and D with steep 

slopes, significant temporal changes of the total inventories (litter layer to 10 cm soil depth) were 

not observed, more than 2 years after the FDNPP accident. In addition, any clear effects of initial 

deposition relating to snow coverage on the forest floors at the time of deposition were observed 

(Figure 5-1).  

The large decreases in the 137Cs inventories in the litter layers in 2013 are likely to have 

been partly caused by contaminated litter decomposition, as suggested in many previous studies 

(Rafferty et al., 1997; 2000; Huang et al., 2016). However, the 137Cs activities in the litter layers 

decreased much more quickly than litter decomposes, on a weight basis, in deciduous forests in 

northern Japan (Ono et al., 2013). The decreases in the 137Cs inventories in the litter layers in our 

study may have been caused by a combination of the litter decomposition and other environmental 

factors, such 137Cs being washed off the litter surfaces by precipitation and the 137Cs being leached 

from the litter (Nakanishi et al., 2014; Huang et al., 2016). The 137Cs inventories in the litter layers 

increased slightly in 2015 at all study sites. This was assumed to be caused by translocation of the 

137Cs from the soil to the litter layer by fungi (Rafferty et al., 1997; Huang et al., 2016). 

Translocation could have occurred in 2013 and 2014, but it would be difficult to determine 

whether it had occurred because the 137Cs inventories in the litter layers decreased rapidly.  

The 137Cs activities increased much more at 0–5 cm soil depth than at 5–10 cm soil 

depth, suggesting that the 137Cs that migrated from the litter layers to the soils remained in the 

surface layers of the soils. This result agrees with the results of many previous studies in forests 

(Rafferty et al., 2000; IAEA, 2006; Matsunaga et al., 2013; Pumpanen et al., 2016). The 137Cs 

remained in the surface layers of the soils because the 137Cs migrated into soils rapidly and 

subsequently became strongly sorbed to soil particles (Schimmack et al., 1994). At sites B and D, 

137Cs inventories significantly increased at 5–10 cm soil depth in 2013, but thereafter, there were 

no clear signs of 137Cs migrating from 0–5 to 5–10 cm soil depth. This may be because, from soon 
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after the accident to 2013, 137Cs quickly migrated to deeper soils in solution without absorption 

onto soil particles by wash off of 137Cs on litter on the forest floors, and throughfall and stemflow. 

As a result, the 137Cs migration to 5–10 cm soil depth decreased with decrease of dissolved 137Cs 

in soils (Rafferty et al., 2000). In addition, if the 137Cs migration was smaller than the spatial 

variation of 137Cs in soils, the 137Cs migration from 0–5 to 5–10 cm soil depth may be behind the 

spatial variation. Therefore, in order to detect slow migration in soils since 2014, the study period 

may have been too short, at only 2 years. A study with a longer duration (at least dozens of years) 

should be conducted to provide clear evidence to support previous studies (Rühm et al., 1996; 

Rosén et al., 1999). Similarly, a larger sample should have been taken to detect the slow 137Cs 

migration in soils after 2014 (e.g., more than 100 soil samples were required to detect statistically 

significant differences based on power analysis). However, such a considerable large sampling 

size was impractical.  

The amounts of 137Cs that had migrated to the surface soils from the litter layers were 

not observed to increase or decrease markedly after 2014, indicating that the present study sites 

entered a new phase during which 137Cs in forest soils migrates very slowly. This may be termed 

the “quasi-equilibrium phase”, “relatively stable phase” or “steady state”, as was observed after 

the Chernobyl accident (Rafferty et al., 2000; IAEA, 2006; Pumpanen et al., 2016). Thus, the 

dramatic downward migration of large amounts of 137Cs is unlikely to continue to occur in forests 

around the FDNPP in the future. 

The CVs of the 137Cs inventories in the litter layers (i.e., spatial variations in the 137Cs 

inventories in the litter layers) did not follow any noticeable temporal changes related to the 

decreases in the 137Cs inventories of the litter layers during the study period. The CVs of the 137Cs 

inventories for the soils decreased, especially in 2013, and the decrease occurred at the same time 

as the 137Cs inventories of the litter layers and soils decreased and increased, respectively. This 

indicated that the small amount of 137Cs that was deposited onto the forest soils shortly after the 

FDNPP accident has a heterogeneous spatial distribution and then became more homogeneous 

with increasing migration. The temporal changes in the spatial variability of 137Cs in the soils 

occurred during the final phase of 137Cs inputs to the forest floors and soils via stemflow and 

throughfall, as observed in a mixed deciduous forest in Fukushima (Kato et al., 2015). The high 

degree of spatial variability in the forest soils was thought to be strongly affected by the sporadic 
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transport of 137Cs in stemflow and throughfall (Chapter 4; Takada et al., 2016b). The spatial 

variability then decreased because large amounts of 137Cs migrated from the litter layers to the 

soils.  

 

5.5  Conclusions 

Our results suggest that large amounts of 137Cs had migrated from the litter layers to the surface 

soils by 2013 at the study sites. In addition, the 137Cs migrated from the litter layers much more 

quickly than could be explained by the rate at which litter decomposes in the study region. The 

decrease in spatial variability in the 137Cs inventories in the soils in 2013 suggested that the 137Cs 

in the soils had been predominantly supplied by stemflow and throughfall by 2013. The dominant 

source then gradually changed to the decomposition and leaching of the contaminated litter on 

the forest floors. At more than 2 years after the FDNPP accident at the present study sites, the 

differences in initial atmospheric deposition, snow coverage on the forest floors at the time of the 

deposition, and horizontal movement along slopes did not cause any clear differences in the 

downward migration patterns of 137Cs in forest soils. 

The results indicated that the study sites had reached the phase in which the 137Cs in 

forest soils migrates very slowly (known as the quasi-equilibrium/relatively stable/steady state 

phase; Rafferty et al., 2000; IAEA, 2006; Pumpanen et al., 2016). The small amounts of 137Cs that 

would have migrated during this phase could not be determined by the present study method 

because of the high degree of spatial variability in the 137Cs inventories of the soils. A different 

method is therefore required to evaluate the future downward migration of 137Cs in soils. One way 

of achieving this would be to use a lysimeter method that allows small amounts of 137Cs migrating 

through the soil to be measured. 
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Chapter 6  Simplified Measurement Method for Dissolved 
Radioactive Cesium in Litter and Soil Seepage Water 

6.1  Introduction 

In mixed deciduous forests in Fukushima region, most radioactive cesium in forest soils is 

expected to exist in the surface part of soils after 2014, according to Chapter 5 and previous 

studies (Takahashi et al., 2015; Matsunaga et al., 2013). Meanwhile as shown in Chapter 1, a 

small amount of radioactive cesium with high mobility (dissolved radioactive cesium) has a 

possibility to still continue to migrate downward. However, commonly used soil profile method 

like Chapter 5 (e.g. Straume et al., 2006; Takahashi et al., 2015) may not be able to examine 

downward migration of radioactive cesium after 2014 especially during short periods from 1 year 

to several years. In spite of the large spatial heterogeneity of radioactive cesium in forest soils as 

shown in Chapter 4 and Chapter 5, it is difficult to examine downward migration of radioactive 

cesium with a slow migration speed by comparing the vertical distribution within a short period.  

