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Abstract

Network survivability is an attribute that network is continually available even

if a communication failure occurs, and is an emerging requirement for highly re-

liable communication services in wireless ad hoc networks (WAHNs) and mobile

ad hoc networks (MANETs). Moreover, quantitative network survivability is

defined as the probability that the network can keep to be connected even under

node failures and DoS attacks, and known as one of the most important mea-

sures to design dependable computer networks. Markov modeling is a typical

method to quantifying network survivability. On the other hand, border effect

in communication network area is also one of the most troublesome problems to

quantify accurately the performance/dependability of WAHNs/MANETs, be-

cause the assumption on uniformity of network node density is often unrealistic

to describe the actual communication area. This problem appears in modeling

the node behavior of WAHNs/MANETs and in quantification of their network

survivability. This fact motivates us to reformulate the existing network surviv-

ability models for WAHNs/MANETs by taking account of border effects.

In this thesis, we propose three node behavior models and consider two types

network communication areas. We analysis these network survivability models

by semi-Markov process (SMP) and Markov regenerative process (MRGP). Also,

we develop a simulation model to validate our analytical models.

In Chapter 1, we introduce the definition of network survivability, impor-

tance of network survivability quantification and motivation of our study.

In Chapter 2, we propose two stochastic models; binomial model and neg-

ative binomial model to quantify the network survivability and compare them

with the existing Poisson model. Then, we focus on the border effects, and

reformulate the network survivability models based on a SMP, where two kinds

of communication network areas are considered; square area and circular area.

Based on some geometric ideas, we improve the quantitative network surviv-

ability measures for three stochastic models (Poisson, binomial and negative

binomial) taking account of border effects.

In Chapter 3, we concern the fact that the continuous-time Markov chain

(CTMC) modeling is not sufficient to analyze the relationship between battery

state and node behavior in MANETs. In particular, such a problem seriously
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arises when we treat the transient behavior of the power-aware MANET. Here,

we present the quantitative network survivability analysis for a power-aware

MANET based on MRGP, and calculate the network survivability through both

stationary and transient analyses for the SMP-based models.

In Chapter 4, we derive analytically the upper and lower bounds of network

survivability as well as an approximate form based on the expected number of

active nodes in both square and circular areas, under a general assumption that

the battery life in each node is non-exponentially distributed. We perform the

transient analysis as well as the steady-state analysis of network survivability

based on a SMP, and complement the results in Chapter 3.

We propose some analytical formulas on the quantitative network surviv-

ability in Chapter 2, Chapter 3 and Chapter 4, but need to validate them by

comparing with the exact value of network survivability in a comprehensive way.

In Chapter 5, we revisit the lower and upper bounds of network survivability by

taking account of border effects in network communication areas, and develop a

refined simulation model in two kinds of communication areas; square area and

circular area. We compare the analytical bounds of network survivability with

the simulation solution. It is shown through simulation experiments that the

analytical solutions often fail the exact network survivability measurement.

Finally, some conclusions and remarks are given in Chapter 6.
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Chapter 1

Introduction

Network survivability is an attribute that network is continually available even

if a communication failure occurs, and is an emerging requirement for highly

reliable communication services in WAHNs and MANETs. Moreover, it has

been defined as the probability that the network can keep to be connected even

under node failures and DoS attacks, and known as one of the most important

concepts to design dependable computer networks. Markov modeling is a typical

method for the network survivability performance evaluation.

On the other hand, border effect in communication network area is one of the

most important problems to quantify accurately the performance/dependability

of WAHNs/MANETs, because the assumption on uniformity of network node

density is often unrealistic to describe the actual communication area. This

problem appears in modeling the node behavior of WAHNs/MANETs and in

quantification of their network survivability. In this thesis, we evaluate network

survivability in three steps; formulation of border effects, node behavior analysis

and simulation experiments.

1.1 Survivability Analysis with Border Effects

Network survivability is regarded as the most fundamental issue to design re-

silient networks. Since unstructured networks such as P2P network and MANET

can change dynamically their configurations, the survivability requirement for

unstructured networks is becoming much more popular than static networks.

Network survivability is defined by various authors [1, 2, 3, 4]. Chen et al. [5],

Cloth and Haverkort [6], Heegaard and Trivedi [7], Liu et al. [8], Liu and Trivedi

1



2 CHAPTER 1. INTRODUCTION

[9] consider the survivability of virtual connections in telecommunication net-

works and define the quantitative survivability measures related to performance

metrics like the loss probability and the delay distribution of non-lost packets.

Their survivability measures are analytically tractable and depend on the per-

formance modeling under consideration, where the transition behavior has to

be described by a CTMC or a stochastic Petri net. More recently, Zheng et al.

[10] conduct a survivability analysis for virtual machine-based intrusion tolerant

systems, and take the similar approach to the works [1, 2, 3, 4].

On the other hand, Xing and Wang [11, 12] perceive the survivability of a

MANET as the probabilistic k-connectivity, and provide a quantitative analysis

on impacts of both node misbehavior and failure. They approximately derive

the lower and upper bounds of network survivability based on k-connectivity,

which implies that every node pair in a network can communicate with at least

k neighbors. On the probabilistic k-connectivity, significant research works are

done in [13, 14] to build the node degree distribution models. Unfortunately,

the resulting upper and lower bounds are not always tight to characterize the

connectivity-based network survivability, so that a refined measure of network

survivability should be defined for analysis. Roughly speaking, the connectivity-

based network survivability analysis in [11, 12] focuses on the path behavior and

can be regarded as a myopic approach to quantify the survivability attribute.

The performance-based network survivability analysis in [1, 2, 3, 4] is, on the

other hand, a black-box approach to describe the whole state changes. Although

both approaches possess advantage and disadvantage, in this thesis we concern

only the former case.

We develop somewhat different stochastic models from Xing and Wang

[11, 12] by introducing different degree distributions. More specifically, they

propose binomial and negative binomial models in addition to the familiar Pois-

son model, under the assumption that mobile nodes are uniformly distributed.

We also extend the semi-Markov model to a Markov regenerative process model

and deal with a generalized stochastic model to describe a power-ware MANET.

However, it should be noted that the above network survivability models are

based on multiple unrealistic assumptions to treat an ideal communication net-

work environment. One of them is ignorance of border effects arising to represent
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network connectivity. In typical MANETs such as sensor networks, it is com-

mon to assume that each node is uniformly distributed in a given communication

network area. Since the shape of communication network area is arbitrary in

real world, it is not always guaranteed that the node degree is identical even

in the border of network area. In other words, border effects in communication

network area tend to decrease both the communication coverage and the node

degree, which reflect the whole network availability. Laranjeira and Rodrigues

[17] show that the relative average node degree for nodes in borders is indepen-

dent of the node transmission range and of the overall network node density

in a square communication network area. Bettsetetter [18] also gives a mathe-

matical formula to calculate the average node degree for nodes in borders for a

circular communication network area. However, these works just concern to in-

vestigate the connectivity of a wireless sensor network, but not the quantitative

survivability evaluation for MANETs. This fact motivates us to reformulate the

existing network survivability models [11, 12] for MANETs with border effects.

1.2 Survivability Analysis for MANETs

Since unstructured networks such as P2P and MANETs dynamically change

their configuration, they require the higher network survivability than static

networks. One important problem on mobile network is to reduce the energy

consumption of mobile nodes. As we know, in the power-aware wireless ad hoc

network, the energy consumption problem of a node can cause the communi-

cation barrier which reflects the whole network dependability and performance.

We investigate the relationship between energy consumption and security based

on a CTMC. More specifically we suppose that two power consumption levels

(high and low) alternate randomly, and that its transition behavior is described

by a simple CTMC where all state transitions follow exponential distributions.

In addition to the energy consumption level, our model represent the behavior

of malicious attacks such as DoS attacks, and analyze the dynamic behavior of

power-aware wireless ad hoc network to quantify the network survivability as

the probabilistic k-connectivity. However, in general, the battery life distribu-

tion cannot be represented by an exponential distribution [20]. In other words,

the CTMC model is too simple to investigate the effect of battery life on the
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network survivability. This motivates us to revisit the network survivability

analysis for power-aware MANETs.

1.3 Survivability Analysis with Battery Charge

There exist a number of challenging issues to provide big data services in ubiq-

uitous circumstance. The drastic improvement of network performance is defi-

nitely needed to process a large amount of data, especially, in the system level.

On the other hand, it is important to keep the high service level on the big data

stream and evaluate the network dependability in the design phase to develop

highly dependable ubiquitous network systems. Network survivability is defined

as an attribute that network is continually available even though a communi-

cation failure occurs, and is regarded as the most fundamental issue to design

resilient communication networks. Since unstructured networks, such as P2P

network and MANET, can change dynamically their configurations, the surviv-

ability requirement for unstructured networks is becoming much more popular

than static networks. In the near future, it is expected that this trend may be

accelerated even in the big data service. Although quantitative network sur-

vivability is defined by various authors [1, 2, 5], it is still a challenging issue

from the complex and autonomous properties of unstructured networks. Xing

and Wang [12] perceive the survivability of a wireless ad hoc network as the

probabilistic k-connectivity [13, 14, 18], and provide a quantitative analysis on

impacts of both node misbehavior and failure. They approximately derive the

lower and upper bounds of network survivability based on k-connectivity, which

implies that every node pair in the network can communicate with at least k

neighbors. Unfortunately, the upper and lower bounds of network survivability

in [12] are not always tight to quantify the network survivability. We are moti-

vated by the above fact and extend the seminal model [12] by introducing the

compound distributions of Poisson model.

We evaluate a power-aware MANET by using a MRGP and investigate an

effect of variability in power level, which is caused by the low-battery state in

each node, but does not consider the possible case where the battery in each

mobile node can be re-charged at the lower battery state in their MRGP mod-

eling framework. In addition, We implicitly assume that the so-called border
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effects can be ignored in their modeling. It is well known that the shape of

communication area with border effects strongly depends on the network prop-

erties. Laranjeira and Rodrigues [17] develop a geometry analysis to quantify

the network connectivity, and refine the reliability assurance of wireless sen-

sor networks. More specifically, it is common to assume in the network analysis

that the communication node is uniformly distributed in an ideal communication

area. Since the border effects in network communication areas tend to decrease

both the communication coverage and the node degree, they must reflect the

whole network survivability including availability and reliability. Laranjeira and

Rodrigues [17] show that the relative average node degree for nodes in borders

is independent of the node transmission range and of the overall network node

density in a square communication area.

Most recently, We revisit a power-aware MANET model in Xing and Wang

[12] taking account of both border effects and the possibility of re-charge, and

quantify the network survivability more accurately. We suppose that each node

state is modulated by a semi-Markov process and that the node density in an

arbitrary communication area is given by a simple Poisson model, where two

types of communication areas are considered; square area [17] and circular area

[18].

1.4 A Simulation Approach to Qunatify Surviv-
ability

Finally, we develop a simulation model to quantify the network survivability

accurately. In past, several simulation models have been proposed in the litera-

ture to quantify network connectivity or to detect survival routes in MANETs

(see Caro et al. [21] and Guo [22]). To our best knowledge, an exact simulation

model to quantify the network survivability based on connectivity [11, 12] has

not been proposed yet. It is definitely needed to check the resulting quantitative

survivability based on the analytical approaches by comparing with the simula-

tion solution. It is indeed significant to point out that the analytical solutions in

the literature [11, 12] have not been validated in comparison with the simulation

solution because of its complexity.
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1.5 Organization of Dissertation

This thesis is organized as follows:

Firstly, in Chapter 2, we propose two stochastic models; binomial model

and negative binomial model to quantify the network survivability and compare

them with the existing Poisson model, and propose refined measures for network

survivability taking account of the expected number of active nodes and border

effects in MANETs. More specifically, we represent an approximate form of

connectivity-based network survivability with the expected number of active

nodes, instead of its upper and lower bounds [11, 12], and consider border

effects in both two types of communication network areas; square area [17] and

circular area [18].

In Chapter 3, we consider MRGP for the node behavior. The MRGP con-

sists of several discrete states and time sequence of state transition, and is an

extension from CTMC and renewal process. When the transition of power

states follow general distributions, the model should be described by an MRGP.

Particularly, this chapter focuses on both stationary and transient analysis of

network survivability based on our MRGP model for power-aware MANETs.

In Chapter 4, we further extend the result of Chapter 3 for the other stochas-

tic models including a binomial model and a negative binomial model. We derive

analytically the upper and lower bounds of network survivability [12] as well as

an approximate form based on the expected number of active nodes in both

square [17] and circular [18] areas, under a general assumption that the battery

life in each node is non-exponentially distributed. Also, we perform the tran-

sient analysis as well as the steady-state analysis of network survivability, and

complements our early paper.

In Chapter 5, we propose a simulation algorithm to calculate the exact net-

work survivability in two types communication areas. Numerical examples are

also given, where we conduct a Monte Carlo simulation on the node degree and

investigate the impact of border effects.

Finally, the thesis is concluded with some remarks and future directions in

Chapter 6.



Chapter 2

Survivability Analysis with
Border Effects for MANETs

Taking account of border effects in communication network areas is one of the

most important problems to quantify accurately the performance/dependability

of MANETs, because the assumption on uniformity of network node density

is often unrealistic to describe the actual communication areas. This problem

appears in both modeling the node behavior of MANETs and quantitation of

their network survivability. In this chapter, we focus on the border effects in

MANETs and reformulate the network survivability models based on a SMP,

where two kinds of communication network areas are considered; square area

and circular area. Based on some geometric ideas, we improve the quantitative

network survivability measures for three stochastic models by taking account of

the border effects, and revisit the existing lower and upper bounds of connectivity-

based network survivability.

2.1 Preliminary

2.1.1 State of Node

Since nodes in MANETs cooperate with the routing processes to maintain net-

work connectivity, each of node is designed as it behaves autonomously, but

its discipline to require, send and receive the route information, is defined as a

strict protocol. At the same time, it is also important to decide the protocol

in order to prevent propagation of the erroneous route information caused by

malicious attacks. Xing and Wang [11, 12] consider a MANET that suffers such

7
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a malicious attack, whose node states are defined as follows:

• Cooperative state (C): Initialized state of a node, which responds to route

discoveries and forwards data packets to others.

• Selfish state (S): State of a node, which may not forward control packets

or data packets to others, but responds to only route discoveries for its

own purpose from the reason of low power.

• Jellyfish state (J): State of a node, which launches Jellyfish DoS attack.

• Black hole state (B): State of a node, which launches Black hole DoS

attack.

• Failed state (F ): State of a node, which can no longer perform basic

functions such as initiation or response of route discoveries.

For common DoS attacks, the node in Jellyfish attack receives route requests

and route replies. The main mechanism of Jellyfish state is to delay packets

without any reason. On the other hand, the node in Black hole attack can

respond a node with a fake message immediately by declaring as it is in the

optimal path or as it is only one-hop away to other nodes.

Based on the node classification above, we consider a semi-Markov model to

describe the stochastic behavior of a node by combining states with respect to

the wellness. Suppose that a node may change its behavior under the following

assumptions:

• A cooperative node may become a failed node due to energy exhaustion or

misconfiguration. It is apt to become a malicious node when it launches

DoS attack.

• A malicious node cannot become a cooperative node again, but may be-

come a failed node.

• A node in failed state may become a cooperative node again after it is

repaired and responds to routing requests to others.

• A failed node can become cooperative again if it is recovered and responds

to routing operations.
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2.1.2 Semi-Markov Node Model

Similar to [11, 12], let S = {C, S, J , B, F} be a state space, and describe the

node behavior transition by a stochastic process, {Z(t), t ≥ 0}, associated with

space S. Let Xn denote the state at transition time tn. Define

Pr(Xn+1 = xn+1|X0 = x0., , , Xn = xn)

= Pr(Xn+1 = xn+1|Xn = xn), (2.1)

where xi ∈ S for 0 ≤ i ≤ n + 1. From Eq. (2.1), the stochastic process {Xn,

n = 0, 1, 2, ...} constitutes a CTMC with state space S, if all the transition

times are exponentially distributed. However, since the transition time from

one state to another state is subject to random behavior of a node, it is not

realistic to characterize all the transition times by only exponentially distributed

random variables. For instance, if a node is more inclined to fail due to energy

consumption as time passes, and the less residual energy is left, then the more

likely a node changes its behavior to selfish. This implies that the future action

of a node may depend on how long it has been in the current state and that

transition intervals may have arbitrary probability distributions.

From the above reason it is common to assume a SMP for {Z(t), t ≥ 0} to

describe the node behavior transitions, which is defined by

Z(t) = Xn, ∀tn ≤ t ≤ tn+1. (2.2)

Letting Tn = tn+1 tn be the sojourn time between the n-th and (n+ 1)-st

transitions, we define the associated semi-Markov kernel Q = (Qij(t)) by

Qij(t) = Pr(Xn+1 = j, Tn ≤ t|Xn = i) = pijFij(t), (2.3)

where pij =limt→∞Qij(t) = Pr(Xn+1 = j|Xn = i) is the transition probability

between state i and j (i, j = c, s, j, b, f) corresponding to S = {C, S, J,B, F},

and Fij(t) = Pr(Tn < t|Xn+1 = j,Xn = i) is the transition time distribution

from state i to j.

Figure 2.1 illustrates the transition diagram of the homogeneous SMP, {Z(t),

t ≥ 0}, under consideration, which is somewhat different from the SMP in

[11, 12], because it is somewhat simplified by eliminating redundant states. Let

1/λij denote the mean transition time from state i to state j, and define the
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Figure 2.1: Semi-Markov transition diagram for node behavior.

Laplace-Stieltjes transform (LST) by qij(s) =
∫∞
0

exp{ st}dQij(t). From the

familiar SMP analysis technique, it is immediate to see that

qcs(s) =

∫ ∞

0

exp{ st}F cj(t)F cb(t)F cf (t)dFcs(t) (2.4)

qcj(s) =

∫ ∞

0

exp{ st}F cs(t)F cb(t)F cf (t)dFcj(t) (2.5)

qcb(s) =

∫ ∞

0

exp{ st}F cs(t)F cj(t)F cf (t)dFcb(t) (2.6)

qcf (s) =

∫ ∞

0

exp{ st}F cs(t)F cj(t)F cb(t)dFcf (t) (2.7)

qsc(s) =

∫ ∞

0

exp{ st}F sj(t)F sb(t)F sf (t)dFsc(t) (2.8)

qsj(s) =

∫ ∞

0

exp{ st}F sc(t)F sb(t)F sf (t)dFsj(t) (2.9)

qsb(s) =

∫ ∞

0

exp{ st}F sc(t)F sj(t)F sf (t)dFsb(t) (2.10)

qsf (s) =

∫ ∞

0

exp{ st}F sc(t)F sj(t)F sb(t)dFsf (t) (2.11)

qjf (s) =

∫ ∞

0

exp{ st}dFjf (t) (2.12)

qbf (s) =

∫ ∞

0

exp{ st}dFbf (t) (2.13)

qfc(s) =

∫ ∞

0

exp{ st}dFfc(t), (2.14)

where in general ψ(·) = 1 ψ(·). Define the recurrent time distribution from

state C to state C and its LST by Hcc(t) and hcc(s), respectively. Then, from
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the one-step transition probabilities from Eqs.(2.4)-(2.14), we have

hcc(s) =

∫ ∞

0

exp{ st}dHcc(t)

=qcs(s)qsc(s) + qcs(s)qsj(s)qjf (s)qfc(s)

+ qcs(s)qsb(s)qbf (s)qfc(s) + qcs(s)qsf (s)qfc(s)

+ qcj(s)qjf (s)qfc(s) + qcb(s)qbf (s)qfc(s)

+ qcf (s)qfc(s). (2.15)

Let Pci(t) denote the transition probability from the initial state C to re-

spective states i ∈ {c, s, j, b, f} corresponding to S = {C,S, J,B, F}. Then, the

LSTs of the transition probability, pci =
∫∞
0

exp{ st}dPci(t), are given by

pcc(s) =
{
qcs(s) qcj(s) qcb(s) qcf (s)

}
/hcc(s) (2.16)

pcs(s) =qcs(s)
{
qsc(s) qsj(s) qsb(s) qsf (s)

}
/hcc(s) (2.17)

pcj(s) ={qcm(s) + qcs(s)qsj(s)}qmf (s)/hcc(s) (2.18)

pcb(s) ={qcm(s) + qcs(s)qsb(s)}qmf (s)/hcc(s) (2.19)

pcf (s) ={qcf (s) + qcs(s)qsf (s) + qcs(s)qsj(s)qjf (s)

+ qcs(s)qsb(s)qbf (s) + qcj(s)qjf (s)

+ qcb(s)qbf (s)}qfc(s)/hcc(s). (2.20)

From Eqs.(2.16)-(2.20), the transient solutions, Pci(t), i ∈ {c, s, j, b, f},

which mean the probability that the state travels in another state i at time

t, can be derived numerically, by means of the Laplace inversion technique (e.g.

see [45]). As a special case, it is easy to derive the steady-state probability

Pi = limt→∞ Pci(t), i ∈ {c, s, b, j, f} corresponding to S. Based on the LSTs,

pcj(s), we calculate Pi = limt→∞ Pci(t) = lims→0 pci(s) from Eqs.(2.16)-(2.20).

