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GENERATING FUNCTIONS OF BOX AND BALL SYSTEM

MAMI OKIYOSHI

Abstract. Generating functions of Box and Ball System (BBS) are defined
and studied. When the number of balls is finite, we show that the generat-
ing function is a rational function. When there are infinitely many balls, we

conjecture that the generating function is rational if and only if the BBS is
semi-periodic. We prove the conjecture in a special case. We also study the
generating function of the BBS with a limited cart, including semi-periodic
cases.

1. Introduction

In 1990, Takahashi-Satsuma [6] introduced a discrete soliton system called box
and ball system(BBS). This is a kind of cellular automaton obtained by the ultra-
discrete Lotka-Voltera equation [2]. A state of the BBS consists of an infinite
sequence of boxes, and each box can accommodate one ball at most. BBS has
been studied and generalized from variety of aspects; ultra-discretization of soliton
equation [8], crystal base [1][3], inverse scattering method [4], and so on.

In this paper, we define a generating function of BBS, and ask if they are rational
functions.

In the classical BBS with finite balls, the generating function is always rational,
which essentially follows from the result of Takahashi-Satsuma [6] and Tokihiro-
Nagai-Satsuma [7]. By writing the generating function as a rational function, we
can describe the whole behavior of the BBS by finite words. The rationality of
the generating function reflects the fact that BBS is an integrable system. In spite
of its highly nonlinear behavior, the rationality of the generating function implies
the predictability of the system. We extend the rationality result to a limited cart
case. We also consider the BBS with infinite balls. A necessary condition for a
rationality is semi-periodicity, which is a generalization of periodic BBS [9].

We conjecture that this is actually sufficient condition also, and prove rationality
in a special case.

2. Generating Functions of BBS

The goal of this section is to define the generating function FB(z, t) of a BBS B,
and prove that FB(z, t) is a rational function when B is a classical BBS. We start
by quickly reviewing their definition.

Definition 2.1. A state of a BBS is a one dimensional array of boxes as picture
below, with some boxes filled by balls bounded on the left side, but unbounded on the
right side. Each box contains at most one ball. We denote a vacant box by 0 and a
filled box by 1.
So,
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is denoted by

(011110010001100000000000000 · · · ).
The time evolution rule from time step t to t+1 is described as follows. Assume

that the state of the BBS at time t is (at0, a
t
1, a

t
2, · · · ), then at+1

i is defined inductively
on i as

at+1
i =

{
1 (if ati = 0 and

∑i 1
j=0 a

t
j >

∑i 1
j=0 a

t+1
j )

0 (otherwise)

(see [6]).

To give an alternative explanation, one can imagine a carrier, moving from the
left to the right. On the way at each box, the carrier moves the balls according to
the following rules.
(i) If there is a ball in the box, the carrier picks up the ball into his cart (and move
on to the next box).
(ii) If there is no ball in the box and the carrier has at least one ball, then he puts
a ball into the empty box (and move on to the next box).
(iii) If there is no ball in the box and the carrier has no ball, then he does nothing
(and move on to the next box).
When the carrier finishes all the boxes, one time-evolution step finishes.
For example, the time-evolution of the example in Definition 2.1 proceeds like

t = 0

t = 1

t = 2

t = 3

Remark 2.2. First, we explain the movement of the balls in the time evolution
from time t = 0 to t = 1. Let the most left box be the 0-th box. Then, from the 1st
box to the 4-th box, a carrier picks up the balls in the boxes and puts into the cart
by rule (i). From 5-th box to 6-th box which are empty, he puts the balls into the
empty boxes by rule (ii). In 7-th box, he picks up the ball, and he puts into the balls
from 8-the box to 10-the box. In 11-th and 12-th box, he picks up the balls and puts
the balls in 13-th and 14-th box. From 15-th box, there is no ball in the box and he
has no ball in the cart, then he does nothing by rule (iii) and one time-evolution
finishes. The time-evolution after t = 1 proceeds same as the above.

From t = 0 to t = 3, clusters of the balls (we call the cluster soliton) collides and
the size of the clusters change, but the number of the clusters does not change.

From t = 3 to t = 4 (to be precise, after t = 3), the clusters of the balls have no
collides and move in proportion to the size of the clusters of the balls.

Definition 2.3. We say that BBS is finite if the initial state has only a finite
number of balls.

Definition 2.4. Let B = B0 be the initial state of BBS, and Bj = (aj0, a
j
1, a

j
2, · · · )

be the state of BBS at time j. Then we define its generating function FB(z, t) to be
the following.
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FB(z, t) :=
∞∑
j=0

∞∑
i=0

ajiz
itj .

We also define fBj (z) =
∑∞

i=0 a
j
iz

i. Hence, FB(z, t) =
∑∞

j=0 fBj (z)t
j. Here, we let

the leftmost box be the 0th box, and the initial time be t=0.

The following is the main theorem of this section.

Theorem 2.5. The generating function of a finite BBS is a rational function of z
and t.

