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Abstract

Stochastic point processes can be used as a powerful tool to describe stochas-

tic behaviors of cumulative number of events occurred as time goes by. The

occurrence of failures in repairable systems and the detection of faults in soft-

ware testing are modeled by representative stochastic point processes. Non-

homogeneous Poisson process (NHPP) is well known as the simplest but most

useful method for modeling such phenomena.

Stochastic point processes are characterized by a conditional intensity func-

tion or the corresponding cumulative intensity function which is called mean

value function especially for an NHPP. By assuming whether we can know the

intensity function (or the corresponding cumulative intensity function) or not,

two types of statistical inference approaches are considered. If the intensity

function is known in advance, the model with the parametric intensity func-

tion is called parametric model. On the other hand, if the intensity function is

unknown completely, it is called nonparametric model.

In this thesis, we mainly consider nonparametric estimation methods for

stochastic point processes which include NHPP and a more generalized stochas-

tic point process called the trend renewal process. In details, we discuss several

nonparametric approaches for two different research areas; preventive mainte-

nance scheduling problem of repairable systems and software reliability assess-

ment.

In Chapter 2 and Chapter 3, we focus on parametric and nonparametric

estimation methods for a periodic replacement problem with minimal repair

which is a representative preventive maintenance scheduling problem. By mod-

eling the occurrence of failures in repairable systems with NHPPs, we obtain

the optimal periodic replacement time and its corresponding long-run average

cost per unit time. We also discuss not only point estimation but also interval

estimation for the same problem by applying several bootstrap techniques. It

is revealed which method is an appropriate one in the both viewpoints of point

estimation and interval estimation, throughout our simulation experiments and

real failure data analyses.

In Chapter 4 and Chapter 5, we pay our attention to the software reliability

assessment. Since NHPP-based Software reliability models (SRMs) are widely
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used for modeling the detection of software faults in software testing, a variety

of nonparametric estimation methods for NHPP models are considered. On the

other hand, we also use a more generalized stochastic point process including

NHPP, which is called non-homogeneous gamma process. By comparing our

proposed models with conventional ones, we show the utility of our nonpara-

metric models.

In Chapter 6, we concern a software release problem (SRP) based on a

nonparametric NHPP-based SRM, where the intensity function of an NHPP-

based SRM is unknown. To our best knowledge, there have no research result on

the optimal software release problems under the assumption that the knowledge

on the underlying software fault-detection process is incomplete. We calculate

the predictive confidence interval as well as the point estimate of the optimal

software release time which minimizes the expected total software cost. Finally,

we conclude the thesis with some remarks in Chapter 7.
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Chapter 1

Introduction

Stochastic point processes can be used as a powerful tool to describe stochastic

behaviors of cumulative number of events occurred as time goes by. The occur-

rence of failures in repairable systems or the detection of faults in software test-

ing is modeled by representative stochastic point processes. Non-homogeneous

Poisson process (NHPP) is well known as the simplest but most useful method

for modeling such phenomena.

Stochastic point processes are characterized by a conditional intensity func-

tion or the corresponding cumulative intensity function which is called mean

value function especially for an NHPP. By assuming whether we can know the

intensity function (or the corresponding cumulative intensity function) or not,

two types of statistical inference approaches are considered. If the intensity

function is known in advance, the model with the parametric intensity func-

tion is called parametric model. On the other hand, if the intensity function is

unknown completely, it is called nonparametric model.

In this thesis, we mainly consider nonparametric estimation methods for

stochastic point processes which include NHPP and a more generalized stochas-

tic point process called the trend renewal process. In details, we discuss several

nonparametric approaches for two different research areas; preventive mainte-

nance scheduling problem of repairable systems and software reliability assess-

ment.

1
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1.1 Periodic Replacement Problem (PRP) with
Minimal Repair (MR)

The periodic replacement problem by Barlow and Proschan [4] is one of the sim-

plest, but most important preventive maintenance scheduling problems. Since

the seminal contribution by Barlow and Hunter [5], several authors extended

the original model from various points of view [6], [7]. Boland [8] gave the op-

timal periodic replacement time in case where the minimal repair cost depends

on the age of component, and showed necessary and sufficient conditions for the

existence of an optimal periodic replacement time in the case where the failure

rate is strictly increasing failure rate (IFR). Nakagawa [9] proposed general-

ized periodic replacement policies with minimal repair where preventive main-

tenances are performed sequentially. Recently, Okamura et al. [10] developed

a dynamic programming algorithm to obtain the optimal periodic replacement

time in Nakagawa [9] more effectively. In another view, Sheu [11] considered a

different periodic replacement model where the cost of minimal repair depends

on the number of minimal repairs and the component age. Sheu [12] also pro-

posed another generalized periodic replacement problem with minimal repair

in which the minimal repair cost is assumed to be composed of age-dependent

random and deterministic parts. Park et al. [13] considered the situation where

each preventive maintenance relieves stress temporarily and reduces the rate

of system degradation, while the failure rate of the system remains monotoni-

cally increasing. Colosimo et al. [14] discussed a different periodic replacement

problem with minimal repair in which two different types of failures could be

observed for systems according to their causes.

In this way, though a number of variations have been studied in the lit-

erature, it is assumed there that the failure time distribution or equivalently

minimal repair process is completely known. In other words, when the failure

time distribution is unknown in advance, the analytical models in the literature

cannot provide the optimal periodic replacement time. The commonly used

technique to identify the failure time distribution or the minimal repair process

is to assume any parametric model and to estimate model parameters from the

underlying minimal repair data, by means of maximum likelihood (ML) estima-

tion. In many papers, the power-law process [15] and Cox-Lewis process [16]
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are frequently assumed without justification as the representative minimal re-

pair processes. Once the minimal repair process is identified, the point estimates

of the long-run average cost per unit time and the optimal periodic replacement

time are derived as plug-in estimates with model parameters estimated by the

ML method.

For a simple age replacement model [4], Arunkumar [17], Bergman [18], In-

gram and Scheaffer [19] concerned nonparametric estimation of the optimal age

replacement time under the assumption where the independent and identically

distributed (i.i.d.) failure time data is available but its probability distribution

is unknown. They proposed statistically consistent estimators of the optimal

age replacement time as point estimates. Leger and Cleroux [20] developed a

nonparametric confidence interval of the optimal age replacement time in the

same situation, where a nonparametric bootstrap method is applied. It should

be noted that the interval estimation of the optimal maintenance policy is more

difficult in analysis but more useful in practice than the point estimation, be-

cause it can take account of uncertainty in estimation. Since the convergence

of nonparametric estimators is in general slower than parametric estimators in

many cases, it is worth mentioning that the parametric models can sometimes

work better despite of the incomplete knowledge on failure time distribution.

Recently, Tokumoto et al. [21] derived parametric confidence intervals of the op-

timal age replacement problem under Weibull failure time distribution by means

of parametric bootstrapping. In a somewhat different situation, Croteau et al.

[22] proposed nonparametric confidence intervals of the optimal periodic replace-

ment time with minimal repair, based on several nonparametric point estimates

of minimal repair process. However, they implicitly assume the situation where

the i.i.d. failure time data are available, but not where the record of minimal

repairs is available. On the other hand, Gilardoni et al. [23] considered another

nonparametric bootstrap confidence interval for a periodic replacement prob-

lem with minimal repair, when the minimal repair process or its superposition

is observed. Their nonparametric approach is based on the total time on test

transform [18] and a nonparametric maximum likelihood estimation (NPMLE)

of non-homogeneous Poisson process by Boswell [24].

An alternative technique, which is called the kernel-based method, can be
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applied to periodic replacement problem with minimal repair. Diggle and Mar-

ron [25] proved the equivalence of smoothing parameter selectors in probability

density function estimation from i.i.d. sample and the intensity function estima-

tion from the minimal repair data, in the framework of kernel-based techniques.

In fact, the kernel-based approach is quite useful to improve the convergence of

nonparametric estimators [26]. Gilardoni and Colosimo [27] applied the kernel-

based estimation method to obtain the point estimate of the optimal periodic

replacement time with several sets of minimal repair data, and obtained the

nonparametric bootstrap confidence intervals.

In this thesis, we consider two situations in which the failure time distribu-

tion or equivalently minimal repair process is completely known or unknown.

At first, we aim to derive the probability distributions of statistical estimators

of optimal periodic replacement time using parametric bootstrap methods in

a periodic replacement problem with minimal repair, and calculate the higher

moments and the two-sided confidence intervals of these estimators. Next, we

consider nonparametric estimation methods for a periodic replacement problem

with minimal repair, where the expected cumulative number of failures (minimal

repairs) is unknown. We mainly focus on the kernel based estimation methods

with single minimal repair data. Furthermore, we use the well-known Gaussian

kernel function, and apply two cross-validation methods for bandwidth estima-

tion with integrated least squares error criterion [25] and log likelihood function

criterion [28]. For constructing the bootstrap confidence interval of the optimal

periodic replacement time, we apply three replication techniques for bootstrap

samples; simulation-based technique and resampling-based techniques by Cowl-

ing et al. [2]. The above combinations on techniques are compared with the

existing methods by Boswell [24] and Gilardoni et al. [23]. It is revealed which

method is an appropriate one in the both viewpoints of point estimation and

interval estimation, throughout our simulation experiments.

1.2 Software Reliability Assessment

Software reliability is a still challenging issue because almost all computer-based

systems are controlled by software. Especially, quantification of software reli-

ability is quite important from the standpoint of product liability. Since the
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quantitative software reliability is defined as the probability that software fail-

ures caused by software faults do not occur for a given period of time, software

reliability model (SRM) has been extensively studied in both software engineer-

ing and reliability engineering community. In fact, during the last four decades,

a large number of SRMs have been proposed in the literature, and some of them

have been used to assess software reliability and to control quantitatively soft-

ware testing [29],[30]. Among them, SRMs based on non-homogeneous Poisson

processes (NHPPs) have been extensively used for describing the stochastic be-

havior of the number of detected faults, from their tractability and goodness-of-

fit performance. Achcar et al. [31], Goel and Okumoto [32], Goel [33], Gokhale

and Trivedi [34], Ohba [35], Ohishi et al. [36], Okamura et al. [37], Yamada

et al. [38], Zhao and Xie [39], among others, are well-known as representative

NHPP-based SRMs. These NHPP-based SRMs can be classified into parametric

models, where the mean value function or the intensity function characterizing

NHPP-based SRMs is known in advance. More precisely, since the paramet-

ric SRMs depend on the statistical property of fault-detection time, the choice

of NHPP-based SRMs is equivalent to choosing the fault-detection time dis-

tribution. However, the lesson learned from a number of empirical researches

reported during the last four decades suggests that the best parametric SRM

does not exist, which can fit every type of software fault data. This fact means

that the best parametric NHPP-based SRM has to be selected carefully from

many candidates by checking their goodness-of-fit performance in each software

development project.

From the above motivation, the nonparametric SRMs without specifying the

fault-detection time distribution have been considered by some authors. This is

really a non-trivial issue because the NHPP-based SRM has to be characterized

under the incomplete knowledge on software fault-detection time distribution.

For unknown software intensity function or mean value function of an NHPP,

Sofer and Miller [40] proposed a piecewise-linear interpolation estimator with

breakpoints for the mean value function, and defined its slope as an estimate

of the software intensity function. Gandy and Jensen [41], Barghout et al. [42],

Wang et al. [43], Dharmasena et al. [44], Kaneishi and Dohi [45] indepen-

dently proposed several kernel-based approaches to estimate the software inten-
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sity function. However, the above all nonparametric NHPP-based SRMs are

not consistent to the common maximum likelihood principle. Strictly speaking,

it may be meaningless in some cases to compare the parametric NHPP-based

SRMs with maximum likelihood estimates with the nonparametric NHPP-based

SRMs under the different estimation principle.

On the other hand, it is well known that Poisson processes, even though they

were non-homogeneous, do not allow for the variance to be adjusted indepen-

dently of the mean value function, and fail to have the so-called overdispersion,

which is the presence of greater variability (statistical dispersion) in data sets

than would be expected based on given NHPP-based SRMs and is a very com-

mon feature in reliability analysis. All the representative NHPP-based SRMs

[31],[32],[33],[34],[35],[36],[38],[39],[46],[47],[48] possess the above property and

have some limitation. Apart from the selection of parametric and nonparamet-

ric estimation techniques in the common NHPP-based SRMs, it is also inter-

esting to focus on more generalized SRMs as another modeling framework with

overdispersion. Ishii and Dohi [49] developed non-homogeneous gamma process

(NHGP)-based SRMs by employing an interesting idea by Berman [50]. The

NHGP can be characterized as a modulated gamma renewal process by a trend

function, which is equivalent to the mean value function of an NHPP. For in-

stance, the NHGP is an extension of NHPPs by generalizing the exponentially

distributed inter-renewal time to the gamma distributed one. Ishii and Dohi

[49] implicitly assumed only a few types of trend functions and do not select

the best trend function from possible candidates. In the life data analysis, the

trend-renewal process (TRP) by Lindqvist et al. [51] is becoming a standard to

analyze the complex failure count phenomena. It involves the NHGP as a special

case, and overlaps a large amount of the so-called general repair model [52]. Al-

though it is possible to develop different models from NHGP-based SRMs from

the standpoint of TRP modeling framework, we pay our attention to evaluate

the potential applicability and robustness of the NHGP-based SRMs [49].

In this thesis, we consider nonparametric approaches for NHPP-based SRMs

and NHGP-based SRMs, respectively. At first, we develop alternative nonpara-

metric approaches for NHPP-based SRMs along the similar line to the classical

parametric approach. More specifically, we consider two nonparametric maxi-
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mum likelihood estimations (NPMLEs) for aiming at software reliability mea-

surement with the common NHPP-based SRM. We apply the classical NPMLE

approach proposed by Boswell [24] and Bartoszynski et al. [53] to the data anal-

ysis of software fault-detection time data. Further, we propose another NPMLE

approach from the view point of general order statistics [54]. The key idea is

to apply the failure rate estimators from the underlying fault-detection time

data, which are referred to as Marshall and Proschan estimator [3]. Also, we

develop a nonparametric approach for discrete time NHPP-based SRMs by ap-

plying NPMLE to the software fault count data. Next, we extend the standard

NHGP-based SRMs from both view points of modeling and parameter estima-

tion. In modeling, we generalize the underlying NHGP-based SRMs [49] to those

for eleven kinds of trend functions, which can characterize a variety of software

fault-detection patterns. In parameter estimation, we develop a nonparamet-

ric maximum likelihood estimation method without the complete knowledge on

trend functions.

1.3 Optimal Software Release Problem (SRP)

Apart from the software reliability assessment, the main concern in software pro-

cess management by practitioners is to find when to stop software testing and to

release software to the market or users. The problem to determine the optimal

timing to stop software testing is called the optimal software release problem

(SRP). In fact, there is a well-recognized tradeoff relationship in software costs.

If the length of software test is much shorter, then the total testing cost can be

reduced but the larger debugging cost after releasing software may occur in op-

erational phase, because the debugging cost in operational phase is much more

expensive than that in testing phase. Conversely, the longer testing period may

result higher software reliability, but leads to increase of testing cost. Thus, it

is important to find an appropriate software release time taking account of the

expected total software cost. Okumoto and Goel [55] derived the optimal soft-

ware release time such that the software reliability attains a certain requirement

level, for their NHPP-based software reliability model (SRM). Alternative way

introduced in [55] is to stop software testing so as to minimize the expected total

software cost, by taking account of the tradeoff relationship. Since the seminal
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work, many authors consider a number of cost-based software release problems

under different model assumptions and optimization criteria. Koch and Kubat

[56] discussed the similar problem under the reliability criterion to [55] with

a different SRM. Yamada and Osaki [57],[58] formulated the optimal software

release problems by taking account of cost and reliability requirement simul-

taneously for NHPP-based SRMs. Hou et al. [59],[60] obtained the optimal

release policies with scheduled delivery time for the so-called hypergeometric

distribution-based SRM. Dohi et al. [61],[62] focused on a graphical feature of

the cost-based software release problem and propose an estimation framework

of the optimal software release time via artificial neural networks and autore-

gressive models. Pham and Zhang [63] proposed a somewhat different software

cost model with warranty and risk costs. Xie and Yang [64] examined an effect

of imperfect debugging in a software release problem. Yang et al. [65] also stud-

ied a different software cost model from [64] and investigated the uncertainty in

software release problem. Sgarbossa and Pham [66] formulated a more complex

software release problem under random field environments and reliability. In

this way, considerable attentions have been paid for the derivation of optimal

software release policies with different cost criteria and SRMs.

It should be noted that almost all works in past concern the point estimation

of the optimal software release time and never take account uncertainty of the

optimal policy into consideration. In other words, if the statistical estimation

error occurs, then the resulting policy may not be able to provide the optimal

software release decision appropriately. The pioneering work is made by Zhao

and Xie [67], where the authors considered approximately the interval estima-

tion in two software release problems. Recently, Xie et al. [68] generalized

their result and characterized the risk-based optimal software release policies.

Okamura et al. [69] also formulated the exactly same problems within the

Bayesian estimation framework and derived analytically the credible interval of

the optimal software release times without approximations. Tokumoto and Dohi

[70] applied a parametric bootstrapping [71] to obtain the two-sided confidence

interval of the optimal software release time numerically. As another research

direction in software reliability, some authors concern nonparametric estimation

of software fault-detection process based on the kernel-based methodology and
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the wavelet-shirinkage estimations. However, such methodologies never work

well for the optimal software release problems, because one needs to predict

the number of software failures occurred in the long-term future, after releasing

software to the market or users. More precisely, it is not so easy to formulate

the software reliability function or the expected total software cost under the

nonparametric assumption. To our best knowledge, there have no research re-

sult on the optimal software release problems under the assumption that the

knowledge on the underlying software fault-detection process is uncompleted.

We consider a challenging issue on nonparametric optimal software release

problem, where the intensity function of an NHPP-based SRM is unknown.

Under such incomplete knowledge on software fault-detection process, the main

difficulty here is that the statistical estimates of intensity function are func-

tions of only fault-detection time data in the above nonparametric estimation

methods. We focus on a different statistical inference paradigm and propose

to use an alternative nonparametric approach by Sofer and Miller [40]. The

most significant contribution of their work is that it can provide the upper and

lower predictive limits of the cumulative number of software faults even after

releasing the software. Since the long-term prediction is definitely needed to

formulate the common optimal software release problem, we apply Sofer and

Miller approach [40] to estimate the expected total software cost. In addition,

we calculate the predictive confidence interval as well as the point estimate of

the optimal software release time which minimizes the expected total software

cost. For this purpose, we apply a nonparametric bootstrap method used in

Kaneishi and Dohi [45] to obtain the two-sided predictive confidence interval

of the optimal software release time by minimizing the upper or lower limit of

the expected total software cost. Since the resulting optimal stopping problem

enables us to make the decision on when to stop or continue software testing, it

is feasible to provide a realistic false alarm on the optimal release decision (note

that almost all works in past [55],[56],[57],[58],[59],[60],[61],[62],[63],[64],[65] have

not dealt with statistical estimation problems, so their release alarm might in-

dicate an unrealistic time point such as the past point looked back from the

current observation point). Since our method is based on a predictive approach

in spite of its nonparametric nature, it is useful to make flexible decision making
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on when to stop software testing under uncertainty.

1.4 Organization of Dissertation

This thesis is organized as follows:

In Chapter 2, we consider a statistical estimation problem for a periodic

replacement problem with minimal repair and propose two parametric bootstrap

methods. Especially, we concern two data analysis techniques: direct data

analysis of the minimal repair data which obeys a non-homogeneous Poisson

process and indirect data analysis after data transformation to a homogeneous

Poisson process. Through simulation experiments, we investigate statistical

features of the proposed parametric bootstrap methods. Also, we analyze the

real minimal repair data to demonstrate the proposed methods in practice.

In Chapter 3, we consider nonparametric estimation methods for a peri-

odic replacement problem with minimal repair, where the expected cumulative

number of failures (minimal repairs) is unknown. To construct the confidence

interval of an estimator of the optimal periodic replacement time which mini-

mizes the long-run average cost per unit time, we apply two kernel-based boot-

strap estimation methods and three replication techniques for bootstrap sam-

ples. In simulation experiments, we compare those results with the well-known

constrained nonparametric maximum likelihood estimate (CNPMLE) and some

parametric models. We also conduct the field data analysis based on an actual

minimal repair data, and refer to an applicability of our methods.

In Chapter 4, we consider three nonparametric estimation methods for soft-

ware reliability assessment without specifying the fault-detection time distribu-

tion, where the underlying stochastic process to describe software fault-counts

in the system testing is given by a non-homogeneous Poisson process. Two of

these are nonparametric estimation methods with fault detection time data. On

the other hand, one of these is a nonparametric estimation method with soft-

ware fault count data. The resulting data-driven methodologies can give the

useful probabilistic information on the software reliability assessment under the

incomplete knowledge on fault-detection time distribution. Throughout exam-

ples with real software fault data, it is shown that the proposed methods provide
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more accurate estimation results than the common parametric approach.

In Chapter 5, we consider a software release decision to stop the software

testing by minimizing the expected total software cost, under the assumption

that the probability law of software fault-detection process is unknown. We

focus on the nonparametric prediction method of a non-homogeneous Poisson

process by Sofer and Miller [40] and apply it to the optimal software release

problem. We calculate the predictive confidence interval as well as the point

estimate of the optimal software release time. Since our method is based on a

predictive approach in spite of its nonparametric nature, it is useful to make

flexible decision making to stop software testing.

In Chapter 6, we extend non-homogeneous gamma process (NHGP)-based

software reliability models (SRMs) by Ishii and Dohi [49] from both view points

of modeling and parameter estimation. We compare our nonparametric max-

imum likelihood estimation method with the parametric maximum likelihood

estimation method. Since an NHGP involves an NHPP as a special case, it is

shown that NHGP-based SRMs are much more robust than the common NHPP-

based SRMs and that our nonparametric method can improve the goodness-of-fit

performance of the conventional parametric one.

Finally, the thesis is concluded with some remarks and future directions in

Chapter 7.





Chapter 2

Uncertainty Analysis for a
Periodic Replacement
Problem with Minimal
Repair: Parametric
Bootstrapping

In this chapter, we consider a statistical estimation problem for a periodic re-

placement problem (PRP) with minimal repair (MR) which is one of the most

fundamental maintenance models in practice, and propose two parametric boot-

strap methods which are categorized into simulation-based approach and re-

sampling-based approach. Especially, we concern two data analysis techniques:

direct data analysis of the minimal repair data which obeys a non-homogeneous

Poisson process and indirect data analysis after data transformation to a ho-

mogeneous Poisson process. In details, we take place the high level statistical

estimation of the optimal preventive maintenance time and its associated long-

run average cost per unit time, and derive estimators of higher moments of the

optimal maintenance policy, and its confidence interval. Then, the parametric

bootstrap methods play a significant role. The proposed approach enables us the

statistical decision making on the preventive maintenance planning under un-

certainty. Through simulation experiments, we investigate statistical features of

the proposed parametric bootstrap methods. Also, we analyze the real minimal

repair data to demonstrate the proposed methods in practice.

13
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2.1 Periodic replacement problem with minimal
repair

Notation;

C(τ): long-run average cost per unit time

C(τ̂∗): maximum likelihood (ML) point estimate of the long-run average cost

per unit time

C(k)(τ̂
∗): k-th estimate of the the long-run average cost per unit time via boot-

strap method

c1 (> 0): cost of each minimal repair

c2 (> c1): cost of each periodic replacement

m: number of replications via bootstrap method

{N(t), t ≥ 0}: cumulative number of failures experienced by time t (the total

number of minimal repairs by time t)

n: number of failure data

T : failure time of the component (non-negative random variable)

ti: occurrence time of i-th failure under minimal repair

τ : periodic replacement time

τ∗: optimal periodic replacement time

τ̂∗: ML point estimate of the optimal periodic replacement time

τ̂∗(k): k-th estimate of the optimal periodic replacement time via bootstrap

method

t∗k,i: i-th failure time data at k-th (k = 1, 2, · · · ,m) replication

w∗
k,i: i-th failure time interval data at k-th (k = 1, 2, · · · ,m) replication

α ∈ (0, 1): significance level

β (> 1): shape parameter of power law model
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β̂: ML estimate of the shape parameter

η (> 0): scale parameter of power law model

η̂: ML estimate of the scale parameter

Λ(t): expected cumulative number of failures occurred (equivalently the cumu-

lative number of minimal repairs) by time t

λ(t): failure intensity function of component

2.1.1 Model description

We consider a periodic replacement problem with minimal repair for single unit

system. Suppose that the failure time T has an absolutely continuous probabil-

ity distribution function Pr(T ≤ t) = F (t) and a probability density function

dF (t)/dt = f(t). In the periodic replacement problem with minimal repair,

the component which fails before time τ (> 0) is restored back to a working

condition that is only as good as it was just before failure. In other words, after

each failure, only minimal repair is made so that the failure rate remains undis-

turbed by repair. Also, the used component is replaced by a new one at time τ

preventively. Since the administrator need not to record the past replacement

history in this way, it is easy to take place the preventive maintenance. On the

other hand, even if the component is temporarily repaired before time τ , the

same component is replaced by a new one at time τ . Therefore, there is an

additional cost for the preventive maintenance. The expected total cost for one

cycle can be represented by c1Λ(τ)+ c2, where one cycle is the time length from

the beginning of component operation to the end of preventive replacement.