In contrast, a lysimeter method directly monitors migrating ions in the soil (Rasmussen 

et al., 1986). Although this method was used after the Chernobyl accident in 1986 (Tegen and 

Dӧrr, 1996) and the FDNPP accident in 2011 (Nakanishi et al., 2014), it has not been widely 

adopted because of its complex procedure. For example, to employ the lysimeter method, we need 

to excavate soil deeply (tens of centimeters) to install a large sized lysimeter. Therefore, multi-

point monitoring with lysimeters in a forest ecosystem is not practical. In addition, using the 

lysimeter method, we need to collect seepage water once in several weeks or a month and bring 

the water sample to a laboratory for radioactive cesium measurement. Determination of the 

radioactive cesium concentration in the water sample requires filtration and evaporative 

concentration prior to measurement if the radioactive cesium concentration in the water sample 

is low. This process usually takes at least several hours. Moreover, determination of radioactive 

cesium concentration requires a length period for a small volume of collected water or a very low 

concentration of radioactive cesium. Furthermore, the conventional lysimeter method separates 

dissolved radioactive cesium from particulate radioactive cesium not in-situ but in the laboratory 

by filtration. This delayed separation may cause the re-distribution of the dissolved and particulate 

radioactive cesium in the water sample. Therefore, development of a simple, rapid and easy 
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monitoring method for radioactive cesium in litter and soil seepage water is required to 

concentrate dissolved radioactive cesium on-site to be easily measured. 

After the FDNPP accident, a rapid method was developed for the detection of dissolved 

radioactive cesium in fresh water using nonwoven fabric impregnated with Prussian blue 

(Yasutaka et al., 2013) or potassium zinc ferrocyanide (Yasutaka et al., 2015). Prussian blue 

(potassium ferrocyanide (II) potassium oxide iron (II), KFe[Fe(CN)6]3·xH2O) is known to 

specifically adsorb dissolved radioactive cesium (IAEA, 1997). Yasutaka et al. 2016 also 

developed the nonwoven fabrics impregnated with copper-substituted Prussian blue (hereafter, 

Cu-NF) for detecting radioactive cesium in seawater. The Cu-NF can absorb the radioactive 

cesium in the water sample with high concentration of co-existing ions. 

The purpose of this study was to develop a simple, rapid and in-situ separation method 

for examining the migration of dissolved 137Cs from soil and/or litter in forest using Cu-NF. The 

Cu-NF was introduced to a conventional lysimeter, which can adsorb dissolved radioactive 

cesium in the seepage water in-situ. The recovery ratio of dissolved 137Cs with the Cu-NF method 

was also examined in both laboratory and field experiments. 

 

6.2  Materials and Methods  

Two experiments were conducted using Cu-NF combined with a lysimeter (hereafter termed the 

Cu-NF lysimeter): laboratory experiments and field experiments. First, the absorption ability of 

dissolved 137Cs in litter seepage water was confirmed using the Cu-NF in laboratory experiments. 

Next, field experiments were conducted to examine the applicability of this method to litter and/or 

soil seepage water in the forest environment.  

 

6.2.1  Experimental materials 

The Cu-NF lysimeters for the laboratory and the field experiments consisted of PVC pipes (90 

cm2), nonwoven fabric filters and a polypropylene bottle (I-Boy, As ONE Corporation, Japan), as 

shown in Fig. 6-1. Litter and/or soil were packed as packing materials in the PVC pipes, followed 

by two or three sheets of 26 µm pore size nonwoven fabric sheets (ELV-130 for the laboratory 

experiment, H-8010 for the field experiment, Japan Vilene Co., Ltd., Japan) and seven sheets of 

Cu-NF (volumetric density 0.03 g cm−3, thickness 0.01 cm, Japan Vilene Co., Ltd., Japan). The 
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26 µm pore size nonwoven fabric sheets were used to collect soil particles to avoid contamination 

of the Cu-NF. Both the Cu-NF and the 26 µm pore size nonwoven fabric were cut to a diameter 

of 113 mm. The water, passed through litter and/or soil, the 26 µm pore size nonwoven fabric 

sheets and the Cu-NF, was collected with 2 L polypropylene bottles.   
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Figure 6-1  Schematic of the Cu-NF lysimeter sets for the laboratory experiment (a) and field 
experiment (b). *Nonwoven fabric sheets with 26μm pore size. **0.45 µm membrane filter. 
***Nonwoven fabrics impregnated copper-substituted Prussian blue.  
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6.2.2  Laboratory experiments 

In the laboratory experiments, the recovery ratio of dissolved 137Cs in water passed through the 

litter in the Cu-NF lysimeter was evaluated. The litter was separately collected from the L layer 

and F-H layer at a Japanese cedar forest (Cryptomeria japonica) in study site E in Chapter 2. 

Litter of not deciduous but evergreen coniferous trees was used for this development because the 

concentration of radioactive cesium was expected to be relatively high even in 2015 due to its 

slower decomposition rate (Valachovic et al., 2004). Litter from the L layer (400 g) and the F-H 

layer (160 g) was mixed well after being cut to 2 cm in length. Next, the pipe was filled with litter 

(approximately 800 Bq / 65g wet weight) to a height of 5 cm in four of the Cu-NF lysimeters 

(Nos. 1-1, 1-2, 1-3 and 1-4-1). In three of the Cu-NF lysimeters (Nos. 1-1, 1-2 and 1-3), two sheets 

of 26 µm pore size nonwoven fabric and seven sheets of Cu-NF were combined, and in the 

remaining lysimeter (No. 1-4-1), only three sheets of 26 µm pore size nonwoven fabric without 

Cu-NF was used as the control. 

Table 6-1 and Fig. 6-2 show the experimental conditions and procedures. Ten liters of 

ion exchange water, which was approximately 1,111 mm of throughfall volume and nearly the 

same as annual precipitation in Fukushima Prefecture (1,166 mm, 1981–2010), was passed 

through each Cu-NF lysimeter (Fig. 6-1a). Water flow rates (L hour−1) through the packing 

materials in the four lysimeters decreased with time because of the clogging of 26 µm pore size 

nonwoven fabric. Initial and final rates were 8.0 and 0.1 L hour−1, respectively. The average flow 

rate was approximately 0.2 L hour−1 (i.e. 22 mm hour−1). Accordingly, flow rates of the water 

through the Cu-NF of No. 1-1, 1-2 and 1-3 agreed with the flow rates shown above. However, for 

the control No. 1-4-1, the collected water passed through the lysimeter was initially filtered with 

0.45 µm membrane filters (mixed cellulose ester, Advantech, Tokyo, Japan) to remove particulate 

radioactive cesium, and passed through the other Cu-NF lysimeters (No. 1-4-2) with seven sheets 

of Cu-NF. The flow rate through No. 1-4-2 was 20 L hour−1, which is rapid compared with the 

other three Cu-NF lysimeters (No. 1-1, 1-2 and 1-3). 

The measurement procedure of the 137Cs concentration in the water and the Cu-NF was 

described in Chapter 3.  
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Table 6-1  Experimental conditions for the laboratory experiment. 

Lysimeter 
No. 

137Cs activity in 
packing material [Bq] 

Wet 
weight [g] 

Water Average flow 
rate to Cu-NF 
[mm/h] 

1 - 1 825 68.3 Including particulate Cs 22 

1 - 2 792 64.7 Including particulate Cs 22 

1 - 3 832 65.7 Including particulate Cs 22 

1 - 4 790 67.8 No particulate Cs due to 
filtration with 0.45-µm 
membrane filters 

2,200 

        



 

48 
 

 

 

Figure 6-2  Flowchart of the procedure of the laboratory experiment. 



 

49 
 

6.2.3  Field experiments  

Field experiments were also conducted in site E in Chapter 2. Six Cu-NF lysimeters were used in 

the field experiments (Fig. 6-1b). Three Cu-NF lysimeters were filled with 4 cm of litter, and 

installed under the litter layer (Nos. 2-1, 2-2 and 2-3), and three further Cu-NF lysimeters were 

filled with 4 cm of litter and 5 cm of soil, and installed at 5 cm depth below the soil surface (Nos. 