Essentially, Theorem 2.5 is a corollary to Theorem 2.8, the result by Takahashi-
Satsuma and Tokihiro-Nagai-Satsuma. Let us introduce the necessary notation.

Definition 2.6. When B is a state of a BBS, we define N ∈ Z≥0, E0 ∈ Z≥0, Qi, Ei ∈
Z>0 (i = 1, 2, · · · , N) by

B = (

E0︷ ︸︸ ︷
0 · · · 0

Q1︷ ︸︸ ︷
1 · · · 1

E1︷ ︸︸ ︷
0 · · · 0 · · ·

EN−1︷ ︸︸ ︷
0 · · · 0

QN︷ ︸︸ ︷
1 · · · 1 00 · · · ).

We also write as Et
i and Qt

i when we would like to specify the time t. Notice that
the data (Et

0, Q
t
1, E

t
1, · · · , Et

N 1, Q
t
N ) recover the state of BBS. We define a soliton

to be one of Qi consecutive boxes filled with balls (namely Qi consecutive 1’s), and
we define Qi to be the size of the soliton.
When Bt is

Bt = (

Et
0︷ ︸︸ ︷

0 · · · 0
Qt

1︷ ︸︸ ︷
1 · · · 1

Et
1︷ ︸︸ ︷

0 · · · 0 · · ·

Et
N−1︷ ︸︸ ︷

0 · · · 0
Qt

N︷ ︸︸ ︷
1 · · · 1 00 · · · ),

there are N solitons at time t, with sizes Qt
1, Q

t
2, · · · , Qt

N from the left to the right.

Definition 2.7. In a BBS with the data (Et
0, Q

t
1, E

t
1, · · · , Et

N 1, Q
t
N ), we say that

the collision occurs at time t if and only if Qt
i > Et

i for some i ∈ {1, 2, · · · , N 1}.
Namely the collision occurs in the BBS if the carrier has at least one ball at the
beginning of some soliton.

The following Theorem is due to Takahashi-Satsuma [6], proved carefully in [7
Theorem 1].

Theorem 2.8. For any finite BBS, there exists some time T such that for any
t ≥ T , writing the state of BBS as (Et

0, Q
t
1, E

t
1, · · · , Et

N 1, Q
t
N ), the conditions{

(1)QT
1 ≤ QT

2 ≤ · · · ≤ QT
N

(2)QT
1 ≤ ET

1 , · · · , QT
N 1 ≤ ET

N 1

hold. □

Proof. (of Theorem 2.5)
By Theorem 2.8, there exists time T , and balls are divided into solitons in non-

decreasing order and have no collision at t ≥ T .
The number of the balls which belong to each soliton from the left are QT

1 , Q
T
2 , · · · ,

QT
N (QT

1 ≤ QT
2 ≤ · · · ≤ QT

N ) at t = T , and these data do not change at t ≥ T .
At t = T ,
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fBT (z) = zS
T
1 (1 + z + · · ·+ zQ

T
1 1) + zS

T
2 (1 + z + · · ·+ zQ

T
2 1)

+ · · ·+ zS
T
N (1 + z + · · ·+ zQ

T
N 1)

=
1 zQ

T
1

1 z
· zS

T
1 +

1 zQ
T
2

1 z
· zS

T
2 + · · ·+ 1 zQ

T
N

1 z
· zS

T
N

where ST
i := ET

0 + (
∑i 1

k=1 E
T
k +QT

k ).
Each soliton has no collision at t ≥ T , hence we have

fBT+k
(z) =

1 zQ
T
1

1 z
·zS

T
1 ·zk·Q

T
1 +

1 zQ
T
2

1 z
·zS

T
2 ·zk·Q

T
2 + · · ·+ 1 zQ

T
N

1 z
·zS

T
N ·zk·Q

T
N .

Therefore,

∞∑
j=T

fBj (z) · tj =
N∑
i=1

1 zQ
T
i

1 z
· zS

T
i · tT

1 zQ
T
i · t

.

Hence this is a rational function.
Consequently,

FB(z, t) =

T 1∑
j=0

fBj (z) · tj
+

 ∞∑
j=T

fBj (z) · tj


is a sum of a polynomial and a rational function, hence is a rational function. □

3. Generating Functions of infinite-BBS

Definition 3.1. We say that a BBS is infinite if the initial state has an infinite
number of balls.

In this section, we consider the rationality of the generating function FB(z, t) of
an infinite BBS for which the rationality of FB(z, 0) is a necessary condition. We
need the following definition to test the rationality of FB(z, t).

Definition 3.2. A state of BBS Bt = (at0, a
t
1, a

t
2, · · · ) is semi-periodic at time t if

there exist S ≥ 1 and k > 0 such that ati = ati+k for all i ≥ S. A BBS is called
semi-periodic if it is semi-periodic at any time t.

In Proposition 3.3, we will show that FB(z, 0) is rational if and only if the BBS
is semi-periodic at time t = 0. In Proposition 3.5, we will show that the BBS is
semi-periodic at time t = 0, then it is semi-periodic at any time t. Moreover, when
the BBS is semi-periodic, we will show that its periodic part behaves exactly like
the classical periodic BBS (see [9]), hence our semi-periodic BBS is a generalization
of the classical periodic BBS.