Therefore, the long-run average cost per unit time is given by

C(τ) =
c1Λ(τ) + c2

τ
. (2.1)

The problem here is to obtain the optimal periodic replacement time τ∗ min-

imizing Eq.(2.1). By differentiating the function C(τ) with respect to τ and

setting it equal to zero, we have q(τ∗) = 0 where

q(τ) = c1
{
τλ(τ) Λ(τ)

}
c2 (2.2)
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and λ(τ) = dΛ(τ)/dτ . Under the condition that the intensity function increases

with respect to time (i .e., dλ(t)/dt > 0), if q(∞) > 0, then there exists a unique

and finite optimal periodic replacement time τ∗ (0 < τ∗ < ∞).

2.1.2 Estimation of model parameters with failure data

The failure occurrence phenomenon with minimal repair is described by a non-

homogeneous Poisson process (NHPP). It is well known that the stochastic point

process N(t) possesses the following properties:

• N(0) = 0,

• {N(t), t ≥ 0} has independent increments,

• Pr{N(t+∆t) N(t) ≥ 2} = o(∆t),

• Pr{N(t+∆t) N(t) = 1} = λ(t)∆t+ o(∆t),

where the function o(∆t) is the higher term of ∆t. The probability mass function

of N(t) is given by

Pr(N(t) = n) =
{Λ(t)}n

n!
exp{ Λ(t)}, n = 0, 1, 2, · · · , (2.3)

Λ(t) =

∫ t

0

λ(x)dx. (2.4)

Here, the function N(t) is called an NHPP having the mean value function Λ(t)

and intensity function λ(t) = dΛ(t)/dt.

Furthermore, we assume the power law model (see [15]):

Λ(t; η, β) = log F̄ (t) =
t

η

β

, (2.5)

where F̄ (t) = 1 F (t) and F (t) = 1 exp{ (t/η)β}. If β > 1, then we have

dλ(t)/dt > 0 and q(∞) > 0 in the power law model, so that the optimal periodic

replacement time τ∗ exists uniquely. We focus on only the plausible situation

of β > 1.

The next step is to estimate the model parameters (η, β). Suppose that n

failure time data ti (i = 1, 2, · · · , n) under minimal repair, which obey the power

law model, are available. The maximum likelihood (ML) estimates (η̂, β̂) are

defined as the parameters which maximize the following log likelihood function:

logLNHPP (η, β | ti) =
n∑

i=1

log λ(ti; η, β) Λ(ti; η, β). (2.6)
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From the first order condition of optimality in Eq.(2.6), we calculate the ML

estimates (η̂, β̂) by solving the following simultaneous equations:

β̂ =
n

n log tn
∑n

i=1 log ti
, (2.7)

η̂ =

(
tβ̂n
n

) 1
β̂

. (2.8)

By substituting the resulting estimates (η̂, β̂) into Eq.(2.2), we obtain the ML

plug-in point estimates τ̂∗ and C(τ̂∗) of the optimal periodic replacement time

τ∗ and its associated long-run average cost per unit time C(τ∗).

2.2 Parametric bootstrap method

It may be useful to obtain the ML estimate τ̂∗ of the optimal periodic re-

placement time. However, since the resulting estimate is calculated from a fixed

sample of failure time data t1, t2, · · · , tn, we cannot correspond to unknown fail-

ure patterns in the future, and cannot consider the uncertainty of the estimator

as a random variable. For such a problem, it is well known that the interval

estimation may work better to make the valid decision under uncertainty. Un-

fortunately, it is difficult to derive analytically the interval estimates of complex

variables such as the optimal replacement time and the corresponding long-run

average cost per unit time. Hence, we consider a statistical estimation problem

with the parametric bootstrap method and derive the probability distribution of

estimators such as the optimal periodic replacement time and the corresponding

long-run average cost per unit time. The bootstrap method is the representa-

tive statistical approach to replicate different failure time data sets from original

failure time data t1, t2, · · · , tn (see [72]). The generated failure time data sets

are called the bootstrap samples. For the periodic replacement problem with

minimal repair, we replicate m (> 0) bootstrap samples from original failure

time (minimal repair time) data t1, t2, · · · , tn and obtain the m ML estimates of

model parameters η and β with m bootstrap samples. In this chapter we pro-

pose two bootstrap methods; simulation-based method and re-sampling-based

method to replicate the bootstrap samples. Furthermore, we propose two data

analysis techniques: direct application of the minimal repair data which obey a

non-homogeneous Poisson process and data transformation to a homogeneous
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Poisson process (HPP). To this end, we consider four bootstrap methods to

replicate the bootstrap samples as follows.

Method (i) Simulation-based method to NHPP data (NHPP-BS1): With the

ML estimates η̂ and β̂ calculated from the original failure time data under min-

imal repair t1, t2, · · · , tn, we generate bootstrap samples t∗k,i at k-th simulation

which follow the power law model, where k = 1, 2, · · · ,m and i = 1, 2, · · · , n.

It is known that the first failure time t∗k,1 obeys the probability distribution

function F (t∗k,i) = 1 exp{ Λ(t∗k,1)} and the conditional probability distribu-

tion of the n-th failure time t∗k,j (j = 2, 3, · · · , n) is given by F (t∗k,j | t∗k,j 1) =

1 exp{ Λ(t∗k,j) + Λ(t∗k,j 1)}. Therefore, the resulting bootstrap samples are

given by

t∗k,1 = η̂
[

log Uk(0, 1)
)] 1

β̂
, (2.9)

t∗k,j =
[

η̂β̂ log Uk(0, 1)
)
+ t∗k,j 1

β̂
] 1

β̂
, (2.10)

where Uk(0, 1) is the uniform random numbers within [0, 1] (see [73]). Then

we estimate m ML estimates (η̂k, β̂k) (k = 1, 2, · · · ,m) based on the bootstrap

samples generated from Eqs.(2.9) and (2.10).

Method (ii) Re-sampling-based method to NHPP data (NHPP-BS2): We

sample n failure time data with replacement randomly from the original data

t1, t2, · · · , tn. We obtain m ML estimates (η̂k, β̂k) (k = 1, 2, · · · ,m) with boot-

strap samples t∗k,i (i = 1, 2, · · · , n; k = 1, 2, · · · ,m) obtained by the re-sampling

technique.

Method (iii) Simulation-based method to HPP data (HPP-BS1): First, we

generate the pseudo failure time interval data w∗
k,i which obey the exponential

distribution with parameter λ = 1 by using the inverse function of the exponen-

tial distribution function, where i = 1, 2, · · · , n and k = 1, 2, · · · ,m. Second, we

transform the generated failure time interval data to the failure time data which

follows an HPP. These data can be transformed to the failure time data sets

t∗k,i which follows the power law model with the inverse function of the mean

value function and the ML estimates η̂ and β̂ calculated from the original data

t1, t2, · · · , tn. With these bootstrap samples t∗k,i, we obtain m ML estimates

(η̂k, β̂k) (k = 1, 2, · · · ,m).
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Method (iv) Re-sampling-based method to HPP data (HPP-BS2): First, we

transform the original failure time data under minimal repair t1, t2, · · · , tn to

the mean value function data (HPP data) with mean value function of the

power law model and the ML estimates η̂ and β̂. After transforming these

data to the time interval data, we randomly sample n failure time interval data

with replacement. Then we retransform the failure time interval data w∗
k,i (i =

1, 2, · · · , n; k = 1, 2, · · · ,m) to the failure time data sets t∗k,i which follow the

power law model. Finally, we obtain m ML estimates (η̂k, β̂k) (k = 1, 2, · · · ,m)

with these bootstrap samples.

From Eq.(2.2) and m ML estimates (η̂k, β̂k) (k = 1, 2, · · · ,m) derived in

the above four methods, we calculate m ML estimates of the optimal periodic

replacement time τ∗. Furthermore, we calculate the corresponding ML esti-

mates of the minimum long-run average cost per unit time C(τ∗) in Eq.(2.1)

and derive the estimator distributions of τ∗ and C(τ∗). Let τ̂∗(k) be each esti-

mate of the optimal periodic replacement time τ∗ which is calculated by using

bootstrap samples, where k = 1, 2, · · · ,m and τ̂∗(k) satisfy the condition τ̂∗(1) ≥

τ̂∗(2) ≥ · · · ≥ τ̂∗(m). Also, let C(k)(τ̂
∗) (C(1)(τ̂

∗) ≥ C(2)(τ̂
∗) ≥ · · · ≥ C(m)(τ̂

∗)) be

the estimate of minimum long-run average cost per unit time C(τ∗). We label

τ̂∗(m/2) and τ̄∗ = (
∑m

k=1 τ̂
∗
(k))/m as the BS-median and the BS-mean, respec-

tively. Furthermore, the two-sided 100(1 α)% confidence interval is given by

[τ̂∗(m(α/2)), τ̂
∗
(m(1 α/2))], where α ∈ (0, 1) represents the significance level. The

variance V , skewness S and kurtosis K of estimators of the optimal periodic

replacement time are defined by the following equations:

Vτ∗ =

∑m 1
k=1 (τ̂∗(k) τ̄∗)2

m 1
, (2.11)

Sτ∗ =

∑m
k=1(τ̂

∗
(k) τ̄∗)3

mV
3
2

, (2.12)

Kτ∗ =

∑m
k=1(τ̂

∗
(k) τ̄∗)4

mV 2
. (2.13)

2.3 Numerical examples

Suppose the power law model with (β, η) = (3, 0.2) and generate the original

failure time data under minimal repair in our simulation experiment. The cost
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parameters are given by c1 = 1 and c2 = 1, 000. In this case, the real solu-

tion of the optimal periodic replacement time and the corresponding long-run

average cost per unit time are calculated as τ∗ = 1.587 and C(τ∗) = 945, respec-

tively. We apply four bootstrap methods in Section 2.2 to generate m = 10, 000

bootstrap samples. We obtain 10, 000 model parameters with ML estimation,

and obtain 10, 000 estimates of the optimal periodic replacement time and its

corresponding long-run average cost per unit time. Based on the estimator

distributions, we derive variance, skewness and kurtosis of the optimal periodic

replacement time and its corresponding long-run average cost per unit time. For

the significance level α = 0.05, we derive 95% two-sided confidence intervals of

the optimal periodic replacement time and the corresponding long-run average

cost per unit time. It is well known that if the skewness is closed to 0.0 and

the kurtosis is closed to 3.0, then we can regard the estimator distribution as

normal distribution approximately.

To investigate the effect of the number of original data n, we change the

number of original data from n = 5 to n = 245 by 5 and calculate the BS esti-

mates (BS-mean and BS-median), high moments (variance, skewness, kurtosis)

and 95% two-sided confidence intervals (CI). Tables 2.1-2.2 show estimation re-

sults of the optimal periodic replacement time and the corresponding long-run

average cost per unit time with four bootstrap methods. From these tables, it

is observed that the variance of probability distribution of estimators reduces

as the number of original data increases in all bootstrap methods. Also it can

be seen that the skewness and kurtosis of minimum long-run average cost per

unit time in NHPP-BS1, HPP-BS1 and HPP-BS2 cases are close to 0.0 and 3.0,

respectively, even in cases with small sample sizes. In NHPP-BS2 case, the esti-

mator distribution for the minimum long-run average cost per unit time cannot

be approximated by the normal distribution. On the other hand, looking at the

optimal periodic replacement time, the skewness and kurtosis tend to be greater

than 0.0 and 3.0, respectively in all cases.

Table 2.3 presents the estimation of normal approximation which is applied

with BS-mean and variance of estimators of the minimum long-run average cost

per unit time. We compare the length of 95% confidence interval in the case

where the derived estimator distribution is approximated by normal distribution
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with that of 95% confidence interval derived with our estimator distributions.

From this table, we can know that the differences of two 95% confidence in-

tervals get smaller as the number of original data increases. Furthermore, the

differences on two 95% confidence intervals from NHPP-BS2 method are most

remarkable since the values of skewness and kurtosis are little bit far from values

in the normal distribution in NHPP-BS2 case corresponding to other cases.

Table 2.1: The results of optimal periodic replacement time with four bootstrap
methods.

n MLE Mean Vτ∗ Sτ∗ Kτ∗ 95% CI

NHPP BS1 50 1.533 1.522 0.080 1.219 6.122 [1.113, 2.202]

100 1.608 1.601 0.033 0.681 3.832 [1.301, 2.018]

150 1.672 1.671 0.023 0.653 3.979 [1.419, 2.004]

200 1.566 1.565 0.009 0.437 3.351 [1.399, 1.769]

BS2 50 1.533 1.445 0.052 0.683 3.765 [1.070, 1.960]

100 1.608 1.590 0.029 0.721 4.032 [1.312, 1.974]

150 1.672 1.677 0.020 0.639 3.789 [1.437, 1.995]

200 1.566 1.565 0.007 0.541 3.680 [1.421, 1.748]

HPP BS1 50 1.533 1.527 0.083 1.205 5.880 [1.100, 2.227]

100 1.608 1.605 0.033 0.716 3.848 [1.310, 2.021]

150 1.672 1.670 0.023 0.651 3.762 [1.420, 2.014]

200 1.566 1.563 0.009 0.473 3.465 [1.399, 1.767]

BS2 50 1.533 1.540 0.098 1.399 7.189 [1.096, 2.288]

100 1.608 1.597 0.027 0.734 4.059 [1.329, 1.970]

150 1.672 1.670 0.020 0.579 3.555 [1.431, 1.984]

200 1.566 1.566 0.009 0.426 3.424 [1.398, 1.768]

Figures 2.1-2.2 show asymptotic behaviors of estimators of the optimal pe-

riodic replacement time and the corresponding long-run average cost per unit

time in HPP-BS2 case. We also provide the similar results to other methods.

From these figures, we can see that the confidence intervals get tighter as the

sample size of original data n increases. Furthermore, it is observed that the

BS-mean and BS-median get closer to the ML estimate. But, even if the sample
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Table 2.2: The results of minimum long-run average cost per unit time with
four bootstrap methods.

n MLE Mean VC∗ SC∗ KC∗ 95% CI

NHPP BS1 50 967 987 11634 -0.093 3.026 [771, 1190]

100 941 948 3679 -0.027 3.084 [827, 1066]

150 931 934 1970 -0.070 3.088 [845, 1019]

200 948 950 857 -0.035 2.925 [892, 1006]

BS2 50 967 1020 9854 0.095 2.771 [833, 1220]

100 941 952 2646 -0.230 3.080 [845, 1048]

150 931 932 1249 -0.322 3.172 [857, 996]

200 948 950 358 -0.437 3.395 [909, 983]

HPP BS1 50 967 985 11990 -0.065 3.110 [765, 1198]

100 941 947 3622 -0.086 2.971 [826. 1063]

150 931 934 1985 -0.113 3.075 [843, 1019]

200 948 950 865 -0.017 3.022 [893, 1008]

BS2 50 967 983 13375 -0.129 3.008 [751, 1202]

100 941 948 2944 -0.098 3.096 [839, 1053]

150 931 934 1779 -0.066 3.032 [848, 1016]

200 948 950 879 0.041 3.028 [892, 1008]
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size of data n increases as large as possible, BS-mean and BS-median are not

equal to the ML estimate. This fact means that we cannot get the consistent

estimator from only one failure time data set t1, t2, · · · , tn. It can be observed

that BS-mean and BS-median give values closed to the real optimal solutions,

but these values are not the exactly same value. Hence, we cannot conclude

which bootstrap method in Section 2.2 is the best from the view point of point

estimation. Figures 2.3-2.4 show the trend of the confidence interval in each

bootstrap method. In these figures, the vertical axis represents the length of

95% two-sided confidence intervals of optimal periodic replacement time τ∗[95]

and minimum long-run average cost per unit time C[95](τ
∗). From Fig.2.3, it is

obviously known that the 95% confidence interval of optimal periodic replace-

ment time is the narrowest in NHPP-BS2 case. On the other hand, it is not clear

which method has the superiority with respect to the 95% confidence interval of

minimum long-run average cost per unit time. However, we note that there are

relatively many cases in which the 95% confidence interval in NHPP-BS2 case is

the narrowest from Fig.2.4. Therefore, it can be concluded that the NHPP-BS2

is the best method since the 95% two-sided confidence interval of estimators is

tightest.

2.4 Real-life example

The real failure data analysis is useful to give a reality to the mathematical

modeling (see [74]). We also study a real life example to demonstrate how to

use our proposed parametric bootstrap methods for the periodic replacement

problem with minimal repair. Suppose that the old car user encounters a prob-

lem whether to perform the minimal repair for the diesel engine of his or her car,

or to replace by the new one. Since the user wishes to minimize the expected

cost for maintenance management of diesel engine, he or she makes a record of

times of minimal repair in order to plan optimally preventive maintenance.

In this section, we consider the minimal repair data of a diesel engine which

is shown in Meeker and Escobar [75] as the failure data of car engine (n = 71,

MTBF= 0.359 month). Figure 2.5 shows the trend of the minimal repair data.

It is obviously shown that these data have the convex shape with respect to

time. Therefore, it is easy to know that the failure rate gets higher as time goes
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Table 2.3: The results of minimum long-run average cost per unit time with
four bootstrap methods.

n Mean VC∗ Estimator Normal

distribution approximation

NHPP BS1 50 986.9 11634 [770.7, 1190.4] [775.5, 1198.4]

100 947.8 3679 [827.2, 1065.9] [828.9, 1066.7]

150 933.8 1970 [844.5, 1018.5] [846.8, 1020.8]

200 949.6 857 [892.3, 1005.9] [892.2, 1006.9]

BS2 50 1020.2 9854 [832.7, 1220.4] [825.7, 1214.8]

100 951.9 2646 [845.3, 1048.1] [851.1, 1052.8]

150 931.5 1249 [857.1, 995.6] [857.6, 996.2]

200 949.5 358 [909.1, 982.6] [912.4, 986.6]

HPP BS1 50 985.5 11990 [765.3, 1198.2] [770.9, 1200.1]

100 946.6 3622 [826.0. 1062.7] [828.7, 1064.6]

150 934.3 1985 [842.7, 1019.4] [847.0, 1021.6]

200 950.3 865 [892.5, 1008.0] [892.7, 1008.0]

BS2 50 983.1 13375 [750.8, 1202.2] [756.4, 1209.7]

100 948.0 2944 [838.7, 1053.3] [841.7, 1054.4]

150 933.8 1779 [848.2, 1016.1] [851.1, 1016.4]

200 949.7 879 [892.4, 1008.3] [891.6, 1007.8]
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Figure 2.1: Asymptotic estimates of optimal periodic replacement time in HPP-
BS2 case.

by. The ML estimates of model parameters from the given data are obtained

as (β̂, η̂) = (2.76, 5.45). We assume the minimal repair cost c1 = 1($) and the

periodic replacement cost c2 = 1, 000($). We use NHPP-BS2 method to obtain

10, 000 bootstrap samples and derive the estimator distribution, because the

NHPP-BS2 method gives the best confidence intervals of optimal replacement

times in many numerical cases of Section 2.3. Table 2.4 gives the estimation

result of the optimal periodic replacement time and its corresponding long-run

average cost per unit time. From this table, we can see that BS-mean and BS-

median take much closed values to ML estimate (MLE). Figures 2.6-2.7 show

the estimator distributions of the optimal periodic replacement time and its

corresponding long-run average cost per unit time. From these figures, it is

seen that the confidence interval includes the BS-mean, BS-median and MLE.

From the shape of distribution and the values of skewness and kurtosis, it is

observed that the estimator distribution of optimal periodic replacement time

is skew to left and that of minimum long-run average cost per unit time is skew
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Figure 2.2: Asymptotic estimates of minimum long-run average cost per unit
time in HPP-BS2 case.

Figure 2.3: Asymptotic length of 95% two-sided confidence interval of optimal
periodic replacement time.
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Figure 2.4: Asymptotic length of 95% two-sided confidence interval of minimum
long-run average cost per unit time.

to right. Furthermore, we can know that the distribution of the estimator of the

minimum long-run average cost per unit time is relatively close to the normal

distribution. On the other hand, it is seen that the estimator distribution of

the optimal periodic replacement time is very far from the normal distribution,

and has the longer tail on the right-hand side.

When the car owner uses the information of estimator distributions in real

world, he or she can check that the probability that estimators of optimal peri-

odic replacement time falls in the range from 37.69 months to 92.78 months is

given by 95%. Therefore, the owner can take more flexible decision making to

perform the preventive replacement within the 95% confidence interval, even if

there is any reason why he or she cannot do the preventive maintenance at time

54.20 month (point estimate). Furthermore, the upper and lower limits of 95%

confidence interval of minimum long-run average cost per unit time are 21.26($)

and 35.45($), respectively. Then the car owner can know the information as ref-

erence and anticipate that it will cost at least 21.26($) to maintain car engine.

Also he or she may think that it is possible to save money for the worst case
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i.e., 35.45($). In real world, even if we know the optimal replacement time for

maintenance, there are several situations in which it is difficult to perform the

preventive replacement as scheduled. Similarly, we sometimes want to know the

cost amount for replacement from the view point of budget. For such situations,

the proposed bootstrap methods will give the useful information to users.

Figure 2.5: Cumulative failure numbers of failure time data under minimal
repair.

Table 2.4: Estimation results in NHPP-BS2 case.

MLE Mean Median V S K 95% CI

τ∗ 54.20 56.26 53.36 202.99 1.582 7.222 [37.69, 92.78]

C(τ∗) 28.93 29.00 29.20 13.22 -0.316 2.929 [21.26, 35.45]
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Figure 2.6: The probability distribution of estimator of optimal periodic re-
placement time (NHPP-BS2 case).

Figure 2.7: The probability distribution of estimator of minimum long-run av-
erage cost per unit time (NHPP-BS2 case).





Chapter 3

Kernel-Based
Nonparametric Estimation
Methods for a Periodic
Replacement Problem with
Minimal Repair

In this chapter, we consider nonparametric estimation methods for a periodic

replacement problem (PRP) with minimal repair (MR), where the expected cu-

mulative number of failures (minimal repairs) is unknown. To estimate the

optimal periodic replacement time under incomplete knowledge on the failure

time distribution, we apply two kernel-based bootstrap estimation methods and

three replication techniques for bootstrap samples, and construct the confidence

interval of an estimator of the optimal periodic replacement time which mini-

mizes the long-run average cost per unit time. In simulation experiments, we

compare those results with the well-known constrained nonparametric maximum

likelihood estimate (CNPMLE) and some parametric models. We also conduct

the field data analysis based on an actual minimal repair data, and refer to an

applicability of our methods.

31
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3.1 Periodic Replacement Problem with Mini-
mal Repair

3.1.1 Model Description

In a repairable system, the system components are allowed to experience more

than one failure throughout their life. After each failure, we have to perform

a repair action to return the failed component state to the normal condition.

Usually, such an activity restores only damaged part of the failure component

back to a working condition that is only as good as it was just before the failure.

This kind of repair is called minimal repair [4]. On the other hand, we plan to

do a maintenance action called periodic replacement in advance and replace the

used component by new one at pre-specified time. To model the behavior of

cumulative number of minimal repairs, it is well known that a non-homogeneous

Poisson process (NHPP) can be used [76]. The stochastic process {N(t), t ≥ 0}

which satisfies the following conditions is called NHPP:

• N(0) = 0,

• {N(t), t ≥ 0} has independent increments,

• Pr{N(t+∆t) N(t) ≥ 2} = o(∆t),

• Pr{N(t+∆t) N(t) = 1} = λ(t)∆t+ o(∆t),

where o(∆t) is the higher term of ∆t. The probability mass function (p.m.f.)

of the NHPP is given by

Pr{N(t) = n} =
{Λ(t)}n

n!
exp{ Λ(t)}, (3.1)

Λ(t) =

∫ t

0

λ(x)dx, (3.2)

where the function λ(t) is called the intensity function and Λ(t)(= E[N(t)]) is

called themean value function which represents the expected cumulative number

of minimal repairs.

Let c1 (> 0) and c2 (> 0) be the fixed costs of the periodic replacement and

minimal repair, respectively. Then the long-run average cost per unit time is

formulated by

C(τ) =
c1Λ(τ) + c2

τ
=

c1

∫ τ

0

λ(t)dt+ c2

τ
, (3.3)
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where τ(> 0) denotes the periodic replacement time (decision variable). Then,

the problem is to derive τ∗ = {τ > 0; argminC(τ)}. Differentiating Eq.(3.3)

with respect to τ and setting it to zero imply the first-order condition of opti-

mality:

τλ(τ)

∫ τ

0

λ(t)dt =
c2
c1

. (3.4)

Hence if the intensity function λ(τ) is unknown, it has to be estimated in ei-

ther parametric or nonparametric way, according to the information on the

intensity function, available from the past minimal repair record or history. If

limτ→∞ τλ(τ)
∫ τ

0
λ(t)dt

)
> c2/c1 under the condition that the intensity func-

tion strictly increases with time, i.e., dλ(t)/dt > 0, then there exists a unique

and finite optimal periodic replacement time τ∗ (0 < τ∗ < ∞) minimizing

Eq.(3.3).

