
DISSERTATION

Collective behavior generation and
analysis for an evolutionary swarm

robotics system
（進化的スワームロボティクスシステムにおける

群れ行動の生成と解析）

余	
 天

Graduate School of Engineering
Hiroshima University

March 2016

Acknowledgements

The research included in this dissertation could not have been performed if not for the as-

sistance, patience, and support of many individuals. I am deeply indebted to my supervisor,

Prof. Ohkura, K. for his fundamental role in my PhD candidate life, for the support of my

doctoral course study and research, for his expertise, motivation, and immense knowledge.

Besides my advisor, I also would like to thank the rest of my thesis committee: Prof. Ya-

mada, K., associate Prof. Iwamoto, T. and associate Prof. Matsumura, Y., for their revising

thesis, and insightful comments.

Thanks to the Yahata Memorial Ikuei Scholarship for offering me the scholarship during

my doctoral course.

Thanks to assistant Prof. Yasuda, for advising me both in research and life. I want to

thank associate Pro. Goka, M., for the good discussion that we had in the second year of

my master course. Thanks to the current and former members of Manufacturing Systems

A Laboratory at the Graduate School of Engineering: Hai Shan, Kadota, adachi, wei, mu-

rakawa, morikawa, abo, sun, nakashima, nakatani, hagimori, okamura, kataoka, suenaga,

hiraga, takashi.

Thanks to the Global Career Design Center (Young Researchers’ Training Division)

for advising me about my career design. I would also like to thank all of my friends who

supported me in writing, and encouraged me to strive towards my goal.

Special thanks to my love Shevin Zhang, for her moral support, encouragement, quiet

patience and unwavering love were undeniably the bedrock upon which the past five years

of my life have been built.

Finally I would like to extend my deepest gratitude to my parents Yu Jie and He

Mingyin, without whose love, support and understanding I could never have completed

i

ii

this doctoral degree. Words cannot express how grateful I am to my mother and father

for all of the sacrifices that you have made on my behalf. Your prayer for me was what

sustained me thus far.

Tian Yu

Hiroshima, Japan

March 2016

Contents

1 Introduction 1
1.1 Background . 1

1.2 Goal of the Thesis . 4

1.3 Structure of the Thesis . 5

2 Swarm Robotic Systems 7
2.1 Introduction . 7

2.2 The Origin of SRS . 9

2.3 System-level properties . 10

2.4 Definitions of SRS . 12

2.5 Coordination Mechanisms . 13

2.6 Research directions . 14

2.6.1 Controller Design of SRS . 14

2.6.2 Analysis methods of SRS . 16

2.7 Benchmark Problems . 16

2.8 Summary . 19

3 Evolutionary Robotics 20
3.1 Introduction . 20

3.2 The Origin of Evolutionary Robotics . 20

3.3 Related Works . 21

3.4 Characteristics of Evolutionary Robotics 23

3.5 Artificial Evolution in Swarm Robotic Systems 25

iii

iv

3.6 Controller Design . 27

3.7 Bootstrap Problem . 27

3.8 Summary . 30

4 Complex Networks 31
4.1 Introduction . 31

4.2 Example of Networks . 31

4.3 Modularity and Community Structure in Networks 32

4.4 Modularity Optimization . 34

5 Neuroevolution Based on Covariance Matrix Adaptation Evolution Strategy 37
5.1 CMA-NeuroES . 37

5.2 Simulation Experiment with 10 robots . 39

5.2.1 Cooperative Package Pushing Problem 39

5.2.2 Results . 41

5.2.3 Cooperative Food Foraging Problem 47

5.2.4 Results . 47

5.3 Simulation Experiment with 100 robots 49

5.3.1 Cooperative Food Foraging Problem 49

5.3.2 Robot Setup . 50

5.3.3 Experimental Setup . 53

5.3.4 Apply Incremental Evolution to CMA-NeuroES 55

5.3.5 Results . 57

5.3.6 Robustness Test . 58

5.4 Summary . 61

6 Understanding Autonomous Task Allocation by a Clustering Approach 68
6.1 Introduction . 68

6.2 Analysis Method . 72

6.2.1 Extracting Subgroups . 72

6.2.2 Analysis Based on Time Duration 74

6.2.3 Test Method of Contingency Table 75

v

6.2.4 Behavior Category . 76

6.3 Results . 78

6.4 Summary . 81

7 Conclusion 83

Chapter 1

Introduction

1.1 Background

Swarm robotics (SR) (Şahin, 2005) is a novel approach inspired by the observation of

social insects, such as ants and wasps. These examples of social insects show that simple

individuals can successfully accomplish difficult tasks when they coordinate as a group.