2.2 Quantitative Network Survivability Measure

2.2.1 Node Isolation and Connectivity

An immediate effect of node misbehaviors and failures in MANETs is the node

isolation problem [12]. It is a direct cause for network partitioning, and eventu-

ally affects network survivability. The node isolation problem is caused by four

types of neighbors; Failed, Selfish, Jellyfish and Blackhole nodes. For an exam-

ple, we suppose in Fig. 2.2 that the node u has 4 neighbors when it initiates a
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Figure 2.2: Isolation by Failed, Selfish or Jellyfish neighbors.
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Figure 2.3: Isolation by Blackhole neighbors.

route discovery to another node v. Then it must go through by its neighbors

xi (i = 1, 2, 3, 4). If all neighbors of u are Failed, Selfish or Jellyfish nodes,

then u can no longer communicate with the other nodes. In this case, we find

that u is isolated by Failed and Selfish neighbors. On the other hand, if one of

neighbors is Blackhole (i.e. x2 in Fig. 2.3), it gives u a faked one-hope path,

and makes u always choose it. In this case, we find that u is isolated by the

Blackhole neighbor.

We define the node degree D(u) for node u by the maximum number of

neighbors [13], and let D(i,u) be the number of node u’s neighbors at state

i ∈ {c, s, j, b, f}. Then the isolation problem in our model can be formulated

as follows: Given a node u with degree d, i.e., D(u) = d, if D(s,u) + D(f,u) +

D(j,u) = d or D(b,u) ≥ 1, then the cooperative degree is zero, i.e., D(c,u) = 0,
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and u is isolated from the network, so it holds that

Pr(D(c,u) = 0|D(u) = d)

=Pr(D(b,u) ≥ 1|D(u) = d) + Pr(D(s,u) +D(f,u) +D(j,c) = d|D(u) = d)

=1 (1 Pb)
d + (1 Pc Pb)

d,
(2.21)

where Pc is the steady-state probability of a node in a cooperative state and

Pb is the steady-state probability of a node launching Blackhole attacks. In the

transient case, the steady-state probability Pc and Pb are replaced by Pcc(t) and

Pcb(t), respectively.

In this paper, a node is said to be k-connected to a network if its associated

cooperative degree is given by k (≥ 1). Given node u with degree d, i.e., D(u) =

d, u is said to be k-connected to the network if the cooperative degree is k, i.e.

D(c,u) = k, which holds only if u has no Blackhole neighbor and has exactly k

cooperative neighbors, i.e., D(b,u) = 0 and D(c,u) = k, respectively. Then, from

the statistical independence of all nodes, it is straightforward to see that

Pr(D(c,u) = k|D(u) = d)

=Pr(D(c,u) = k,D(b,u) = 0|D(u) = d)

=Pr(D(c,u) = k,D(b,c) = 0, D(s,u) +D(f,u) +D(J,u) = d k)

=

(
d

k

)
(Pc)

k(1 Pc Pb)
d−k. (2.22)

2.2.2 Network Survivability

In the seminal paper [12], the network survivability is defined as the probability

that MANET is a k-vertex-connected graph. Strictly speaking, it is difficult to

validate the vertex-connectivity in the graph whose configuration dynamically

changes such as MANETs. Therefore, Xing and Wang [12] derive approximately

low and upper bounds of network survivability when the number of nodes is

sufficiently large by considering the connectivity of a node in a MANET M.

The upper and lower bounds of connectivity-based network survivability are

given by

NSk(M)U = (1 Pr(D(c,u) < k))ND , (2.23)

NSk(M)L = max(0, 1 E[Na](Pr(D(c,u) < k))), (2.24)
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respectively, where u is an arbitrary node index in the active network. In Eq.

(2.24), E[Na] = ⌊N(1 Pf )⌋ is the expected number of active nodes in the

network, where ⌊∗⌋ is the maximum integer less than ∗, Pf is the steady-state

probability that a node is failed, and N denotes the total number of nodes. In

Eq. (2.23), ND is the number of points whose transmission ranges are mutually

disjoint over the MANET area. Let A and r be the area of MANET and the

node transmission radius, respectively. The number of disjoint points is given

by ND = ⌊N/(λπr2)⌋, where λ = N/A is the node density.

In this paper, we follow the same definition of network survivability as refer-

ence [12], but consider the expected network survivability instead of the low and

upper bounds. Getting help from the graph theory, the expected network sur-

vivability is approximately given by the probability that expected active node

in the network is k-connected:

NSk(M)E ≈
{
1 Pr(D(c,u) < k)

}E[Na]
. (2.25)

By the well-known total probability law, we have

Pr(D(c,u) < k) =
∞∑
d=k

Pr(D(c,u) < k|D(u) = d) Pr(D(u) = d), (2.26)

so that we need to find the explicit forms of Pr(D(c,u) < k|D(u) = d) and

Pr(D(u) = d). From Eqs.(2.21) and (2.22), it is easy to obtain

Pr(D(c,u) < k|D(u) = d)

=Pr(D(c,u) = 0|D(u) = d) +

k−1∑
m=1

Pr(D(c,u) = m|D(u) = d)

=1 (1 Pb)
d +

k−1∑
m=0

(
d

m

)
Pm
c (1 Pc Pb)

d−m

=1 (1 Pb)
d +

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb), (2.27)

where Bm denotes the multinomial probability mass function. Replacing Pb and

Pc by Pcb(t) and Pcc(t) respectively, we obtain the transient network survivabil-

ity at an arbitrary time t. To derive Pr(D = d), Xing and Wang [12] used the

Poissonization technique and presented the Poisson node degree model by using

Poisson distribution. On the other hand, we know that binomial distribution

can converge the Poisson distribution if the parameter of Poisson distribution µ
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equals np and n tends to be infinite while the probability p approaches 0, where

n and p are parameters of binomial distribution. Also, the negative binomial

distribution can converge to Poisson distribution by other technique. Based on

the above, we present the binomial and negative binomial node degree models.

(i) Poisson Model [11, 12]

Suppose thatN nodes in a MANET are uniformly distributed over a 2-dimensional

square with area A. The node transmission radius, denoted by r, is assumed to

be identical for all nodes. To derive the node degree distribution Pr(D(u) = d),

we divide the area into N small grids virtually, so that the grid size has the

same order as the physical size of a node. Consider the case where the network

area is sufficiently larger than the physical node size. Then, the probability that

a node occupies a specific grid, denoted by p, is very small. With large N and

small p, the node distribution can be modeled by the Poisson distribution:

Pr(D(u) = d) =
µd

d!
e−µ, (2.28)

where µ = ρπr2, and ρ = E[Na]/A is the node density depending on the under-

lying model. Finally, substituting Eqs.(2.26)-(2.28) into Eq. (2.25) yields

NSk(M)PE ≈
{
e−µPb

[
1

(k, µPc)

(k)

]}E[Na]

, (2.29)

where (x) = (x 1)!and (h, x) = ( h 1)!e−x
∑h−1

l=0 x
l/l! are the complete

and incomplete gamma functions, respectively.

(ii) Binomial Model

It is evident that the Poisson model just focuses on an ideal situation of node

behavior. In other words, it is not always easy to measure the physical parame-

ters such as r and A in practice. Let p denote the probability that each node is

assigned into a communicate network area of a node. For the expected number

of activated nodes E[Na], we describe the node distribution by the binomial

distribution:

Pr(D(u) = d) =

(
E[Na]

d

)
pd(1 p)E[Na]−d

= Bd(E[Na], p), (2.30)
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where Bd is the binomial probability mass function. Substituting Eq. (2.30)

into Eq. (2.25) yields an alternative formula of the network survivability:

NSk(M)BE ≈
E[Na]∑
k=0

Bd(E[Na], p)

[
(1 Pb)

d
k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]
E[Na]

.

(2.31)

Even though each node is assigned into a communication network area of a node

with probability p = πr2/A, then the corresponding binomial model results a

different survivability measure from the Poisson model.

(iii) Negative Binomial Model

The negative binomial model comes from a mixed Poisson distribution instead

of Poisson distribution. Let f(µ) be the distribution of parameter µ in the Pois-

son model. This implicitly assumes that the parameter µ includes uncertainty,

and that the node distributions for all disjoint areas have different Poisson pa-

rameters. Then the node distribution can be represented by the following mixed

Poisson distribution:

P (D(u) = d) =

∫ ∞

0

e−µµ
d

d!
f(µ)dµ. (2.32)

For the sake of analytical simplicity, let f(µ) be the gamma probability density

function with mean πr2N(1 Pf )/A and coefficient of variation c. Then we

have

P (D(u) = d) =
(a+ d)

d! (a)

(
b

1 + b

)a(
1

1 + b

)d

= λd(a, b), (2.33)

where a = ⌊1/c2⌋ and b = ⌊A/(πr2N(1 Pf )c
2)⌋. It should be noted that

Eq. (2.33) corresponds to the negative binomial probability mass function with

mean πr2N(1 Pf )/A, and that the variance is greater than that in the Poisson

model. In other words, it can represent the overdispersion or underdispersion

property dissimilar to the Poisson model. From Eq. (2.33), we can obtain an

alternative representation of the network survivability with an additional model

parameter c.

NSk(M)NB
E ≈


E[Na]∑
k=0

λd(a, b)

[
(1 Pb)

d
k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]
E[Na]

.

(2.34)
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Figure 2.4: Border effects in square area.

2.3 Border Effects of Communication Network
Area

The results on network survivability presented in Section 2.2 are based on the

assumption that network area A has a node density ρ = E[Na]/A. This strong

assumption means that the expected number of neighbors of a node in the

network has the exactly same value as ρπr2. In other words, such an assumption

is not realistic in the real world communication network circumstance. It is well

known that the border effect tends to decrease both the communication coverage

and the node degree, which reflect the whole network availability. Laranjeira and

Rodrigues [17] show that the relative average node degree for nodes in borders

is independent of the node transmission range and of the overall network node

density in a square communication network area. Bettsetetter [18] calculates the

average node degree for nodes in borders for a circular communication network

area. In the remaining part of this section, we consider the above two kinds of

areas, and apply both results by Laranjeira and Rodrigues [17] and Bettsetetter

[18] for the network survivability quantification.

2.3.1 Square Border Effect

Given a square area of side L in Fig. 2.4, the borders correspond to region B and

C. We call the rectangular region B the lateral border, the square region C the

corne border, and the square region I the inner region, respectively. In Fig. 2.4,
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Figure 2.5: Effective coverage area for a node in the lateral border.

for a node v located in the inner region of the network area, the expected effective

number of neighbors, EI , is given by ρπr2. This result is from the fact that the

effective coverage area of a point in the inner region I is precisely equal to ρπr2.

However, the effective coverage area for a point in the border region B (node

u1) or C (node u2) is less than πr2 as shown in the shadow areas of Fig. 2.4.

Consequently, the expected effective number of neighbors of nodes located in

the border areas will be smaller than ρπr2. Since the connectivity properties of

the network depend on the expected effective number of neighbors of nodes, it

is needed to obtain the expected effective number of neighbors of nodes in these

regions (I, B and C), in order to understand the connectivity properties in the

network.

In Fig. 2.5, the effective coverage area for a node located at a point P (x, y),

in relation to the origin O(0,0) and the lateral border B, is defined as EAB. Let

∠P1PP4 = α. Then, it can be seen that EAB is equal to the area of the portion

of a circle, which corresponds to the area through the points P , P1, P2 and P3.

Then we have

EAB(x, y) = r2 [(π α) + (sinα)(cosα)] , (2.35)
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where α = cos−1(x/r). After a few algebraic manipulations, we get

EAB(x, y) = r2

[(
π cos−1

(x
r

))
+
x

r

√
1

(x
r

)2]
. (2.36)

Next we derive the average effective coverage area, ϕlat, for nodes in the

lateral border B by integrating EAB in Eq.(2.36) over the entire lateral border

and diving the result by its total area r(L 2r):

ϕlat =
1

r(L 2r)

∫ L−2r

0

(∫ r

0

EAB(x, y)dx

)
dy. (2.37)

Substituting Eq. (2.35) into Eq. (2.37), we get

ϕlat = r2
(
π

2

3

)
≈ 0.787793πr2. (2.38)

Then, the expected effective node degree Elat for nodes in the lateral border

region B is given by

Elat = ρϕlat = 0.787793ρπr2. (2.39)

In the similar way, the average effective coverage area ϕcor for nodes in the

corner border C and the expected effective node degree Ecor for nodes in the

lateral corner region C are obtained as [17]:

ϕcor ≈ 0.615336πr2 (2.40)

and

Ecor = ρϕcor = 0.615336ρπr2. (2.41)

Finally, the expected effective node degree µs for nodes in square commu-

nication network area is obtained as the weighted average with EI , Elat and

Ecor:

µs =
EIAI + ElatAB + EcorAC

A
, (2.42)

where AI = (L 2r)2, AB = 4r(L 2r), AC = 4r2 and A = L2. Substituting

the area and expected node degree values in Eq. (2.42) and simplifying the

resulting expression, we have

µ = µs =
ρπr2σ

L2
, (2.43)
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Figure 2.6: Border effects in circular area.

where σ = (L 2r)2 + 3.07492r(L 2r) + 2.461344r2.

For the binomial model, we need to find the probability that a node is

assigned into the expected coverage of node in square communicate area (ps).

It can be obtained as

p = ps =
πr2σ

L4
. (2.44)

On the other hand, the parameter b in the negative binomial model with square

border effect, bs, can be derived by

b = bs = 1/ πr2Nac
2σ
)

(2.45)

for a given coefficient of variation c.

2.3.2 Circular Border Effect

For the circular area A with radius r0, define the origin O in A and use the

coordinates r for a node in Fig. 2.6. Nodes in the circular communication

network area that are located at least r away from the border, are called the

center nodes, which are shown as a node v in Fig. 2.6. They have a coverage

area equal to πr2 and an expected node degree E[Na]πr
2/A. On the other hand,

nodes located closer than r to the border are called the border nodes (node u

in Fig. 2.6), which have a smaller coverage area, leading to a smaller expected

node degree. The expected node degree of both center nodes and border nodes
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can be obtained by

µ =


Nar̂1

2 0 ≤ r̂ ≤ 1 r̂1

n
π

) [
r̂20 arccos

r̂2+r̂21−1
2r̂r̂1

+ arccos
r̂2−r̂21+1

2r̂
1
2ξ

]
1 r̂1 < r̂ ≤ 1,

(2.46)

where ξ = (r̂ + r̂1 + 1)( r̂ + r̂1 + 1)(r̂ r̂1 + 1)(r̂ + r̂1 1), r̂ = r/r0 and

r̂1 = r1/r0.

Bettsettter [18] obtains the expected node degree of a node µ = µc in circular

communicate area:

µc =
Na

2π

[
4(1 r̂2) arcsin

r̂

2
+ 2r̂2π (2r̂ + r̂3)

√
1

r̂2

4

]
, (2.47)

which can be simplified by using Taylor series as

µc ≈ Nar̂
2

(
1

4r̂

3π

)
. (2.48)

Then, p = pc for the binomial model and b = bc for the negative binomial model

can be given in the following:

pc =
τ

2π
, (2.49)

bc =
1

2πr̂2Nac2τ
, (2.50)

where τ = 4(1 r̂2) arcsin(r̂/2) + 2r̂2π (2r̂ + r̂3)
√
1 r̂2/4. By replacing the

square border effect parameters µ, p and b in Eqs.(2.29), (2.31) and (2.34) by

µs, ps and bs in Eqs.(2.43)-(2.45), we obtain the connectivity-based network

survivability formulae with square border effects. Also, using µc, pc and bc in

Eqs.(2.48)-(2.50), we calculate the connectivity-based network survivability in

circular communication network area. We summarize refined network surviv-

ability formulae by taking account of border effects in Table 2.1.

2.4 Numerical Examples

2.4.1 Comparison of Steady-state Network Survivability

In this section, we investigate border effects in the connectivity-based network

survivability quantification with three stochastic models. According to the con-

nectivity analysis, given a network consisting of N = 500 nodes, we deploy all
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Table 2.1: Summary of expected network survivability formulae with/without
border effects.
Border Effects Poisson Binomial Negative Binomial

Ignorance
{
e−µPb

[
1 Γ(k,µPc)

Γ(k)

]}E[Na] {∑n
k=0Bd(n, p)

[
∗
]}E[Na] {∑n

k=0 λd(a, b)
[
∗
]}E[Na]

Square
{
e−µsPb

[
1 Γ(k,µsPc)

Γ(k)

]}E[Na] {∑n
k=0Bd(n, ps)

[
∗
]}E[Na] {∑n

k=0 λd(a, bs)
[
∗
]}E[Na]

Circular
{
e−µcPb

[
1 Γ(k,µcPc)

Γ(k)

]}E[Na] {∑n
k=0Bd(n, pc)

[
∗
]}E[Na] {∑n

k=0 λd(a, bc)
[
∗
]}E[Na]

∗ (1 Pb)
d

∑k−1
m=0Bm(d, Pc, 1 Pc Pb)

the nodes in a square area of side L = 1000(m2). If the transmission radius

of the nodes is greater than 83, i.e., r > 83, the probability that network is

1-connected is higher than 99%. From the simulation experiments, the result

points out that a transmission radius of at least r = 105(m) is necessary to

achieve a 1-connected network with probability higher than 99% [17]. However,

the network survivability is more complicated. It does not depend on only the

network parameters (A, r,N), but also needs to determine the probability of

each state of nodes. We set up the following model parameters [12]:

λc,s = 1/240.0 [1/sec], λc,j = 3/2.0e+7 [1/sec],

λc,b = 1/6.0e+7 [1/sec], λc,f = 1/500.0 [1/sec],

λs,c = 1/60.0 [1/sec], λs,j = 3/2.0e+7 [1/sec],

λs,b = 1/6.0e+7 [1/sec], λs,f = 1/500.0 [1/sec],

λj,f = 1/50.0 [1/sec], λb,f = 1/50.0 [1/sec],

λj,f = 1/60.0 [1/sec],

where λij are transition rates from state i to state j in the exponential distribu-

tions. Under the above model parameters, the node probabilities in the steady

state are given by

Pc = 0.7299, Ps = 0.1629, Pj = 6.696e-6,

Pb = 7.44e-7, Pf = 0.1072.

We also assume the network parameters as follows:

• A = 1000 (m)× 1000 (m): the area of MANET.

• N = 500: the number of mobile nodes.
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Figure 2.7: Effects of r on the expected node degree.

First, we compare the lower and upper bounds of connectivity-based net-

work survivability [11, 12] with our expected network survivability in Eq.(2.29),

(2.31) or (2.34). We set the transition radius r from 80 to 130, and connectivity

requirement k from 1 to 3. The comparative results are shown in Table 2.2.

From this table, we can see that the difference between lower and upper bounds

of network survivability is very large for specific values of r and k. For example,

when r = 100 and k = 3, the lower and upper bounds of network survivabil-

ity in the Poisson model are equal to 0.0000 and 0.9296, respectively. On the

other hand, the expected network survivability always takes a value between

lower and upper bounds. This result shows us that our expected network sur-

vivability measure is more useful than the bounds for quantification of network

survivability. Since it is known in [17, 18] that the number of neighbors of a

node located in border areas is smaller than that located in the inner area, i.e.,

the border effect is effective, we compare the expected number of neighbors in

both types of network area in Fig. 2.7. From this result, it can be seen that as

transmission radius increases, the gap between two cases with and without bor-

der effects becomes remarkable. Especially, it is found that the node in square

area affects the border effect more than that in circular area.