3.1.2 Parametric Estimation Method

In parametric method, we assume that the form of intensity function is com-

pletely known. Suppose that the failure-occurrence time data under minimal

repair, which are the random variables, are given by 0 < T1 ≤ T2 ≤ · · · ≤ Tn.

That is, it is assumed that n failures (minimal repairs) occur by time t and the

realizations of Ti (i = 1, 2, . . . , n), say, ti are observed, where tn ≤ t. We regard

the pair (ti, i) as a realization of the underlying NHPP. When the failure time

distribution F (t) is given with unknown parameter (vector) θ, the mean value

function of an NHPP is given by

Λ(t;θ) = log F̄ (t;θ). (3.5)

The next step is to estimate the model parameter θ from the count data

(ti, i) (i = 1, 2, . . . , n). The ML estimate θ̂ is defined as the parameter which

maximizes the following log likelihood function:

logLNHPP (θ | ti) =
n∑

i=1

log λ(ti;θ) Λ(tn;θ). (3.6)

By substituting the intensity function λ̂(t;θ) with the ML estimate θ̂ into

Eq.(3.4), we obtain the ML-based plug-in point estimates, τ̂∗ and C(τ̂∗), of

the optimal periodic replacement time τ∗ and its associated long-run average

cost per unit time C(τ∗), respectively.
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3.1.3 Constrained Nonparametric Maximum Likelihood
Estimate

Consider the case where the failure time distribution F (t) and the intensity

function λ(t) are completely unknown. In this case, the common method of

maximum likelihood does not work. In a fashion similar to the parametric case,

suppose that the failure-occurrence (minimal repair) time data are given by

random variables 0 < T1 ≤ T2 ≤ · · · ≤ Tn with realizations 0 < t1 ≤ t2 ≤

· · · ≤ tn. Without any loss of generality, we normalize the random variable

Xi = Ti/Tn ∈ (0, 1] with realizations xi = ti/tn ∈ (0, 1] for i = 1, 2, . . . , n,

dividing by the maximum length. If the number of failure time data is large

enough, it may be appropriate to assume xn = 1 as tn ≃ ∞. In this situation,

the most intuitive but simplest method to estimate the intensity function of an

NHPP is to use a piecewise-linear interpolation. For the n minimal repair time

data, χ = (xi, i) (i = 1, 2, . . . , n), define the following step-function estimate

with breakpoints xi of the mean value function:

Λ̂(x | χ) = i+
x xi

xi+1 xi
, xi < x ≤ xi+1; i = 0, 1, . . . , n 1. (3.7)

By plotting n failure points and connecting them by line segments, we can

obtain the resulting estimate of the mean value function in Eq.(3.7). This is

called the natural estimator because the mean squares error with the underlying

minimal repair time data is always zero. Then, the associated natural estimate

of intensify function is defined as each slope of mean value function by

λ̂(x | χ) = 1

xi xi 1
, xi 1 < x ≤ xi; x0 = 0. (3.8)

However, it is worth mentioning that the natural estimator in Eq.(3.8) does

not work well for the generalization ability, because it can fit to only the past

observation (training data) but cannot predict the unknown (future) pattern

data. In addition, the natural estimator in Eq.(3.8) tends to fluctuate every-

where with big noise, and does not provide stable estimation results at all.

Boswell [24] introduces the idea on isotonic estimation and gives a constrained

nonparametric maximum likelihood estimate (CNPMLE). Suppose that the in-

tensity function λ(x) is non-decreasing with respect to time x, i.e. the mean

value function is non-decreasing and convex in time. The likelihood function is
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defined as a function of unknown intensity functions at respective time points

by

L(λ(xi), i = 1, 2, . . . , n | χ) = exp
{ ∫ xn

0

λ(x | χ)dx
} n∏

i=1

λ(xi | χ). (3.9)

Then the nonparametric maximum likelihood estimation with Eq.(3.9) is for-

mulated as the following variational problem with respect to λ(·);

arg max
λ(xi),i=1,2,...,n

L(λ(xi), i = 1, 2, . . . , n | χ). (3.10)

Substituting Eq.(3.8) into Eq.(3.10), Boswell [24] solves it as a min-max solution

and gives

λ̂(xi | χ) = max
1≤s≤i

min
i≤k≤n

k s

xk xs
, (3.11)

where x0 = 0 and xn = 1. It can be checked easily that Eq.(3.11) leads to an

upper bound of L(λ(xi), i = 1, 2, . . . , n) for the natural estimator in Eq.(3.8)

with arbitrary points xi (i = 1, 2, . . . , n), by substituting Eq.(3.11) to Eq.(3.9).

The resulting estimator in Eq.(3.11) is somewhat smoother than Eq.(3.8) but

is still discontinuous. An advantage for the CNPMLE is that the computation

cost is quite low. The following is a simple algorithm to calculate the CNPMLE

of an NHPP.

• Set h = 1 and i1 = 1;

• Repeat until ih+1 = n:

Set ih+1 to be the index i which minimizes the slopes between (xih , ih 1)

and (xi, i 1) (i = ih + 1, . . . , n);

• The constrained nonparametric maximum likelihood estimate is then given

by λ̂(x | χ) = (ij+1 ij)/(xij+1 xij ) whenever xij < x ≤ xij+1 .

Since we assume that the intensity function is non-decreasing with respect to

time, CNPMLE is regarded as a specific estimator which represents increasing

intensity trend. Therefore, if the data has the increasing trend, then CNPMLE

is expected to be useful. However, when the assumption on increasing intensity

trend is violated, it may be less effective. The approach to estimate the optimal

periodic replacement time with minimal repair by Gilardoni et al. [23] is based

on the above CNPMLE. Next, we consider alternative nonparametric method

to obtain nonparametric estimates of the optimal periodic replacement time.
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3.1.4 Kernel-based Approach

Of our interest here is the derivation of absolutely continuous nonparametric

estimators of the optimal periodic replacement time. For this purpose, we apply

the kernel-based approach to estimate the intensity function of an NHPP. Define

λ̂(x | χ) = 1

h

n∑
i=1

K

(
x xi

h

)
, (3.12)

where K(·) denotes a kernel function and h is a positive constant, called smooth-

ing parameter or bandwidth. It is well known that the choice of h is more sensitive

rather than the choice of kernel function for the accuracy of λ(x). Therefore,

we focus on only a well-known Gaussian kernel function:

K(x) =
1√
2π

exp

(
x2

2

)
. (3.13)

Roughly speaking, the kernel-based method approximates the intensity function

with a superposition of kernel functions with location parameter at each min-

imal repair time. The main reason why absolutely continuous nonparametric

estimator is preferred is that the natural estimator in Eq.(3.8) and the CNPMLE

in Eq.(3.11) are functions of xi (i = 1, 2, . . . , n). This means that an estimate

of the optimal periodic replacement time minimizing the long-run average cost

per unit time has to be selected from the past minimal repair time. In other

words, the approach by Gilardoni et al. [23] may work better for a sufficiently

large number of minimal repair data, but will not in the other case.

In the kernel-based approach, we consider two estimation methods for band-

width h. The promising approach is the least-squares cross-validation (LSCV)

method in Diggle and Marron [25] by minimizing the relevant integrated least

squares error. On the other hand, Guan [28] determines the bandwidth by ap-

plying the log-likelihood cross-validation (LLCV) method. Suppose that the

minimal repair time data are divided into training data and validation data. In

the situation where n minimal repair time data are given, it is possible to make

n training data sets with n 1 failure data, by leaving out one of each i th

(i = 1, 2, . . . , n) data from the original failure time data xi. The integrated least

squares error of the intensity function λ̂(x) in LSCV method is defined by

ISE(h) =

∫ 1

0

{λ̂(x | χ) λ(x | χ)}2dx. (3.14)
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After removing independent terms of h in Eq.(3.14), it can be checked that the

optimal bandwidth minimizing ISE(h) is equal to h minimizing the following

function:

CV(h) =

∫ 1

0

λ̂(x | χ)2dx 2

n∑
j=1

λ̂h,j(xi | χ), (3.15)

where

λ̂h,j(x | χ) = 1

h

n∑
i=1,i̸=j

K

(
x xj

h

)
. (3.16)

On the other hand, in LLCV method with the same n training data sets,

the problem is to maximize the log-likelihood function with unknown intensity

function. Hence, it is reduced to obtain the optimal bandwidth h maximizing

lnL(h | χ) =
n∑

k=1

n∑
j=1

ln λ̂h,i(xk | χ)
n∑

j=1

Λ̂h,i(xn | χ), (3.17)

where

Λ̂h,i(x | χ) =
∫ x

0

λ̂h,i(t | χ)dt, (3.18)

λ̂h,i(x | χ) = 1

h

n∑
i=1,i̸=j

K

(
x xi

h

)
. (3.19)

It is noted that the above kernel estimates of intensity function are abso-

lutely continuous, but may fluctuate everywhere similar to the natural estimate.

Nevertheless, the resulting estimates can be expected to be much smoother than

that. Although we just focus on the Gaussian kernel function in this chapter, it

is possible to apply several kinds of kernel function such as biweight kernel func-

tion and Epanechnikov kernel function [26]. An adaptive choice of bandwidth

is another issue, i.e. h = h(i) (i = 1, 2, . . . n). However, we will not consider

the improvement of kernel-based approach hereafter in this chapter, because our

main concern here is to investigate an applicability of the kernel-based approach

in the optimal periodic replacement problem with minimal repair. Substituting

the resulting kernel estimates of intensity function into Eq.(3.4), the optimal

periodic replacement time can be obtained.
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3.2 Interval Estimation

3.2.1 Bootstrapping

Given a single set of failure (minimal repair) time data, some nonparametric

methods can be applied to estimate the intensity function. A point estimate of

the optimal periodic replacement time, τ̂∗, is obtained by minimizing the long-

run average cost per unit time in Eq.(3.3) or solving the nonlinear equation

in Eq.(3.4). The natural estimate and CNPMLE do not always guarantee the

existence of the optimal solution satisfying Eq.(3.4), because the candidate of

the estimate has to be chosen from the minimal repair data or its subset. In

the kernel-based approach, on the other hand, the optimal periodic replacement

time τ∗ is estimated as an arbitrary real number if exits, or is given by τ∗ =

tn (≃ ∞).

It is known that the point estimation does not take account of the uncertainty

of estimator distribution. This is a serious problem, especially for nonparametric

estimation. In the situation where only single time-series data on minimal repair

process is given, the estimation must be done with only one sample data, and

any serious estimation error may occur. Since the biased estimation cannot

be avoided for single time-series analysis in principle, it is useful to obtain the

confidence intervals of the optimal periodic replacement time and its minimum

long-run average cost per unit time. Unfortunately, since these are very complex

estimators, the estimator distributions in neither parametric nor nonparametric

method are available analytically. In Chapter 2, we apply the bootstrap methods

to construct the confidence regions of the optimal periodic replacement time and

its associated long-run average cost per unit time. In the previous discussion,

we assume a parametric form of intensity function and apply the ML method

to estimate the model parameters. In both of parametric and nonparametric

methods, three bootstrap (BS) methods proposed by Cowling et al. [2] can be

applied. Although Gilardoni et al. [23] use the other replication techniques

for BS samples under the CNPMLE, we focus on the above three methods by

Cowling et al. [2] in the following:

(i) BS Method 1 (Simulation-based approach): Based on an arbitrary

estimator of the intensity function, λ̂(x | χ), which is estimated with n min-
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imal repair time data xi (i = 1, 2, . . . , n), we generate the pseudo random

time sequence X∗
k,i at k-th simulation. For the simulation of an NHPP, we

use the well-known thinning algorithm [73] to generate the random variates.

Note that X∗
k,i is always less than unity. More precisely, suppose that the

intensity function is bounded from the above and takes the maximum value

λ̄ (≥ λ(x | χ)) for an arbitrary x (0 ≤ x ≤ 1). Then, it can be shown

that X∗
k,1, X∗

k,2, · · · (k = 1, 2, . . . ,m) follows an NHPP with intensity func-

tion λ̄, and that the i-th minimal repair time X∗
k,i having intensity function

λ(x∗
k,i | χ)/λ̄ is independent of the other minimal repair times. The resulting

BS samples, x∗
k,i and λ̂∗

k(x | χ) (i = 1, 2, . . . ; k = 1, 2, . . . ,m), are called BS1 in

this chapter, where λ̂∗
k(x | χ) denotes an estimator of intensity function based

on x∗
k,i.

(ii) BS Method 2 (Resampling-based approach): By resampling exactly

n minimal repair time data with replacement from the underlying data xi (i =

1, 2, . . . , n), we obtain another BS sample x∗
k,i and λ̂∗

k(x | χ) (i = 1, 2, . . . , n; k =

1, 2, . . . ,m).

(iii) BS Method 3 (Resampling-based approach): The third method is

almost similar to BS2. Instead of n in BS2, we use the Poisson distributed

(pseudo) random number with mean n as the number of resampling.

Let x∗
k,i denote the i-th pseudo normalized failure (minimal repair) time

data (realization of X∗
k,i) at k-th (k = 1, 2, . . . ,m) replication, where m is the

number of replications. For m estimates of intensity function, we obtain m

estimates of the optimal periodic replacement time by minimizing Eq.(3.3) or

solving Eq.(3.4). Since these can be regarded as the i.i.d. BS sample of the

optimal periodic replacement time τ̂∗k (k = 1, 2, . . . ,m), it is possible to get the

empirical distribution of the estimator of the optimal periodic replacement time

and its finite moments. The case of the minimum long-run average cost per unit

time can be considered in the similar way.

3.2.2 Construction of Confidence Region

Based on the empirical distribution of the estimator of the optimal periodic

replacement time, we derive the confidence intervals of the optimal periodic
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replacement time and its corresponding long-run average cost per unit time.

Let τ̂∗(k) be the k-th order statistics of the estimates τ̂∗k (k = 1, 2, . . . ,m), i.e.

0 = τ̂∗(0) < τ̂∗(1) ≤ · · · ≤ τ̂∗(m). For the long-run average cost per unit time,

let C(k)(τ̂
∗) (C(1)(τ̂

∗) ≤ C(2)(τ̂
∗) ≤ · · · ≤ C(m)(τ̂

∗)) be the k-th estimate of

the minimum long-run average cost C(τ̂∗). From these, the BS-median and

BS-mean can be derived as τ̂∗(m/2), C(m/2)(τ̂
∗) and τ̄∗ =

∑m
k=1 τ̂

∗
(k)/m, C̄(τ̂∗) =∑m

k=1 C(k)(τ̂
∗)/m. The higher moments of the estimator of the optimal periodic

replacement time are easily calculated. For instance, the variance Vτ∗ , skewness

Sτ∗ and kurtosis Kτ∗ of the estimator of optimal periodic replacement time are

also given by

Vτ∗ =

∑m
k=1(τ̂

∗
(k) τ̄∗)2

m 1
, (3.20)

Sτ∗ =

∑m
k=1(τ̂

∗
(k) τ̄∗)3

mV
3
2
τ∗

, (3.21)

Kτ∗ =

∑m
k=1(τ̂

∗
(k) τ̄∗)4

mV 2
τ∗

. (3.22)

Finally, we calculate the two-sided 100(1 α)% confidence intervals by[
τ̂∗(m(α/2)), τ̂

∗
(m(1 α/2))

]
,

[
C(m(α/2))(τ̂

∗), C(m(1 α/2))(τ̂
∗)
]

(3.23)

with significance level α ∈ (0, 1). Since m can be taken arbitrarily, it is not so

difficult to take m such that m(α/2) and m(1 α/2) become integers.

3.3 Intensity Estimation with Multiple Minimal
Repair Data Sets

In the previous section, we discuss approaches for estimation of intensity func-

tion and construction of confidence region with single minimal repair data, since

the main purpose of this chapter is to analyze the single field data of minimal

repair. However, these approaches can be extended easily for multiple minimal

repair data sets. Let Tj,i (j = 1, 2, · · · , l; i = 1, 2, · · · , n) denote the random

variable of ith failure-occurrence time data at jth Poisson process with realiza-

tions tj,i, and let T ∗ = max1≤j≤l Tjn with realization t∗. Then, the normalized

random variable can be represented by Xj,i = Tj,i/T
∗ ∈ (0, 1] with realizations

xj,i = tj,i/t
∗ ∈ (0, 1]. Arrange the normalized failure-occurrence time data into

a single ordered sample (0 =)x0 < · · · < xf (= 1).



3.3. INTENSITY ESTIMATIONWITHMULTIPLEMINIMAL REPAIR DATA SETS41

Following the idea by Zielinski et al. [77], the CNPMLE with multiple

minimal data sets are obtained by

λ̂(x) =

 0, 0 ≤ x < x1,

λ̂i, xi ≤ x < xi+1; i = 1, 2, · · · , f 1,
(3.24)

where

λ̂i = max
1≤s≤i

min
i≤k≤f

∑k
j=s mj∑k
j=s ∆j

, (3.25)

∆i =
l∑

j=1

max
{
0,min{(xn xi), (xi+1 xi)}

}
(3.26)

and mi means the number of failures occurred at time xi.

For the kernel intensity estimation, define

λ̂j(x | χ) = 1

h

n∑
i=1

K

(
x xj,i

h

)
, (3.27)

where K(x) is already defined in Eq.(3.13). Then the CV(h) in Eq.(3.15) of

LSCV method can be rewritten as

CV(h) =
l∑

j=1

(∫ 1

0

λ̂j(x | χ)2dx 2
n∑

p=1

λ̂j,h,p(xj,i | χ)
)
, (3.28)

where

λ̂j,h,p(x | χ) = 1

h

n∑
i=1,i̸=p

K

(
x xj,p

h

)
. (3.29)

Furthermore, the lnL(h | χ) in Eq.(3.17) can be also rewritten as

lnL(h | χ) =
l∑

j=1

( n∑
k=1

n∑
p=1

ln λ̂j,h,i(xj,k | χ)
n∑

p=1

Λ̂j,h,i(xj,n | χ)
)
, (3.30)

where

Λ̂j,h,i(x | χ) =
∫ x

0

λ̂j,h,i(t | χ)dt, (3.31)

λ̂j,h,i(x | χ) = 1

h

n∑
i=1,i̸=p

K

(
x xj,i

h

)
. (3.32)

After estimating the optimal bandwidth with Eq.(3.28) or Eq.(3.30), the kernel

intensity function with multiple minimal repair data sets is obtained by [78]

λ̂(x | χ) = 1

h

l∑
j=1

n∑
i=1

K

(
x xj,i

h

)
1∑l

j=1 I(x ≤ xj,n)
, (3.33)
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where I(x ≤ xj,n) (j = 1, 2, · · · , l) means indicator function. Based on the

above methods, the estimators of the intensity function can be obtained for the

multiple data sets case. Once the estimates of intensity function are obtained,

we can get the optimal periodic replacement time with Eq.(3.4). Therefore, it

is possible to handle the several sets of minimal repair data and construct the

confidence region in the similar way.

3.4 Simulation Experiments

To investigate the accuracy of our methods, Monte Carlo simulation is con-

ducted. Here, we also focus on the single minimal repair data, since the single

field data of minimal repair is analyzed in the latter part. Suppose that the

(unknown) minimal repair process follows a power law NHPP model, λ(t) =

(β/η)(t/η)β 1, with model parameters (β, η) = (3.2, 0.23). We generate the

original failure (minimal repair) time data as the pseudo random number by

the thinning algorithm in Subsection 3.1.3. The cost parameters are fixed as

c1 = 1, c2 = 30. In this case the optimal periodic replacement time and its

minimum long-run average cost are given by τ∗ = 0.52 and C(τ∗) = 83.9,

respectively.

3.4.1 Point Estimation

For n minimal repair time data, we estimate the underlying NHPP in both

of parametric and nonparametric methods and estimate the optimal periodic

replacement time and its minimum long-run average cost per unit time. In

the parametric approach, we assume two parametric models; Power law (PL)

NHPP model, λ(t) = (β/η)(t/η)β 1 and Cox-Lewis (CL) NHPP model, λ(t) =

exp {α+ βt}. Since n may not be sufficiently large, it is almost impossible to

select the correct model (power law model) by mean of the ML estimation. In

the nonparametric approach, we compare the kernel-based approaches having

LLCV and LSCV with the CNPMLE.

Tables 3.1-3.2 summarize the point estimation results of the optimal periodic

replacement time and the minimum long-run average cost per unit time, where

n represents the number of minimal repairs. For varying n from 10 to 190 by
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Table 3.1: Point estimates of the optimal periodic replacement time.

n LLCV LSCV CNPMLE PL CL

60 0.50 0.50 0.50 0.52 0.56

120 0.50 0.51 0.50 0.52 0.58

180 0.50 0.51 0.50 0.52 0.59

Table 3.2: Point estimates of the minimum long-run average cost per unit time.

n LLCV LSCV CNPMLE PL CL

60 83.6 89.5 83.3 85.4 85.7

120 83.5 86.2 83.3 85.3 88.9

180 83.4 87.8 83.3 85.5 93.2

10, we examine the above estimates. Though we omit to show all the results

for brevity, it can be seen that the miss-selection of parametric model (Cox-

Lewis model) leads to the worst result, but the other methods can provide very

close results to the real optimal solution τ∗ = 0.52. On the other hand, looking

at Table 3.2, the nonparametric model with LSCV and the parametric models

fail to get the good estimates of the minimum long-run average cost per unit

time. It is evident that two nonparametric methods, kernel-based approach with

LLCV and CNPMLE, show the similar estimation results. The reason why the

estimation result of the long-run average cost per unit time by the power law

model is biased is as follows: The minimum long-run average cost per unit time is

very sensitive to the optimal periodic replacement time τ∗. For n = 60, 120, 180,

more precise estimates by the power law model are τ̂∗ = 0.5156, 0.5197, 0.5191,

while the real optimal solution is 0.52. These differences lead to the deviation

from C(τ∗) = 83.9. It can be also seen that Cox-Lewis model tends to make

the larger difference from the real optimal periodic replacement time as the

number of minimal repair time data increases. Next, the question arises; why

does CNPMLE work well similar to the kernel-based approach with LLCV? The

answer for this question is that the original minimal repair time data fortunately

includes very closed data 0.50 to the optimal solution τ∗ = 0.52. If this is not the

case even with n = 60, CNPMLE cannot provide such a nice estimate from all
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the minimal repair time points. Finally, from the point estimation results, the

kernel-based approach with LLCV and possibly CNPMLE can be recommended

to estimate the optimal periodic replacement time.

In order to show counter examples for the CNPMLE, we estimate the long-

run average cost per unit time at arbitrary periodic replacement time. Apart

from the optimization, it seems to be interesting to examine the estimation

accuracy of respective methods at different periodic replacement candidates.

Table 3.3 presents the estimation results of long-run average cost per unit time

when we perform periodic replacement at arbitrary time x in the case of n = 180.

In the table, ”True” means the estimate based on the power law model with

model parameters (β, η) = (3.2, 0.23). We calculate the estimates of long-run

average cost per unit time from x = 0.05 to x = 1.00 by 0.05. If the estimation

result is close to the theoretical value, we can say that the estimator has the

good accuracy performance at different periodic replacement times. The mean

squares errors between “True” and the other methods are calculated in all 20

points from x = 0.05 to x = 1.00. From this result, it is seen that the kernel-

based approach with LLCV and the natural estimator have the similar good

accuracy performance. On the other hand, the kernel-based approach with

LSCV and CNPMLE tend to give different estimates, compared with above two

methods.

Table 3.3: Estimation accuracy of respective methods for arbitrary periodic
replacement time x.

x True LLCV LSCV CNPMLE PL CL Natural

0.25 109.4 108.7 107.0 102.5 110.4 126.1 108.8

0.50 85.3 88.3 90.2 86.2 87.0 93.2 88.6

0.75 117.9 118.9 118.9 114.5 117.9 112.4 119.5

1.00 183.5 177.9 170.6 177.5 178.3 178.3 178.3

MSE 0.0 13.4 19.4 17.8 3.53 140.8 14.1
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3.4.2 Statistical Properties of Estimators

Based on three replication techniques for BS samples, we generate m = 2, 000

BS samples and obtain m estimates of τ̂∗ and C(τ̂∗). Tables 3.4-3.5 present

the BS estimation results of the optimal periodic replacement time and its cor-

responding minimum long-run average cost per unit time when the number of

minimal repair data is 180. From Table 3.4, it can be shown that the kernel-

based estimation with LLCV gives closest values to the real optimal solution

with respect to the BS-mean and BS-median in nonparametric cases. Also it

can be checked that the CNPMLE gives the almost similar results with LLCV.