Recently, swarm robotics gathered much attention in the research community. By drawing

inspiration from social insects and other self-organizing systems, it focuses on large robot

groups featuring distributed control, adaptation, high robustness and flexibility. Various

reasons lay behind this interest in similar multi-robot systems.

Above all, inspiration comes from the observation of social activities, which are based

on concepts like division of labour, cooperation and communication. If societies are orga-

nized in such a way in order to be more efficient, then also robotic groups could benefit

from similar paradigms.

Constructing tools from a collection of individuals is not a novel endeavor for man. A

chain is a collection of links, a rake is a collection of tines, and a broom is a collection

of bristles. Sweeping the sidewalk would certainly be difficult with a single or even a few

bristles. Thus there must exist tasks that are easier to accomplish using a collection of

robots, rather than just one.

A multi-robot approach can have many advantages over a single-robot system. First, a

monolithic robot that could accomplish various tasks in varying environmental conditions

1

2

(a) A group of ants build a bridge between two leaves.
(www.independent.co.uk)

(b) A group of red harvester ants scurrying to carry a
large worm back to their nest. (en.wikipedia.org)

Figure 1.1: Cooperative collective behavior of ants

is difficult to design. Moreover, the single-robot approach suffers from the problem that

even small failures of the robotic unit may prevent the accomplishment of the whole task.

On the contrary, a multi-robot approach can benefit from the parallelism of operation to be

more efficient, from the versatility of its multiple, possibly heterogeneous, units and from

the inherent redundancy given by the usage of multiple agents.

Swarm robotics pushes the cooperative approach to its extreme. It represents a theoreti-

cal and methodological approach to the design of ”intelligent” multi-robot systems inspired

by the efficiency and robustness observed in social insects in performing collective tasks

[8]. Collective motion in fish, birds and mammals, as well as collective decisions, synchro-

nization and social differentiation are examples of collective responses observed in natural

swarms. In all these examples, the individual behavior is relatively simple, but the global

system behavior presents complex features that result from the multiple interactions of the

system components. Similarly, in a swarm robotics system, the complexity of the group

behavior should not reside in the individual controller, but in the interactions among the in-

dividuals. Thus, the main challenge in designing a swarm robotics system is represented by

the need to identify suitable interaction rules among the individual robots. In other words,

the challenge is designing the individual control rules that can lead to the desired global

behavior.

3

The expression swarm intelligence was first conceived by Beni to denote a class of

cellular robotic systems in 1980s. These works used many simple agents occupy one-or

two-dimensional environment to generate patterns and self-organize there nearest-neighbor

interactions. At that time, the definition swarm intelligence only marginally covers works

on cellular robotic systems, which does not take the inspiration from social insect behav-

ior. Recently, the expression ”swarm intelligence” moved on to cover a wide range of re-

searches from optimization to social insect studies, losing its robotics context in the mean-

time. Nowadays, the term SR has started to be used as the application of swarm intelligence

to multi-robot systems. This concern was first explicitly started by Sahin in 2005.

As previously mentioned before, an SRS must have three functional properties at the

system level that are observed in natural swarms:

Robustness is the ability to operate despite disturbances resulting from the malfunc-

tioning of its individuals. For instance, lost individuals can be immediately replaced by

others, so that the operation will continuing smoothly. This is seen as the key advantage of

the SRS approach (Şahin and Winfield, 2008) (Şahin et al., 2008).

Flexibility is the ability of an SRS to generate modularized solutions to various tasks,

meaning that an SRS must be able to adapt their behaviors to different environments.

Scalability is the ability of an SRS to operate with a wide range of group sizes and

support a large number of individuals.

