

 (広大院理,ローザンヌ連邦工科大)
〇井口佳哉,O.V. Boyarkin,日下良二, の野岳晴,江幡孝之,T.R. Rizzo

What Are Crown Ethers?

イオンを選択的にトラップする

Ion Selectivity

ΔH for Complex Formation

K+に特異性は見られない

選択性の起源は?構造にあるのか? 包接錯体の構造を決める必要がある

This Study

- DB18C6 with $M^+ = Li^+$, Na^+ , K^+ , Rb^+ , Cs^+
 - 1:1 complexes

- UV spectroscopy in a cold, 22-pole ion trap IR-UV spectroscopy DFT, TD-DFT
- コンフォマーの数,構造の決定

Experimental

Svendsen, Lorenz, Boyarkin, and Rizzo, *Rev. Sci. Instrum.*, **2010**, *81*, 073107.

nanoelectrospray DB18C6 LiCl, NaCl, KCl, RbCl, CsCl in Methanol 20–200 µM

UV spectroscopy
IR-UV spectroscopy
UV power 1–1.5 mJ/pulse
IR power 4–5 mJ/pulse

UV Spectra of K*•DB18C6

 \cap

冷却することによりシャープな振電構造が出現している

UV Spectra of M⁺•DB18C6

 $M^{+\bullet}DB18C6$

シャープな振電バンドが多数観測されている

Exciton Splitting

 $M^{+\bullet}DB18C6$

K⁺~Cs⁺でExciton Splittingが明瞭に観測された

Vibronic Structure

С

Ο

 \cap

O

Ο

 M^+

M+•DB18C6

ベンゼン環の振動も観測された

UV Spectra of M⁺•DB18C6

 $M^+ \bullet DB18C6$

Li⁺~K⁺でUVスペクトルが大きく変化する \rightarrow 構造が大きく異なる K⁺~Cs⁺はUVスペクトルが似ている \rightarrow 類似の構造をもつ

IR Spectra of M⁺•DB18C6

IRスペクトルにより異性体の数を決定できる K+~Cs+はIRスペクトルが似ている → 類似の構造をもつ

IR HB Spectra of Li⁺•DB18C6

IR-UVにより振電バンドを分離できる

The Number of Conformers

M +	M+•DB18C6
Li+	2
Na ⁺	2
K+	1
Rb+	1
Cs+	1
(monomer)	2

 $M^+ \bullet DB18C6$

IR-UVスペクトル エネルギー 電子スペクトル計算

に基づいて構造を同定

Structure of M⁺•DB18C6 (M = Li, Na)

M05-2X/6-31+G(d) with Stuttgart RLC ECP A scaling factor of 0.8340 is used.

Structure of M⁺•DB18C6 (M = K, Rb, Cs)

Structure of M⁺•DB18C6 (M = K, Rb, Cs)

cf. Li⁺ (0.90 Å), Na⁺ (1.16 Å)

Binding Energy of M⁺•DB18C6

Summary

 $\blacksquare M^{+\bullet}DB18C6 \quad (M = Li, Na, K, Rb, Cs)$

■包接錯体のコンフォマー数と構造を決定 K+イオンがDB18C6の空孔にちょうどフィットしている

■今後の展開

B18C6, B15C5の包接錯体(実験済み) 溶媒和された包接錯体 → 溶液中でのイオン選択性との関連

cf. Inokuchi et al., J. Am. Chem. Soc. 2011, 133, 12256.