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CHAPTER 1 

 

Analysis of mouse renal proteins involved in Klotho deficiency by 

using MALDI imaging mass spectrometry 
 

 

 

1. Abstract 

 

The recent development of matrix-assisted laser desorption/ionization-imaging mass 

spectrometry (MALDI-IMS) approaches has enabled determination of the detailed 

spatial distribution of molecules in frozen tissues. However, consistent detection of 

various species using MALDI-IMS approaches has not been achieved. Thus, this study 

was conducted to determine whether a combination method involving liquid 

chromatography (LC)-MS-MS and MALDI-IMS with trypsin digestion could be used to 

evaluate spatial distribution using cryosections from wild-type (WT) and Klotho 

knockout (kl-/-) mouse kidneys. MALDI-IMS (m/z, mass-to-charge ratio; 1000–60,000) 

of frozen kidney tissues collected from 7-week-old male WT and kl-/- mice was used to 

determine genotype-specific differences of the MS distribution. Neighboring sections 

were subjected to MALDI-IMS (m/z 600–6000) and LC-MS-MS after trypsinization, 

and the distribution of molecules identified by LC-MS-MS were reflected by 

MALDI-IMS. As a result, titin, a very large protein (approximately 3800 kDa) was 

successfully detected. Sixty-one and 33 proteins were detected in only WT and kl-/- 

mouse kidneys, respectively. Among these, high mobility group protein B1, thymosin 

β4, and RAD51-associated protein 1 from WT and fructose bisphosphate aldolase A, 

chromogranin A and secretogranin-1 from kl-/- were originally linked to the morbid state 

in kl-/- mice. Additionally, secretogranin-1 was highly detected in the glomeruli, renal 

tubules, and blood vessels of kl-/- mouse kidneys by immunohistochemistry. These 
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results showed that a combination of MALDI-IMS and LC-MS-MS with trypsin 

digestion is useful for visualizing and identifying novel pathologic proteins in frozen 

tissues. 
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2. Introduction 

 

Recently, omics approaches have been actively used to explore variations in whole 

molecules constituting an organism and analyzing life activity and pathogenesis. 

Anomalies in protein expression, distribution, and metabolism are frequently observed 

in pathological conditions; therefore, information obtained from proteomics and 

metabolomics studies has become particularly important for elucidating the etiology and 

for diagnosis. Conventional imaging techniques such as immunohistochemistry require 

labeling and show difficulties in discovering new pathological molecules in the tissue. 

Mass spectrometry (MS) is a commonly used technology for detecting analytes in 

proteomics and metabolomics research and can directly define individual molecular 

species in intricate samples, thus broadening our understanding of biological molecules; 

however, liquid chromatography (LC)-MS or gas chromatography (GC)-MS analyses 

require the use of tissue homogenates, and thus, all tissue localization information is 

lost.  

 

Among the several MS ionization techniques used for direct tissue analysis, 

matrix-assisted laser desorption/ionization (MALDI)-MS is a powerful tool because of 

its wide detection range of biomolecules [1, 2]. Imaging by MALDI-MS (MALDI-IMS) 

reveals the detailed spatial distribution of molecules in biological samples [3]. In 

MALDI-IMS, however, consistent detection of species over 25 kDa has not been 

achieved [4]. To overcome this limitation, proteins with high molecular mass are 

digested by proteolytic enzymes such as trypsin, pepsin, and formic acid, and MS-MS is 

carried out in situ following protease digestion of tissue sections [5, 6]. This MS-MS 

approach must be performed under optimal spotting conditions for digestion and often 

exhibits poor digestion efficiency because of the small droplets of enzyme solution 

present. To overcome this limitation, digestive extraction from neighboring sections 

were applied liquid chromatography (LC)-MS-MS to identify the proteins present, 



 
4 

followed by MALDI-IMS analysis. 

 

Aging rodents exhibit significantly lower renal α-Klotho (Klotho) protein expression 

than do young rodents [7]. The klotho gene was serendipitously identified as a gene 

mutated in a mouse strain (kl/kl mice) suffering from a syndrome resembling 

accelerated human aging, including atrophy of the genital organs and thymus, 

arteriosclerosis, ectopic calcification, and osteoporosis [8]. Klotho is a single-pass 

transmembrane glycoprotein that is predominantly expressed in the distal convoluted 

tubules, choroid plexus of the brain, and parathyroid glands [8, 9]. Klotho protein forms 

constitutive binary complexes with multiple fibroblast growth factor (FGF) receptors 

(FGFR1c, 3c, and 4), selectively increasing their affinity to FGF23 [10], which is 

mainly derived from osteolineage cells [11]. Klotho also acts to maintain homeostasis in 

phosphate and vitamin D metabolism by regulating the sodium phosphate co-transporter 

and vitamin D-metabolizing enzymes in the kidneys [12]. Partial deletion of Klotho in 

the distal tubules increases the renal protein expression of vitamin D receptor and 

sodium-dependent phosphate transport protein 2A [13]. Recent studies have also 

reported the function of circulating soluble Klotho. Soluble Klotho is generated by 

cleavage [14] and can act as a paracrine or endocrine mediator independently of the 

FGF23 pathways by promoting renal calcium reabsorption through stabilization of the 

transient receptor potential vanillid-5 channel in the distal tubules and by reducing 

serum levels of 1,25-dihydroxyvitamin D3 [15]. These previous findings provide limited 

evidence for a pathogenic role of Klotho in altering the production and/or distribution of 

several proteins involved in aging-related disorders such as chronic kidney disease 

(CKD) and kidney stones. 