The concept of swarm engineering was introduced by Kazadi (Kazadi, 2000) in 2000

and the first formal introduction of swarm engineering was released by Winfield et al. in

2004 (Winfield et al., 2004). Researchers indicated that finding a predictable and control-

lable design methodology for swarms is the core research direction of swarm engineer-

ing (Bonabeau et al., 1999) (Beni, 2005). Today, although swarm engineering is still in a

very early stage, core topics of swarm intelligence, the design, and analysis have already

received attention from SR researchers. The notable swarm-bots project (Dorigo et al.,

2005) was began in 2001 and terminated in 2005, and was followed by the swarmanoid

projrect in 2006 (Dorigo et al., 2013). New approaches to the design and implementation

of self-organizing and the self-assembling problem of autonomous robots were studied in

the project (Soysal and Şahin, 2007).

4

1.2 Goal of the Thesis

As mentioned in the background section, there are two fundamental problems: the hot topic

design problem and the undeveloped area analysis problem. These two problems consist

of defining the appropriate individual rules that will lead to a certain global pattern and

analyzing the generated collective behavior.

In this thesis, we focused on an automatic technique called evolutionary robotics ap-

proach for generating robust controllers for a robotic swarm, based on artificial evolu-

tion (Fogel et al., 1966; Holland,1975; Schwefel, 1981; Goldberg, 1989). As benchmark

problems of SR, the cooperative transport and the cooperative food foraging problem are

investigated. Specifically, we focused on the covariance matrix adaptation evolution strat-

egy (CMA-ES) with an artificial neural network to develop an efficience approach, CMA-

NeuroES, for an SRS to solve cooperative food foraging problems (Martinoli et al., 2004).

However, when an evolutionary approach meets a complex task like food foraging prob-

lem, it is typical that a simple ER strategy will face a situation that all individuals of the

first generation are scored with the same null value; moreover, the selection process cannot

operate as expected. This is called bootstrap problem which very often occurs to difficult

tasks. To avoid this kind of failure, an incremental evolution approach with staged evolu-

tion and environmental complexification for a cooperative food foraging task is adopted.

In addition, an SRS can work dynamically as the individual robots are deployed respec-

tively. This kind of decentralized control ensures that SRS has no common failure point.

The failure of individual robots will hardly affect SRS performance. The resulting high-

level robustness contrasts with the high engineering cost of fault tolerance in conventional

robotics systems, and this is free as a basic property of an SRS. Consequently, we compare

the best controllers evolved by CMA-NeuroES with two other evolutionary algorithms, fast

evolution strategies (FESs) (Back et al., 1991) (B ack and Schwefel, 1993) and real-coded

genetic algorithms (GAs), (Goldberg, 1989) through random breakdown tests in computer

simulations. As an intrinsic property of SRS, we want to find out whether the loss of some

individuals can be compensated for by others or not and also whether the destruction of a

particular part of the swarm is will stop its operation or not.

Furthermore, an analysis method inspired from the field of complex networks is applied

5

to a network associated with a SRS which is drawn by assuming that nodes are robots

and links are informational connections with two nearest robots after we generating the

collective behavior of a cooperative food foraging problem. This analysis method makes

it possible for us to extract the subgroups in a robotic swarm. Applying this method with

the concept of behavioral sequence inspired from ethology, we are possibly to observe task

allocation of a cooperative food foraging problem.

1.3 Structure of the Thesis

The structure of the thesis are organized as follows.

The research field of swarm robotics system are introduced in chapter 2, which we

talk about the definitions of SRS and introduce some typical works done by the pioneers

researchers around the world from both the design methodology and the analysis method-

ology. This chapter also introduces the benchmarks of SRS and we will explain why re-

searchers take the cooperative food foraging task as the most difficult benchmark problems

in the field of SRS.

Chapter 3 investigates the concept of evolutionary robotics and artificial neural net-

works, which we applied ER approach to design the controller of SRS. In this chapter, we

introduce both the concept and the advantage of ER. The related works of ER also men-

tioned here and at last we explain the reason why we focused ER approach to apply solve

benchmarks of SRS.

Chapter 4 explains about the details of complex networks, as we proposed an analysis

method from the field of complex networks, this chapter gives an overview of complex

networks. Although most of the related works in this field are about social networks anal-

ysis, we find out that the SRS can be regard as a large network and it is possible to apply

complex network approaches to analyze the behavior of SRS.