Dissimilar to the point estimation, the kernel-based approach with LSCV gives

relatively nice BS-median and BS-mean with small variance. By checking the

skewness (≃ 0) and kurtosis (≃ 3), we can verify the resulting estimator dis-

tributions can be approximated by the normal distributions. Especially, when

BS2 is used in nonparametric estimation, the estimator distributions of the min-

imum long-run average cost per unit time can be approximated by the normal

distributions.

In parametric models, it is worth noting that the BS-mean and BS-median

with the power law model can give the minimum variance on the optimal

periodic replacement time. By averaging the estimation error, these statis-

tics approach to the real (but unknown) optimal solutions with n = 180 and

m = 2, 000. It is also found that the miss-selection of parametric model (Cox-

Lewis model) also gives small variance on the estimator of the optimal periodic

replacement time, but the deviation of the BS-mean and BS-median from the

real optimal solution is rather large. From the view point of point estimation,

it can be concluded that the kernel-based approach with LLCV shows the accu-

rate estimation results with smaller variance on the BS-mean and BS-median.

Although these results in Tables 3.4-3.5 are based on n = 180, even when the

number of underlying minimal repair data increases, the BS estimates (BS-mean

and BS-median) can give close values to the real optimal solutions in all non-

parametric cases. In parametric model, the power law model gives the minimum

variances in all cases, but the BS-mean and BS-median in this model tend to

overestimate the minimum long-run average cost per unit time. It is evident to

know the Cox-Lewis model fails to obtain the accurate estimates.
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Table 3.4: Statistics of estimators of the optimal periodic replacement time.

Estimator Method Mean Median Vτ∗ Sτ∗ Kτ∗

LLCV BS1 0.52 0.51 0.005 -0.581 3.664

BS2 0.52 0.51 0.004 -0.709 3.884

BS3 0.52 0.51 0.005 -0.630 3.692

LSCV BS1 0.51 0.50 0.002 0.343 3.694

BS2 0.51 0.51 0.002 -0.117 4.451

BS3 0.51 0.51 0.002 -0.072 5.236

CNPMLE BS1 0.50 0.51 0.005 -0.123 2.615

BS2 0.52 0.51 0.005 -0.735 3.805

BS3 0.52 0.51 0.005 -0.639 3.743

PL BS1 0.52 0.52 0.000 0.116 2.954

BS2 0.52 0.52 0.000 0.401 3.133

BS3 0.52 0.52 0.000 0.169 3.065

CL BS1 0.59 0.59 0.000 0.288 3.121

BS2 0.59 0.59 0.000 0.871 3.927

BS3 0.59 0.59 0.000 0.124 2.986
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Table 3.5: Statistics of estimators of the minimum long-run average cost per
unit time.

Estimator Method Mean Median VC∗ SC∗ KC∗

LLCV BS1 81.1 81.1 38.55 -0.026 2.665

BS2 81.4 81.4 34.99 0.026 2.870

BS3 81.2 81.3 38.77 0.024 2.739

LSCV BS1 88.2 87.9 44.93 0.276 3.077

BS2 87.2 86.8 38.31 0.179 2.952

BS3 87.0 86.8 43.55 0.192 2.949

CNPMLE BS1 79.1 79.1 33.08 0.009 2.785

BS2 81.1 81.3 33.82 0.027 2.942

BS3 81.0 80.9 37.80 0.032 2.798

PL BS1 85.2 85.1 29.60 0.202 2.994

BS2 85.6 85.4 24.69 0.145 2.992

BS3 85.4 85.2 29.08 0.179 3.027

CL BS1 93.0 93.0 48.66 0.146 2.925

BS2 93.2 93.0 30.36 0.134 2.994

BS3 93.0 92.7 40.30 0.204 3.030
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3.4.3 Interval Estimation

We derive the two-sided 95% confidence intervals of the optimal periodic re-

placement time and the minimum long-run average cost per unit time with

parametric and nonparametric methods. Figures 3.1-3.3 show the two-sided

95% confidence intervals of optimal periodic replacement time in the case of

n = 180 via three bootstrap methods, where the length of each box plot denotes

the two-sided 50% confidence intervals. First we can find that the confidence

intervals for nonparametric methods are longer than those for parametric mod-

els. This is because the nonparametric methods are subject to much more un-

certainty. Among nonparametric approaches, the kernel-based approach with

LSCV gives tighter confidence regions. Second, it is seen that the BS-median for

LLCV with BS1, BS2, BS3 and for CNPMLE with BS2 and BS3 are included

within the box range, but are almost lower levels in 50% confidence intervals.

Furthermore, when BS2 is used in both nonparametric and parametric methods,

it tends to give tighter confidence region than BS1 and BS3.

Figure 3.1: Estimation results with respective methods via BS 1.

Figures 3.4-3.8 illustrate asymptotic behaviors of the two-sided 95% confi-

dence regions using kernel-based approach with LLCV and LSCV, CNPMLE

and two parametric models, where only BS1 is used for BS replication. If the
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Figure 3.2: Estimation results with respective methods via BS 2.

Figure 3.3: Estimation results with respective methods via BS 3.



50 CHAPTER 3. NONPARAMETRIC APPROACH FOR PRP WITH MR

ML estimation works well, the confidence intervals in Fig. 3.7 can be considered

as an actual confidence region or be rather closed. From this result, if the num-

ber of underlying minimal repair time data is greater than 60, the confidence

interval is very stable and keeps its width within an almost constant range.

It can be shown in Fig. 3.8 that the miss-selection of parametric model leads

to incorrect confidence region which does not involve the optimal solution. In

three nonparametric estimation methods, respective confidence intervals have

wider regions than the parametric models. As mentioned above, this is because

the degree of freedom in nonparametric models is larger than that in paramet-

ric models, so that the estimation under incomplete knowledge on the minimal

repair process faces more uncertain situation.

The confidence intervals based on kernel-based estimation with LLCV and

CNPMLE tend to be stable even if the number of original data is rather small.

On the other hand, when we apply the kernel-based estimation with LSCV, the

resulting interval estimation involves fluctuated noise compared with other two

nonparametric methods. In the case with small sample size, LSCV does not

work to get the accurate confidence regions, and fails to obtain the solutions

satisfying Eq.(3.4). But, as the number of minimal repair time data becomes

greater than 70, the BS-mean and BS-median in the kernel-based approach

with LSCV gives closer value to the real optimal periodic replacement time.

Finally, from both points of view in point estimation and interval estimation,

we recommend to apply the kernel-based estimation with LLCV.

3.5 Field Data Analysis

We give a simple example of the field data analysis. Let c1 = 1 and c2 = 30 be

the minimal repair cost and the periodic replacement cost, respectively. Meeker

and Escobar [75] report the minimal repair data of a diesel engine where the

number of failures (minimal repairs) n = 71 and MTBF= 0.359hr if these data

are regarded as i.i.d. samples. In accordance with our recommendation through

simulation experiments, we apply the kernel-based estimation with LLCV and

the CNPMLE with m = 2, 000 bootstrap sample. Tables 3.6-3.7 present the

estimation results of the optimal periodic replacement time and its correspond-

ing long-run average cost per unit time. In both cases, both BS-mean and
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Figure 3.4: Asymptotic behavior of the estimate on the optimal periodic re-
placement time with LLCV.

Figure 3.5: Asymptotic behavior of the estimate on the optimal periodic re-
placement time with LSCV.
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Figure 3.6: Asymptotic behavior of the estimate on the optimal periodic re-
placement time with CNPMLE.

Figure 3.7: Asymptotic behavior of the estimate on the optimal periodic re-
placement time with Power law model.
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Figure 3.8: Asymptotic behavior of the estimate on the optimal periodic re-
placement time with Cox-Lewis model.

BS-median take closed values from each other. In the optimal periodic replace-

ment time estimation, BS3 in the kernel estimation with LLCV and BS2 in the

CNPMLE provide the tightest confidence intervals. On the other hand, in the

minimum long-run average cost per unit time estimation, BS2 in the kernel-

based method with LLCV gives the tightest bound. Figure 3.9 depicts the

estimator distribution of the minimum long-run average cost per unit time with

LLCV in the case of BS2. From this result, we can know that both BS-mean

and BS-median take closed values to the point estimation with original minimal

repair time data, where the estimator distribution of the minimum long-run

average cost per unit time can be approximated by a normal distribution.
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Figure 3.9: Estimator distribution of the minimum long-run average cost per
unit time.

Table 3.6: Real data analysis of the optimal periodic replacement time.

Estimator Method Mean Median Vτ∗ Sτ∗ Kτ∗ 95%CI

LLCV BS1 18.7 19.0 0.78 -0.981 3.751 [16.4, 19.9]

BS2 18.7 19.0 0.73 -1.084 3.900 [16.4, 19.9]

BS3 18.7 19.0 0.72 -0.974 3.856 [17.3, 19.9]

CNPMLE BS1 18.8 19.0 0.79 -0.725 4.520 [16.8, 20.4]

BS2 18.8 19.1 0.75 -1.153 4.274 [16.5, 19.9]

BS3 18.8 19.1 0.83 -0.934 3.910 [16.5, 20.1]
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Table 3.7: Real data analysis of the minimum long-run average cost per unit
time.

Estimator Method Mean Median VC∗ SC∗ KC∗ 95%CI

LLCV BS1 2.46 2.43 0.05 0.302 3.000 [2.07, 2.90]

BS2 2.45 2.44 0.03 0.118 3.096 [2.11, 2.80]

BS3 2.44 2.42 0.04 0.246 3.145 [2.04, 2.89]

CNPMLE BS1 2.41 2.40 0.04 0.328 3.271 [2.03, 2.85]

BS2 2.44 2.45 0.04 0.073 2.976 [2.09, 2.82]

BS3 2.44 2.44 0.04 0.349 3.283 [2.05, 2.88]





Chapter 4

Software Reliability
Assessment via
Nonparametric Maximum
Likelihood Estimation

In this chapter we consider three nonparametric estimation methods for soft-

ware reliability assessment without specifying the fault-detection time distribu-

tion, where the underlying stochastic process to describe software fault-counts

in the system testing is given by a non-homogeneous Poisson process. Two of

these are based on the fault detection time data, which are introduced in Section

4.1 and 4.2. On the other hand, one of these is based on the software fault

count data, which is argued in Section 4.3. The resulting data-driven method-

ologies can give the useful probabilistic information on the software reliability

assessment under the incomplete knowledge on fault-detection time distribution.

Throughout examples with real software fault data, it is shown that the proposed

methods provide more accurate estimation results than the common parametric

approach.

4.1 Software Reliability Modeling

4.1.1 NHPP-based SRMs

Let N(t) be the cumulative number of software faults detected by time t. Sup-

pose that the number of remaining software faults before software testing is

57
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given by N0 (≥ 0) and that the fault-detection time of each software fault is

independent and identically distributed continuous random variable having the

probability distribution function F (t;θ) with parameter (vector) θ. Then the

probability that n software faults are detected by time t is given by the binomial

distribution:

Pr{N(t) = n} =

 N0

n

F (t;θ)n(1 F (t;θ))N0 n. (4.1)

Furthermore, if the initial number of software faults remaining in the software,

N0, follows the Poisson distribution with mean ω (> 0), then the probability

that the total number of software faults detected by time t equals n is given by

[30]

Pr{N(t) = n} =
{ωF (t;θ)}n

n!
exp{ ωF (t;θ)}. (4.2)

It corresponds to the probability mass function of a non-homogeneous Poisson

process (NHPP) with mean value function Λ(t; ξ) = ωF (t;θ), where ξ = (ω,θ).

Hence, the NHPP-based software reliability model (SRM) can be characterized

by the fault-detection time distribution F (t;θ). Define the failure rate of the

probability distribution function F (t;θ) by

r(t;θ) =
f(t;θ)

1 F (t;θ)
, (4.3)

if the probability density function f(t;θ) = dF (t;θ)/dt exists. From Eq.(4.3),

it is easily seen that

f(t;θ) = r(t;θ) exp

{ ∫ t

0

r(x;θ)dx

}
, (4.4)

so that the intensity function of an NHPP, dΛ(t; ξ)/dt = λ(t; ξ) = ωf(t;θ), is

represented by

λ(t; ξ) = ωr(t;θ) exp

{ ∫ t

0

r(x;θ)dx

}
. (4.5)

4.1.2 Maximum Likelihood Estimation

The commonly used technique to estimate unknown parameters ξ = (ω,θ) is

the maximum likelihood (ML) estimation. Suppose that n (> 0) software fault-

detection time data, ti (i = 1, 2, . . . , n), are observed during the testing phase
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t ∈ (0, T ], where T (≥ tn) is the observation point. Then the likelihood function

of an NHPP is given by

LF (ξ | t1, . . . , tn, T ) = exp{ Λ(T ; ξ)}
n∏

i=1

λ(ti; ξ). (4.6)

Taking the natural logarithm of both sides of Eq.(4.6), we have the log-likelihood

function:

LLF (ξ | t1, . . . , tn, T ) =
n∑

i=1

log λ(ti; ξ) Λ(T ; ξ). (4.7)

Then, the maximum likelihood estimates of parameters, ξ̂, is defined by

LLF (ξ̂ | t1, . . . , tn, T ) = arg max
ξ

LLF (ξ | t1, . . . , tn, T ). (4.8)

Since the above log-likelihood function is a multi-modal nonlinear function for an

arbitrary intensity function λ(t; ξ), it is known that the common nonlinear opti-

mization algorithm such as Newton method does not often work well to obtain

the global optimization solution. Then, the EM (Expectation-Maximization)

algorithm [37] with a global convergence property can be applied to obtain the

ML estimate ξ̂.

4.2 Nonparametric Estimation

4.2.1 Nonparametric ML Estimation

As mentioned in Section 4.1, it is worth noting that the best parametric NHPP-

based SRM to fit every type of software-fault detection time data does not exists.

This means that a careful selection of the software fault-detection time distribu-

tion F (t;θ) is definitely needed to obtain the best fitted NHPP-based SRM to

the underlying data. Okamura and Dohi [37] suggest that it is enough to con-

sider eleven typical software fault-detection time distributions, which include

exponential [32], gamma [38],[39], Pareto [46],[47], truncated normal [48], log-

normal [31],[48], truncated logistics [35], log-logistics [34], truncated extreme-

value maximum [36], log-extreme-value maximum [36], truncated extreme-value

minimum [36], log-extreme-value minimum (Weibull) [33],[36] distributions. How-

ever, it cannot be guaranteed that one of the above eleven NHPP-based SRMs

always outperforms the other models in the literature [29],[30]. In such an un-

certain situation where the best mean value function or equivalently the best
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fault-detection probability is unknown, it makes sense to consider nonparamet-

ric estimation of the NHPP-based SRM.

First, we introduce a nonparametric ML estimation developed by Boswell

[24], where Λ(t; ξ) = ωF (t;θ) is not assumed at the moment. So we do not

restrict the class of NHPP-based SRMs such as Λ(t; ξ) = ωF (t;θ). Suppose that

the intensity function λ(t) is a non-negative monotone non-increasing function

of t ∈ (0, T ]. For unknown intensity function λ(t), Boswell [24] considers the

following variational problem:

arg max
λ(t)

n∑
i=1

log λ(ti)

∫ T

0

λ(x)dx. (4.9)

Note that an increase in the above log-likelihood function can occur only by

an increase in λ(·) at the fault-detection time points. Boswell [24] proves that

a solution in Eq.(4.9) must consist of step functions closed on the right with

no jumps except at some of the event occurrence points. This fact leads to

the idea on so-called isotonic estimation, and gives a constrained nonparametric

maximum likelihood estimate (CNPMLE). For t1 < t2 < . . . < tn ≤ T , define

the likelihood function as a function of unknown intensity function at each fault-

detection time:

LF (λ(ti), i = 1, 2, . . . , n) = exp

{ ∫ T

0

λ(x)dx

}
n∏

i=1

λ(ti). (4.10)

Hence the problem can be reduced to the following finite dimensional problem:

arg max
λ(ti),i=1,2,...,n

LF (λ(ti), i = 1, 2, . . . , n). (4.11)

Boswell [24] obtains the following min-max solution:

λ̂(tj) = min
1≤h≤j

max
j≤k≤n

k h

tk th
. (4.12)

The resulting estimator is discontinuous, but constructs an upper bound of

LF (λ(ti), i = 1, 2, . . . , n). Although we assume that the intensity function is

non-increasing to represent the reliability growth phenomenon, this assumption

can be relaxed. That is, if the intensity function is non-decreasing, then the

resulting CNPMLE can be given by replacing min operator and max operator

in Eq.(4.12) from each other. The CNPMLE has also an advantage that the
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computation cost is quite low, compared with the other representative nonpara-

metric methods [42],[44],[41],[45],[40],[43]. We give a simple optimization code

to derive the CNPMLE as follows.

• Set h = 1 and i1 = 1;

• Repeat until ih+1 = n:

Set ih+1 to be the index i which minimizes the slopes between (tih , ih 1)

and (ti, i 1) (i = ih + 1, . . . , n);

• The CNPMLE is then given by λ̂(t) = (ij+1 ij)/(tij+1 tij ) whenever

tij < t ≤ tij+1 .

4.2.2 Alternative NPMLE

The CNPMLE in Subsection 4.2.1 assumes the monotone property of inten-

sity function. Especially, in the non-increasing case, the mean value function

can be bounded. However, dissimilar to the parametric model in Eq.(4.2), it

is impossible to estimate the initial number of software faults before testing,

ω, in the current modeling framework with a finite number of fault-detection

time data. This will penalize for estimating several significant software reli-

ability measures. In this subsection, we consider alternative NPMLE for the

specific NHPP-based SRM with mean value function ωF (t). From Eq.(4.1), it

is well-known that t1 < t2 < . . . < tn can be considered as a general order

statistics [54] sampled from the probability distribution function F (t). When

ti (i = 1, 2, . . . , n) are regarded as independent and identically distributed (i.i.d.)

samples, the log-likelihood function of the i.i.d. sample is given by

LLF (r(ti), i = 1, 2, . . . , n) =
n∑

i=1

log r(ti)
n∑

i=1

∫ ti

0

r(x)dx. (4.13)

To maximize the log-likelihood function in Eq.(4.13), Marshall and Proschan [3]

apply the similar idea to Boswell [24] and formulate the following variational

problem with respect to r(·):

arg max
r(ti),i=1,2,...,n

LLF (r(ti), i = 1, 2, . . . , n). (4.14)
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The resulting NPMLE estimator is called the Marshall and Proschan estimator

[3]. More specifically, if the fault-detection time distribution is IFR (Increasing

Failure Rate), then the NPMLE is given by

r(t) =



0, 0 ≤ t < t1,

rIFR
k (t), tk ≤ t < tk+1 (k = 1, · · · , n 1),

rIFR
n 1 (t), t = tn,

∞, tn < t,

(4.15)

where

rIFR
k (t) = min

v≥k+1
max
u≤k

[
v u

J(u, v)

]
, (4.16)

J(u, v) =
v∑

i=u+1

{
(n i+ 1)(ti ti 1)

}
. (4.17)

On the other hand, if the fault-detection time distribution is DFR (Decreasing

Failure Rate), then we have the corresponding NPMLE by

r(t) =


rDFR
0 (t), 0 ≤ t ≤ t1,

rDFR
k (t), tk < t ≤ tk+1 (k = 1, · · · , n 1),

0, tn < t,

(4.18)

where

rDFR
k (t) = max

v≥k+1
min
u≤k

[
v u

J(u, v)

]
. (4.19)

From the above results, it is seen that the failure rate function r(·) can be

estimated from the monotone (IFR or DFR) property of the fault-detection

time distribution.

In actual software development projects, it is known that S-shaped curve

is frequently observed in terms of the cumulative number of software faults.

This is caused by the non-decreasing S-shaped probability distribution function

F (t) (see [33],[79],[38]). From the above observation, it seems to be interesting

to consider the S-shaped pattern on the scaled TTT plot in the subsequent

subsection. Define the change point tm from DFR to IFR. Then we can define
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the S-shaped failure rate by

r(t) =



rDFR
0 (t), 0 ≤ t ≤ t1,

rDFR
k (t), tk < t ≤ tk+1 (k = 1, · · · ,m 1),

rIFR
k (t), tk < t ≤ tk+1 (k = m, · · · , n 1),

∞, tn < t.

(4.20)

In other words, the change point tm can be found from the observation t1, t2, . . . ,

tn, but is not estimated in our problem (see [67],[80] for the change point esti-

mation). In a fashion similar to Boswell’s estimator [24], the resulting failure

rate estimator is discontinuous, but the software intensity function with these

estimators is smoothed. We also give a simple algorithm to calculate the IFR

failure rate (the case of DFR is similar).

• Set h = 1 and i1 = 1;

• Repeat until ih+1 = n:

Set ih+1 to be the index i which minimizes the value (i ih)/J(ih, i) (i =

ih + 1, . . . , n);

• Then the IFR estimator is given by r̂(t) = (ij+1 ij)/J(ij , ij+1) whenever

tij < t ≤ tij+1 .

Substituting the resulting estimator of failure rate to Eq.(4.5) yields an estima-

tor of intensity function. Differentiating Eq.(4.7) with respect to ω and equal

to zero lead to following equation:

ω̂ =
n

1 exp

( ∫ tn

0

r(t)dt

) =
n

F (tn)
. (4.21)

Since the estimators in Eqs.(4.15),(4.18),(4.20) are NPMLEs of the failure rate,

the above estimator in Eq.(4.21) maximizes the likelihood function in terms

of ω. As the number of software fault-detection time data, n, increases, then

tn → ∞ and F (tn) → 1, so that ω̂ approaches to n, from Eq.(4.21).

4.2.3 Total Time on Test Plot

In Subsection 4.2.2, we develop an NPMLE under the assumption that the mean

value function is bounded, say, Λ(t) ≤ ω. However, since this method is based
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on the monotone property of failure rate, given the order statistics of software

fault-detection time data, it is always needed to test the aging property of the

underlying probability distribution function F (t). The simplest way is to apply

the scaled total time on test (TTT) plot. The scaled TTT plot was introduced

by Barlow and Campo [81] as a graphical tool for analyzing failure time data.

For n software fault-detection time data, t1, t2, . . . , tn, the total time on test

statistics is defined by

TTTi =

i∑
j=1

(n j + 1)(tj tj 1), (i = 1, . . . , n). (4.22)

By normalizing Eq.(4.22), we can get the scaled TTT statistics:

STi =
TTTi

TTTn
, (i = 1, . . . , n; ST0 = 0). (4.23)

Define the empirical distribution Fn(t) for the software fault-detection time

data, t1, t2, . . . , tn, by

Fn(t) =

 i
n , ti ≤ t < ti+1 (i = 0, . . . , n 1; t0 = 0),

1, tn ≤ t.
(4.24)

By plotting (i/n, STi) in the [0, 1] × [0, 1] plane and connecting them by line

segments, we can obtain the scaled TTT plot. If the resulting scaled TTT plot

always exceeds the 45-degree line, it can be judged that the fault-detection time

distribution is IFR. On the other hand, if the scaled TTT plot is under the

45-degree line, then the fault-detection time is DFR. If the failure rate changes

from DFR to IFR, then the scaled TTT plot becomes an S-shaped curve across

the 45-degree line. In this way, we can check the monotone property of the

failure rate by means of the scaled TTT plot, and can estimate the intensity

function with Eqs.(4.5) and (4.20).

4.3 Software Reliability Assessment for Discrete
Time Case

In this section, an isotonic estimation of software fault intensity function for

software fault count data is provided under the incomplete knowledge on the

mean value function in an NHPP-based software reliability model, where the
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basic idea comes from the nonparametric maximum likelihood estimation and

the min-max principle.

4.3.1 Discrete Time Non-homogeneous Poisson Process

Suppose that the system test of software starts at time i = 0. Let Ni be the

cumulative number of software faults detected by testing time i (= 1, 2, · · · , k).

Then, it is said that the discrete time stochastic process {Ni; i = 1, 2, · · · } is

a discrete time non-homogeneous Poisson process (DNHPP) if the probability

mass function (p.m.f.) at discrete time i is represented by

Pr(Ni = n | N0 = 0) =
(Λi)

n

n!
exp( Λi), (4.25)

where Λi is called mean value function of DNHPP, and represents the expected

cumulative number of software faults detected by time i, i.e. Λi = E[Ni]. Fur-

thermore, the function λi = Λi Λi 1 (i = 1, 2, · · · ; Λ0 = 0) is called the

discrete software fault intensity function, and denotes the expected number of

software faults at time i, that is λi = E[Ni] E[Ni 1]. Since the DNHPP

{Ni; i = 1, 2, · · · } is characterized by only the mean value function Λi or equiv-

alently software fault intensity function λi, we can express various software

faults detection patterns by modeling the mean value function or fault intensity

function.

