
A Study on Sensitivity Approaches for

Dependable Systems Design

（ディペンダブルシステムデザインのための

感度分析アプローチに関する研究）

Dissertation submitted in partial fulfillment for the

degree of Doctor of Engineering

Junjun Zheng

Under the supervision of

Associate Professor Hiroyuki Okamura

Dependable Systems Laboratory,

Department of Information Engineering,

Graduate School of Engineering,

Hiroshima University, Higashi-Hiroshima, Japan

March 2016

A Study on
Sensitivity Approaches for

Dependable Systems Design

Dissertation submitted in partial fulfillment for the
degree of Doctor of Engineering

Junjun Zheng

Under the supervision of
Associate Professor Hiroyuki Okamura

Dependable Systems Laboratory,
Department of Information Engineering,

Graduate School of Engineering,
Hiroshima University, Higashi-Hiroshima, Japan

March 2016

A Study on
Sensitivity Approaches for
Dependable Systems Design

Junjun Zheng

Hiroshima University

CONTENTS IN BRIEF

1 Introduction 1

2 Preliminaries 7

3 Component Importance Measures for Virtualized System 13

4 Importance Measures for Virtualized System with Live Migration 27

5 Component Importance Measures for Real­tme Computing Systems 43

6 Survivability Analysis of VM­based Intrusion Tolerant Systems 67

7 Conclusions 85

References 97

Publication List 101

v

CONTENTS

Acknowledgments xi

Abstract xiii

List of Figures xvii

List of Tables xix

Acronyms xxi

Symbols xxiii

1 Introduction 1
1.1 Background 1
1.2 Related Works 5

2 Preliminaries 7
2.1 Symbolic Analytical Logic Techniques 7

2.1.1 Fault Tree Analysis 7
2.1.2 Reliability Block Diagram 8

2.2 Markov Reward Models 9
2.2.1 Continuous­Time Markov Chain 9
2.2.2 Markov Reward Model 10

2.3 Sensitivity Analysis 10
2.3.1 Parametric Sensitivity of MRMs 11
2.3.2 Component Importance Analysis 12

3 Component Importance Measures for Virtualized System 13
3.1 Model Description 13

vii

viii CONTENTS

3.1.1 Fault tree models 13
3.1.2 Continuous­time Markov chain models 16

3.2 Availability Importance Analysis 19
3.2.1 Importance measures 19

3.3 Numerical Illustration 21
3.4 Conclusion 25

4 Importance Measures for Virtualized System with Live Migration 27
4.1 Availability Importance Analysis for Hybrid Model 28

4.1.1 Fault tree model 28
4.1.2 Continuous­time Markov chain models 28
4.1.3 Importance measures 31

4.2 Component Importance for Live Migration 31
4.2.1 Model description 31
4.2.2 Importance analysis 34

4.3 Numerical Illustration 37
4.3.1 Hybrid models 37
4.3.2 Dynamic model for live migration 40

4.4 Conclusion 42

5 Component Importance Measures for Real­tme Computing Systems 43
5.1 Real­time Computing System 44

5.1.1 Subsystem Models 45
5.2 Performance Evaluation 48

5.2.1 Structure Function 48
5.2.2 CTMC Analysis 50

5.3 Component Importance Analysis 52
5.3.1 Birnbaum Importance Measure 52
5.3.2 Criticality Importance Measure 55
5.3.3 Upgrading function 56

5.4 Numerical Illustration 59
5.4.1 System without CCFs 59
5.4.2 System with CCFs 61

5.5 Conclusion 65

6 Survivability Analysis of VM­based Intrusion Tolerant Systems 67
6.1 VM­Based Intrusion Tolerant System 68
6.2 Survivability Analysis 70

6.2.1 Formulation of Success Probability 70
6.2.2 Survivability Metric 74

6.3 Numerical Illustration 74
6.3.1 Success Probability 75
6.3.2 Survivability Analysis 77
6.3.3 Parameter Effects 80

6.4 Conclusion 83

CONTENTS ix

7 Conclusions 85

A Uniformization­based Algorithms 89

B Sensitivity Estimation Method 93

References 97

Publication List 101

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to Associate
Professor Hiroyuki Okamura, the supervisor of my study, for his constant
guidance, patience, kind advice and continuous encouragement throughout
the progress of this work. I am especially grateful for his confidence and the
freedom he gave me to do this work. Also, my sincere thanks go to Professor
Tadashi Dohi and Professor Chuzo Iwamoto, for their insightful and invalu-
able comments and constant support and encouragement, but also for the hard
question which incented me to widen my research from various perspectives.

I extend my special pleasure to acknowledge the hospitality and encourage-
ment of the past and present members of the Dependable Systems Laboratory,
Department of Information Engineering, Graduate School of Engineering, Hi-
roshima University.

I owe special gratitude to my family for their continuous and unconditional
support, understanding, and love.

Finally, I would like to thank the China Scholarship Council (CSC) for the
financial support.

J. Zheng
Hiroshima, Japan

March, 2016

xi

ABSTRACT

Dependability is an all-encompassing definition for reliability, availability,
safety and security, and is required in computer applications such as safety-
critical control systems for road vehicles, airplanes and medical devices, and
business-critical systems for e-commerce and financial transactions. To as-
sure high dependability of systems, redundancy has been widely applied and
plays an important role in enhancing system reliability. In general, there are
two commonly-used types of system designs; component (or subsystem) re-
dundancy and environmental redundancy. The component redundancy is the
use of additional components or subsystems beyond the number actually re-
quired for the system to operate reliably, such as k-out-of-n redundant sys-
tems with spares. In the environmental redundancy, the system re-executes
some of its initialization procedures to obtain a fresh environment that might
in turn make the system less prone to failures, such as rejuvenation techniques
that reboot the system before failures occur. In fact, redundancy increases not
only the complexity of a system, but also the complexity of associated prob-
lems such as common-mode error. Thus, in order to detect the optimal design
of systems, model-based analysis is important in the system design. Fault
trees (FTs), reliability block diagrams (RBDs), Markov chains (e.g., discrete-
time Markov chain (DTMC) and continuous-time Markov chain (CTMC))

xiii

xiv ABSTRSCT

and stochastic Petri nets (SPNs) are commonly-used techniques for model-
based dependability analysis of computer systems.

One of the advantages of model-based analysis is sensitivity analysis, which
can identify both dependability bottlenecks and critical parameters to improve
system dependability. The sensitivity analysis plays an important role in the
optimization of system in the design phase. In particular, the sensitivity anal-
ysis is effective to detect the critical components in the system. Generally,
the parametric sensitivity and component importance (i.e., component-wise
sensitivity) analysis are widely used sensitivity approaches to detect the de-
sign sensitivity of system. In addition, some extensive sensitivity analyses are
devoted to evaluate the environmental sensitivity such as the survival proba-
bilities in fault-tolerant systems, indicating how expected survivability would
change with varying model parameters.

This thesis considers the sensitivity approaches for dependable systems de-
sign. Concretely, we consider the design sensitivity for virtualized systems (in
Chapters 3 and 4) and real-time computing systems (in Chapter 5). For eval-
uating the environmental sensitivity, virtual machine (VM)-based intrusion
tolerant systems (in Chapter 6) are taken into account. The thesis is organized
as follows.

Chapter 2 presents the preliminaries of the commonly-used techniques in
model-based dependability analysis and the sensitivity analysis.

In Chapter 3, we focus on the component importance analysis regarding sys-
tem availability of virtualized system design and develop a method to evaluate
the importance of components. In the past literature, most of people focused
on estimating the performance of an entire virtualized system such as the sys-
tem availability. One of the important things in the system design is how
to allocate system resources to components. To the best of our knowledge,
there are a few papers to deal with such design problems of virtualized sys-
tem. Our analysis can provide quantitative importance of all the components
for system availability thereby formulating a resource allocation problem to
improve system availability.

Chapter 4 is devoted to a novel state-of-the-art Markov-based component-
wise sensitivity analysis. We apply it to the CTMC model of the live migration
in a virtualized system, and reveal the component importance of live migration
without using structure function.

ABSTRSCT xv

In Chapter 5, we turn our attention to the component importance analysis
of a real-time computing system in the presence of common-cause failures
(CCFs). The CCFs are known as a risk factor of the degradation of system
reliability in practice, and make it difficult to evaluate the component im-
portance measures analytically. Thus it is important to evaluate the effect of
CCFs especially in the real-time computing systems.

Chapter 6 discusses the survivability analysis of a VM-based intrusion tol-
erant system in the presence of intrusion. The survivability is the capability
of a system to provide its services in a timely manner even after intrusion and
compromise occur, which is the sensitivity of environmental changes.

Finally this thesis is summarized with some remarks and future works in
Chapter 7.

LIST OF FIGURES

2.1 OR/AND gates. 8

3.1 The FT diagram of non­virtualized system design. 14

3.2 The FT diagram of virtualized system design. 15

3.3 State transition diagram of the 3­state availability model. 17

3.4 State transition diagram of the 5­state availability model. 17

3.5 State transition diagram of the cooling system availability model. 17

3.6 State transition diagram of the SAN availability model. 18

3.7 State transition diagram of the OS/VMM/VM availability model. 18

4.1 State transition diagram of the CPU and memory availability models. 29

4.2 State transition diagram of the power (or network card) availability model. 29

4.3 State transition diagram of the cooling system availability model. 30

4.4 State transition diagram of the SAN availability model. 30

4.5 State transition diagram of the VMM/VM availability model. 30

4.6 CTMC availability model for live migration. 35

5.1 The architecture of real­time computing system. 44

5.2 RBD of the real­time computing system. 45

5.3 CTMC of PM subsystem. 47

5.4 CTMC of SM/DS subsystem. 48
xvii

xviii LIST OF FIGURES

6.1 Architecture of VM­based intrusion tolerant system. 68

6.2 An illustrative behavior of the system for one request. 70

6.3 Markov model of request processing in the case of m = 2. 72

6.4 Effects of VM failure rate on the success probabilities in the case of r = 1
and r = 2. 81

6.5 Effects of VM failure rate on the conditional success probabilities in the
case of r = 1 and r = 2. 81

6.6 Effects of VM failure rate on the success probability and conditional
success probability in the case of r = 1. 82

6.7 Effects of VM failure rate on the success probability and conditional
success probability in the case of r = 2. 82

LIST OF TABLES

3.1 MTTF/MTTR of components. 22

3.2 Other model parameters. 23

3.3 Equivalent failure and repair rates and component availabilities. 23

3.4 Availabilities of hardware units, host and system. 23

3.5 Component importance measures in the non­virtualized system design. 25

3.6 Component importance measures in the virtualized system design. 25

4.1 The states of system. 32

4.2 Model parameters. 33

4.3 MTTF/MTTR of components. 37

4.4 Other model parameters. 38

4.5 Effective failure and repair rates and component availabilities. 38

4.6 Availabilities of hardware units, host and system. 39

4.7 Component importance measures in the virtualized system. 40

4.8 Model parameters. 41

4.9 Availabilities of host, VM, application components and system. 41

4.10 Effective failure and repair rates. 42

4.11 Component importance measures in the dynamic model for live migration. 42

5.1 The states of PM subsystem. 47
xix

xx LIST OF TABLES

5.2 Model parameters. 48

5.3 The states of SM/DS subsystem. 48

5.4 Parallel­series reliability function. 50

5.5 Model parameters. 59

5.6 Availabilities and reliabilities without CCFs. 60

5.7 Availabilities and importance measures without CCFs. 60

5.8 Reliabilities and importance measures at t = 60 hours without CCFs. 60

5.9 Importance ranking of system components with respect to availability
without CCFs. 62

5.10 Importance ranking of system components with respect to reliability
without CCFs. 62

5.11 Availabilities and reliabilities with CCFs. 62

5.12 Availabilities and importance measures with CCFs. 63

5.13 Reliabilities and importance measures at t = 60 hours with CCFs. 63

5.14 Time­dependent failure rates (t = 60 hours). 64

5.15 Importance ranking of system components with respect to availability
with CCFs. 64

5.16 Importance ranking of system components with respect to reliability with
CCFs. 65

6.1 Success probabilities with respect to n1 and m in the case of r = 1. 74

6.2 Success probabilities with respect to n1 and m in the case of r = 2. 74

6.3 Success probabilities under Lau’s and generalized schemes. 76

6.4 Conditional success probabilities with respect to n1 and m in the case of
N1 = 0, . . . , n1 − f1 − 1 and r = 1. 78

6.5 Conditional success probabilities with respect to n1 and m in the case of
N1 = 0, . . . , n1 − f1 − 1 and r = 2. 78

6.6 Conditional success probabilities with respect to n1 and m in the case of
r = 1. 79

6.7 Conditional success probabilities with respect to n1 and m in the case of
r = 2. 79

6.8 Conditional success probabilities p̃s in Lau’s vs. generalized schemes
under the failure of first round. 79

6.9 Success probabilities and conditional success probabilities with respect to
r = 1, 2, 3, 4, 5 in the case of n1 = 3 and m = 2. 80

ACRONYMS

FT Fault Tree

RBD Reliability Block Diagram

DTMC Discrete-Time Markov Chain

CTMC Continuous-Time Markov Chain

SPN Stochastic Petri Net

VM Virtual Machine

CIA Confidentiality, Integrity and Availability

QoS Quality-of-Service

DoS Deny-of-Service

SMR State Machine Replication

ABS Anti-lock Braking System

CCF Common-Cause Failure

MRM Markov Reward Model

ODE Ordinary Differential Equation

OS Operating System

VMM Virtual Machine Manager

SAN Storage Area Network

MTTF Mean Time To Failure

MTTR Mean Time To Repair

PM Processing Module

SM Shared Memory

DS Digital Switch

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

xxi

xxii ACRONYMS

I/O Input/Output

A/D Analog-to-Digital

D/A Digital-to-Analog

AS Agreement Service

CRCE Common Root Cause Event

i.i.d. independent and identically distributed

c.d.f. cumulative distribution function

p.d.f. probability density function

p.m.f. probability mass function

SYMBOLS

Chapter 2 Preliminaries
X(t) : a time-homogeneous CTMC.
S : denumerable state space.
π(t) : state probability (row) vector.
Q : an n-by-n square matrix called the infinitesimal generator.
qij : the transition rate from state i to state j.
1 : a column vector whose elements are 1.
0 : a column vector whose elements are 0.
π0 : the initial state probability vector.
A : a matrix.
I : an identity matrix.
πss : the steady-state probability vector.
ρ : a reward function in an MRM.
Y (t) : a reward process.
r : a reward (column) vector.
θ : a model parameter of MRM.
sss(θ) : sensitivity function of steady-state probability vector with respect to a model parameter θ.
s(t, θ) : sensitivity function of transient probability vector with respect to a model parameter θ.
S(θ) : the derivative of Q with respect to a model parameter θ.

Chapter 3 Component Importance Measures for Virtualized System
U : the set of up state.
D : the set of down state.
λ : failure rate of component.
µ : repair rate of component.
α : the rate of summoning inherent in the component.

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

xxiii

xxiv SYMBOLS

χSAN : the rate of copying data.
β : the rate of rebooting a component.
b : the coverage of transient failures.
Ai : the steady-state availability of component i.
πk : the steady-state probability of state k.
λi : the failure rate of component i.
µi : the repair rate of component i.
Iλ,i : importance measure with respect to failure rate.
Iµ,i : importance measure with respect to repair rate.
ti,j : the transition rate from state i to j.

λ̃ : the equivalent failure rate of component.
µ̃ : the equivalent repair rate of component.

Chapter 4 Importance Measures for Virtualized System with Live Migration
Q : the infinitesimal generator of CTMC availability model for live migration.
πss : the steady-state probability vector of CTMC model for live migration.
ξi : a 0-1 vector whose elements are 1 in the state where component i is up.
J : a matrix whose elements are the sensitivities of availabilities of components with respect to model pa-

rameters.
z : a column vector whose elements are the sensitivities of system availability with respect to each model

parameter.

Chapter 5 Component Importance Measures for Real-time Computing Systems
λi : the rate of independent failure killing single component.
λd : the rate of dependent failures killing all components.
λ : the overall failure rate of a particular component.
β : the probability that a failure in a specific component causes all component to fail.
x : the state vector of system.
xk : a binary variable which represents the condition of component k.
ϕ(x) : structure function of system.
Px(t) : a certain probability mass function of the system being in state x at time t.
Ω : the state space of system.
R(t) : reliability function of system.
Rk(t) : reliability function of component k at time t.
QS : the infinitesimal generator of system.
δk(x) : the first derivative of structure function with respect to the state condition of component k.
IBk(t) : Birnbaum importance of component k at time t.
AIBk : Birnbaum availability importance measure of component k.
RIBk(t) : Birnbaum reliability importance measure of component k at time t.
ICFk(t) : criticality importance of component k at time t from the unreliability point of view.
ICRk(t) : criticality importance of component k at time t from the reliability point of view.
AICRk : criticality availability importance measure of component k.
RICRk(t) : criticality reliability importance measure of component k at time t.
AIUk,λ : availability upgrading function for component k regarding to failure rate.
AIUk,µ : availability upgrading function for component k regarding to repair rate.
RIUk,λ(t) : reliability upgrading function for component k at time t.
λk(t) : time-dependent failure rate of component k.

SYMBOLS xxv

Chapter 6 Survivability Analysis of VM-based Intrusion Tolerant Systems
n : the number of initially activated VMs.
r : the number of additionally activated VMs.
m : the maximum number of rounds.
f : the tolerance level of a system.
nk : the number of VMs at the k-th round.
fk : the tolerance level at the k-th round.
γ : the arrival rate of intrusion for each VM.
S : an random variable representing the processing time for a request in one VM.
G(t) : the cumulative distribution function for S.
pI : the probability that a VM is intruded during it processes one request.
G∗(γ) : the Laplace-Stieltjes transform of G(t).
Nk : the number of normal VMs at the end of the k-th round.
Nk; k ≥ 1 : a discrete-time Markov chain.
(v, k) : a state of DTMC indicating that there are v normal VMs at the end of the k-th round.
πk : the probability vector at the end of the k-th round.
P k−1 : the transition matrix from states in k − 1-round to states in k-th round.
fm : the tolerance level of system with maximum number of rounds, m.
q : a randomization parameter satisfying q = supi∈S |qii|.
P : the transition probability matrix of DTMC.

Appendices A and B
U : the upper (right) bound.
ε : the error tolerance.
IS : the performance index of system.
Ik : the performance index of component k.
rS : the reward vector of system.
rk : the reward vector of component k.
π : a state probability vector of the underlying CTMC at arbitrary time point.
θ : model parameter vector.
δj : the deviation of IS with respect to θj which are not correlated to the deviations of I1, . . . , IK .
z : a column vector whose elements are the sensitivities of system performance index with respect to each

model parameter.
u : a column vector whose elements are the sensitivities of system performance index with respect to each

performance index of component.
δ : a column vector whose elements are the deviation of IS with respect to each model parameter.
J : a matrix whose elements are the sensitivities of performance indices of components with respect to model

parameters.
∥δ∥2 : a 2-norm of vector δ.
T : the transpose operator.

CHAPTER 1

INTRODUCTION

In this chapter, we first give an introduction to dependability and dependable
system designs. We then introduce the model-based dependability analysis
and sensitivity analysis. Also, two commonly-used dependable system appli-
cations are mentioned; virtualized systems and real-time computing systems.
In particular, the intrusion due to malicious attacks and dependent failures
among components in such systems are taken into account.

1.1 Background

Dependability is an all-encompassing definition for reliability, availability,
safety and security, and is required in computer applications such as safety-
critical control systems for road vehicles, airplanes and medical devices, and
business-critical systems for e-commerce and financial transactions. To assure
high dependability of systems, redundancy has been widely applied and plays
an important role in enhancing system reliability. In general, there are two
commonly-used types of system designs; component (or subsystem) redun-
dancy and environmental redundancy. The component redundancy is the use
of additional components or subsystems beyond the number actually required
for the system to operate reliably, such as k-out-of-n redundant systems with
A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

1

2 INTRODUCTION

spares [1]. In the environmental redundancy, the system re-executes some of
its initialization procedures to obtain a fresh environment that might in turn
make the system less prone to failures [2], such as rejuvenation techniques
that reboot the system before failures occur. In fact, redundancy increases not
only the complexity of a system, but also the complexity of associated prob-
lems such as common-mode error. Thus, in order to detect the optimal design
of systems, model-based analysis is important in the system design. Fault
trees (FTs), reliability block diagrams (RBDs), Markov chains (e.g., discrete-
time Markov chain (DTMC) and continuous-time Markov chain (CTMC))
and stochastic Petri nets (SPNs) are commonly-used techniques for model-
based dependability analysis of computer systems.

One of the advantages of model-based analysis is sensitivity analysis, which
can identify both dependability bottlenecks and critical parameters to improve
system dependability. The sensitivity analysis plays an important role in the
optimization of system in the design phase. In particular, the sensitivity anal-
ysis is effective to detect the critical components in the system and helps to
select the best system configuration. Generally, the parametric sensitivity and
component importance analysis are widely used sensitivity approaches to de-
tect the design sensitivity of system. The parametric sensitivity is defined as
the first derivatives of dependability indices with respect to model parameters
and applied to optimizing system dependability by combining the mathemat-
ical programming as well as the evaluation of effects on parameters. The
component importance analysis is more preferred than the parametric sensi-
tivity analysis in the dependability engineering. The component importance
analysis, called the component-wise sensitivity analysis, is to estimate the first
derivatives of dependability measures of system with respect to dependabil-
ity measures of components. Thus the component importance analysis can
detect the critical components from the dependability point of view directly.
In addition, some extensive sensitivity analyses are devoted to evaluate the
environmental sensitivity such as the survival probabilities in fault-tolerant
systems, indicating how expected survivability would change with varying
model parameters.