To evaluate the accuracy of our analytical results on border effects, we con-

duct a Monte Carlo simulation, where two types of network communication ar-

eas; square area and circular area, are assumed identically to be A = 1, 000, 000
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Table 2.2: Comparison of lower and upper bounds with expected network sur-
vivability.

Poisson Binomial Negative Binomial

r k SV BL SVB SV BU SV BL SVB SV BU SV BL SVB SV BU

1 0.3595 0.5268 0.9311 0.3807 0.5381 0.9333 0.3278 0.5103 0.927

80 2 0.0000 0.0079 0.5830 0.0000 0.0088 0.5902 0.0000 0.0066 0.5716

3 0.0000 0.0000 0.1219 0.0000 0.0088 0.1256 0.0000 0.0000 0.1154

1 0.8844 0.8908 0.9899 0.8908 0.8965 0.9904 0.8753 0.8827 0.9891

90 2 0.0000 0.3519 0.9122 0.0020 0.3682 0.9158 0.0000 0.3295 0.9069

3 0.0000 0.0073 0.6487 0.0000 0.0086 0.6576 0.0000 0.0058 0.6354

1 0.9793 0.9796 0.9985 0.9808 0.9810 0.9986 0.9773 0.9776 0.9984

100 2 0.8156 0.8316 0.9869 0.8289 0.8427 0.9879 0.7971 0.8163 0.9856

3 0.0000 0.3593 0.9296 0.0367 0.3812 0.9336 0.0000 0.3304 0.9241

1 0.9925 0.9925 0.9996 0.9928 0.9928 0.9996 0.9921 0.9922 0.9995

110 2 0.9694 0.9699 0.9982 0.9723 0.9727 0.9984 0.9654 0.9660 0.9980

3 0.8264 0.8406 0.9898 0.8426 0.8543 0.9908 0.8041 0.8220 0.9885

1 0.9931 0.9931 0.9997 0.9932 0.9932 0.9997 0.9931 0.9931 0.9997

120 2 0.9905 0.9906 0.9995 0.9910 0.9910 0.9996 0.9898 0.9899 0.9995

3 0.9713 0.9717 0.9986 0.9745 0.9748 0.9987 0.9667 0.9673 0.9984

1 0.9921 0.9921 0.9997 0.9921 0.9922 0.9997 0.9921 0.9921 0.9997

130 2 0.9919 0.9919 0.9997 0.9920 0.9920 0.9997 0.9918 0.9918 0.9997

3 0.9898 0.9899 0.9996 0.9903 0.9904 0.9996 0.9891 0.9892 0.9995

(m2). The expected active number of nodes, E[Na], is given by 446 with differ-

ent communication radius r, which ranges from 80 to 130. We make r increase

by 5. The random generation of active nodes is made 50 times for one radius.

In each simulation, 20 nodes are randomly chosen, and the number of neighbors

is counted for each node. Finally we get 1,000 values of number of neighbors

for each r. From this result, we calculate the average number of neighbors for

a node in both square and circular communication areas. Table 2.3 compares

the simulation results with analytical ones in terms of the number of neighbors,

where ‘ignorance’ denotes the case without border effects in [11, 12], ‘Square/a’

(‘Circular/a’) is the number of neighbors based on the analytical approach in

Eq.(2.43) (Eq.(2.48)), and ‘Square/s’ (‘Circular/s’) is the simulation result in

square (circular) area. In the comparison, we can see that the analytical results

taking account of border effects get closer to the simulation results. However,

the ignorance of border effects leads to an underestimation of the number of
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Table 2.3: Simulation and analytical results on node degree.

Number of neighbors

r Ignorance Square/a Square/s Circular/a Circular/s

80 8.9751 8.3288 8.1390 8.4350 8.5840

85 10.1321 9.3582 9.3510 9.4842 9.6990

90 11.3592 10.4421 10.5950 10.5901 10.6790

95 12.6563 11.5797 11.6510 11.7519 11.7150

100 14.0237 12.7700 12.8280 12.9687 13.0730

105 15.4611 14.0124 13.9660 14.2398 14.3040

110 16.9686 15.3059 15.2910 15.5645 15.6250

115 18.5463 16.6497 16.6480 16.9418 17.1330

120 20.1941 18.0429 17.9260 18.3711 18.3100

125 21.9120 19.4848 19.6190 19.8515 19.7780

130 23.7000 20.9746 21.1300 21.3823 21.2570

neighbors.

Table 2.4 presents the dependence of connectivity k and the number of nodes

N on the steady-state network survivability among three stochastic models with

and without border effects. Poisson model (Poisson), binomial model (Binomial)

and negative binomial model (Negative Binomial) are compared in cases without

border effects, which are denoted by Ignorance, Square and Circular in the

table. From these results, it is shown that the network survivability is reduced

fiercely as k increases when the number of nodes N is relatively small. The

border effect is negligible in analysis if the network area is much larger than

the transmission coverage area of a single node and the node density is not

high. For example, the difference of survivability between with/without border

effects for 1-conneted network is less than 1%, when N > 500. The same results

are shown in Table 2.4. We can ignore the border effects when N > 700 and

N > 900 for 2-connected and 3-connected networks, respectively. In Fig. 2.8,

we show the dependence of r and k on the steady-state network survivability in

the Poisson model. From this figure, we find that the transition radius rather

affects the steady-state network survivability, if each node has a relatively large

r which is greater than 120(m). In this case even for the 3-connected network,
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Table 2.4: Steady-state network survivability with three stochastic models.
Poisson Binomial Negative Binomial

N k Ignorance Square Circular Ignorance Square Circular Ignorance Square Circular

1 0.9787 0.9549 0.9602 0.9809 0.9594 0.9642 0.9780 0.9545 0.9592

500 2 0.8249 0.6473 0.6824 0.8416 0.6735 0.7072 0.8193 0.6476 0.6780

3 0.3435 0.1052 0.1350 0.3786 0.1257 0.1587 0.3373 0.1092 0.1351

1 0.9909 0.9865 0.9876 0.9912 0.9873 0.9883 0.9905 0.9856 0.9868

600 2 0.9611 0.9078 0.9200 0.9643 0.9146 0.9260 0.9569 0.8986 0.9121

3 0.7971 0.5700 0.6147 0.8120 0.5916 0.6355 0.7781 0.5415 0.5884

1 0.9905 0.9904 0.9905 0.9906 0.9905 0.9906 0.9905 0.9902 0.9903

700 2 0.9853 0.9732 0.9762 0.9859 0.9749 0.9777 0.9843 0.9708 0.9743

3 0.9482 0.8680 0.8866 0.9524 0.8772 0.8948 0.9421 0.8556 0.8761

1 0.9881 0.9890 0.9889 0.9881 0.9890 0.9889 0.9881 0.9889 0.9888

800 2 0.9872 0.9855 0.9860 0.9874 0.9859 0.9864 0.9870 0.9849 0.9856

3 0.9799 0.9597 0.9649 0.9809 0.9624 0.9672 0.9786 0.9561 0.9620

1 0.9850 0.9863 0.9861 0.9850 0.9863 0.9861 0.9850 0.9863 0.9861

900 2 0.9849 0.9856 0.9856 0.9849 0.9857 0.9857 0.9848 0.9855 0.9855

3 0.9835 0.9799 0.9810 0.9838 0.9807 0.9816 0.9832 0.9790 0.9802

1 0.9815 0.9832 0.9829 0.9816 0.9832 0.9829 0.9815 0.9832 0.9829

1000 2 0.9815 0.9830 0.9828 0.9815 0.9831 0.9828 0.9815 0.9830 0.9828

3 0.9813 0.9818 0.9819 0.9813 0.9820 0.9820 0.9812 0.9816 0.9817

the steady-state network survivability becomes 0.8 and tends to take a lower

value. On the other hand, if n is sufficiently large and p is sufficiently small

under µ = np, from the small number’s law, the binomial distribution can

be well approximated by the Poisson distribution. This asymptotic inference

can be confirmed in Fig. 2.9. So, three stochastic models provide almost similar

performance in terms of connectivity-based network survivability in such a case.

2.4.2 Transient Analysis of Network Survivability

Next we concern the transient network survivability at arbitrary time t. For

the numerical inversion of Laplace-Stieltjes transform, we apply the well-known

Abate’s algorithm [45]. Although we omit to show here for brevity, it can

be numerically checked that the transient probability Pcc(t) decreases in the

first phase and approaches to the steady-state solution as time goes on. The

other probability Pcs(t), Pcj(t), Pcb(t) and Pcf (t) increase in the first phase,

but converge to their associated saturation levels asymptotically. Reminding

these asymptotic properties on transition probabilities, we set N = 500 and

r = 100, and consider the transient network survivability of three stochastic
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Figure 2.8: Effects of k on the steady-state network survivability.

models with and without border effects in Table 2.5. The network survivability

with or without border effects has almost the similar initial values (0.9999), and

the differences between them will be remarkable as time elapses.

Because three stochastic models show the quite similar tendency, hereafter

we focus on only the Poisson model with k-connectivity (k = 1, 2, 3, 4) to in-

vestigate the impact on the transient network survivability. From Fig. 2.10,

it is seen that the Poisson model has a higher transient network survivability

when k is lower. Also, when the connectivity level becomes higher, the transient

network survivability gets closer to 0 with time t elapsing. Finally we compare

the Poisson model with and without border effects in terms of the transient

network survivability. Figure 2.11 illustrates the transient network survivability

when k = 1. It is shown that if the border effects are taken into consideration,

the transient network survivability drops down as the operation time goes on.

However, the transient solution without border effects still keeps higher levels in

the same situation. This fact implies that the ignorance of border effects leads

to an underestimation of network survivability. Since such an optimistic assess-

ment of network survivability may result a risk through the network operation,

it is recommended to take account of border effects in the connectivity-based

network survivability assessment in MANETs.



28 CHAPTER 2. SURVIVABILITY ANALYSIS WITH BORDER EFFECTS

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

80 90 100 110 120 130

s
te

a
d

y
-s

ta
te

 n
e

tw
o

rk
 s

u
rv

iv
a

b
ili

ty
 

transmission radius

Ignore Poi
Square Poi
Circular Poi

Ignore B
Square B
Circular B
Ignore NB

Square NB
Circular NB

Figure 2.9: Comparison of three stochastic models with two types of border
effect.

Table 2.5: Transient network survivability with three stochastic models.
Poisson Binomial Negative Binomial

t k Ignorance Square Circular Ignorance Square Circular Ignorance Square Circular

1 0.9999 0.9997 0.9998 0.9999 0.9997 0.9998 0.9999 0.9996 0.9997

0 2 0.9987 0.9953 0.9962 0.9990 0.9960 0.9968 0.9984 0.9944 0.9954

3 0.9895 0.9645 0.9707 0.9910 0.9688 0.9744 0.9871 0.9591 0.9653

1 0.9950 0.9915 0.9923 0.9953 0.9921 0.9929 0.9947 0.9906 0.9906

40 2 0.9719 0.9289 0.9388 0.9746 0.9350 0.9442 0.9680 0.9204 0.9204

3 0.8395 0.6425 0.6825 0.8527 0.6642 0.7032 0.8208 0.6131 0.6131

1 0.9893 0.9785 0.9810 0.9899 0.9799 0.9822 0.9883 0.9762 0.9791

80 2 0.9186 0.8150 0.8371 0.9241 0.8252 0.8466 0.9091 0.7979 0.8220

3 0.6076 0.3221 0.3696 0.6253 0.3397 0.3882 0.5768 0.2926 0.3401

1 0.9845 0.9678 0.9716 0.9855 0.9700 0.9735 0.9830 0.9646 0.9689

120 2 0.8752 0.7336 0.7627 0.8834 0.7475 0.7758 0.8624 0.7130 0.7442

3 0.4682 0.1919 0.2321 0.4888 0.2072 0.2492 0.4368 0.1699 0.2087

1 0.9819 0.9619 0.9664 0.9830 0.9643 0.9686 0.9800 0.9580 0.9631

160 2 0.8515 0.6924 0.7245 0.8608 0.7073 0.7386 0.8368 0.6698 0.7040

3 0.4057 0.1456 0.1809 0.4259 0.1586 0.1958 0.3742 0.1267 0.1602

1 0.9806 0.9590 0.9638 0.9820 0.9619 0.9665 0.9787 0.9553 0.9607

200 2 0.8402 0.6735 0.7068 0.8512 0.6908 0.7233 0.8260 0.6523 0.6876

3 0.3788 0.1278 0.1608 0.4016 0.1417 0.1769 0.3505 0.1121 0.1434



2.4. NUMERICAL EXAMPLES 29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

tr
a

n
s
ie

n
t 
n

e
tw

o
rk

 s
u

rv
iv

a
b

ili
ty

time

Poi k=1
Poi k=2
Poi k=3
Poi k=4

Figure 2.10: Transient network survivability with varying k.
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Figure 2.11: Transient network survivability with border effects.





Chapter 3

Survivability Analysis for
Power-Aware MANETs

This chapter presents the quantitative network survivability analysis for a power-

aware MANET based on MRGPs. The MRGP is one of the widest class of

stochastic point processes which are mathematically tractable. In the past liter-

ature, the model for a power-aware MANET was described by a CTMC. How-

ever, in the sense of representation ability, CTMC modeling is not sufficient to

analyze the relationship between battery state and node behavior in the power-

aware MANET. In particular, such problem seriously arises when we treat the

transient behavior of the power-aware MANET. In this chapter, we revisit a

power-aware MANET model by using MRGP, and present both stationary and

transient analyses for the MRGP-based model.

3.1 Model Description

3.1.1 State of Node

In MANETs, nodes cooperate for the routing processes to maintain network

connectivity [2]. Every node in MANET is designed as it behaves autonomously,

and thus the behavior of requiring, sending and receiving route information

should be decided as a strict protocol. Moreover, we find that it is also important

to determine the protocol to prevent propagation of erroneous route information

that is cause by malicious attacks. Xing and Wang [11, 12] discusss such a

MANET that is suffered by a malicious attack, and present the following node

states with represent to the wellness of a node:

31
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• Cooperative state (C): an initialized state of a node which responds to

route discoveries and forward data packets for others.

• Selfish state (S): a node may not forward control or data packets for

others, and olny responds to route discoveries for its own purpose by

reason of low power.

• Malicious state (M): a node launches Jellyfish or Black hole DoS attack.

– Jellyfish state (J): a node launches Jellyfish DoS attack, i.e., a node

delays and fails to forward data packets maliciously.

– Black hole state (B): a node launches Black hole DoS attack, i.e., a

node broadcasts fake routes to disrupt legitimate path selections.

• Failed state (F ): a node can no longer perform basic functions such as

initiate or response route discoveries.

Jellyfish and Black hole attacks are typical DoS attacks in MANETs [25, 26].

The node in Jellyfish state can respond to route requests and route replies, but

delays and fails to forward data packets without any reason. The node in Black

hole state sends a fake message when a node requires the route information

immediately, and spoofs the node on the optimal path. Both attacks cause the

node isolation problem for neighbors.

Moreover, a node may be classified into the following states with respect to

the battery:

• Fully charged battery state: The battery is fully charged.

• Low battery state: The battery is low and may cause a failure due to out

of battery.

Based on the above node classification, we consider a CTMC model to de-

scribe the stochastic behavior of a node by combining the states with respect to

the wellness and the battery. Concretely, we suppose that a node may change

its behavior as follows:

• A cooperative node may become a failed node due to energy exhaus-

tion and misconfiguration. It is apt to become a Malicious node when

it launches DoS attack.



3.1. MODEL DESCRIPTION 33

C

F

M
(J or B)

S

Figure 3.1: DoS attack model [12].

Fully-charged battery state
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Figure 3.2: Power (battery) model.

• A malicious node cannot become a cooperative node again, but may be-

come a failed node.

• A node in failed state may become a cooperative node again after it repairs

and responds to routing requests for others.

• The node may become the low battery state as time passes.

• A node becomes the fully-charged battery state from the low battery state

again by the battery charge.

Figure 3.1 depicts the state transition diagram of DoS attack behavior. The

state cannot visit the cooperative state from neither Jellyfish and Black whole

states. Figure 3.2 shows the state transition diagram of a battery.

3.1.2 MRGP modeling

Based on two CTMC models, we consider a composite model by combining two

models with the following model assumptions:

• DoS attack behavior and battery state are independent with each other.
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• All state transitions are occurred by exponential distributions.

However, for the first assumption, it is evident that the node failure depends

on the state of battery, i.e., the failure rate in the empty battery state should

be greater than that in the fully-charged battery state. Also, though the sec-

ond assumption is useful to simplify the model analysis because the assumption

gives a CTMC model, the battery life time is not exponentially distributed in

general. Thus it is natural that the changes of the battery state are represented

by non-exponential distributions such as deterministic, uniform and normal dis-

tributions. On the other hand, although Xing and Wang [11, 12] considered

the non-exponential state transitions between DoS attack states, they did not

discuss the effect of the state of battery.

This chapter presents a more general state-based model describing a node

behavior. Concretely, we extend a CTMC modeling to an MRGP based mod-

eling . MRGP is a stochastic point process which has both regenerative and

non-regenerative time points [27, 28]. Generally, we consider a stochastic pro-

cess {M(t); t ≥ 0} with discrete state space. If M(t) has time points at

which the process stochastically restarts itself, the process is called regenerative,

and the time points are called regeneration points. Otherwise, the time points

when M(t) does not restart are called non-regeneration points. Specifically,

when state transition at the regeneration points is governed by a discrete-Time

Markov chain (DTMC), the process M(t) is an MRGP.

In this chapter, we consider the following three battery states:

• Fully charged battery state: The battery is fully charged.

• Low battery state: The battery is low.

• Out of battery: The battery is out and the maintenance is required.

Also, in this chapter, the failed state F is caused by out of battery or exploit

detection. Figure 3.3 illustrates the state transition diagram of our MRGP

model. Three DoS attack states C, S and M are grouped by each battery

state; fully-charged battery and low battery states, while the failed state F is

grouped by an out of battery state. The state transition timings between fully-

charged battery, low battery and out of battery states are defined by general
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Figure 3.3: State transition diagram of MRGP model.

distributions. Let FF,L(t), FL,M (t) and FM,L(t) be cumulative distribution

functions (c.d.f.’s) of the state transition distributions from fully-charged battery

state to low battery state, from low battery state to out of battery state and from

out of battery state to fully-charged battery state, respectively, and they are all

regenerative transitions (dotted lines). On the other hand, the state transitions

among C, S and M are non-regenerative (solid lines), whose transition rates

are denoted by λ
(z)
x,y, x, y ∈ {C, S,M}, z ∈ {Full, Low}. In addition, in the

malicious state, the exploit detection rates are λ
(z)
M,F , z ∈ {Full, Low}. This

chapter assumes that a simultaneous transition in which both DoS attack and

battery states change does not occur, except for transitions to out of battery

state due to exploit detection and FL,M (t). Also, in Selfish state, the drain on

battery power is reduced, i.e., the clocks of FF,L(t) and FL,M (t) are stopped by

the preemptive resume [28, 30]. In the figure, the states of preemption resume

are located on the lower part of square representing a group of states.

3.2 Survivability Analysis

3.2.1 Definition

In [11, 12], the network survivability is defined as the probability that the

MANET is a k-vertex-connected graph, which is the property that the net-
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work is connected even if fewer than k vertices are deleted. In general, it is

difficult to validate the vertex-connectivity in the graph whose configuration is

dynamically changed such as MANETs. Therefore, Xing and Wang [11, 12] de-

rived the approximate network survivability measure when the number of nodes

is sufficient large by considering the connectivity of a node in the MANET.

Consider a MANET M consisting of |M| = N mobile nodes and define

the node degree D(i) of node i, which means the number of neighbors of node

i. Let Dx(i) be the number of neighbors whose DoS attack states are x ∈

{C,S, J,B, F}. Then the node isolation condition can be described: If DS(i) +

DJ(i) + DF (i) = D(i) or DB(i) ≥ 1, then the node i is isolated from the

network [11, 12]. Suppose that the DoS attack states of neighbors are mutually

independent, and let the probability of DoS attack states of a neighbor be Px

(x ∈ {C, S, J,B, F}). The node isolation probability can be obtained as follows.