Proposition 3.3. When Bt = (at0, a
t
1, a

t
2, · · · ) is a state of BBS at time t, FB(z, 0) =∑∞

t=0 a
0
i z

i is a rational function if and only if B0 is semi-periodic.

Acknowledgment I thank Prof. Nobuyoshi Takahashi for teaching me the follow-
ing proof.
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Proof. We will write ai instead of a0i .
We start by showing necessary condition. By Gauss Lemma, we can write

FB(z, 0) · P (z) = Q(z) with Q(z), P (z) ∈ Z[z]. Writing P (z) =
∑m

n=0 pn · zn,
we have p0 ·an+p1 ·an 1+ · · ·+pm ·an m = 0 for n ≫ 0. Hence, an is determined
by (an 1, · · · , an m) which has only 2m possibilities. Therefore, it is periodic.

Next, we prove sufficient condition. Assume that there exist S ≫ 0, k > 0 such
that ai+k = ai if S ≤ i.
Then, we get

∞∑
i=0

ai · zi = (a0 · z0 + · · ·+ aS 1 · zS 1) + (aS · zS + · · ·+ aS+k 1 · zS+k 1)

+(aS+k · zS+k + · · ·+ aS+2k 1 · zS+2k 1) + · · ·
= (a0 + · · ·+ aS 1 · zS 1) + aS · zS(1 + zk + z2k + · · · )

+ · · ·+ aS+k 1 · zS+k 1(1 + zk + z2k + · · · )

= (a0 · z0 + · · ·+ aS 1 · zS 1) +
aS · zS + · · ·+ aS+k 1 · zS+k 1

1 zk
.

□

Proposition 3.4. If a state of BBS at time t = 0 is semi-periodic with the period
N , then it stays to be periodic at any time t > 0 with the same period N. Moreover,
the periodic pattern at time t is determined by the pattern at time t = 0, and is
independent of the non-periodic part.

Proof. It is enough to show that the BBS is semi-periodic at time t + 1 assuming
that it is semi-periodic at time t.

Let i1(t) be the index of the box where the periodic part starts at time t, and
N be the length of the period. Then atq = atq+N for all q ≥ i1(t), and M be the

number of the balls in each period. We write ik(t) := i1(t) + (k 1)N , the index
of the box where the k-th period starts at time t. Let pk(t) be the number of the
balls the carrier has at the ik(t)-th box at time t.

Let (b1, b2, · · · , bN ) be the state of the periodic part. We define the function ϕ by
setting ϕ(ℓ) to be the number of the balls that the carrier has at the end of periodic
part when he has ℓ balls at the beginning of the periodic part. We separate the
cases depending on N < 2M,N = 2M, and N > 2M .
(a)The case N < 2M :
We have ϕ(ℓ) > ℓ when N < 2M , because the carrier has to pick up all M balls,
and there are only empty N M(< M) boxes. Hence, he picks up more balls than
he drops.
Moreover, if ℓ ≥ N M , the state of periodic part after at time t + 1 will be
(1 b1, 1 b2, · · · , 1 bN ) since the carrier drops balls to all empty boxes and picks
up all balls when he passed the periodic part.

Therefore, if N < 2M at time t, the state of BBS at time t + 1 is also periodic
from ik(t)-th box where k ≫ 1, with the period (1 b1, 1 b2, · · · , 1 bN ). In
particular, we have N > 2M at time t+ 1.

(b)The case N > 2M :
Assume that ϕ(0) = p. That means, if the carrier enters the periodic part with 0
balls, he picks up M balls and drops (M p) balls out of N M empty boxes,
hence he passed by (N M) (M p) = N 2M + p empty boxes without balls.
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(b.i)The case ℓ ≤ N 2M + p:
If the carrier has ℓ balls at the beginning of the periodic part with ℓ ≤ N 2M +p,
he drops ℓ extra balls out of N 2M + p boxes where the carrier who has no balls
at the beginning (we call the carrier ”ℓ = 0 carrier”) passes by, then his status (no
balls) is the exactly same as the ℓ = 0 carrier, and the result is ϕ(ℓ) = ϕ(0) = p.
Thus, ϕ(ℓ) = p.
(b.ii)The case ℓ > N 2M + p(> p):
If the carrier has more than N 2M + p balls, then he drops balls at all N M
empty boxes. He picks up M balls, so at the end of the period, his balls is reduced
by N 2M , hence ϕ(ℓ) = ℓ (N 2M).

Therefore, if N > 2M at time t, the state of BBS at time t + 1 is also periodic
from ik(t)-th box where k ≫ 1, then pk(t) = p = ϕ(p). We have the same period
N with the same number of balls M .