In recent years, some technologies have been developed to improve the sys-
tem dependability. For example, cloud computing has emerged as an im-
portant trend in software industry. Cloud computing is a promising system
architecture to ensure the high dependability, and has widely spread in many

BACKGROUND 3

of computer applications. In general, cloud computing is defined as a style of
computing in which dynamically scalable and virtualized resources are pro-
vided as a service over the Internet [3]. Along with ubiquitous computing,
cloud computing drastically grows as a key technology of next generation of
computing recently. One of the core technologies that support cloud comput-
ing for high dependable system is virtualization of system resources. Roughly
speaking, virtualization is to create software components that emulate behav-
ior of hardware units and platform, and is to control them in a software plat-
form. The most popular virtualization is to create a virtual machine (VM) that
behaves an actual computer on the platform such as VMware, Xen and Hyper-
V. One of the advantages of virtualization is that physical servers can be in-
tegrated into a platform that manages their VMs. This is one of techniques
to enhance system utilization by integrating physical servers with low utiliza-
tion. Such integration leads to saving energy of server operations. Moreover,
if two physical servers have the same platform that can drive VMs, we exploit
the live migration between them [4]. The live migration is a technique that
allows a server administrator to move a running VM of application between
different physical machines without disconnecting the client or application. In
a virtualized system, the live migration can improve the system dependability
by migrating a failed VM on a platform to another platform. The virtual-
ization has many advantages of managing the system in practical situation,
and the configuration of virtualized system is more flexible than the ordinary
server architecture that has physical constraints. However, due to such diver-
sified computing environments, it is more difficult to determine the best of
virtualized system design and to predict virtualized system performance in its
operation compared to conventional non-virtualized system designs.

On the other hand, with the rapid development of computer systems, the
systems face the threat of intrusion due to malicious attacks that exploit secu-
rity holes or vulnerabilities. Typically, these attacks are caused by malicious
codes, for example, viruses, worms, Trojan horses, and attack scripts. Since
security holes and vulnerabilities are essentially software bugs, they can be
detected and removed in system testing. However, system and applications
are released while their security holes or vulnerabilities still remain in prac-
tice, even if developers carefully execute system testing. In fact, the number of
security incidents is increasing as the software system is used in wide applica-
tion area. Generally, the attributes of security are categorized to confidential-

4 INTRODUCTION

ity, integrity and availability (CIA). The system is evaluated with CIA criteria
from the viewpoint of security, and highly-secure system should be designed
to keep high levels of these criteria. Nowadays, security is treated as a QoS
(Quality of Service) attribute at par with other QoS attributes such as perfor-
mance. Although there exist many types of security incidents such as website
defacement and deny-of-service (DoS) attack, all of them are related to CIA.
Generally, the security failure is defined by the system failure that causes the
degradation of CIA. This thesis focuses on the intrusion as a typical security
failure that is a main cause of degradation of confidentiality and integrity in
the system. In addition, the intrusion is regarded as a Byzantine failure of sys-
tem, which is defined as an arbitrary failure, namely, a process with Byzantine
failure causes deviation from its normal behavior created by an algorithm [5].
To counteract the intrusion, we need to take care of every action by a failed
and intruded process such as sending fake messages, not sending any mes-
sages, and disrupting other processes. Security solutions such as intrusion
detection systems, intrusion prevention systems, and firewalls are designed to
protect against the malicious attacks [6]. However, these solutions are not al-
ways possible to prevent all kinds of attacks. For example, intrusion detection
systems require the signatures of attacks that have been reported. Thus it is
difficult to prevent the intrusion completely. Therefore, to ensure that systems
are correctly and safely available even in the presence of intrusion, it is nec-
essary to develop a mechanism to tolerate intrusions. Intrusion tolerance is
the ability of a system to continuously provide correct, but possibly degraded,
services even if the system is intruded [7]. Recently, several researchers pay
attention to virtualization technology to build more trusted computing envi-
ronments, based on the state machine replication (SMR) [8], where each ser-
vice replica runs on a different VM. In virtualized computing environments,
attackers search for exploitable security holes or vulnerabilities in deployed
virtualization environments to compromise one of its software processes. The
common attack patterns are virtualized botnets, virtual code injection attacks,
and hypervisor traversal attacks [9].

In this thesis, we also consider the real-time computing systems which are
widely used in our daily lives, e.g., anti-lock braking system (ABS) in cars,
telephone networks, and patient care systems. A real-time computing system
is a system in which timeliness is as important as correctness of its outputs
[10]. A delayed output in real-time systems is not acceptable even if it has

RELATED WORKS 5

a correct value. Thus, the Dependability of these systems is more impor-
tant. Generally, to guarantee the high Dependability of real-time computing
systems, redundancy has been commonly applied. However, redundancy in-
creases not only the complexity of a system but also the complexity of associ-
ated problems such as common-cause failures (CCFs). The CCF is also called
the dependent failure, which is defined as any condition or event that affects
several components inducing their simultaneous failure or malfunction [11],
and is synonymous with the simultaneous failures and multiple failures. The
CCF is known as a risk factor of the degradation of system reliability in prac-
tice, and makes it difficult to evaluate the component importance measures
analytically.

1.2 Related Works

In virtualized system, the flexibility often causes the difficulty to determine
the best configuration of the virtualized system. For such issues, researchers
tried to evaluate the performance of system configuration of the virtualized
system quantitatively by using probabilistic models.

On the performance index, Kundu et al. [12] presented statistical models
using regression and artificial Neural networks. Also, Okamura et al. [13]
proposed a queueing model to evaluate energy efficiency of virtualized sys-
tem design. On the system index for reliability and availability, Cully et al.
[14] and Farr et al. [15] built and evaluated their schemes to enhance system
availability in virtualized system design. Myint and Thein [16] also evalu-
ated a system architecture combining virtualization and rejuvenation. Vish-
wanath and Nagappan [17] collected operation data of virtualized system and
performed statistical analysis to reveal a causal relationship between server
failures and hardware repairs. Kim et al. [18] focused on failure modes of
virtualized system and presented availability evaluation using fault trees and
continuous-time Markov chains. Also Matos et al. [19] developed the CTMC
model representing the dynamic behaviors of live migration in the virtualized
system.

Recently, several researchers pay attention to virtualization technology to
build more trusted computing environments. For example, Junior et al. [20]
proposed a shared memory based intrusion tolerant system in which each ser-
vice replica runs in a different VM and the communication among the replicas
is performed through an abstraction of a shared memory. In this system, the

6 INTRODUCTION

required number of replicas (VMs) is reduced from 3f + 1 to 2f + 1. Note
that, f is the tolerance level of system, namely, the maximum number of in-
truded replicas (VMs) that are tolerated to the extent that the system behaves
normal. Moreover, Lau et al. [21] considered a similar approach to [20]. Con-
cretely, they described the algorithms for processing requests sent by clients
in the presence of malicious attacks and succeeded to reduce the minimum
number of replicas to f + 1 by using an agreement service that provides a
voting process and puts a signature into an agreed response. However, once
Byzantine failure occurs, 2f + 1 VMs are needed. Thus there is the situation
where Lau’s method is very wasteful, and it has not been clear what situation
Lau’s method functioned well.

On the other hand, some researches considered the real-time computing
systems with failure dependencies. For example, Fricks et al. [11] studied the
effect of failure dependencies in a real-time computing system using SPNs
and CTMCs. Also, they classified some different types of failure dependen-
cies that can arise in the reliability model of real-time computing system, and
illustrate how several of the failure dependencies can be incorporated in SPN
model. Based on their research, it is realized that failure dependencies highly
influence the system reliability and that failure dependencies therefore never
should be ignored.

Also, in [22], Fricks et al. considered three kinds of component impor-
tance measures for Markov reward model (MRM), in contrast to the common
method of computing importance measures using combinatorial models (e.g.,
fault tree (FT) and reliability block diagram (RBD)) and structure function
which represents the relationship between components failures and system
failure, and can be obtained using symbolic analytical logic techniques such
as FT and RBD analysis. Pan et al. [23] presented a quantitative method to
evaluate the importance of each CCF event. More precisely, they divided the
CCFs into two groups; one with a clear relationship between the causes and
effects and the other with no such relationship. For the first group of CCFs,
they evaluate the structure function importance and probability importance of
the common root cause events modeled using FT. On the other hand, they
considered the Birnbaum importance for the second group of CCFs which are
achieved by using parametric model.

CHAPTER 2

PRELIMINARIES

This chapter presents the preliminaries of the commonly-used techniques in-
cluding non-state-space (fault tree and reliability block diagram) and state-
space models (continuous-time Markov chain) in model-based dependability
analysis and the sensitivity analysis of Markov models.

2.1 Symbolic Analytical Logic Techniques

In reliability engineering, fault trees (FTs) and reliability block diagrams
(RBDs) are both symbolic analytical logic techniques that can be applied to
analyze system reliability and related characteristics. In the system modeling,
the FTs and RBDs are non-state-space models and used to describe the static
relationships between component failures and system failure. Although the
symbols and structures in the diagrams of two techniques are different, most
of the logical constructs in a FT diagram can also be modeled with a RBD. In
this section, we present a brief introduction to FT and RBD analysis.

2.1.1 Fault Tree Analysis

Fault trees (FTs) are a graphical representation of a system hazard depict-
ing the underlying causal events using Boolean logic gates (e.g., OR/AND
A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

7

8 PRELIMINARIES

(OR) ((AND)

A B

E E

A B

(a) (b)

Figure 2.1 OR/AND gates.

gates) and are used to reason about and/or quantifiably estimate the potential
cause(s) of a system failure [24, 25]. Fault tree analysis is a backward search
technique that starts from a system failure and works towards the initiating
events (i.e., the causing events that may lead to the system hazard/failure)
[25]. Fig. 2.1 (a) shows OR gate, it defines that output event occurs if any
one of the input events occurs. And AND gate is shown in Fig. 2.1 (b), it
defines that output event occurs if all input events occur. In the figure, circle
A and B mean basic event with sufficient data, and rectangle E means event
represented by a gate.

2.1.2 Reliability Block Diagram

Reliability block diagrams (RBDs) are an adequate technique for describing
systems, when considering the reliability and availability of systems. Con-
cretely, the RBD is top level description for the system that illustrates how
components and subsystems reliabilities contribute to the success or failure of
a system, and allows us to model the failure relationships of complex systems.
It is a well-accepted method in industrial practice.

However, like the FT, the RBD cannot be used to describe the dynamic be-
havior of systems. When using the either of FTs and RBDs, we need the fol-
lowing assumptions; (i) all failure and repair events in the system are stochas-
tically independent, and (ii) each component can be in two states only, that
is, active and failed. In contrast, Markov reward models (MRMs) provide a
powerful mathematical framework for computing system state probabilities
and thus quantifying a system under study. The modeling power of MRMs is
much higher than that of FTs and RBDs; each component can be described by

MARKOV REWARD MODELS 9

an arbitrary number of states (e.g., active, passive, and several failed states),
and arbitrary inter-component dependencies (such as failure propagation, fail-
ures with a common cause, or limited repair capacities) can be specified. Con-
sequently, MRMs are an adequate formal model for analyzing in particular
industrial critical systems [26].

2.2 Markov Reward Models

2.2.1 Continuous­Time Markov Chain

Continuous-Time Markov Chain (CTMC) is a stochastic process with dis-
crete state space on continuous time domain, which can capture the dynamic
behavior of system. The CTMC is convenient to represent the state transi-
tion of system such as normal and failure states, and thus is frequently used
for reliability evaluation of system. In this paper, we consider the parameter
sensitivity of CTMC in both steady-state and transient analysis.

Let {X(t); t > 0} be a time-homogeneous CTMC with the denumerable
state space S = {1, 2, . . . , n} and π(t) is the state probability (row) vector
whose i-th element is the probability P (X(t) = i). According to the funda-
mental CTMC analysis, we have

d

dt
π(t) = π(t)Q, (2.1)

where Q = [qij] is an n-by-n square matrix called the infinitesimal generator.
The (i, j)-entry of Q means the transition rate from state i to state j. Also,
when 1 and 0 are column vectors where all the elements are 1 and 0, respec-
tively, the diagonal entries of Q are given by the negative values such that
Q1 = 0, namely, qii = −

∑
j ̸=i qij.

In the transient analysis of CTMC, we focus on the probability vector π(t)
at arbitrary time under a given initial probability π(0) = π0. In other words,
the transient analysis is to solve the initial value problem of the ordinary dif-
ferential equation (ODE) (2.1). In general, by using the matrix exponential,
the transient state probability vector can also be expressed by

π(t) = π0 exp(Qt), (2.2)

where the matrix exponential is defined by exp(A) = I +A +A2/2! + · · ·
and I is an identity matrix. The uniformization is well known as one of the
most effective methods to solve the transient state probability vector [27].

10 PRELIMINARIES

On the other hand, the steady-state analysis of CTMC is to derive the steady-
state probability vector;

πssQ = 0, πss1 = 1. (2.3)

Intuitively, the steady-state probability vector πss corresponds to the state
probability vector when t → ∞. The steady-state probability vector can
be obtained by solving the linear equation with GTH algorithm [28], Gauss-
Seidel and SOR.

2.2.2 Markov Reward Model

Markov reward models (MRMs) are a model-based approach for evaluating
the system performance. In general, The MRM is defined by a CTMC and
a reward function which maps the finite state space S to a real value. Let ρ
be a reward function in an MRM. Then a reward process is given by Y (t) =
ρ(X(t)) for the underlying CTMC process X(t).

In fact, several kinds of reward functions have been discussed in the past
literatures [29, 46]. Since this paper deals with reliability and availability
measures, we consider instantaneous reward functions in MRM. Let r be a
column vector that maps each of CTMC state i ∈ S to a corresponding real-
valued reward ri at time instance. Thus the expected instantaneous reward at
time t is given by

E[Y (t)] = π(t)r. (2.4)

Likewise, the expected instantaneous reward in the steady state is calculated
by πssr.

2.3 Sensitivity Analysis

Sensitivity analysis is a method to estimate the magnitude of deviations of
performance indices when system configuration changes such as the change
in the component failure rate, thereby determining the factors that are most
influential on model output measure. Thus the sensitivity analysis is effective
to detect the critical component in the system. There are two kinds of sen-
sitivity analysis: non-parametric and parametric approaches. Non-parametric
approach is a method of evaluating sensitivity by statistical techniques, with-
out any models. Typical examples are FAST and Sobol’ methods [30]. Para-
metric approach is a method which examines the variations of output with

SENSITIVITY ANALYSIS 11

respect to changes of the input parameters under given models. Generally, the
parametric sensitivity is considered, which is defined by the first derivatives of
performance indices with respect to model parameters. By using parametric
sensitivity analysis, we can identify the model parameters that mostly affect
the quantitative reliability measures. The parametric sensitivity can also be
applied to optimizing system performance by combining the mathematical
programming as well as the evaluation of effects on model parameters.

2.3.1 Parametric Sensitivity of MRMs

The sensitivity analysis is to estimate the magnitude of deviations of perfor-
mance indices when some parameters change. In particular, the parametric
sensitivity is the first or more derivatives of performance indices with respect
to model parameters. The parametric sensitivity can also be applied to op-
timizing system performance by combing the mathematical programming as
well as the evaluation of effects on parameters. In this section, we introduce
the parametric sensitivity of general MRMs with instantaneous rewards. Sim-
ilar to MRM analysis, the parametric sensitivity analysis is also divided into
the steady-state and transient cases.

Let θ be a model parameter of MRM. The parametric sensitivity analysis
starts with computing the following sensitivity functions:

sss(θ) =
∂πss

∂θ , (2.5)

s(t, θ) = ∂π(t)
∂θ . (2.6)

If these sensitivity functions are obtained, the sensitivity of performance index
with instantaneous reward is given by

∂
∂θπssr = sss(θ)r + πss

∂
∂θr, (2.7)

∂
∂θE[Y (t)] = s(t, θ)r + π(t) ∂

∂θr. (2.8)

Note that the above sensitivity functions of performance indices become sim-
ple when the reward vector is not sensitive to the parameter θ.

To obtain the sensitivity function in the case of steady-state probability vec-
tor, we take the first derivative of Eq. (2.3);

sss(θ)Q+ πssS(θ) = 0, sss(θ)1 = 0, (2.9)

where S(θ) = ∂Q/∂θ. If the steady-state probability vector πss is already
given, the sensitivity function sss(θ) can be solved as the linear equation.

12 PRELIMINARIES

In the transient case, from Eq. (2.1), the sensitivity function holds the fol-
lowing ODE:

d

dt
s(t, θ) = s(t, θ)Q+ π(t)S(θ). (2.10)

By integrating Eq. (2.1) into the above ODE, we have
d

dt
π̃(t, θ) = π̃(t, θ)Q̃(θ), (2.11)

where

π̃(t, θ) = (π(t), s(t, θ)) , Q̃(θ) =

Q S(θ)

Q

 . (2.12)

Since the diagonal elements of Q̃(θ) are same as those of Q, we can apply the
uniformization (see Appendix A) to the following matrix exponential form:

π̃(t, θ) = π̃(0, θ) exp
(
Q̃(θ)t

)
. (2.13)

In fact, it is not enough to investigate the system deviation by using para-
metric sensitivity analysis, thus component importance analysis is considered.

2.3.2 Component Importance Analysis

In the reliability engineering, the component importance analysis is more pre-
ferred than the parametric sensitivity analysis. The component importance
analysis, called the component-wise sensitivity analysis, is to estimate the
first derivatives of reliability measures of system with respect to reliability
measures of components, in other words, the component importance analysis
measures the effect on system reliability of component reliabilities. Thus the
component importance analysis can detect the critical components from the
reliability point of view directly, and can be used to the system design.

Nevertheless, except for some of specific cases such as the independent
components systems with explicit structure function, it is difficult to obtain
the sensitivities of component reliability on system reliability analytically.

The component importance analysis, as well as the parametric sensitivity,
is widely used sensitivity approach to detect the design sensitivity of system.
In addition, some extensive sensitivity analyses are devoted to evaluate the
environmental sensitivity such as the survival probabilities in fault-tolerant
systems, indicating how expected survivability would change with varying
model parameters.

CHAPTER 3

COMPONENT IMPORTANCE MEASURES
FOR VIRTUALIZED SYSTEM

This chapter presents component importance analysis of virtualized system
design. The component importance analysis is significant to develop a trusted
system in its design phase. In this chapter, we discuss the importance of com-
ponents from the viewpoint of availability. Specifically, based on the hybrid
model (i.e., fault tree (FT) and continuous-time Markov chain (CTMC) mod-
els) for virtualized system in Kim et al. [18], we present a new method to
evaluate the component importance and detect the critical components that
contribute the most to the system availability. In numerical examples, we
illustrate the quantitative importance of components and compare the avail-
abilities of non-virtualized and virtualized system designs.

3.1 Model Description

3.1.1 Fault tree models

Consider the availability models presented in [18]. Concretely, the system
provides two services such as Web and SQL servers to clients. When one
of two services stops, the system fails (i.e., system failure occurs). Each of
hosts is assumed to equip hardware and software components; CPU, memory
A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

13

14 COMPONENT IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM

CPU1 Mem1 Net1 Pow1 Cool1

HW1 OS1

H1

CPU2 Mem2 Net2 Pow2 Cool2

HW2 OS2

H2

OR

System Failure

Figure 3.1 The FT diagram of non­virtualized system design.

(Mem), power subsystem (Pow), network device (Net), cooling subsystem
(Cool) and operating system (OS). Here we present two system designs; non-
virtualized and virtualized system designs.

In the non-virtualized system design, the system is composed of two hosts,
and each of the hosts provides a specific service. Then the relationship be-
tween the system failure and all the component failures can be written as the
FT diagram in Fig. 3.1. In the figure, the top event means the system failure
and the leaf nodes correspond to the events that respective components are
failed. The nodes, H1 (H2) and HW1 (HW2) represent the events that the
host 1 (host 2) is failed and the hardware failure occurs in the host 1 (host
2), respectively. They are given by OR gates in the FT representation. Also,
since the system failure occurs when one of two hosts is down, the top event
is also given by an OR gate.

In the virtualized system design, the system is composed of two hosts, but
the hosts are supposed to install the same virtual machine manager (VMM).
The VMs run and provide the service on the VMM. One of the important
features provided by the VMM is the live migration [4]. The live migration
is a technique that can enhance the system availability. When a physical host
is stopped, all the VMs running on the host can migrate to another physical

MODEL DESCRIPTION 15

C
P

U
1

M
e

m
1

N
e

t1
P

o
w

1
C

o
o

l1

H
W

1
V

M
M

1

H
1

C
P

U
2

M
e

m
2

N
e

t2
P

o
w

2
C

o
o

l2

H
W

2
V

M
M

2

H
2

S
y
s
te

m
 F

a
ilu

re

V
M

2
H

1

A
N

D

V
M

1
H

2

A
N

D
A

N
D

S
A

N

O
R

Figure 3.2 The FT diagram of virtualized system design.

16 COMPONENT IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM

host without the down time. In fact, most of the VMM products such as Xen,
VMware and Hyper-V provide the live migration. However, in order to use
the live migration, the two hosts are required to share a common storage area
network (SAN). The SAN is a service to provide hard disk drives through
a high-speed network using Fiber Channel or iSCSI technologies. Fig. 3.2
illustrates the FT in the virtualized system design. Although the hosts have
the same structures as the FT in the non-virtualized system design, the failure
of virtualized system is given by an AND gate because of the live migration.
In addition, even if the VM is failed on one VMM, it can migrate to another
VMM. Thus the VM failure (VM1 or VM2) is connected to the failure of
another host (H2 or H1) with an AND gate. On the other hand, the failure of
SAN causes the system failure directly, and therefore the top event is given
by an OR gate connected to these events.

3.1.2 Continuous­time Markov chain models

In [18], Kim et al. defined the CTMC models to represent the behavior of
hardware and software components. This section briefly introduces the CTMC
models presented in [18].