P (DC(i) = 0|D(i) = d)

= (1 PC PB)
d + 1 (1 PB)

d
)
. (3.1)

Furthermore, a node being k-connected to a network means that it has k-

cooperative degree which is given by DC(i) = k. Then the k-connected proba-

bility of node i is written by

P (DC(i) = k|D(i) = d)

=

(
d

k

)
P k
C(1 PC PB)

d−k, k ≥ 1. (3.2)

According to the network theory, Xing and Wang [11, 12] derived the approx-

imate network survivability as the probability that every node in the active

network has k-connected, namely,

NSk(M) ≈ P (θ(Na) ≥ k), (3.3)

where Na ⊆ M is the active network consisting of only cooperative nodes, and

θ(Na) = min{DC(i), i ∈ Na}. Moreover, the upper bound of the probability of

Eq. (3.3) is given by

NSk(M)U = P (DC(i) ≥ k)ND , (3.4)

and the lower bound:

NSk(M)L = max(0, 1 |N a|(1 P (DC(i) ≥ k))), (3.5)
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where i is an arbitrary node index in the active network and |Na| = N(1 PF ) is

the number of nodes in the active network Na. Also ND is the number of points

whose transmission ranges are mutually disjoint over the MANET area. Let A

and r are the area of MANET and the node transmission radius. The number

of disjoint points is given by ND = N/(λπr2) where λ is the node density, i.e.,

λ = N/A.

The probability P (DC(i) ≥ k) in Eq. (3.5) can be rewritten in the form:

P (DC(i) ≥ k)

=
∞∑
d=k

P (DC(i) ≥ k|D(i) = d)P (D(i) = d)

=

∞∑
d=k

d∑
n=k

P (DC(i) = n|D(i) = d)P (D(i) = d)

=
∞∑

n=k

∞∑
d=n

P (DC(i) = n|D(i) = d)P (D(i) = d). (3.6)

Since P (DC(i) = n|D(i) = d) has already discussed in Eq. (3.1), this chapter

considers two models to derive a closed form of P (D(i) = d).

(i) Poisson Model [11, 12]

The Poisson model is based on the situation whereN mobile nodes are uniformly

placed in the area. The node distribution is assumed to be

P (D(i) = d) =
µd

d!
e−µ, (3.7)

where µ = πr2N(1 PF )/A. Hence the probability P (DC(i) ≥ k) is given by

P (DC(i) ≥ k) =

∞∑
n=k

e−µ(PC+PB) (µPC)
n

n!
, k ≥ 1. (3.8)

Substituting Eq. (3.8) into Eq. (3.5) yields the upper and lower bounds of net-

work survivability.

(ii) Negative Binomial Model

The negative binomial model utilizes a mixed Poisson distribution instead of

Poisson distribution. Let f(µ) be the distribution of parameter µ in the Poisson

model. This implies that the parameter µ includes the uncertainty, and that the

node distributions for all disjoint areas have different Poisson parameters. The
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node distribution can be rewritten by the following mixed Poisson distribution:

P (D(i) = d) =

∫ ∞

0

e−µµ
d

d!
f(µ)dµ. (3.9)

For the sake of analytical simplicity, f(µ) is assumed to be the gamma dis-

tribution with mean πr2N(1 PF )/A and coefficient of variation c. Then we

have

P (D(i) = d) =
(a+ d)

d! (a)

(
b

1 + b

)a(
1

1 + b

)d

, (3.10)

where a = 1/c2 and b = A/(πr2N(1 PF )c
2). It should be noted that Eq. (3.10)

corresponds to the negative binomial p.m.f. with mean πr2N(1 PF )/A, and

the variance is greater than the node distribution in the Poisson model. Based

on Eq. (3.10), the probability P (DC(i) ≥ k) is given by

P (DC(i) ≥ k)

=
∞∑

n=k

(a+ n)

n! (a)

(
b

PC + PB + b

)a(
PC

PC + PB + b

)d

.

k ≥ 1. (3.11)

3.3 MRGP Analysis

To evaluate the network survivabilities in Eqs. (3.8) and (3.11), DoS attack state

probabilities PC and PB should be computed from the MRGP model described

in Section 3.1. In particular, we discuss the stationary analysis and transient

analysis of MRGP model.

3.3.1 Stationary Analysis

In general, we define a regeneration time sequence T1 < T2 < · · · and their

time intervals ∆Ti = Ti Ti−1, i = 1, 2, . . . in an MRGP model. Then the

time interval behaves a Markov renewal sequence [31]. Suppose that the time

sequence is time-homogeneous, i.e.,

P (M(Tn) = j,∆Tn < t | M(Tn−1) = i)

= P (M(T1) = j,∆T1 < t | M(T0) = i)

≡ Ki,j(t). (3.12)
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The state probability of MRGP is given by

Vi,j(t) = P (M(t) = j | M(0) = i)

= P (M(t) = j,∆T1 ≤ t | M(0) = i)

+ P (M(t) = j,∆T1 > t | M(0) = i)

=
∑
l

∫ t

0

P (M(t u) = j | M(0) = l)dKi,l(u)

+ P (M(t) = j,∆T1 > t | M(0) = i). (3.13)

Let K(t), V (t) and E(t) denote matrices whose elements are Ki,j(t), Vi,j(t) and

P (M(t) = j,∆T1 > t | M(0) = i), respectively. We have the Markov renewal

equation for MRGP [27, 32];

V (t) = E(t) +

∫ t

0

dK(u)V (t u), (3.14)

where E(t) and K(t) are called local and global kernels.

MRGP is one of the widest stochastic processes which contain renewal struc-

tures, and can represent a variety of stochastic processes by choosing appropri-

ate local and global kernels. According to the MRGP modeling in Section

3.1, we divide the state space into the subspaces SG
F , SG

F ′ , SG
L , SG

L′ and SG
M .

The subspaces SG
F , SG

L and SG
M consist of the states which are categorized to

fully-charged battery, low battery and out of battery states without preemptive

resume, respectively. The subspaces SG
F ′ and SG

L′ correspond to the states with

preemptive resume in the fully-charged battery and low battery states. Also,

the CTMC generators caused by non-regenerative transitions are partitioned by

Qx,y, x, y ∈ {F, F ′, L, L′,M} which correspond to the non-regenerative transi-

tion kernel from the subspace SG
x to SG

y . The row vector AM,F determines

the DoS attack state in SG
F when the state transition of FM,F (t) occurs in SG

M .
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Then we have the following Markov renewal equations:

V F,F (t)

= exp(SF t)FF,L(t)

+

∫ t

0

exp(SFu)V L,F (t u)dFF,L(u)

+

∫ t

0

exp(SFu)QF,MV M,F (t u)FF,L(u)du, (3.15)

V F,L(t)

=

∫ t

0

exp(SFu)V L,L(t u)dFF,L(u)

+

∫ t

0

exp(SFu)QF,MV M,L(t u)FF,L(u)du, (3.16)

V F,M (t)

=

∫ t

0

exp(SFu)V L,M (t u)dFF,L(u)

+

∫ t

0

exp(SFu)QF,MV M,M (t u)FF,L(u)du, (3.17)

V L,F (t)

=

∫ t

0

exp(SLu)V M,F (t u)dFL,M (u)

+

∫ t

0

exp(SLu)QL,MV M,F (t u)FL,M (u)du, (3.18)

V L,L(t)

= exp(SLt)FL,M (t)

+

∫ t

0

exp(SLu)V M,L(t u)dFL,M (u)

+

∫ t

0

exp(SLu)QL,MV M,L(t u)FL,M (u)du, (3.19)

V L,M (t)

=

∫ t

0

exp(SLu)V M,M (t u)dFL,M (u)

+

∫ t

0

exp(SLu)QL,MV M,M (t u)FL,M (u)du, (3.20)

V M,F (t) =

∫ t

0

AM,FV F,F (t u)dFM,F (u), (3.21)

V M,L(t) =

∫ t

0

AM,FV F,L(t u)dFM,F (u), (3.22)

V M,M (t) =FM,F (t) +

∫ t

0

AM,FV F,M (t u)dFM,F (u), (3.23)
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where in general F (t) = 1 F (t),

SF = QF,F +QF,F ′( QF ′,F ′)−1QF ′,F , (3.24)

SL = QL,L +QL,L′( QL′,L′)−1QL′,L (3.25)

and

V (t) =


V F,F (t) V F,L(t) V F,M

V L,F (t) V L,L(t) V L,M

V M,F (t) V M,L(t) V M,M

 . (3.26)

Note that the local kernel E(t) is a zero matrix in our model, because there are

no state that has non-regenerative transition only.

The commonly used technique to compute stationary probability in MRGPs

is an embedded Markov chain (EMC) approach [28]. The EMC approach con-

sists of two steps; the steady-state probability on regeneration points and the

computation of cumulative probabilities between two successive regeneration

points.

Define the following matrices:

P F,L =

∫ ∞

0

exp(SFu)dFF,L(u), (3.27)

P F,M =

∫ ∞

0

∫ u

0

exp(SF t)dtdFF,L(u)QF,M , (3.28)

PL,M =

∫ ∞

0

exp(SLu)dFL,M (u)AL,M

+

∫ ∞

0

∫ u

0

exp(SLt)dtdFL,M (u)QL,M , (3.29)

PM,F =AM,F . (3.30)

These are submatrices for the probability transition matrix at time points when

regenerative transitions occur. Let πEMC
F , πEMC

L and πEMC
M be the stationary

state probability vectors over SG
F , SG

L and SG
M . Thus we solve the following

balance equation by a numerical technique [29].

πEMC
F = πEMC

M PM,F , (3.31)

πEMC
L = πEMC

F P F,L, (3.32)

πEMC
M = πEMC

F P F,M + πEMC
L PL,M . (3.33)
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Next, we compute cumulative probabilities, i.e., expected sojourn time of each

state between two successive regeneration points. Using the steady-state proba-

bility vectors πEMC
F , πEMC

L and πEMC
M , the expected sojourn time are derived

as follows.

sF = πEMC
F

∫ ∞

0

∫ u

0

exp(SF t)dtdFF,L(u), (3.34)

sF ′ = sFQF,F ′( QF ′,F ′)−1, (3.35)

sL = πEMC
L

∫ ∞

0

∫ u

0

exp(SLt)dtdFL,M (u), (3.36)

sL′ = sLQL,L′( QL′,L′)−1, (3.37)

sL = πEMC
L

∫ ∞

0

∫ u

0

exp(SLt)dtdFL,M (u), (3.38)

sM = πEMC
M

∫ ∞

0

udFM,F (u). (3.39)

The Markov renewal reward theory [31] gives the steady-state probability of

MRGP as a fraction of the expected sojourn time for each state over the total

time;

πF =
sF

sF1+ sF ′ + sL1+ sL′ + sM
, (3.40)

πF ′ =
sF ′

sF1+ sF ′ + sL1+ sL′ + sM
, (3.41)

πL =
sL

sF1+ sF ′ + sL1+ sL′ + sM
, (3.42)

πL′ =
sL′

sF1+ sF ′ + sL1+ sL′ + sM
, (3.43)

πM =
sM

sF1+ sF ′ + sL1+ sL′ + sM
, (3.44)

where 1 is a column vector that every element is 1. The matrix exponential forms

of Eqs. (3.34) through (3.39) can be computed by uniformization technique (see

Appendix 1). Finally, we can obtain the state probabilities PB and PC by

summing the corresponding elements in πF and πL.

3.3.2 Transient Analysis

PH (phase-type) expansion is one of the most popular methods for the transient

analysis of MRGP. The idea of PH expansion is to replace general distributions

in MRGP with approximate PH distributions, and it can reduce the original

MRGP to an approximate CTMC.

The PH distribution is defined as the time to absorption in a finite Markov

chain with one absorbing state. Strictly speaking, the PH distribution is clas-
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sified into continuous and discrete PH distributions. This chapter deals with

continuous PH distribution. If we let T be the transition rates between transient

states and ξ be the exit rates from transient states to the absorbing state, with-

out loss of generality, the infinitesimal generator D of continuous-time Markov

chain is assumed to be partitioned as follows:

D =

 T ξ

0 0

 , (3.45)

For the transient states, we set α be an initial probability vector. The

cumulative distribution function (c.d.f.) and the probability density function

(p.d.f.) of PH distribution are defined by

FPH(t) = 1 α exp(T t)1, fPH(t) = α exp(T t)ξ, (3.46)

where 1 is a column vector that every element is 1. Note that the exit rate

vector is given by ξ = T1. We call the transient states phases.

The PH distribution has several sub-classes according to the structure of T

(see e.g. [33]). In particular, the acyclic PH distribution (APH) is the widest

class among mathematically tractable PH distributions. Cumani [34] derived

the canonical forms (CFs) as the minimal representation of APH, which has the

smallest number of free parameters. The CF1 (canonical form 1) is defined by

α =
(
α1 α2 · · · αm

)
, (3.47)

T =



ν1 ν1

ν2 ν2
. . .

. . .

νm−1 νm−1

νm


, ξ =



0

...

νm


, (3.48)

where αi ≥ 0,
∑m

i=1 αi = 1 and 0 < ν1 ≤ · · · ≤ νm.

The fist step of PH expansion is to approximate general distributions with

PH distributions. The commonly used techniques of PH approximation are mo-

ment match, least square method of the difference of p.d.f.’s and ML estimation.

The ML estimation is widely used for the parameter estimation of general

distributions, and has useful properties like asymptotic consistency and normal-

ity. Some authors have been discussed the ML estimation of PH distribution
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[35, 36, 37, 38]. The ML estimates of PH distribution are derived so that the

mode matches the theoretical one. According to [37], this paper uses the PH

fitting based on ML estimation. Roughly speaking, ML estimation uses the

Kullback-Leibler (KL) divergence. Therefore we directly apply the KL diver-

gence as a criterion of function fitting.

Given an arbitrary probability density function f(t), the KL divergence

KL(f, g) between f(t) and any probability density function g(t) is defined by

KL(f, g) =

∫ ∞

0

f(t) log
f(t)

g(t)
dt

=

∫ ∞

0

f(t) log f(t)dt

∫ ∞

0

f(t) log g(t)dt. (3.49)

The problem is to find g(t) maximizing
∫∞
0
f(t) log g(t)dt. Applying a suitable

numerical integration technique, we have

∫ ∞

0

f(t) log g(t)dt ≈
K∑
i=1

wi log g(ti), (3.50)

where wi, including f(ti), is a weight. The discretized points and their associ-

ated weights are determined by the numerical quadrature. Eq. (3.50) indicates

that ML estimation is one approximation form of the KL divergence. Thus

we can obtain a approximate PH distribution by using the weighted samples

(t1, w1), . . . , (tK , wK) (see Appendix 2).

Finally we apply the EM algorithm to derive the ML estimates for PH dis-

tribution [37]. The EM algorithm proposed in [37] further improves the com-

putation speed of the EM algorithm by Asmussen et al. [36] with respect to

the number of phases, though both algorithms are based on forward-backward

computation [39, 40]. Since this method utilizes sparsity of the generator T ,

the computation speed is drastically reduced for estimating CF1.

This chapter utilizes PH expansion of MRGP based on the Kronecker rep-

resentation, which is often used to represent a superposition of Markov models

[41]. The general distributions FF,L(t), FL,M (t) and FM,F (t) are approximated
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by

FF,L(t) ≈ 1 αF exp(T F t)1F ,

fF,L(t) ≈ αF exp(T F t)ξF , (3.51)

FL,M (t) ≈ 1 αL exp(TLt)1L,

fL,M (t) ≈ αL exp(TLt)ξL, (3.52)

FM,F (t) ≈ 1 αM exp(TM t)1M ,

fM,F (t) ≈ αM exp(TM t)ξM . (3.53)

Then the MRGP process M(t) can be approximated by the CTMC with the

following infinitesimal generator:

V
PH

=



QF,F ⊕ TF Q
F,F ′ ⊗ I AF,L ⊗ (ξF αL) QF,M ⊗ (1F αM )

Q
F ′,F ⊗ I Q

F ′,F ′ ⊗ I

QL,L ⊕ TL Q
L,L′ ⊗ I

AL,M⊗(ξLαM )

+QL,M⊗(1LαM )

Q
L′,L ⊗ I Q

L′,L′ ⊗ I

AM,F ⊗ (ξMαF ) TM



(3.54)

where ⊗ and ⊕ are Kronecker product and sum, respectively. The approximate

transient probability vector of M(t) can be derived by summing the correspond-

ing elements of the following probability vector

(πF (0)⊗ 1T
F , πF ′(0)⊗ 1T

F ,πL(0)⊗ 1T
L,

πL′(0)⊗ 1T
L, πM (0)⊗ 1T

M ) exp(V PHt), (3.55)

where 1T is the transpose of vector 1.

3.4 Numerical Examples

3.4.1 Stationary Analysis

In this section, we investigate the network survivability in the MRGP model. We

set the following model parameters, which are based on the simulation results

in [12]:
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Fully-charged battery state:

λC,S = 1/240.0 [1/sec], λS,C = 1/60.0 [1/sec],

λM,F = 1/50.0 [1/sec], λC,M = 1/6.0e+6 [1/sec],

pB = 0.1, pJ = 0.9,

fF,L(t) = Gamma(t, 5.0, 5.0/24000).

Low battery state:

λC,S = 1/60.0 [1/sec], λS,C = 1/240.0 [1/sec],

λM,F = 1/50.0 [1/sec], λC,M = 1/6.0e+6 [1/sec],

pB = 0.1, pJ = 0.9,

fL,M (t) = Gamma(t, 2.0, 2.0/1000).

Out of battery (maintenance) state:

fM,F (t) = Uniform(t, 30, 90),

where Gamma(t, ·, ·) and Uniform(t, ·, ·) are gamma and uniform p.d.f.’s:

Gamma(t, a, b) =
bata−1e−bt

(a)
, t ≥ 0, (3.56)

Uniform(t,min,max) =
1

max min
, min ≤ t ≤ max. (3.57)

Also, pB is the probability that a node launches Black hole DoS attack, and

pJ is the probability that a node launches Jellyfish DoS attack when the node

becomes the malicious state. Moreover, we determine the network parameters

as follows.

• A = 1000 (m)× 1000 (m): the area of MANET.

• N = 500: the number of mobile nodes.

• r = 100 (m): transmission radius of a node.

Under the above model parameters, the node probabilities in steady state

are given by
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Fully-charged battery state:

PC = 0.6847, PS = 0.1712, PB = 5.694e-7,

PJ = 5.125e-6.

Low battery state:

PC = 2.848e-2, PS = 0.1139, PB = 2.373e-8,

PJ = 2.136e-7.

Out of battery state:

PF = 1.716e-3.

Since we assume that the transition rate from cooperative state to selfish state

in low battery state is higher than that in fully-charged battery state, the steady

state probability of the selfish state in low battery state is also high. According

to the above stationary state probabilities, the upper and lower bounds of 1-

connected network survivability of Poisson model are given by NSk(M)PU =

0.9993 and NSk(M)PL = 0.9884. On the other hand, the upper and lower

bounds of 1-connected network survivability of negative binomial model are

NSk(M)NB
U = 0.06545 and NSk(M)NB

L = 0, where the coefficient of variation

(CV) is set as c = 1.0. The essential difference between Poisson and negative

binomial models is the bias of the number of mobile nodes in a local area.

That is, the Poisson model means that the number of nodes in a local area

is close to a constant, compared to that of negative binomial model. In fact,

when c = 0.01, the upper and lower bounds of network survivability of negative

binomial model are NSk(M)NB
U = 0.9989 and NSk(M)NB

L = 0.9829 which are

close to those of Poisson model. To investigate the effect of CV of the number

of nodes on the network survivability, we perform the sensitivity analysis of the

network survivability on the CV c in the negative binomial model. Figure 3.4

illustrates the upper bound of network survivability in the negative binomial

model with varying c, where x-axis and y-axis indicate the CV and the upper

bound of network survivability, respectively. From this figure, it can be seen

that the network survivability is sensitive to the CV of the number of neighbors
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Figure 3.4: Upper bound of 1-connected network survivability in negative bino-
mial model.
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Figure 3.5: Upper bound of 1-connected network survivability with varying the
number of nodes.

regardless of the number of total nodes. In all cases, the network survivability

gets worse as CV increases. This implies that it is important to “uniformly”

place mobile nodes to whole the MANET area in order to maintain high network

survivability.