3-1, 3-2 and 3-3). Intact litter and soil cores were collected by pounding a pipe with 10.7 cm 

diameter into the litter and soil to 5 cm depth and filled in Cu-NF lysimeters without further 

compaction. There were 10-cm spaces between the filled litter or/and soils and the Cu-NF (Fig. 

6-1b). Seepage water was passed through the 26 μm NF and the Cu-NF, and finally collected in 

2-L polypropylene bottles. As the installation site was sloping, approximately 15 cm height of 

enclosures from the ground surface were combined with the Cu-NF lysimeters to avoid the direct 

influx of surface runoff into the Cu-NF lysimeters.  

Lysimeters under the litter layer (Nos. 2-1, 2-2 and 2-3) were installed from 24 May to 

27 August 2015, and those at 5 cm depth below the soil surface (Nos. 3-1, 3-2 and 3-3) from 3 

July to 27 August 2015. Sample collection of the Cu-NF and water in the bottles was conducted 

three times for litter filled Cu-NF lysimeters (No. 2-1, 2-2 and 2-3 on 3 July, 30 July, and 27 

August, 2015) and twice for litter and soil filled Cu-NF lysimeters (Nos. 3-1, 3-2 and 3-3, on 30 

July and 27 August, 2015) during the experimental periods. The volume of the collected water in 

the bottles was determined on each sample collection date. On the last sample collection (27 

August), the litter and soil in the Cu-NF lysimeters were also collected. The soil and litter in the 

Cu-NF lysimeter Nos. 3-1 and 3-2 were collected separately, but litter and soil of No. 3-3 could 

not be collected separately because the soil and litter had been disturbed and mixed together 

(probably by heavy precipitation events).  

Measurement procedures for 137Cs activities in collected water samples and the Cu-NF 

were shown in Chapter 3, and the packing materials (litter and soil) were also treated and 

measured were shown in Chapter 3.  

 

6.3  Results and Discussion 

6.3.1  Laboratory experiments 

Figure 6-3 shows the results of the laboratory experiments. Approximately 86–93% of dissolved 
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137Cs was collected in the Cu-NF and over 95% of the collected 137Cs was present in the first three 

of the total seven sheets. This indicated that most of the dissolved 137Cs was collected by the Cu-

NF and 86–93% of dissolved 137Cs in the seepage water was in ionic form.  

The recovery ratio of dissolved 137Cs in the Cu-NF for No. 1-4 (average flow rate: 2,200 

mm hr−1) presented the same pattern as those for No. 1-1, 1-2 and 1-3 (average flow rate 22 mm 

hr−1), even though the flow rate for No. 1-4 was 100 times faster than the others. The gravity-

dependent flow rate range in the present study (11–2,200 mm hour−1) is thought to be acceptable 

for a good recovery rate, even though the recovery rate of 137Cs in the Cu-NF decreases with the 

increasing flow rate (Yasutaka et al., 2016).  

In contrast, about 7–14% of 137Cs was also detected in the water passed through the Cu-

NF and the 0.45 μm membrane filter. This result indicates the possibility that other existing forms 

of the 137Cs (except for the dissolved form in the water, such as particulate 137Cs with radius of 

less than 0.45 µm and/or colloid 137Cs), may pass through 0.45 µm membrane filters but not 

become adsorbed to the Cu-NF. The contribution of the undetermined forms of 137Cs is estimated 

at about 7–14% in our laboratory experiments and thus clearly cannot be ignored. However, the 

flow rates (11–2,200 mm hour−1) in the laboratory experiments are far higher than those 

encountered when precipitation penetrates into forest soil in the environment, suggesting that the 

high concentration of the undetermined forms of 137Cs may be because of the high flow rate.  
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Figure 6-3  Recovery ratios of 137Cs detected in the Cu-NF and the water passed through the 
Cu-NF. The 137Cs concentrations in the water are shown after filtration with 0.45 µm membrane 
filters. The error bars indicate the measurement error. 
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6.3.2  Field experiments  

6.3.2.1  137Cs activity of the packing materials and collected water volume 

Table 6-2 shows the 137Cs activities in the packing materials in each Cu-NF lysimeter. The average 
137Cs activities of the lysimeters installed under litter layer and in soil at 5 cm depth were 779–

1,006 and 1,665–2,181 Bq, respectively, which is consistent with the results of spatial 

heterogeneity of 137Cs in forest soil after the FDNPP accident (Takada et al., 2016b). 

Table 6-3 shows the collected volumes of water samples of the Cu-NF lysimeters and 

precipitation (mm) with hourly maximum precipitation (mm h−1) at the Tsushima weather station 

(JMA), the nearest meteorological station, during the experimental periods. Monitored 

precipitations by the JMA during three experimental periods were 137–148 mm, and precipitation 

values calculated by collected water volumes were 39–108 mm (77 mm on average). The 

difference between the lowest and highest volumes of the precipitation depended on neither the 

installed depths of the Cu-NF lysimeters nor the location of installation in the forest stand. Our 

results were consistent with a previous study on large spatial variation in throughfall and soil 

water (Kobayashi et al., 2000).  
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Table 6-2  137Cs activities in packing materials of the Cu-NF lysimeters. 

Lysimeter 
No. 

Organic layer  Soil 0–5 cm  Total 

Activity 
[Bq] 

Dry 
weight [g] 

 Activity 
[Bq] 

Dry 
weight [g] 

 Activity 
[Bq] 

Dry 
weight [g] 

2 - 1 807 23  - -  807 23 

2 - 2 1,006 24  - -  1,006 24 

2 - 3 779 21  - -  779 21 

3 - 1 517 17  1,663 35  2,181 52 

3 - 2 1,176 34  995 75  2,171 108 

3 - 3 I   1,665 74 

I  Organic layer and soil were mixed in the Cu-NF lysimeter. 
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Table 6-3  Collecting volume of the water samples during monitoring period. 

Monitoring 
period 
(year/month/day) 

Days Collecting water volume [ml] Precipitation 
[mm] I 
(Maximum 
[mm/h]) 

(Calculated precipitation [mm]) 

2 - 1 2 - 2 2 - 3 3 - 1 3 - 2 3 - 3 

1st 2015/5/24– 
2015/7/2 

40 353 510 620 - - - 144 

(39) (57) (69)    (29) 

2nd 2015/7/3– 
2015/7/29 

27 615 480 969 637 814 722 148 

(68) (53) (108) (71) (90) (80) (15) 

3rd 2015/7/30– 
2015/8/27 

28 620 522 967 748 927 836 137 

(69) (58) (107) (83) (103) (93) (13) 

I  Data at Tsushima meteorological station, 10 km south-east of the monitoring site (JMA 
database, http://www.jma.go.jp/jma/index.html). 
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6.3.2.2  Recovery ratios of dissolved 137Cs with the Cu-NF 

Table 6-4 shows the results from the lysimeters filled with litter (Nos. 2-1, 2-2 and 2-3). More 

than 99% of the total dissolved 137Cs was collected by the Cu-NF, and 96% of the collected 137Cs 

was located in the first three sheets (Table 6-4). Dissolved 137Cs was detected in the collected 

water but the ratio is much lower (under 1%). This result may be mainly owing to the slow flow 

rate (maximum 29 mm h−1) compared with the laboratory experiments (11–2,222 mm hour−1). 

However, the high concentration of 137Cs in the Cu-NF also indicates that the 137Cs in the seepage 

water was mainly in an ionic form. Based on these results, we conclude that the Cu-NF lysimeter 

method is suitable for detecting dissolved 137Cs in litter seepage water in the forest environment 

in place of traditional lysimeter methods. 