Suppose that the cumulative number of software faults, ni, detected by time

i (= 1, 2, · · · , k) are available. If the parametric form of mean value function of

DNHPP is known, the problem is to estimate model parameters θ involved in

the mean value function Λi,θ. In general, the maximum likelihood estimation

method is a commonly used technique to estimate model parameters. The

likelihood function of DNHPP is given as the function of model parameters θ:

LF (θ) = exp { Λn,θ}
k∏

i=1

(Λi,θ Λi 1,θ)
(ni ni−1)

(ni ni 1)!
, (4.26)

where Λ0,θ = 0 and n0 = 0. By deriving the model parameters θ which max-

imize Eq.(4.26), we can obtain the maximum likelihood estimate θ̂ of model

parameters.
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4.3.2 Constrained Nonparametric Maximum Likelihood
Estimation

Next consider the case where the form of mean value function is completely

unknown. In this case, the maximum likelihood estimation method mentioned

above cannot be applied any longer. If the cumulative number of software faults

ni detected by time i (= 1, 2, · · · , k) are given, it is intuitive to represent the

mean value function by the actual number of software faults detected by discrete

time i, i.e. m̂i = ni. Then, an estimate of software fault intensity function λ̂i is

given by λ̂i = m̂i m̂i 1 = ni ni 1, where n0 = 0. Although the mean squares

error with the underlying software fault count data is always zero, say, m̂i = ni,

the resulting estimate λ̂i is naive and does not work well for the generalization

ability, because it tends to have big noise and fluctuates everywhere.

Therefore, we introduce the similar but somewhat different constrained non-

parametric maximum likelihood estimation (CNPMLE) from Boswell [24] as

alternative smoothed estimate. Imposing the restriction on software fault in-

tensity function, Boswell [24] shows that the maximization of log-likelihood for

non-decreasing intensity functions can be attained with software fault detection

time data. On the other hand, we assume that the software fault intensity

function is non-increasing in time i to represent the software reliability growth

phenomenon. Define the log-likelihood function for the unknown intensity func-

tion λi (i = 1, 2, · · · , k) by

LLF (λ1, λ2, · · · , λk) =
k∑

i=1

(
(ni ni 1) log(λi) λi log

{
(ni ni 1)!

})
.

(4.27)

Under the condition that the software fault intensity function is non-increasing

in time i, the nonparametric maximum likelihood estimation problem with

Eq.(4.27) can be reduced to the following variational problem with respect to

λi;

arg max
λ1≥λ2≥···≥λk

LLF (λ1, λ2, · · · , λk). (4.28)

The CNPMLE of software fault intensity function with software fault count data

is given by

λ̂i = min
0≤h≤i 1

max
i≤j≤k

nj nh

j h
, (4.29)
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where n0 = 0. It can be checked easily that CNPMLE given in Eq.(4.29)

maximizes LLF (λi, i = 1, 2, · · · , k) in Eq.(4.27) for an arbitrary non-increasing

piecewise linear intensity function λi (i = 1, 2, · · · , k) (see [77]).

In general, the computation cost is quite expensive to find nonparametric

estimators of mean value function, when the kernel approach is taken [41], [42],

[43], [44]. We give a computation algorithm to find the CNPMLE of software

fault intensity function as follows.

• Set h = 0, i0 = 0 and n0 = 0;

• Repeat until ih+1 = k:

Set ih+1 to be the index i which maximizes the slopes between (ih, nih)

and (i, ni) (i = ih + 1, · · · , k);

CNPMLE is given by λ̂i = (nih+1
nih)/(ih+1 ih) at time i = ih +

1, · · · , ih+1 and set h = h+ 1.

From the above algorithm it is easy to obtain the CNPMLE of software fault in-

tensity function with fault count data. Once the intensity function is estimated,

we can get the CNPMLE of mean value function by Λ̂i =
∑i

j=1 λ̂j .

4.4 Numerical Illustrations

In this section, we consider numerical examples with fault-detection time data

and continuous time non-homogeneous Poisson process in Subsection 4.4.1 and

4.4.2. On the other hand, we discuss numerical examples with software fault

count data and discrete time non-homogeneous Poisson process in Subsection

4.4.3.

4.4.1 Goodness-of-Fit Performance

We compare the goodness-of-fit performances between parametric and non-

parametric NHPP-based SRMs. For the comparison purpose, we apply eleven

parametric NHPP-based SRMs; exponential (exp), gamma (gamma), Pareto

(pareto), truncated normal (tnorm), log-normal (lnorm), truncated logistics (tl-

ogis), log-logistics (llogis), truncated extreme-value maximum (txvmax), log-

extreme-value maximum (lxvmax), truncated extreme-value minimum (txvmin),

log-extreme-value minimum (lxvmin) distributions, which are implemented in
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Table 4.1: Data sets.

n Trend Best

DS1 136 S-shape lxvmin

DS2 86 IFR exp

DS3 54 S-shape lxvmax

DS4 129 S-shape lxvmax

DS5 397 DFR lnorm

DS6 104 S-shape lxvmax

DS7 21 S-shape exp

DS8 41 S-shape lxvmax

DS9 278 S-shape gamma

DS10 197 IFR txvmin

DS11 207 S-shape exp

SRATS (Software Reliability Assessment Tool on Spreadsheet) [37]. We also

use eleven software fault-detection time data sets; DS1 ∼ DS11, which are ob-

served in actual software testing phases. Table 4.1 summarizes the data sets

used for analysis, where n denotes the total number of software faults detected

in testing, “Trend” means the scaled TTT plotting results, and “Best” implies

the best parametric NHPP-based SRM among eleven models in terms of the

minimum Akaike information criterion. In Figs.4.1-4.3, we give three examples

to check the trend of failure rate with scaled TTT plot for DS1, DS5 and DS10,

respectively. Since the resulting curve crosses 45-degree line in Fig.4.1, we can

know that DS1 has the S-shaped trend. On the other hand, DS5 (DS10) shows

the almost DFR (strict IFR) trend in Fig.4.2 (Fig.4.3). We choose these three

data sets which have three specific trends (IFR, DFR and S-shape).

Figures 4.4-4.6 depict the estimation results on mean value function (cumu-

lative number of software faults) with four nonparametric NHPP-based SRMs

and the best parametric SRM for DS1, DS5 and DS10, respectively. From these

results, it can be seen that (i) the best parametric NHPP-based SRM can catch

the average trend of cumulative number of software faults, but fails to follow the

microscopic behavior, (ii) the CNPMLE always overestimates the cumulative
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number of software faults and can construct an upper bound of the underly-

ing cumulative data. (iii) the NPMLE based on the failure rate estimator is

better fitted if the trend is correctly estimated. So, the S-shaped failure rate

gives the best performance for DS1, but IFR and DFR cases overestimate and

underestimate the cumulative number of software faults. The above observa-

tions seem to be quite reasonable, because (i) the parametric NHPP-based SRM

strongly depends on the shape of selected probability distribution function, (ii)

the CNPMLE is a pessimistic estimator because the estimator consists of the

maximizer of Eq.(4.11), (iii) taking account of the trend in past observation,

the NPMLE based on the selection of failure rate can estimate the detailed be-

havior of the cumulative number of software faults. Especially, it is interesting

to see that the DFR estimator is always greater than the IFR estimator when

the testing time is relatively short. The difference between these two estimators

becomes smaller in the last phase of software test.

To compare the goodness-of-fit performances quantitatively, we calculate the

mean squared error (MSE) and maximum log-likelihood (MLL) as criteria for

the goodness-of-fit performance:

MSE =

√∑n
i=1{Λ(ti) i}2

n
, (4.30)

MLL =

n∑
i=1

log λ(ti) Λ(tn). (4.31)

Tables 4.2-4.3 represent the goodness-of-fit performance results. Looking at

MSE, the NPMLE with S-shaped failure rate gives the minimum MSE among

three monotone properties; IFR, DFR and S-shaped. We can see that the S-

shaped NPMLE shows smaller MSE in almost all cases, even compared with

CNPMLE. In comparison between S-shaped NPMLE and the best parametric

NHPP-based SRM, it can be found that the NPMLE has the better goodness-

of-fit performance in the sense of minimization of MSE in all cases, except DS3

and DS11. Even in the cases of DS3 and DS11, the difference on MSE between

NPMLE and the best parametric model is very small. On the other hand, fo-

cusing on the results with MLL, all the NPMLEs including the CNPMLE show

the better goodness-of-fit performance than the best parametric NHPP-based

SRMs in all data sets. Since the degree of freedom for NPMLE is greater than

the parametric NHPP-based SRMs, this result will satisfy our intuitions. How-
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ever, the practical advantage is that the model selection is not needed to check

the goodness-of-fit performance before estimating software reliability measures.

This attractive property enables us to understand the detailed behavior of the

software fault-detection process more accurately. It can be considered that the

model which has better goodness-of-fit performance enables us to obtain the

software reliability measures more accurately.

Table 4.2: Goodness-of-fit performance (MSE).

IFR DFR S-shape CNPMLE Best

DS1 0.701 0.520 0.145 0.196 0.222

DS2 0.200 0.678 0.152 0.154 0.220

DS3 0.575 0.380 0.198 0.249 0.192

DS4 1.181 0.637 0.430 0.417 0.534

DS5 2.116 0.764 0.540 0.374 0.814

DS6 0.694 0.703 0.194 0.206 0.322

DS7 0.466 0.496 0.176 0.269 0.408

DS8 0.731 0.531 0.384 0.434 0.390

DS9 0.360 2.138 0.256 0.624 0.630

DS10 0.291 2.098 0.263 0.443 0.281

DS11 0.296 1.262 0.236 0.284 0.228

4.4.2 Software Reliability Measures

Next, we evaluate some software reliability measures with the CNPMLE and

eleven parametric NHPP-based SRMs. Note that the CNPMLE is not suitable

for estimating the residual number of software faults and the fault-free probabil-

ity, which is the probability that there is no fault remaining in software product,

because these depend on the initial number of software faults befote testing, ω.

For an arbitrary time t and the fault-detection time distribution F (t), we define

the residual number of software faults R(t) and fault-free probability at time t
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Figure 4.1: Scaled TTT plot with DS1.

Figure 4.2: Scaled TTT plot with DS5.

Figure 4.3: Scaled TTT plot with DS10.
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Figure 4.4: Behavior of mean value functions with DS1.

Figure 4.5: Behavior of mean value functions with DS5.

Figure 4.6: Behavior of mean value functions with DS10.
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Table 4.3: Goodness-of-fit performance (MLL).

IFR DFR S-shape Constrained Best

DS1 -961.6 -963.9 -958.6 -953.4 -966.1

DS2 -672.3 -689.7 -681.1 -682.4 -686.5

DS3 -437.2 -445.5 -441.3 -440.1 -445.3

DS4 -900.2 -910.0 -891.4 -897.0 -908.0

DS5 -2367.7 -2341.8 -2325.5 -2317.9 -2355.4

DS6 -588.6 -600.9 -585.0 -590.2 -599.1

DS7 -87.3 -97.9 -90.8 -93.6 -96.8

DS8 -482.5 -498.1 -491.6 -489.6 -501.1

DS9 -3616.8 -3662.2 -3613.7 -3628.0 -3651.4

DS10 -2611.4 -2668.4 -2625.4 -2638.4 -2645.3

DS11 -1077.3 -1099.4 -1076.4 -1082.5 -1093.5

by

R(t) = ω̂{1 F̂ (t)}, (4.32)

FFP (t) = exp( ω̂{1 F̂ (t)}), (4.33)

respectively, where F̂ (t) is an estimate of the fault-detection time distribution.

Tables 4.4-4.6 present the estimation results on the software reliability mea-

sures with DS1-DS11, where residual number of software faults and fault-free

probability are estimated at the last fault-detection time tn. Looking at the re-

sults on initial number of software faults and residual number of software faults,

it can be seen that the NPMLE estimates the initial number of software faults

closely to the total number of software fault data, n, and the residual num-

ber of software faults much smaller, which is almost zero. The IFR estimator

and S-shaped estimator show the very similar estimation results. On the other

hand, DFR estimator tends to give a little bit larger estimation than the other

two NPMLEs. The fault-free probability based on the NPMLE, especially in

IFR estimator, tends to take the higher value. On the other hand, it is seen

that the fault-free probability tends to take lower value when one applies the

best parametric NHPP-based SRMs. Furthermore, we calculate two reliability
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Table 4.4: Initial number of software faults at time t = 0.

n IFR DFR S-shape Best

DS1 136 136.33 141.69 136.41 172.90

DS2 86 86.36 92.43 86.35 107.47

DS3 54 54.38 56.74 54.44 223.04

DS4 129 129.28 134.93 129.40 174.28

DS5 397 397.13 409.11 397.30 439.18

DS6 104 104.35 111.99 104.44 116.88

DS7 21 21.43 23.81 21.50 40.93

DS8 41 41.07 43.55 41.10 94.80

DS9 278 278.22 305.43 278.22 476.36

DS10 197 197.25 221.78 197.25 215.43

DS11 207 207.32 222.39 207.32 256.49

Table 4.5: Residual number of software faults at time t = tn.

IFR DFR S-shape Best

DS1 0.33 5.69 0.41 36.88

DS2 0.36 6.43 0.35 21.47

DS3 0.38 2.74 0.44 13.32

DS4 0.28 5.93 0.40 8.64

DS5 0.13 12.11 0.30 42.20

DS6 0.35 7.99 0.44 64.57

DS7 0.43 2.81 0.50 19.94

DS8 0.07 2.55 0.10 4.59

DS9 0.22 27.43 0.22 198.08

DS10 0.25 24.78 0.25 18.36

DS11 0.32 15.39 0.32 49.47
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Table 4.6: Fault-free probability at time t = tn.

IFR DFR S-shape Best

DS1 7.16E-01 3.38E-03 6.64E-01 9.61E-17

DS2 7.00E-01 1.61E-03 7.01E-01 4.76E-10

DS3 6.81E-01 6.49E-02 6.44E-01 3.77E-74

DS4 7.59E-01 2.65E-03 6.73E-01 2.21E-20

DS5 8.81E-01 5.51E-06 7.39E-01 4.71E-19

DS6 7.06E-01 3.38E-04 6.47E-01 0.00E+00

DS7 6.49E-01 6.03E-02 6.06E-01 2.19E-09

DS8 9.33E-01 7.78E-02 9.06E-01 4.23E-24

DS9 8.04E-01 1.22E-12 8.03E-01 9.43E-87

DS10 7.76E-01 1.73E-11 7.77E-01 1.07E-08

DS11 7.23E-01 2.08E-07 7.23E-01 3.26E-22

measures which are related to the fault-detection time. The mean time between

software failures (MTBF) is one of the most useful measures to represent the

frequency of occurrence of software failures in operation. As MTBF is longer,

the frequency of fault-detection becomes smaller, and the software reliability

grows as well. Strictly speaking, since a unique MTBF cannot be defined for

NHPP-based SRMs, the cumulative mean time between failures MTBFC(t)

and instantaneous mean time between failures MTBFI(t) are sometimes used

as alternative measures:

MTBFC(t) =
t

Λ(t)
, (4.34)

MTBFI(t) =
1

λ(t)
. (4.35)

The cumulative MTBF represents the inverse of the expected number of soft-

ware faults detected per unit time, and the instantaneous MTBF indicates the

momentary mean time to detect a software fault at arbitrary time t.

Tables 4.7-4.8 present the estimation results on cumulative MTBF and in-

stantaneous MTBF with DS1-DS11, where t = tn in Eqs.(4.34) and (4.35). On

the cumulative MTBF, it is seen that the results are almost similar regardless

of the selected models. On the other hand, the results of instantaneous MTBF
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Table 4.7: Cumulative MTBF at time t = tn.

IFR DFR S-shape Constrained Best

DS1 652 652 652 652 652

DS2 1193 1193 1193 1193 1193

DS3 2013 2013 2013 2013 2014

DS4 690 690 690 690 690

DS5 274 274 274 274 274

DS6 148 148 148 148 148

DS7 38 38 38 38 38

DS8 105185 105185 105185 105185 105227

DS9 197602 197602 197602 197602 197404

DS10 255009 255009 255009 255009 254919

DS11 80 80 80 80 80

Table 4.8: Instantaneous MTBF at time t = tn.

IFR DFR S-shape Constrained Best

DS1 11307 5155 9221 4116 2303

DS2 7316 6022 7363 3902 2967

DS3 20566 14323 17975 7899 6115

DS4 276 5551 192 2571 3752

DS5 4855 3064 2028 1629 2255

DS6 313 803 250 289 364

DS7 35 139 30 55 55

DS8 5.1E+06 6.9E+05 3.6E+06 1.2E+06 3.5E+05

DS9 9.3E+05 8.5E+05 9.3E+05 4.4E+05 3.4E+05

DS10 3.6E+06 9.3E+05 3.6E+06 1.4E+06 5.3E+05

DS11 663 409 663 332 205
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show the quite different values when one applies different estimation methods.

If the best fitted model is the most reliable, the instantaneous MTBF with the

S-shaped failure rate may be realistic to quantify the momentary mean time to

detect a software fault.

4.4.3 Numerical Examples with Software Fault Count Data

We derive the CNPMLE of mean value function with three real software fault

count data. We name these data as DS1, DS2 and DS3, respectively. DS1

(DS2, DS3) consists of k = 181 (41, 112) fault count data, where n181 =

224 (n41 = 351, n112 = 183). For these data sets, we apply a discretized

parametric (exponential [32]) NHPP and compare with our CNPMLE in terms

of the goodness-of-fit performance. Figure 4.7 shows the estimation results on

mean value function (cumulative number of software faults) with CNPMLE and

exponential NHPP for DS2. From this figure, we can see that the CNPMLE

always overestimates the cumulative number of software faults and can construct

an upper bound of the underlying cumulative data. Next, we calculate the mean

squares error (MSE) and the maximum log-likelihood (MLL) as criteria on the

goodness-of-fit performances.

MSE =

√∑k
i=1{Λ̂i ni}2

k
, (4.36)

MLL =

k∑
i=1

(ni ni 1) log(λ̂i) Λn

k∑
i=1

log
{
(ni ni 1)!

}
. (4.37)

Table 4.9 presents the results of goodness-of-fit performance. It can be seen

that the CNPMLE shows the better goodness-of-fit performance on MLL than

the parametric NHPP in all data sets. Focusing on the results under MSE, we

can see that the CNPMLE gives the almost similar value or smaller MSE than

that of parametric NHPP.
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Figure 4.7: Behavior of mean value function and real data with DS2.

Table 4.9: Comparison of Goodness-of-fit performances.

MLL MSE

DS CNPMLE Exponential CNPMLE Exponential

1 -285.904 -348.224 2.145 2.138

2 -119.270 -160.749 2.275 3.452

3 -217.969 -220.581 2.219 2.156



Chapter 5

Robustness of
Non-homogeneous Gamma
Process-based Software
Reliability Models

In this chapter we extend non-homogeneous gamma process (NHGP)-based soft-

ware reliability models (SRMs) by Ishii and Dohi (2008) from both view points

of modeling and parameter estimation. In modeling, we generalize the underly-

ing NHGP-based SRMs to those for eleven kinds of trend function, which can

characterize a variety of software fault-detection patterns. In parameter es-

timation, we develop a nonparametric maximum likelihood estimation method

without the complete knowledge on trend functions, and compare it with the

parametric maximum likelihood estimation method. Since an NHGP involves a

non-homogeneous Poisson processes (NHPPs) as the simplest case, it is shown

that NHGP-based SRMs are much more robust than the common NHPP-based

SRMs and that our nonparametric method can improve the goodness-of-fit per-

formance of the conventional parametric one.

5.1 Summary on NHPP-based SRMs

5.1.1 Model Description

Let {N(t), t ≥ 0} be the cumulative number of software faults detected by time

t in software testing and be a stochastic point process satisfying:

79
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(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increment

(iii) Pr{N(t+∆t) N(t) ≥ 2} = o(∆t)

(iv) Pr{N(t+∆t) N(t) = 1} = λ(t)∆t+ o(∆t),

where o(∆t) is the higher term of ∆t. Then the point process is said the non-

homogeneous Poisson process (NHPP) with failure intensity function λ(t), and

the probability that the total number of software faults detected by time t equals

n is given by

Pr{N(t) = n} =
{Λ(t)}n

n
exp{ Λ(t)}, (5.1)

where

Λ(t) = E[N(t)] =

∫ t

0

λ(x)dx (5.2)

is called the mean value function of the NHPP which represents the expected

cumulative number of software faults detected by time t.

In the traditional software reliability modeling based on NHPPs, the main

research issue was to determine the failure intensity function λ(t), or equivalently

the mean value function Λ(t) so as to fit the software fault count data. If the

number of residual faults before software testing is expected to be finite, i.e.,

limt→∞ Λ(t) = a (> 0), the mean value function can be represented as the

product of expected number of residual faults a and software fault-detection

time distribution F (t;θ), where θ is model parameter (vector). For a given

mean value function or equivalently software-fault detection time distribution,

the next step is to estimate the model parameters included in the mean value

function

Let ξ (= (a,θ)) be the model parameters in an SRM, i.e., the mean value

function is given by Λ(t; ξ) =
∫ t

0
λ(x; ξ)dx = aF (t;θ). A commonly used tech-

nique for parameter estimation of NHPP-based SRMs is the maximum likeli-

hood estimation. Let ti (i = 1, 2, . . .) denote the time sequence to detect the i-th

software fault (software fault-detection time) and be measured by CPU time in

the software testing. Suppose that n (> 0) software fault-detection time data

ti (i = 1, 2, . . . , n; t0 = 0) are observed during the testing phase (0, T ], where
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T (≥ tn) is the observation point. From the independent increment of NHPP,

the likelihood function is given by

LF (ξ | t1, . . . , tn, T ) =

[
n∏

i=1

λ(ti; ξ) exp

{ ∫ ti

ti−1

λ(x; ξ)dx

}]

× exp

{ ∫ T

tn

λ(x; ξ)dx

}

=exp[ Λ(T ; ξ)]

n∏
i=1

λ(ti; ξ). (5.3)

Taking the logarithm, we have the log-likelihood function given by

LLF (ξ | t1, . . . , tn, T ) =
n∑

i=1

log λ(ti; ξ) Λ(T ; ξ). (5.4)

The problem is to derive the estimate which maximizes LLF (ξ). That is, the

maximum likelihood (ML) estimate of parameters ξ̂ is given by a solution of

LLF (ξ̂ | t1, . . . , tn, T ) = arg max
ξ

LLF (ξ | t1, . . . , tn, T ). (5.5)

This problem can be also reduced to solve the simultaneous likelihood equations:

dLLF (ξ)

dξ
= 0. (5.6)

Since the above log-likelihood function in Eq.(5.5) is a multi-modal nonlin-

ear function for an arbitrary failure intensity function λ(t; ξ), one needs any

nonlinear optimization algorithm such as Newton’s method to obtain the ML

estimate ξ̂. It is well known that the best parametric NHPP-based SRM to fit

every type of software fault-detection time data does not exist [29],[30]. That

is, we have to select the mean value function Λ(t; ξ) or the corresponding soft-

ware fault-detection time distribution F (t;θ) carefully in order to obtain the

best fitted NHPP-based SRM to the underlying data. Okamura and Dohi [37]

suggest that it is enough to consider eleven typical software fault-detection time

distributions, which include exponential [32], gamma [38],[39], Pareto [46],[47],

truncated normal [48], log-normal [31],[48], truncated logistics [35], log-logistics

[34], truncated extreme-value maximum [36], log-extreme-value maximum [36],

truncated extreme-value minimum [36], log-extreme-value minimum (Weibull)

[33],[36] distributions. Table 5.1 presents eleven mean value (trend) functions

and software fault-detection time distributions used here.



82 CHAPTER 5. NPMLE FOR NHGP-BASED SRMS

Table 5.1: Mean value functions.

Models Functions

Exponential dist.

(exp) [32]
Λ(t) = aF (t), F (t) = 1 e bt

Gamma dist.

(gamma) [38],[39]
Λ(t) = aF (t), F (t) =

∫ t

0

cbsb 1e cs

(b)
ds

Pareto dist.

(pareto) [46],[47]
Λ(t) = aF (t), F (t) = 1 ( c

t+c )
b

Truncated normal

dist. (tnorm) [48]

Λ(t) = aF (t) F (0)
1 F (0) ,

F (t) = 1√
2πb

∫ t

∞ e
(s−c)2

2b2 ds

Log-normal dist.

(lnorm) [31],[48]

Λ(t) = aF (log t),

F (t) = 1√
2πb

∫ t

∞ e
(s−c)2

2b2 ds

Truncated logistic

dist. (tlogis) [35]

Λ(t) = aF (t) F (0)
1 F (0) ,

F (t) = 1

1+e−
t−c
b

Log-logistic dist.