Next we investigate the relationship between the number of total nodes and

the network survivability. Figure 3.5 shows the upper bounds of 1-connected

network survivability with varying the number of mobile nodes in whole the

MANET area. From the figure, we find that the number of nodes exponentially

affects the network survivability, which is the same conclusion as [12], and that

the curve rapidly increases when the CV is small. Similar to the previous
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Figure 3.6: The expected life of battery.
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Figure 3.7: Bounds of 1-connected network survivability with varying the coop-
erative time fraction in low battery state.

insights, if mobile nodes are unevenly located to geographical areas, the network

survivability becomes low even if a large number of mobile nodes are placed.

In our modeling, we can derive the expected life of battery by computing

the expected cycle time from fully-charged battery state to out of battery state.

Therefore, dissimilar to [19], we can examine the effect of selfish behavior on the

battery life as well as the network survivability. Figures 3.6 and 3.7 show the

expected life of battery and the upper and lower bounds of network survivability

in Poisson model with varying the time fraction of sojourn time of cooperative

state over that of selfish state in the low battery state. That is, the transition
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rates in the low battery state are redefined as follows.

λC,S =
1

300.0fa
, λS,C =

1

300.0(1 fa)
, 0 < fa < 1. (3.58)

If fa is close to 0, the node spends in selfish state for almost all time in low

battery state. Also, in Fig. 3.6, we indicate the expected life of battery when

nodes do not go to selfish state, which is labeled by ‘without selfish’. From

Fig. 3.6, the expected life of battery exponentially grows as the cooperative

time fraction is close to 0. However, the expected life of battery does not

change around at 0.1 time fraction. On the other hand, from Fig. 3.7, it can

be found that the network survivability becomes low as the cooperative time

fraction decreases. In particular, when the cooperative time fraction is less

than 0.1, the upper and lower bounds of network survivability rapidly decrease.

This indicates that there is a tradeoff between the battery life and network

survivability.

3.4.2 Transient Analysis

According to PH expansion described in Section 3.3, we examine the transient

analysis of node state and derive the corresponding network survivability of

MANET. We utilize the model parameters which are set in the stationary anal-

ysis.

First we describe the PH approximation for the distributions FF,L(t), FL,M (t)

and FM,L. In fact, since gamma distributions with integer shape parameters

are a concrete class of PH distributions, FF,L(t) and FL,M (t) are originally rep-

resented by PH distributions. However, in order to examine the approximation

performance of PH expansion, we apply the weighted sample-based PH approx-

imation to all the distributions. Based on the weighted samples derived by DE

formulas (see Appendix 2), we estimate PH parameters for FF,L(t), FL,M (t)

and FM,F (t) with 10, 10 and 1000 phases, respectively. Figures 3.8 through

3.10 present the p.d.f.’s of original gamma and uniform distributions and the

approximate PH distributions. In Figs. 3.8 and 3.9, the p.d.f.’s of approximate

PH distributions are drawn by dots, because the p.d.f.’s of PH distributions are

close to the original density functions so that they cannot be recognized. From

Figs. 3.8 and 3.9, we see that the PH approximation for FF,L(t) and FL,M (t)
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Figure 3.8: PH approximation for FF,L(t).
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Figure 3.9: PH approximation for FL,M (t).

is accurate. This is because the gamma distributions with integer shape pa-

rameters are involved by acyclic PH distributions. Also, from Fig. 3.10, PH

approximation works well for a uniform distribution by using a large number of

phases.

Figures 3.11 through 3.13 illustrate the transient behavior of node proba-

bility which is approximated by PH distributions. In particular, we set the

following state probability vectors as the initial probability vectors at t = 0:

Case 1: The probability vector just after the node becomes the cooperative

state (Fig. 3.11).

Case 2: the probabilities of all the state, including phases of PH distributions
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Figure 3.11: Transient state probabilities (Case 1).

the initial probability, are assigned to an equivalent value (Fig. 3.12).

Case 3: The probability vector just after the node becomes the failed state

(Fig. 3.13).

The transient behavior of state probabilities strongly depends on the initial

state probabilities. However, in all the results, the state probabilities converge

to steady state probabilities after 200 to 300 seconds. Also, in Fig. 3.13, we find

that the state suddenly changes in the range t ∈ [30, 90]. This is an evidence

that the PH approximates the original uniform distribution very well.

Finally, Fig. 3.14 depicts the upper and lower bounds of network survivabil-

ity in Poisson model by substituing the transient state probabilities in Case 1.
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Figure 3.12: Transient state probabilities (Case 2).
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Figure 3.13: Transient state probabilities (Case 3).

Since the initial probabiity vector of Case 1 indicates that node is cooperative

with probability 1, the network survivability also becomes high. However, the

network survivability gradually decreases as time elapses, because the probabil-

ity that the node is in selfish state increases. Similar to the node probability,

the network survivability almost converges to the steady state after 200–300 sec-

onds. This means that, even if any accident occurs in the network, the network

connectivity becomes stable 200–300 seconds later after the recovery is finished.

Such an analysis leads to another network survivability discussed in [5].
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3.5 APPENDIX 1

The uniformization approach is effective to compute the matrix exponential

in the Markov analysis [42, 43]. Let γF,L(v) and γL,F (v) be the p.m.f.’s of

mixed Poisson distribution with mixture probabilities FF,L(t) and FL,F (t), re-

spectively:

γF,L(v) =

∫ ∞

0

e−qFu (qFu)
v

v!
dFF,L(u), (3.59)

γL,F (v) =

∫ ∞

0

e−qLu (qLu)
v

v!
dFL,F (u), (3.60)

where qF and qL are maximum values of absolute diagonal elements of QF and

QL. Using the p.m.f.’s, the matrix exponential form can be rewritten by

Q̃F =

∞∑
v=0

γF (v)(I +QF /qF )
v,

Q̃L =
∞∑
v=0

γL(v)(I +QL/qL)
v, (3.61)

ξF =
1

qF

∞∑
v=0

v∑
s=0

γF (v)π
EMC
F (I +QF /qF )

v, (3.62)

ξL =
1

qL

∞∑
v=0

v∑
s=0

γL(v)π
EMC
L (I +QL/qL)

v. (3.63)

The infinite sums may be truncated by left truncation point L and right trun-

cation point R such that

R∑
v=L

γF (v) ≥ 1 ϵ,
R∑

v=L

γL(v) ≥ 1 ϵ, (3.64)
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where ϵ is a tolerance error.

3.6 APPENDIX 2

This chapter utilizes the method to generate the weighted samples based on the

double exponential (DE) formula [44]. This approach provides more accurate

approximation to many types of integral functions, compared to trapezoidal

rule, Simpson’s rule, etc. The DE formula changes the original integration to an

infinite integration of the function which decays according to double exponential

function. Here we use the following function

ϕ(x) = exp
(π
2
sinh(x)

)
. (3.65)

By substituting the above function to
∫∞
0
f(t) log g(t)dt, the integration is trans-

formed to ∫ ∞

0

f(t) log g(t)dt =

∫ ∞

−∞
f(ϕ(x)) log g(ϕ(x))ϕ′(x)dx, (3.66)

where ϕ′(x) is the first derivative of ϕ(x). Applying the trapezoidal rule to the

above integration, we have∫ ∞

−∞
f(ϕ(x)) log g(ϕ(x))ϕ′(x)dx

≈
K+∑

i=K−

hϕ′(ih)f(ϕ(ih)) log g(ϕ(ih)), (3.67)

where h is a step size and K+(= K−) is a upper (lower) limit of discretization

points. In fact, the accuracy of integration can be controlled by the parame-

ters h and K+. That is, given h and K+, we generate the weighted samples

(t1, w1), . . . , (tK , wK) as follows

ti−K−+1 = ϕ(ih) (3.68)

wi−K−+1 = hϕ′(ih)f(ϕ(ih)), (3.69)

i = K−, . . . , 0, . . . ,K+,

where K = K+ K− + 1.





Chapter 4

Survivability Analysis for
Power-Aware MANETs
with Battery Charge

Network survivability is an attribute that network is continually available even

if a communication failure occurs, and is regarded as one of the most impor-

tant concepts to design dependable computer networks. In the existing work,

a power-aware MANET is described by an MRGP, and takes account of the

variability in power level, which is caused by the possible low-battery state in

each communication node. However, it implicitly ignores effects by the so-called

border effects, and lacks the reality in modeling. In this chapter, we revisit a

power-aware MANET model taking account of border effects and quantify the

network survivability more accurately.

4.1 Model Description

4.1.1 Node Classification

Since nodes in MANETs cooperate with the routing processes to maintain net-

work connectivity, each of nodes is designed as it behaves autonomously, but

its discipline to require, send and receive the route information, is defined as a

strict protocol. At the same time, it is also important to define the protocol

in order to prevent propagation of the erroneous route information caused by

malicious attacks. Xing and Wang [12] consider a MANET that suffers such a

malicious attack, whose node states are defined as follows:

57
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• Cooperative state (C): a node complies with all routing and forwarding

rules.

• Selfish state (S): a node may not forward control or data packets for

others for the sake of power saving.

• Malicious state (M): a node launches Jellyfish or Black hole DoS attack.

– Jellyfish state (J): a node being cooperative in the routing stage

reluctant in forwarding data packets.

– Blackhole state (B): a node disrupting legitimate path selections by

broadcasting fakes route replies.

• Failed state (F ): a node is unable to initiate or response route discoveries.

Moreover, each node may be classified into the following states in terms of the

battery state:

• Fully charged battery state (H): the battery is fully charged.

• Low battery state (L): the battery level is low and may cause a failure

due to out of power.

It is essential to characterize the power state in power-aware device. The mod-

eling approach in Chapter 3 can be considered an incremental in technique but

significant extension in reality. For common DoS attacks, the node in Jelly-

fish attack receives route requests and route replies. The main mechanism of

Jellyfish state is to delay packets without any reason. On the other hand, the

node in Blackhole attack can respond a node with a fake message immediately

by declaring as it is in the optimal path or as it is only one-hop away to other

nodes.

Suppose that each of states, i = C,S,M , has one of two sub-states; H and

L. For instance, iH means a node in the state i with high energy level and iL

means a node in the state i with low energy level. The failed state F also has

one of two sub-states; energy exhaustion (EF ) and DoS attack detection (DF ).
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4.1.2 Semi-Markov Node Model

Based on the above node classification, we consider a semi-Markov model to

describe the stochastic behavior of a node by combining the network state and

the battery state. We define the node behavior as follows:

• A Cooperative node (CH or CL) may become a Malicious node (MH or

ML) when it launches DoS attack, and a low-battery Cooperative node

(CL) may become a Failed node due to energy exhaustion (EF ).

• A Cooperative node (CH or CL) may become a Selfish node (SH or SL)

for saving the power.

• A Malicious (MH or ML) node cannot become a Cooperative node (CH

or CL) again, but may become a Failed node by two reasons: energy

exhaustion (EF ) and DoS attack detection (DF ).

• A node in Failed state (DF or EF ) may become a Cooperative node (CH)

again after it repairs and responds to routing requests for others.

• Each node may become the low battery state as operating time passes,

but may become fully-charged battery state from the low battery state

again by re-charge.

From above assumptions, we can define the state space S ∈ {CH,CL, SH, SL,

MH,ML,EF,DF}, and the time-dependent transition rates from state i to

state j (i, j ∈ S) by λi,j(t).

Similar to the original idea by Xing and Wang [12], we describe the transition

behavior of each node, by a stochastic process {Z(t), t ≥ 0}, associated with the

space S. Let Xn denote the state at transition time tn. Define

Pr(Xn+1 = xn+1|X0 = x0., , , Xn = xn)

= Pr(Xn+1 = xn+1|Xn = xn), (4.1)

where xi ∈ S for 0 ≤ i ≤ n + 1. From Eq. (4.1), the stochastic process {Xn,

n = 0, 1, 2, ...} constitutes a CTMC with state space S, when all the transition

times are exponentially distributed. However, since the transition time from one

state to another state is subject to the time-inhomogeneous behavior of a node,



60CHAPTER 4. SURVIVABILITY ANALYSIS WITH BATTERY CHARGE

Figure 4.1: State transition diagram.

it is not realistic to characterize all the transition times by only exponentially

distributed random variables. For instance, if a sensor node is more inclined

to fail due to energy consumption as the operating time passes, and the less

residual energy is left, then the more likely a sensor changes its behavior to

selfish. This implies that the future action of a node may depend on how long

it has been in the current state and that the transition time intervals should

obey arbitrary probability distributions.

From the above reasons it is common to assume a SMP for {Z(t), t ≥ 0} to

describe the node behavior transitions, which is defined by

Z(t) = Xn, ∀tn ≤ t ≤ tn+1. (4.2)

Letting Tn = tn+1 tn be the sojourn time between the n-th and (n + 1)-st

transitions, we define the associated SMP kernel Q = (Qij(t)) by

Qij(t) = Pr(Xn+1 = j, Tn ≤ t|Xn = i) = pijFij(t), (4.3)

where pij =limt→∞Qij(t) is the transition probability between state i and j

(i, j = ch, cl, sh, sl,mh,ml, ef, df) corresponding to S, and Fij(t) = Pr(Tn <

t|Xn+1 = j,Xn = i) is the transition time distribution from state i to j. Fig-

ure 4.1 illustrates the transition diagram of the homogeneous SMP, {Z(t), t ≥ 0},

under consideration, which is somewhat different from the MRGP in [16]. By us-

ing the Laplace-Stieltjes transform (LST) we can obtain analytically the steady-

state probability of each node (see Appendix in this chapter).



4.2. QUANTITATIVE NETWORK SURVIVABILITY 61

4.2 Quantitative Network Survivability

4.2.1 Network Survivability Measures

In a MANET, the transmission of a packet from one node to another node must

go through any path which is made by its neighbor nodes. Since the topology

of a MANET keeps changing dynamically due to many reasons, such as node

mobility, even when node failures or DoS attacks do not occur, it is difficult

to clarify the connected topology for the MANET. Since the communication

availability of a MANET depends on the existing paths between two nodes, it

is intuitively understood that the network survivability strongly depends on the

connectivity. In general, it is said that the MANET is k-connected, if there are

at least k disjoint communication paths connecting one node to the other node.

When k = 1, it means the probability that there is at least one communication

path connecting one node to the other node, and is equivalent to the network

reliability. Hence, thinking of higher network survivability is reduced to highly

dependable MANET design.

Given a MANET M, let κ(M) denote the vertex-connectivity of M. Based

on the definition of connectivity, the network survivability of M, denoted by

NSk(M), is defined as the probability that all active (survived) nodes are k-

connected [12], i.e.,

NSk(M) = Pr(κ(Ma) = k), (4.4)

where Ma is a sub-network of M and includes all active nodes of M. In

the above definition, we need to find all the possible paths between arbitrary

node pairs in a MANET. Unfortunately, it is very difficult to enumerate all the

communication paths between arbitrary two nodes especially in a large-scaled

MANET. For this state-explosion problem, we employ an approximate method

to derive the network survivability. For a geometric graph G with N vertices,

define the minimum node degree as the minimum number of neighbor nodes of

one node in G by δ(G) and vertex-connectivity of G by κ(G), respectively. It turns

out that κ(G) ≤ δ(G), i.e., the network connectivity is no longer greater than

the minimum number of neighbors of any node. When N is sufficiently large,

the probability that G is k-connected approximately equals to the probability
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that every vertex has at least k neighbors. So, it is immediate to see that

Pr(κ(G) = k) ≈ Pr(δ(G) ≥ k). (4.5)

However, it should be noted that every neighbor does not always provide

effective outgoing paths, because only the cooperative neighbor can transmit

a packet for other node. Hence, a necessary condition for a MANET to be

k-connected is that every node has at least k cooperative degree. Let θ(M)

denote the minimum of the cooperative degree of all nodes in a MANET M.

Then, we have

Pr(κ(M) = k) ≈ Pr(θ(M) ≥ k). (4.6)

Remind that the network survivability is defined as the probability that all

active nodes are k-connected to M, so that the quantitative survivability of M

can be given by

NSk(M) ≈ Pr(θ(Ma) ≥ k). (4.7)

An immediate effect of node misbehaviors and failures in MANETs is the

node isolation problem [12]. It is a direct cause for network partitioning, and

eventually affects the network survivability. The node isolation problem is

caused by four types of neighbor; Failed, Selfish, Jellyfish and Blackhole nodes.

If all the neighbors of a node are Failed nodes, Selfish nodes or Jellyfish nodes,

then it can no longer communicate with other nodes. On the other hand, if one

of neighbors is Blackhole, it gives the other node a faked one-hope path, and

can always shutdown the communication. In this case, it is said that the node

is isolated by the Blackhole neighbor. Furthermore, if there exists a Blackhole

node, then the minimum cooperative degree θ(Ma) of network Ma becomes 0,

and the network survivability is always reduced to 0.

To formulate the above isolation problem, we define the node degree D(u)

for node u by the maximum number of neighbors [13]. Let D(i,u) be the number

of node u’s neighbors at state i ∈ {c, s, j, b, f} corresponding to {C, S, J,B, F}.

Then the isolation problem in our model can be formulated as follows: Given

node u with degree d, i.e., D(u) = d, ifD(s,u) +D(f,u) +D(j,u) = d orD(b,u) ≥ 1,

the cooperative degree is zero, i.e.,D(c,u) = 0, and u is isolated from the network,
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so it holds that

Pr(D(c,u) = 0|D(u) = d) = 1 (1 Pb)
d + (1 Pc Pb)

d, (4.8)

where Pc is the steady-state probability of a node in a Cooperative state and

Pb is the steady-state probability of a node launching Blackhole attacks. In

Appendix, we give the steady-state probability in our SMP model.

Hereafter, a node is said to be k-connected to a network if its associated

cooperative degree is given by k (≥ 1). Given node u with degree d, i.e., D(u)

= d, u is said to be k-connected to the network if the cooperative degree is k,

i.e. D(c,u) = k, which holds only if u has no Blackhole neighbor and has exactly

k Cooperative neighbors, i.e., D(b,u) = 0 and D(c,u) = k, respectively. Then it

is straightforward to see that

Pr(D(c,u) = k|D(u) = d) =

(
d

k

)
(Pc)

k(1 Pc Pb)
d−k. (4.9)

Strictly speaking, it is still difficult to find the probability distribution of

θ(Ma) ≥ k in Eq. (4.7). Xing and Wang [12] derive approximately the low

and upper bounds of network survivability instead when the number of nodes is

sufficiently large by considering the network connectivity of a node in a MANET.

The upper and lower bounds of network survivability are given by

NSk(M)U = (Pr(D(c,u) ≥ k))ND , (4.10)

NSk(M)L = max(0, 1 E[Na](Pr(D(c,u) < k))), (4.11)

respectively, where u is an arbitrary node index in the active network Ma. In

Eq. (4.11), E[Na] = ⌊N(1 Pf )⌋ is the expected number of active nodes in the

network, where ⌊x⌋ is the maximum integer less than x, Pf is the steady-state

probability of a Failed node, and N denotes the total number of mobile nodes.

In Eq. (4.10), ND is the number of node points whose transmission ranges are

mutually disjoint over the MANET area. Let A and r be the area of MANET

and the node transmission radius, respectively. The number of disjoint points

is given by ND = ⌊N/(λπr2)⌋, where λ = N/A is the node density.

Next, we give an approximate form of the network survivability based on the

expected number of active nodes [15]. Getting help from the graph theory, the

expected network survivability is approximately given by the probability that
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the active node in the network is k-connected:

NSk(M)E ≈
{
1 Pr(D(c,u) < k)

}E[Na]
. (4.12)

By the well-known total probability law, we have

Pr(D(c,u) < k) =
N∑

d=k

Pr(D(c,u) < k|D(u) = d) Pr(D(u) = d), (4.13)

so that we need to find the explicit forms of Pr(D(c,u) < k|D(u) = d) and

Pr(D(u) = d). From Eqs. (4.8) and (4.9), it is easy to obtain

Pr(D(c,u) < k|D(u) = d)

=1 (1 Pb)
d +

k−1∑
m=0

(
d

m

)
Pm
c (1 Pc Pb)

d−m

=1 (1 Pb)
d +

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb), (4.14)

where Bm denotes the multinomial probability mass function.