The recovery ratios of dissolved 137Cs in the litter and soil seepage water (Nos. 3-1, 3-

2 and 3-3) were over 90% for the second experimental period and over 97% for the third 

experimental period (Table 6-4; note that no data of Nos. 3-1, 3-2 and 3-3). The recovery ratio in 

the second experimental period was lower than that in the third experimental period for all three 

samples. In addition, the recovery ratio of 137Cs in the first three sheets of the Cu-NF in the 

secondary experimental period (74.9–89.3%) was lower than that in the third experimental period 

(94.9–98.9%). In both laboratory and field experiments, the precipitation volume, maximum 

precipitation rate, collected volume and the radioactivity of soil and litter in the second 

experimental period were the same as those in the third experimental period (Table 6-3 and Fig. 

6-4).  

The reason for the relatively low recovery ratio in the second monitoring period is not 

clear. However, soil disturbance probably occurred in the second experimental period, perhaps 

because of the soil packing in the Cu-NF lysimeters and/or spaces between the packed soil and 

the PVC pipes. After a certain amount of time (~ approximately one month), spaces among the 

soil particles are infilled and soil cores gradually became stable. 

In second measurement period, over 98% of the dissolved 137Cs was collected in the 

Cu-NF and over 95% of the 137Cs was present in the first three sheets, showing a similar pattern 

to the results of the litter seepage water. The Cu-NF lysimeter can be considered suitable for soil 

seepage water; however, we suggest that sample collection be conducted after the lysimeter has 

been installed for a certain amount of time (~ approximately one month).  
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Table 6-4  Recovery ratios of dissolved 137Cs with the Cu-NF and 137Cs activities the 
collected water. 

Lysimeter No. and 
Monitoring period 
 

Cu-NF I (%) Collected 
water II (%) 

First three 
sheets 

Latter four 
sheets 

Total 

2-1 

1st 2015/5/24–7/2 98.9 0.7 99.6 0.4 

2nd 2015/7/3–7/29 99.6 0.3 99.9 0.1 

 3rd 2015/7/30–8/27 96.1 3.4 99.5 0.5 

2-2 

1st 2015/5/24–7/2 97.6 2.2 99.8 0.2 

2nd 2015/7/3–7/29 98.6 0.8 99.3 0.7 

3rd 2015/7/30–8/27 99.2 0.5 99.7 0.3 

2-3 

1st 2015/5/24–7/2 98.6 1.2 99.8 0.2 

2nd 2015/7/3–7/29 99.4 0.4 99.7 0.3 

3rd 2015/7/30–8/27 98.2 1.4 99.5 0.5 

3-1 

2nd 2015/7/3–7/29 74.9 19.2 94.1 5.9 

3rd 2015/7/30–8/27 95.9 2.8 98.8 1.2 

3-2 

2nd 2015/7/3–7/29 80.7 10.0 90.7 9.3 

3rd 2015/7/30–8/27 94.9 2.8 97.7 2.3 

3-3 

2nd 2015/7/3–7/29 89.3 5.7 95 5 

3rd 2015/7/30–8/27 98.4 0.9 99.3 0.7 

I 137Cs activity after ultrasonic washing. 
II 137Cs activity after filtration with 0.45-µm membrane filters. 
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Figure 6-4  Dissolved 137Cs concentrations in litter and soil seepage water (137Cs in Cu-NF and 
collected water after 0.45 μm MF filtration) during the monitoring periods. Cu-NF lysimeter Nos. 
2-1, 2-2 and 2-3 were installed under the litter layer, and Nos. 3-1, 3-2 and 3-3 were installed at 
5 cm soil depth. The error bars indicate the measurement error. 
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6.3.2.3  Concentration and migration rate of 137Cs from litter or soil 

Figure 6-4 shows the 137Cs concentrations in litter and/or soil seepage water in the Cu-NF and 

collected water in each Cu-NF lysimeter during the experimental periods. Average 137Cs 

concentration collected under litter layer (Nos. 2-1, 2-2, 2-3) was approximately 15 Bq L−1, while 

that in soil at 5 cm depth (Nos. 3-1, 3-2, 3-3) was 1.5 Bq L−1. The 137Cs concentration in seepage 

water from each Cu-NF lysimeter showed clear temporal variation. However, differences in 137Cs 

concentration among locations were larger than the spatial variation in each Cu-NF lysimeter.  

Table 6-5 shows the 137Cs fluxes during the experimental periods and the annual 137Cs 

fluxes. Migration rates of 137Cs at 5 cm depth in litter or soil were also calculated. We observed 

that approximately 11% of 137Cs migrated to the soil layer over a year in the dissolved form, while 

annual 137Cs migration at 5 cm depth accounted for less than 1%. This indicates that 137Cs 

migrating from the litter layer to the soil remains in the surface layer of soil (< 5 cm), which is 

consistent with previous studies in the Fukushima region (Takahashi et al., 2015). However, the 

migration of 137Cs at 5 cm depth for lysimeter No. 3-3 was larger than those of the other two Cu-

NF lysimeters, probably because of the disturbed packing material in No. 3-3. Although the water 

volumes collected and the 137Cs concentration varied between Cu-NF lysimeters and sampling 

periods (Table 6-3 and Fig. 6-4), the annual 137Cs flux and the migration rates were spatially 

homogeneous. Based on these results, we can also use the Cu-NF lysimeter to calculate the flux 

of dissolved 137Cs only by measuring the 137Cs activity of the Cu-NF without water sample 

collection and to monitor 137Cs in the field over the long term. 
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Table 6-5  137Cs migration during the monitoring period. 

Lysimeter 
No. 

137Cs flux [Bq m2/day] Annual 137Cs flux 
[kBq m2/year] 

Migration 
rate [%] I 

2015/5/24 – 
2015/7/2 

2015/7/3 – 
2015/7/29 

2015/7/30 – 
2015/8/27 

2 - 1 14.9 29.9 29.1 8.5 9.3 

2 - 2  29.6 38.0 38.0 12.6 10.9 

2 - 3  25.4 44.7 35.0 12.3 13.7 

3 - 1  - 2.1 10.2 2.3 0.9 

3 - 2  - 2.0 3.6 1.0 0.4 

3 - 3  - 15.8 28.5 8.1 4.4 

I  Annual 137Cs flux / (137Cs activity in a packing material of lysimeter + 137Cs flux during the 
monitoring period) × 100 
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6.4  Conclusions 

In this study, a simple, rapid and easy install and monitoring method was developed for 

radioactive cesium in litter and/or soil seepage water. The Cu-NF lysimeter method was showed 

to be able to collect dissolved radioactive cesium in seepage water. By introducing the Cu-NF to 

a traditional lysimeter method, the concentration of dissolved radioactive cesium in litter or soil 

seepage water can be evaluated by measuring the Cu-NF after ultrasonic washing. Accordingly, 

this method can reduce the time required for measurement preparation.  