In chapter 5, we propose our design method called the neuroevolution based covariance

matrix adaptation evolution strategy (CMA-ES) to a cooperative transport problem and

two cooperative food foraging problem. As we mentioned above, the bootstrap problem

occurs when our proposed method meets a specific cooperative food foraging problem. As

a result, we apply incremental evolution to extended our ANN controller so that we get

6

the most robust controller ever of our research group. The results are compared with other

evolutionary algorithms like, genetic algorithm, evolutionary strategies, and diffierencial

evolution.

The proposed analysis method was applied to the cooperative food foraging task in

chapter 6. A clustering method inspired from the field of complex networks is applied to

a network associated with a SRS helps us to find some subgroups of robots. Applying this

method with the concept of behavioral sequence inspired from ethology, we are possibly to

observe task allocation of a cooperative food foraging problem with a SRS.

Finally, conclusions for this thesis are given in chapter 7.

Chapter 2

Swarm Robotic Systems

In this chapter, the definition of swarm robotic systems is introduced at first. And then, the

properties of swarm robotic system, the history of this research field and the benchmark of

swarm robotic systems are described.

2.1 Introduction

Social insects stand as fascinating examples of how collectively intelligent system can be

generated from a large number of individuals. Despite noise in the environment, errors in

the processing information and in performing tasks, and the lack of global communication

system, social insects can coordinate their actions to accomplish tasks that are beyond the

capabilities of a single individual: termites build large and complex mounds, army ants

organize impressive foraging raid, ants can collectively carry large prey.

In the last decade, swarm robotics gathered much attention in the research community.

By drawing inspiration from social insects and other self-organizing systems, it focuses

on large robot groups featuring distributed control, adaptation, high robustness and flexi-

bility. Various reasons lay behind this interest in similar multi-robot systems. Above all,

inspiration comes from the observation of social activities, which are based on concepts

like division of labour, cooperation and communication. If societies are organized in such

a way in order to be more efficient, then also robotic groups could benefit from similar

paradigms.

7

8

A multi-robot approach can have many advantages over a single-robot system. First, a

monolithic robot that could accomplish various tasks in varying environmental conditions

is difficult to design. Moreover, the single-robot approach suffers from the problem that

even small failures of the robotic unit may prevent the accomplishment of the whole task.

On the contrary, a multi-robot approach can benefit from the parallelism of operation to be

more efficient, from the versatility of its multiple, possibly heterogeneous, units and from

the inherent redundancy given by the usage of multiple agents (Jones and Mataric, 2006) .

Swarm robotics pushes the cooperative approach to its extreme. It represents a theoret-

ical and methodological approach to the design of intelligent multi-robot systems inspired

by the efficiency and robustness observed in social insects in performing collective tasks.

Collective motion in fish, birds and mammals, as well as collective decisions, synchro-

nization and social differentiation are examples of collective responses observed in natural

swarms (for some recent reviews, see (Camazine et al., 2001) (Franks et al., 2002) (Couzin,

2007) (Couzin and Krause, 2007) (Sumpter, 2006). In all these examples, the individual

behavior is relatively simple, but the global system behavior presents complex features

that result from the multiple interactions of the system components. Similarly, in a swarm

robotics system, the complexity of the group behavior should not reside in the individual

controller, but in the interactions among the individuals. Thus, the main challenge in de-

signing a swarm robotics system is represented by the need to identify suitable interaction

rules among the individual robots. In other words, the challenge is designing the individual

control rules that can lead to the desired global behavior.

In the above perspective, self-organization is the mechanism that can explain how com-

plex collective behaviors can be obtained in a swarm robotics system from simple individ-

ual rules. In this context, a complex collective behavior should be intended as some spatio-

temporal organization in a system that is brought forth through the interactions among the

system components. Not every collective behavior is self-organized, though [9]. The pres-

ence of a leader in the group, the presence of blueprints or recipes to be followed by the

individual system components clashes with the concept of self-organization, at least at the

level of description in which leader or blueprints are involved. Another condition in which

a collective behavior cannot be considered self-organizing is when environmental cues or

heterogeneities are exploited to support the group organization. For instance, animals that

9

aggregate in a warm part of the environment following a temperature gradient do not self-

organize. But animals that aggregate to stay warm, and therefore create and support a

temperature gradient in the environment, do self-organize. In both cases, the observer may

recognize the presence of some structure (the aggregate) that correlates with the presence

of an environmental heterogeneity (the temperature gradient). However, the two examples

are radically different from the organizational point of view. Similar natural examples can

be easily given also for the presence of leader or blueprints, to show that not every collec-

tive behavior is self-organizing (Camazine et al., 2001). Both the leader or the blueprint

can be recognized as the place where the behavioral complexity of the group is centralized.