 

Here, this study conducted comparative proteome analysis of sections from wild-type 

(WT) and Klotho knockout (kl-/-) mouse kidneys to identify novel pathologic proteins 

using a combination of MALDI-IMS and LC-MS-MS. 
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3. Materials and Methods 

 

3.1. Materials 

Conductive indium tin oxide (ITO)-coated glass slides (100 Ω) were purchased from 

Matsunami Glass Ind., Ltd., (Osaka, Japan). Trypsin was purchased from Promega KK 

(Tokyo, Japan). Sinapic acid (SA) and α-cyano-4-hydroxycinnamic acid matrix were 

purchased from Bruker Daltonics (Bremen, Germany). Acetonitrile (ACN) was 

purchased from Merck (Darmstadt, Germany). Carboxymethylcellulose (CMC, 2%) 

was purchased from Leica Microsystems (Wetzlar, Germany). Trifluoroacetic acid 

(TFA), 2,5-dihydroxy-benzoic acid (DHB), and all other chemicals, unless otherwise 

specified, were purchased from Sigma–Aldrich Co. (St. Louis, MO).  

 

3.2. Animals 

Klotho heterozygous mice (kl-/+) were purchased from CLEA, Inc. (Osaka, Japan). kl-/- 

mice were obtained by mating kl-/+ mice. Mice were housed and handled to minimize 

pain or discomfort to the animals according to the protocols approved by the 

Institutional Animal Care and Use Committee at the Central Institute for Experimental 

Animals and the Committee of Animal Experimentation at Hiroshima University. 

Genotyping of Klotho knockout mice and Klotho WT mice was conducted as described 

previously [16]. 

 

3.3. Specimen preparation 

Seven week-old male WT and kl-/- mice were euthanized and whole kidneys were 

extracted. For MALDI-IMS, LC-MS-MS, and immunohistochemistry, the kidneys were 

rapidly embedded in a stainless steel container filled with 2% CMC and then placed in 

dry ice-cooled hexane to form frozen CMC blocks. Each frozen block was stored at 

−80°C until sectioning. Tissues were sectioned (10 µm) using a CM 3050 S cryostat 

(Leica) and placed on the ITO-coated slides, followed by washing with 70% ethanol 
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and 100% ethanol and drying.  

 

3.4. Trypsin digestion 

After washing and drying of the neighboring sections (one for MALDI-IMS and another 

for LC-MS-MS), 200 µL of trypsin solution (100 ng/µL in 40 mM ammonium 

bicarbonate: ACN = 9:1) was applied in an ImagePrepTM device (Bruker Daltonics) 

using the standard SA method and then the sections were placed in tubes under 100% 

relative humidity conditions at 37°C for 90 min.  

 

3.5. MALDI-IMS 

The matrix solutions composed of 10 mg/mL SA in 60% ACN (0.2% TFA) or 30 

mg/mL DHB in 50% methanol (1% TFA), for trypsinized or untrypsinized sections, 

respectively, were evenly sprayed onto the sections using an ImagePrepTM device using 

the standard SA method. MALDI images were acquired using the UltrafleXtreme 

MALDI-TOF mass spectrometer (Bruker Daltonics) in linear positive ion mode in a 

range of m/z (mass-to-charge ratio) of 1000–60,000 or 600–6000 for untrypsinized or 

trypsinized sections, respectively. A spatial resolution of 35 µm was used. For 

positioning of the glomeruli and renal tubules, neighboring sections were subjected to 

hematoxylin-eosin (HE) staining. 

 

3.6. LC-MS-MS 

Peptides from tryptic digests on the slides were reconstituted in 0.1% TFA, separated, 

and analyzed by LC-MS-MS using an EASY-nLC system (Bruker Daltonics) coupled 

to an ultraflextreme TOF/OTF with Smartbeam II (Bruker Daltonics). The LC system 

was configured with an L-column2 ODS (2 µm, 0.2φ × 50 mm, Chemicals Evaluation 

and Research Institute, Tokyo, Japan) for 65 min with a gradient of solvent A (0.1% 

TFA in H2O) and solvent B (ACN) at a flow rate of 0.9 µL/min. The gradient was 

performed as follows; 0–3 min 95% A and 5% B, then to 50% A and 50% B at 60 min, 
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5% A and 95% B from 61 to 64 min, and 95% A and 5% B at 65 min. A total of 248 

fractions were obtained from 3 to 65 min and subjected to MS and MS-MS analysis. 

MS-MS data were evaluated using the Mascot search engine (version 2.4.1, Matrix 

Sciences, London, UK) for protein identification. The protein list was also functionally 

evaluated applying UniProtKB (http://www.uniprot.org/). 

 

3.7. Immunohistochemistry 

For immunofluorescence staining, frozen sections (5 µm) were prepared as described 

above and perfused with 4% paraformaldehyde phosphate-buffered saline (PBS) for 3 

min. Briefly, the sections were rinsed for 5 min with PBS, incubated in washing buffer 

(PBS containing 50 mM NH4Cl) for 10 min, and incubated in blocking buffer (washing 

buffer containing 2% bovine serum albumin and 0.05% saponin) for 20 min. The 

sections were incubated with goat polyclonal anti-chromogranin B antibody (1:100, 

Santa Cruz Biotechnology, Inc., Santa Cruz, CA) overnight at 4°C. After 3 × 5 min of 

washing with PBS, the sections were incubated in CyTM3-conjugated donkey anti-goat 

IgG (1:400; Jackson ImmunoResearch Lab, West Grove, PA) for 1 h at room 

temperature. Antibody specificity was also evaluated using blocking peptide (1:20, 