Furthermore, this method has several advantages for the long-term monitoring. If we 

only focus on 137Cs fluxes, bottles for water collection need not be prepared, and consequently we 

do not pay attention to the overflowing of seepage water from water bottles. In addition, the Cu-

NF lysimeter can be installed at a shallower position below the soil surface than traditional 

lysimeters. We can monitor radioactive cesium in seepage water by long-term installation (e.g. 

several months ~ a year) of the Cu-NF lysimeters, and thus reduce the time and effort needed to 

collect sample water. 
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Chapter 7  Vertical Migration of Dissolved 137Cs through the Litter 
Layers and Soils 

7.1  Introduction 
137Cs deposited on deciduous broadleaf forests in Fukushima migrated from the litter layers to the 

surface soils and the deeper soils, but downward migration through the soils became very difficult 

to detect soon after the FDNPP accident (Matsunaga et al., 2013), as was mentioned in Chapter 

5. This could have been because the migration rate decreased or the amounts of dissolved 

radioactive cesium in the soils decreased (Takeda et al., 2013). It could also have been because of 

the high degree of spatial heterogeneity in the 137Cs inventories of the forest soils (chapters 4 and 

5; Takada et al., 2016b). A system for monitoring the migration of small amounts of dissolved 

radioactive cesium through soil was developed, as described in Chapter 6. 

As mentioned in Chapter 6, measuring the downward migration of dissolved radioactive 

cesium using the conventional lysimeter method requires a great deal of time and effort, and few 

studies using lysimeters have been performed since the FDNPP accident (Nakanishi et al., 2014). 

Also, no studies of spatial variability in the migration of radioactive cesium through soils have 

been performed. The downward migration of dissolved radioactive cesium through soil may vary 

spatially because 137Cs inventories in soil vary spatially, as mentioned in Chapter 4 and in many 

previous publications (Korobova and Romanov, 2009, 2011). The migration of radioactive cesium 

through soil could also vary because of topological features, such as slopes and ridges. This is 

because litter decomposition rates vary depending on the topology even in forest ecosystems 

(Tsutsumi and Katagiri, 1974; Nakane, 1975) and because the migration of radioactive cesium 

from litter to soil is strongly affected by the decomposition of the litter (Rafferty et al., 2000). In 

addition, dissolved radioactive cesium migrates through the moisture in soil, but it is well known 

that the moisture contents of soils vary according to the topology (Tsutsumi and Katagiri, 1974; 

Nakane, 1975), and differences in the moisture contents of soils may cause the radioactive cesium 

migration rates to vary spatially. Most Japanese forests are on steep slopes in mountainous areas, 

and the characteristics of the slopes strongly influence the forest ecosystems (Nakane, 1975). It 

is therefore very important to characterize the relationships between radioactive cesium dynamics 

and slopes in forest ecosystems.  
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In the study presented here, spatial variability in the migration of small amounts of 

dissolved 137Cs in a mixed deciduous broadleaf forest was examined using the Cu-NF lysimeter 

system that was developed in the study described in Chapter 6. This study was performed because 

the spatial variability was not able to be evaluated in the study described in Chapter 5. Spatial 

variability in the amounts of 137Cs in soils with litter layers and the water contents of soils were 

expected to be found to be major factors affecting the migration of 137Cs in the study presented 

here. 

 

7.2  Study Site, Materials and Methods 

Each Cu-NF lysimeter consisted of a PVC pipe with a cross-sectional area of 90 cm2 and 

nonwoven fabric filters, as shown in Fig. 7-1. The Cu-NF lysimeter had almost the same structure 

as the lysimeter described in Chapter 6. Water that passed through the Cu-NF lysimeters was 

allowed to drain away (i.e., was not collected). This was because this study was focused not on 

the 137Cs concentration in the soil water but on the 137Cs flux in the soil. The study was performed 

at site C (see Chapter 2), which was selected from the three sites that were used in the study 

described in Chapter 5. The Cu-NF lysimeters were installed in two subplots, one in a flat area on 

the lower part of the slope and one on the upperslope at site C. The subplot on the lower part of 

the slope was approximately 100 m from the subplot on the upperslope, and the elevations of the 

subplots were different by 40 m. Three Cu-NF lysimeters were installed under the litter layer 

(labeled L1–L3) and three were installed 5 cm below the soil surface (labeled S1–S3) in each 

subplot (i.e., a total of 12 lysimeters were installed). Each Cu-NF lysimeter was approximately 

20 cm away from another. A litter layer was packed into each of Cu-NF lysimeters L1–L3, and 

soil 0–5 cm deep was replaced with a litter layer in each of Cu-NF lysimeters S1–S3. Intact litter 

and soil cores were collected from each subplot (i.e., from the lower part of the slope and from 

the upperslope) by hammering a pipe with a diameter of 10.7 cm 5 cm deep into the litter and soil. 

These cores were placed in the Cu-NF lysimeters without being compacted further. The Cu-NF 

lysimeters were used for 103 days, from 9 August to 20 November 2015.  

A vertically sectioned soil sample from 0 to 5 cm deep, plus the litter layer, was collected 

from each subplot in March 2015. Each sample was collected using a scraper plate, and each 

sampling area was 450 cm2 (15 cm × 30 cm) (Takahashi et al., 2015). The soil densities of the 
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vertical section samples are shown in Table 7-1. Every soil layer on the lower part of the slope 

was denser than the corresponding soil layer on the upperslope. The moisture content of the soil 

5 cm deep was monitored throughout the study using a dielectric soil moisture sensor (UIZ-

SM150-LR; UIZIN Co., Japan). The total precipitation during the study period was 751 mm 

monitored at the meteorological station located in Iitate village (JMA database from 

http://www.jma.go.jp/jma/index.html), 

All of the Cu-NF lysimeters were collected on 20 November 2015, and the Cu-NF 

pieces were removed. The measurement procedure used to analyze the Cu-NF is described in 

Chapter 3. The 137Cs activities of the litter and soil that had been packed into the lysimeters were 

also measured. For each of lysimeters S1–S3, the soil and litter layers were mixed well before the 

measurements were performed (i.e., the soil and litter layers from a lysimeter were not analyzed 

separately), as was the case in the study described in Chapter 6.  
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Figure 7-1  Schematic of the lysimeters used to study the downward migration of 137Cs through 
soil. The lysimeters contained Cu-NF installed beneath the litter layer (a), beneath 5 cm of soil 
(b). * Nonwoven fabric sheets with 26 µm pores. ** Nonwoven fabrics impregnated copper-
substituted Prussian blue.  
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Table 7-1  Soil densities (g cm-3 on a dry weight basis) in the study site in March 2015. 

Layer Lower part of the slope  Upperslope 

0–1 cm 0.12  0.07 

1–2 cm 0.20  0.17 

2–3 cm 0.31  0.27 

3–4 cm 0.43  0.33 

4–5 cm 0.46  0.44 
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7.3  Results 

The 137Cs inventory distributions with depth in both subplots are shown in Table 7-2. The total 

137Cs activity (in the litter layer and soil to 5 cm deep) on the lower part of the slope was more 

than 100 kBq m−2 higher than the total 137Cs activity on the upperslope. The 137Cs activity was 

higher in soil 0–1 cm deep than in the other layers in both subplots. Temporal changes in the 

moisture contents of the soil at the study site caused by precipitation during the study period are 

shown in Fig. 7-2. The mean moisture contents of the soil on the lower part of the slope and on 

the upperslope were 35.6% (range 23.3%–86.8%) and 33.5% (range 24.6%–63.4%), respectively. 

Temporal changes in the moisture content of the soil were roughly consistent with precipitation.  

The 137Cs activities of the materials that were packed into the Cu-NF lysimeters are 

shown in Figure 7-3. The mean activity in the litter samples (L1–L3) on the lower part of the 

slope (132 kBq m−2, range 100–170 kBq m−2) was higher than the mean activity in the litter 

samples on the upperslope (47 kBq m−2, range 17–105 kBq m−2). The mean activity in the soil 

with a litter layer (S1–S3) on the lower part of the slope (314 kBq m−2, range 250–372 kBq m−2) 

was also higher than the mean activity in the soil with a litter layer on the upperslope (279 kBq 

m−2, range 258–292 kBq m−2). 