(llogis) [34]
Λ(t) = aF (log t), F (t) = 1

1+e−
t−c
b

Truncated extreme-value max

dist. (txvmax) [36]

Λ(t) = aF (t) F (0)
1 F (0) ,

F (t) = e e−
t−c
b

Log-extreme-value

max dist. (lxvmax) [36]

Λ(t) = aF (log t),

F (t) = e e−
t−c
b

Truncated extreme-value

min dist. (txvmin) [36]

Λ(t) = aF (0) F ( t)
F (0) ,

F (t) = e e−
t−c
b

Log-extreme-value

min dist. (lxvmin) [33],[36]
Λ(t) = a(1 F ( log t)), F (t) = e e−

t−c
b
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5.1.2 Constrained Nonparametric ML Estimation [A3]

Boswell [24] introduces a nonparametric ML estimation, where Λ(t; ξ) = aF (t;θ)

is not assumed. So, he does not restrict the class of NHPP such as Λ(t; ξ) =

aF (t;θ), but, instead, assumes that the failure intensity function λ(t) is a non-

negative monotone non-increasing function of t ∈ (0, T ]. For unknown failure

intensity function λ(t), Boswell [24] considers the following variational problem:

arg max
λ(t)

[
n∑

i=1

log λ(ti)

∫ T

0

λ(x)dx

]
. (5.7)

Note that an increase in the above log-likelihood function can occur only by an

increase in λ(t) at the fault-detection time points. Boswell [24] proves that a

solution in Eq.(5.7) must consist of step functions closed on the right with no

jumps except at some of the event occurrence points. This fact leads to the

idea on the so-called isotonic estimation, and gives a constrained nonparametric

maximum likelihood estimate (constrained NPMLE). For t1 < t2 < . . . < tn ≤

T , define the likelihood function as a function of unknown failure intensity

function at each fault-detection time:

LF (λ(ti), i = 1, 2, . . . , n) = exp

{ ∫ T

0

λ(x)dx

}
n∏

i=1

λ(ti). (5.8)

Taking the logarithm, the log-likelihood function is given by

LLF (λ(ti), i = 1, 2, . . . , n) =

n∑
i=1

log λ(ti)

∫ T

0

λ(x)dx. (5.9)

Hence the problem can be reduced to the following finite dimensional problem:

arg max
λ(ti),i=1,2,...,n

LLF (λ(ti), i = 1, 2, . . . , n). (5.10)

For this problem, it turns out that the following min-max solution is optimal

[53],[24]:

λ̂(tj) = min
1≤h≤j

max
j≤k≤n

k h

tk th
. (5.11)

The resulting estimator is discontinuous, but constructs an upper bound of

LLF (λ(ti), i = 1, 2, . . . , n). Although we assume that the failure intensity

function is non-increasing to represent the reliability growth phenomenon, this

assumption can be relaxed. That is, if the failure intensity function is non-

decreasing, then the resulting constrained NPMLE consists of step functions
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closed on the left with no jumps except at some of event occurrence points, and

can be given by replacing min operator and max operator in Eq.(5.11) from

each other. Another advantage of the constrained NPMLE is the low com-

putation cost compared with the other representative nonparametric methods

[42],[44],[41],[45],[40],[43]. A simple optimization code to derive the constrained

NPMLE is given as follows.

• Set h = 1 and i1 = 1;

• Repeat until ih+1 = n:

Set ih+1 to be the index i which minimizes the slopes between (tih , ih 1)

and (ti, i 1) (i = ih + 1, . . . , n);

• The constrained NPMLE is then given by λ̂(t) = (ij+1 ij)/(tij+1 tij )

whenever tij < t ≤ tij+1 .

5.2 NHGP-Based Software Reliability Models

5.2.1 A Generalization of NHPPs

Next, we introduce non-homogeneous gamma process (NHGP)-based SRMs in

the sense of Berman [50]. As well known, the NHPP possesses the time-scale

transform property, i.e., the random variable Λ(Ti; ξ) (i = 0, 1, . . . , n) can be

regarded as a homogeneous Poisson process (HPP) with unit failure intensity

λ(t; ξ) = 1 for all t ≥ 0, where Ti are the software fault-detection times (random

variables). This means that Λ(Ti+1; ξ) Λ(Ti; ξ) are independent and identi-

cally distributed random variables having the exponential distribution with unit

scale parameter. It holds even under the trend function is bounded. Berman

[50] considers a situation where there are κ (> 0) NHPPs with same failure

intensity function and where the observed software fault-detection epoch cor-

responds to every successive κth event of the underlying NHPP. Let κ be an

unknown integer-valued parameter which has to be estimated from the soft-

ware fault-detection time data. For example, when κ = 2, the software fault is

detected at every second event. Thus software whose faults are detected and

removed is in better condition than would be before the detection of their faults,

because two other events must occur in order to observe the next software fault
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Figure 5.1: Interpretation of NHGP.

occurance. That is, when κ > 1, the software is improved in better condition

just before the removal of software faults, and the larger κ indicates the larger

improvement effect. On the other hand, if κ < 1, then the software is in worse

condition just after the detection of software faults. From the definition, the

random variables Λ(Ti+1; ξ) Λ(Ti; ξ) are regarded as the Stieltjes convolution

of κ exponential distributions with unit scale parameter, and obeys the gamma

probability density function with shape parameter κ and unit scale parameter:

g(t) =
tκ 1 exp( t)

(κ)
, (5.12)

where (·) denotes the standard gamma function. In other words, Λ(Ti+1; ξ)

Λ(Ti; ξ) follow a renewal process having the gamma renewal density g(t) with

shape parameter κ and unit scale parameter (see Figure 5.1).

The NHGP sequence Ti is given by taking the inverse time-scale transform

with Λ(t; ξ). It is worth mentioning that the intensity function of an NHGP as a

stochastic point process is no longer deterministic except for κ = 1. Therefore,

when κ ̸= 1, the intensity function of the NHGP may be stochastic and depends

on the past history of events. This is usually called the intensity process for

a stochastic point process (e.g. see [82]). For instance, let {ζ(t | Ft ), t ≥ 0}

be the intensity process at time t for a point process {N(t), t ≥ 0}, where Ft

denotes the history of N(t) up to, but not including time t. When κ = 1, it is

evident that the intensity process ζ(t | Ft ) = λ(t; ξ) is deterministic. To avoid

confusion, we call λ(t) the failure intensity parameter in the latter discussion,

and distinguish λ(t) from intensity process ζ(t | Ft ) for the general NHGP.

Furthermore, we call Λ(t; ξ) =
∫ t

0
λ(x; ξ)dx the trend function for NHGP which



86 CHAPTER 5. NPMLE FOR NHGP-BASED SRMS

is equivalent to the mean value function for NHPP when κ = 1. It turns out

[51] that the mean value function of NHGP E[N(t)] does not equal Λ(t; ξ) when

κ ̸= 1.

Suppose that n software fault-detection time data ti (i = 1, 2, . . . , n) ob-

served from the time t = 0 to the end point t = T are available. Then, the

likelihood function of the NHGP-based SRM is given by

LF (ξ, κ) =

[
n∏

i=1

λ(ti; ξ)
{
Λ(ti; ξ) Λ(ti 1; ξ)

}κ 1
]

× exp{ Λ(T ; ξ)}/ (κ)
n
. (5.13)

Taking the logarithm of Eq.(5.13), we have the log-likelihood function of the

NHGP-based SRM:

LLF (ξ, κ) =

n∑
i=1

[
log λ(ti; ξ) + (κ 1) log

{
Λ(ti; ξ)

Λ(ti 1; ξ)
}

Λ(T ; ξ)

]
n log (κ) , (5.14)

where t0 = Λ(t0; ξ) = 0 without any loss of generality. Similar to the NHPP-

based SRMs, once we select the failure intensity parameter λ(t; ξ), or equiva-

lently trend function Λ(t; ξ), we can estimate model parameters by maximizing

the log-likelihood function in Eq.(5.14).

After one fault correction, the software system would thus be better than

it was just before the fault detection. When κ = 1, Eq.(5.13) is reduced to

Eq.(5.3) as a special case. Therefore, we can see that the NHPP is a special

case of an NHGP. On the other hand, the software system would not be as same

as it was just before the fault detection when κ ̸= 1. Furthermore, when the

failure intensity parameter is given by a constant, i.e., λ(t; ξ) = ρ, the NHGP

is equivalent to the renewal process with the gamma distributed inter-renewal

time with shape parameter κ and scale parameter ρ (gamma renewal process).

Then the software system in this case would be as bad as old before testing

and would not behave like reliability growth. In other words, the NHGP is

a non-stationary stochastic point process characterized by the failure intensity

parameter λ(t; ξ) or the trend function Λ(t; ξ), but can represent two different

aging properties in the same model, called minimal repair property (κ = 1) and

major repair property (λ(t; ξ) = ρ) in the common reliability engineering (see
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Figure 5.2: Schematic illustration of the intensity process of NHGPs.

[52]). Figure 5.2 is a schematic illustration of the intensity process for varying

failure intensity parameter, where the jump size at each time ti (i = 1, 2, · · · , n)

in the case of κ ̸= 1 depends on the selection of failure intensity parameter.

5.2.2 Behavior of Expected Cumulative Number of Soft-
ware Faults in NHGP-based SRMs

As mentioned before, the NHGP is known as a generalized stochastic point

process including the NHPP in the case of κ = 1. However, dissimilar to NHPP,

we have not known well the probabilistic property of an NHGP as a counting

process. For example, the cumulative number of software faults in the NHGP-

based SRM (E[N(t)]) cannot be represented analytically and does not equal

Λ(t; ξ) anymore. The simplest way to obtain the expected cumulative number

of software faults in NHGP-based SRMs is applying the elementary renewal

theorem. In the existing work in Bandyopadhyay and Sen [83], the expected

cumulative number of events in the NHGP can be derived approximately as

follows:

E[N(t)] ≈ Λ(t; ξ̂)

κ
+

1 κ

2κ
. (5.15)
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For a sufficiently large t, it is known that Eq.(5.15) does work well from the

analogy of the usual renewal process. It is obvious that the above formula is

exactly consistent with the mean value function of an NHPP in the case of

κ = 1.

For validation on the accuracy of Eq.(5.15), we apply the Monte Carlo simu-

lation to investigate the behavior of the expected cumulative number of software

faults in NHGP-based SRMs. First, we generate the pseudo random number

zi (i = 1, 2, · · · , n) following the gamma distribution with shape parameter κ

and unit scale parameter, and obtain wi =
∑i

j=1 zi. Transforming wi with

the inverse of a trend function, we get si = Λ 1(wi) which are samples from

an NHGP. We repeat this procedure m times to obtain m sets of sample path

which follow the NHGP. Finally, taking the average of these sample paths at an

arbitrary time t, the expected cumulative number of software faults at time t

can be calculated numerically. For a sufficiently large number of m, this simu-

lated mean value function is close to the actual mean value for the NHGP from

the law of large numbers.

5.2.3 Constrained Nonparametric ML Estimation of NHGP

Bartoszynski et al. [53] extend the Boswell’s constrained NPMLE for an NHPP

and derive a non-increasing NPMLE of λ(t) in the situation where multiple

sample paths of NHPP can be observed. We further extend this approach

to the NHGP-based SRMs. Similar to the NHPP-based SRMs[A3], we seek

the estimates which maximize the log-likelihood function given in Eq.(5.14)

under the condition that λ(t) belongs to the class of nonnegative, non-increasing

functions on (0, T ]. The optimal λ(t) must also consist of step functions closed

on the right with no jumps except at some of the fault-detection time points.

To see this, suppose that λ̃(t) is any non-increasing function. Let qi =∫ ti
ti−1

λ̃(x)dx for any fixed i (= 1, 2, · · · , n + 1), where we define tn+1 = T .

If we choose λ(t) = qi/(ti ti 1) so as to be constant in t ∈ (ti 1, ti], then∫ ti
ti−1

λ(x)dx = qi holds. Therefore, substituting λ̃(t) to Eq.(5.14) instead of

λ(t), only the term log λ(ti) is changed to log λ̃(ti). Since λ̃(t) is a non-increasing

function, it is seen that λ(ti) ≥ λ̃(ti) and the equality holds if λ(t) = λ̃(t) for

t ∈ (ti 1, ti]. So, unless λ̃(t) is not constant on every interval of (ti 1, ti], it is
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impossible to increase Eq.(5.14) without violating the non-increasing assump-

tion.

The method of obtaining a non-increasing NPMLE of λ(t) in NHGP-based

SRMs is very similar to that in NHPP-based SRMs. Let λi = λ(ti) and xi =

ti ti 1 (i = 1, 2, · · · , n + 1), with tn+1 = T . Looking at Eq.(5.14), it is

obvious that the optimum value of λ(t) is zero for t > tn, i.e., λn+1 = 0,

otherwise, only the term Λ(t) increases and the LLF decreases consequently.

Since Λ(ti) Λ(ti 1) can be represented by λixi, the problem of maximizing

Eq.(5.13) is simplified to the problem of maximizing

LF (λ1, λ2, · · · , λn, κ) =

[
n∏

i=1

λi{λixi}κ 1

]
exp(

∑n
i=1 λixi)

(κ)n
(5.16)

subject to λ1 ≥ · · · ≥ λn ≥ 0. This is equivalent to maximize

LLF (λ1, λ2, · · · , λn, κ) =
n∑

i=1

log λi + (κ 1)
n∑

i=1

log λixi

n∑
i=1

λixi n log (κ) . (5.17)

Unfortunately, it would not be easy to obtain analytically the ML estimates of

both λ(t) and κ simultaneously. However, it might be possible to obtain the ML

estimates by an iteration technique. That is, we start from an initial guess of

the integer-valued parameter κ, and maximize the log-likelihood function with

the given parameter to obtain an ML estimate of λ(t). Next we estimate the

parameter κ which maximizes the log-likelihood function using the estimate of

λ(t) again. The similar iteration will continue until convergence. For a given κ,

we obtain ML estimates of λi by solving the following maximization problem:

max
λ1,λ2,··· ,λn

n∑
i=1

{κ log λi λixi} (5.18)

subject to λ1 ≥ · · · ≥ λn ≥ 0. The solution to this problem is given by

λ1 = λ2 = · · · = λk1 = max
1≤t≤n

κt∑t
j=1 xj

(5.19)

λk1+1 = λk1+2 = · · · = λk2 = max
k1+1≤t≤n

κ(t k1)∑t
j=k1+1 xj

(5.20)

λk2+1 = λk2+2 = · · · = λk3 = max
k2+1≤t≤n

κ(t k2)∑t
j=k2+1 xj

(5.21)

...
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where k1 is the value of t which satisfies Eq.(5.19), k2 (> k1) is the value of t

which satisfies Eq.(5.20), k3 (> k2) is the value of t which satisfies Eq.(5.21),

etc. Continue the above steps until kl = n. If there are more than one t giving

the same maximum value, the biggest one should be chosen. Even if not, the

solution can be achieved.

Next, consider the problem of maximizing Eq.(5.17) when κ is unknown.

The iteration scheme is given as follows: Let κ = κ(1) be some initial guess of

parameter κ. Then use Eqs.(5.19)-(5.21) to find λ
(1)
1 , λ

(1)
2 , · · · , λ(1)

n . This results

the first estimate of λ(t). Since the process Λ(Ti) Λ(Ti 1) (i = 1, 2, · · · , n) can

be regarded as a renewal process from the NHGP assumption, we can find an

updated estimate of κ(2). Note that this is a renewal process with independent

and identically distributed inter-renewal times. Since it is the gamma distribu-

tion with unit scale parameter (i.e., g(t) = tκ 1e t/ (κ)), the profile likelihood

function becomes

LF (κ) =
n∏

i=1

g (Λ(ti) Λ(ti 1)) . (5.22)

Define y
(1)
i =

∑i
j=1 λ

(1)
j xj (y

(1)
0 = 0) using λ

(1)
i (i = 1, 2, · · · , n). Then the

profile log-likelihood function for unknown κ can be written by

LLF (κ) =
n∑

i=1

log g(y
(1)
i y

(1)
i 1)

=(κ 1)
n∑

i=1

log λ
(1)
i xi

n∑
i=1

λ
(1)
i xi n log (κ). (5.23)

The difference between Eq.(5.17) and Eq.(5.23) is only the constant term∑n
i=1 log λ

(1)
i . A new estimate κ(2) is then obtained by maximizing Eq.(5.23)

numerically with respect to κ. Then use κ(2) to obtain an updated estimate

λ
(2)
i (i = 1, 2, · · · , n) of λ(t) with Eqs.(5.19)-(5.21). We use λ(2) to find the

estimate of κ(3) and continue the similar iterations until the difference between

two successive estimates of κ is smaller than a given tolerance level ϵ. That

is, when κ(i+1) κ(i) ≤ ϵ holds, the estimation procedure ends with the final

estimate κ(i+1).
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5.3 Numerical Illustrations

Our main purpose is the examination of goodness-of-fit performance of NHGP-

based SRMs quantitatively. To compare the results, we also apply the well-

known NHPP-based SRMs and compare the goodness-of-fit performances be-

tween NHGP-based SRMs and NHPP-based SRMs with an actual dataset which

consists of n = 54 software fault-detection time data observed in a real software

testing phase [84]. We identify the best SRM by calculating the maximum

log-likelihood (MLL), Akaike information criterion (AIC), Bayesian informa-

tion criterion (BIC) and mean squares error (MSE) in each observation point

(10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%), where

AIC = 2×MLL+ 2θ, (5.24)

BIC = 2×MLL+ θ ln(n), (5.25)

MSE =

√∑n
i=1{E[N(t)] i}2

n
, (5.26)

and θ is the model dimension (number of free parameters), n is the sample

size (number of data). In NHPP-based SRMs, we calculate MSE with mean

value function Λ(t; ξ̂)(= E[N(t)]) directly. In NHGP-based SRMs, on the other

hand, we apply the approximate method in Eq.(5.15) and the Monte Carlo

simulation, where 500 samples are generated to obtain the E[N(t; ξ̂)] for NHGP-

based SRMs.

First, we compare the goodness-of-fit performance of parametric NHGP-

based SRMs with that of parametric NHPP-based SRMs. We apply eleven trend

functions (exp, gamma, pareto, tnorm, lnorm, tlogis, llogis, txvmax, lxvmax,

txvmin, lxvmin) in Table 5.1 for both NHGP-based SRMS and NHPP-based

SRMs. As mentioned before, we focus on the integer-valued κ for NHGP-based

SRMs to give their physical interpretations. Tables 5.2-5.5 present the calcula-

tion results of MLL and MSE with eleven parametric NHPP-based SRMs and

eleven parametric NHGP-based SRMs. From these results, it can be seen that

the NHGP-based SRMs can provide the higher goodness-of-fit performance than

NHPP-based SRMs from the view point of MLL maximization and MSE mini-

mization. In the latter testing phase it can be observed that NHGP-based SRMs

show the exactly same goodness-of-fit performance to NHPP-based SRMs. This

is because NHPP-based SRMs are special cases of NHGP-based SRMs and the
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latter approaches to the former as the software test progresses. More specif-

ically, we give the calculation results on AIC and BIC when the exponential

trend function is assumed for NHPP-based SRM and NHGP-based SRM in

Tables 5.6 and 5.7, respectively. At the first look, since AIC and BIC in 70%-

100% observation points for the NHPP-based SRM are smaller than those for

the NHGP-based SRM, it may be considered that the NHPP-based SRM out-

performs the NHGP-based SRM. However, this observation will convince us,

because the NHGP-based SRM can be reduced to the NHPP-based SRM by

choosing κ = 1. In the case where the parameter κ is redundant, the NHGP-

based SRM shows the exactly same goodness-of-fit performance, and the model

selection based on AIC and BIC has no significant meaning. In other words,

the model selection in our generalized framework depends on the selection of

κ in addition to the trend function. The lesson learned from the comparative

study is the adjustment of κ, so that in the initial and middle testing phases,

the shape parameter κ rather influences to the goodness-of-fit performance, but

in the last testing phase it works similar to the common NHPP-based SRM.

This is the similar insight to the previous result in [49] but is clarified in detail

through our numerical experiment conducted in this chapter.
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Table 5.6: Goodness-of-fit performance with exponential NHPP-based SRMs.

time MLL AIC BIC MSE

10% 6.737 -9.474 -10.701 0.093

20% 13.082 -22.164 -21.559 0.218

30% 16.843 -29.686 -28.270 0.179

40% 20.260 -36.519 -34.430 0.184

50% 22.633 -41.266 -38.749 0.195

60% 15.390 -26.780 -23.849 0.188

70% 12.576 -21.151 -17.930 0.455

80% 7.528 -11.055 -7.533 0.447

90% 2.772 -1.545 2.198 0.528

100% -6.912 17.825 21.803 0.552

Next, we evaluate the nonparametric maximum likelihood estimation. Ta-

ble 5.8 presents the comparison of MLL and MSE in both NHPP-based SRMs

and NHGP-based SRMs with constrained NPMLEs, respectively. Note that

the degree of freedom in the nonparametric approach is larger than that in the

parametric approach, so that it is impossible to evaluate AIC and BIC in the

nonparametric maximum likelihood estimation. Similar to the comparison in

Tables 5.6 and 5.7, even though the nonparametric maximum likelihood estima-

tion method is applied, it can be seen that the NHGP-based SRM outperforms

the NHPP-based SRM in the initial and middle testing phases (from 10% to

80% observation points) and that both SRMs give the exactly same MLL values

in the latter testing phase. On the other hand, focusing on MSE, it is found

that NHGP-based SRM gives the smaller MSE in the early testing phase (from

10% to 80% observation points).

In Table 5.9, we compare the results of parametric NHGP-based SRMs and the

nonparametric NHGP-based SRM, where the best SRM among eleven trend

functions is selected. From this result, we can see that the NHGP-based SRM

with CNPMLE shows the smaller MLL in almost all cases except for 30% obser-

vation point. On the other hand, it can be checked that the NHGP-based SRM

with CNPMLE provides the smaller MSE in initial and middle phases (from
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Table 5.7: Goodness-of-fit performance with exponential NHGP-based SRMs.

time MLL AIC BIC MSE k

10% 16.730 -27.460 -28.631 0.306 384

20% 23.201 -40.402 -39.494 0.208 17

30% 26.656 -47.312 -44.995 0.186 8

40% 26.491 -46.982 -43.848 0.180 3

50% 30.369 -54.737 -50.850 0.189 3

60% 24.111 -42.221 -37.824 0.195 3

70% 13.807 -21.614 -16.781 0.443 2

80% 7.528 -9.055 -3.772 0.447 1

90% 2.772 0.455 6.069 0.528 1

100% -6.912 19.825 25.792 0.552 1

Table 5.8: Goodness-of-fit performance with nonparametric maximum likeli-
hood estimation.

MLL MSE

time NHPP NHGP NHPP NHGP

10% 8.314 45.433 0.000 0.201

20% 13.577 28.988 0.051 0.144

30% 19.379 24.759 0.123 0.097

40% 21.531 29.867 0.101 0.080

50% 23.386 34.651 0.094 0.075

60% 18.598 31.576 0.083 0.062

70% 17.889 23.388 0.167 0.141

80% 15.604 18.508 0.299 0.249

90% 10.729 10.729 0.279 0.279

100% 2.065 2.065 0.249 0.249
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Table 5.9: Comparison of Best parametric models with CNPMLE in NHGP-
based SRMs.

MLL MSE

time Best trend CNPMLE Best trend CNPMLE

10% 18.286 45.433 0.271 0.201

(lxvmax) (lxvmin)

20% 25.141 28.988 0.161 0.144

(lxvmax) (pareto)

30% 27.367 24.759 0.158 0.097

(lxvmax) (lnorm)

40% 27.319 29.867 0.125 0.080

(lxvmax) (lxvmax)

50% 31.742 34.651 0.123 0.075

(lxvmax) (lxvmax)

60% 24.682 31.576 0.134 0.062

(lxvmin) (gamma)

70% 17.998 23.388 0.200 0.141

(lxvmax) (pareto)

80% 12.996 18.508 0.226 0.249

(txvmax) (lxvmax)

90% 5.824 10.729 0.225 0.279

(lxvmax) (lxvmax)

100% -3.148 2.065 0.194 0.249

(lxvmax) (lxvmax)
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10% to 70% observation points)

Finally, we illustrate the estimation behavior of the cumulative number of

software faults detected at 20%, 60%, 80% and 100% observation points in

Figs. 5.3-5.14. In Figs. 5.3-5.6, we apply the parametric NHPP-based SRM

with a trend function (lxvmax) and nonparametric NHPP-based SRM. On the

other hand, we depict the cumulative number of software faults with parametric

NHGP-based SRM with a trend function (lxvmax) and nonparametric NHGP-

based SRM in Figs. 5.7-5.10, where the approximation formula in Eq.(5.15) is

applied. In Figs. 5.11-5.14, we have the similar plots to Figs. 5.7-5.10 when

the Monte Carlo simulation is applied. In Figs. 5.3-5.14, we find that all SRMs

carefully selected in respective methods show the quite similar tendency, espe-

cially in the last testing phase. Comparing Figs. 5.7-5.10 with Figs. 5.11-5.14,

the estimated curves are almost identical. Our numerical calculation indicates

that the approximation formula in Eq.(5.15) works very well even in the early

testing phase with a relatively small testing time. Surprisingly, this is true even

if the testing time t is rather small (20% observation point). This result enables

us to apply the approximate formula in Eq.(5.15) to calculate the expected

cumulative number of software faults in NHGP-based SRMs.
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Figure 5.3: Estimating the cumulative number of software faults with NHPP-
based SRMs (20% observation point).