Generally, in the availability modeling, the states of system can be classified
into two sets: U , the set of up (operational) states in which the system is
available; and D, the set of down (or failure) states in which the system is
unavailable. Fig. 3.3 shows the 3-state CTMC model for the availability of
CPU and Mem components proposed in [18]. In the figure, the states UP,
DN and RP mean that the component is available, the component is failed,
and the component is under repair, respectively. Hence the states DN and RP
are classified into the down state in the availability model. Moreover, λ and
µ denote failure and repair rates of the component. If the host equips 2-way
CPUs, the failure rate is given by λ = 2λCPU by using the failure rate of
a single CPU because both processors are needed for the operation. Also,
the transition from DN to RP corresponds to the event that a repair person is
summoned and its mean time is given by 1/α using the rate of summoning
inherent in the component.

For the components, Pow and Net, Kim et al. [18] applied the 5-state avail-
ability model. This can be used for evaluating the component described as
a 2-unit redundant (parallel) system. Fig. 3.4 presents the state transition di-
agram of the CTMC used for Pow and Net. In the figure, white and gray

MODEL DESCRIPTION 17

UP DN RP

2λ αSP

µ

Figure 3.3 State transition diagram of the 3­state availability model.

UP DN RP2

2λ αSP

U1

RP

αSP

µ1

µ2

λ

Figure 3.4 State transition diagram of the 5­state availability model.

UP DN RP1

2λCool

αSP
U1

RP

αSPµ1Cool

µ2Cool

λCool

RP2
λCool

µ2Cool

Figure 3.5 State transition diagram of the cooling system availability model.

nodes separately represent the up and down states in the availability model.
The main difference from the 3-state availability model is to add the state
that only one unit is failed, since the component failure is caused when both
of two units are failed. Moreover, the model adds a repair state where two
units are failed. The CTMC models for Cool and SAN are extended from the
5-state availability model. Concretely, in the CTMC for Cool (see Fig. 3.5),
they added a transition from RP to RP2, namely, the Cool availability model
allows the event occurrence that one unit fails while another unit is under re-

18 COMPONENT IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM

UP DN RP2

2λSAN

αSP

U1

RP

αSP

µ1SAN

µ2SAN

λSAN

CP

χSAN

Figure 3.6 State transition diagram of the SAN availability model.

UP DT DW

λ (1 − b)β
DN

RP

µ

bβ

δ

αSP

Figure 3.7 State transition diagram of the OS/VMM/VM availability model.

pair. In the CTMC for SAN (see Fig. 3.6), a state CP is put to the transition
between the states UP and RP, which means the mirrored data is copied from
a working disk unit to the repaired disk unit under RAID1 design. The tran-
sition rate from CP to UP is given by χSAN . Additionally, since the working
disk unit may fail in the CP state, they added a transition from CP to RP2 with
the failure rate of a disk unit λSAN .

The CTMC model for OS and VMM is given by Fig. 3.7. The state DT
means that the failure is detected, since the software failure cannot be detected
immediately. In [18], after the failure detection, the system takes an action to
reboot OS or VMM witn mean time 1/β. It is empirically known that most of
transient failures in software can be recovered by the system reboot [31]. The
state DN2 indicates that the failure is not recovered by a system reboot, i.e.,
the failure is caused by a kind of design faults, and thus b is the coverage of
transient failures. In this case where the failure is caused by a design fault, a
repair person is summoned.

AVAILABILITY IMPORTANCE ANALYSIS 19

In [18], based on the CTMC model in Fig. 3.7, they built the CTMC model
for VM which takes account of the dynamic behavior of the live migration.
Thus the CTMC model for VM was quite complicated so that the system
failure in the virtualized system design cannot be represented by the FT. Since
this paper describes the correlation between the failures of VM and host by
the AND gate in the FT representation, the CTMC model simply becomes the
same model as OS and VMM, i.e., the model of Fig. 3.7 can also represent
the availability for VM.

Based on these CTMC models, the steady-state availability for a component
x can be calculated as follows.

Ax = limt→∞
the cumulative available time during [0, t)

t

=
∑

k∈U πk, (3.1)

where πk is a steady-state probability of state k in the availability model and
U is the set of up state. The steady-state probability πk are computed by
numerical methods such as power method and Gauss-Seidel method [32].

3.2 Availability Importance Analysis

3.2.1 Importance measures

According to the FT analysis, letting Ai be the steady-state availability of a
component i, we have the following steady-state availabilities for a host in the
non-virtualized and virtualized system designs:

AH = AOS
∏
i∈HW Ai, (3.2)

AH = AVMM
∏
i∈HW Ai, (3.3)

where HW is a set of {CPU,Mem,Net, Pow,Cool}. Then the system
availability in the non-virtualized system design is given by

AS = AH1AH2, (3.4)

where AH1 and AH2 are the availabilities for the hosts 1 and 2 which can be
obtained by AH . In the case of the virtualized system design, since the events
H1 and H2 are used twice in the FT, the system availability in the virtualized
system design can be obtained

AS = 1−
(
AH1AH2 + AH1AVM2 + AH2AVM1

− AH1AH2(AVM2 + AVM1)
)
(1− ASAN), (3.5)

20 COMPONENT IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM

where Ai = 1− Ai.
In [33], Cassady et al. proposed the importance measures of components

in terms of availability. They assumed the FT model with the events that
are described by the 2-state availability model. The 2-state availability is a
CTMC model with only two states; up and down. In such modeling, Cassady
et al. [33] defined two importance measures as the derivatives of the system
availability:

Iλ,i =
1
AS

∣∣∣∣∂AS

∂λi

∣∣∣∣ , (3.6)

Iµ,i =
1
AS

∣∣∣∣∂AS

∂µi

∣∣∣∣ , (3.7)

where λi and µi are the failure and repair rates of the component i, i.e., the
transition rates from up to down and from down to up in the 2-state availability
model, respectively. These measures come form the idea behind the Birnbaum
measure [34].

In this chapter, since we do not treat the 2-state availability model to rep-
resent the component availability, the importance measures proposed in [33]
cannot directly be applied to evaluating the non-virtualized and virtualized
system designs. Thus we propose a preprocessing based on the aggregation
of CTMC-based availability model [35] before applying the availability im-
portance measures.

The aggregation is a technique to reduce CTMC-based availability models
to the 2-state availability model which has the same availability as the original
model. As mentioned before, the states of CTMC-based availability models
can be classified into up and down groups. The aggregation technique con-
verts the up and down groups to the up and down states of the 2-state availabil-
ity model. The essential problem of the aggregation is to find the transition
rates; failure and repair rates that ensure the steady-state probability of the up
(down) group in the original model equals that of the up (down) state in the
2-state model. From the argument of CTMC, such failure and repair rates can
be computed as follows.

λ̃ =
∑

(i,j)∈U×D πiti,j∑
i∈U πi

, (3.8)

µ̃ =
∑

(i,j)∈D×U πiti,j∑
i∈D πi

, (3.9)

where U andD are sets of states belonging to the up and down groups, respec-
tively. Then the set U × D indicates the transitions from up to down in the

NUMERICAL ILLUSTRATION 21

original model. Also, ti,j denotes the transition rate from i to j in the original
model. For simplification, ti,j = 0 if there is no transition from i to j. The
calculated failure and repair rates λ̃ and µ̃ in the 2-state availability model are
called the equivalent failure and repair rates [35].

By applying the aggregation to the component availability models as pre-
processing, the availability importance measures of the component i can be
rewritten by

Iλ̃,i =
1
AS

∣∣∣∣∂AS

∂λ̃i

∣∣∣∣ , (3.10)

Iµ̃,i =
1
AS

∣∣∣∣∂AS

∂µ̃i

∣∣∣∣ , (3.11)

where λ̃i and µ̃i are the equivalent failure and repair rates of the component i.

3.3 Numerical Illustration

This section illustrates the quantitative importance analysis of components
based on the non-virtualized and virtualized system designs. Table 3.1 presents
MTTF (mean time to failure) and MTTR (mean time to repair) for the com-
ponents which are used in [18]. Also, other model parameters are given in
Table 3.2.

Based on these parameters, we first compute the equivalent failure and re-
pair rates for all the components when the original availability models are
reduced to the 2-state availability models. Table 3.3 shows the equivalent
failure and repair rates and the component availabilities. From the table, it is
found that the availabilities of hardware units are relatively high, compared
to the availabilities of software components. In particular, the availability of
SAN is quite high.

From the component availabilities, we compute the system availabilities by
using Eqs. (3.2)–(3.5). Table 3.4 presents the availability of a hardware unit,
the availability of a host and the system availabilities in the non-virtualized
and virtualized system designs. Although there is no remarkable difference of
the host availabilities in the non-virtualized and virtualized system, the sys-
tem availability of the virtualized system is further improved from the system
availability of the non-virtualized system. This implies that the live migration
is considerably effective to enhance the system availability.

Next we derive the importance measures of component in both non-virtualized
and virtualized system designs. Since the equivalent failure and repair rates

22 COMPONENT IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM

Table 3.1 MTTF/MTTR of components.

Params Description Value (hours)

1/λCPU MTTF of CPU 2,500,000

1/λMem MTTF of Mem 480,000

1/λPow MTTF of Pow 670,000

1/λNet MTTF of Net 120,000

1/λCool MTTF of Cool 3,100,000

1/λSAN MTTF of SAN 20,000,000

1/λOS MTTF of OS 1440

1/λVMM MTTF of VMM 2880

1/λVM MTTF of VM 2880

1/µCPU MTTR of CPU 0.5

1/µMem MTTR of Mem 0.5

1/µ1Pow MTTR of one power module 0.5

1/µ2Pow MTTR of two power modules 1

1/µ1Net MTTR of one network device 0.5

1/µ2Net MTTR of two network devices 1

1/µ1Cool MTTR of one cooler module 0.5

1/µ2Cool MTTR of two cooler modules 1

1/µ1SAN MTTR of one disk unit 0.5

1/µ2SAN MTTR of two disk units 1

1/µOS MTTR of OS 1

1/µVMM MTTR of VMM 1

1/µVM MTTR of VM 0.5

NUMERICAL ILLUSTRATION 23

Table 3.2 Other model parameters.

Params Description Value

1/αSP mean time to repair person summoned 30 minutes

1/χSAN mean time to copy data 20 minutes

1/δOS mean time for OS failure detection 30 seconds

1/δVMM mean time for VMM failure detection 30 seconds

1/δVM mean time for VM failure detection 30 seconds

1/βOS mean time to reboot OS 10 minutes

1/βVMM mean time to reboot VMM 10 minutes

1/βVM mean time to reboot VM 5 minutes

bOS coverage factor for OS reboot 0.9

bVMM coverage factor for VMM reboot 0.9

bVM coverage factor for VM reboot 0.95

Table 3.3 Equivalent failure and repair rates and component availabilities.

Component λ̃i µ̃i Ai

CPU 8.0000000e-7 1.0000000 0.99999920

Mem 8.3333333e-6 1.0000000 0.99999167

Net 1.6666528e-5 1.9999833 0.99999167

Pow 2.9850702e-6 1.9999970 0.99999851

Cool 6.4516108e-7 1.9999990 0.99999968

OS 6.9444444e-4 3.0769231 0.99977436

VMM 3.4722222e-4 3.0769231 0.99988717

VM 3.4722222e-4 7.0588235 0.99995081

SAN 9.9999992e-8 1.9999999 0.99999995

Table 3.4 Availabilities of hardware units, host and system.

System Availability

HW1 and HW2 0.99998072

H1 and H2 in non-virtualized system 0.99975508

H1 and H2 in virtualized system 0.99986789

System availability in Non-virtualized system 0.99951022

System availability in virtualized system 0.99999992

24 COMPONENT IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM

have already been computed as shown in Table 3.3, we substitute them into
Eqs. (3.10) and (3.11) after differentiating them analytically. Tables 3.5 and
3.6 show the importance measures of components in terms of the system avail-
ability for non-virtualized and virtualized systems, respectively. Since the
components of the hosts 1 and 2 are same in both non-virtualized and vir-
tualized system design, the importance measures of same components in the
hosts 1 and 2 are identical. Thus the tables present the importance measures
of components in a host.

In the result of non-virtualized system design, it can be found that the im-
portance measures of CPU and Mem are higher than those of the other compo-
nents in terms of failure rates, namely, Iλ̃,i. The importance measure regarding
failure rates indicates that how much the system availability decreases as the
component failure rate increases. In Table 3.3, we find the repair rates of
CPU and Mem are not so high, and the failures of CPU and Mem cause long
down time. Hence their importance measures are higher than the others. The
similar tendency can be observed in the case of OS. That is, although the fail-
ure rate of OS is higher, the importance measure Iλ̃,OS of OS is the smallest
among those of others, because the repair rate of OS is high. Moreover, by
comparing between the importance measures with respect to failure and re-
pair rates, it can be seen that the importance measures with respect to failure
rate is higher than the importance measures with respect to repair rate. Since
the importance measures are defined by the first derivative of failure or repair
rate, we can conclude that the improvement of failure rate is more important to
enhance the system availability in the case of non-virtualized system design.

In the case of virtualized system design, both the importance measures with
respect to failure and repair rates are changed from those of non-virtualized
system design. Specifically, all the importance measures become smaller than
those of non-virtualized system design. This implies that the improvement of
failure and repair rates is not effective on the system availability, compared to
the non-virtualized system design. This is caused by the fact that the system
availability of virtualized system design is quite high. The system availability
of virtualized system design is sufficiently high. Thus this implies that it
spends much cost to require more higher system availability. On the other
hand, there is room to improve the failure and repair rates in SAN. In other
words, SAN is a bottleneck of availability, though its availability seems to
be high. Also, from the result, we find that the importance measures of VM

CONCLUSION 25

and VMM are not high. In fact, VM and VMM can be migrated when a
failure occurs. Therefore, compared to SAN, VM and VMM are not critical
components.

Table 3.5 Component importance measures in the non­virtualized system design.

Component Iλ̃,i Iµ̃,i

CPU 0.99999920 7.9999936e-7

Mem 0.99999167 8.3332639e-6

Net 0.50000000 4.1666667e-6

Pow 0.50000000 7.4626866e-7

Cool 0.50000008 1.6129037e-7

OS 0.32492667 7.3334143e-5

Table 3.6 Component importance measures in the virtualized system design.

Component Iλ̃,i Iµ̃,i

CPU 1.8126415e-4 1.4501132e-10

Mem 1.8126278e-4 1.5105232e-09

Net 9.0632147e-5 7.5526790e-10

Pow 9.0632147e-5 1.3527186e-10

Cool 9.0632162e-5 2.9236186e-11

VMM 5.8904249e-5 6.6471808e-09

VM 1.8711815e-5 9.2043069e-10

SAN 0.50000000 2.4999999e-08

3.4 Conclusion

In this chapter, we have revisited the FT and CTMC models for non-virtualized
and virtualized system design in [18], and have proposed the generalized
method of importance analysis of components from the viewpoint of avail-
ability. Concretely, our method is based on both the aggregation techniques of
CTMC-based availability models [35] and the importance measures of com-
ponents with respect to failure and repair rates [33]. The proposed method can
be applied to any types of virtualized system design without changes. In nu-
merical examples, based on model parameters in [18], we have exhibited the

26 COMPONENT IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM

importance analysis of components and detected the critical components in
both non-virtualized and virtualized system designs. Although the presented
component analysis is simple, it is quite helpful in the system design phase to
ensure the system availability.

CHAPTER 4

IMPORTANCE MEASURES FOR
VIRTUALIZED SYSTEM WITH LIVE
MIGRATION

This chapter is an extension work of Chapter 3, which presents component
importance analysis for virtualized system with live migration. In Chapter 3,
we have developed a generalized method to evaluate the importance of com-
ponents for hybrid models. However, the hybrid model had a limitation for
the model expression. For example, when two or more components have in-
teractions between them, the structure function cannot always be explicitly
expressed. In such cases, we cannot use the hybrid model. Instead of using
the hybrid model, we should use a CTMC describing whole the system be-
havior. In the component analysis of virtualized system, the behavior of live
migration is this case. In fact, Matos et al. [19] presented only a CTMC for
the live migration. Since the structure function cannot be obtained from the
CTMC, we cannot also apply the component importance analysis in Chapter 3
to the live migration model. In this chapter, we introduce the state-of-the-art
Markov-based component-wise sensitivity analysis and apply it to the CTMC-
based live migration model to reveal the component importance in the context
of live migration without using structure function.

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

27

28 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

4.1 Availability Importance Analysis for Hybrid Model

4.1.1 Fault tree model

Consider the FT model for the virtualized system shown as Fig. 3.2 in Chap-
ter 3. In general, the virtualized system is composed of three elements: phys-
ical server, VM, and SAN. For instance, a service such as Web or SQL is
provided by a VM running on a physical server. The system under consid-
eration has two physical hosts; H1 and H2, two VMs; VM1 and VM2, and
one SAN. Two VMs provide different services, and H1 and H2 have the same
virtualization platform. That is, if a physical host fails, the VM running on
the host can be migrated to another physical host. This is called the live mi-
gration, which is one of the important functions to ensure the high availability
in the virtualized platform.

4.1.2 Continuous­time Markov chain models

In this section, we revisit the CTMC models for components and describe
them in detail. Fig. 4.1 shows the 3-state CTMC availability models of CPU
and Mem components proposed in [18]. In the figure, the states UP, DN and
RP mean that the component is available, the component is failed, and the
component is under repair, respectively. Hence the states DN and RP are
classified into D set in the availability model. Moreover, λ and µ denote
failure and repair rates of the component. For example, if the host equips 2-
way CPUs, the failure rate is given by λ = 2λCPU by using the failure rate
of a single CPU because both processors are needed for the operation. Also,
the transition from DN to RP corresponds to the event that a repair person is
summoned and its mean time is given by 1/α using the rate of summoning
inherent in the component.

As seen in Fig. 4.2, Kim et al. [18] applied the 5-state availability model
to describe the dynamic behaviors of components Pow and Net which are
described as 2-unit redundant (parallel) subsystems. In the figure, white and
gray nodes represent up and down states respectively. The main difference
from the 3-state availability model is to add the state U1 representing that
only one unit is failed, since the component failure is caused when both of
two units are failed. Moreover, the model adds a repair state RP2 where two
units are failed. For the components, Cool and SAN, the CTMC models are
extended from the 5-state availability model. Concretely, in the CTMC for

AVAILABILITY IMPORTANCE ANALYSIS FOR HYBRID MODEL 29

Cool as shown in Fig. 4.3, they added a transition from RP to RP2, namely, the
Cool availability model allows the event occurrence that one unit fails while
another unit is under repair. In the CTMC for SAN as shown in Fig. 4.4, a
state CP is put to the transition between the states UP and RP, which means
the mirrored data is copied from a working disk unit to the repaired disk unit
under RAID1 design. The transition rate from CP to UP is given by χSAN .
Additionally, since the working disk unit may fail in the CP state, they added
a transition from CP to RP2 with the failure rate of a disk unit λSAN .

UP DN RP
αSP2λCPU

μCPU

UP DN RP
αSP4λMem

μMem

Figure 4.1 State transition diagram of the CPU and memory availability models.

UP DN RP2
2λ αSP

U1

RP

αSP

µ1

µ2

λ

Figure 4.2 State transition diagram of the power (or network card) availability model.

The CTMC model for VMM is given by Fig. 4.5. As seen in this figure,
since the software failure cannot be detected immediately, the state DT is
added, which means the failure is detected. In [18], after the failure detection,
the system takes an action to reboot VMM with mean time 1/β. It is empir-
ically known that most of transient failures in software can be recovered by
the system reboot [31]. In this CTMC model, the reboot will be unsuccessful
with probability (1 − b). Hence the state DW indicates that the failure is not
recovered by a failed system reboot, and a repair person is summoned.

In [18], based on the CTMC model in Fig. 4.5, they built the CTMC model
for VM which takes account of the dynamic behaviors of the live migration.

30 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

UP DN RP1

2λCool

αSP
U1

RP

αSPµ1Cool

µ2Cool

λCool

RP2
λCool

µ2Cool

Figure 4.3 State transition diagram of the cooling system availability model.

UP DN RP2

2λSAN

αSP
U1

RP

αSP

µ1SAN

µ2SAN

λSAN

CP

χSAN

λSAN

Figure 4.4 State transition diagram of the SAN availability model.

UP DT DW
λ (1 − b)β

DN

RP

µ

δ

αSP

bβ

Figure 4.5 State transition diagram of the VMM/VM availability model.

COMPONENT IMPORTANCE FOR LIVE MIGRATION 31

Thus the CTMC model for VM was quite complicated so that the system fail-
ure in the virtualized system cannot be represented by the FT. Since this paper
describes the correlation between the failures of VM and host by the AND
gate in the FT representation, the CTMC model simply becomes the same
model as VMM, i.e., the model of Fig. 4.5 can also represent the availability
for VM.

4.1.3 Importance measures

We also consider the importance measures as those as in Chapter 3. That is,

Iλ̃,i =
1

AS

∣∣∣∣∣∣∂AS

∂λ̃i

∣∣∣∣∣∣ , Iµ̃,i =
1

AS

∣∣∣∣∣∂AS

∂µ̃i

∣∣∣∣∣ , (4.1)

where λ̃i and µ̃i are the effective failure and repair rates of component i.

4.2 Component Importance for Live Migration

In the previous section, we have introduced the component importance for
the structure function given by the FT model. The model considered the live
migration as a static structure. However, since the live migration is essentially
described by a dynamic behavior, the previous method cannot analyze how
effect of components on the dynamic behaviors of live migration. Thus in this
section, we consider the component importance on live migration from the
viewpoint of dynamic behaviors, that is, we apply the component importance
analysis for a CTMC representing the dynamic behaviors of live migration
presented in [19].

4.2.1 Model description

Matos et al. [19] presented the CTMC for live migration in the virtualized
system. This availability model does not consider the detailed behavior of
hardware components (e.g., CPU, Mem, Pow) and the VMM, but only the
components of VMs (VM1 and VM2), hosts (H1 and H2) and applications
(App1 and App2).