(c)The case N = 2M :
Assume that ϕ(0) = p. Then. there are empty N M = M boxes at time t in
each period, and the carrier picks up all M balls and drops (M p) balls in time
evilution when the carrier enters the period part with 0 balls, hence he passed by
M (M p) = p empty boxes without balls.
(c.i)The case ℓ ≤ p:
Similarly to the case (b.i), we have ϕ(ℓ) = p.
(c.ii)The case ℓ > p:
Similarly to the case (b.ii), the carrier drops balls to all empty M boxes, hence
ϕ(ℓ) = ℓ+M M = ℓ.

Therefore if N = 2M at time t, the state of BBS at time t+1 is also semi-periodic
from i2(t)-th box, and the state of the periodic part is (1 b1, 1 b2, · · · , 1 bN ).

Therefore, when N ≥ 2M , the number of the balls M in each period and the
length of the periodic part N are unchanged, and the pattern of periodic part at
time t+ 1 only depends only on the pattern at time t.

The classical periodic BBS is built up so that ϕ(ℓ) = ℓ, hence behaves exactly in
the same way as our periodic part.

□

Conjecture 3.5. We conjecture that the generating function F (z, t) is rational for
all semi-periodic BBS.

In Theorem 3.9, we will prove the conjecture in some special case. Rationality
in some other cases, ℓ (ℓ + 1) BBS which is a semi-perioic BBS with the period

ℓ︷ ︸︸ ︷
1 · · · 1

ℓ+1︷ ︸︸ ︷
0 · · · 0, will appear elsewhere.

Definition 3.6. We define ℓ-ℓ BBS to be a semi-periodic BBS with the period

as+i =

{
1 (0 ≤ i < ℓ)

0 (ℓ ≤ i < 2ℓ)

for some s ≫ 0, of length 2ℓ at time t = 0. Hence the period looks like

ℓ︷ ︸︸ ︷
11 · · · 1

ℓ︷ ︸︸ ︷
00 · · · 0.

We denote the initial state of BBS as below.
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B = (

E0
0︷ ︸︸ ︷

0 · · · 0
Q0

1︷ ︸︸ ︷
1 · · · 1

E0
1︷ ︸︸ ︷

0 · · · 0 · · ·
Q0

M︷ ︸︸ ︷
1 · · · 1

E0
M︷ ︸︸ ︷

0 · · · 0

∞︷ ︸︸ ︷
ℓ︷ ︸︸ ︷

11 · · · 1
ℓ︷ ︸︸ ︷

00 · · · 0 · · ·).

Define Lt to be

Lt = (
M∑
i=0

Q0
i + E0

i ) + t · ℓ.

Then, at any time t, the state of ℓ-ℓ BBS, starting from the Lt-th box, is periodic

with the period

ℓ︷ ︸︸ ︷
11 · · · 1

ℓ︷ ︸︸ ︷
00 · · · 0. Also, define Mt to be the number of the solitons

in the non-periodic part at time t, and Nt to be the number of the balls in the
non-periodic part at time t.

Definition 3.7. We say that in a semi-periodic BBS, P-collision occurs at time t
in getting Bt+1 from Bt if the carrier has at least one ball at the beginning of the
periodic part.

Lemma 3.8.
(1) If no P-collision occurs at time t, Nt = Nt+1.
(2) If no P-collision occurs at time t, time evolutions in the non-periodic part and
the periodic part are independent.
(3) If a P-collision occurs at time t, Nt+1 < Nt.

Proof.
(1) The carrier passes through Lt with no balls, so the number of balls in the
non-periodic part does not change.
(2) The carrier passes through Lt with no balls, so no interaction between the
non-periodic part and the periodic part occurs.
(3) As the P-collision occurs, the carrier carries d (> 0) balls at Lt-th box which
balls disappear to the infinity, hence Nt+1 = Nt d. □

Theorem 3.9. In the case of ℓ-ℓ BBS, F (z, t) is a rational function of z and t.

Proof.
Since the balls in the non-periodic part are finite, the number of the P-collision

is also finite. Let T ′ 1 be the time of the last P-collision, then time evolutions in
the non-periodic part and the periodic part at t ≥ T ′ are independent.

By Theorem 2.8, there exists time T such that the collisions of solitions in non-
periodic part are over. Then, the state of the ℓ-ℓ semi-periodic BBS looks like the
following at t ≥ T . 

Qt
1 ≤ Qt

2 ≤ · · · ≤ Qt
MT ′ ≤ ℓ

MT ′ = MT ′+1 = · · ·
Qt

i ≤ Et
i (i = 1, 2, · · · ,MT ′)

B = (

Et
0︷ ︸︸ ︷

0 · · · 0
Qt

1︷ ︸︸ ︷
1 · · · 1

Et
1︷ ︸︸ ︷

0 · · · 0 · · ·

Qt
M

T ′︷ ︸︸ ︷
1 · · · 1

Et
M

T ′︷ ︸︸ ︷
0 · · · 0

∞︷ ︸︸ ︷
ℓ︷ ︸︸ ︷

11 · · · 1
ℓ︷ ︸︸ ︷

00 · · · 0 · · ·)
Then,
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F (z, t) =
∑T 1

j=0 fBj t
j

+
∑MT ′

i=1
zST

i (1+···+zQT
i −1)·tT

1 zQT
i ·t

+ z
ST
M

T ′
+QT

M
T ′

+ET
M

T ′ (1+···+zℓ−1)·tT
(1 z2ℓ)(1 zℓ·t)

where ST
i := ET

0 + (
∑i 1

k=1 E
T
k +QT

k ). □

4. Generating Functions of BBS with a limited cart

4.1. Finite BBS with a limited cart.
BBS with a limited cart is another type of BBS proposed by Takahashi-Matsukidaira
[5]. In this section, we consider a finite BBS with a carrier who has a limited cart.
Assume that the carrier can carry at most k (> 0) balls.