Santa Cruz Biotechnology). DAPI staining was also performed for counterstaining. 
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4. Results 

 

4.1. Comparison of MS distribution between WT and kl-/- mouse kidneys by 

MALDI-IMS without trypsin digestion 

To identify proteins showing differential distributions between genotypes, the average 

mass spectra of cryosections from both kidneys were compared. Among the setting 

measurement ranges (m/z 1000–60,000), the mass spectrum of the good S/N ratio was 

detected up to approximately m/z 16,000 in both genotypes (Figure 1A, B). According 

to MALDI-IMS, more than 30 proteins were differentially distributed between 

genotypes; for example, a molecule at m/z 14,978.85 was strongly detected in the WT 

but not in kl-/- mouse kidneys (Figure 1C), and a molecule at m/z 13,990.64 was strongly 

detected in kl-/- but not in WT mouse kidneys (Figure 1D). 

 

4.2. Detection and identification of proteins using a combination of MALDI-IMS and 

LC-MS-MS after trypsinization  

To check evaluate whether the combination method of MALDI-IMS and LC-MS-MS is 

useful, the cryosections were trypsinized and then subjected to MALDI-IMS (m/z 600–

6000) and LC-MS-MS. The number of detectable mass spectra was increased by 

digestion in both genotypes in MALDI-IMS analysis (Figure 2A–D). A total of 103 and 

76 proteins were identified when the sequences were aligned to LC-MS-MS spectra in 

the Mascot database, and of these, 97 and 69 proteins were matched to MALDI-IMS 

spectra in the WT and kl-/- mouse kidney, respectively. Sixty-one and 33 proteins were 

detected in only the WT and kl-/- mouse kidney, respectively (Table 1A, B). High 

mobility group protein B1 (HMGB1), thymosin β4, RAD51-associated protein 1 

(R51A1), superoxide dismutase (Table 1A), Wnt5, fructose bisphosphate aldolase A, 

chromogranin A (CMGA), and secretogranin-1 (SCG1) (Table 1B) may contribute to 

renal pathology in kl-/- mice (see Discussion). Thirty-six proteins were detected in both 

genotypes (Table 1C). Among the identified proteins, titin was the largest 
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(approximately 3900 kDa, Table 1A).   

 

Based on functional classification, nucleic acid binding proteins were the most 

frequently detected (42% in WT and 37% in kl-/-), followed by enzymes (20% in WT 

and 28% in kl-/-) (Figure 3). Membrane proteins and secretory proteins were also 

observed, and the number different protein types did not show a marked difference 

between genotypes. 

 

4.3. SCG1 localization at glomeruli, proximal and distal renal tubules in kl-/- mice  

To compare the localization in detail, the irradiation ranges were set to the glomeruli 

and proximal and distal renal tubules referring to the neighboring sections stained with 

HE (Figure 4A). In WT mice, 8, 9, and 3 proteins were detected in the glomeruli and the 

proximal and distal renal tubules, respectively (Table 2A). Of these, 5 proteins 

including R51A1 were observed in only WT. However, in kl-/- mice, 21 proteins were 

detected in each area, and 11 proteins including ALDOA, CMGA, and SCG1 were 

observed in only kl-/- mice (Table 2B). Based on MALDI-IMS, m/z 1269.629 was 

identified as one of the fragments of SCG1 by LC-MS-MS in the glomeruli and the 

proximal and distal renal tubules (Table 3 and Figure 4A–C). 

 

To confirm the identification and distribution of SCG1 in the kl-/- mouse kidney, 

immunohistochemistry for SCG1 was performed. Compared to WT, SCG1 

immunoreactivity was strong in the glomeruli and the proximal and distal renal tubules 

as well as in the blood vessels in kl-/- mice (Figure 5A–D). These results support those 

obtained from the combination of MALDI-IMS and LC-MS-MS. 
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5. Discussion 

 

Previous studies have found changes in the expression of genes and proteins in 

klotho-deficient mice; however, the results were complex and clarifying the 

pathological mechanisms of kidney diseases in these mice is difficult. Olauson et al. 

(2012) showed that targeted deletion of Klotho in the kidney resulted in abundant 

expression of sodium-dependent phosphate transport protein 2A without tubular 

calcification on renal histology. Yoshida et al. (2002) demonstrated that the levels of 

vitamin D receptor mRNA and protein were slightly and significantly reduced, 

respectively, in kl-/- mouse kidneys, which is not in accordance with previous studies 

even with high serum levels of 1,25-dihydroxyvitamin D3 [13, 17-20]. This study 

comprehensively determined the proteomics of the kl-/- mouse kidney to identify novel 

pathologic factors with localization information using a combination of MALDI-IMS 

and LC-MS-MS.  

 

In this study 61 presumptive proteins were detectable in the WT mouse kidney but not 

in the kl-/- mouse kidney. HMGB1, a member of the high mobility group nuclear protein 

family, has the capacity to produce specific changes in the structure of target DNA; it is 

localized in the nucleus where it exerts transcriptional activities [21-23]. HMGB1 also 

acts as a paracrine/autocrine factor to control cell differentiation, proliferation, and 

disease pathogenesis [24]. Studies using a neutralizing antibody to HMGB1 

demonstrated that HMGB1 is an early mediator of injury and inflammation in the liver 

or kidney following ischemia-reperfusion [25, 26]. Thymosin β4, isolated originally 

from the calf thymus [27] and further detected in several organs, including the kidney 

[28], promotes the migration of endothelial cells, angiogenesis, and tumor metastasis in 

vitro and in vivo [29-32]. Previous studies using MALDI-IMS indicated that thymosin 

β4 was detected in colon carcinoma and pancreatic cancer [33, 34]. R51A1 is critically 

important for homologous recombination by interacting with both the RAD51 and 
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DMC1 recombinases in mitotic and meiotic cells [35-37]. R51A1 knockdown in human 

cells by RNA interference led to increased levels of genomic instability and decreased 

levels of DNA repair that decreased with age [37, 38] and RAD51 diminishes with age 

in kidney [39]. This study is the first to demonstrate that undetectable proteins, 

including HMGB1, thymosin β4, and R51A1, in the kl-/- mouse kidney may be related 

to syndromes resembling the acceleration of human aging in Klotho-deficient mice. 