Figure 5.4: Estimating the cumulative number of software faults with NHPP-
based SRMs (60% observation point).
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Figure 5.5: Estimating the cumulative number of software faults with NHPP-
based SRMs (80% observation point).

Figure 5.6: Estimating the cumulative number of software faults with NHPP-
based SRMs (100% observation point).
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Figure 5.7: Estimating the cumulative number of software faults with NHGP-
based SRMs: analytical approach (20% observation point).

Figure 5.8: Estimating the cumulative number of software faults with NHGP-
based SRMs: analytical approach (60% observation point).
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Figure 5.9: Estimating the cumulative number of software faults with NHGP-
based SRMs: analytical approach (80% observation point).

Figure 5.10: Estimating the cumulative number of software faults with NHPP-
based SRMs: analytical approach (100% observation point).
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Figure 5.11: Estimating the cumulative number of software faults with NHGP-
based SRMs: analytical approach (20% observation point).

Figure 5.12: Estimating the cumulative number of software faults with NHGP-
based SRMs: analytical approach (60% observation point).
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Figure 5.13: Estimating the cumulative number of software faults with NHGP-
based SRMs: analytical approach (80% observation point).

Figure 5.14: Estimating the cumulative number of software faults with NHPP-
based SRMs: analytical approach (100% observation point).



Chapter 6

Optimal Software Release
Decision Based on
Nonparametric Inference
Approach

Even in estimating software reliability with any nonparametric method, it is in-

deed needed to predict the number of software failures which may occur in the fu-

ture, after releasing software to the market or users. In this chapter we consider

a software release decision on when to stop the software testing by minimizing

the expected total software cost, under the assumption that the probability law

of software fault-detection process is unknown. We focus on the nonparametric

prediction method of a non-homogeneous Poisson process (NHPP) by Sofer and

Miller [40] and apply it to the optimal software release problem. We calculate

the predictive confidence interval as well as the point estimate of the optimal

software release time. Since our method is based on a predictive approach in

spite of its nonparametric nature, it is useful to make flexible decision making

to determine the optimal software release timing.

6.1 NHPP-Based Software Reliability Modeling

6.1.1 Model Description

Suppose that the system test of a software product starts at time t = 0. Let

{N(t), t ≥ 0} be the cumulative number of software faults detected by time t and
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be a stochastic (non-decreasing) counting process. In particular it is said that

N(t) is a non-homogeneous Poisson process (NHPP) if the following conditions

hold:

• N(0) = 0,

• {N(t), t ≥ 0} has independent increments,

• Pr{N(t+∆t) N(t) ≥ 2} = o(∆t),

• Pr{N(t+∆t) N(t) = 1} = λ(t;θ)∆t+ o(∆t),

where λ(t;θ) is the intensity function of an NHPP and denotes the instantaneous

fault-detection rate per each fault. In the above definition, θ is the model

parameter (vector) included in the intensity function, and o(∆t) is the higher

term of ∆t. Then the probability mass function (p.m.f.) of the NHPP is given

by

Pr{N(t) = n} =
{Λ(t;θ)}n

n!
e Λ(t;θ), (6.1)

Λ(t;θ) =

∫ t

0

λ(x;θ)dx, (6.2)

where the function Λ(t;θ) = E[N(t)] is called the mean value function and

indicates the expected cumulative number of software faults detected by time

t. Hence, if the mean value function Λ(t;θ) or the intensity function λ(t;θ)

is specified, the identification problem of an NHPP is reduced to a statistical

estimation problem of unknown model parameter θ. In this way, when the

parametric form of the mean value function or the intensity function is given,

the resulting NHPP-based SRMs are called the parametric NHPP-based SRMs.

Okamura and Dohi [48] summarize the most typical parametric NHPP-based

based on eleven mean value functions and give a parameter estimation tool.

6.1.2 Nonparametric Point Estimation

If the parametric form of the mean value function or the intensity function

is unknown, the identification problem of an NHPP becomes more difficult.

Here we overview a nonparametric prediction approach by Sofer and Miller

[40]. Consider a plausible case where the intensity function λ(t) is completely

unknown. This kind of situation may occur when a new software product is
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developed and the fault-detection patterns cannot be known from the past ex-

perience. The most intuitive but simplest method to estimate the intensity

function is a piecewise-linear interpolation. For the fault-detection time data

χn = {t1, . . . , tn} and the observation point T (≥ tn), we define a naive estima-

tor λ̂(t | χ) = 1/(ti ti 1) (ti 1 < t ≤ ti; i = 1, 2, . . . , n, t0 = 0). Sofer and

Miller [40] apply the following step-function estimate with breakpoints ti:

Λ̂(t | χn) =


i+ (t ti)/(ti+1 ti); ti < t ≤ ti+1,

i = 0, 1, · · · , n 1

n+ δ(t tn)/(T tn); tn ≤ t ≤ T,

(6.3)

where δ ∈ [0, 1] is an arbitrary turning parameter. The resulting estimate

of the mean value function in Eq.(6.3) can be obtained by plotting n failure

points and connecting them by line segments. Since it is common that only one

time-series sample ti (i = 0, 1, 2, . . . , n), is available in each software testing,

this estimator seems to be the straightforward but the most natural one of the

cumulative number of software faults, because it is always possible to reduce

the mean squares error from the underlying software fault-detection time data

to zero. However, since such a nonparametric model possesses the same degree

of freedom as the number of fault-detection time data, the resulting estimate of

the intensity function is discontinuous everywhere and tends to fluctuate with

large noise. This leads to the so-called overfitting problem, so that the model can

fit only the training (observed) data with higher accuracy but cannot predict

the unknown pattern in future. Almost all nonparametric NHPP-based SRMs

[42],[45],[85] are trapped into this overfitting problem.

Apart from the traditional nonparametric approach in the above works, Sofer

and Miller [40] propose a smoothing technique of the intensity function, by using

a quadratic programming, for the purpose of prediction. For convenience, we

divide the time interval [0, T ] into k intervals of equal length θ = T/k, and

define an alternative time scale si = iθ (i = 1, 2, . . . , k). In each discrete time

si, define an estimate Λ̂(si | χn) = m̂i (χn = (t1, . . . , tn); i = 1, 2, · · · , k) in

Eq.(6.3) and its first order difference:

r̂i = {m̂i m̂i 1}/θ. (6.4)
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More generally, we define the order j backward difference operator ∆j by

∆jri = ∆j 1ri ∆j 1ri 1, j = 2, 3, . . . , (6.5)

where ∆0ri = ri and ∆1ri = ri ri 1. The sequence ri (i = 1, 2, . . . , k) is said

to be completely monotone if

( 1)j∆jri ≥ 0, j + 1 ≤ i, j = 0, 1, . . . (6.6)

The above property seems to be somewhat restrictive in analysis but is satisfied

in almost all NHPP-based SRMs [30]. Since the estimate of intensity function

at each discrete time si (i = 1, . . . , k) is given by (r̂1, . . . , r̂k) from Eq.(6.4), the

next step is to smooth it under some criterion. Sofer and Miller [40] formulate

the smoothing procedure by the following quadratic programming:

minmi :
k∑

i=1

ωi(mi m̂i)
2

subject to : ( 1)d+1∆dmi ≥ 0

( 1)j+1∆jmk+1 ≥ 0

d ≤ i ≤ k + l, 1 ≤ j ≤ d 1

mk = n+ δ, m0 = 0, k > 0. (6.7)

In Eq.(6.7), ωi (i = 1, 2, . . . , k) are weight parameters and l is an arbitrary

integer (l = 0 at the moment). Since two parameters δ and wi are arbitrary,

δ = ωi = 1 may be a plausible choice for simplify the analysis. Finally, the

resulting estimates (m1, . . . ,mk) satisfy the completely monotone property with

order d, which can be adjusted to guarantee the smoothness and accuracy for

the goodness-of-fit performance.

6.2 Nonparametric Inference

In Subsection 6.1.2, we give an overview of a nonparametric point estimation

of the intensity function under completely monotone property. Based on the

fault-detection time experienced in past, we want to predict the future value of

the intensity function or the mean value function at the observation point T .

In parametric modeling, the prediction is easily done by substituting estimated

model parameter θ into the time evolution λ(t;θ). In nonparametric model,
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however, since m̂i, mi and r̂i are the functions of data, it is difficult to represent

these functions as any time evolutional functions at an arbitrary time greater

than the present observation point sk. Barghout et al. [42] restrict their atten-

tion to a one-stage look ahead prediction on the next software fault-detection

time. Kaneishi and Dohi [45] also apply the weighted kernel function to get a

short-term prediction problem. Since the optimal software release problems are

essentially based on the long-term prediction of an NHPP, however, the above

two methods do not work well. To our best knowledge, the long-term prediction

by Sofer and Miller [40] is an applicable and unique solution to predict the future

values of intensity function and mean value function under the nonparametric

assumption.

Consider the completely monotone sequence of an intensity function with or-

der d by (r1, . . . , rk). For an arbitrary prediction point l, the sequence (rk+1, . . . ,

rk+l) is defined to be a feasible completely monotone extrapolation of order d

for the past observation, if the sequence (r1, . . . , rk+l) is completely monotone

up to order d so as to satisfy

( 1)d∆dri ≥ 0, d+ 1 ≤ i ≤ k + l, (6.8)

( 1)j∆jrk+l ≥ 0, 0 ≤ j ≤ d 1. (6.9)

The above extrapolations result a lower bound for all feasible extrapolations of

order d, if any other such extrapolations (rk+1, . . . , rk+l) satisfy rk+i ≤ rk+i for

i = 1, 2, . . . , l. Similarly, it constitutes an upper envelop if r̄k+i ≥ rk+i for all

i. Sofer and Miller [40] derive conditions for the existence for such upper and

lower envelops for the completely monotone extrapolations.

In what follows, we summarize the results by Sofer and Miller [40] in short.

For d = 1 and d = 2, the sequence (r1, . . . , rk) can be extrapolated into the

future by letting rk+i = rk (i = 1, . . . , l). This extrapolation is clearly the

upper envelope for all completely monotone extrapolations of d = 1 and d =

2. For d = 1, the extrapolation rk+i = 0 is a lower envelope for all isotone

extrapolations. For d = 2, let (r1, . . . , rk) denote a feasible solution to Eqs.(6.8)

and (6.9) with l = 0. Then, for an arbitrary l > 0, the extrapolation

rk+i =

rk + i∆1rk; i = 1, 2, . . . , pr

0; i = pr + 1, pr + 2, . . . , l
(6.10)
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is a lower envelope for all feasible extrapolations of d = 2 to (r1, . . . , rk), where

pr =

gilb( rk/∆
1rk); ∆1rk < 0

l; ∆1rk = 0.
(6.11)

Throughout this chapter, the function gilb(·) means the greatest integer lower

bound. For d = 3, a solution (r1, . . . , rk) satisfying Eq.(6.8) and Eq.(6.9) with

l = 0 can be extrapolated to a solution (r1, . . . , rk+l) which satisfies Eq.(6.8)

and Eq.(6.9) with l > 0 if and only if

rk + j∆1rk + j(j + 1)∆2rk/2 ≥ 0, j = 1, 2, . . . , l. (6.12)

Then, the upper and lower envelopes of all feasible extrapolations for d = 3 are

given by

r̄k+i =

rk + i∆1rk + i(i+ 1)∆2rk/2; i = 1, 2, . . . , qr

rk+q; i = qr + 1, qr + 2, . . . , l
(6.13)

and

rk+i =

rk + i∆1rk; i = 1, 2, . . . , pr pr ≥ l

r̃k+i; i = 1, 2, . . . , l pr ≤ l,
(6.14)

where

r̃k+i =


rk + i∆1rk i(i+ 1)(rk + u∆1rk)

/u(u+ 1); i = 1, 2, . . . , u

0; i = u+ 1, . . . , l,

(6.15)

qr =

gilb( ∆1rk/∆
2rk); ∆2rk > 0

l; ∆2rk = 0,
(6.16)

u = min
{
l, 1 + gilb( 2rk/∆

1rk)
}
. (6.17)

In a fashion similar to the intensity function, we can derive the envelopes

for prediction for the mean value function. Let (m1, . . . ,mk) be a sequence

of the mean value function with d = 4 satisfying the constraints in Eq.(6.7).

The sequence (mk+1, . . . ,mk+l) is defined to be a feasible extrapolation for

(m1, . . . ,mk) with d = 4 satisfying the above conditions. This extrapolation

constitutes upper and lower bounds for all feasible extrapolations of d = 4, if
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any other such extrapolations (m̄k+1, . . . , m̄k+l) and (mk+1, . . . ,mk+l) satisfy

m̄k+i ≥ mk+i and mk+i ≤ mk+i (i = 1, . . . , l), respectively. Consider the

constraints in Eq.(6.7) with d = 4 and fixed l > 0. A solution (m1, . . . ,mk)

satisfying Eq.(6.7) with l = 0 can be extrapolated to a solution (m1, . . . ,mk+l)

which satisfies Eq.(6.7) with l > 0 if and only if

∆1mk + j∆2mk + j(j + 1)∆3mk/2 ≥ 0, j = 1, 2, . . . , i. (6.18)

Then, the upper and lower envelopes of all feasible extrapolations for d = 4 are

given by

m̄k+i =



mk + i∆1mk + i(i+ 1)∆2mk/2

+i(i+ 1)(i+ 2)∆3mk/6;

i = 1, 2, . . . , qm

mk+qm + (i qm)α;

i = qm + 1, qm + 2, . . . , l

(6.19)

and

mk+i =


mk + i∆1mk + i(i+ 1)∆2mk/2;

i = 1, 2, . . . pm; pm ≥ l

m̃k+i; i = 1, 2, . . . , l; pm ≤ l,

(6.20)

respectively, where

m̃k+i =



mk + i∆1mk + i(i+ 1)∆2mk/2

i(i+ 1)(i+ 2)(∆1mk

+ u∆2mk)/3u(u+ 1);

i = 1, 2, . . . , u

mk+u; i = u+ 1, . . . , l,

(6.21)

with

pm =

gilb( ∆1mk/∆
2mk); ∆2mk < 0

l; ∆2mk = 0,
(6.22)

qm =

gilb( ∆2mk/∆
3mk); ∆3mk > 0

l; ∆3mk = 0,
(6.23)

α = ∆1mk + qm∆2mk + qm(qm + 1)∆3mk/2, (6.24)

u = min
{
l, 1 + gilb( 2∆1mk/∆

2mk)
}
. (6.25)
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6.3 Optimal Software Release Decision

Suppose that the system test starts at t = 0 and terminates at t = t0. Let TL be

the software lifetime or the upper limit of the software warranty period, where

the time length (t0, TL] denotes the operational period of software and the time

length (0, t0] is the testing period. Without loss of generality, it is assumed

that t0 ≤ t̄0, where t̄0 (≥ 0) is the upper limit of the software testing time and

the delivery schedule of software product. When the fault-detection time data

χn = {t1, . . . , tn} are observed at time T (0 < T ≤ t0), the model parameter

θ is estimated with χn in parametric NHPP-based SRMs. Define the following

cost components:

• c0 (> 0): testing cost per unit system testing time,

• c1 (> 0): removal cost per fault in system testing phase,

• c2 (> c1): removal cost per fault in operational phase.

Based on the above cost parameters, the expected total software cost is given

by

C(t0;T,θ) =c0t0 + c1

{
n+ Λ(t0;θ) Λ(T ;θ)

}
+ c2

{
Λ(TL;θ) n

[
Λ(t0;θ) Λ(T ;θ)

]}
. (6.26)

Note that the above formulation is somewhat different from the past refer-

ences [55],[70],[68],[67], because the observation point (decision point) T (≥ 0)

is explicitly involved in the formulation. At an arbitrary observation point

T , we wish to know when to stop software testing. Substituting n = 0 and

Λ(T ;θ) = 0 in Eq.(6.26), the problem is to minimize the expected total soft-

ware cost C(t0; 0,θ). However, it is evident that the optimal software release

time t∗0 minimizing C(t0; 0,θ) is independent of T and may be smaller than T .

In addition the parameter θ also depends on the observation point T . In our for-

mulation, differentiating C(t0;T,θ) with respect to t0 yields dC(t0;T,θ)/dt0 =

dC(t0; 0,θ)/dt0 = c0 (c2 c1)λ(t0;θ) and d2C(t0;T,θ)/dt
2
0 = d2C(t0; 0,θ)/dt

2
0

= (c2 c1)λ
′(t0;θ). If the mean value function is strictly increasing and con-

vex in t0, i.e. d2C(t0;T,θ)/dt
2
0 > 0, the function C(t0;T,θ) is strictly convex.

Hence, if c0 (c2 c1)λ(T ;θ) < 0 and c0 (c2 c1)λ(t̄0;θ) > 0, there exists



6.3. OPTIMAL SOFTWARE RELEASE DECISION 115

a unique optimal software release time t∗0 (T < t∗0 < t̄0), otherwise, t
∗
0 = t̄0

or t∗0 = T . That is, if the degree of complete monotonicity is more than 2, it

is obvious that the optimal software release time exists for discrete time case.

Furthermore, t∗0 = T implies that software test should stop immediately at the

observation point, and t∗0 = t̄0 does that software test should continue as long as

possible. Of course, since stopping at t∗0 leads to continue testing until time t∗0,

it is possible to update the release timing at each decision (observation) point

before time t∗0, because the estimation result of θ may change at each decision

point.

In our nonparametric scheme, we formulate the optimal software release

time in discrete setting. Suppose that (m1, . . . ,mk) are observed at discrete

time si = iθ (i = 1, 2, . . . , k). We predict at time sk the future behavior of

mean value function (mk+1,mk+2, . . . ,mk+l), where l ≥ 0 denotes an arbi-

trary prediction point. From the results by Sofer and Miller [40], we get the

upper and lower predictions of mean value function; (m̄k+1, m̄k+2, . . . , m̄k+l)

and (mk+1,mk+2, . . . ,mk+l), which correspond to optimistic and pessimistic

predictions of the cumulative number of software faults at sk+1, sk+2, . . . , sk+l.

Then, we formulate the following two optimization problems, minl0 C̄(l0; sk) and

minl0 C(l0; sk), where

C̄(l0; sk) =c0sk+l0 + c1

{
n+ m̄k+l0 m̄k

}
+ c2

{
m̄L n

[
m̄k+l0 m̄k

]}
, (6.27)

and

C(l0; sk) =c0sk+l0 + c1

{
n+mk+l0

mk

}
+ c2

{
mL n

[
mk+l0

mk

]}
. (6.28)

In Eqs.(6.27) and (6.28), m̄L and mL are predictions of the total number of

software faults during the software life cycle in the sense of optimistic and pes-

simistic predictions. The problem is to seek l̄∗0 = {l0 = 0, 1, . . . , l̄;minl0 C̄(l0; sk)}

and l∗0 = {l0 = 0, 1, . . . , l̄; minl0 C(l0; sk)} with the delivery time limit sk+l̄ (l̄ =

0, 1, . . .). Since these optimization problems are finite dimension problems, it is

relatively easy to enumerate all the possible l̄∗0 and l∗0.
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6.4 Numerical Illustrations

We give numerical examples to predict the optimal software release time based

on the nonparametric inference approach, where two data sets, DS1 and DS2,

are used for analysis [29]. DS1 consists of 397 software fault-detection time

data with the maximum value 108, 840 (min). The cost parameters are given

by c0 = 53，c1 = 50000 and c2 = 100000. On the other hand, the data analysis

with DS2 treats 207 software fault-detection time data with the maximum value

16, 656 (sec), where c0 = 8，c1 = 1000 and c2 = 2000 are assumed. Cost

parameters are set to avoid the trivial case where both optimal solutions of

nonparametric and parametric models are l∗0 = l̄ or l∗0 = k. Figures 6.1 and

6.2 illustrate the behavior of cumulative number of software faults detected in

the testing phase in DS1 and DS2, respectively. In the analysis, we set the

upper limit of release time as t0 = 108, 840 and t0 = 16, 656 for DS1 and DS2,

respectively. Also, we assume that the free warranty period (the end point of

software life cycle) of each software depends on the size of software. Therefore,

the free warranty period is given by 60 times length of each testing period in

both cases with DS1 and DS2. Here we compare our nonparametric method with

the common method based on the best parametric NHPP model out of eleven

candidates [48], where the degree of complete monotonicity in the nonparametric

method is given by d = 4. From the definition of the complete monotonicity,

upper and lower predictions of mean value function with d = 2 always give the

predictive optimal software release time as l∗0 = l̄ or l∗0 = k. Also, the upper and

lower limits of mean value function of d = 3 shows quite similar results with that

of d = 4. Therefore, we omit these cases for brevity. Here, the best parametric

NHPP model is the model which shows the highest goodness of fit performance

in the meaning of maximum log likelihood for the underlying data. Actually,

these best parametric NHPP models are not equivalent to the models which

give the closest predictive optimal software release time to the real optimal

software release time. In each software development project, we estimate the

optimal software release time with the whole data (i.e., 100%) by minimizing the

expected total software cost [61],[62]. More specifically, the real optimal software

release time in DS1 and DS2 are calculated as t∗0 = 82, 098 and t∗0 = 12, 839,

respectively, which could minimize the both expected total software costs with
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Figure 6.1: DS1.

optimistic and pessimistic predictions in Eqs.(6.27) and (6.28). Tables 6.1 and

6.2 present the predictive optimal software release time at each observation

point (60%, 70%，80% and 90% point of upper limit of release time t̄0) with

the upper predictions of mean value function, where the relative errors between

the predictive software release time and the real optimal solution are shown for

easy understanding. From Tables 6.1 and 6.2, the nonparametric method by

Sofer and Miller [40] provides the smaller relative error than the conventional

parametric NHPP-based SRM, which is the best model among eleven candidates

[48], where “lnorm”, “exp” and “lxvmin” indicate the lognormal, exponential

and log-extreme-value models, respectively. Furthermore, it can be seen that

relative error gets smaller as the data increases in the case of 60% and 70%

observation points. This means that the predictive optimal software release time

can be updated by adding software fault-detection time data. Since 80% and

90% observation points have already exceeded the real optimal release time, the

predictive optimal software release time of these two cases is equivalent to the

observation point. Therefore, it can be said that our nonparametric estimation

method works well to judge when to stop the software testing.

Next we concern the interval estimation of the optimal software release time.
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Figure 6.2: DS2.

Table 6.1: Prediction of optimal software release time (DS1)．

time parametric error nonparametric error

60% 65304 (lnorm) 20% 91426 11%

70% 76188 (lnorm) 7% 79453 3%

80% 87072 (lnorm) 6% 87072 6%

90% 97956 (lnorm) 19% 97956 19%

The (1 α)100% two-sided predictive confidence intervals (PCIs) are calculated

by the simulation-based bootstrap method [71],[70], where bootstrap samples

are produced by thinning algorithm and the number of bootstrap samples is fixed

as 1,000. That is, we generate bootstrap samples for each observation point.

For each bootstrap sample, we derive upper and lower predictions of mean value

function to derive the predictive optimal software release time. In Tables 6.3

and 6.4, we present the bootstrap mean, bootstrap median, bootstrap standard

deviation (s.d.) of estimators on the optimal software release time and the (1

α)100% two-sided predictive intervals for varying α = 0.01, 0.05, 0.10, 0.20, 0.30

with upper predictions of mean value function, where d = 4 is assumed. Since
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Table 6.2: Prediction of optimal software release time (DS2)．

time parametric error nonparametric error

60% 10963 (exp) 15% 10993 14%

70% 12092 (exp) 6% 13491 5%

80% 13325 (lxvmin) 4% 13325 4%

90% 14990 (exp) 17% 14990 17%

even in the interval prediction case, no remarkable differences between the upper

and lower predictions in Eqs.(6.27) and (6.28) cannot be recognized, we omit

to show results of lower case here. In the case where the prediction point is

smaller than the real optimal solution (60% and 70% points of whole data),

the resulting predictive interval of the optimal release time can involve the real

optimal solution. So, in the plausible cases, our method works well to give

the predictive bounds. Looking at the first and second moments, and median

of estimators, it can be seen that the bootstrap standard deviation decreases

as software testing progresses. Furthermore, we can see that the length of

predictive intervals becomes narrow, as the significance level α increases.