Table 4.1 shows notations for the state of system which are based on the
current conditions of components. Concretely, each state is indicated by six
characters. The first character means the state of H1. The notations ‘U’,
’F’ and ‘D’ correspond to the conditions where H1 is up, H1 fails and the
failure is detected, respectively. The second character represents the state of

32 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

Table 4.1 The states of system.

State Description

UUXUUX VM1 is running on H1, VM2 is running on H2.

FXXUUX H1 is failed, VM1 is failed due to the failure of H1.

VM2 is running on H2.

DXXUUR H1 failure is detected, VM1 is restarting on H2.

DXXUUU H1 is down, VM1 and VM2 are running on H2.

UXXUUU H1 is up, VM1 and VM2 are running on H2.

UXXFXX H1 is up, H2 is failed.

VM1 and VM2 are failed due to the failure of H2.

URXDXX H2 failure is detected.

VM1 is restarting on H1.

DXXFXX H1 is down, H2 is failed.

DXXDXX H1 is down, H2 failure is detected.

DXXURX H1 is down, H2 is up, VM2 is restarting on H2.

UXXURX H1 is up, H2 is up, VM2 is restarting on H2.

UXXUUR H1 is up, VM2 is running on H2.

VM1 is restarting on H2.

UFaXUUX App1 is failed, both VMs and Hosts are up.

UDaXUUX App1 failure is detected.

UPaXUUX App1 failure is not covered.

Additional recovery step is started.

UFvXUUX H1 is up, VM1 is failed, VM2 is running on H2.

UDvXUUX VM1 failure is detected.

UPvXUUX VM1 failure is not covered.

Manual repair is started.

COMPONENT IMPORTANCE FOR LIVE MIGRATION 33

Table 4.2 Model parameters.

Params Description

1/λh Mean time to host failure

1/λv Mean time to VM failure

1/λa Mean time to Application failure

1/δh Mean time for host failure detection

1/δv Mean time for VM failure detection

1/δa Mean time for App failure detection

1/mv Mean time to migrate a VM

1/rv Mean time to restart a VM

1/µh Mean time to repair a host

1/µv Mean time to repair a VM

1/µ1a Mean time to App first repair

(covered case)

1/µ2a Mean time to App second repair

(not covered case)

cv coverage factor for VM repair

ca coverage factor for application repair

34 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

VM1 and its application (App1). When both are up, the character is given
by ‘U’. If VM1 fails, it is ‘Fv’. When the failure is detected, the character
becomes ‘Dv’. Also, when a manual repair is applied, the character is ‘Pv’.
If App1 fails, it is ‘Fa’. When the failure of App1 is detected, the state of
system is represented by ‘Da’. If App1 requires an additional repair in the
case where the application restart cannot solve the problem, the character is
given by ‘Pa’. Also, when VM1 and App1 are restarting, the state is given by
‘R’. If VM1 and App1 are not running on the H1, then the character is ‘X’.
The third character represents whether or not VM2 and App2 are running on
H1. If VM2 and App2 run on H1, the character is given by ‘U’. If they are
restarting on H1, the character is ‘R’. Otherwise, if they are not running on
H1, the character is ‘X’. The fourth through sixth characters represent the
state of H2 in the same manner as the first through third characters. Fig. 4.6
shows the state transition diagram for live migration in the virtualized system
which is described by the CTMC model in [19]. Also, Table 4.2 presents the
parameters of the CTMC model. For example, 1/λh is MTTF of host H1 and
H2, and then λh is a failure rate which is a transition rate in the CTMC.

4.2.2 Importance analysis

Dissimilar to the case of FT model, we do not know the structure function
in the CTMC. We consider the component importance analysis by only using
the parameter sensitivity analysis.

Let Q be the infinitesimal generator of CTMC described in Fig. 4.6. Then
the steady-state probability vector πss is given by the linear equations;

πssQ = 0, πss1 = 1, (4.2)

where 1 is a column vector whose elements are 1. Also we define the follow-
ing vectors:

ξhi,i∈{1,2}: a 0-1 vector whose elements are 1 in the state where H1 or H2
is up.

ξvi,i∈{1,2}: a 0-1 vector whose elements are 1 in the state where VM1 or
VM2 is up.

ξai,i∈{1,2}: a 0-1 vector whose elements are 1 in the state where App1 or
App2 is up.

COMPONENT IMPORTANCE FOR LIVE MIGRATION 35

UUXUUX
UFaXUUX UUXUFaX

UDaXUUX UUXUDaX

UPaXUUX UUXUPaX

UPvXUUX UUXUPvXUFvXUUX UUXUFvX

UDvXUUX
UUXUDvX

FXXUUX UUXFXX

DXXUUR UURDXX

DXXUUU UUUDXX

DXXFXXDXXDXXDXXURX FXXDXX DXXDXX URXDXX

UXXURX UXXUUR URXUXXUURUXX

UXXUUU UUUUXX

UXXFXX FXXUXX

URXDXX DXXURX

λα λα

δα δαcαµ1α µ1αcα

(1-c)α µ1α (1-c)α µ1α
µ2α µ2α

λv λv

δv
δv

cvrv cvrv

(1-c)v rv
(1-c)v rv

λh λh

δh δh

rv rv

λh λh

δh δhµh

µh µh

mv mv

λh λh

δh δh

rv rv

rv

µh µh

µv µv

µh

rv

rv rv

rv rv

Figure 4.6 CTMC availability model for live migration.

ξsys: a 0-1 vector whose elements are 1 in the state where the system is
up.

Then the component availability is given by a inner product of πss and ξ·; for
example, the component availability of H1 becomes

Ah1 = πssξh1. (4.3)

On the other hand, the system availability can be obtained by

AS = πssξsys. (4.4)

Similar to the case of FT model, we define the importance measures of
component i as follows.

Iλ̃,i =
1

AS

∣∣∣∣∣∣∂AS

∂λ̃i

∣∣∣∣∣∣ , Iµ̃,i =
1

AS

∣∣∣∣∣∂AS

∂µ̃i

∣∣∣∣∣ , (4.5)

36 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

where λ̃i and µ̃i are the effective failure and repair rates of component i. They
can be computed by the aggregation technique introduced in Section 4.1.3.
Also, we have

Iλ̃,i = 1
AS

∣∣∣∣∂AS

∂λ̃i

∣∣∣∣ = 1
AS

∣∣∣∣∂AS

∂Ai

∣∣∣∣ ∣∣∣∣∂Ai

∂λ̃i

∣∣∣∣ = 1
AS

∣∣∣∣∂AS

∂Ai

∣∣∣∣ µ̃i

(λ̃i+µ̃i)2
. (4.6)

Similarly, the importance measure with respect to repair rate is given by

Iµ̃,i = 1
AS

∣∣∣∣∂AS

∂Ai

∣∣∣∣ λ̃i

(λ̃i+µ̃i)2
. (4.7)

Thus the problem is to estimate the sensitivity ∂AS/∂Ai without the structure
function.

To estimate the sensitivities for all the component availabilities, we consider
the sensitivities of system and component availabilities with respect to model
parameters. Suppose that θ1, . . . , θm are model parameters of the underlying
CTMC. Here we define a matrix J and a column vector z whose elements are
the sensitivities for all the component availabilities and the system availability
with respect to the model parameters, i.e.,

J =



∂A1

∂θ1
∂A2

∂θ1
· · · ∂An

∂θ1

∂A1

∂θ2
∂A2

∂θ2
· · · ∂An

∂θ2

...
∂A1

∂θm
∂A2

∂θm
· · · ∂An

∂θm


, z =



∂AS

∂θ1

∂AS

∂θ2

...
∂AS

∂θm


, (4.8)

where A1, . . . , An represent component availabilities for all the components.
These sensitivities can be obtained by solving the following linear equations:

s(θj) =
∂

∂θj
πss, s(θj)Q = −πss

∂

∂θj
Q, s(θj)1 = 0. (4.9)

By using the vector s(θj), the sensitivities are given by

∂Ai

∂θj
= s(θj)ξi,

∂AS

∂θj
= s(θj)ξsys (4.10)

According to [36], the estimates of ∂AS/∂Ai can be obtained by (see Ap-
pendix B) (

∂AS

∂A1

∂AS

∂A2
· · · ∂AS

∂An

)T
= (JTJ)−1JTz, (4.11)

NUMERICAL ILLUSTRATION 37

where T is the transpose operator. By substituting the estimates of the sensi-
tivities into Eqs. (4.6) and (4.7), we have the component importance measures
for live migration.

4.3 Numerical Illustration

4.3.1 Hybrid models

In this section, we illustrate the quantitative component importance analysis
of hybrid model for virtualized system. Table 4.3 presents the parameters of
the CTMC models for all components. For example, 1/λCPU is mean time
for CPU failure, and 1/µMem is mean time to repair one memory (i.e., MTTR
of one memory). Also we give other model parameters in Table 4.4.

Table 4.3 MTTF/MTTR of components.

Params Description Value (hours)

1/λCPU MTTF of CPU 2,500,000

1/λMem MTTF of Mem 480,000

1/λPow MTTF of Pow 670,000

1/λNet MTTF of Net 120,000

1/λCool MTTF of Cool 3,100,000

1/λSAN MTTF of SAN 20,000,000

1/λVMM MTTF of VMM 2880

1/λVM MTTF of VM 2880

1/µCPU MTTR of CPU 0.5

1/µMem MTTR of Mem 0.5

1/µ1Pow MTTR of one power module 0.5

1/µ2Pow MTTR of two power modules 1

1/µ1Net MTTR of one network device 0.5

1/µ2Net MTTR of two network devices 1

1/µ1Cool MTTR of one cooler module 0.5

1/µ2Cool MTTR of two cooler modules 1

1/µ1SAN MTTR of one disk unit 0.5

1/µ2SAN MTTR of two disk units 1

1/µVMM MTTR of VMM 1

1/µVM MTTR of VM 0.5

38 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

Table 4.4 Other model parameters.

Params Description Value

1/αSP mean time to repair person summoned 30 minutes

1/χSAN mean time to copy data 20 minutes

1/δVMM mean time for VMM failure detection 30 seconds

1/δVM mean time for VM failure detection 30 seconds

1/βVMM mean time to reboot VMM 10 minutes

1/βVM mean time to reboot VM 5 minutes

bVMM coverage factor for VMM reboot 0.9

bVM coverage factor for VM reboot 0.95

Table 4.5 Effective failure and repair rates and component availabilities.

Component λ̃i µ̃i Ai

CPU 8.0000000e-7 1.0000000 0.99999920

Mem 8.3333333e-6 1.0000000 0.99999167

Net 1.6666528e-5 1.9999833 0.99999167

Pow 2.9850702e-6 1.9999970 0.99999851

Cool 6.4516108e-7 1.9999990 0.99999968

VMM 3.4722222e-4 3.0769231 0.99988717

VM 3.4722222e-4 7.0588235 0.99995081

SAN 9.9999992e-8 1.9999999 0.99999995

Using the aggregation technique, we first transform the availability mod-
els for all components into the equivalent 2-state, 2-transition models, then
compute the effective failure and repair rates for components based on the
model parameters. We also compute the component availabilities, and these
results are shown in Table 4.5. From this table, we can see the availabilities
of hardware units are relatively high by the comparison to the availabilities of
software components, especially for SAN, the availability is quite high.

We then compute the system availabilities based on the structure functions
and the component availabilities. The availabilities of a hardware unit and a
host, and the system availability are presented in Table 4.6. From this table,
the sufficiently high availability of the virtualized system implies that the live
migration is considerably effective to enhance the system availability.

NUMERICAL ILLUSTRATION 39

Table 4.6 Availabilities of hardware units, host and system.

System Availability

HW1 and HW2 0.99998072

H1 and H2 0.99986789

System availability 0.99999992

Next we derive the importance measures of components in the virtualized
system by using Eq. (4.1), and the effective failure and repair rates shown in
Table 4.5. The importance measures of components in terms of the system
availability are shown in Table 4.7. Note that this table presents the impor-
tance measures of components only in a host, because the components of the
host 1 and 2 are assumed to be the same in the system design, and the impor-
tance measures of same components in the host 1 and 2 are identical.

Table 4.7 shows that the importance measure with respect to failure rate is
higher than that with respect to repair rate for any component. The impor-
tance measure regarding failure rate, Iλ̃,i, indicates the relative improvement
in system availability resulting from a decrease to the component failure rate.
Similarly, the importance measure regarding repair rate, Iµ̃,i, indicates the
relative improvement in system availability resulting from an increase to the
component repair rate. Thus, to improve the system availability, the more ef-
ficient way is to decrease the failure rates of components. Also, as seen in this
table, it is easy to find that the importance measures of SAN are much higher
than those of the other components, especially the importance measure with
respect to failure rate, Iλ̃,SAN . The highest importance of SAN indicates that
the improvement of failure rate of SAN is the most efficient way to improve
the system availability. In other words, SAN is a bottleneck of availability,
though its availability seems to be high. Besides, from Table 4.5, we find the
repair rates of CPU and Mem are not so high. This implies that the failures of
CPU and Mem cause long down time. Hence their importance measures with
respect to failure rate are relatively higher than the others except SAN. More-
over, we find that the importance measures of VM and VMM are not high
in Table 4.7. This is caused by the fact that VM and VMM can be migrated
when a failure of a host occurs. Therefore, VM and VMM are not critical
components, compared to SAN.

40 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

Table 4.7 Component importance measures in the virtualized system.

Component Iλ̃,i Iµ̃,i

CPU 1.8126415e-4 1.4501132e-10

Mem 1.8126278e-4 1.5105232e-09

Net 9.0632147e-5 7.5526790e-10

Pow 9.0632147e-5 1.3527186e-10

Cool 9.0632162e-5 2.9236186e-11

VMM 5.8904249e-5 6.6471808e-09

VM 1.8711815e-5 9.2043069e-10

SAN 0.5000000000 2.4999999e-08

4.3.2 Dynamic model for live migration

This section illustrates the quantitative component importance analysis of the
CTMC for live migration in the virtualized system. Based on these parameters
shown in Table 4.8, we first compute the availabilities for all components and
system which are shown in Table 4.9. From this table, we find that the avail-
ability of VM is the highest among those of the other components because of
the live migration.

Next we compute the effective failure and repair rates for all components
based on the aggregation of CTMC model, and the results are shown in Ta-
ble 4.10. From this table, it is found that the repair rate of VM are much
higher than that in Table 4.5. As mentioned before, the FT model considered
the live migration as a static structure which cannot represent the dynamic be-
haviors of system. However, since the live migration is essentially described
by a dynamic behavior, the dynamic behaviors have been taken into account
in the CTMC model for live migration. The higher repair rate of VM con-
firms the effectiveness of live migration in the virtualized system. Table 4.11
presents the importance measures for components in the virtualized system.
As observed in Table 4.10 and 4.11, we find that, although the failure rate
of VM is higher than that of host, the importance measures of VM are much
lower than those of host. This is because the repair rate of VM is very high.
Also, comparing Table 4.9 with Table 4.10, we can see that the availability
of host is the lowest among those of others, because the repair rate of host
is also the lowest. This indicates that, the component host is important, and

NUMERICAL ILLUSTRATION 41

Table 4.8 Model parameters.

Params Description Value

1/λh Mean time for host failure 2654 hr

1/λv Mean time for VM failure 2893 hr

1/λa Mean time to Application failure 175 hr

1/δh Mean time for host failure detection 30 sec

1/δv Mean time for VM failure detection 30 sec

1/δa Mean time for App failure detection 30 sec

1/mv Mean time to migrate a VM 330 sec

1/rv Mean time to restart a VM 50 sec

1/µh Mean time to repair a host 100 min

1/µv Mean time to repair a VM 30 min

1/µ1a Mean time to App first repair 1 min

(covered case)

1/µ2a Mean time to App second repair 20 min

(not covered case)

cv coverage factor for VM repair 0.95

ca coverage factor for application repair 0.8

Table 4.9 Availabilities of host, VM, application components and system.

System Availability

H1 and H2 0.9993644

VM1 and VM2 0.9999746

App1 and App2 0.9994520

System availability 0.9999992

any change in its associated parameters will have a large effect on the system
availability. And this conclusion also can be confirmed from Table 4.11.

Table 4.11 shows that the importance measures of host is the most high-
est. Moreover, by comparing between the importance measure with respect
to failure and repair rates for each component, it is found that the importance
measure with respect to failure rate is higher than that with respect to repair
rate. Therefore, it indicates that the improvement of failure rate of host is
more efficient to enhance the system availability.

42 IMPORTANCE MEASURES FOR VIRTUALIZED SYSTEM WITH LIVE MIGRATION

Table 4.10 Effective failure and repair rates.

Component λ̃i µ̃i

H1 and H2 3.763673e-4 0.5917368

VM1 and VM2 7.212219e-4 28.351750

App1 and App2 6.425198e-3 11.718790

Table 4.11 Component importance measures in the dynamic model for live migration.

Component Iλ̃,i Iµ̃,i

H1 and H2 2.118715e-03 1.347584e-06

VM1 and VM2 1.675414e-12 4.261977e-17

App1 and App2 9.438502e-13 5.174957e-16

4.4 Conclusion

This chapter has dealt with the quantitative component importance analysis
of virtualized system with live migration in terms of availability. In Chap-
ter 3, we have developed a method to evaluate the importance of components
for hybrid model which consists of FTs and CTMCs. However, the hybrid
model had a limitation for the model expression in the situation where two or
more components have interactions between them. Instead of using the hybrid
model, we considered a CTMC model for live migration presented in [19].
This chapter introduced the state-of-the-art Markov-based component-wise
sensitivity analysis and applied it to the CTMC-based live migration model
to reveal the component importance in the context of live migration without
using structure function. In numerical examples, we illustrated the quantita-
tive component importance analysis of live migration model for virtualized
system, and indicated that component SAN is the most critical component in
virtualized system. That means, the improvement in the failure rate and repair
rates of SAN is more efficient to improve the system availability.

CHAPTER 5

COMPONENT IMPORTANCE MEASURES
FOR REAL­TME COMPUTING SYSTEMS

Component importance analysis is to measure the effect on system reliability
of component reliabilities, and it can be used to the design of system from
the reliability point of view. In this chapter, we consider the component im-
portance analysis of real-time computing systems in the presence of common-
cause failures (CCFs) (i.e., failure dependencies) from the viewpoints of avail-
ability and reliability. Although the CCFs are known as a risk factor of degra-
dation of system reliability, it is difficult to evaluate the component impor-
tance measures in the presence of CCFs analytically. This chapter introduces
CTMC models for real-time computing system, and applies the Markov-based
component-wise sensitivity analysis based on CTMCs which can evaluate the
component importance measures without any structure function of system.
Also, in numerical experiments, we evaluate the effect of CCFs by the com-
parison of system performance measures and component importance in the
case of system with CCFs with those in the case that there is no CCF in the
system.

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

43

44 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

Figure 5.1 The architecture of real­time computing system.

5.1 Real­time Computing System

Consider the real-time computing system in [11] as shown in Fig. 5.1 . In
the system, there are three processing modules (PMs), two shared memo-
ries (SMs), and two digital switches (DSs). The processing modules are im-
plemented by a pair-and-a-spare fault-tolerant scheme [37], each consisting
of processor(s), cache and local memories, power source, interface drives,
and control circuitry. On the other hand, the parallel redundancy schemes
are adopted to operate all the other critical system components (e.g., shared
memories, input/output (I/O) bus, and digital switches). The communica-
tion among these processing modules is performed through shared memories
where each processing module can read and store values, and the data trans-
fer is achieved by using a parallel interconnecion bus. Additionally, the I/O
bus interconnects the processing modules to external interface devices, and
the Analog-to-Digital (A/D) and Digital-to-Analog (D/A) converters are con-
nected directly to a dual I/O bus to provide redundant data/control path to the
processing modules. Digital switches broadcast all data received from the I/O
bus to all processing modules simultaneously.

REAL­TIME COMPUTING SYSTEM 45

1/3 1/2 1/2

Standby Container

BEGIN END

PM Subsystem SM Subsystem DS Subsystem

Figure 5.2 RBD of the real­time computing system.

Moreover, there is a control module in the system, which is responsible
for selecting which of the online processor modules effectively controls the
physical process. And the digital switches enforce the directives of the control
module, that is, all processor modules may receive data from the physical
process at any time, but only one can send control signals to the process.

We assume that the pair-and-a-spare configuration is implemented by a
hot standby sparing scheme, where two processor modules operate online in
synchrony, and a spare module runs simultaneously with the pair modules but
will not process data or requests. However, data is mirrored in real time, thus
both processor modules have identical data. Upon failure of the pair modules,
the spare one immediately takes over, replacing the pair modules.

Fig. 5.2 shows the RBD of the real-time computing system. As seen in
this figure, the system is divided into three subsystems: PM, SM, and DS
subsystems. The system is considered operational as long as there is one
operational critical component in each subsystem: processor module, shared
memory, and digital switch. Also, we assume that there is a single infallible
repair station for each component.

5.1.1 Subsystem Models

In [11], the behaviors of all subsystems are described by CTMCs which are
commonly used to represent the variations caused by failures and repairs of
components in the system structure. Particularly, since redundancy often in-
creases common-mode errors, we consider the CCFs in PM subsystem.

5.1.1.1 Common­Cause Failure (CCF) As mentioned before, the CCF is de-
fined as any condition or event that affects several components inducing their

46 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

simultaneous failure or malfunction. Generally, there are three types of common-
cause failures, that is (i) human errors, which can result in damage to equip-
ment and property or disruption of scheduled operations of the system; (ii)
system environment, including the characteristics of the environment where
the system operates and the natural factors such as earthquake, fire, and flood;
and (iii) intercomponent, which means that the failure of a component may
affect adversely other components as a result of a chain reaction or domino
effect. This chapter focuses on the intercomponent failure dependency model
by using parametric approach. Concretely, we consider the beta factor intro-
duced by Fleming [38]. The beta factor β gives the probability that a failure
in a specific component causes all components to fail, and 1 − β gives the
probability that the failure will involve just the component. Suppose that λi is
the rate of independent failure killing single component, and λd is the rate of
dependent failures killing all components. Then the overall failure rate λ of a
particular component can be written as the sum of independent and dependent
failure contributions:

λ = λi + λd. (5.1)

Thus the β is defined as the fraction of the total failure rate attributable to
dependent failures:

β =
λd

λ
. (5.2)

Obviously, dssimilar components may have different failure rates and differ-
ent beta factors.