Since the node distribution Pr(D(u) = d) strongly depends on the model

property, we introduce three specific stochastic models [15] in the following:

(i) Poisson Model [12]

Suppose that N mobile nodes in a MANET are uniformly distributed over a

2-dimensional square with area A. The node transmission radius, denoted by r,

is assumed to be identical for all nodes. To derive the node degree distribution

Pr(D(u) = d), we divide the area intoN small grids virtually, so that the grid size

has the same order as the physical size of a node. Consider the case where the

network area is much larger than the physical node size. Then, the probability

that a node occupies a specific grid, denoted by p, is very small. With large N

and small p, the node distribution can be modeled by the Poisson distribution:

Pr(D(u) = d) =
µd

d!
e−µ, (4.15)

where µ = ρπr2, and ρ = E[Na]/A is the node density depending on the un-

derlying model. Finally, substituting Eqs. (4.13)-(4.15) into Eqs. (4.10)-(4.12)
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yields

NSk(M)PU =

{
e−µPb

[
1

(k, µPc)

(k)

]}ND

, (4.16)

NSk(M)PL =1 E[Na]

(
1

{
e−µPb

[
1

(k, µPc)

(k)

]})
, (4.17)

NSk(M)PE =

{
e−µPb

[
1

(k, µPc)

(k)

]}E[Na]

, (4.18)

where (x) = (x 1)!and (h, x) = ( h 1)!e−x
∑h−1

l=0 x
l/l! are the complete

and incomplete gamma functions, respectively.

(ii) Binomial Model [15]

It is evident that the Poisson model just focuses on an ideal situation of mobile

nodes. In other words, it is not always easy to measure the physical parameters

such as r and A in practice. Let p denote the probability that each node is

assigned into a communicate network area of a node. For the expected number

of activate nodes E[Na], we describe the node distribution by the binomial

distribution:

Pr(D(u) = d) =

(
E[Na]

d

)
pd(1 p)E[Na]−d

= Bd(E[Na], p), (4.19)

where Bd is the binomial probability mass function. Substituting Eq. (4.19)

into Eqs. (4.10)-(4.12) yields alternative formulas of the network survivability:

NSk(M)BU =


E[Na]∑
k=0

Bd(E[Na], p)

[
(1 Pb)

d

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]}E[ND]

, (4.20)

NSk(M)BL =1 E[Na]

(
1


E[Na]∑
k=0

Bd(E[Na], p)

[

(1 Pb)
d

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]})
, (4.21)



66CHAPTER 4. SURVIVABILITY ANALYSIS WITH BATTERY CHARGE

NSk(M)BE =


E[Na]∑
k=0

Bd(E[Na], p)

[
(1 Pb)

d

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]}E[Na]

. (4.22)

If each node is assigned into a communication network area of a node with

probability p = πr2/A, then the corresponding binomial model results a different

survivability measure.

(iii) Negative Binomial Model [15]

The negative binomial model comes from a mixed Poisson distribution instead

of Poisson distribution. Let f(µ) be the distribution of parameter µ in the Pois-

son model. This implicitly assumes that the parameter µ includes uncertainty,

and that the node distributions for all disjoint areas have different Poisson pa-

rameters. Then the node distribution can be represented by the following mixed

Poisson distribution:

P (D(u) = d) =

∫ ∞

0

e−µµ
d

d!
f(µ)dµ. (4.23)

For the sake of analytical simplicity, let f(µ) be the gamma probability density

function with mean πr2N(1 Pf )/A and coefficient of variation c. Then we

have

P (D(u) = d) =
(a+ d)

d! (a)

(
b

1 + b

)a(
1

1 + b

)d

= λd(a, b), (4.24)

where a = ⌊1/c2⌋ and b = ⌊A/(πr2N(1 Pf )c
2)⌋. It should be noted that

Eq. (4.24) corresponds to the negative binomial probability mass function with

mean πr2N(1 Pf )/A, and that the variance is greater than that in the Pois-

son model. From Eq. (4.24), we can obtain alternative representations of the
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network survivability with an additional model parameter c.

NSk(M)NB
U =


E[Na]∑
k=0

λd(a, b)

[
(1 Pb)

d

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]}E[ND]

, (4.25)

NSk(M)NB
L =1 E[Na]

(
1


E[Na]∑
k=0

λd(a, b)

[
(1 Pb)

d

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]})
, (4.26)

NSk(M)NB
E =


E[Na]∑
k=0

λd(a, b)
[
(1 Pb)

d

k−1∑
m=0

Bm(d, Pc, 1 Pc Pb)

]}E[Na]

. (4.27)

4.3 Border Effects of Network Communication
Area

The results on network survivability presented in Section 4.2 are based on a non-

informative assumption that network area A has a node density ρ = E[Na]/A.

This means that the expected number of neighbors of a node in a MANET has

the same value as ρπr2. In other words, such an assumption is not realistic in

real world network communication circumstance. It is well recognized that the

border effects tend to decrease both the communication coverage and the node

degree of a node, which reflect the whole network availability. Laranjeira and

Rodrigues [17] show that the relative average node degree for nodes in borders

is independent of the node transmission range and of the overall network node

density in a square communication area. Bettsetetter [18] calculates the average

node degree for nodes in borders for a circular communication area. We apply

their results directly to revisit the network survivability measures in Eqs. (4.10)-

(4.12).

Given a square area of side L, the expected number of neighbors of a node

in a MANET is given by [17]:

µs =
ρπr2σ

L2
, (4.28)
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where σ = (L 2r)2 + 3.07492r(L 2r) + 2.461344r2. For the circular area A

with radius R, Bettsettter [18] obtains the expected node degree of a node µc

in a circular communicate area:

µc =
Na

2π

[
4(1 r̂2) arcsin

r̂

2
+ 2r̂2π (2r̂ + r̂3)

√
1

r̂2

4

]
, (4.29)

where r̂ = r/R. The above formula can be further simplified by using Taylor

series as

µc ≈ Nar̂
2

(
1

4r̂

3π

)
. (4.30)

By replacing the square border effect parameter µ in Eqs. (4.16)-(4.18), (4.20)-

(4.22), and (4.24)-(4.26) by µs in Eq. (4.28), we obtain the improved network

survivability measures taking account of square border effects. Also, using µc

in Eq. (4.30), we derive the network survivability measures in a circular com-

municate area as well.

4.4 Numerical Examples

4.4.1 Comparison of Network Survivability

In our numerical experiments, we set model parameters as follows:

λCH,CL(t) = λMH,ML = Gamma(t, 5, 1/600),

λCH,MH(t) = λCL,ML(t) = λSH,MH(t) = Exp(t, 1/6e+7),

λCH,SH(t) = Exp(t, 1/720.0), λCL,EF (t) = Gamma(t, 2, 1/900),

λCL,SL(t) = λSH,CH(t) = Exp(t, 1/180),

λMH,DF (t) = λML,DF (t) = Exp(t, 1/480),

λSL,CL(t) = Exp(t, 1/360), λSL,ML(t) = Exp(t, 1/6e+7),

λDF,CH(t) = Uniform(t, 30, 120), λEF,CH(t) = Uniform(t, 30, 90),

pB = 0.1, pJ = 0.9,

where pB and pJ are the Blackhole attack ratio and the Jellyfish attack ratio of

DoS attack. Exp, Gamma and Uniform are exponential, gamma and uniform
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p.d.f.’s :

Exp(t, x) = xe−xt, t ≥ 0, (4.31)

Gamma(t, a, b) =
bata−1e−bt

(a)
, t ≥ 0, (4.32)

Uniform(t,min,max) =
1

max min
, min ≤ t ≤ max . (4.33)

To analyze the effect of battery re-charge, we consider three cases of transi-

tion time from low battery states (CL, SL,ML) to fully charged battery states

(CH,SH,MH):

Case (1) : λ(iL),(iH)(t) = Gamma(t, 2, 1/2400),

Case (2) : λ(iL),(iH)(t) = Exp(t, 1/4800),

Case (3) : λ(iL),(iH)(t) = 0, i ∈ {C, S,M},

where λ(iL),(iH)(t) = 0 in Case (3) denotes that there is no battery re-charge in

the MANET.

Suppose the following network parameter:

• A = 1000 (m)× 1000 (m).

To compare several stochastic models with different combination; three node

degree models (Poisson, binomial and negative binomial), the lower and upper

bounds versus an approximate network survivability, existence of border effects,

we consider Case 1, and change the transition radius from r = 80 to r = 130

and connectivity requirement from k = 1 to k = 3. The comparative results are

shown in Table 4.1. From this table, we can see that the difference between three

node degree models of network survivability is very small for the specific values

of r and k. For example, when r = 120 and k = 1, the difference among three

models are less than 0.0003 for the lower and upper bounds and the approximate

network survivability. Then, we attempt to understand the differences among

three node degree models with three battery charge cases. The results are shown

in Table 4.2. From the table, we can see that these are the similar results to

Table 4.1. The difference among three models is small and the battery charge

case in Exp is higher than others when r is small.

Table 4.3 presents effects of communication range of a node r on k-connected

(k = 1, 2, 3) network survivability in three cases in the approximate model
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Table 4.1: Comparison of lower and upper bounds with approximate network
survivability.

Poisson Binomial Negative Binomial

r k Lower Appro Upper Lower Appro Upper Lower Appro Upper

1 0.0000 0.2325 0.8648 0.0000 0.2402 0.8676 0.0000 0.2209 0.8604

80 2 0.0000 0.0000 0.3679 0.0000 0.0001 0.3732 0.0000 0.0000 0.3588

3 0.0000 0.0000 0.0278 0.0000 0.0000 0.0286 0.0000 0.0000 0.0261

1 0.6872 0.7313 0.9757 0.6994 0.7403 0.9766 0.6696 0.7186 0.9743

90 2 0.0000 0.0746 0.8152 0.0000 0.0803 0.8200 0.0000 0.0667 0.8081

3 0.0000 0.0000 0.4167 0.0000 0.0000 0.4239 0.0000 0.0000 0.4053

1 0.9397 0.9415 0.9962 0.9432 0.9448 0.9964 0.9349 0.9369 0.9959

100 2 0.4433 0.5729 0.9651 0.4708 0.5889 0.9668 0.4044 0.5511 0.9627

3 0.0000 0.0590 0.8350 0.0000 0.0657 0.8407 0.0000 0.0506 0.8268

1 0.9848 0.9850 0.9992 0.9856 0.9857 0.9992 0.9838 0.9839 0.9991

110 2 0.8965 0.9016 0.9946 0.9041 0.9086 0.9950 0.8859 0.8921 0.9940

3 0.4085 0.5533 0.9693 0.4459 0.5744 0.9712 0.3564 0.5252 0.9666

1 0.9905 0.9906 0.9996 0.9907 0.9907 0.9996 0.9903 0.9904 0.9996

120 2 0.9776 0.9779 0.9990 0.9793 0.9795 0.9991 0.9753 0.9756 0.9989

3 0.8929 0.8984 0.9953 0.9028 0.9073 0.9957 0.8793 0.8863 0.9947

1 0.9899 0.9900 0.9996 0.9900 0.9900 0.9996 0.9899 0.9899 0.9996

130 2 0.9884 0.9884 0.9996 0.9887 0.9887 0.9996 0.9880 0.9880 0.9995

3 0.9764 0.9767 0.9991 0.9785 0.9787 0.9992 0.9736 0.9740 0.9990

for a given N = 500, where “NONE” indicates λ(iL),(iH)(t) = 0. We find

that the network survivability increases as the communication range of a node

r increases, and that the MANET with battery re-charge is more survivable.

More specifically, when r is small (e.g. r = 80), the network survivability for

Exp is higher than 68%, and the case with “NONE” is less than 16%. On the

other hand, even when the mean transition time for Gamma is equal to that

for Exp, there exists large difference on the network survivability for small r.

However, when r is sufficiently large, the difference among Exp, Gamma and

“NONE” is very small. Moreover, as connectivity requirement k increases, the

survivability takes a lower level when r is small. This result means that the

network survivability is more sensitive to battery re-charge with small r. In

Table 4.4, we investigate the sensitivity of the total number of nodes N on

the network survivability measures, where the transmission range r is fixed as

100. Note once again that k = 1 corresponds the network reliability. From this
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Table 4.2: Comparison of three battery charge cases with approximate network
survivability.

Poisson Binomial Negative Binomial

r k Gamma EXP NONE Gamma EXP NONE Gamma EXP NONE

1 0.2325 0.6869 0.1592 0.2402 0.6964 0.1653 0.2209 0.6732 0.1500

80 2 0.0000 0.0468 0.0000 0.0001 0.0508 0.0000 0.0000 0.0413 0.0000

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.7313 0.9419 0.6587 0.7403 0.9453 0.6686 0.7186 0.9374 0.6445

90 2 0.0746 0.5712 0.0348 0.0803 0.5872 0.0380 0.0667 0.5495 0.0305

3 0.0000 0.0580 0.0000 0.0000 0.0646 0.0000 0.0000 0.0497 0.0000

1 0.9415 0.9875 0.9195 0.9448 0.9881 0.9237 0.9369 0.9866 0.9137

100 2 0.5729 0.9182 0.4637 0.5889 0.9243 0.4799 0.5511 0.9100 0.4415

3 0.0590 0.6098 0.0228 0.0657 0.6301 0.0259 0.0506 0.5827 0.0189

1 0.9850 0.9920 0.9807 0.9857 0.9921 0.9818 0.9839 0.9919 0.9792

110 2 0.9016 0.9838 0.8599 0.9086 0.9850 0.8689 0.8921 0.9823 0.8477

3 0.5533 0.9299 0.4282 0.5744 0.9366 0.4494 0.5252 0.9209 0.4001

1 0.9906 0.9911 0.9900 0.9907 0.9912 0.9902 0.9904 0.9911 0.9897

120 2 0.9779 0.9904 0.9695 0.9795 0.9906 0.9719 0.9756 0.9902 0.9663

3 0.8984 0.9845 0.8501 0.9073 0.9856 0.8620 0.8863 0.9829 0.8339

1 0.9900 0.9897 0.9900 0.9900 0.9897 0.9900 0.9899 0.9897 0.9899

130 2 0.9884 0.9896 0.9873 0.9887 0.9896 0.9877 0.9880 0.9896 0.9866

3 0.9767 0.9891 0.9675 0.9787 0.9893 0.9705 0.9740 0.9889 0.9633

result, it can be seen that when the number of nodes is greater than 500, the

network reliability is higher than 90%. However, once the reliability attains the

maximum value with N = 700, it decreases gradually as the number of nodes

increases. Because of increasing number of nodes, it turns out that the network

connectivity increases. However, from Table 4.4 with k = 2, 3, we come to

know that the network survivability does not show the monotone tendency on

N , similar to the network reliability. This is because the number of Blackhole

nodes increases as the total number of nodes in the whole network increases.

In Table 4.5, we focus on the network reliability (k = 1) and compare the

upper and lower bounds of network survivability in Eqs. (4.10) and (4.11) with

our approximate formula in Eq. (4.12), where the number of nodes is N = 500

and the transmission range changes from r = 80 to r = 130. In this table,

the values in “Square” and “Circular” are calculated based on Eqs. (4.28) and

(4.30), respectively. From the result, we can see that the difference between

lower and upper bounds of network reliability is rather remarkable for some
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Table 4.3: Steady-state network survivability for varying node transmission
radius r.

k = 1 k = 2 k = 3

r Gamma EXP NONE Gamma EXP NONE Gamma EXP NONE

80 0.2328 0.6867 0.1595 0.0000 0.0467 0.0000 0.0000 0.0000 0.0000

85 0.5023 0.8596 0.4096 0.0054 0.2599 0.0014 0.0000 0.0019 0.0000

90 0.7315 0.9419 0.6589 0.0747 0.5711 0.0349 0.0000 0.0580 0.0000

95 0.8714 0.9754 0.8281 0.2927 0.8012 0.1938 0.0032 0.2946 0.0006

100 0.9415 0.9875 0.9196 0.5732 0.9182 0.4640 0.0592 0.6096 0.0229

105 0.9725 0.9912 0.9625 0.7847 0.9665 0.7081 0.2662 0.8261 0.1603

110 0.9850 0.9920 0.9807 0.9017 0.9838 0.8600 0.5536 0.9299 0.4285

115 0.9894 0.9917 0.9877 0.9558 0.9892 0.9362 0.7757 0.9706 0.6864

120 0.9906 0.9911 0.9900 0.9779 0.9904 0.9696 0.8985 0.9845 0.8502

125 0.9905 0.9904 0.9903 0.9860 0.9902 0.9827 0.9544 0.9885 0.9321

130 0.9900 0.9897 0.9900 0.9885 0.9896 0.9873 0.9767 0.9891 0.9675

specific values on r. For example, when r = 80, the difference between the lower

and upper bounds with/without border effects are 0.8648 (Ignorance), 0.8016

(Square) and 0.8135 (Circular). On the other hand, the approximate network

reliability always takes a value between lower and upper bounds. This result

tells us that the approximate network reliability in Eq. (4.12) is more useful

than the bounds for quantification of network reliability. Table 4.6 presents the

dependence of the number of nodes N on the steady-state network reliability

among three situations with/without border effects. From these results, it is

shown that the network reliability without border effects (Ignorance) is higher

than those with border effects (Square and Circular).

4.4.2 Transient Analysis of Network Survivability

Next we calculate the transient network survivability with the limiting probabil-

ities Pch,j(t) (j ∈ {ch, cl, sh, sl,mh,ml, ef, df}) corresponding to S, by taking

the Laplace inversion of Eqs. (4.56)-(4.63) in Appendix. We apply the well-

known Abate’s algorithm [45] for the numerical inversion of Laplace transforms.

Reminding these properties on transition probabilities, we set N = 500 and

r = 100, and consider the transient network survivability at time t of three

node degree models with lower and upper bounds and an approximate form.

From Table 4.7, the transient network survivability has almost the same initial
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Table 4.4: Steady-state network survivability for varying number of node N .

k = 1 k = 2 k = 3

N Gamma EXP NONE Gamma EXP NONE Gamma EXP NONE

500 0.9415 0.9875 0.9196 0.5732 0.9182 0.4640 0.0592 0.6096 0.0229

550 0.9693 0.9903 0.9581 0.7617 0.9624 0.6789 0.2268 0.8065 0.1287

600 0.9812 0.9904 0.9756 0.8744 0.9795 0.8226 0.4652 0.9092 0.3351

650 0.9856 0.9894 0.9829 0.9335 0.9852 0.9043 0.6764 0.9554 0.5623

700 0.9865 0.9879 0.9853 0.9619 0.9864 0.9465 0.8185 0.9742 0.7393

750 0.9860 0.9862 0.9855 0.9745 0.9856 0.9667 0.8998 0.9808 0.8519

800 0.9846 0.9844 0.9845 0.9794 0.9842 0.9755 0.9421 0.9822 0.9152

850 0.9829 0.9824 0.9829 0.9806 0.9823 0.9787 0.9624 0.9816 0.9480

900 0.9810 0.9803 0.9811 0.9799 0.9802 0.9791 0.9712 0.9800 0.9638

950 0.9789 0.9780 0.9790 0.9784 0.9780 0.9781 0.9743 0.9779 0.9706

1000 0.9766 0.9757 0.9768 0.9764 0.9757 0.9764 0.9745 0.9757 0.9727

values, and the difference between them will be remarkable as time elapses.

Figure 4.2 illustrates the transient probability of cooperate state at time t.

We can see that three cases have the similar values in the first 500 seconds and

become different after that. Because three node degree models show the similar

tendency, we focus on only the Poisson model to investigate the impact on tran-

sient network survivability here. We set the total number of nodes N = 500 and

transmission radius r = 100. Then, we plot the transient network survivability

of three battery charge cases; Gamma, Exp and No charge, with lower/upper

bounds and approximate solution based on the behavior of the limiting proba-

bilities at arbitrary time t, in Fig. 4.3, Fig. 4.4 and Fig. 4.5, respectively. From

these figures, it can be seen clearly that the lower/upper bounds and approxi-

mate solution of network survivability have almost the same initial values, and

the differences among them also becomes remarkable as time elapses. All three

battery charge cases have a higher transient network survivability when connec-

tivity requirement k is lower. When the k becomes higher (k = 3), the transient

network survivability gets closer to 0.0624 (Gamma)/ 0.6096 (Exp)/ 0.026 (No

Charge) with time t elapsing. Finally we compare the approximate solution

of three battery charge cases in terms of the transient network survivability.

