クラウンエーテルの金属イオン包接 に対する溶媒効果の研究

(広大院理, EPFL)

井口佳哉, 江幡孝之, Thomas R. Rizzo

Ion Selectivity of Crown Ethers

Our final goal is to reveal the origin of ion selectivity in terms of quantum chemistry.

$\Delta \boldsymbol{H}$ for Complex Formation

Bare complexes cannot explain the ion selectivity in solution.

Anderson et al., *Int. J. Mass Spectrom.*, **2003**, *227*, 63.

Solvated Complexes

Solvated complexes are used to examine the solvent effect at a molecular level.

Relation between *K*, ΔG , ΔH , and ΔS

We have to determine the structure and the number of conformers to evaluate the ion selectivity.

$$K = \exp\left(-\frac{\Delta G}{RT}\right)$$

$\Delta G = \Delta H - T \Delta S$

- *H* and *S* depend on the structure.
- The more conformations a complex takes, the more stable it is.

This Study

- M^+ •DB18C6•(H_2O)_n (M = alkali metal)
- M²⁺•B15C5•L and M²⁺•B18C6•L

- UV and IR spectroscopy in a cold, 22-pole ion trap
- Relation between ion selectivity and the number of conformers.

Experimental

UV and IR spectra of ions are measured under cold (~10 K) conditions in the gas phase.

IR-UV Double-Resonance

Conformer-specific IR spectra can be measured by IR-UV double-resonance.

UV Spectra of M⁺•DB18C6

All the complexes show sharp UV bands. Conformer-specific IR spectra can be measured.

Inokuchi et al., JACS, 2011, 133, 12256.

Structure of M⁺•DB18C6

The conformer structure is determined with the aid of quantum chemical calculations.

Inokuchi et al., JACS, 2011, 133, 12256.

UV Spectra of K⁺•DB18C6•(H_2O)_n

UV spectra also show sharp bands.

Conformer-specific IR spectra can be measured.

Conformers of K⁺•DB18C6•(H_2O)₃

Inokuchi et al., JACS, 2014, 136, 1815.

Conformers of $M^+ \cdot DB18C6 \cdot (H_2O)_3$

One conformer for Rb⁺ and Cs⁺.

Two conformers for *K*⁺.

Inokuchi et al., JACS, 2014, 136, 1815.

The Number of Conformers

If the metal ion is completely surrounded by CE, multiple conformers can exist for solvated complexes.

Inokuchi et al., in preparation.

M ²⁺ •CE•H ₂ O			M ²⁺ •CE•CH ₃ OH		
	B15C5	B18C6		B15C5	B18C6
Ca ²⁺	1	3	Ca ²⁺	1	3
Sr ²⁺	2	3	Sr ²⁺	2	5
Ba ²⁺	2	1	Ba ²⁺	1	2
Mn ²⁺	1	2	Mn ²⁺	1	3

 $n_{B15C5} < n_{B18C6}$, but $n_{B15C5} \approx n_{B18C6}$ for Ba²⁺

Summary

We are still on a way to revealing the whole picture of the ion selectivity at a molecular level, but...

- $M^+ \cdot DB18C6 \cdot (H_2O)_n$
- M^{2+} •B15C5•L and M^{2+} •B18C6•L (L = H₂O, CH₃OH)
- UV and IR spectroscopy in a cold, 22-pole ion trap

- The structure and number of conformers are determined.
- Host-guest complexes with an optimum matching in size tend to give multiple conformers with solvent molecules, resulting in entopic advantages.

Future Prospects

Quantum chemical approaches in host-guest chemistry

Gas phase

On gold surface