Superoxide dismutase (SOD) is an anti-oxidant enzyme known to be associated with 

aging. Previous studies have found that Klotho increases the resistance to oxidative 

stress by upregulating the activity of a human SOD2 gene promoter [40] and that aged 

rats showed glomerulosclerosis and tubulointerstitial fibrosis with a significant decrease 

in both Klotho and mitochondrial SOD protein expression in the renal cortex [41, 42] 

and medulla [42]. These studies support our results showing that SOD is undetectable in 

the kl-/- mouse kidney.  

 

In contrast, 33 presumptive proteins were detectable in the kl-/- mouse kidney but not in 

WT mice. Among the Wnt family that controls a variety of processes such as cell fate 

specification, cell migration, and cell polarity [43], most members are upregulated 

during renal fibrosis [44]. The soluble form of Klotho inhibits Wnt signaling and 

immunoprecipitates with a number of Wnt isoforms, including Wnt5a [45]. Fructose 

bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and contributes to 

various cellular functions and biological processes [46-48]. Based on evidence that 

ALDOA activates the Wnt signaling pathway in a GSK-3β-dependent manner [49], 

Klotho deficiency may contribute to renal pathological anomalies with 

ALDOA-involved Wnt signaling. CMGA and SCG1 (also known as chromogranin B) 

are the members of the granin family (secretogranins/chromogranins) that play an 

important role in the packaging and sorting of secretory products such as peptide 

hormones and neuropeptide in the trans-Golgi network [50]. Both CMGA and SCG1 

are present in many normal (e.g., adrenal medulla and paraganglion) and neoplastic (e.g., 
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pheochromocytomas and prolactinomas) tissues in the diffuse neuroendocrine system 

[51]. In addition to the important roles of CMGA and SCG1 as biomarkers for 

screening of neuroendocrine tumors [52, 53], previous studies have shown that CMGA 

levels in the serum were elevated in various disorders, including renal failure [54-56]. 

Cleavage of CMGA by thrombin inhibits angiogenesis in vitro and in vivo [57] and 

angiogenesis does not function in CKD [58]; thus, CMGA may be involved in the loss 

of the rich peritubular capillary network in CKD. Compared to CMGA, the 

physiological functions of SCG1 are not well known; however, angiotensin II, which 

has been implicated in the pathogenesis of various glomerular diseases [59, 60], 

increases rat cardiomyocyte Scg1 mRNA expression [61]. The detected proteins, Wnt5, 

ALDOA, CMGA, and SCG1, in the kl-/- mouse kidney may contribute to pathogenesis, 

and further studies are needed to evaluate the effects of these proteins in kl-/- mice. 

 

Proteomics by MALDI-MS enables the identification of pathological factors without 

labeling, but the size of proteins that can be detected without digestion or optimization 

of conditions is limited (<25 kDa) (see Introduction). In this study, using a 

combination of MALDI-IMS and LC-MS-MS after trypsinization, the number of MS 

peaks was increased and the extent of localization and immunohistochemistry was 

stable. Furthermore, titin, which is the largest protein in vertebrate striated muscles 

(approximately 3900 kDa) [62], was successfully detected. This method was also 

successfully used to identify novel pathological proteins. The MALDI-IMS method 

exhibits some limitations in the quantitative and qualitative analysis and should be 

further improved in future studies.    
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6. Figure Legends 

 

Figure 1. Comparison of MS distribution between WT and kl-/- mouse kidney by 

MALDI-IMS. Average mass spectra (m/z < 20,000) of cryosections from WT (A) and 

kl-/- (B) mouse kidney. The x-axis and the y-axis represent m/z and intensity, 

respectively. (C, D) The left and right images indicate WT and kl-/- mouse kidney, 

respectively. (C) Red spots indicate the molecule of m/z 14,978.85. (D) Green spots 

show the molecule of m/z 13,990.64. 

 

Figure 2. Comparison of average mass spectra between WT and kl-/- mouse kidney with 

or without trypsinization by MALDI-IMS. Average mass spectra (m/z 600–6000) of 

cryosections from WT (A, C) and kl-/- (B, D) mouse kidney with (C, D) or without (A, 

B) trypsin digestion. 

 

Figure 3. Functional classification of detected proteins. Identified proteins by the 

combination of MALDI-IMS and LC-MS-MS in WT (A) and kl-/- (B) were classified 

using UniProtKB. 

 

Figure 4. Distribution of a fragment of SCG1 in kl-/- mouse kidney by using a 

combination of MALDI-IMS and LC-MS-MS. (A) HE staining using the neighboring 

section. Blue, green, and yellow circles indicate glomeruli and proximal and distal renal 

tubules, respectively. (B) MALDI-IMS of m/z 1269.629. (C) Merged image of (A) and 

(B). 

 

Figure 5. Immunohistochemistry for SCG1 in WT and kl-/- mouse kidney. 