On the bootstrap point estimation, in almost all cases except 60% obser-

vation point, the bootstrap median is more closed to the real optimal solution

than the bootstrap mean in DS1 and DS2.
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Table 6.3: Predictive confidence interval of optimal software release time based
on upper limit (DS1)．

time mean median s.d. α PCI

0.3 [69658, 108840]

0.2 [66392, 108840]

60% 91414 93602 16849 0.1 [65304, 108840]

0.05 [65304, 108840]

0.01 [65304, 108840]

0.3 [76188, 105575]

0.2 [76188, 108840]

70% 85536 79453 12025 0.1 [76188, 108840]

0.05 [76188, 108840]

0.01 [76188, 108840]

0.3 [87072, 108840]

0.2 [87072, 108840]

80% 96241 91426 9714 0.1 [87072, 108840]

0.05 [87072, 108840]

0.01 [87072, 108840]

0.3 [97956, 97956]

0.2 [97956, 99044]

90% 98817 97956 2766 0.1 [97956, 108840]

0.05 [97956, 108840]

0.01 [97956, 108840]
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Table 6.4: Predictive confidence interval of optimal software release time based
on upper limit (DS2)．

time mean median s.d. α PCI

0.3 [9994, 16656]

0.2 [9994, 16656]

60% 12659 11409 2797 0.1 [9994, 16656]

0.05 [9994, 16656]

0.01 [9994, 16656]

0.3 [11659, 16656]

0.2 [11659, 16656]

70% 14090 13575 2252 0.1 [11659, 16656]

0.05 [11659, 16656]

0.01 [11659, 16656]

0.3 [13325, 16656]

0.2 [13325, 16656]

80% 14627 13491 1506 0.1 [13325, 16656]

0.05 [13325, 16656]

0.01 [13325, 16656]

0.3 [14990, 14990]

0.2 [14990, 14990]

90% 15112 14990 411 0.1 [14990, 16656]

0.05 [14990, 16656]

0.01 [14990, 16656]





Chapter 7

Conclusions

7.1 Summary and Remarks

In Chapter 2, we have proposed two bootstrap methods which were categorized

into simulation-based approach and re-sampling-based approach. We have also

applied the proposed parametric bootstrap methods to derive the probability

distributions of statistical estimators of the optimal periodic replacement time

and the corresponding minimum expected cost in a periodic replacement prob-

lem with minimal repair. Furthermore, we have calculated the higher moments

and two-sided confidence intervals, as well as the mean and median. As a result,

it has been shown that the confidence intervals could be derived with bootstrap

methods for the periodic replacement problem with minimal repair. We have

also investigated several statistical properties with respect to various estimators

through simulation experiments and real data analysis. It could be confirmed

that the point estimate was included between the 95% two-sided confidence in-

tervals from the results of simulation experiment. On the other hand, we have

shown that the user could utilize the useful information in order to determine the

periodic replacement time by using the proposed parametric bootstrap methods

in real example.

In Chapter 3, we have considered a periodic replacement problem with min-

imal repair which minimizes the long-run average cost per unit time, and have

estimated the optimal periodic replacement time under the incomplete knowl-

edge on minimal repair process, via nonparametric estimation methods. We

have proposed the kernel-based approaches and their application to the interval
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estimation with bootstrapping. Throughout simulation experiments, it has been

shown that the kernel-based estimation with LLCV provided accurate point es-

timation and stable confidence intervals of the optimal periodic replacement

time and its associated long-run average cost. The propose methods have also

been applied to the analysis of the field data.

In Chapter 4, we have applied two nonparametric maximum likelihood esti-

mators (NPMLEs) to the NHPP-based SRMs. The main feature of constrained

NPMLE is to estimate the intensity function so as to construct an upper bound

of the likelihood function. The NPMLE with failure rate function is to estimate

directly the failure rate of fault-detection time distribution. Our numerical ex-

periments with actual software fault-detection time data have suggested that

the NPMLE by checking the monotone property of the failure rate showed the

best performances in terms of the maximum likelihood. We have also shown

the S-shaped estimator was more suitable to estimate several software reliability

measures for almost all software fault-detection time data.

In Chapter 5, we have developed NHGP-based SRMs with trend functions

and the nonparametric maximum likelihood estimation. Throughout numerical

examples with a real software fault data, we have shown that the NHGP-based

SRMs could provide the better goodness-of-fit performances in the initial to

middle testing phases than the NHPP-based SRMs in terms of maximum log

likelihood, and could be consistent with the NHPP-based SRMs in the latter

testing phase. Especially, it has been clarified that the NHGP-based SRMs with

constrained NPMLE could give the larger maximum log likelihood. These ob-

servations imply that the relatively simple SRM such as NHGP-based SRM can

improve the goodness-of-fit performance in the earlier testing phase by adjust-

ing the shape parameter κ, and that the nonparametric maximum likelihood

estimation is also useful to get more accurate fitting result even if the trend

function is unknown.

In Chapter 6, we have formulated a nonparametric optimal software release

problem under the assumption that the mean value function of an NHPP-based

SRM is unknown and derived both of point and interval predictions of the

optimal software release time which minimizes the expected total software cost.

We have given illustrative examples with two real software fault data to derive
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estimates of the optimal software release time and performed the sensitivity

analysis on the observation point and significance level.

7.2 Future Works

For the same preventive maintenance problem in Chapter 3, we will investigate

the dependence of the bandwidth selection method on the point and interval

estimations. For instance, any adaptive approach to estimate time-dependent

bandwidth will be useful to improve the estimation accuracy. We will also apply

the present techniques to the other maintenance problems. For instance, a

block replacement problem [22] is another challenging issue because the renewal

function has to be handled in the estimation framework.

For the software reliability assessment in Chapter 4, we will focus on the

interval estimation of other software reliability measures (see [54],[86],[39]). For

this purpose, we intend to apply the nonparametric bootstrap method which

is a representative statistical approach to replicate the original software fault-

detection time data (e.g. see [45]).

Also, we will investigate a trend renewal process for the software fault count

data with different renewal property and trend functions.





Appendix A

Properties of
Nonparametric Estimators

A.1 Convergence Property of Kernel Estimator
[1]

The non-homogeneous Posson process (NHPP) model can be considered as a

simple multiplicative intensity model which is a specific form of Aalen’s mul-

tiplicative intensity model [87]. Suppose that x1, x2, · · · , xn are observations

from an NHPP with intensity

λc(x) = cα(x), x ∈ [0, 1], (A.1)

where c is a positive constant, and α(x) is an unknown nonnegative deterministic

function with
∫ 1

0
α(x)dx = 1. The kernel intensity estimator of λ(x) is difined

by Eq.(3.12).

To consider convergence properties for kernel intensity estimator, we require

the values of c which come from the sequence of positive real numbers {cs}∞s=1

such that c/s → τ for some constant τ > 0 as s → ∞. For the sequence

of intensity functions λcs(x) = csα(x), we construct a corresponding sequence

of kernel estimators λ̂s(x). Each bandwidth h of these kernel estimators is

dependent on s. From Ramlau-Hansen [78], it is known that λ̂s(x) is uniformly

consistent and asymptotically normal as cs → ∞, h → 0 and hcs → ∞.
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A.2 Asymptotic Property of Bootstrap Meth-
ods [2]

Assume that the asymptotic model λ(x) = cα(x) again, where the smooth

function α(x) is held and the scalar parameter c ≥ 1 diverges. We consider the

asymptotic theory describing the distribution of the stochastic process λ̂(x), and

its boostrap samples λ̂∗(x). Let us derive λ̂∗(x) by any one of three different

bootstrap approaches developed in Chapter 3, and write E′[·] for expectation

conditional on χ = (x1, x2, · · · , xn).

Assume that K(·) is compactly supported, so that K ′(·) exists and satisfies

a Lipschitz condition of order 1. Suppose that 0 < infx α(x) ≤ supx α(x) < ∞

and supx |α′(x)| < ∞, and that for some ρ > 0, c (3/10)+ρ ≤ h ≤ c ρ. Then we

may write

λ̂(x) E[λ̂(x)] =

√
c

h

(√
α(x)Un(x) +R1n(x)

)
, (A.2)

λ̂∗(x) E′[λ̂∗(x)] =

√
c

h

(√
α(x)Un(x)

∗ +R∗
1n(x)

)
, (A.3)

where Un(x), and U∗
n(x) conditional on χ, are stationary Gaussian processes on

(0, 1) with identical distribution, zero means, and covariances

cov
{
Un(x1), Un(x2)

}
=

∫
K(y)K

{
y +

x1 x2

h

}
dy, (A.4)

and R1n(x) and R∗
1n(x) are functions satisfying

E

[
sup

ι≤x≤1 ι
|R1n(x)|k + sup

ι≤x≤1 ι
|R∗

1n(x)|k
]
= O(c kσ) as c → ∞ (A.5)

for some σ > 0, and all k ≥ 1 and ι ∈ (0, 1/2).

From this argument, it is revealed that λ̂(x) E(λ̂(x)) is asymptotically

normally distributed with zero mean and variance h 1λ(x)
∫
K2(x)dx, and that

the asymptotic distribution is estimated consistently by the bootstrap approach.

A.3 Properties of Marshall and Proschan Esti-
mator [3]

A.3.1 Property 1

If true failure rate function r̃(t) is increasing and continuous on [a, b], then

lim
n→∞

∑
t∈[a,b]

|r(t) r̃(t)| = 0, (A.6)
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with probability one, where the Marshall and Proschan estimator r(t) is defined

by Eq.(4.15).

A.3.2 Property 2

For the true failure rate function r̃(t) and any real number β,∫ β

∞
{rn(t) r̃(t)}2 dFn(t) ≥

∫ β

∞
{r(t) r̃(t)}2 dFn(t)

+

∫ β

∞
{rn(t) r(t)}2 dFn(t), (A.7)

where

rn(t) =


0, 0 ≤ t < t1,

{(n j)(tk+1 tk)} 1
, tk ≤ t < tk+1 (k = 1, · · · , n 1),

∞, tn < t,

(A.8)

and Fn(t) represents empirical distribution for ti (i = 1, 2, · · · , n). From Eq.(A.7),

it is revealed that r(t) is closer to r̃(t) than rn(t).
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Journal of Statistics, Series A 1972; 34(3):251–256.

[18] Bergman B. On age replacement and the total time on test concept. Scan-

dinavian Journal of Statistics 1979; 6(4):161–168.

[19] Ingram C, Scheaffer R. On consistent estimation of age replacement inter-

vals. Technometrics 1976; 18(2):213–219.

[20] Leger C, Cleroux R. Nonparametric age replacement: Bootstrap confidence

intervals for the optimal cost. Operations Research 1992; 40(6):1062–1073.



BIBLIOGRAPHY 133

[21] Tokumoto S, Dohi T, Yun WY. Bootstrap confidence interval of optimal

age replacement policy. International Journal of Reliability, Quality and

Safety Engineering 2014; 21(04):1450 018.

[22] Croteau P, Cleroux R, Leger C. Bootstrap confidence intervals for peri-

odic preventive replacement policies. Statistical Modeling and Analysis for

Complex Data Problems. Springer, 2005; 141–159.

[23] Gilardoni GL, de Oliveira MD, Colosimo EA. Nonparametric estimation

and bootstrap confidence intervals for the optimal maintenance time of a

repairable system. Computational Statistics & Data Analysis 2013; 63:113–

124.

[24] Boswell MT. Estimating and testing trend in a stochastic process of Poisson

type. The Annals of Mathematical Statistics 1966; 37(6):1564–1573.

[25] Diggle P, Marron JS. Equivalence of smoothing parameter selectors in den-

sity and intensity estimation. Journal of the American Statistical Associa-

tion 1988; 83(403):793–800.

[26] Rinsaka K, Dohi T. Estimating age replacement policies from small sample

data. Proceedings of The 2005 International Workshop on Recent Advances

in Stochastic Operations Research, World Scientific, 2005; 219–226.

[27] Gilardoni GL, Colosimo EA. On the superposition of overlapping Poisson

processes and nonparametric estimation of their intensity function. Journal

of Statistical Planning and Inference 2011; 141(9):3075–3083.

[28] Guan Y. A composite likelihood cross-validation approach in selecting

bandwidth for the estimation of the pair correlation function. Scandina-

vian Journal of Statistics 2007; 34(2):336–346.

[29] Lyu MR, et al.. Handbook of Software Reliability Engineering. McGraw-

Hill, Inc., New York, 1996.

[30] Musa JD, Iannino A, Okumoto K. Software Reliability: Measurement, Pre-

diction, Application. McGraw-Hill, Inc., New York, 1987.



134 BIBLIOGRAPHY

[31] Achcar JA, Dey DK, Niverthi M. A Bayesian approach using nonhomoge-

neous Poisson processes for software reliability models. Frontiers in Relia-

bility, Basu AP, Basu SK, Mukhopadhyay S (eds.). World Scientific, Sin-

gapore, 1998; 1–18.

[32] Goel AL, Okumoto K. Time-dependent error-detection rate model for soft-

ware reliability and other performance measures. IEEE Transactions on

Reliability 1979; 28(3):206–211.

[33] Goel AL. Software reliability models: assumptions, limitations, and appli-

cability. IEEE Transactions on Software Engineering 1985; 11(12):1411–

1423.

[34] Gokhale SS, Trivedi KS. Log-logistic software reliability growth model. Pro-

ceedings of The 3rd IEEE International High-Assurance Systems Engineer-

ing Symposium, IEEE CPS, 1998; 34–41.

[35] Ohba M. Inflection S-shaped software reliability growth model. Stochastic

Models in Reliability Theory. Springer, New York, 1984; 144–162.

[36] Ohishi K, Okamura H, Dohi T. Gompertz software reliability model: esti-

mation algorithm and empirical validation. Journal of Systems and Soft-

ware 2009; 82(3):535–543.

[37] Okamura H, Dohi T. SRATS: Software reliability assessment tool on spread-

sheet. Proceedings of The 24th International Symposium on Software Reli-

ability Engineering, IEEE CPS, 2013; 100–107.

[38] Yamada S, Ohba M, Osaki S. S-shaped reliability growth modeling for

software error detection. IEEE Transactions on Reliability 1983; 32(5):475–

484.

[39] Zhao M, Xie M. On maximum likelihood estimation for a general non-

homogeneous Poisson process. Scandinavian Journal of Statistics 1996;

23(4):597–607.

[40] Sofer A, Miller DR. A nonparametric software-reliability growth model.

IEEE Transactions on Reliability 1991; 40(3):329–337.



BIBLIOGRAPHY 135

[41] Gandy A, Jensen U. A non-parametric approach to software reliability.

Applied Stochastic Models in Business and Industry 2004; 20(1):3–15.

[42] Barghout M, Littlewood B, Abdel-Ghaly A. A non-parametric order statis-

tics software reliability model. Software Testing, Verification and Reliability

1998; 8(3):113–132.

[43] Wang Z, Wang J, Liang X. Non-parametric estimation for NHPP software

reliability models. Journal of Applied Statistics 2007; 34(1):107–119.

[44] Dharmasena LS, Zeephongsekul P, Jayasinghe CL. Software reliability

growth models based on local polynomial modeling with kernel smoothing.

Proceedings of The 22nd International Symposium on Software Reliability

Engineering, IEEE CPS, 2011; 220–229.

[45] Kaneishi T, Dohi T. Software reliability modeling and evaluation under

incomplete knowledge on fault distribution. Proceedings of The 7th Inter-

national Conference on Software Security and Reliability, IEEE CPS, 2013;

3–12.

[46] Abdel-ghaly A, Chan P, Littlewood B. Evaluation of competing software

reliability predictions. IEEE Transactions on Software Engineering 1986;

12(9):950–967.

[47] Littlewood B. Rationale for a modified duane model. IEEE Transactions

on Reliability 1984; 33(2):157–159.

[48] Okamura H, Dohi T, Osaki S. Software reliability growth models with

normal failure time distributions. Reliability Engineering & System Safety

2013; 116:135–141.

[49] Ishii T, Dohi T. A new paradigm for software reliability modeling–from

NHPP to NHGP. Proceedings of The 14th Pacific Rim International Sym-

posium on Dependable Computing, IEEE CPS, 2008; 224–231.

[50] Berman M. Inhomogeneous and modulated gamma processes. Biometrika

1981; 68(1):143–152.

[51] Lindqvist B, Elvebakk G, Heggland K. The trend-renewal process for sta-

tistical analysis of repairable systems. Technometrics 2003; 45(1):31–44.



136 BIBLIOGRAPHY

[52] Kijima M. Some results for repairable systems with general repair. Journal

of Applied Probability 1989; 26(1):89–102.

[53] Bartoszynski R, Brown BW, McBride CM, Thompson JR. Some nonpara-

metric techniques for estimating the intensity function of a cancer related

nonstationary Poisson process. The Annals of Statistics 1981; 9(5):1050–

1060.

[54] Joe H. Statistical inference for general-order-statistics and

nonhomogeneous-Poisson-process software reliability models. IEEE

Transactions on Software Engineering 1989; 15(11):1485–1490.

[55] Okumoto K, Goel AL. Optimum release time for software systems based on

reliability and cost criteria. Journal of Systems and Software 1980; 1:315–

318.

[56] Koch HS, Kubat P. Optimal release time of computer software. IEEE

Transactions on Software Engineering 1983; 9(3):323–327.

[57] Yamada S, Osaki S. Cost-reliability optimal release policies for software

systems. IEEE Transactions on Reliability 1985; 34(5):422–424.

[58] Yamada S, Osaki S. Discrete software reliability growth models. Applied

Stochastic Models and Data Analysis 1985; 1(1):65–77.

[59] Hou RH, Kuo SY, Chang YP. Optimal release policy for hyper-geometric

distribution software-reliability growth model. IEEE Transactions on Re-

liability 1996; 45(4):646–651.

[60] Hou RH, Kuo SY, Chang YP. Optimal release times for software systems

with scheduled delivery time based on the hgdm. IEEE Transactions on

Computers 1997; 46(2):216–221.

[61] Dohi T, Nishio Y, Osaki S. Optimal software release scheduling based on

artificial neural networks. Annals of Software Engineering 1999; 8(1):167–

185.

[62] Dohi T, Morishita H, Osaki S. A statistical estimation method of opti-

mal software release timing applying auto-regressive models. IEICE Trans-



BIBLIOGRAPHY 137

actions on Fundamentals of Electronics, Communications and Computer

Sciences 2001; 84(1):331–338.

[63] Pham H, Zhang X. A software cost model with warranty and risk costs.

IEEE Transactions on Computers 1999; 48(1):71–75.

[64] Xie M, Yang B. A study of the effect of imperfect debugging on soft-

ware development cost. IEEE Transactions on Software Engineering 2003;

29(5):471–473.

[65] Yang B, Hu H, Jia L. A study of uncertainty in software cost and its

impact on optimal software release time. IEEE Transactions on Software

Engineering 2008; 34(6):813–825.

[66] Sgarbossa F, Pham H. A cost analysis of systems subject to random field

environments and reliability. IEEE Transactions on Systems, Man and Cy-

bernetics, Part C: Applications and Reviews 2010; 40(4):429–437.

[67] Zhao M. Change-point problems in software and hardware reliability. Com-

munications in Statistics-Theory and Methods 1993; 22(3):757–768.

[68] Xie M, Li X, Ng S. Risk-based software release policy under parameter

uncertainty. Proceedings of the Institution of Mechanical Engineers, Part

O: Journal of Risk and Reliability 2011; 225(1):42–49.

[69] Okamura H, Dohi T, Osaki S. Bayesian inference for credible intervals of

optimal software release time. Software Engineering, Business Continuity,

and Education, Nakamura S, Quan CH, Chen M (eds.). Springer, 2011;

377–384.

[70] Tokumoto S, Dohi T. Risk-based intelligent software release planning. Pro-

ceedings of The 9th International Conference on Ubiquitous Intelligence &

Computing and The 9th International Conference on Autonomic & Trusted

Computing, IEEE CPS, 2012; 240–247.

[71] Kaneishi T, Dohi T. Parametric bootstrapping for assessing software reli-

ability measures. Proceedings of The 17th Pacific Rim International Sym-

posium on Dependable Computing, IEEE CPS, 2011; 1–9.



138 BIBLIOGRAPHY

[72] Efron B, Tibshirani RJ. An Introduction to the Bootstrap. CRC press, 1994.

[73] Lewis PA, Shedler GS. Simulation of nonhomogeneous Poisson processes

by thinning. Technical Report, DTIC Document 1978.

[74] Dohi T, Kaio N, Osaki S. Optimal (t,s)-policies in a discrete-time

opportunity-based age replacement: An empirical study. Proceedings of

the 2nd Asian International Workshop on Advanced Reliability Modeling,

World Scientific, 2006; 219.

[75] Meeker WQ, Escobar LA. Statistical Methods for Reliability Data. John

Wiley & Sons, 2014.

[76] Baxter LA. Reliability applications of the relevation transform. Naval Re-

search Logistics Quarterly 1982; 29(2):323–330.

[77] Zielinski JM, Wolfson DB, Nilakantan L, Confavreux C. Isotonic estima-

tion of the intensity of a nonhomogeneous Poisson process: the multiple

realization setup. Canadian Journal of Statistics 1993; 21(3):257–268.

[78] Ramlau-Hansen H. Smoothing counting process intensities by means of

kernel functions. The Annals of Statistics 1983; 11(2):453–466.

[79] Ohba M. Software reliability analysis models. IBM Journal of Research and

Development 1984; 28(4):428–443.

[80] Chang YP. Estimation of parameters for nonhomogeneous Poisson pro-

cess: Software reliability with change-point model. Communications in

Statistics-Simulation and Computation 2001; 30(3):623–635.

[81] Barlow RE, Campo RA. Total time on test processes and applications to

failure data analysis. Technical Report, DTIC Document 1975.

[82] Ogata Y, Akaike H. On linear intensity models for mixed doubly stochastic

Poisson and self-exciting point processes. Journal of the Royal Statistical

Society. Series B (Methodological) 1982; 44(1):102–107.

[83] Bandyopadhyay N, Sen A. Non-standard asymptotics in an inhomogeneous

gamma process. Annals of the Institute of Statistical Mathematics 2005;

57(4):703–732.



BIBLIOGRAPHY 139

[84] Data analysis center for software, the software reliability dataset. URL

http://www.dacs.dtic.mil/databases/sled/swrel.shtml/.

[85] Xiao X, Dohi T. Estimating software intensity function based on

translation-invariant Poisson smoothing approach. IEEE Transactions on

Reliability 2013; 62(4):930–945.

[86] van Pul MC. Asymptotic properties of a class of statistical models in soft-

ware reliability. Scandinavian Journal of Statistics 1992; 19(3):235–253.

[87] Aalen O. Nonparametric inference for a family of counting processes. The

Annals of Statistics 1978; 6(4):701–726.





Publication List of the
Author

[A1] Y. Saito, T. Dohi, W. Y. Yun, Uncertainty analysis for a periodic replace-

ment problem with minimal repair: parametric bootstrapping, Interna-

tional Journal of Industrial Engineering, vol. 21, no. 6, pp. 337–347, May

2014.

[A2] Y. Saito, T. Dohi, W. Y. Yun, Kernel-based nonparametric estimation

methods for a periodic replacement problem with minimal repair, Journal

of Risk and Reliability, vol. 230, no. 1, pp. 54–66, Feb 2016.

[A3] Y. Saito, T. Dohi, Software reliability assessment via non-parametric max-

imum likelihood estimation, IEICE Transactions on Fundamentals of Elec-

tronics, Communications and Computer Sciences (A), vol. E98-A, no. 10,

pp. 2042–2050, Oct 2015.

[A4] Y. Saito, T. Moroga, T. Dohi, Optimal Software Release Decision Based

on Nonparametric Inference Approach, Journal of Japan Industrial Man-

agement Associaiton, vol. 66, no. 4E, pp. 396–405, Jan 2016.

[A5] Y. Saito, T. Dohi, W. Y. Yun, Applying parametric bootstrap methods for

a block replacement problem with minimal repair, Proceedings of the 17th

International Conference on Industrial Engineering Theory, Applications

and Practice (IJIE 2013), pp. 136–142, Busan, Korea, Oct 2013.

[A6] Y. Saito, T. Dohi, W. Y. Yun, A kernel-based estimation for a periodic

replacement problem with minimal repair, Proceedings of the 6th Asia-

Pacific International Symposium on Advanced Reliability and Maintenance

Modeling (APARM 2014) pp. 405–412, Hokkaido, Japan, Aug 2014.

141



142 PUBLICATION LIST OF THE AUTHOR

[A7] Y. Saito, T. Dohi, Nonparametric maximum likelihood estimation of

NHPP-based software reliability model, Proceedings of the 6th Asia-Pacific

International Symposium on Advanced Reliability and Maintenance Model-

ing (APARM 2014) pp. 413–420, Hokkaido, Japan, Aug 2014.

[A8] Y. Saito, T. Dohi, Nonparametric maximum likelihood estimator with soft-

ware fault count data, Proceedings of the 9th International Conference on

Mathematical Methods in Reliability, –Theory, Methods and Applications –

(MMR-2015) pp. 49–55, Tokyo, Japan, Jun 2015.

[A9] Y. Saito, T. Dohi, Robustness of non-homogeneous gamma process-based

software reliability models, Proceedings of the 2015 IEEE International

Conference on Software Quality, Reliability and Security (QRS 2015) pp.

75–84, Vancouver, Canada, Aug 2015.

[A10] Y. Saito, T. Dohi, Stochastic marksmanship contest games with random

termination – survey and applications, Journal of the Operations Research

Society of Japan, vol. 58, no. 3, pp. 223–246, Sep 2015.

[A11] Y. Saito, T. Dohi, Nash equilibrium strategy for a software release game,

Proceedings of the 2nd International Conference on Computer and Man-

agement (CAMAN-2012) pp. 3822–3825, Wuhan, China, Mar 2012.