Definition 4.1. We call this k as the capacity of the BBS.

The time evolution rule from time step t to t+1 is described as follows. Assume
that the state of the BBS with a limited cart at time t is (a0, a1, a2, · · · ). Then, ai
is defined inductively on i as

at+1
i = min(1 ati,

i 1∑
j=0

atj

i 1∑
j=0

at+1
j ) + max(0,

i∑
j=0

atj

i 1∑
j=0

at+1
j k)

(see [5]).
The time evolution above can be reinterpreted as the following rule from time t

to t + 1 in terms of the cart and the carrier, moving from the left to the right, as
in Definition 2.1.
(1) If there is a ball in the box, the carrier picks up the ball into his cart, unless
the cart has k balls. If the cart has k balls, then he does nothing. (He moves on to
the next box.)
(2), (3) If there is no ball in the box, the carrier behaves like in the classical BBS,
as described in Definition 2.1.
When the carrier finishes all the boxes, one time-evolution step finishes.

Definition 4.2. In a BBS, we define themarking as follows: when the carrier drops
a ball into a box, we assume that he always drops the newest ball, namely he behaves
like a last-in first-out stack memory in computer program. Then each carried ball
moves from one box to another, and we mark the move by connecting the two boxes
by lines as below. The following example is the case of k = 3.

1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 · · ·
When the ball is on the i-th waiting list at most in the cart, then we say that the

corresponding marking as depth i. We denote the number of depth i markings at
time t by pi(t).

For each depth i marking, either it has a unique depth i+1 ball waiting behind it,
or it does not have such a ball. It determines a surjection from some of the depth
i balls to all of the depth i + 1 balls, hence pi(t) ≥ pi+1(t). Therefore we obtain a
non-increasing sequence of positive integers p1(t) ≥ p2(t) ≥ · · · ≥ pk(t) ≥ 0.

Definition 4.3. We define the 10 pair to be two boxes which look like
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(so using the notation of Definition 2.1, it is 10). We also define 01 pair similarly:

Definition 4.4. Let B be a BBS with the capacity k, we mark B, and we define
the elimination of depth 1 markings of B to be the BBS with the capacity k 1,
with all balls and boxes of the markings of depth 1 (in and out) eliminated.
For example,

1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 · · · 1 1 1 0 1 0 1 0 0 0 0 · · ·

Elimination of
depth 1 marking

0 0

Similarly, we also define the elimination of 10 (or 01) pairs of B to be the BBS with
the capacity k 1, with all 10 (or 01) pairs eliminated.

1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 · · · 1 1 1 0 1 0 1 0 0 0 0 · · ·

Elimination of
10 pairs

0 0

1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 · · · 1 1 1 0 1 0 1 0 0 0 0 · · ·

Elimination of
01 pairs

0 0

Note that the movement of the balls is not affected by the elimination of depth
1 markings, and that all the depths of the markings are reduced by 1.

Proposition 4.5. The elimination of depth 1 markings and the time evolution
commute modulo numberings of the boxes. To be precise, if you eliminate the depth
1 markings and let the time evolve by 1 with the capacity k 1, the state of the BBS
is the same as when you let the time evolve by 1 with the capacity k, eliminate the
depth 1 markings and eliminate the box numbered 0 (so, all boxes will have 1 less
numbers).

0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 · · ·0 0 · · ·

Elimination of
depth 1 marking

1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 · · · 1 1 1 0 1 0 1 0 0 0 0 · · ·

Elimination of
depth 1 marking

Time evolution
with capacity k = 3

Time evolution
with capacity k 1 = 2

Proof. Assume that the state of BBS is given at time t is as follows:

B = (

Et
0︷ ︸︸ ︷

0 · · · 0
Qt

1︷ ︸︸ ︷
1 · · · 1

Et
1︷ ︸︸ ︷

0 · · · 0
Qt

2︷ ︸︸ ︷
1 · · · 1 · · ·

Et
N−1︷ ︸︸ ︷

0 · · · 0
Qt

N︷ ︸︸ ︷
1 · · · 1

Et
N=∞︷ ︸︸ ︷
00 · · · )

Notice that the left most empty boxes of Et
1, E

t
2, · · · , Et

N are marked with depth 1,
connected with some balled box in Qt

1, · · · , Qt
N , hence the depth 1 markings look

as follows:

(A1)1 (C1) 0 (A2) 1 (C2) 0 · · · (AN )1 (CN ) 0 0 · · ·
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where

Ai :

αi︷ ︸︸ ︷
0 · · · 0

βi︷ ︸︸ ︷
1 · · · 1 (αi ≥ 0, βi ≥ 0)

Ci :

γi︷ ︸︸ ︷
1 · · · 1 (γi ≥ 0).