5.1.1.2 PM Subsystem The CTMC of PM subsystem is depicted in Fig. 5.3.
In this figure, white and gray nodes represent operational and failure states re-
spectively. Table 5.1 shows the state notations which based on the current
conditions of components. Concretely, each state is indicated by 3 characters.
The first character means the state of component 1. When component 1 is
operational, the character is given by ‘1’, if failed, it is ‘0’. The second and
third characters represent the states of component 2 and component 3 respec-
tively in the same manner as the first character. The model parameters are
represented in Table 5.2. For example, 1/λp1 is MTTF of PM1, and then λp1

is a failure rate which is a transition rate in the CTMC. For three dissimilar
components PM, we assume that they have the same beta factor β which gives

REAL­TIME COMPUTING SYSTEM 47

µp2�p1

µp1

�p2

�p3

�p2

�p3

�p1

�p3

�p1

�p2
	p1

p2

�p3

µp2

µp3

µp3
µp1

µp1
µp3

µp2

µp1

µp2

µp3

Figure 5.3 CTMC of PM subsystem.

the probability that a failure in one component causes all components to fail.
As seen in Fig. 5.3, the simultaneous failures of all PMs and two PMs are
highlighted by bold and red transitions.

Table 5.1 The states of PM subsystem.

State Description

111 All PMs are operational.

011 PM1 is failed, PM2 and PM3 are operational.

101 PM2 is failed, PM1 and PM3 are operational.

110 PM3 is failed, PM1 and PM2 are operational.

001 PM1 and PM2 are failed, PM3 is operational.

010 PM1 and PM3 are failed, PM2 is operational.

100 PM2 and PM3 are failed, PM1 is operational.

000 PM subsystem is failed.

5.1.1.3 SM and DS Subsystems Assume that there is no CCF in SM and DS
subsystems. Then we have the 4-state CTMC models represented in Fig. 5.4
for SM and DS subsystems. In this figure, the state notations are given in the
same manner as the PM subsystem, and shown in Table 5.3. The parameters
of the 4-state CTMC models are also given in Table 5.2.

48 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

Table 5.2 Model parameters.

Params Description

1/λp1 Mean time to processing module 1 failure

1/λp2 Mean time to processing module 2 failure

1/λp3 Mean time to processing module 3 failure

1/λm1 Mean time to shared memory 1 failure

1/λm2 Mean time to shared memory 2 failure

1/λd1 Mean time to digital switch 1 failure

1/λd2 Mean time to digital switch 2 failure

1/µp Mean time to repair a processing module

1/µm Mean time to repair a shared memory

1/µd Mean time to repair a digital switch

β Beta factor

11

01

10

00

Figure 5.4 CTMC of SM/DS subsystem.

Table 5.3 The states of SM/DS subsystem.

State Description

11 All SMs/DSs are operational.

01 SM1/DS1 is failed, SM2/DS2 is operational.

10 SM2/DS2 is failed, SM1/DS1 is operational.

00 SM/DS subsystem is failed.

5.2 Performance Evaluation

5.2.1 Structure Function

The structure function is a binary function that indicates the state of the sys-
tem (success or failure) given the state of each component [39]. Given the
structure function of a system, we can compute its reliability. In general, the
structure function can be derived from FT and RBD.

PERFORMANCE EVALUATION 49

Let x = (xPM1, xPM2, xPM3, xSM1, xSM2, xDS1, xDS2) be the state vector
of real-time computing system, and the k-th element of x is a binary variable
which represents the condition of component k, k ∈ {PM1, PM2, PM3,
SM1, SM2, DS1, DS2};

xk =

1, if component k is operational,
0, if component k is failed.

(5.3)

The structure function represents the relationship between component failures
and system failure. In general, the structure function is defined by

ϕ(x) =

1, if system is operational,
0, if system is failed.

(5.4)

For example, consider a system consisting of K components. If the system is
a series system, namely, the system failure occurs when any component fails,
the structure function is given by

ϕ(x) = x1x2 · · · xK . (5.5)

If the system failure occurs only when all the components fail, so-called par-
allel system, then the structure function is given below,

ϕ(x) = 1− (1− x1)(1− x2) · · · (1− xK). (5.6)

According to the RBD in Fig. 5.2, we obtain the structure function of real-
time computing system as follow,

ϕ(x) =
(
1− (1− xPM1)(1− xPM2)(1− xPM3)

)
·
(
1− (1− xSM1)(1− xSM2)

)
·
(
1− (1− xDS1)(1− xDS2)

)
. (5.7)

Let Px(t) be a certain probability mass function of the system being in state
x at time t. Then the reliability function of system can be computed by

R(t) = E[ϕ(x)] =
∑
x∈Ω

ϕ(x)Px(t), (5.8)

where Ω is the state space of the system as shown in Table 5.4. Note that in
this table, Rk(t) indicates the reliability of component k at time t.

50 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

Table 5.4 Parallel­series reliability function.
x ϕ(x) Px(t)

1111111 1 RPM1(t)RPM2(t)RPM3(t)RSM1(t)RSM2(t)RDS1(t)RDS2(t)

0111111 1 [1−RPM1(t)]RPM2(t)RPM3(t)RSM1(t)RSM2(t)RDS1(t)RDS2(t)

0011111 1 [1−RPM1(t)][1−RPM2(t)]RPM3(t)RSM1(t)RSM2(t)RDS1(t)RDS2(t)

0001111 0 [1−RPM1(t)][1−RPM2(t)][1−RPM3(t)]RSM1(t)RSM2(t)RDS1(t)RDS2(t)

1110111 1 RPM1(t)RPM2(t)RPM3(t)[1−RSM1(t)]RSM2(t)RDS1(t)RDS2(t)

1111011 1 RPM1(t)RPM2(t)RPM3(t)RSM1(t)[1−RSM2(t)]RDS1(t)RDS2(t)

1110011 0 RPM1(t)RPM2(t)RPM3(t)[1−RSM1(t)][1−RSM2(t)]RDS1(t)RDS2(t)

...
...

...

0010101 1 [1−RPM1(t)][1−RPM2(t)]RPM3(t)[1−RSM1(t)]RSM2(t)[1−RDS1(t)]RDS2(t)

...
...

...

0000000 0 [1−RPM1(t)][1−RPM2(t)][1−RPM3(t)][1−RSM1(t)][1−RSM2(t)][1−RDS1(t)][1−RDS2(t)]

On the other hand, the availability function of system is given by

A = E[ϕ(x)] =
∑
x∈Ω

ϕ(x)Px, (5.9)

where Px = limt−>∞Px(t) when considering the repair for the component
failures.

Using Eq. (5.8), we have the system reliability function RS(t);

RS(t) =
(
1−RPM1(t)RPM2(t)RPM3(t)

)
·
(
1−RSM1(t)RSM2(t)

)(
1−RDS1(t)RDS2(t)

)
, (5.10)

where, in general Rk(t) = 1 − Rk(t). In practice, the above equation is
often called the structure function which represents the effect of component
reliability on the system reliability.

Then we define the steady-state availability of component k as Ak. Simi-
larly, we obtain the structure function for the system availability AS:

AS = (1− APM1APM2APM3)(1− ASM1ASM2)

·(1− ADS1ADS2), (5.11)

where Ak = 1− Ak.

5.2.2 CTMC Analysis

Let QPM , QSM , QDS be the infinitesimal generators of CTMC for PM , SM,
and DS subsystems, respectively. Then we have the composite CTMC gener-

PERFORMANCE EVALUATION 51

ator for the real-time computing system by using the tensor sum of matrices
as [40]

QS = QPM ⊕QSM ⊕QDS. (5.12)

Generally, in the availability modeling of CTMC, the states of system can
be classified into two sets; U , the set of up (operational) states in which the
system is available; and D, the set of down (failed) states in which the system
is unavailable. We define Uk andDk as the sets of states where the component
k is up or down, respectively. Also, US andDS are the sets of states where the
system is up or down. Then the reward vectors for component k and system
can be defined by

[rk]i =

1, i ∈ Uk,
0, i ∈ Dk,

(5.13)

and

[rS]i =

1, i ∈ US,
0, i ∈ DS,

(5.14)

respectively, where [·]i means the i-th element of a vector. Using the reward
vectors, the steady-state availabilities for component k and system are

AS = πssrS, Ak = πssrk, (5.15)

where πss is the steady-state vector which can be computed by the following
linear equations:

πssQS = 0, πss1 = 1, (5.16)

where 1 is a column vector whose elements are 1.
On the other hand, if the underlying CTMC does not have transitions from
Dk to Uk and from DS to US , the reliability functions of component k and
system are given by

RS(t) = π(t)rS, Rk(t) = π(t)rk, (5.17)

where π(t) is the state probability vector which is given by

π(t) = π(0) exp(QSt), (5.18)

in which π(0) is a given initial probability vector.

52 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

5.3 Component Importance Analysis

5.3.1 Birnbaum Importance Measure

Birnbaum [41] defined the component importance from the reliability point
of view. In [41], the component importance is defined by the first derivative
of system reliability function with respect to the component reliability:

IBk(t) =
∂RS(t)

∂Rk(t)
. (5.19)

Let δk(x) be the first derivative of structure function with respect to the state
condition of component k:

δk(x) =
∂ϕ(x)

∂xk
. (5.20)

Integrating Eqs. (5.8) and (5.20) into Eq. (5.19), then Birnbaum importance
becomes

IBk(t) = E[δk(x)] =
∑
x∈Ω

δk(x)Px(t). (5.21)

Thus, we can compute the Birnbaum availability and reliability component
importance measures (AIB and RIB) which are written by

AIBk =
∂AS

∂Ak
, RIBk(t) =

∂RS(t)

∂Rk(t)
. (5.22)

In general, we compute the RIB by using the first derivative of system re-
liability with respect to the component reliability after obtaining the system
reliability structure function as in Eq. (5.10). The AIB can be computed by
the same manner.

5.3.1.1 Case I: system without CCFs Suppose that there is no CCF in the
real-time computing system, that is, all components are statistically indepen-
dent, and we delete the bold and red transitions in the CTMC of PM sub-
system. Thus the sensitivities of system performance index with respect to
component performance indices can be obtained from the structure function
analytically. For example, for the component PM1 in the system without
CCFs, then using Eq. (5.11), the Birnbaum availability importance of compo-

COMPONENT IMPORTANCE ANALYSIS 53

nent PM1 becomes

AIBPM1 =
∂AS

∂APM1

= (1− APM2 − APM3 + APM2APM3)

·(1− ASM1ASM2)(1− ADS1ADS2), (5.23)

where the availability of each component can be computed by

Ak = µk/(µk + λk). (5.24)

Similarly, the Birnbaum reliability component importance measure RIBk(t)
can also be obtained from structure function. For example, the Birnbaum
reliability importance of component PM1 is given by

RIBPM1(t) =
∂RS(t)

∂RPM1(t)

= (1−RPM2(t)−RPM3(t) +RPM2(t)RPM3(t))

·(1−RSM1(t)RSM2(t))(1−RDS1(t)RDS2(t)),(5.25)

in which, the reliability of each component is computed from

Rk(t) = exp(−λkt). (5.26)

5.3.1.2 Case II: system with CCFs However, in practice, the system failure
often occurs due to the CCFs. For example, the real-time computing system
where the intercomponent dependent failures occur among the components
in PM subsystem as seen in Fig. 5.3. In such case, we cannot obtain the
above sensitivities from structure function analytically. Then we consider
the component-wise sensitivity analysis presented in Chapter 3, which can
be used to compute ∂AS/∂Ak and ∂RS(t)/∂Rk directly based on Markov
chains. Concretely, for the real-time computing system with components
PM1, PM2, PM3, SM1, SM2, DS1, and DS2, and model parameter vector

54 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

θ = (θ1, . . . , θm), we compute

zA =



∂AS

∂θ1

...
∂AS

∂θm

 , JA =



∂APM1

∂θ1
· · · ∂ADS2

∂θ1

...
∂APM1

∂θm
· · · ∂ADS2

∂θm

 , (5.27)

zR(t) =



∂RS(t)
∂θ1

...
∂RS(t)
∂θm

 , JR(t) =


∂RPM1(t)

∂θ1
· · · ∂RDS2(t)

∂θ1

...
. . .

...
∂RPM1(t)

∂θm
· · · ∂RDS2(t)

∂θm

 . (5.28)

In the case of steady-state analysis, these sensitivities can be obtained by solv-
ing the following linear equations:

sss(θj)QS = −πss
∂

∂θj
QS, sss(θj)1 = 0, (5.29)

where sss(θj) = ∂
∂θj

πss. By using the vector sss(θj), the sensitivities are
given by

∂Ak

∂θj
= sss(θj)rk,

∂AS

∂θj
= sss(θj)rS (5.30)

In the transient case, we have
d

dt
π(t) = π(t)QS, (5.31)

s(t, θj) = ∂
∂θj

π(t). (5.32)

Then the following ordinary differential equation (ODE) is obtained,
d

dt
s(t, θj) = s(t, θj)QS + π(t)

∂

∂θj
QS. (5.33)

By integrating Eq. (5.31) into the above ODE, we have
d

dt
π̃(t, θj) = π̃(t, θj)Q̃(θj), (5.34)

where

π̃(t, θj) = (π(t), s(t, θj)) , Q̃(θj) =

QS
∂
∂θj

QS

QS

 . (5.35)

COMPONENT IMPORTANCE ANALYSIS 55

Since the diagonal elements of Q̃(θj) are same as those of QS, we can apply
the uniformization to the following matrix exponential form:

π̃(t, θj) = π̃(0, θj) exp
(
Q̃(θj)t

)
. (5.36)

Then the estimates of AIB = (AIBPM1, . . . , AIBDS2)
T and RIB(t) =

(RIBPM1(t), . . . , RIBDS2(t))
T are given by

AIB = (JT
AJA)

−1JT
AzA, (5.37)

RIB(t) =
(
JR(t)

TJR(t)
)−1

JR(t)
TzR(t). (5.38)

5.3.2 Criticality Importance Measure

The criticality measure was proposed by Henley et al. [42] which means the
probability that, when the system fails, the failure of component k becomes a
cause of the system failure. They defined the criticality importance of com-
ponent k as a fractional sensitivity given by

ICFk(t) =
Fk(t)

FS(t)

∂FS(t)

∂Fk(t)
, (5.39)

where Fk(t) and FS(t) are the unreliability functions of component k and
system at time t respectively, and given by

Fk(t) = 1−Rk(t),

FS(t) = 1−RS(t). (5.40)

Similarly, according to [43], the Eq. (5.39) can be represented by the reliabil-
ity functions of system and component, ie.,

ICRk(t) =
Rk(t)

RS(t)

∂RS(t)

∂Rk(t)
. (5.41)

Thus, the criticality importance measures of availability and reliability (AICF
and RICF) from the unreliability point of view can be derived by

AICFk =
Fk

FS

∂FS

∂Fk
=

Fk

FS

∂AS

∂Ak
, (5.42)

RICFk(t) =
Fk(t)

FS(t)

∂FS(t)

∂Fk(t)
=

Fk(t)

FS(t)

∂RS(t)

∂Rk(t)
, (5.43)

where Fk = 1− Ak, and FS = 1− AS.

56 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

Also, according to Eq. (5.41), we obtain the criticality importance measures
of availability and reliability (AICR and RICR) from the viewpoint of relia-
bility given by

AICRk =
Ak

AS

∂AS

∂Ak
, (5.44)

RICRk(t) =
Rk(t)
RS(t)

∂RS(t)
∂Rk(t)

. (5.45)

Essentially, these measures can be computed from AIBk and RIBk(t), i.e.,

AICFk =
Fk

FS
AIBk, RICFk(t) =

Fk(t)

FS(t)
RIBk(t), (5.46)

and

AICRk =
Ak

AS
AIBk, RICRk(t) =

Rk(t)

RS(t)
RIBk(t). (5.47)

5.3.3 Upgrading function

The upgrading function is the parametric sensitivity function with respect to
a failure rate [22]. According to the definition, we have the availability and
reliability upgrading functions (AIU and RIU) for component k:

AIUk,λ = λk

AS

∂AS

∂λk
, (5.48)

AIUk,µ = µk

AS

∂AS

∂µk
, (5.49)

RIUk,λ(t) =
λk

RS(t)
∂RS(t)
∂λk

, (5.50)

where λk and µk are failure and repair rates of component k. Note that AIU
can also be defined for the repair rate. The AIU is essentially same as the
availability importance measures discussed by Cassady et al. [33].

In [33] and [32], they assumed that components are independent and that
the component has only two states, up and down on the underlying CTMC.
On the other hand, in Chapter 3, we have introduced the method to derive
the availability upgrading functions under which components are described
by general CTMCs. The idea of our approach is to apply the aggregation
technique [35]. However, even in Chapter 3, components are assumed to be
independent. Then by applying the sensitivity estimation (see Appendix B)
and aggregation, we derive AIUs and RIU for MRMs.

First we consider AIUs. The aggregation is a technique to reduce MRM-
based availability models to the 2-state model which has the same availability

COMPONENT IMPORTANCE ANALYSIS 57

as the original model. When we focus on the state of one component, the
states can be classified to Uk and Dk. The aggregation technique converts the
original model to the 2-state model with transitions from up to down states
and up to down state. By applying this technique, we obtain failure and repair
rates in steady state that ensure the steady-state probabilities of the up (down)
states are the same as those in the original model. In this paper, these failure
and repair rates are called equivalent failure and repair rates [35].

From the argument of CTMC, equivalent failure and repair rates of compo-
nent k can be computed as follows.

λk =
∑

(i,j)∈Uk×Dk
[πss]i[Q]i,j∑

i∈Uk
[πss]i

, (5.51)

µk =
∑

(j,i)∈Dk×Uk
[πss]j [Q]j,i∑

j∈Dk
[πss]j

, (5.52)

where [·]i,j is an (i, j)-entry of Q. By taking account of Ak = µk/(λk + µk),
AIUk,λ can be rewritten by

AIUk,λ =
λk

AS

∂AS

∂λk

=
λk

AS

K∑
l=1

∂AS

∂Al

∂Al

∂λk

=
λk

AS

∂AS

∂Ak

∂Ak

∂λk

=
λk

AS

∂AS

∂Ak

− µk

(λk + µk)2


= −Ak

AS

∂AS

∂Ak

λk

λk + µk

= −(1− Ak)AICRk. (5.53)

58 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

Similarly, AIUk,µ becomes

AIUk,µ =
µk

AS

∂AS

∂µk

=
µk

AS

∂AS

∂Ak

∂Ak

∂µk

=
µk

AS

∂AS

∂Ak

λk

(λk + µk)2

=
Ak

AS

∂AS

∂Ak

λk

λk + µk

= (1− Ak)AICRk. (5.54)

Next we consider RIU. In this case, the equivalent failure rate cannot be
computed. Instead of the equivalent failure rate, we use the time-dependent
failure rate, i.e., λk(t) = −(dRk(t)/dt)/(1− Rk(t)). Generally, the relation-
ship between reliability function and failure rate is given by

Rk(t) = e−
∫ t

0
λk(s)ds. (5.55)

Based on this failure rate, RIU can be obtained by

RIUk,λ =
λk(t)

RS(t)

∂RS(t)

∂λk(t)

=
λk(t)

RS(t)

K∑
l=1

∂RS(t)

∂Rl(t)

∂Rl(t)

∂λk(t)

=
λk(t)

RS(t)

∂RS(t)

∂Rk(t)

∂Rk(t)

∂λk(t)

=
λk(t)

RS(t)

∂RS(t)

∂Rk(t)
(−tRk(t))

= −tλk(t)
Rk(t)

RS(t)

∂RS(t)

∂Rk(t)

= −tλk(t)RICRk(t). (5.56)

In the Markov chain, the failure rate of component k is

λk(t) = −
π(t)Qrk

π(t)rk
. (5.57)

NUMERICAL ILLUSTRATION 59

5.4 Numerical Illustration

In this section, we illustrate the quantitative component analysis of real-time
computing system. Concretely, we compute the importance measures using
structure function in the case where there is no CCF in the system. On other
hand, for the system with CCFs case, the CTMC-based component-wise sen-
sitivity analysis is applied. Based on the results, we evaluate the effect of
CCFs on system performance measures and component importance. Table 5.5
shows the model parameters.

Table 5.5 Model parameters.

Params Description Value

1/λp1 Mean time to processing module 1 failure 1250 hr

1/λp2 Mean time to processing module 2 failure 1000 hr

1/λp3 Mean time to processing module 3 failure 800 hr

1/λm1 Mean time to shared memory 1 failure 200 hr

1/λm2 Mean time to shared memory 2 failure 155 hr

1/λd1 Mean time to digital switch 1 failure 500 hr

1/λd2 Mean time to digital switch 2 failure 425 hr

1/µp Mean time to repair a processing module 30 min

1/µm Mean time to repair a shared memory 30 min

1/µd Mean time to repair a digital switch 30 min

β Beta factor 0.02

5.4.1 System without CCFs

Before considering the real-time computing system with CCFs, we first evalu-
ate the component importance measures of the system without CCFs by using
structure function. That is, we consider the CTMC of PM subsystem without
bold and red transitions. According to the RBD analysis, we obtain the same
structure functions for the system availability and reliability as in Eqs. (5.11)
and (5.10), and the availabilities and reliabilities of subsystems and system
at time t = 60 hours are given in Table 5.6. From the table, we find that
both the availability and reliability of PM subsystem are the highest, and ap-
proximately equals 1 because of the pair-and-a-spare fault-tolerant scheme.