Figure 4.6 depicts the transient network survivability by varying the connectiv-

ity requirement k. It is shown that if there is no battery charge, the transient
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Figure 4.2: Transient probability of Cooperative state in three cases.
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Figure 4.3: Transient network survivability of Gamma case.

network survivability drops down as the operation time goes on. However, the

transient solution with battery charge (Exp) still keeps higher levels in the same

situation. This fact implies that the battery charge of node leads to an better

performance of MANETs.

4.5 Appendix

In this Appendix, we derive the steady-state probability of our SMP model.

Let 1/λij denote the mean transition time from state i to state j. Define the

Laplace-Stieltjes transform (LST) by qij(s) =
∫∞
0

exp{ st}dQij(t). From the
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Figure 4.4: Transient network survivability of EXP case.
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Figure 4.5: Transient network survivability of No Charge case.

familiar SMP analysis technique, it is immediate to see that

qch,cl(s) =

∫ ∞

0

exp{ st}F ch,mh(t)F ch,sg(t)dFch,cl(t) (4.34)

qch,mh(s) =

∫ ∞

0

exp{ st}F ch,cl(t)F ch,sh(t)dFch,mh(t) (4.35)

qch.sh(s) =

∫ ∞

0

exp{ st}F ch,cl(t)F ch,mh(t)dFch,sh(t) (4.36)

qcl,ch(s) =

∫ ∞

0

exp{ st}F cl,ml(t)F cl.sl(t)F cl,ef (t)dFcl,ch(t) (4.37)

qcl,ml(s) =

∫ ∞

0

exp{ st}F cl,ch(t)F cl,sl(t)F cl,ef (t)dFcl,ml(t) (4.38)

qcl,sl(s) =

∫ ∞

0

exp{ st}F cl,ch(t)F cl.ml(t)F cl,ef (t)dFcl,sl(t) (4.39)
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Figure 4.6: Comparison of Approximate transient netwrok survivability.

qcl,ef (s) =

∫ ∞

0

exp{ st}F cl,ch(t)F cl,ml(t)F cl,sl(t)dFcl,ef (t) (4.40)

qmh,ml(s) =

∫ ∞

0

exp{ st}Fmh,df (t)dFmh,ml(t) (4.41)

qmh,df (s) =

∫ ∞

0

exp{ st}Fmh,ml(t)dFmh,df (t) (4.42)

qml,mh(s) =

∫ ∞

0

exp{ st}Fml,df (t)Fml,ef (t)dFml,mh(t) (4.43)

qml,df (s) =

∫ ∞

0

exp{ st}Fml,mh(t)Fml,ef (t)dFml,df (t) (4.44)

qml,ef (s) =

∫ ∞

0

exp{ st}Fml,mh(t)Fml,df (t)dFml,ef (t) (4.45)

qsh,ch(s) =

∫ ∞

0

exp{ st}F sh,mh(t)dFsh,ch(t) (4.46)

qsh,mh(s) =

∫ ∞

0

exp{ st}F sh,ch(t)dFsh,mh(t) (4.47)

qsl,sh(s) =

∫ ∞

0

exp{ st}F sl,cf (t)F sl,ml(t)dFsl,sh(t) (4.48)

qsl,cl(s) =

∫ ∞

0

exp{ st}F sl,sh(t)F sl,ml(t)dFsl,cl(t) (4.49)

qsl,ml(s) =

∫ ∞

0

exp{ st}F sl,sh(t)F sl,cl(t)dFsl,ml(t) (4.50)

qdf,ch(s) =

∫ ∞

0

exp{ st}dFdf,ch(t) (4.51)

qef,ch(s) =

∫ ∞

0

exp{ st}dFef,ch(t), (4.52)

where in general ψ(·) = 1 ψ(·). We also define the recurrent time distribution

from state CH to state CH and its LST by Hch,ch(t) and hch,ch(s), respectively.
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Then, from the one-step transition probabilities from Eqs. (4.34)-(4.52), we have

hch,ch(s) =

∫ ∞

0

exp{ st}dHch,ch(t)

=qch,cl(s)[qcl,ch(s) + qcl,ml(s)(qml,mh(s)qmh,df (s)

× qdf,ch(s) + qml,df (s)qdf,ch(s) + qml,ef (s)

× qef,ch(s))/k(s)) + qcl,sl(s)[qsl,sh(s)(qsh,ch(s)

+ qsh,mh(s)(qmh,df (s)qdf,ch(s) + qmh,ml(s)

× (qml,df (s)qdf,ch(s) + qml,ef (s)qef,ch(s)))/k(s))

+ qsl,ml(s)(qml,mh(s)qmh,df (s)qdf,ch(s)

+ qml,df (s)qdf,ch(s) + qml,ef (s)qef,ch(s))/k(s)]

+ qcl,ef (s)qef,ch(s)]/l(s) + qch,mh(s)[qmh,ml(s)

× (qml,df (s)qdf,ch(s) + qml,ef (s)qef,ch(s))

+ qmh,df (s)qdf,ch(s)]/k(s) + qch,sh(s)[qsh,ch(s)

+ qsh,mh(s)(qmh,ml(s)(qml,df (s)qdf,ch(s)

+ qml,ef (s)qef,ch(s)) + qmh,df (s)qdf,ch(s))/k(s)],

(4.53)

where

l(s) =1 qcl,sl(s)qsl,cl(s) (4.54)

k(s) =1 qmh,ml(s)qml,mh(s). (4.55)

Let Pch,i(t) denote the transition probability from the initial state CH to

respective states i ∈ {ch, cl, sh, sl,mh,ml, ef, df} corresponding to S. Then,

the LSTs of the transition probability, pch,i =
∫∞
0

exp{ st}dPch,i(t), are given

by

pch,ch(s) =
{
qch,mh(s) qch,sh(s) qch,cl(s)

}
/hch,ch(s) (4.56)

pch,cl(s) =qch,cl(s)
{
qcl,ch(s) qcl,ml(s) qcl,sl(s)

qcl,ef (s)
}
/
{
hch,ch(s)k(s)

}
(4.57)

pch,sh(s) =
{
qch,sh(s) + qch,cl(s)qcl,sl(s)qsl,sh(s)/l(s)

}
×
{
qsh,mh(s) qsh,ch(s)

}
/hch,ch(s) (4.58)
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pch,sl(s) =
{
qch,cl(s)qcl,sl(s)/l(s)

}{
qsl,cl(s) qsl,sh(s) qsl,ml(s)

}
/hch.ch(s)

(4.59)

pch,ml(s) =
{
qch,mh(s)qmh,ml(s) + qch,sh(s)qsh,mh(s)

× qmh,ml(s) + qch,cl(s)
[
qcl,ml(s) + qcl,sl(s)

×[qsl,ml(s) + qsl,sh(s)qsh,mh(s)qmh,ml(s)]
]

/l(s)
}{

qml,mh(s) qml,df (s) qml,ef (s)
}
/
{
hch,ch(s)k(s)

}
(4.60)

pch,mh(s) =
{
qch,mh(s) + qch,sh(s)qsh,mh(s) + qch,cl(s)

×
[
qcl,ml(s)qml,mh(s) + qcl,sl(s)[qsl,ml(s)

×qml,mh(s) + qsl,sh(s)qsh,mh(s)]
]
/l(s)

}
×
{
qmh,ml(s) qmh,df (s)

}
/
{
hch,ch(s)k(s)

}
. (4.61)

pch,df (s) =
{
qch,cl(s)

[
qcl,ml(s)(qml,mh(s)qmh,df (s)

+ qml,df (s)) + qcl,sl(s)[qsl,sh(s)qsh,mh(s)

× [qmh,df (s) + qmh,ml(s)qml,df (s)] + qsl,ml(s)

× (qml,mh(s)qmh,df (s) + qml,df (s))]
]
/l(s)

+ qch,sh(s)qsh,mh(s)
[
qmh,ml(s)qml,df (s)

+ qmh,df (s)
]
+ qch,mh(s)

[
qmh,ml(s)qml,df (s)

+qmh,df (s)
]}
qdf,ch(s)/

{
hch,ch(s)k(s)

}
(4.62)

pch,ef (s) =
{
qch,mh(s)qmh,ml(s)qml,ef (s)/k(s) + qch,sh(s)

× qsh,mh(s)qmh,ml(s)qml,ef (s)/k(s) + qch,cl(s)

×
[
qcl,ml(s)qml,ef (s)/k(s) + qcl,sl(s)[qsl,ml(s)

× qml,ef (s) + qsl,sh(s)qsh,mh(s)qmh,ml(s)

×qml,ef (s)]/k(s) + qcl,ef (s)
]
/l(s)

}
qef,ch(s)/hch,ch(s). (4.63)

From Eqs. (4.56)-(4.63), the transient solutions, Pch,i(t), i ∈ {ch, cl, sh, sl,mh,

ml, ef, df}, which mean the probability that the state travels in another state i

at time t, can be derived numerically, by means of the Laplace inversion tech-

nique (e.g. see [45]). As a special case, it is easy to derive the steady-state

probability Pi = limt→∞ Pch,i(t), i ∈ {ch, cl, sh, sl,mh,ml, ef, df} correspond-

ing to S. Based on the LSTs, pch,i(s), we can obtain Pi = limt→∞ Pch,i(t) =

lims→0 pch,i(s) from Eqs. (4.56)-(4.63).
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Table 4.5: Steady-state network reliability for node transmission radius r
with/without border effects in case(1).

Ignorance

r Approximate Lower Bound Upper Bound

80 0.2328 0.0000 0.8648

85 0.5023 0.3114 0.9410

90 0.7315 0.6872 0.9757

95 0.8714 0.8622 0.9903

100 0.9415 0.9397 0.9962

105 0.9725 0.9721 0.9984

110 0.9850 0.9848 0.9992

115 0.9894 0.9893 0.9995

120 0.9906 0.9905 0.9996

125 0.9905 0.9905 0.9996

130 0.9900 0.9899 0.9996

Square

r Approximate Lower Bound Upper Bound

80 0.1087 0.0000 0.8016

85 0.3209 0.0000 0.9045

90 0.5692 0.4362 0.9566

95 0.7622 0.7283 0.9810

100 0.8796 0.8716 0.9919

105 0.9412 0.9393 0.9965

110 0.9704 0.9699 0.9984

115 0.9833 0.9831 0.9992

120 0.9885 0.9884 0.9995

125 0.9903 0.9902 0.9996

130 0.9906 0.9906 0.9996

Circular

r Approximate Lower Bound Upper Bound

80 0.1261 0.0000 0.8135

85 0.3509 0.0000 0.9117

90 0.5991 0.4875 0.9605

95 0.7840 0.7565 0.9829

100 0.8928 0.8865 0.9928

105 0.9482 0.9467 0.9969

110 0.9739 0.9735 0.9986

115 0.9848 0.9847 0.9993

120 0.9891 0.9890 0.9995

125 0.9905 0.9904 0.9996

130 0.9906 0.9905 0.9996
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Table 4.6: Steady-state network reliability for varying number of node N
with/without border effects in case(1).

Ignorance

N Approximate Lower Bound Upper Bound

500 0.9415 0.9397 0.9962

550 0.9693 0.9688 0.9982

600 0.9812 0.9810 0.9990

650 0.9856 0.9854 0.9993

700 0.9865 0.9864 0.9994

750 0.9860 0.9859 0.9994

800 0.9846 0.9845 0.9994

850 0.9829 0.9828 0.9994

900 0.9810 0.9808 0.9993

950 0.9789 0.9787 0.9993

1000 0.9766 0.9764 0.9992

Square

N Approximate Lower Bound Upper Bound

500 0.8796 0.8716 0.9919

550 0.9367 0.9346 0.9962

600 0.9649 0.9642 0.9981

650 0.9779 0.9777 0.9989

700 0.9834 0.9833 0.9992

750 0.9851 0.9850 0.9994

800 0.9850 0.9849 0.9994

850 0.9840 0.9838 0.9994

900 0.9824 0.9823 0.9994

950 0.9806 0.9805 0.9993

1000 0.9787 0.9784 0.9993

Circular

N Approximate Lower Bound Upper Bound

500 0.8928 0.8865 0.9928

550 0.9439 0.9423 0.9967

600 0.9687 0.9682 0.9983

650 0.9798 0.9796 0.9990

700 0.9843 0.9841 0.9993

750 0.9854 0.9853 0.9994

800 0.9850 0.9849 0.9994

850 0.9839 0.9837 0.9994

900 0.9822 0.9821 0.9994

950 0.9804 0.9802 0.9993

1000 0.9783 0.9781 0.9993
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Table 4.7: Transient network survivability with three stochastic models.

Poisson Binomial Negative Binomial

t k Lower Appro Upper Lower Appro Upper Lower Appro Upper

1 0.9999 0.9999 1.0000 0.9999 0.9999 1.0000 0.9999 0.9999 1.0000

0 2 0.9987 0.9987 0.9999 0.9990 0.9990 0.9999 0.9984 0.9984 0.9999

3 0.9894 0.9895 0.9993 0.9911 0.9911 0.9994 0.9872 0.9873 0.9992

1 0.9888 0.9888 0.9993 0.9893 0.9894 0.9993 0.9880 0.9881 0.9992

4000 2 0.9307 0.9330 0.9956 0.9362 0.9382 0.9959 0.9231 0.9260 0.9951

3 0.5965 0.6679 0.9746 0.6248 0.6871 0.9764 0.5577 0.6424 0.9722

1 0.9808 0.9810 0.9988 0.9820 0.9821 0.9989 0.9792 0.9795 0.9987

8000 2 0.8425 0.8542 0.9900 0.8533 0.8635 0.9907 0.8276 0.8416 0.9891

3 0.1129 0.4115 0.9450 0.1627 0.4326 0.9480 0.0434 0.3838 0.9408

1 0.9708 0.9712 0.9981 0.9726 0.9730 0.9983 0.9683 0.9688 0.9980

12000 2 0.7392 0.7704 0.9835 0.7550 0.7827 0.9845 0.7171 0.7536 0.9821

3 0.0000 0.2422 0.9136 0.0000 0.2593 0.9176 0.0000 0.2198 0.9080

1 0.9614 0.9621 0.9975 0.9637 0.9644 0.9977 0.9581 0.9590 0.9973

16000 2 0.6466 0.7022 0.9777 0.6664 0.7163 0.9790 0.6188 0.6829 0.9760

3 0.0000 0.1536 0.8875 0.0000 0.1667 0.8921 0.0000 0.1365 0.8808

1 0.9540 0.9550 0.9971 0.9567 0.9577 0.9972 0.9502 0.9514 0.9968

20000 2 0.5759 0.6542 0.9733 0.5986 0.6692 0.9747 0.5441 0.6337 0.9714

3 0.0000 0.1095 0.8685 0.0000 0.1200 0.8736 0.0000 0.0960 0.8613





Chapter 5

A Simulation Approach to
Quantify Network
Survivability for MANETs

The network survivability is an emerging requirement for highly reliable commu-

nication services in MANETs and is defined as the probability that the network

can keep to be connected even under node failures and DoS attacks. Although

some analytical formulas on the quantitative network survivability have been

proposed, they have not been validated yet by comparing with the exact value

of network survivability in a comprehensive way. In this chapter, we revisit

the existing lower and upper bounds of network survivability by taking account

of border effects in a network communication area and develop a simulation

model. It is shown through simulation experiments that the analytical solutions

often fail in the exact network survivability measurement.

5.1 Simulation Algorithms

For our SMP modulated network survivability model in Chapter 2, it is needed

to quantify the network survivability throughout Monte Calro simulation, be-

cause the analytical solutions (upper and lower bounds) may not be validated

without knowing the exact solution. Unfortunately, the simulation approach

mentioned in Xing and Wang [12] is oversimplified and does not seem to catch

up impacts of both node misbehavior and node failure accurately. Once the

shape of communication area, such as a square area, is given, a fixed number of

83
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Set Node and Nodei to empty;

Set N to the total number of node in the MANET;

Set L to the side length of square area;

For (i = 0; i ≤ N ; i++) {
Set x and y to 0;

Randomly generate (x, y) (x, y ∈ [0, L])
for Nodei (i ∈ [0, N ]);
Add Nodei to Node;}
/*Nodei is the i-th element of Node*/

Figure 5.1: A node location algorithm for square areas.

nodes are uniformly distributed to the area. A commonly used technique for a

square communication area is to locate points randomly with abscissa x and or-

dinate y for each node (x, y) in a Cartesian coordinate system. We generate the

random numbers for x and y, which are sampled from the continuous uniform

distribution with lower and upper endpoints at 0 and 1, respectively, where the

side length of communication area is given by L. In our simulation, we never

take account of effects of the speed and destination of moving nodes, to simplify

the simulation procedure, although this is because we employ the SMP modu-

lated network survivability model. Figure 5.1 presents a pseudo code to give the

node location for a square area. Here, we suppose that a circle area can be ap-

proximated by the sum of infinitesimal triangles, BCD, where the point C is at

the origin, and the points B and D are located on the circumference. Since the

sum of two triangles BCD is equivalent to the area of a parallelogram BCDE,

then we can apply the similar algorithm to Fig. 5.1. Figure 5.2 is a pseudo code

to give the node location for circular areas. For a circular communication area

with radius R, we randomly choose two points on BC and CD. Let a and b be

the distances between origin and these chosen points on BC and CD. Then let z

equal to 2R (a+b) if a+b > R, otherwise a+b. We can select one of triangles

BCD by picking an angle α ∈ [0, 2π), so the random points in a circular area

with abscissa x and ordinate y can be calculated as (x, y) = (z cosα, z sinα).

In this way, when each node is located over a 2-dimensional area, the next

step is to modulate each node state by an SMP. If we focus on the steady-state

behavior of MANETs, then the steady-state probability Pi, i ∈ {c, s, b, j, f}

can be used. In our simulation experiments, we generate the node state with

probability Pi uniformly, where the unit length,
∑5

i=1 Pi = 1, is divided by 5
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Set Node and Nodei to empty;

Set N to the total number of node in the MANET;

Set R to the radius of circular area;

For (i = 0; i ≤ N ; i++) {
Set α, a, b, z, x and y to 0;

Randomly generate α (α ∈ [0, 2π));
Randomly generate a and b (a, b ∈ [0, R]);
if a+ b > R then z = 2R− (a+ b),
otherwise z = a+ b;
calculate (x, y) by:

x = z cosα;
y = z sinα;
for Nodei (i ∈ [0, N ]);
Add Nodei to Node;}
/*Nodei is the i-th element of Node*/

Figure 5.2: A node location algorithm for circular areas.

portions proportional to Pi. Let Ni, i ∈ {c, s, j, s, f} be the number of nodes

in state i in the network. If NB ̸= 0, then the minimum cooperative degree of

network M, is given by θ(M) = 0, otherwise, divide the active nodes into two

state groups; Cooperative nodes and Selfish/Jellyfish nodes, and calculate the

θ(M) of an arbitrary node in a MANET M. For a given transmission radius r

and the number of node N , we generate the node location 100 times and make

100 state transitions for each node. Finally, we execute 10,000 simulation runs to

represent the node location and state for a fixed size of networks, say, N . Then

the connectivity-based network survivability in our simulation experiments is

calculated by

SV Bk(M) =

∑10,000
i=1 I{Ai}

10, 000
, (5.1)

where Ai indicates the event θ(M) ≥ k at i-th simulation and I{A} is the

indicator function to output 1 or 0 for occurrence of the event A.