Immunofluorescence staining of SCG1 (A, C) and DAPI staining (B, D) in WT (A, B) 

and kl-/- (C, D) mouse kidney.  
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Table 1. List of proteins identified by a combination of MALDI-IMS and    
        LC-MS-MS 

A 



 
20 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 (continued) 
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Table 1 (continued) 
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Table 2. List of proteins identified from glomeruli, proximal, and distal      
        renal tubules  

A B 

* : the protein detected only in WT or kl
-/-

  
n = 2 ~ 5 
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Table 3. List of fragments of SCG1 
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Chapter 2 

 

Imaging and mapping of Klotho-deficient mouse bone using MALDI 

imaging mass spectrometry 
 

 

 

1. Abstract 

 

Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) 

is a advanced method used globally for analyzing the distribution of biomolecules on 

tissue cryosections without any probes. Hydroxyapatite crystals in bones make it 

difficult to determine the distribution of biomolecules using MALDI-IMS, and there is 

limited information regarding the use of this method to analyze bones. To determine if 

MALDI-IMS analysis of bone tissues can aid in comprehensive mapping of 

biomolecules in mouse bone, and identify anomalous metabolites in the bone of 

Klotho-deficient (kl-/-) mice with osteopenia, first, the femurs and/or tibiae from 

8-week-old male mice were fixed and decalcified in various combinations of fixation 

and decalcification solutions. Fresh samples with or without decalcification were also 

prepared. About 10-µm thick cryosections were mounted on ITO-coated glass slides, 

dried, and matrix solution was splayed on the tissue surface. The images were acquired 

using iMScope (Shimadzu) within a mass-to-charge range of 100 to 1000. Adjacent 

sections were stained with Hematoxylin-Eosin, Alcian blue, Azan, and PAS to evaluate 

the histological and histochemical features. Femurs from kl-/- mice were 

fixed/decalcified in trichloroacetic acid (TCA) and used for MALDI-IMS and MS-MS 

analyses. The results were compared with those obtained for wild-type mice. Among 

various fixation and decalcification conditions, sections from TCA-treated samples 
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were most suitable to examine both the histology and comprehensive MS images. 

However, histotypic MS signals were detected in all sections. The MS-MS analysis 

revealed product ions that are unique to Klotho-deficient mice. In addition to the MS 

images, 2-hydroxyestradiol was identified as a candidate metabolite that is involved in 

skeletal defects of kl-/- mice. These results indicate successful detection of biomolecules 

in bone using MALDI-IMS. Although analytical procedures and compositional 

adjustment regarding the performance of the device still requires further development, 

IMS appears to be a powerful tool to determine the distribution of biomolecules even in 

the bone tissues.   
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2. Introduction 

 

Hard tissues such as bones and teeth are calcified tissues. Therefore, it is difficult using 

cellular and molecular analyses to investigate the function of cells such as osteocytes 

and cementocytes, and the distribution of organic matter such as proteins and peptides. 

For example, osteocytes, which terminally differentiate from osteoblasts and are 

embedded into the bone matrix play an important role in the maintenance of 

homeostasis in the network between osteoblasts and osteoclasts [1]. To confirm the 

physiological function of osteocytes, it is preferable to retain the original distribution of 

biomolecules when analyzed. In that context, matrix-assisted laser desorption/ionization 

imaging mass spectrometry (MALDI-IMS) is a useful method for investigation; 

MALDI-IMS enables analyzing the distribution of molecules without any disruption in 

the morphology and architecture. The benefit of MALDI-IMS for discovering the novel 

pathological molecules has already been described in Chapter 1. MALDI-IMS, 

however, has certain limitations for quantitative and qualitative uncertainty analysis. 

Additionally, there are few studies that used MALDI-IMS for bone tissues to identify 

the molecules because of the lack of appropriate methods to prepare sections for 

ionization [2-4]. Hirano et al. reported MALDI-IMS for tooth cryosections sliced by the 

Kawamoto method using adhesive film without any pretreatment such as fixation and 

decalcification [2]; however, the signals obtained from the enamel and dentin were not 

listed in the metabolomics database. They concluded that almost all of these signals are 

mineral, which can interrupt the ionization of the large components. Therefore, this 

study attempts to establish an appropriate protocol for the fixation and/or decalcification 

of samples derived from bone to detect MS using MALDI-IMS and provide a 

comprehensive mapping of proteins and peptides. 

 

Klotho gene mutation leads to a syndrome that is similar to accelerated human aging, 
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including ectopic calcification and osteoporosis [5] (see Chapter 1). Klotho acts as a 

cofactor for fibroblast growth factor (FGF) 23, which is mainly derived from the 

osteolineage cells [6] to increase the affinity of FGF23 to the FGF receptors [7]. The 

principle function of FGF23 is to maintain homeostasis in phosphate and vitamin D 

metabolism by regulating the sodium phosphate co-transporter and vitamin 

D-metabolizing enzymes in the kidneys [8], however, recent studies indicated that 

FGF23 directly regulates bone mineralization in both Klotho-dependent and 

independent manners [9, 10]. It was also reported that soluble Klotho, cleaved by A 

Desintegrin, as well as Metalloproteinase (ADAM) 10 and ADAM17 [11] acts to 

protect from uremic cardiomyopathy, inhibit renal inflammation, and suppress tumor 

growth independent of FGF23 [12-14]. In this study, we also attempt to identify 

anomalous metabolites in bone of Klotho-deficient (kl-/-) mice with osteopenia. 
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3. Materials and Methods 

 

3.1. Materials 

Conductive ITO (indium tin oxide)-coated glass slides (8-12 Ω) were purchased from 

Sigma–Aldrich Co. (St. Louis, MO). α-Cyano-4-hydroxycinnamic acid (CHCA) 

matrices were purchased from Bruker Daltonics (Bremen, Germany). 