60 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

Table 5.6 Availabilities and reliabilities without CCFs.
Subsystem Availability Reliability (t = 60 hrs)

PM subsystem 0.99999 0.99980

SM subsystem 0.99987 0.91680

DS subsystem 0.99998 0.98511

System 0.99986 0.90298

Table 5.7 Availabilities and importance measures without CCFs.

Comp. Availability AIB AICR AICF AIUλ AIUµ

PM1 0.99840 4.976855e-06 4.969625e-06 5.490746e-05 -7.938698e-09 7.938698e-09

PM2 0.99800 3.983074e-06 3.975700e-06 5.490746e-05 -7.935528e-09 7.935528e-09

PM3 0.99750 3.188050e-06 3.180560e-06 5.490746e-05 -7.931571e-09 7.931571e-09

SM1 0.99010 1.273862e-02 1.261432e-02 8.710670e-01 -1.248942e-04 1.248942e-04

SM2 0.98726 9.900805e-03 9.776096e-03 8.710670e-01 -1.245363e-04 1.245363e-04

DS1 0.99602 4.683250e-03 4.665267e-03 1.288618e-01 -1.858672e-05 1.858672e-05

DS2 0.99532 3.983561e-03 3.965477e-03 1.288618e-01 -1.857366e-05 1.857366e-05

Table 5.8 Reliabilities and importance measures at t = 60 hours without CCFs.

Comp. Reliability RIB RICR RICF RIUλ

PM1 0.95313 3.800397e-03 4.011475e-03 1.835833e-03 -1.925508e-04

PM2 0.94176 3.058449e-03 3.189810e-03 1.835832e-03 -1.913886e-04

PM3 0.92774 2.464971e-03 2.532567e-03 1.835832e-03 -1.899425e-04

SM1 0.74082 3.161334e-01 2.593602e-01 8.445377e-01 -7.780807e-02

SM2 0.67903 2.552726e-01 1.919603e-01 8.445376e-01 -7.430723e-02

DS1 0.88692 1.206869e-01 1.185403e-01 1.406658e-01 -1.422484e-02

DS2 0.86834 1.036519e-01 9.967508e-02 1.406658e-01 -1.407178e-02

Also, Tables 5.7 and 5.8 show the availabilities and availability importance
measures (AIB, AICR, AICF, and AIU), and reliabilities and reliability im-
portance measures (RIB, RICR, RICF, and RIU) at time t = 60 hours of each
component, respectively. As seen in these tables, the availabilities and relia-
bilities of PMs are relatively higher, compared to the other components, since
the failure rates of PMs are relatively lower. From Table 5.7, we find that in

NUMERICAL ILLUSTRATION 61

each subsystem, the component with lower failure rate has higher importance
measures AIB, AICR, and AIU. The same result appears in the reliability im-
portance measures RIB, RICR, and RIU shown in Table 5.8. This is caused by
the fact that the failure of a high-reliability component always decreases the
system reliability largely in the redundancy system in a parallel configuration.
Note that ICFk(t) is another criticality measure defined by the unreliability
function that quantifies the probability of component k being responsible for
system failure before t hours. For example, in Table 5.8, RICFSM1(60) says
that there is a 84.45% probability of component SM1 being responsible for
system failure before 60 hours. Moreover, RICFPM1(60) indicates that the
probability of component PM1 being responsible for system failure before 60
hours is only 00.18%. This implies that component SM1 is more important
than component PM1, since a component that is frequently critical should be
considered important. Moreover, we find that the ICFs for components in the
same subsystem are almost the same.

Tables 5.9 and 5.10 illustrate the importance ranking of system components
according to distinct measures. From these tables, we find that the importance
rankings in steady-state and transition state (t = 60 hours) are the same, and
there is consistency in the ranking of components for three measures (IB,
ICR, and IU). The components SM1 and SM2 are more important than the
other components, because their importance measures are relatively higher
(see Tables 5.7 and 5.8). This indicates that the improvement of failure rates
of SMs is more efficient to enhance the system availability and reliability,
since the component most susceptible to failures is the natural candidate for
improvement. In addition, these tables imply that the component PM is not
critical, compared to the other components, benefiting from the hot standby
sparing configuration and long MTTF (see Table 5.5).

5.4.2 System with CCFs

Next we focus on the case where there are CCFs in PM subsystem (see
Fig. 5.3). The component-wise sensitivity analysis is applied to compute the
importance measures based on CTMCs, and the results are shown in from Ta-
ble 5.11 to 5.13. Table 5.11 presents the availabilities and reliabilities at time
t = 60 hours. Compared to the availabilities and reliabilities in Table 5.6,
the system availability and reliability become smaller, because the availabil-

62 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

Table 5.9 Importance ranking of system components with respect to availability without
CCFs.

Comp. AIB AICR AIU

PM1 5 5 5

PM2 6 6 6

PM3 7 7 7

SM1 1 1 1

SM2 2 2 2

DS1 3 3 3

DS2 4 4 4

Table 5.10 Importance ranking of system components with respect to reliability without
CCFs.

Comp. RIB RICR RIU

PM1 5 5 5

PM2 6 6 6

PM3 7 7 7

SM1 1 1 1

SM2 2 2 2

DS1 3 3 3

DS2 4 4 4

ity and reliability of PM subsystem decrease due to the dependent failures
among PMs.

Table 5.11 Availabilities and reliabilities with CCFs.
Subsystem Availability Reliability (t = 60 hrs)

PM subsystem 0.99996 0.99627

SM subsystem 0.99987 0.91681

DS subsystem 0.99998 0.98511

System 0.99981 0.89979

Moreover, Tables 5.12 and 5.13 present the availabilities and availability
importance measures (AIB, AICR, AICF, and AIU), and reliabilities and re-
liability importance measures (RIB, RICR, RICF, and RIU) at time t = 60

NUMERICAL ILLUSTRATION 63

Table 5.12 Availabilities and importance measures with CCFs.

Comp. Availability AIB AICR AICF AIUλ AIUµ

PM1 0.99831 6.429934e-03 6.420277e-03 5.850368e-02 -1.083064e-05 1.083064e-05

PM2 0.99792 6.428668e-03 6.416502e-03 7.203403e-02 -1.333027e-05 1.333027e-05

PM3 0.99743 6.427512e-03 6.412213e-03 8.893078e-02 -1.644906e-05 1.644906e-05

SM1 0.99010 1.273810e-02 1.261432e-02 6.802356e-01 -1.248942e-04 1.248942e-04

SM2 0.98726 9.900403e-03 9.776096e-03 6.802356e-01 -1.245363e-04 1.245363e-04

DS1 0.99602 4.683060e-03 4.665267e-03 1.006310e-01 -1.858672e-05 1.858672e-05

DS2 0.99531 3.983399e-03 3.965477e-03 1.006310e-01 -1.857366e-05 1.857366e-05

Table 5.13 Reliabilities and importance measures at t = 60 hours with CCFs.

Comp. Reliability RIB RICR RICF RIUλ

PM1 0.95064 2.090991e-02 2.209173e-02 1.029804e-02 -1.116186e-03

PM2 0.93952 2.019041e-02 2.108192e-02 1.218537e-02 -1.313604e-03

PM3 0.92579 1.961298e-02 2.017976e-02 1.452370e-02 -1.554796e-03

SM1 0.74082 3.150168e-01 2.593602e-01 8.147694e-01 -7.780807e-02

SM2 0.67903 2.543709e-01 1.919603e-01 8.147694e-01 -7.430723e-02

DS1 0.88692 1.202606e-01 1.185403e-01 1.357076e-01 -1.422484e-02

DS2 0.86833 1.032858e-01 9.967508e-02 1.357076e-01 -1.407178e-02

hours of each component in the case where there are some CCFs in the sys-
tem. From these tables, it is found that the importance of each component PM
increases sharply due to the CCFs, especially the importance measures regard-
ing the system availability. In fact, the dependent failures also decrease the
availability and reliability of each component PM, since the time-dependent
failure rate of each component PM increases caused by the dependent failures
(see Table 5.14). On the other hand, the availabilities and reliabilities of the
other components (e.g., SMs and DSs) remain the same because any failure in
the PM subsystem cannot cause the simultaneous failure of components in the
other subsystems. However, these tables also indicate that the importance of
components SMs and DSs is slightly affected by the dependent failures among
PMs, and decreases. For example, from Table 5.13, RICFSM1(60) says that
the probability of component SM1 being responsible for system failure before

64 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

60 hours is 81.48%, which is smaller than that in the case of system without
CCFs (see Table 5.8).

Table 5.14 Time­dependent failure rates (t = 60 hours).

Comp. Failure rate
Time-dependent failure rate

Case I: system without CCFs Case II: system with CCFs

PM1 0.000800000 0.000800000 0.000842084

PM2 0.001000000 0.001000000 0.001038492

PM3 0.001250000 0.001250000 0.001284122

SM1 0.005000000 0.005000000 0.005000000

SM2 0.006451613 0.006451613 0.006451613

DS1 0.002000000 0.002000000 0.002000000

DS2 0.002352941 0.002352941 0.002352941

Table 5.15 Importance ranking of system components with respect to availability with
CCFs.

Comp. AIB AICR AIU

PM1 3 3 7

PM2 4 4 6

PM3 5 5 5

SM1 1 1 1

SM2 2 2 2

DS1 6 6 3

DS2 7 7 4

We then investigate the importance ranking of components in the case where
simultaneous failures occur in the PM subsystem. Tables 5.15 and 5.16 show
the importance rankings of system components in steady-state and transition
state (t = 60 hours), respectively. From Table 5.15, we find that the ranking
of components SMs still remains the same, however the importance (AIB and
AICR) of each component PM increases and becomes larger than that of com-
ponents DSs in the case of system with CCFs, compared to Table 5.9. When
considering AIU, we find that in the PM subsystem, the component with lower
failure rate has lower importance, that is, component PM3 is the most impor-
tant one, followed by component PM2, and finally component PM1. This

CONCLUSION 65

Table 5.16 Importance ranking of system components with respect to reliability with CCFs.

Comp. RIB RICR RIU

PM1 5 5 7

PM2 6 6 6

PM3 7 7 5

SM1 1 1 1

SM2 2 2 2

DS1 3 3 3

DS2 4 4 4

can be explained by the fact that there is the smallest reduction in the failure
probability of the system when the failure rate of component PM1 is reduced
fractionally, in other words, components PM2 and PM3 are more critical to
system failure by the comparison to component PM1, since there are two rea-
sons; (i) the failure of each component PM probably causes all components
to fail (i.e., system failure); and (ii) the failure rate of PM1 is the smallest in
three PMs, thus the probability that the system failure is caused by component
PM1 is also the smallest. From the viewpoint of reliability, we can conclude
the same mark (see RIU in Table 5.16). In addition, Table 5.16 indicates that
the dependent failures do not affect the importance ranking of components in
cases of RIB and RICR from the reliability point of view.

5.5 Conclusion

In this chapter, we have quantitatively evaluated the component importance
measures of a real-time computing system [11] where CCFs occur. Con-
cretely, we evaluated three kinds of importance measures in the case of sys-
tem without CCFs by the common method using hybrid model (RBD and
CTMCs) and structure function of system, and in the case of system with
CCFs using Markov-based component-wise sensitivity analysis, respectively.
When considering the system without CCFs, the above two methods can be
applied to compute the important measures. However, the common method
does not hold in the case where components are dependent. In such case, the
Markov-based component-wise sensitivity analysis is adopted. In numerical
experiments, we illustrated the quantitative importance measures of all com-

66 COMPONENT IMPORTANCE MEASURES FOR REAL­TME COMPUTING SYSTEMS

ponents, and ranked the components according to distinct importance mea-
sures. Also, we considered the effect of failure dependencies. Our numerical
experiments show that components SMs are the most critical components in
the real-time computing system, thus the improvement of failure rates of SMs
is more efficient to enhance the system performance.

CHAPTER 6

SURVIVABILITY ANALYSIS OF VM­BASED
INTRUSION TOLERANT SYSTEMS

This chapter discusses the environmental sensitivity that measures the effect of
environmental changes on system dependability. Survivability is considered,
which is the capability of a system to provide its services in a timely man-
ner even after intrusion and compromise occur. In fact, survivability analysis
helps to find the best design of system. In this chapter, we focus on the quan-
titative analysis of survivability of VM-based intrusion tolerant system in the
presence of Byzantine failures due to malicious attacks. Intrusion tolerant
system has the ability of a system to continuously provide correct services
even if the system is intruded. This chapter presents a generalized scheme of
the intrusion tolerant system with virtualization, and build a stochastic model
by Markov chain. Based on the model, we compute two system performance
indices: the success probability for one request from clients under malicious
attacks, and the conditional success probability provided that the system has
been intruded. The latter is a survivability metric to evaluate the system abil-
ity to mask the intrusion.

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

67

68 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

6.1 VM­Based Intrusion Tolerant System

Consider the intrusion tolerant system in the virtualized environment [21] as
shown in Fig. 6.1. In the system, we suppose that there are n (≥ 2) VMs
and component agreement service (AS) running on a hypervisor. The VMs
provide identical services to clients. The communication among VMs is per-
formed through a shared memory in the physical host where any VMs can
read and store values. The AS provides a voting process and puts a signa-
ture into an agreed response, is kept isolated, and assumed to be reliable in
the system. When the system receives a request from a client, the request is
copied and sent to all the VMs. Each of the VMs processes the request in-
dependently and sends the response to AS. After receiving all the responses
from all VMs, AS votes to make a final response based on all the responses,
and puts a signature into the final response, then sends it to the client.

Figure 6.1 Architecture of VM­based intrusion tolerant system.

If all the VMs are normal (not intruded), all the responses are identical.
Thus it is possible to make the agreement of the final response in AS. How-
ever, VMs are likely to be maliciously intruded when processing requests. In
general, intruded VMs can be regarded as VMs with Byzantine failures. In
other words, we cannot forecast the behavior of intruded VMs. Even in such
case, AS can make the agreement when the number of intruded VMs is less
than n/2. Let f be the tolerance level, namely, the maximum number of in-
truded VMs that are tolerated to the extent that the system behaves normal.
From the argument of Byzantine fault tolerance, the inequalities n ≥ 2f + 1
and f ≤ (n− 1)/2, hold.

Lau et al. [21] proposed a scheme of intrusion tolerance with two rounds
of processing. Their idea is to achieve the tolerance level f at the second

VM­BASED INTRUSION TOLERANT SYSTEM 69

round of processing. On the other hand, to save resource usage in the system,
the number of VMs is reduced at the first round. Concretely, for a given
tolerance level f , they assumed that f + 1 VMs were initially activated, and
f + 1 VMs process a request at the first round. In their scheme, AS can
make the agreement after finishing all the processes in VMs at the first round
if and only if the following two conditions hold; (i) all the VMs have sent
responses to AS and (ii) all of the responses are coincident. It should be
noted that the tolerance level at the first round in Lau’s scheme is 0, i.e., no
intrusion is tolerated at the first round. If the agreement is not made, AS
resends the request to VMs including already-intruded VMs, at the second
round after activating f suspended VMs. At the second round, AS makes the
agreement by a majority voting, i.e., AS makes the agreement when at least
f + 1 responses from VMs are coincident. At that time, the tolerance level f
is achieved in the system.

Lau’s scheme can be extended from two points. One is to allow to assign
arbitrary integers to the numbers of initially and additionally activated VMs.
In Lau’s scheme, since the tolerance level at the first round is f = 0, the
minimum number of initially activated VMs is n = 2. In this case, the number
of additionally activated VMs after the first round is r = 2f − 1. From
the viewpoint of resource usage, this configuration seems to be better than
the original one. Another point is to allow to use 3 or more rounds for the
agreement. In Lau’s scheme, the tolerance level is fixed as f . However, if the
agreement was not made at the second round, it would be better to make the
agreement as the tolerance level increases at the third round.

According to these two points, this paper considers a generalized scheme
including Lau’s scheme. Concretely, AS try to make the agreement within
m rounds using n initially activated VMs and r additionally activated VMs
at each round. In this case, the maximum tolerance level of system is given
by n + r(m − 1) = 2f + 1 and f =

(
n + r(m − 1) − 1

)
/2. In addition,

we allow that AS can make the agreement at the first round if the number of
intruded VMs is less than n/2, i.e., the tolerance level at the first round is
f = n/2 which is more severe than f =

(
n + r(m − 1) − 1

)
/2. That is, in

the generalized scheme, the intrusion tolerance is varied with respect to the
round and it becomes relaxed as the number of rounds increases.

We illustrate the behavior of the system achieved by the generalized scheme
with n = 3 and r = 2 for one request in Fig. 6.2. Suppose that the number

70 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

of initially activated VMs is 3, denoted by VM1, VM2, and VM3. All the
VMs are normal when the system receives a request form a client. The re-
quest is copied and sent to all the VMs, then each of the VMs processes the
request independently and sends the response to AS. Then AS votes to make
the agreement based on all the responses. As seen in the figure, the system
is failed to process the request (i.e., the agreement is failed) at the first round
because VM1 and VM3 are intruded by malicious attacks (the number of nor-
mal VM (VM2) < the number of intruded VMs (VM1 and VM3)). Thus two
VMs are additionally activated and the request is sent to all the VMs. All
the VMs continually process the request, and AS achieved the agreement at
the second round (the number of normal VMs (VM2, VM4, and VM5) > the
number of intruded VMs (VM1 and VM3)), that is, the request processing is
succeeded, and a final response will be sent to the client. If AS cannot get
the majority of normal VMs, new VMs will be activated, then the request will
be processed at the third round. Note that, after sending the response to the
client, all the VMs are initialized and the number of VMs becomes n = 3
again. Also, the security failure occurs when AS cannot make the agreement
even at the m-th round.

t

VM1

VM2

VM3

VM4

VM5

AS
processing

(failed)

processing

(successful)

request arrive request processing

accomplished

intruded (intruded)

intruded (intruded)

Figure 6.2 An illustrative behavior of the system for one request.

6.2 Survivability Analysis

6.2.1 Formulation of Success Probability

In this chapter, we focus on the success probability for one request under
the environment where VMs may be intruded due to malicious attacks by

SURVIVABILITY ANALYSIS 71

exploiting security holes of system. The success probability is the probability
that one request is processed within the maximum number of rounds under
malicious attacks. For notational convenience, nk is the number of VMs at
the k-th round. Also fk is the tolerance level at the k-th round. They are given
by

nk = n1 + r(k − 1), k = 1, . . . ,m, (6.1)

and

fk = ⌊
nk − 1

2
⌋, k = 1, . . . ,m, (6.2)

respectively.
Suppose that the intrusion occurs according to a Poisson process with arrival

rate γ (> 0) for each VM, namely, the failure rate of each VM is γ. Also let
S be the processing time for a request in one VM which is an independent
and identically distributed (i.i.d.) nonnegative random variable having the
cumulative distribution function (c.d.f.) G(t). Then the probability that a VM
is intruded during it processes one request is given by

pI = 1−
∫ ∞
0

e−γtdG(t) = 1−G∗(γ), (6.3)

where G∗(γ) is the Laplace-Stieltjes transform [44] of G(t). For example,
when G(t) is a gamma distribution with mean a/b and standard deviation√
a/b, the probability density function (p.d.f.) of the gamma distribution can

be defined as follows,

g(t; a, b) =
bata−1e−bt

Γ(a)
, (6.4)

where

Γ(a) =
∫ ∞
0

e−tta−1dt. (6.5)

By applying the Laplace-Stieltjes transform, we obtain

G∗(γ) =
∫ ∞
0

e−γtg(t; a, b)dt =

(
b

b+ γ

)a
. (6.6)

Thus in this case, we can compute the probability that a VM is intruded when
processing one request by

pI = 1−
(

b

b+ γ

)a
. (6.7)

72 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

Let Nk be the number of normal VMs at the end of the k-th round. Since
the number of normal VMs is the number of VMs that are not intruded, the
probability mass function (p.m.f.) of N1 is given by

P (N1 = x) =

n1

x

(1− pI)
xpn1−x

I , for x = 0, . . . , n1. (6.8)

In the second and later round, the number of normal VMs depends on the
number of normal VMs at the end of the previous round. Since r VMs are
additionally activated when the number of normal VMs is less than nk−1 −
fk−1, the conditional p.m.f. is given by

P (Nk = x|Nk−1 = y) =
(
r+y
x

)
(1− pI)

xpr+y−x
I , (6.9)

for x = 0, . . . , r + y and y = 0, . . . , nk−1 − fk−1 − 1.

According to the above probabilities, the request processing process can be
described by a two dimensional discrete-time Markov chain (DTMC) {Nk; k ≥
1} with state transition probability as in Eq. (6.9), which records the number
of normal VMs at the end of one round in the case of disagreement, as well as
the current round on which the request processing has been taken place. Note
that the state space of the DTMC is defined by {0, . . . , nk − fk − 1} because
the agreement is succeeded when the number of normal VMs becomes greater
than or equal to nk − fk and that the state space depends on the number of
rounds. Thus, each state of Markov chain is labeled as (x, k), indicating that
there are x normal VMs at the end of the k-th round. For example, when
considering that m = 2, the DTMC is depicted in Fig. 6.3.

Figure 6.3 Markov model of request processing in the case of m = 2.

SURVIVABILITY ANALYSIS 73

Let πk be the probability vector at the end of the k-th round. Then we have

πk = πk−1P k−1, (6.10)

where

P k−1 =



p0,0 p0,1 · · · p0,nk−fk−1

p1,0 p1,1 · · · p1,nk−fk−1
...

pnk−1−fk−1−1,0 pnk−1−fk−1−1,1 · · · pnk−1−fk−1−1,nk−fk−1


(6.11)

and the (i, j)-element of transition matrix P k−1 is given by

pi,j = P (Nk = j|Nk−1 = i)

=

r + i

j

(1− pI)
jpr+i−j

I , (6.12)

for i = 0, . . . , nk−1 − fk−1 − 1

and j = 0, . . . , nk − fk − 1.