We denote the state of BBS at time t+ 1 as below.

(B1)0(C1)1(B2)0(C2)1 · · · (BN )0(CN )1(BN+1)00 · · ·

where Bi:

δi︷ ︸︸ ︷
1 · · · 1

ϵi︷ ︸︸ ︷
0 · · · 0 (δi ≥ 0, δ1 = 0, ϵi ≥ 0).

Remark 4.6.
(1) One can observe that the in-boxes of depth 1 marking at time t are exactly the
0-boxes of the 10 pairs at time t. The out-boxes of depth 1 markings at time t are
exactly the 0-boxes of the 01 pairs at time t+ 1.
(2) Each Ci consists of 1′s, and the carrier does not move these balls at time t,
because his cart is full.
(3) Thus the elimination of depth 1 markings has exactly the same effect as elimi-
nation of 10 pairs.

We prove that µr, the number of balls in k 1 limited cart at the end of
(A1)(C1)(A2)(C2) · · · (Ar), equals to νr, the number of balls in k limited cart at
the end of (A1)1(C1)0(A2)1(C2)0 · · · (Ar)1(Cr)0, by induction on r.
When r = 0, µ0 = ν0 = 0. Hence, the equality holds.
Assume that µr 1 = νr 1. Along the boxes (Ar), we claim that the number of the
balls in the cart is less than k 1 (hence the same behavior for the capacities k 1
and k).

As Ar =

αr︷ ︸︸ ︷
0 · · · 0

βr︷ ︸︸ ︷
1 · · · 1, first the carrier drops min(αr, µr 1) balls, and start pick-

ing the balls.
If (Cr) is not empty, then in the capacity k case, the ball before (Cr) is the k-th

ball in the cart. This k-th ball is not included in (Ar), so the carrier has exactly
k 1 balls (in both capacities) at the end of (Ar). In this case, µr = k 1 = νr.

If (Cr) is empty, then in the capacity k case, even with the extra ball after (Ar),
he is within the k-th limit. Hence, in (Ar), his balls are less than or equal to k 1.
Thus, both carriers have max(µr 1 αr, 0) + βr ≤ k 1 balls at the end of (Ar).
Hence µr = max(µr 1 αr, 0) + βr = νr.

Thus one can observe that after the time evolution with the capacity k 1, the
BBS looks like

(B1)(C1)(B2)(C2) · · · (BN )(CN )(BN+1)00 · · · .

By Remark 4.6 (1), this is exactly the result of 01-elimination of the original
BBS with capacity k at time t + 1, which is same as 10-elimination together with
the elimination of the 0-th box. □

Proposition 4.7. The number of depth i markings in the sequence is preserved,
namely pi(t) = pi(t+ 1).

Proof. Remark that the number of 10 pairs and the number of 01 pairs are the
number of the solitons, hence are equal. Also by Remark 4.6(1), the number of 10
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pair at time t is same as the number of the depth 1 markings, which is same as the
number of 01 pairs at time t+ 1.
Then,

The number of solitons at time t

= The number of 10 pairs at time t (= p1(t))

= The number of 01 pairs at time t+ 1

= The number of solitons at time t+ 1

= The number of 10 pairs at time t+ 1 = p1(t+ 1).

Hence, p1(t) is preserved in time.
By Proposition 4.5, eliminating depth 1 markings commutes with the time evo-

lution, modulo numbering, hence eliminating depth 1 markings (i 1) times also
commutes with the time evolution, which implies pi(t) = pi(t+ 1). □

Similarly to the classical BBS, in Theorem 4.10 below, we will show that in
the case of finite BBS with a limited cart, there exists finite time T such that the
solitons are in correct order and no collision occurs at t ≥ T .

Definition 4.8. For a state of BBS Bt = (Et
0, Q

t
1, E

t
1, Q

t
2, · · · ), we define an opera-

tion (Et
ℓ, α) with 0 < α ≤ Et

ℓ, which inserts 10 pair into Bt by changing Et
ℓ =

Et
ℓ︷ ︸︸ ︷

0 · · · 0

to

α︷ ︸︸ ︷
0 · · · 0 10

Et
ℓ α︷ ︸︸ ︷

0 · · · 0. We also define an operation (Qt
ℓ, α) with 0 < α < Qt

ℓ, which

inserts 10 pair into Bt by changing Qt
ℓ =

Qt
ℓ︷ ︸︸ ︷

1 · · · 1 to

α︷ ︸︸ ︷
1 · · · 1 10

Qt
ℓ α︷ ︸︸ ︷

1 · · · 1.
In the BBS B with the condition (∗) (with s, t ≥ T ), we say that (Es

ℓ , α) ≤
(Et

m, β) if [ℓ < m] or [ℓ = m and α < β], that (Qs
ℓ , α) ≤ (Qt

m, β) if [ℓ < m] or
[ℓ = m and α < β], that (Es

ℓ , α) ≤ (Qt
m, β) if ℓ < m, and that (Qs

ℓ , α) ≤ (Et
m, β)

if ℓ ≤ m. In a word, (∗sℓ , α) ≤ (♯tm, β) when (∗sℓ , α) is more left than (♯tm, β) with
∗, ♯ ∈ {E,Q}.