Figures 5.3 and 5.4 illustrate simulated examples of network topology in

square and circular areas, respectively, where small points denote Cooperative

nodes and can be used to transmission, and larger points denote Jellfish and

Selfish nodes which initiate the transmission. Counting the number of coopera-

tive neighbors for all active nodes, we can find the minimum cooperative degree

θ(M). An algorithm to change the state of each node and to find the minimum

cooperative degree is given in Fig. 5.5. Let Node and Nodei be the sequence

of node in a MANET and i-th element of Node. Also let NodeC, NodeSJ
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Figure 5.3: Network topology used in simulation (square area).

and NodeB denote the subsets of sequence Node with Cooperative node, Self-

ish/Jellfish node and Blackhole node, respectively. For each Nodei, we choose

a value v randomly from 0 to 1, and identify the state j (∈ C, S, J,B, F ). If the

subset NodeB is not empty, then the minimum cooperative degree θ(M) equals

to 0, otherwise, we need to count the number of cooperative neighbors of each

node in subsets NodeC and NodeSJ . For a given transmission radius r, we cal-

culate the distance of each element between NodeSJ and NodeC. Besides, we

also calculate the distance of each element in NodeC. If the distance of a node

pair is not greater than r, then they are considered as neighbors. After counting

the number of cooperative neighbors for all node in NodeC and NodeSJ , we

can find the minimum cooperative degree θ(M).

To our best knowledge, the simulator developed here is a unique tool to quan-

tify the connectivity-based network survivability with higher accuracy. However,

as well known, the computation cost to seek the survivability measure is trouble-

some and very expensive. In other words, it is quite hard to simulate the node

behavior and calculate the network survivability in on-line procedure. Hence,

the analytical solution is still valuable to measure the connectivity-based net-

work survivability in real MANETs.
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Figure 5.4: Network topology used in simulation (circular area).

5.2 Numerical Examples

In the numerical experiments, we set up the following model parameters [12]:

λc,s = 1/240.0 [1/sec], λc,j = 3/2.0e+7 [1/sec],

λc,b = 1/6.0e+7 [1/sec], λc,f = 1/500.0 [1/sec],

λs,c = 1/60.0 [1/sec], λs,j = 3/2.0e+7 [1/sec],

λs,b = 1/6.0e+7 [1/sec], λs,f = 1/500.0 [1/sec],

λj,f = 1/50.0 [1/sec], λb,f = 1/50.0 [1/sec],

λj,f = 1/60.0 [1/sec],

where λij are transition rates from state i to state j in the exponential distribu-

tions. Under the above model parameters, the node probabilities in the steady

state are given by

Pc = 0.7299, Ps = 0.1629, Pj = 6.696e-6,

Pb = 7.44e-7, Pf = 0.1072.

We also assume the network parameters as follows:

• A = 1000 (m)× 1000 (m): the area of MANET.
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Set PC , PS , PJ , PB , PF to the steay state

probability of each state;

Set NodeC, NodeSJ, NodeB, θ(Ma) to empty;

For (i = 0; i ≤ N ; i++){
Set v to 0;

Randomly generate j (j ∈ [0, 1]);
if 0 ≤ v < PC then add Nodei to NodeC;

if PC ≤ v < PC + PS + PJ

then add Nodei to NodeSJ;
if PC + PS + PJ ≤ v < PC + PS + PJ + PB

then add Nodei to NodeB;}
/*NodeC, NodeSJ, NodeB are the set of nodes

in the states C, S and J, B, respectively*/

if NodeB is not empty then add 0 to θ(Ma),
else Set NoC, NoSJ to the number of elements

of NodeC and NodeSJ, respectively;

Set r to the transmission radius;

Set degree to empty;

For (i = 0; i ≤ NoSJ ; i++){
Set count = 0;/*count the number of

cooperative neighbor*/

For (j = 0; j ≤ NoC; j ++){
if distance between NodeSJi and

NodeCj is no greater than r,
count++;}
Add count to degree;};
For (i = 0; i ≤ NoC; i++){
Set count = 0;
For (j = 0; j ≤ NoC; j ++){
if i ̸= j and distance between NodeCi and

NodeCj is no greater than r,
count++;}
Add count to degree;};
Add min{degree} to θ(Ma);/*min{degree}
is the smallest element of degree*/

Figure 5.5: An algorithm to find the minimum cooperative degree.

• N = 500: the number of mobile nodes.

We have already shown in Table 2.3 that our analytical models with bor-

der effects provide relatively nice performance comparing with the simulation

solutions in terms of the number of neighbors. Here, we compare the network

survivability in analytical models with the simulation results. As analytical

solutions, we calculate the expected network survivability and its associated

bounds in two cases with/without border effects. Suppose that the number of

nodes N equals to 500 for varying transition radius r from 80 to 130 by 5.

Since the network survivability depends on the connectivity level k, we set

k = 1, 2, 3 in the simulation experiments. In Tables 5.1 and 5.2 the steady-state

network survivability for varying node transmission radius r in square and cir-
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cular areas are calculated. It can be seen that the simulation result is two-sided

bounded in a few cases with (k, r) = (1, 125), (1, 130), (2, 80), (2, 85), (2, 90),

(3, 80), (3, 85), (3, 90), (3, 95), (3, 100).

Looking at the expected network survivability, it takes rather different val-

ues from the simulation results. In Tables 5.3 and 5.4, we compare our ana-

lytical solutions with the simulated ones for varying N . In the combination

of (k,N) = (1, 800), (1, 900), (1, 1000), (2, 1000), (3, 500), it is shown that the

simulation result is two-sided bounded, but the expected network survivability

does not always take the closed values to simulation results. When ‘Ignorance’

is compared with “Square’ or ‘Circular’, the latter can takes the closer value

than the former, but fails to get the satisfactory approximate performance. In

other words, our analytical models taking account of border effects still fail to

evaluate the accurate network survivability except in very few cases. This neg-

ative observation implies that there is no satisfactory analytical model to assess

the connectivity-based network survivability and that it is a challenging issue

to develop a more sophisticated stochastic model to evaluate it. The lesson

learned from the comparative study in this chapter will motivate to investigate

the other stochastic modeling approach for the purpose.
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Table 5.1: Steady-state network survivability for varying node transmission
radius r in square area.

k = 1 Ignorance Square

r Simulation Expected Bounds Expected Bounds

80 0.3522 0.5268 [0.3595, 0.9311] 0.3557 [0.0000, 0.8920]

85 0.5365 0.7459 [0.7227, 0.9730] 0.6054 [0.5149, 0.9532]

90 0.7071 0.8908 [0.8844, 0.9899] 0.7891 [0.7780, 0.9806]

95 0.7964 0.9547 [0.9524, 0.9962] 0.8952 [0.9009, 0.9922]

100 0.8867 0.9796 [0.9793, 0.9985] 0.9481 [0.9558, 0.9969]

105 0.9451 0.9928 [0.9893, 0.9993] 0.9721 [0.9792, 0.9987]

110 0.9532 0.9925 [0.9925, 0.9996] 0.9821 [0.9886, 0.9993]

115 0.9632 0.9973 [0.9933, 0.9996] 0.9859 [0.9921, 0.9996]

120 0.9854 0.9931 [0.9931, 0.9997] 0.9872 [0.9932, 0.9997]

125 0.9943 0.9931 [0.9927, 0.9997] 0.9873 [0.9932, 0.9997]

130 0.9963 0.9921 [0.9921, 0.9997] 0.9871 [0.9929, 0.9997]

k = 2 Ignorance Square

r Simulation Expected Bounds Expected Bounds

80 0.0019 0.0079 [0.0000, 0.5830] 0.0014 [0.0000, 0.4436]

85 0.0279 0.1073 [0.0000, 0.7962] 0.0283 [0.0000, 0.6877]

90 0.1335 0.3519 [0.0000, 0.9122] 0.1577 [0.0000, 0.8466]

95 0.2744 0.6249 [0.5515, 0.9652] 0.3997 [0.0959, 0.9310]

100 0.4286 0.8316 [0.8156, 0.9869] 0.6453 [0.5835, 0.9707]

105 0.6579 0.9271 [0.9260, 0.9952] 0.8158 [0.8143, 0.9881]

110 0.7492 0.9699 [0.9694, 0.9982] 0.9098 [0.9185, 0.9952]

115 0.8078 0.9882 [0.9853, 0.9992] 0.9549 [0.9635, 0.9980]

120 0.8767 0.9906 [0.9905, 0.9995] 0.9745 [0.9820, 0.9991]

125 0.9378 0.9958 [0.9919, 0.9996] 0.9824 [0.9890, 0.9995]

130 0.9606 0.9919 [0.9919, 0.9997] 0.9852 [0.9914, 0.9996]

k = 3 Ignorance Square

r Simulation Expected Bounds Expected Bounds

80 0.0000 0.0000 [0.0000, 0.1219] 0.0000 [0.0000, 0.0498]

85 0.0000 0.0002 [0.0000, 0.3762] 0.0000 [0.0000, 0.2213]

90 0.0012 0.0073 [0.0000, 0.6487] 0.0008 [0.0000, 0.4811]

95 0.0121 0.1108 [0.0000, 0.8334] 0.0195 [0.0000, 0.7104]

100 0.0538 0.3593 [0.0000, 0.9296] 0.1265 [0.0000, 0.8574]

105 0.2062 0.6336 [0.5693, 0.9725] 0.3545 [0.0000, 0.9355]

110 0.3367 0.8406 [0.8264, 0.9898] 0.6074 [0.5270, 0.9725]

115 0.4664 0.9408 [0.9313, 0.9963] 0.7927 [0.7898, 0.9887]

120 0.5940 0.9717 [0.9713, 0.9986] 0.8981 [0.9082, 0.9955]

125 0.7363 0.9882 [0.9854, 0.9993] 0.9492 [0.9590, 0.9981]

130 0.8174 0.9899 [0.9898, 0.9996] 0.9717 [0.9797, 0.9991]
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Table 5.2: Steady-state network survivability for varying node transmission
radius r in circular area.

k = 1 Ignorance Circular

r Simulation Expected Bounds Expected Bounds

80 0.3852 0.5268 [0.3595, 0.9311] 0.3831 [0.0516, 0.8996]

85 0.6175 0.7459 [0.7227, 0.9730] 0.6315 [0.5572, 0.9572]

90 0.7735 0.8908 [0.8844, 0.9899] 0.8072 [0.8004, 0.9826]

95 0.8437 0.9547 [0.9524, 0.9962] 0.9057 [0.9121, 0.9931]

100 0.9301 0.9796 [0.9793, 0.9985] 0.9535 [0.9611, 0.9972]

105 0.9542 0.9928 [0.9893, 0.9993] 0.9746 [0.9816, 0.9988]

110 0.9793 0.9925 [0.9925, 0.9996] 0.9832 [0.9896, 0.9994]

115 0.9920 0.9973 [0.9933, 0.9996] 0.9863 [0.9925, 0.9996]

120 0.9937 0.9931 [0.9931, 0.9997] 0.9873 [0.9932, 0.9997]

125 0.9970 0.9931 [0.9927, 0.9997] 0.9873 [0.9932, 0.9997]

130 0.9989 0.9921 [0.9921, 0.9997] 0.9870 [0.9928, 0.9997]

k = 2 Ignorance Circular

r Simulation Expected Bounds Expected Bounds

80 0.0052 0.0079 [0.0000, 0.5830] 0.0020 [0.0000, 0.4676]

85 0.0422 0.1073 [0.0000, 0.7962] 0.0367 [0.0000, 0.7079]

90 0.1755 0.3519 [0.0000, 0.9122] 0.1850 [0.0000, 0.8596]

95 0.3392 0.6249 [0.5515, 0.9652] 0.4385 [0.1916, 0.9381]

100 0.5507 0.8316 [0.8156, 0.9869] 0.6789 [0.6341, 0.9742]

105 0.6825 0.9271 [0.9260, 0.9952] 0.8375 [0.8396, 0.9897]

110 0.8191 0.9699 [0.9694, 0.9982] 0.9216 [0.9306, 0.9959]

115 0.9169 0.9882 [0.9853, 0.9992] 0.9606 [0.9690, 0.9983]

120 0.9497 0.9906 [0.9905, 0.9995] 0.9771 [0.9842, 0.9992]

125 0.9706 0.9858 [0.9919, 0.9996] 0.9834 [0.9899, 0.9995]

130 0.9824 0.9919 [0.9919, 0.9997] 0.9856 [0.9917, 0.9996]

k = 3 Ignorance Circular

r Simulation Expected Bounds Expected Bounds

80 0.0000 0.0000 [0.0000, 0.1219] 0.0000 [0.0000, 0.0590]

85 0.0000 0.0002 [0.0000, 0.3762] 0.0000 [0.0000, 0.2451]

90 0.0019 0.0073 [0.0000, 0.6487] 0.0013 [0.0000, 0.5104]

95 0.0223 0.1108 [0.0000, 0.8334] 0.0276 [0.0000, 0.7339]

100 0.1035 0.3593 [0.0000, 0.9296] 0.1567 [0.0000, 0.8722]

105 0.2500 0.6336 [0.5693, 0.9725] 0.4016 [0.1016, 0.9435]

110 0.4206 0.8406 [0.8264, 0.9898] 0.6503 [0.5954, 0.9764]

115 0.6730 0.9408 [0.9313, 0.9963] 0.8212 [0.8236, 0.9905]

120 0.7696 0.9717 [0.9713, 0.9986] 0.9136 [0.9240, 0.9962]

125 0.8414 0.9882 [0.9854, 0.9993] 0.9568 [0.9660, 0.9985]

130 0.8967 0.9899 [0.9898, 0.9996] 0.9750 [0.9826, 0.9993]
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Table 5.3: Steady-state network survivability for varying number of node N in
square area.

k = 1 Ignorance Square

N Simulation Expected Bounds Expected Bounds

500 0.9065 0.9787 [0.9793, 0.9985] 0.9549 [0.9611, 0.9972]

600 0.9715 0.9909 [0.9908, 0.9995] 0.9865 [0.9876, 0.9993]

700 0.9853 0.9905 [0.9905, 0.9995] 0.9904 [0.9905, 0.9995]

800 0.9960 0.9881 [0.9880, 0.9995] 0.9890 [0.9888, 0.9995]

900 0.9987 0.9850 [0.9849, 0.9994] 0.9863 [0.9860, 0.9994]

1000 0.9988 0.9815 [0.9814, 0.9993] 0.9832 [0.9828, 0.9994]

k = 2 Ignorance Square

N Simulation Expected Bounds Expected Bounds

500 0.5231 0.8249 [0.8156, 0.9869] 0.6473 [0.6341, 0.9742]

600 0.8055 0.9611 [0.9604, 0.9976] 0.9078 [0.9166, 0.9951]

700 0.9027 0.9853 [0.9851, 0.9992] 0.9732 [0.9759, 0.9988]

800 0.9569 0.9872 [0.9871, 0.9994] 0.9855 [0.9859, 0.9994]

900 0.9872 0.9849 [0.9848, 0.9994] 0.9856 [0.9855, 0.9994]

1000 0.9960 0.9815 [0.9813, 0.9993] 0.9830 [0.9827, 0.9994]

k = 3 Ignorance Square

N Simulation Expected Bounds Expected Bounds

500 0.0910 0.3435 [0.0000, 0.9296] 0.1052 [0.0000, 0.8722]

600 0.4031 0.7971 [0.7734, 0.9866] 0.5700 [0.5138, 0.9715]

700 0.6545 0.9482 [0.9468, 0.9973] 0.8680 [0.8796, 0.9939]

800 0.8189 0.9799 [0.9797, 0.9991] 0.9597 [0.9643, 0.9984]

900 0.9351 0.9835 [0.9834, 0.9993] 0.9799 [0.9808, 0.9992]

1000 0.9758 0.9813 [0.9811, 0.9993] 0.9818 [0.9817, 0.9993]
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Table 5.4: Steady-state network survivability for varying number of node N in
circular area.

k = 1 Ignorance Circular

N Simulation Expected Bounds Expected Bounds

500 0.8599 0.9787 [0.9793, 0.9985] 0.9602 [0.9558, 0.9969]

600 0.9536 0.9909 [0.9908, 0.9995] 0.9876 [0.9865, 0.9992]

700 0.9775 0.9905 [0.9905, 0.9995] 0.9905 [0.9903, 0.9995]

800 0.9912 0.9881 [0.9880, 0.9995] 0.9889 [0.9889, 0.9995]

900 0.9974 0.9850 [0.9849, 0.9994] 0.9861 [0.9862, 0.9995]

1000 0.9988 0.9815 [0.9814, 0.9993] 0.9829 [0.9830, 0.9994]

k = 2 Ignorance Circular

N Simulation Expected Bounds Expected Bounds

500 0.3888 0.8249 [0.8156, 0.9869] 0.6824 [0.5835, 0.9707]

600 0.7211 0.9611 [0.9604, 0.9976] 0.9200 [0.9034, 0.9943]

700 0.8404 0.9853 [0.9851, 0.9992] 0.9762 [0.9728, 0.9986]

800 0.9148 0.9872 [0.9871, 0.9994] 0.9860 [0.9854, 0.9993]

900 0.9739 0.9849 [0.9848, 0.9994] 0.9856 [0.9855, 0.9994]

1000 0.9862 0.9815 [0.9813, 0.9993] 0.9828 [0.9829, 0.9994]

k = 3 Ignorance Circular

N Simulation Expected Bounds Expected Bounds

500 0.0464 0.3435 [0.0000, 0.9296] 0.1350 [0.0000, 0.8574]

600 0.3154 0.7971 [0.7734, 0.9866] 0.6147 [0.4386, 0.9672]

700 0.5176 0.9482 [0.9468, 0.9973] 0.8866 [0.8584, 0.9928]

800 0.6979 0.9799 [0.9797, 0.9991] 0.9649 [0.9589, 0.9982]

900 0.8770 0.9835 [0.9834, 0.9993] 0.9810 [0.9797, 0.9992]

1000 0.9263 0.9813 [0.9811, 0.9993] 0.9819 [0.9817, 0.9993]





Chapter 6

Conclusions

6.1 Summary and Remarks

In Chapter 2, we have refined the network survivability models by taking ac-

count of border effects in both square and circular areas. Based on the definition

of border effects in communication areas, we have calculated the expected cov-

erage of node in MANETs which resulted the expected node degree, and have

formulated the network survivability with border effects. In numerical experi-

ments, we have calculated the expected node degree and the connectivity-based

network survivability measures in both analytical and simulation models, and

shown that the border effects were significant to evaluate the number of neigh-

bors accurately. We have also compared the steady-state network survivability

and the transient network survivability in three stochastic models, and shown

numerically that the network survivability was reduced fiercely as k increased

when N was small and that the connectivity-based network survivability with-

out border effects was higher than that without border effects.

In Chapter 3, We havee pointed out that the CTMC model for the node

behavior in past was too simple to describe the effect of energy consumption on

the network survivability. Therefore, we have revisited the network survivability

modeling for the power-aware MANET by using MRGP modeling. By modeling

the battery life as non-exponential distributions, the MRGP model can describe

the detailed behavior of a node, compared to the simple CTMC model in [19].

Also, by applying PH expansion technique, we have performed the transient

analysis of network survivability. However, the model presented in Chapter 3
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was not compared with simulation results to validate it. This will be done as a

future work.

In Chapter 4, we have revisited the network survivability models in MANETs

by taking account of the battery re-charge and border effects in both square and

circular communication areas. Getting idea from the network connectivity, we

have presented the approximate network survivability formulae by calculating

the probability that all expected number of active nodes in the MANET is k.

In numerical experiments, we have considered two cases where the transition

time from lower battery states to fully charged battery states were given by

the gamma and exponential distributions. We have also compared the steady-

state network survivability with/without battery re-charge. It has been shown

numerically that the network survivability with battery re-charge was higher

than that with no battery charge, when r was small, and that the approximate

network reliability always took a middle value between the lower and upper

bounds.

In Chapter 5, we have developed a simulation model to quantify the network

survivability. In numerical experiments, we have shown that in the comparison

of connectivity-based network survivability, both the analytical bounds and the

expected network survivability did poorly worked except in a few cases, although

it has been shown that the border effects were still significant to evaluate the

number of neighbors accurately when the transmission radius r changed.

6.2 Future Works

In this study, the network survivability has been defined by the minimum co-

operative degree, but it is worth mentioning that it can be considered as an

approximate measure. In future, we will develop a comprehensive network sur-

vivability model and investigate whether the approximate method for network

survivability itself can work well in several random network environments. Also,

the simulation model to calculate the exact network survivability dependent of

all the possible number of communication paths should be developed.
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