Also the i-th element of the initial vector π1 is given by

[π1]i =

n1

i

(1− pI)
ipn1−i

I , (6.13)

i = 0, . . . , n1 − f1 − 1.

Since the state space changes at each round, it should be noted that P k is not
a square matrix. It is assumed that the maximum number of rounds is m, be-
cause of the lack of the resources on the physical machine to maintain many
virtual machines. Therefore, in the worst-case scenario, the total number of
VMs needed to increase to n1 + r(m − 1) at the last round. The tolerance
level of the system is ⌊n1+r(m−1)−1

2 ⌋, defined as fm. That is, the system is able
to tolerate maximally fm Byzantine failures under malicious attacks. More-
over, the success probability for one request under malicious attack condition
becomes

ps = 1− πm1 = 1− π1P 1P 2 · · ·Pm−11, (6.14)

where 1 is the column vector whose elements are all 1.

74 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

Table 6.1 Success probabilities with respect to n1 and m in the case of r = 1.

m = 1 m = 2 m = 3 m = 4

n1 = 2 0.9994446372921 0.9999996144867 0.9999996144867 0.9999999994008

n1 = 3 0.9999997686578 0.9999997686578 0.9999999996575 0.9999999996575

n1 = 4 0.9999995374012 0.9999999995291 0.9999999995291 0.9999999999989

n1 = 5 0.9999999997859 0.9999999997859 0.9999999999996 0.9999999999996

Table 6.2 Success probabilities with respect to n1 and m in the case of r = 2.

m = 1 m = 2 m = 3 m = 4

n1 = 2 0.9994446372921 0.9999994603585 0.9999999992297 0.9999999999985

n1 = 3 0.9999997686578 0.9999999997859 0.9999999999997 1.0000000000000

n1 = 4 0.9999995374012 0.9999999994008 0.9999999999989 1.0000000000000

n1 = 5 0.9999999997859 0.9999999999997 1.0000000000000 1.0000000000000

6.2.2 Survivability Metric

As mentioned before, the survivability is the capability of a system to provide
its services in a timely manner even after intrusion and compromise occur.
It has been quantified by using multidimensional Markov chains to consider
simultaneous failures [45].

In this paper, we define the survivability metric as the conditional success
probability for one request provided that the agreement is failed at the first
round. It can be obtained as follows.

p̃s = 1− π̃1P 1P 2 · · ·Pm−11, (6.15)

where the i-th element of the initial vector π̃1 is given by

[π̃1]i =

(
n1

i

)
(1− pI)

ipn1−i
I∑n1−f1−1

j=0

(
n1

j

)
(1− pI)jp

n1−j
I

, (6.16)

i = 0, . . . , n1 − f1 − 1.

6.3 Numerical Illustration

In this section, we evaluate the success probabilities for one request and dis-
cuss the survivability of VM-based intrusion tolerant system. Suppose that

NUMERICAL ILLUSTRATION 75

the failure (intrusion) rate of one VM is given by 10 times per hour, i.e.,
γ = 1/360000[1/ms]. In addition, the distribution for the processing time for
a request in one VM is assumed to be the gamma distribution with mean 100
and standard deviation 50

√
2. The p.d.f. of the gamma distribution is defined

as

g(t; a, b) =
bata−1e−bt

Γ(a)
, (6.17)

where a = 2, and b = 1/50. Therefore, the probability that a VM is intruded
when it processes one request can be computed by using Eq. (6.7).

Suppose that the number of initially activated VMs, n1, varies from 2 to 5. If
the agreement is failed due to some intruded VMs, AS tries to do it at the next
round, and r VMs are additionally activated to continually process the request,
in this chapter, we consider two situations of the number of VMs which is
additionally activated at the next round, that is, r = 1 and r = 2. Besides, we
consider the cases where the maximum number of rounds is m = 2, 3, 4.

6.3.1 Success Probability

This section illustrates the success probabilities for four different cases. Ta-
bles 6.1 and 6.2 show the success probabilities for the respective number of
initially activated VMs and m rounds when r = 1 and r = 2, respectively.
These tables indicate that the success probabilities become higher as the maxi-
mum number of rounds increases. However, as seen in Table 6.1, when r = 1,
i.e., the number of additionally activated VMs is 1, there is the case where
the success probability cannot be improved even if the number of rounds in-
creases by one. For example, in the case of r = 1 and n1 = 2, the success
probability of m = 2 is the same as the probability of m = 3. Similarly, in the
case of r = 1 and n1 = 3, the success probabilities of m = 1 and m = 2 are
identically 0.9999997686578. This is caused by the fact that there is the case
where the intrusion tolerance level does not increase even if r increases by
one in Eq. (6.2). On the other hand, by comparing Table 6.2 with Table 6.1,
we find that the success probability monotonically increases when r = 2.

Next we investigate the success probabilities with respect to the number of
initially activated VMs n1. From Tables 6.1 and 6.2, we find that there are
the cases where the success probability decreases even though n1 increases.
Remarkably, in the case of r = 2, the success probabilities with n1 = 4 are
less than those with n1 = 3 for m = 1, 2, 3. This result is not intuitive.

76 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

Table 6.3 Success probabilities under Lau’s and generalized schemes.

Scheme Success probability
Success probability

at the first round

Lau’s scheme 0.9999999999991 0.9988895830120

Generalized scheme 0.9999999999997 0.9999997686578

The reasons are twofold; (i) the intrusion tolerance level with n1 = 3 is the
same as the one with n1 = 4 in the case of r = 2; (ii) the risk of intrusion
is higher as the number of VMs is larger. That is, in the case of r = 2,
although the intrusion tolerance levels with n1 = 3 and n1 = 4 are the same,
the intrusion risk of n1 = 4 is higher than that of n1 = 3. As a result, the
success probability is degraded in the case of n1 = 4. In fact, by looking
at the success probabilities in the even numbers of initially activated VMs,
n1 = 2, 4, we find that they monotonically increase because the tolerance
level surely increases. The same result appears in the odd numbers of initially
activated VMs. As shown before, in the case of r = 1, since there are the cases
where the tolerance level does not increase as the number of rounds increases,
such degradation of success probabilities with respect to n1 appears only in
the cases of m = 1 and m = 3.

Finally we compare the success probabilities under Lau’s scheme and the
generalized scheme. In this experiment, the intrusion tolerance levels in both
schemes are set as f = 3. Then under Lau’s scheme, the numbers of initially
and additionally activated VMs are n = 4 and r = 3, respectively. On the
other hand, to achieve the same tolerance level at the maximum number of
rounds m = 3, we set n1 = 3 and r = 2 under the generalized scheme. Ta-
ble 6.3 shows the success probabilities for one request under Lau’s and gener-
alized schemes. The last column in the table indicates the success probability
at the first round. From the table, it can be seen that the success probabilities
under Lau’s and generalized schemes are almost the same, but the success
probability at the first round under the generalized scheme is much higher
than that under Lau’s scheme. This implies that the generalized scheme more
rarely goes to the second round, and thus the generalized scheme is expected
to be more effective to reduce resource usage than Lau’s scheme.

NUMERICAL ILLUSTRATION 77

6.3.2 Survivability Analysis

In this section, we discuss the survivability of VM-based intrusion tolerant
system under the generalized scheme. More precisely, we consider the sur-
vivability in terms of the conditional success probability p̃s under the envi-
ronment where the agreement is failed at the first round. In general, in the
intrusion tolerance scheme, the number of intruded VMs at the first round is
unknown even when AS does not make the agreement at the first round, but
the number of intruded VMs (alternatively, the number of normal VMs at the
end of the first round) strongly affects the conditional success probability in
the later rounds.

First we consider the case where the number of normal VMs at the end of
the first round is known. Let N1 be the number of normal VMs at the end
of the first round. It has possible values N1 = 0, . . . , n1 − f1 − 1 where f1
is the tolerance level at the first round given by Eq. (6.2). Tables 6.4 and 6.5
present the conditional success probabilities for all the possible values of N1

when m = 2, 3, 4 and r = 1, 2. Note that the conditional success probability
is exactly 0 when there is no possible to obtain the majority of normal VMs
at the end of the m-th round. Similar to the case of success probability, from
Table 6.4, it is found that there are the cases where the conditional probabil-
ities do not increase with respect to m in the case of r = 1. On the other
hand, in the case of r = 2, the conditional success probabilities monoton-
ically increase as the number of rounds becomes large. Also, there are the
cases where the conditional success probabilities decrease with the number of
initially activated VMs due to the tolerance level and the risk of intrusion.

Next we consider the case where the number of normal VMs is unknown.
The conditional success probabilities can be computed by using the initial
vector of Eq. (6.16). Tables 6.6 and 6.7 present the conditional success prob-
abilities p̃s in the cases of m = 2, 3, 4 and r = 1, 2. Compared to the success
probabilities in Tables 6.1 and 6.2, the conditional success probabilities be-
come smaller, because the conditional success probability considers the situa-
tion where some VMs have already been intruded at the first round. Moreover,
in the case of r = 2, the conditional success probability becomes higher as
the number of rounds increases. This implies that it is important to check the
conditional success probability as well as the success probability to enhance
the survivability when the intrusion tolerance system is designed. On the other
hand, we find that the conditional success probability does not increase mono-

78 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

Table 6.4 Conditional success probabilities with respect to n1 and m in the case of N1 =
0, . . . , n1 − f1 − 1 and r = 1.

m = 2 m = 3 m = 4

n1 = 2
N1 = 1 0.9994446372921 0.9994446372921 0.9999991522305

N1 = 0 0 0 0.9983348369882

n1 = 3
N1 = 1 0 0.9986121714787 0.9986121714787

N1 = 0 0 0 0

n1 = 4
N1 = 2 0.9991670716093 0.9991670716093 0.9999981512100

N1 = 1 0 0 0.9975032955591

N1 = 0 0 0 0

n1 = 5
N1 = 2 0 0.9980575795191 0.9980575795191

N1 = 1 0 0 0

N1 = 0 0 0 0

Table 6.5 Conditional success probabilities with respect to n1 and m in the case of N1 =
0, . . . , n1 − f1 − 1 and r = 2.

m = 2 m = 3 m = 4

n1 = 2
N1 = 1 0.9991670716093 0.9999988440168 0.9999999977972

N1 = 0 0 0.9983348369882 0.9999966884465

n1 = 3
N1 = 1 0.9991670716093 0.9999988440168 0.9999999977972

N1 = 0 0 0.9983348369882 0.9999966884465

n1 = 4
N1 = 2 0.9988895830120 0.9999979969749 0.9999999952122

N1 = 1 0 0.9977803990498 0.9999943810137

N1 = 0 0 0 0.9966724467444

n1 = 5
N1 = 2 0.9988895830120 0.9999979969749 0.9999999952122

N1 = 1 0 0.9977803990498 0.9999943810137

N1 = 0 0 0 0.9966724467444

tonically even if we focus only on the even numbers of n1. For example, in the
case of r = 2, the conditional success probabilities with n1 = 4 are smaller
than those with n1 = 2. This result is remarkable in the case of survivability
analysis of intrusion tolerance system, and also the same result is found when
we focus on the odd numbers of n1. When the agreement is failed at the first
round, the number of intruded VMs is proportional to the number of initially
activated VMs. In addition, under the situation where the number of intruded

NUMERICAL ILLUSTRATION 79

Table 6.6 Conditional success probabilities with respect to n1 and m in the case of r = 1.

m = 2 m = 3 m = 4

n1 = 2 0.9993058351766 0.9993058351766 0.9999989210916

n1 = 3 0 0.9985197095296 0.9985197095296

n1 = 4 0.9989820492377 0.9989820492377 0.9999976763937

n1 = 5 0 0.9979189623371 0.9979189623371

Table 6.7 Conditional success probabilities with respect to n1 and m in the case of r = 2.

m = 2 m = 3 m = 4

n1 = 2 0.9990283080419 0.9999986129208 0.9999999973376

n1 = 3 0.9990745582816 0.9999986899457 0.9999999974908

n1 = 4 0.9987046120248 0.9999975734967 0.9999999941299

n1 = 5 0.9987508502756 0.9999976812805 0.9999999944068

Table 6.8 Conditional success probabilities p̃s in Lau’s vs. generalized schemes under the
failure of first round.

Scheme Conditional success probability

Lau’s scheme 0.9999999991600

Generalized scheme 0.9999986899457

VMs is large, it is difficult to make the agreement even if several VMs are
additionally activated. That is, from the viewpoint of survivability, the small
number of initially activated VMs is better.

Finally, we compare Lau’s and generalized schemes in terms of conditional
success probability. According to the same setting in the previous section, we
compute the conditional success probabilities under Lau’s and generalized
schemes (see Table 6.8). From the table, the conditional success probability
under Lau’s scheme is higher than that under the generalized scheme. It is the
evidence that the ability to tolerate the intrusion at the second round is high
under Lau’s scheme. Therefore, it is important to choose the scheme based
on the purpose of system.

Moreover, we investigate the sensitivity of r on the success probability ps
and conditional success probability p̃s. Table 6.9 shows the success probabil-

80 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

Table 6.9 Success probabilities and conditional success probabilities with respect to r =
1, 2, 3, 4, 5 in the case of n1 = 3 and m = 2.

Success probability ps Conditional success probability p̃s

r = 1 0.9999997686578 0

r = 2 0.9999999997859 0.9990745582816

r = 3 0.9999999997217 0.9987970953771

r = 4 0.9999999999998 0.9999991264021

r = 5 0.9999999999997 0.9999987155386

ities and conditional success probabilities with respect to r = 1, 2, 3, 4, 5 in
the case of n1 = 3 and m = 2. Similar to the results on n1, both success
probability and conditional success probability do not increase monotonically
with respect to r. When we focus on the even numbers of r, they monotoni-
cally increase due to the characteristics of tolerance level. In the case of the
odd numbers of r, we can conclude the same remark.

6.3.3 Parameter Effects

Finally, we consider the effects of failure rate of VM on the success proba-
bility and conditional success probability in the situation where the number
of initially activated VMs, n1, is 3, and the maximum number of rounds,
m, is 3. For the activation number of VMs, we assume that r = 1 and
r = 2, respectively as previously mentioned. Also we suppose that the fail-
ure rate of one VM, γ, varies from 1 to 100 times per hour, i.e., γ varies
from 1/3600000[1/ms] to 1/36000[1/ms]. The numerical results are de-
picted from Figs. 6.4 to 6.7.

Figs. 6.4 and 6.5 show the effects of the failure of VM on the success prob-
abilities and conditional success probabilities in the case of r = 1 and r = 2,
respectively. From Fig. 6.4, we can see that the success probability in the case
of r = 1 is quite high, and almost equal to the success probability in the case
of r = 2 when the failure rate of VM is less than ⌊0.000014×3600000⌋ = 50
times per hour. When the failure rate increases and becomes higher than 50
times per hour, the success probability in the case of r = 2 is almost un-
changed and sufficiently high. However, the success probability in the case
of r = 1 decreases as the failure rate increases. In Fig. 6.5, we find that the
conditional success probability in the case of r = 1 decreases rapidly when

NUMERICAL ILLUSTRATION 81

r = 2

r = 1

0 5. × 10 - 6 0.00001 0.000015 0.00002 0.000025
γ0.999996

0.999997

0.999998

0.999999

1.000000

Success Probability

Figure 6.4 Effects of VM failure rate on the success probabilities in the case of r = 1 and
r = 2.

r = 2

r = 1

0 5. × 10 - 6 0.00001 0.000015 0.00002 0.000025
0.980

0.985

0.990

0.995

1.000

Conditional SuccessProbability

γ

Figure 6.5 Effects of VM failure rate on the conditional success probabilities in the case
of r = 1 and r = 2.

the failure rate increases. On the other hand, the conditional success probabil-
ity in the case of r = 2 does not change much. These figures imply that any
change in the failure rate of VM has a great impact on the success probability
for one request in the case of r = 1. However, activating 2 VMs at the next
round has a large effect on the improvement of the success probability which
have been validated by comparing Table 6.1 with Table 6.2, or Table 6.6 with
Table 6.7.

The effects of the failure rate of VM on the success probability and condi-
tional success probability in both of two cases are shown in Figs. 6.6 and 6.7.
From Fig. 6.6, it is observed that the conditional success probability decreases
rapidly when the failure rate increases. This indicates that any change in the
failure rate of VM also has a great impact on the conditional success proba-
bility p̃s. Therefore, to improve the conditional success probability, the most

82 SURVIVABILITY ANALYSIS OF VM­BASED INTRUSION TOLERANT SYSTEMS

Success Probability

Conditional SuccessProbability

0 5. × 10 - 6 0.00001 0.000015 0.00002 0.000025

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

γ

Figure 6.6 Effects of VM failure rate on the success probability and conditional success
probability in the case of r = 1.

Success Probability

Conditional SuccessProbability

0 5. × 10 - 6 0.00001 0.000015 0.00002 0.000025
0.99986

0.99988

0.99990

0.99992

0.99994

0.99996

0.99998

1.00000

γ

Figure 6.7 Effects of VM failure rate on the success probability and conditional success
probability in the case of r = 2.

efficient way is to decrease the failure rate of VM. However, the curve for the
success probability implies that any change in the failure rate has less effect
on the success probability of VM-based intrusion tolerant system. The same
conclusions can also be obtained from Fig. 6.7. As seen in Fig. 6.7, it is found
that both of the success probability and conditional success probability in the
case of r = 2 become high by the comparison to Fig. 6.6 with r = 1. More-
over, the main difference between two figures is that, the conditional success
probability in the case of r = 2 decreases slowly as the failure rate increases,
compared to the curve for the conditional success probability in the case of
r = 1.

CONCLUSION 83

6.4 Conclusion

In this chapter, we have dealt with survivability quantification of VM-based
intrusion tolerant system proposed by Lau et al. [21]. Concretely, we pre-
sented the generalized scheme which is extended from Lau’s scheme, and
built a DTMC-based stochastic model from the system behavior. We then for-
mulated the success probability for one request, and the conditional success
probability provided that the agreement is failed at the first round as a sur-
vivability metric. In numerical experiments, we have investigated the char-
acteristics of success probability and conditional success probability under
both Lau’s and generalized schemes. As a result, their performance cannot be
evaluated only by the tolerance level. In addition, we have investigated the sit-
uation where the success probability and the conditional success probability
are degraded even though the number of activated VMs increases. Also, we
have found that the generalized scheme is superior to the reduction of resource
usage and the enhancement of success probability, and that Lau’s scheme has
high survivability. In addition, our numerical experiments indicate that the
best design of the VM-based intrusion tolerant system is the initial number
of VMs (n1) is 3, the activation number of VMs (r) is 2, and the maximum
number of rounds (m) is given according to the system resources.

CHAPTER 7

CONCLUSIONS

Dependability is an all-encompassing definition for reliability, availability,
safety and security, and is required in computer applications such as safety-
critical control systems for road vehicles, airplanes and medical devices, and
business-critical systems for e-commerce and financial transactions. In gen-
eral, two commonly-used types of system designs; component redundancy
and environmental redundancy are developed to assure high dependability of
systems. However, redundancy increases not only the complexity of a sys-
tem, but also the complexity of associated problems such as common-mode
error. Thus, in order to detect the optimal design of systems, model-based
analysis is important in the system design. One of the advantages of model-
based analysis is sensitivity analysis, which is a method to detect the most
important factors to the system dependability and plays an important role in
the optimization of system in the design phase. In this thesis, we have focused
on the design sensitivity (i.e., component importance) for virtualized systems
(in Chapters 3 and 4) and real-time computing systems (in Chapter 5). In par-
ticular, we considered the environmental sensitivity that measures the effect
of environmental changes on system dependability, that is, the survivability
of VM-based intrusion tolerant systems (in Chapter 6).

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

85

86 CONCLUSIONS

Concretely, in Chapter 3, we have revisited the hybrid model (FT and CTMC)
for non-virtualized and virtualized system design in [18], and proposed a gen-
eralized method to the availability importance analysis of components. The
proposed method is based on both the aggregation techniques of CTMC-based
availability models [35] and the importance measures of components with re-
spect to failure and repair rates [33]. Although the presented component anal-
ysis is simple, it is quite helpful in the system design phase to ensure the sys-
tem availability. In Chapter 4, we focused on the CTMC model of live migra-
tion, and introduced the Markov-based component-wise sensitivity analysis
to evaluate the component importance in the context of live migration without
using structure function. According to the component importance analysis,
the critical components in non-virtualized and virtualized system designs are
detected.

In Chapter 5, we have quantitatively evaluated the component importance
measures of a real-time computing system [11] where CCFs occur. Con-
cretely, we evaluated three kinds of importance measures in the case of system
without CCFs by the common method using hybrid model and structure func-
tion, and in the case of system with CCFs using Markov-based component-
wise sensitivity analysis, respectively. When considering the system without
CCFs, the above two methods can applied to compute the important measures.
However, the common method does not hold in the case where components
are dependent. In such case, the Markov-based component-wise sensitivity
analysis is adopted. In numerical experiments, we illustrated the quantitative
importance measures of all components, and ranked the components accord-
ing to distinct importance measures. Also, the effect of CCFs is considered.
Our numerical experiments indicate that the CCFs can affect not only the reli-
abilities of components and system, but also their importance and importance
ranking.

Moreover, in Chapter 6, we have dealt with survivability quantification of
VM-based intrusion tolerant system proposed by Lau et al. [21]. Concretely,
based on Lau’s scheme, we presented the generalized scheme, and built a
DTMC-based stochastic model from the system behavior. We then formulated
the success probability for one request, and the conditional success probabil-
ity provided that the agreement is failed at the first round as a survivability
metric. In numerical experiments, we have investigated the characteristics
of success probability and conditional success probability under both Lau’s

87

and generalized schemes. As a result, their performance cannot be evaluated
only by the tolerance level. Also, we have investigated the situation where the
success probability and the conditional success probability are degraded even
though the number of activated VMs increases. Moreover, we have found that
the generalized scheme is superior to the reduction of resource usage and the
enhancement of success probability, and that Lau’s scheme has high surviv-
ability.