Carboxymethylcellulose (CMC, 2 %) was purchased from Leica Microsystems (Wetzlar, 

Germany). Trifluoroacetic acid (TFA), 2,5-Dihydroxy-benzoic acid (DHB) and all other 

chemicals, unless otherwise specified, were purchased from Sigma–Aldrich Co.. 

 

3.2. Animals 

Klotho heterozygous (kl-/+) and C57BL/6J mice were purchased from CLEA Inc. (Osaka, 

Japan). kl-/- mice were obtained by mating the kl-/+ mice. Mice were housed and handled 

to minimize pain or discomfort to animals according to protocols approved by 

Institutional Animal Care and Use Committee at the Central Institute for Experimental 

Animals and the Committee of Animal Experimentation at Hiroshima University. 

Genotyping of Klotho knockout mice and Klotho wild-type was done as described [15]. 

 

3.3. Specimen preparation 

Femurs and/or tibiae from 8-week-old male mice (C57BL/6) were fixed and decalcified 

in various combinations of fixation and decalcification solutions (e.g., 4% 

paraformaldehyde (PFA), Carnoy fluid, trichloroacetic acid (TCA) for fixation; formic 

acid, EDTA-NH4, and TCA for decalcification) (see Table 1). Fresh samples with or 

without decalcification were also prepared. Samples were then embedded in a stainless 

steel container filled with 2% CMC and placed in dry ice-cooled hexane to make frozen 

CMC blocks. Each frozen block was stored at −80°C until sectioning. Tissues were 

sectioned (5 µm for staining and MALDI-IMS of fresh samples without any 
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pretreatment by Kawamoto method [16], and 10 µm for MALDI-IMS of samples with 

pretreatment) with a CM 3050 S cryostat (Leica Microsystems). For staining, sections 

were placed on the normal glass slides and washed with 100 % ethanol. For 

MALDI-IMS, sections were placed on Indium-tin-oxide (ITO)-coated glass slides (with 

electrically conducting double-adhesive tape for samples without pretreatment), 

followed by washing with 70 % ethanol and 100 % ethanol, and drying. Femurs from 

kl-/- mice were fixed/decalcified in TCA, followed by the same method as described 

above. 

 

3.4. Staining 

Adjacent sections were stained with Hematoxylin-Eosin (H-E), Alcian blue, Azan, and 

PAS to evaluate histological and histochemical features. Sections without fixation were 

fixed with 4% PFA. 

 

3.5. MALDI-IMS and MS-MS 

After cryosections were dried at room temperature, sections were coated with DHB or 

CHCA matrix vapor deposition using iMlayer (Shimadzu Corporation, Kyoto, Japan) at 

a thickness of 1.5 or 0.7 µm, respectively. MALDI images were acquired using 

iMScope (Shimadzu) in positive or negative ion mode in a range of m/z (mass-to-charge 

ratio) of 100 to 1000 at 1000 Hz laser frequency accumulating 50 laser shots. The 

detector voltage and sample voltage were 1.7 to 1.9 kV and 3.0 to 3.5 kV, respectively. 

Spatial resolution was 10 µm and laser intensity was 23 to 45. To omit the influence of 

fixing and decalcifying solutions and matrices, 1 µL of mixture of each solution and 

matrix was placed onto a stainless-steel (SUS) plate and supplied to iMScope after 

drying. Mass spectra obtained from this mixture were omitted from those from the 

samples. MS-MS data were evaluated using the Human Metabolome Database (HMDB) 

search engine (version 3.6, The Metabolomics Innovaton Centre, AB, Canada) for 

metabolite identification.   
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4. Results 

 

4.1. Histological and histochemical features of bones with or without pretreatment 

To evaluate the influence of fixing and/or decalcifying solutions on histological and 

histochemical features of femurs and tibiae, the cryosections were stained with H-E, 

Alcian blue, Azan, and PAS. Compared to the section without any pretreatment with 

H-E staining, (Figure 1A), cell swelling was seen and the shape of cells was unclear. 

Among various fixation and decalcification conditions, sections from TCA-treated 

samples were most suitable for examining both histology and comprehensive MS 

images (Figure 1B), followed by the samples decalcified with EDTA after fixation than 

others (Figures 1C, D). Bone marrows were peeled from trabecular bone surfaces in the 

samples with formic acid decalcification (Figures 1E, F). Cartilages in the growth plate 

and bone marrows were unable to keep their structure in samples with decalcification 

without fixation (Figures 1G, H). There was no difference between all samples with 

Azan and PAS staining. With Alcian Blue staining, however, bone marrows in unfixed 

and Carnoy/EDTA-treated samples turned dark blue (Figure 1 A, D, G, and H).  

 

4.2. Comparison of MALDI-IMS between bones with or without pretreatment 

To set up the measurement conditions of MALDI-IMS, all samples were supplied to 

iMScope in positive or negative ion mode with DHB or CHCA matrix. Among these, 

the condition of positive mode with DHB was enabled to detect many mass spectra in 

the wide range of m/z (Figure 2 A-D, in the case of sample with TCA treatment). 

Imaging by MALDI-IMS showed tissue-specific distribution of MS with DHB (Figure 

2E). Because the Kawamoto method requires cryofilm, MALDI-IMS of TCA-treated 

sections mounted on ITO-coated glass slide with or without cryofilm were analyzed to 

check the interference of cryofilm. With cryofilm, the number of mass spectra was 

much less than without cryofilm (Figure 2F, G). 
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In comparison of mass spectra detected in positive ion mode with DHB, the 

undecalcified sample with the Kawamoto method exhibited few peaks in the range of 

m/z 100-700 (Figure 3A). Each section has its own characteristic features of the 

appearance of peaks, but there was no significant difference in the obtained number of 

mass spectra between decalcified and/or fixed samples (Figures 3B-H).  