Proposition 4.9. Let Ck be the time-evolution operator of capacity k(i.e. Ck(Bt) =
Bt+1). Then, for any (∗tℓ, α), there exists (♯t+1

ℓ′ , α′) such that Ck ((∗tℓ, α)(Bt)) =

(♯t+1
ℓ′ , α′) (Ck(Bt))). Moreover, if the inserting operation is (Qℓ, α) or if the insert-

ing operation is (Eℓ, α) with Qℓ ≥ 2 after the evolution, we insert 10 pair more left
to the original operation.

Proof.
A figure below is an example of (Eℓ, α).
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· · · 1 · · · 10 · · · 0 1 · · · 1 · · ·
Qt

ℓ Et
ℓ

Qt
ℓ+1

· · · 1 · · · 10 · · · 0 1 · · · 1 · · ·
Qt+1

ℓ = Qt
ℓ Et+1

ℓ
Qt+1

ℓ+1

· · · 1 · · · 10 · · · 0
Qt

ℓ

1 · · · 1 · · ·
Qt

ℓ+1

1 0 · · · 0
α

1 = (Et
ℓ α+ 1)

(if α ≥ min(k,Qℓ))

· · · 1 · · · 10 · · · 0
Qt+1

ℓ

1 · · · 1 · · ·
Qt+1

ℓ+1

0 1 0 · · · 0

4 = α min(k,Qt
ℓ) + 1

5 = Et+1
ℓ α+min(k,Qt

ℓ+1) 2

(if α < min(k,Qt
ℓ))

· · · 1 · · · 101 · · · 10 · · · 01 · · · 1· · ·6 = Qt+1
ℓ min(k,Qt

ℓ) + α

7 = min(k,Qt
ℓ) α+ 1

Et+1
ℓ

Qt+1
ℓ+1

Time evolution
with the capacity k ≥ 2

Time evolution
with the capacity k ≥ 2

(Et
ℓ, α)

2 = Et+1
ℓ , α min(k,Qt

ℓ) + 1
)

3 = Qt+1
ℓ , Qt+1

ℓ min(k,Qt
ℓ) + α

)

2

3

1

4 5

6 7

The figure above shows that

Ck (Et
ℓ, α)(Bt)

)
=

{
Et+1

ℓ , α min(k,Qt
ℓ) + 1

)
(Ck(Bt)) if (α ≥ min(k,Qt

ℓ))

Qt+1
ℓ , Qt+1

ℓ min(k,Qt
ℓ) + α

)
(Ck(Bt)) (otherwise),

, which are more left to the original operation as far as Qℓ ≥ 2.
Similarly,

Ck (Qt
ℓ, α)(Bt)

)
=

{
(Qt+1

ℓ , α+ 1 k) (Ck(Bt)) if(α+ 1 > k)

(Et+1
ℓ 1, E

t+1
ℓ 1 min(k α,Qℓ α) + 1) (Ck(Bt)) (otherwise),

which are always more left to the original operation. Proposition 4.9 is proved.
□

Theorem 4.10. Assume that the number of the balls is finite in a BBS with M
solitons and a limited cart. We denote the state of BBS at time t as below.

B = (

Et
0︷ ︸︸ ︷

0 · · · 0
Qt

1︷ ︸︸ ︷
1 · · · 1

Et
1︷ ︸︸ ︷

0 · · · 0 · · ·

Et
M−1︷ ︸︸ ︷

0 · · · 0
Qt

M︷ ︸︸ ︷
1 · · · 1

∞︷ ︸︸ ︷
000 · · ·).

Then, there exists time T such that for t ≥ T , we have

(∗)


(1)There exists r with 0 ≤ r ≤ M, and Qt

1 ≤ Qt
2 ≤ · · · ≤ Qt

r < k

(2)Qt
i ≤ Et

i if 1 ≤ i ≤ r

(3)Qt
i ≥ k if i > r

(4)k ≤ Et
i if i > r

Hence, when t ≥ T , each soliton has time evolution at constant speed and no
collision occurs between them.

Proof. We proceed by induction on k.
When k = 1, the condition (∗) obviously holds for T = 0 with r = 0. In this

case, each soliton proceeds at speed 1 with Qt
i and Et

i (1 ≤ r ≤ M) unchanged and
Et

i = ET
0 + (t T ).
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Suppose that (∗) holds for k 1. By Proposition 4.5, the elimination of depth
1 markings commutes with time evolution if we reduce the capacity by 1 after the
elimination, modulo numbering the boxes (or ignoring Et

0). The condition (∗) is
not related to Et

0, so we can ignore Et
0.