The 137Cs activities in the Cu-NFs, meaning the 137Cs that had migrated from the litter 

layer or litter layer and soil during the study period (103 d), are shown in Fig. 7-4. Approximately 

2.6 and 8.8 kBq m−2 (means) of 137Cs had migrated from the litter layers to the soils on the lower 

part of the slope and on the upperslope, respectively. The Cu-NF lysimeters on the upperslope 

gave results that varied strongly, from 4.9 to 14.7 kBq m−2. The 137Cs migrated much more slowly 

from soils 5 cm deep toward deeper soils (2.6 and 0.6 kBq m−2 over the 103 d study on the lower 

part of the slope and on the upperslope, respectively) than from the litter layers to the soils.  

The migration rates, proportions migrating, and time required for complete migration to 

occur assuming that the 137Cs would continue to migrate at the same rates are shown in Table 7-

3. On the lower part of the slope, 0.02% of the 137Cs in the litter layers migrated to the soils per 

day, and 0.002% of the 137Cs in the soil 5 cm deep migrated to deeper soil per day. On the 

upperslope, 0.2% of the 137Cs in the litter layers migrated to the soils per day, and 0.002% migrated 

from soil 5 cm deep to deeper soil. It would take more than 10 years for all of the 137Cs in the 

litter to migrate to the soil on the lower part of the slope, but only 1–6 years on the upperslope. It 
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would take more than 100 years for all of the 137Cs in the soil 0–5 cm deep and the litter to migrate 

to soil deeper than 5 cm both on the lower part of the slope and on the upperslope.  
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Table 7-2  Depth distributions of 137Cs inventories in March 2015. 

Depth Lower part of the slope  Upperslope 

 Inventory 
[kBq/m2] 

± Error I % Inventory 
[kBq/m2] 

± Error I % 

Litter layer 37.5 ± 2.7 10.0  47.6 ± 3.4 18.6 

0 - 1 cm 143.2 ± 10.2 38.2  69.2 ± 4.9 27.0 

1 - 2 cm 65.6 ± 4.7 17.5  56.1 ± 4.0 21.9 

2 - 3 cm 54.2 ± 3.9 14.5  37.6 ± 2.7 14.6 

3 - 4 cm 52.3 ± 3.7 14.0  29.0 ± 2.1 11.3 

4 - 5 cm 22.1 ± 1.6 5.9  17.0 ± 1.2 6.6 

Total II 375.0 ± 12.8 100.0  256.6 ± 8.0 100.0 

I Measurement error. 
II Total 137Cs inventory from litter layer to soil 5 cm depth. 
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Figure 7-2  Temporal changes in soil moisture in the study site during the study period (A; 
August 9 – November 20, 2015; 103 days), and hourly precipitation monitored at the 
meteorological station located in Iitate village (B; JMA database from 
http://www.jma.go.jp/jma/index.html).  
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Figure 7-3  137Cs activities in the material packed into the lysimeter that contained Cu-NF. The 
Cu-NF was installed beneath the litter layers in lysimeters L1-L3 and beneath 5 cm of soil in 
lysimeters S1-S3. The vertical bars indicate measurement errors.  
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Figure 7-4  Migrating 137Cs that was captured by the Cu-NF in the lysimeters during the study 
period (9 August to 20 November 2015; 103 days). The Cu-NF was installed beneath the litter 
layers in lysimeters L1-L3 and beneath 5 cm of soil in lysimeters S1-S3. The vertical bars indicate 
measurement errors.  
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Table 7-3  137Cs migration rates for the Cu-NF lysimeters during the study period. 

Place Migration 
[Bq/m2/day] 

Proportion [%/day] I Time for complete 
migration [year] II 

Lower part of the slope 

 L1 0.02 0.02 14.9 

 L2 0.03 0.02 13.9 

 L3 0.03 0.02 14.5 

 S1 0.005 0.002 148.3 

 S2 0.012 0.004 74.5 

 S3 0.006 0.002 163.6 

Upperslope 

 L1 0.15 0.29 0.7 

 L2 0.05 0.04 6.4 

 L3 0.07 0.21 1.0 

 S1 0.009 0.003 92.2 

 S2 0.006 0.002 137.4 

 S3 0.004 0.001 187.2 

I 

 
137Cs migration / (137Cs activity in a packing material of the lysimeter + 137Cs migration 

during the monitoring period) × 100 
II 

 
The results were calculated under with, from the assumption that the migration rates do not 
change throughout the year. 
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7.4  Discussion 

The vertical 137Cs inventory distributions and 137Cs activities found in the Cu-NF lysimeters 

suggested that the 137Cs inventories were higher on the lower part of the slope than on the 

upperslope. Higher 137Cs inventories were also found on the lower part of a slope in a forest 

ecosystem after the Chernobyl accident despite very strong spatial heterogeneity being found 

(Romanov et al., 1990; Korobova and Romanov, 2009). Horizontal differences in 137Cs 

inventories have been assumed to be caused by the horizontal transportation of radioactive cesium 

in solution and attached to particles (Arapis and Karandinos, 2004). Differences between the 137Cs 

inventories found in our study may also have been affected by horizontal transportation. The 137Cs 

activities were also found to vary strongly between the Cu-NF lysimeters on the lower part of the 

slope and on the upperslope, indicating that strong spatial variabilities occurred in the 137Cs 

inventories in the litter layers and soils, as was shown in the studies described in chapters 4 and 5 

and in many previous studies (e.g., Korobova and Romanov, 2009, 2011). The 137Cs migrated 

more quickly from the litter layers to soils than from the soils 5 cm deep to deeper soils at both 

subplots during the study period. This indicated that 137Cs migrated from the litter layers and 

accumulated in the surface soils, as was shown in the study described in Chapter 5 and in many 

previous studies (Matsunaga et al., 2013; Takahashi et al., 2015).  

The mean rate at which 137Cs migrated from the litter layers to the soils on the 

upperslope was more than three times higher than the rate on the lower part of the slope. It has 

been found in many previous studies in Japanese forests that litter decomposes significantly more 

quickly on the lower part of a slope than on the upper part of the slope (Tsutsumi and Katagiri, 

1974; Ishii et al., 1982). We would not have found these differences if the migration of 137Cs from 

the litter layers to the soils were affected only by the decomposition of the litter at our study site, 

as has been found in many previous studies (e.g., Rafferty et al., 1997). However, the actual 

decomposition rates at our study site would need to be compared with the rate at which the 137Cs 

concentration decreased using litter bags at both subplots. Our results suggest that 137Cs migrates 

from litter through other mechanisms as well as the decomposition of the litter, as was discussed 

in Chapter 5 (e.g., wash-out caused by precipitation and leaching). Our results also suggest that 

the effects of these mechanisms may be different on different topological features. The 137Cs may 

therefore have migrated more quickly from the litter layers to soils on the upperslope than on the 
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lower part of the slope. It is also possible that animal excreta affected the migration of 137Cs. 

Animal excreta and the odor of ammonia were found around lysimeters L1–L3 on the upperslope. 

Potassium and ammonium ions cause radioactive cesium fixed to soil particles to become 

desorbed (Beneš et al., 1989; Tanaka et al., 1991), such that the faster migration of 137Cs in 

lysimeters L1–L3 on the upperslope may have been affected by animal excreta being deposited 

on the upperslope. Additional studies will be required to determine the exact cause(s) of the effects 

that were found.  