 

In MALDI-IMS, histotypic MS signals were detected in all sections. The signals of the 

molecule at m/z 554.57 was located mainly in bone marrows in all sections except the 

undecalcified section, and the molecule at m/z 185.13 was located mainly in cortical 

bones, trabecular bones, and cartilages in all sections except the Carnoy/formic acid 

sample (Figure 4). In the undecalcified section, there was a few signals at m/z 554.57 

(Figure 4A), and the signals at m/z 185.13 were localized diffusely in the 

Carnoy/formic acid sample (Figure 4F). 

 

By using Principal Component Analysis (PCA), a statistical method to extract the first 

principal component in variance between the samples, the first principal component was 

the same in the samples except the undecalcified, Carnoy/EDTA, and PFA/formic acid 

samples in the range of m/z 100-700 (Table 2).  

 

4.3. Metabolomics with WT and kl-/- mouse femurs 

To identify the anomalous metabolites in the bones of kl-/- mice, the TCA-treated 

sections from wild-type (WT) and kl-/- mouse femurs were applied to iMScope in 

positive ion mode with the DHB matrix. Several different mass spectra were obtained 

between genotypes in bones (Figure 5A, B), cartilages (Figure 5C, D), and bone 

marrows (Figure 5E, F). Because m/z 289.1 and m/z 300.1 were specifically located in 

the bones and cartilages of kl-/- mice femurs in MALDI-IMS (Figure 6), these two 

molecules were selected as precursor ions for MS-MS analysis to search the product 
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ions by using HMDB. As a result, m/z 289.1 and m/z 300.1 were identified as 

2-hydroxyestrdiol and sphingosine, respectively (Table 3), suggesting that these 

metabolites may be involved in skeletal defects in kl-/- mice. 
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5. Discussion 

 

This study comprehensively determined the metabolomics of the kl-/- mouse bone to 

identify novel pathologic factors with localization information using MALDI-IMS with 

fixation and decalcification.  

 

When preparing the cryosections of hard tissues without decalcification, the Kawamoto 

method requires cryofilm which can attach to the cutting surface under the freezing 

conditions [16]. Furthermore, for ionization, an electrically conducting double-adhesive 

tape is needed to set sections on the ITO-glass slide [2]. In a comparison of mass spectra 

between the sections with or without the tape, many more peaks were obtained from the 

section without the tape than another one. A method to remove the tape before applying 

to MALDI-IMS is reported [4], but a high degree of technical skill is required to do so. 

 

For MALDI-IMS, the fresh (without fixation) frozen sections were usually used for 

analysis. This study shows that the fixation and decalcification of bones makes 

preparation of sections easier and detection of MS from organic components is possible 

because of removing minerals. Since the usefulness of MALDI-IMS of formaline-fixed 

paraffin-embedded (FFPE) tissues was reported [17], the researchers have focused on 

analysis with FFPE samples in MALDI-IMS [18-24]. Formalin fixation can be used to 

avoid degradation and spoilage of samples, however, the cross-linked molecules 

between formalin and primary amines are unable to be ionized. Therefore, the number 

of identified proteins from FFPE sections is less than in cryosections, and several steps 

for removing formalin, breaking cross links, and cleaving of proteins to peptides are 

required [18, 24, 25]. If the targets are nucleotides, lipids, and peptides without primary 

amines, formalin does not form the cross-link and it is possible to apply the samples 

without such steps. Organic solvents such as ethanol can also fix the tissues by 
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coagulation and precipitation of proteins. Fixation with organic solvents has less 

interruption for MALDI-IMS, but dissolves away lipids from tissues. Based on these, 

fixation solution must be selected according to an object to be analyzed. 

 

Decalcification with EDTA or TCA was better than with formic acid to keep the tissue 

structures. Bone marrows were peeled from trabecular bone surfaces by formic acid 

decalcification, which can occur during the preparation of sections [26]. Treatment with 

TCA is useful because of a rapid one-step fixation and decalcification, which can 

preserve antigen and tissue morphology [27]. In this study, sections from TCA-treated 

samples were most suitable for examining both histology and comprehensive MS 

images.   

 

On the metabolomics of TCA-treated samples from kl-/- mouse bone with MALDI-IMS, 

some biomolecules were identified. Among of these, 2-hydroxyestradiol and 

sphingosine were focused on. 2-hydroxyestradiol is one of metabolites of estrogen and 

an immediate precursor of 2-methoxyestradiol, and previous studies reported that 

2-hydroxyestradiol inhibits osteoclast formation [28, 29]. Since both the number and the 

activity of osteoclasts are decreased in kl-/- mouse bone [30], these studies support our 

results that 2-hydroxyestradiol is detectable in the kl-/- mouse bone. The functions of 

sphingosine, a primary part of the sphingolipids, and its derivatives, including 

sphingosine 1 phosphate (S1P), on bone metabolism are complicated. In mouse 

calvaria-derived preosteoblast (MC3T3-E1) cultures, previous studies reported that 

sphingosine and S1P lead to intracellular calcium release [31, 32]. On the other hand, 

Kato et al. demonstrated that S1P induces heat shock protein 27, which has not only a 

stimulatory effect on mineralization but also an inhibitory effect on osteocalcin 

expression [33]. It is also suggested that S1P stimulates chondrocyte proliferation via 

ERK signaling in rat articular chondrocytes [34] and controls the migration of osteoclast 

precursors between bone tissues and the blood stream [35]. Further examination to 
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clarify the role of sphingosine in kl-/- is needed. 