By inductive assumption, there exists T such that when t ≥ T , if we eliminate
the depth 1 markings, the condition (∗) holds. If the elimination does not reduce the
number of solitons, the Qt

i’s become Qt
i 1 and Et

i ’s become Et
i 1 for 1 ≤ i ≤ M

by Remark 4.6(3), so one can see that the condition (∗) holds before elimination.
Let us denote the state of original BBS at time T by B. We eliminate the depth

1 markings from B, and we denote the state by B′. By inductive assumption, we
assume that B′ satisfies the condition (∗).

We first treat the case when the number of the solitons on B′ is 1 less than B.

Assume B′ = (0 · · · 0
q1︷ ︸︸ ︷

1 · · · 1
e1︷ ︸︸ ︷

0 · · · 0 · · ·
eM−2︷ ︸︸ ︷
0 · · · 0

qM−1︷ ︸︸ ︷
1 · · · 1

∞=eM−1︷ ︸︸ ︷
000 · · · ), and we define B̄ to be

B̄ = (0 · · · 0
q1+1︷ ︸︸ ︷
1 · · · 1

e1+1︷ ︸︸ ︷
0 · · · 0 · · ·

eM−2+1︷ ︸︸ ︷
0 · · · 0

qM−1+1︷ ︸︸ ︷
1 · · · 1

∞=eM−1︷ ︸︸ ︷
000 · · · ), namely placing back 10 pairs

after all solitons of B′. Then B is obtained by placing back one 10 pair to B̄, either

in some

qi+1︷ ︸︸ ︷
1 · · · 1 or in some

ei+1︷ ︸︸ ︷
0 · · · 0.

Notice that if the 10 insertion point keeps moving to the left, like in Proposition
4.9, eventually we insert the 10 pair at (Eℓ, α) with Qℓ = 1 which means that at
this point, the condition (∗) is satisfied. One can easily see that we can place back
10 pairs one by one, hence the induction on k completes. Now, Theorem 4.10 is
proved. □

Corollary 4.11. The generating functions of finite BBS with a limited cart, F (z, t),
is a rational function of z and t.

Essentially, Corollary 4.11 follows from Theorem 4.10.

Proof. By Theorem 4.10, there exists time T such that each soliton of finite BBS
evolves at constant speed and no collision occurs between them. Namely, the state
of BBS at time T satisfies the condition (∗) of Theorem 4.10.

B = (

ET
0︷ ︸︸ ︷

0 · · · 0
QT

1︷ ︸︸ ︷
1 · · · 1

ET
1︷ ︸︸ ︷

0 · · · 0 · · ·

QT
r−1︷ ︸︸ ︷

1 · · · 1

ET
r−1︷ ︸︸ ︷

0 · · · 0
QT

r︷ ︸︸ ︷
1 · · · 1

ET
r︷ ︸︸ ︷

0 · · · 0 · · ·

ET
M−1︷ ︸︸ ︷

0 · · · 0
QT

M︷ ︸︸ ︷
1 · · · 1

∞︷ ︸︸ ︷
00 · · ·)

Then,

F (z, t) =
T 1∑
j=0

fBj
(z) · tj

+
r 1∑
i=1

zS
T
i (1 + z + · · · zQT

i 1) · tT

1 zQ
T
i · t

+
M∑
i=r

zS
T
i (1 + z + · · · zQT

i 1) · tT

1 zk · t

where ST
i := ET

0 + (
∑i 1

k=1 E
T
k +QT

k ). □

4.2. Infinite BBS with a limited cart.
　 Now, consider the case of ℓ-ℓ BBS with a limited cart. Assume that there exists
M solitions in the non-periodic part, and we denote the state of BBS as below.
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B = (

Et
0︷ ︸︸ ︷

0 · · · 0
Qt

1︷ ︸︸ ︷
1 · · · 1

Et
1︷ ︸︸ ︷

0 · · · 0 · · ·
Qt

M︷ ︸︸ ︷
1 · · · 1

Et
M︷ ︸︸ ︷

0 · · · 0

∞︷ ︸︸ ︷
ℓ︷ ︸︸ ︷

11 · · · 1
ℓ︷ ︸︸ ︷

00 · · · 0 · · ·)

Theorem 4.12. In the case of ℓ-ℓ BBS with a limited cart, F (z, t) is a rational
function of z and t.

Proof. When ℓ < k, the proof is similar to Theorem 3.9. When ℓ ≥ k, if P-collision
occurs, the balls are not moved away but remain in front of the periodic part,

and we define the extended periodic part to be

extended︷ ︸︸ ︷
1 · · · 1

∞︷ ︸︸ ︷
ℓ︷ ︸︸ ︷

1 · · · 1
ℓ︷ ︸︸ ︷

0 · · · 0 · · ·. Then, the
collision between the non-periodic part and the extended periodic part occurs only
finitely many times, and the rest is similar. □
Conjecture 4.13. The generating function of any semi-periodic BBS with a limited
cart is a rational function of z and t.
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