Different 137Cs migration rates were found for the different Cu-NF lysimeters. The 

difference between the litter layer to soil migration rates for the two subplots was larger than the 

differences between the migration rates for lysimeters L1–L3 in each subplot. The migration rates 

for soil 5 cm deep to deeper soil were not different for the different subplots although the 

migration rates were marginally higher on the lower part of the slope than on the upperslope. The 

137Cs inventories were not clearly related to the migration of 137Cs even though the inventories 

were higher on the lower part of the slope than on the upperslope. The moisture contents of the 

soils were also not clearly related to the migration of 137Cs even though the moisture contents of 

the soils were higher on the lower part of the slope than on the upperslope. The 137Cs inventories 

and the moisture content of the soil (the medium through which 137Cs would migrate) were 

therefore not the main environmental parameters that affected the migration of dissolved 137Cs 

through soil at our study site. Further studies will be required to identify the environmental 

parameters that do affect the migration of dissolved 137Cs through soil at our study site.  

Our results revealed that it would take more than 100 years for all of the 137Cs in the 

litter layer and soil less than 5 cm deep to migrate downward even though the downward 

migration rates for 137Cs from soil 5 cm deep could not be calculated in Chapter 6 because of the 

very slow migration rates that were found and the short study period. The lowest 137Cs migration 

rate in soil at our study site was calculated to be approximately 0.4 mm per year. The mean 

migration rates in soil found in previous studies were 0.6–11.6 mm per year (Arapis et al., 1997; 

Arapis and Karandinos, 2004; Ohta et al., 2012). These migration rates are higher than the rate 

we calculated, and this reflects differences between the methods used to determine the migration 

rates (i.e., whether soil profile methods or lysimeter methods were used). 
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7.5  Conclusions 

Our study showed that dissolved 137Cs migrated through litter and soil at different rates in different 

parts of a 20-cm square and in areas with different topologies, and that the migration rate was not 

strongly affected by the 137Cs inventories or the moisture contents of the soils. Seasonal variations 

in the migration of 137Cs and in the environmental parameters that affect the spatio-temporal 

variations need to be assessed to allow a more detailed understanding of radioactive cesium 

dynamics in soil to be gained. 
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Chapter 8  General Discussion 

8.1  137Cs Dynamics in Soil in Deciduous Forests in Fukushima 

In the studies presented in chapters 4–7, the 137Cs distributions in litter and surface soil, and the 

migration of 137Cs between the litter and surface soil were studied for 2.4 years (from August 2013 

to November 2015). The 137Cs distributions, as percentages of the total 137Cs concentrations, and 

spatial variability in the different components, determined from the results of the studies presented 

in all of the previous chapters, are shown in Tables 8-1 and 8-2. A compartmental model of the 

flows of 137Cs between the components, estimated from the results of the studies presented above, 

are shown in Figure 8-1. Each compartment is a 137Cs pool, and the arrows indicate major flows 

of 137Cs between the components. The media in which the 137Cs flows and the factors affecting 

the migration rates are also shown. 

The 137Cs dynamics in forest ecosystems varied temporally, and there appeared to be 

three temporal periods. These were from the FDNPP accident to the beginning of the study (March 

2011 to August 2013), the first year of the study (August 2013 to August 2014), and the second 

year of the study (August 2014 to November 2015). The 137Cs that was released to the atmosphere 

would have been intercepted by forest canopies as well as being deposited on forest floors (Kato 

et al., 2015). From the FDNPP accident to the beginning of the study, the 137Cs would have been 

expected to move dynamically through forest ecosystems. By the beginning of the study, about 2 

years after the FDNPP accident, almost all of the 137Cs had been transferred from the canopies to 

the forest floors (Kato et al., 2015), and approximately half of the 137Cs was found in the litter 

layers. The other half was found in the surface soils (Chapter 5). The 137Cs concentrations in the 

soils in this phase were very spatially heterogeneous, especially under trees because the canopies 

would have intercepted 137Cs and translocated the 137Cs through stemflow and throughfall 

(Chapter 4). However, this dynamic period had possibly finished long before the beginning of the 

study because more than 90% of the 137Cs intercepted by canopies has been found to be transferred 

to forest floors within 1 year (Kato et al., 2015). Large amounts of 137Cs in the litter layers will 

have migrated into the surface soils for 3 years after the FDNPP accident, and approximately 80% 

of the 137Cs in forest ecosystems will have been in the surface soils. At the same time as this 

dramatic migration, the 137Cs concentrations in surface soils would have been less spatially 
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heterogeneous. This suggests that the major sources of 137Cs in surface soils would have been 

stemflow and throughfall, which would have occurred sporadically and entered the soils during 

the previous phase. Large amounts of 137Cs would then have migrated homogeneously to the 

surface soils as the litter decomposed, so spatial variability in the 137Cs inventories would have 

decreased (Chapter 5). Three years after the FDNPP accident, the 137Cs ratios in the litter layers, 

surface soils, and deeper soils had not changed very much (although small amounts of 137Cs had 

been translocated from the surface soils to the litter layers, Chapter 5). This was assumed to have 

been because most of the 137Cs had already become sorbed onto and within soil particles 

(Schimmack et al., 1994), so the 137Cs could not migrate deeply. The little change that occurred 

may have corresponded to the beginning of the stable phase that was found after the Chernobyl 

accident (Rafferty et al., 2000; IAEA, 2006; Shcheglov et al., 2011). However, using the Cu-NF 

method, we found that a small amount (several percent) of the dissolved 137Cs was still migrating 

through the soil in seepage water (Chapter 7). Dissolved radioactive cesium is more easily 

absorbed by plants than radioactive cesium sorbed onto and within soil particles (Nakanishi et al., 

2013), and radioactive cesium within plants may partly be responsible for the recirculation of 

radioactive cesium in forest ecosystems (IAEA, 2006).  
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Table 8-1  Percentages of 137Cs in each component of a forest ecosystem (canopy to soil 10 
cm deep I) at different times, taking the initial amount of 137Cs that was deposited as 100%. 

Component 12 Mar. 2011 Aug. 2013 Aug. 2014 Mar. 2015 Aug. 2015 

 (0 year) II (2.3) (3.3) (4.0) (4.3) 

Canopy 23% (a) < 1% (a) < 1% (a) < 1% (a) < 1% (a) 

Litter layer 77% (a) 59 - 68% (5) 6 - 17% (5) 9 - 22% (5) 16 - 30% (5) 

Soil 0–5 cm  17 - 30% (5) 69 - 80% (5) 55 - 75% (5) 64 - 65% (5) 

(TB:UC:CG IV)   (1.3:1.0:0.9 (4)) - - 

Soil 5–10 cm - 3 - 6% (5) 10 - 11% (5) 8 - 11% (5) 10 - 14% (5) 

I 137Cs in vegetation and discharges to outside systems are ignored in the table. 
II Time after the Fukushima Daiichi nuclear power plant accident (years). 
III Ratio of the 137Cs found around the tree bases (TB) to under the crowns (UC) to in the 

crown gaps (CG) 
(a) Kato et al. (2015) Journal of Environmental Radioactivity, 

http://dx.doi.org/10.1016/j.jenvrad.2015.04.016 
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Table 8-2  Spatial variability (the coefficient of variation, CVa) in the 137Cs inventories in the 
different compartments at different times, and the chapters in which the relevant studies are 
presented. 