This study successfully detected biomolecules in bones using MALDI-IMS. Although 

analytical procedures and compositional adjustment on device performance still require 

further development, MALDI-IMS appears to be a powerful tool for searching 

biomolecules even in bones.  
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6. Figure Legends 

 

Figure 1. Histological observations of femur and tibia fixed and decalcified with each 

solution by H-E, Alcian blue, Azan, and PAS staining. (A), the sections of 

unfixed/undecalcified tibiae. (B), the sections of TCA-treated femurs. (C)-(H), the 

sections of femurs with treatment of PFA/EDTA (C), Carnoy/EDTA (D), PFA/formic 

acid (E), or Carnoy/formic (F). (G, H), the unfixed sections of femurs with formic acid 

(G) or EDTA (H) decalcification. 

 

Figure 2. Mass spectra (maximum intensity) and MALDI-IMS of TCA-treated samples 

analyzed with MALDI-IMS in the range of m/z 100-1000 under the various conditions. 

(A, B), analysis with DHB matrix in the positive (A) or the negative (B) ion mode. (C, 

D), analysis with CHCA matrix in the positive (C) or the negative (D) ion mode. (E), 

imaging of histotypic distribution of several mass peaks on the sections. Left two 

images are of optical and H-E staining. (F, G), the mass spectra detected from the 

sections with (G) or without (F) a tape. 

 

Figure 3. Mass spectra (maximum intensity) of each treatment with MALDI-IMS in the 

range of 100 to 1000 and the positive ion mode with DHB. (A), the sections of 

unfixed/undecalcified tibiae. (B), the sections of TCA-treated femurs. (C)-(H), the 

sections of femurs with treatment of PFA/EDTA (C), Carnoy/EDTA (D), PFA/formic 

acid (E), or Carnoy/formic (F). (G, H), the unfixed sections of femurs with formic acid 

(G) or EDTA (H) decalcification. 

 

Figure 4. MALDI-IMS at m/z 554.57 and m/z 185.13 of each treatment. The left raw 

indicates the optical images. (A), the sections of unfixed/undecalcified tibiae. (B), the 

sections of TCA-treated femurs. (C)-(H), the sections of femurs with treatment of 
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PFA/EDTA (C), Carnoy/EDTA (D), PFA/formic acid (E), or Carnoy/formic (F). (G, 

H), the unfixed sections of femurs with formic acid (G) or EDTA (H) decalcification. 

 

Figure 5. Mass spectra (maximum intensity) detected by MALDI-IMS in range of 100 

to 700 and the positive ion mode with DHA of TCA-treated femurs derived from WT 

and kl-/- mice. Region of interest was selected in bones (A, B), cartilages (C, D), and 

bone marrows (E, F) from WT (A, C, E) and kl-/- (B, D, F) mouse bone.   

   

Figure 6. MALDI-IMS of femurs derived from kl-/- mouse at m/z 289.03 and m/z 

300.08. Upper panels show optical image (A) and H-E staining (B). Lower panels show 

MALDI-IMS images at m/z 289.03 (C) and m/z 300.08 (D). 
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H-E Alcian Blue Azan PAS 

A 

B 

C 

D 

E 

F 

G 

H 



 
46 

 

Fi
gu

re
 2

 
A

 

B C D
 



 
47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m
/z

 5
54

.5
7 

m
/z

 1
85

.1
3 

O
pt

ic
al

 im
ag

e 
 

m
/z

 1
14

.9
1 

m
/z

 3
20

.0
9 

m
/z

 3
60

.7
0 

m
/z

 5
22

.9
6 

m
/z

 7
76

.5
3  

H
-E

 

E F G 

Fi
gu

re
 2

 (C
on

tin
ue

d)
 



 
48 

 

Fi
gu

re
 3

 

A
 

B C D
 



 
49 

 

Fi
gu

re
 3

 (C
on

tin
ue

d)
 

E F G H
 



 
50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

A 

B 

C 

D 

E 

F 

G 

H 

m/z 554.57 m/z 185.13 Optical image  



 
51 

A 

B 

C 

D 

E 

F 

Figure 5 



 
52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 

A B 

C D 



 
53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C D E F G H 

Fixation ー 
TCA, 

 overnight 

PFA,   
overnight 

Carnoy, 

overnight 
PFA, 

 overnight 
Carnoy, 

overnight ー ー 

Decalcification ー EDTA,  
7 days 

EDTA,  
7 days 

Formic acid,  
2 days 

 Formic acid,  
2 days 

Formic acid,  
2 days 

EDTA,  
4 days 

Table 1. Combinations of fixation and decalcification solutions 
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Unfixed/undecalcified  TCA 

PFA/ 
EDTA  

Carnoy/ 
EDTA 

 PFA/ 
 Formic acid  

Carnoy/ 
Formic acid  

Unfixed/ 
Formic acid 

Unfixed/ 
EDTA 

m/z 100-400 165.07 114.91 114.91 114.91 184.08 114.91 114.91 114.91 
m/z 400-700 456.11 462.73 462.73 412.71 462.73 462.73 462.73 462.73 

Table 2. First principal component with or without pretreatment 
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Name Formula Weight Structure 
2-Hydroxyestradiol 288.3814 

 
 

C18H24O3 
 

   
   
   
   
   

Sphingosine 299.4919 
 

 
C18H37NO2 

 
   
   

Table 3. Metabolites estimated by HMDB  
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