Generally speaking, the main contribution of this thesis is twofold. From
the viewpoint of model analysis, we have presented the generalized meth-
ods of importance analysis to help detecting the critical components in the
computer systems even in the case that system components are failure depen-
dent. In such cases, the common method of computing importance measures
using hybrid models and structure function cannot be applied. Also, a gener-
alized scheme for VM-based intrusion tolerant system are proposed, which is
superior to the reduction of resource usage and the enhancement of success
probability, in contrast to the existing schemes; From the viewpoint of system
applications, we have detected the critical components for computer systems
and obtained the best system design by using proposed methods.

In the system design, the engineer is often faced with the task of developing
a design that will achieve the desired reliability of the system while perform-
ing all of the intended functions of system at a minimum cost. This involves a
balancing act of determining how to allocate system resources (e.g., reliabil-
ity) to the components in the system so the system will meet its reliability goal
while at the same time ensuring that the system meets all of the other associ-
ated performance specifications [50]. The generalized methods of importance
analysis are significant and effective ways to solve above system resource al-
location problem and reliability and cost optimization problem. For example,
based on component importance analysis, the most critical components can
be obtained. If the reliability of the system is to be improved, then the efforts
can best be concentrated on improving the reliability of the critical component
first.

It is worth noting that there are still some challenges to be addressed in
our future work. First, the error appearing in the calculation of component
importance in large Markov chains using proposed method will be reduced by
improving the algorithms. Second, investigating the importance of common
root cause event (CRCE) in the system where CCFs occur to find efficient

88 CONCLUSIONS

defense strategies against CCFs will be considered. Finally, the optimization
policies for maximizing the system dependability improvements based on the
obtained importance and relative ranking of components will be studied in our
future work.

APPENDIX A

UNIFORMIZATION­BASED ALGORITHMS

Ramesh and Trivedi [46] derived the integral form of solution s(t, θ) as a
convolution:

s(t, θ) = π0

∫ t

0
exp(Qs)S(θ) exp(Q(t− s))ds. (A.1)

For the above integral form, we consider the uniformization technique which
reduce a CTMC to a discrete-time Markov chain (DTMC) subordinated to
a Poisson process [47], and present two efficient algorithms based on uni-
formization.

A.0.0.1 Uniformization­based Algorithms In fact, it is known that the uni-
formization is an efficient method to compute transient solutions of CTMCs,
and is superior to general-purpose differential equation methods in terms of
scalability and accuracy [48]. The formula of the uniformization is given by

exp(Qt) =
∞∑
k=0

e−qt
(qt)k

k!
P k, (A.2)

where q is a randomization parameter satisfying q = supi∈S |qii| and the tran-
sition probability matrix of DTMC is P = I+Q/q. By truncating the infinite
A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

89

90 UNIFORMIZATION­BASED ALGORITHMS

sum with an approximate integer, we have

exp(Qt) ≈
U∑

k=0

e−qt
(qt)k

k!
P k, (A.3)

where the upper (right) bound U is determined as

U = inf

u ≥ 0;
u∑

k=0

e−qt
(qt)k

k!
≥ 1− ε

 . (A.4)

In the above equation, ε is the error tolerance.
This section proposes the uniformization-based computation for the sensi-

tivity function. By applying the uniformization technique, the convolution
integral of Eq. (A.1) can be reduced to

sθ(t) ≈ s̃θ(t) = π(0)
1

q

U∑
k=0

Poi(k + 1; qt)
k∑

u=0

PuAP k−ur, (A.5)

where Poi(k; qt) = e−qt qt
k

k! . Then s̃θ(t) can be obtained by the following
recurrence formula:

f(0) = π(0), (A.6)
f(k) = f(k − 1)P , for k = 1, 2, . . . , U, (A.7)
b(U + 1) = 0, (A.8)
b(k) = Pb(k + 1) + Poi(k + 1; qt)r,

for k = U,U − 1, . . . , 0, (A.9)

s̃θ(t) =
1

q

U∑
k=0

f(k)Ab(k). (A.10)

Therefore, we obtain the computation algorithm for the sensitivity function as
follows.

1: f(0)← π(0)
2: for k = 1 : U do
3: f(k)← f(k − 1)P
4: end for
5: b(U + 1)← 0
6: for k = U : 0 do
7: b(k)← Pb(k + 1) + Poi(k + 1; qt)r
8: end for
9: s← 0

UNIFORMIZATION­BASED ALGORITHMS 91

10: for k = 0 : U do
11: s← s+ f(k)Ab(k)
12: end for

The time complexity of the above algorithm is given by O(qtn2), since U is
proportional to qt. The advantage of this method is to omit the computation of
f(·) and b(·) when we wish to compute the sensitivity with respect to another
parameter. That is, if v is the number of parameters whose the sensitivity
functions are computed, the time complexity becomes O(qtn2v).

The second uniformization algorithm is derived from the following matrix:

Q′ =

Q A

O Q

 . (A.11)

From the elementary analysis of matrix exponential, we have

exp(Q′t) =

exp(Qt)
∫ t
0 exp(Qs)A exp(Q(t− s))ds

O exp(Qt)

 . (A.12)

The right top element equals the desired sensitivity function. Also, for any
matrix A, we can apply the uniformization to Q′ with the randomization pa-
rameter q = supi∈S |qii|. Then we obtain the following algorithm for comput-
ing the sensitivity function:

1: f 2(0)← 0
2: f 1(0)← π(0)
3: for k = 1 : U do
4: f 2(k)← f 1(k − 1)A
5: f 1(k)← f 1(k − 1)P
6: end for
7: s← 0
8: ξ ← 0
9: for k = 0 : U do

10: s← s+ Poi(k; qt)f 2(k)r
11: ξ ← ξ + Poi(k; qt)f 1(k)
12: end for

The outputs s and ξ of the above algorithm are the sensitivity function and the
probability vector π(t), respectively. The time complexity of the algorithm is

92 UNIFORMIZATION­BASED ALGORITHMS

also given by O(qtn2). In the above algorithm, since the probability vector
π(t) can also be computed, the algorithm is appropriate to get the temporal
behavior of the sensitivity function sθ(t).

APPENDIX B

SENSITIVITY ESTIMATION METHOD

Suppose that the system consists of K components. Let IS and Ik be the
performance indices of system and component k, respectively. This thesis
assumes that the performance indices can be computed by an MRM with in-
stantaneous rewards. Also we define the reward vectors corresponding to IS
and Ik as rS and rk, respectively. Without loss of generality, we assume

IS = πrS, (B.1)
Ik = πrk, for k = 1, . . . , K, (B.2)

where π is a state probability vector of the underlying CTMC at arbitrary
time point. In the case of transient measure, π should be π(t). On the other
hand, π is the steady-state probability vector when the performance index is
a steady-state measure πss.

Then we estimate the sensitivities of system performance index with respect
to component performance indices:

∂IS
∂Ik

, for k = 1, . . . , K. (B.3)

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

93

94 SENSITIVITY ESTIMATION METHOD

As mentioned before, except for the case where IS is explicitly given by a
function of I1, . . . , Ik, the above sensitivities cannot be obtained analytically.
Then we consider the estimation from the parametric sensitivities.

Consider the sensitivity of system performance index with respect to model
parameter vector θ = (θ1, . . . , θm). According to the chain rule in partial
differentiation, we have, for k = 1, . . . , K and j = 1, . . . ,m;

∂IS
∂θj

=
K∑
k=1

∂IS
∂Ik

∂Ik
∂θj

+ δj. (B.4)

In the equation, δj means the deviation of IS with respect to θj which are not
correlated to the deviations of I1, . . . , IK . Equation (B.4) can be rewritten as

z = Ju+ δ, (B.5)

where

z =



∂IS
∂θ1

...
∂IS
∂θm

 , u =



∂IS
∂I1

...
∂IS
∂IK

 , δ =


δ1
...

δm

 , (B.6)

J =



∂I1
∂θ1
· · · ∂IK

∂θ1

...
∂I1
∂θm

· · · ∂IK
∂θm

 . (B.7)

In the above, the matrix J and the vector z can be computed from the para-
metric sensitivity approach described in Sec. 2.3.1. The problem is reduced to
solving the above linear equation with respect to u. However, since the vector
δ is also undetermined, we should consider how to treat the vector δ.

If IS is a function of only I1, . . . , IK , then the vector δ becomes 0 theoreti-
cally. On the other hand, even if IS has non-zero δ, it is better to estimate the
deviation of δ as small as possible. For example, we suppose that the system
performance index is given by

IS = I1 + I2 − I1I2. (B.8)

In this case, it is natural to take the following sensitivities;

∂IS
∂I1

= 1− I2,
∂IS
∂I2

= 1− I1. (B.9)

SENSITIVITY ESTIMATION METHOD 95

However, if I1I2 is regarded as one variable, namely, I3 = I1I2, then the
sensitivities are

∂IS
∂I1

= 1,
∂IS
∂I2

= 1,
∂IS
∂I3

= −1. (B.10)

Although Eqs. (B.9) and (B.10) are quite different, they provides the same
result on the parametric sensitivity. That is, based on Eq. (B.9), we have

∂IS
∂θ

=
∂IS
∂I1

∂I1
∂θ

+
∂IS
∂I2

∂I2
∂θ

= (1− I2)
∂I1
∂θ

+ (1− I1)
∂I2
∂θ

. (B.11)

When Eq. (B.10) is applied, the parametric sensitivity is expressed by

∂IS
∂θ

=
∂IS
∂I1

∂I1
∂θ

+
∂IS
∂I2

∂I2
∂θ

+
∂IS
∂I3

∂I3
∂θ

=
∂I1
∂θ

+
∂I2
∂θ
− ∂I3

∂θ
. (B.12)

Therefore, from the mathematical point of view, both are correct. However,
the farmer is a better representation for the relationship between the system
performance index and component indices, since ∂IS/∂I3 can be expressed
by ∂IS/∂I1 and ∂IS/∂I2. In other words, it is important to explain the devia-
tion of IS as much as possible by using only the deviations with I1 and I2. In
Eq. (B.12), the last term corresponds to δ in Eq. (B.4). Therefore, it is better
to take the estimates of u so that δ becomes small.

Based on the above insight, we formulate the following mathematical pro-
gramming:

minu ∥δ∥22, (B.13)
s.t. z = Ju+ δ, (B.14)

where ∥δ∥2 is a 2-norm of vector δ. The problem is further reduced to the
following least square problem:

min
u
∥z − Ju∥22. (B.15)

We can apply the several methods to solve the least square problem. The
simplest approach is to solve the normal equation [49]:

(JTJ)u = JTz, (B.16)

96 SENSITIVITY ESTIMATION METHOD

where T is the transpose operator. Then the estimates of sensitivities are given
by

u = (JTJ)−1JTz. (B.17)

REFERENCES

1. H. Pham, “Optimal design of k-out-of-n redundant systems,” Microelectronics Reliability, vol. 32, no. 1, pp. 119–126,
1992.

2. A. Carzaniga, A. Gorla, and M. Pezzè, “Handling software faults with redundancy,” Architecting Dependable Systems
VI, Springer Berlin Heidelberg, pp. 148–171, 2009.

3. B. Furht, “Cloud computing fundamentals,” in Handbook of Cloud Computing. by B. Furht and E. Armando, Eds.
Springer. pp. 3–19, 2010.

4. Clark, Christopher and Fraser, Keir and Hand, Steven and Hansen, Jacob Gorm and Jul, Eric and Limpach, Christian
and Pratt, Ian and Warfield, Andrew, “A new look at the statistical model identification,” in Proceedings of the
2nd conference on Symposium on Networked Systems Design & Implementation, USENIX Association, vol. 2, pp.
273–286, 2005.

5. A. Agbaria and R. Friedman, “Overcoming Byzantine failures using checkpointing,” Tech rep, no. UILU-ENG-03-
2228 (CRHC-03-14), Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 2003.

6. W. Park and C. Park, “Data firewall: a TPM-based security framework for protecting data in thick client mobile
environment,” Journal of Computing Science and Engineering, vol. 5, no. 4, pp. 331–337, 2011.

7. V. Stavridou, et al., “Intrusion tolerant software architectures,” in Proceedings of DARPA information survivability
conference and exposition (DISCEX II’01), vol. 2, 2001.

8. F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: a tutorial,” ACM Computing
Surveys, vol. 22, no. 4, pp. 299–319, 1990.

9. T. Brooks, C. Caicedo, and J. Park, “Security vulnerability analysis in virtualized computing environments,” Interna-
tional Journal of Intelligent Computing Research (IJICR), Vol. 3, Nos. 1/2, pp. 277–291, 2012.

10. P. A. Laplante, Real-time systems design and analysis-an engineer’s handbook, 2nd Ed., IEEE Press, 1997.

11. R. Fricks, K. S. Trivedi, “Modeling failure dependencies in reliability analysis using stochastic Petri nets,” in Pro-
ceedings of the 11th European Simulation Multi-conference (ESM ’97), Istanbul: Turkey ACM Press, 1–4 June 1997.

12. S. Kundu and R. Rangaswami and K. Dutta and M. Zhao. Application performance modeling in a virtualized environ-
ment, in Proceedings of the 16th IEEE International Symposium on High-Performance Computer Architecture. IEEE
Computer Society, pp. 10 pages, 2010.

13. H. Okamura, K. Shigeoka, K. Yamasaki, T. Dohi and H. Kihara. Performance evaluation of cloud computing in PaaS
environments, in Supplemental Proceedings of 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN2012), 36:122–127, 2012.

A Study on Sensitivity Approaches for Dependable Systems Design.
By J. Zheng

97

98 REFERENCES

14. B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson and A. Warfield. Remus: high availability via asyn-
chronous virtual machine replication, in Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation, USENIX Association, pp. 161–174, 2008.

15. E. Farr, R. Harper, L. Spainhower and J. Xenidis. A Case for High Availability in a Virtualized Environment (HAVEN),
in Proceedings of the 2008 Third International Conference on Availability, Reliability and Security (ARES’08). IEEE
Computer Society, pp. 675–682, 2008.

16. M. T. H. Myint and T. Thein. Availability improvement in virtualized multiple servers with software rejuvenation
and virtualization, in Proceedings of 4th International Conference on Secure Software Integration and Reliability
Improvement. IEEE Computer Society, pp. 156–162, 2010.

17. K. V. Vishwanath and N. Nagappan. Characterizing cloud computing hardware reliability, in Proceedings of the first
ACM Symposium on Cloud Computing (SoCC’10). ACM, pp. 193–204, 2010.

18. D. S. Kim and F. Machida and K. S. Trivedi, “Availability modeling and analysis of a virtualized system,” in
Proceedings of the 15th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC-2009), IEEE
Computer Society, pp. 365–371, 2009.

19. R. D. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim and K. S. Trivedi, “Sensitivity analysis of server virtualized
system availability,” IEEE Transactions on Reliability, IEEE, pp. 994–1006, 2012.

20. V. S. Junior, L. C.Lung, M. Correia, JD. S. Fraga, and J. Lau, “Intrusion tolerant services through virtualization: a
shared memory approach,” (AINA‘10), 2010.

21. J. Lau, L. Barreto, and JD. S. Fraga, “An infrastructure based in virtualization for intrusion tolerant services,” 2012
IEEE 19th International Conference on Web Services (ICWS), pp. 170–177, 2012.

22. R. Fricks, K. S. Trivedi, “Importance analysis with Markov chains,” Reliability and Maintainability Symposium,
2003, Annual, pp. 89–95, 2003.

23. Z. J. Pan, Y. Nonaka, “Importance analysis for the systems with common cause failures,” Reliability Engineering and
System Safety, vol. 50, pp. 297–300, 1995.

24. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live migration of virtual
machines,” in Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation -
Volume 2. USENIX Association, pp. 273–286, 2005.

25. N. G. Leveson, Safeware: system safety and computers, Addison-Wesley, Reading, MA, 1995.

26. K. Lampka, M. Siegle, and M. Walter, “An easy-to-use, efficient tool-chain to analyze the availability of telecommu-
nication equipment,” in Formal Methods: Applications and Technology. vol. 4346, pp. 35–50, 2007.

27. A. Reibman, K. S. Trivedi, “Transient analysis of cumulative measures of Markov model behavior,” Stochastic Models
5, pp. 683–710, 1989.

28. D. M. Cohen, D. P. Heyman, A. Rabinovitch, and D. Brown, “Parallel implementation of the GTH algorithm for
Markov chains,” in Computations with Markov chains: Proceedings of the 2nd international workshop on the numeri-
cal solution of Markov chains (35), edited by W. J. Stewartpp, pp. 594–596, Springer Science & Business Media, NY,
2012.

29. A. Reibman, R. Smith, and K. S. Trivedi, “Markov and Markov reward model transient analysis: An overview of
numerical approaches,” European J. of Operations Research, Vol. 40, pp. 257–267, 1989.

30. J. K. Ravalico, H. R. Maier, G. C. Dandy, J. P. Norton and B. F. W. Croke, “A comparison of sensitivity analysis
techniques for complex models for environmental management,” International Congress on Modeling and Simulation
(MODSIM 2005), pp. 2533–2539, 2005.

31. V. Castelli and R. E. Harper and P. Heidelberger and S. W. Hunter and K. S. Trivedi and K. Vaidyanathan and W. P.
Zeggert, “Proactive management of software aging,” IBM J. Research & Development, vol. 45, pp. 311–332, 2001.

32. K. S. Trivedi, “Probability and Statistics with Reliability, Queueing, and Computer Sciences Applications,” John
Wiley & Sons, 2nd, 2001.

33. C. R. Cassady and E. A. Pohl and S. Jin, “Managing availability improvement efforts with importance measures and
optimization,” IMA Journal of Management Mathematics, vol. 15, pp. 161–174, 2004.

34. Z. W. Birnbaum, “On the importance of different components in a multicomponent system,” Academic Press, pp.
581–592, 1969.

35. M. Lanus and L. Yin and K. S. Trivedi, “Hierarchical composition and aggregation of state-based availability and
performanbility models,” IEEE Transactions on Reliability, vol. 52, pp. 44–52, 2003.

REFERENCES 99

36. G. Strang. Introduction to linear algebra, 4th ed. Wellesley Cambridge Press, 2009.

37. B. W. Johnson, “Design and analysis of fault-tolerant digital systems,” Reading, MA, USA: Addison-Wesley Publish-
ing Company.

38. K. N. Fleming, “A redundant model for common model failures in redundant safety systems,” in Proceedings of the
Sixth Pittsburgh Annual Modeling and Simulation Conference, pp.579–581, Pittsburgh, PA, USA, 1975.

39. P. A. Jensen, J. F. Bard, “Operations research models and methods,” John Wiley & Sons Incorporated, 2003.

40. B. Plateau, W. J. Stewart, “Stochastic automata networks,” in Computational Probability, edited by W. K. Grassmann,
university of Saskatchewan, Boston; London: Kluwer Academic, 2000.

41. Z. W. Birnbaum, On the importance of different components in a multicomponent system, In P. R. Krishnaiah, editor,
Multivariate Analysis II, pp. 581–592, New York, NY, USA, Academic Press, 1969.

42. E. J. Henley and H. Kumamoto, Reliability engineering and risk assessment, Prentice-Hall, Englewood Cliffs, NJ,
USA, 1981.

43. P. M. Frank, Introduction to system sensitivity theory, Academic Press, New York, NY, USA, 1978.

44. P. P. Bocharov, C. D’Apice, and A. V. Pechinkin, “Queueing theory (modern probability and statistics),” Published
by De Gruyter, Oct. 31, 2003.

45. P. E. Heegaard and K. S. Trivedi, “Network survivability modeling,” Computer Networks, vol. 53, no. 8, pp. 1215–
1234, 2009.

46. A. V. Ramesh and K. S. Trivedi, “On the sensitivity of transient solutions of Markov models,” in Proceedings of the
1993 ACM SIGMETRICS conference, pp. 122–134, 1993

47. M. Kijima, Markov processes for stochastic modeling, Chapman and Hall, 1997.

48. A. L. Reibman and K. S. Trivedi, Numerical transient analysis of Markov models, Computers and Operations
Research, vol. 15, pp. 19–36, 1988.

49. H. Takajo, T. Takahashi, “Noniterative method for obtaining the exact solution for the normal equation in least-squares
phase estimation from the phase difference,” Journal of the Optical Society of America A, vol. 5, pp. 1818–1827, 1988.

50. H. M. Islam, M. A. Khan, “On system reliability with single strength and multi-component stress model,” Interna-
tional Journal of Quality and Reliability Management, vol. 26, issue 3, pp. 302–307, 2009.

PUBLICATION LIST

(1) International Journal
1. J. Zheng, H. Okamura and T. Dohi, “Availability importance measures for virtualized system with live mi-
gration,” Applied Mathematics, vol. 6, no. 2, pp. 359–372, 2015.
2. J. Zheng, H. Okamura and T. Dohi, “Survivability analysis of VM-based intrusion tolerant systems,” IEICE
Transactions on Information & Systems (D), vol. E98-D, no. 12, pp. 2082–2090, 2015.

(2) International Conference
3. J. Zheng, H. Okamura and T. Dohi, “Component importance analysis of virtualized system,” Proceedings of
the 9th International Conference on Autonomic and Trusted Computing (ATC 2012), pp. 462–469, IEEE CPS,
2012. (Fukuoka, Japan, September 4-7, 2012).
4. J. Zheng, H. Okamura and T. Dohi, “Sensitivity analysis of reliability function for virtualized system,”
Proceedings of the 8th International Conference on Mathematical Methods in Reliability, –Theory, Methods
and Applications– (MMR 2013), pp. 229–232, 2013. (Stellenbosch, South Africa, July 1-4, 2013).
5. J. Zheng, H. Okamura and T. Dohi, “Component importance measures for real-time computing systems in
the presence of common-cause failures,” Proceedings of the 21st IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC 2015), pp. 301–310, IEEE CS Press, 2015. (Zhangjiajie, China, November
18-20, 2015).

101

	表紙
	学位論文