Component Aug. 2013 Aug. 2014 Mar. 2015 Aug. 2015 

 (2.3 years) I (3.3) (4.0) (4.3) 

Litter layer 0.37 - 0.68 (5) 0.43 - 0.91 (5) 0.31 - 1.64 (5) 0.10 - 0.82 (5) 

Soil 0–5 cm 0.68 - 0.95 (5) 0.14 - 0.52 (5) 0.37 - 0.48 (5) 0.38 - 0.74 (5) 

around tree base - 0.47 - 0.51 (4) - - 

under crown - 0.48 - 0.53 (4) - - 

crown gap - 0.46 (4) - - 

Soil 5–10 cm 0.61 - 1.34 (5) 0.43 - 0.80 (5) 0.40 - 0.62 (5) 0.39 - 1.07 (5) 

I  Time after the Fukushima Daiichi nuclear power plant accident 
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Figure 8-1  Compartment models of 137Cs flows between the compartments, estimated from the 
results of the studies presented here between (A) March 2011 and August 2013, (B) August 2013 
and August 2014, and (C) August 2014 and August 2015. The compartments indicate the 137Cs 
pools. The arrows indicate major flows of 1 between the compartments, and are labeled with the 
medium in which the 137Cs migrated and relevant migration factor(s). The relevant chapters are 
marked in superscript (e.g., (5)). (a) Kato et al. (2015), (b) Rafferty et al. (2000), (c) Huang et al. 
(2016), and (d) Nakanishi et al. (2014).  
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8.2  Comparisons with the Chernobyl Cases 

In this study, the dynamics of 137Cs derived from the FDNPP accident were studied in mixed 

deciduous broadleaf forests in Fukushima. Many studies of radioactive cesium dynamics in 

forests have been conducted since the Chernobyl accident in 1986. However, most such studies 

have been performed in coniferous forests at high latitudes. There were several differences in the 

environmental conditions affecting the studies that were performed around Chernobyl and this 

study. These environmental conditions are expected to affect radioactive cesium dynamics in 

forest ecosystems. For example, less canopy interception after the initial deposition of radioactive 

cesium was expected to occur around Fukushima than around Chernobyl, and forests around 

Fukushima have more steep slopes, higher annual temperatures, higher annual levels of 

precipitation, and faster litter decomposition rates than forests around Chernobyl have. In spite of 

these differences, the dynamics followed similar trends. That is, the radioactive cesium 

intercepted by forest canopies was translocated to the forest floors, radioactive cesium on forest 

floors migrated into the surface soils, and the radioactive cesium migrated vertically through soil 

very slowly. Additionally, some of the radioactive cesium recirculated in the forest ecosystems 

(Rafferty et al., 2000; IAEA, 2006). Radioactive cesium released in any forest ecosystems around 

the world would be translocated through these processes. Several differences between the 

radioactive cesium dynamics around Chernobyl and Fukushima were found, although only four 

years have passed since the FDNPP accident whereas about 30 years have passed since the 

Chernobyl accident (e.g., Rafferty et al., 2000). These differences were assumed to have largely 

been caused by differences in the forest types and climate zones in areas contaminated by the 

Chernobyl and FDNPP accidents. The canopy interception rates were lower at our study sites than 

at most Chernobyl study sites because of differences in the forest types. The leaf turnover time 

was shorter at my study sites than at most of the Chernobyl study sites because the dominant 

species at our study sites were deciduous rather than evergreen. The time required for radioactive 

cesium to be translocated to the forest floor was therefore much shorter at our study sites than at 

the Chernobyl study sites. These processes are classed as the initial phase in this chapter. The 

migration of radioactive cesium from the litter layers to the soils through the decomposition of 

the litter finished more quickly at our study sites than at most of the Chernobyl study sites. This 

phase was expected to last 4–5 years in pine forests in Ireland after the Chernobyl accident 
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(Rafferty et al., 2000), but it finished within about 3 years after the Fukushima accident at our 

study sites.  

The study presented here gave several new results that could not be found from the 

studies that were performed after the Chernobyl accident. The spatial distributions of 137Cs in the 

soil shortly after the FDNPP accident were examined at the ecosystem scale, focused on the 

relationship with the radioactive cesium distributions in trees within the ecosystem (Chapter 4). 

Most of the previous studies of the small-scale spatial distributions of 137Cs were conducted about 

ten years after the Chernobyl accident, so the effects of 137Cs distributions in trees when the 

accident occurred on the soil 137Cs distributions were not examined (Korobova and Romanov, 

2009, 2011). I also studied the migration of small amounts of dissolved 137Cs using Cu-NF 

lysimeters (chapters 6 and 7). A few studies using lysimeters were conducted after the Chernobyl 

accident, but Cu-NF lysimeters can, in the future, be used to collect long-term monitoring data 

even in areas that are not heavily contaminated. The results of our study suggested that the 

migration of dissolved 137Cs could be very spatially heterogeneous and follow different patterns 

when different topological features are present (chapters 6 and 7). Additional research is required 

to provide more information on the last findings, such as the environmental parameters of the 

spatial heterogeneity that affect the migration of 137Cs. In addition, the Cu-NF lysimeter developed 

in Chapter 6 has a possibility to be applied to other ecosystem (e.g. cropland soils and paddy field 

soils) in order to examine leaching dissolved radioactive cesium.  

 

8.3  Carbon Cycles and Dynamics of Radioactive Cesium in forest Ecosystems 

Radioactive cesium basically moves with carbon in a forest ecosystem; major movement of 

radioactive cesium from canopy to a forest floor and from litter layer is affected by litterfall and 

litter decomposition, respectively. Therefore, rate of radioactive cesium dynamics in a forest 

ecosystem accords closely with carbon cycle rate in the forest ecosystem. The result that migration 

rate of radioactive cesium in the present study sites was faster than those of most Chernobyl cases 

is coincident with the fact that carbon dynamics rate (decomposition rate of litter) in Fukushima 

region is faster than those of most Chernobyl cases (Ono et al., 2013). As for the nuclear energy 

development and preparedness, radioactive cesium dynamics needs to be studied thoroughly from 

the view of climatic parameters. 
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The decomposition rate in tropical region is about ten times faster than that in subarctic 

region (Figure 3-2). If radioactive cesium is deposited on a tropical forest by radiation disaster, 

there is a possibility that migration rate of radioactive cesium in a forest ecosystem is faster than 

those of Chernobyl and Fukushima cases.  

 

8.4  Future Studies and Long-term Monitoring of 137Cs Dynamics in Forest 
Ecosystems in Contaminated Areas 

Decreasing radiation dose rates and radioactive cesium activities in forest ecosystems in the 

Fukushima region, except at the edges of forests, through decomposition largely depend on the 

half-life of 137Cs (30.17 years) because little discharge of radioactive cesium to environments 

outside the forests occurred in forests affected by the Chernobyl accident (IAEA, 2016) and the 

same is expected to be true for forests affected by the FDNPP accident (Hashimoto et al., 2013). 

The long-term monitoring of 137Cs (for longer than its half-life) in forest areas around Fukushima 

will therefore be required. However, continuing many extensive monitoring projects that were 

started soon after the FDNPP accident for such a long time will not be realistic in terms of 

manpower, research funds, or the decreasing radioactivity levels that will be present and that will 

become more difficult to measure. Narrowing the focus for the long-term monitoring of 137Cs in 

spatially heterogeneous forest ecosystems is therefore very important. 

In this study, it was found that 137Cs activity did not increase or decrease in any 

component of the forest ecosystems that were studied after more than 3 years after the FDNPP 

accident (after August 2014). However, small amounts of 137Cs were still migrating through soils 

at that time. The migration of small amounts of 137Cs is expected to continue for a long time. This 

migration is of dissolved radioactive cesium, which is biologically available. The results also 

suggested that different amounts of dissolved 137Cs are migrating in different areas. It is therefore 

possible that biologically available 137Cs is actively circulating in some areas of forests. In the 

future, these areas and the environmental parameters affecting these areas need to be identified, 

and long-term monitoring should be continued in these areas, focusing on biologically available 

radioactive cesium. 
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