In other words, the complexity of the group behavior does not result from the multiple

interactions among the individual behaviors. Rather, the group behavior results from a fixed

pattern of interactions among the system components that is either decided beforehand (in

the case of a blueprint) or is centrally and/or continuously re-planned (in the case of a

leader). In both cases, there is limited room for adaptiveness to unknown, unpredictable

situations resulting from a highly dynamical environment, both physical and social.

2.2 The Origin of SRS

In 1980s, people are concentrated on the so called Cellar Robots (Fukuda and Nakagawa,

1989) that the designer just using very simple rules to generate the collective behavior of

robots, especially for its insects-like assemble behaviors.

At that time, the word ”swarm” was first used to the public. After that, ”Swarm Opti-

mization” like the Ant Colony Optimization (ACO)(Dorigo and Gambardella, 1997), Par-

ticle Swarm Optimization(PSO)(Kennedy and Eberhart, 1995) were released to the public

in the research field of optimization. Biologists also tried to analysis the swarm of termites,

ants and wasps to figure it out how these kinds of insects work together to build its nest or to

forage for food. Researchers also tried to simulate the model of these swarm(Theraulaz and Bonabeau,

1995). After this type of research, Dr. Beni found that the Cellular Robots follow very

simple rules, and although there is no centralized control structure dictating how indi-

vidual agents should behave, local, and to a certain degree random, interactions between

10

such robots lead to the emergence of ”intelligent” global behavior, unknown to the indi-

vidual agents, which was pointed out as a new research field: Swarm Intelligence (SI)

(Beni and Wang, 1989). The expression was introduced by Gerardo Beni and Jing Wang in

1989, in the context of cellular robotic systems.

Recently, the research field Swarm Robotic Systems (SRS) is regard as an application

of the Swarm Intelligence (SI) to the Multi-Robot Systems (MRS).

2.3 System-level properties

Swarm robotics is the study of how a large number of relatively simple physically embod-

ied agents can be designed such that a desired collective behavior emerges from the local

interactions among the agents and between the agents and the environment. The system-

level operation of a swarm robotic system should exhibit three functional properties that

are observed in natural swarms and remain as desirable properties of multi-robot systems.

• Robustness

The swarm robotic system should be able to operate despite disturbances from the en-

vironment or the malfunction of its individuals. A number of factors can be observed

in social insects behind the robustness of their operation. First, swarms are inherently

redundant systems; the loss of an individual can be immediately compensated by an-

other one. Second, coordination is decentralized and therefore the destruction of a

particular part of the swarm is unlikely to stop its operation. Third, the individuals

continue the swarm are relatively simple, making them less prone to failure. Fourth,

sensing is distributed, hence the system is robust against the local perturbations in

the environment (Fig. 2.1).

• Scalability

The swarm should be able to operate under a wide range of group sizes and support

large number of individuals without impacting performance considerably (Fig. 2.3

). That is, the coordination mechanisms and strategies to be developed for swarm

robotic systems should ensure that the operation of the swarm under varying swarm

sizes.

11

Figure 2.1: Robustness (It requires that the swarm robotic system should be able to con-
tinue to operate, although at a lower performance, despite failures in the individuals, or
disturbances in the environment.)

Figure 2.2: Flexibility (It requires the swarm robotic system to have the ability to generate
modularized solutions to different tasks. Swarm robotic systems should also have the flex-
ibility to offer solutions to the tasks at hand by utilizing different coordination strategies in
response to the changes in the environment.)

Figure 2.3: S calabilityrequires (Swarm robotic system should be able to operate under a
wide range of group sizes. That is, the coordination mechanisms that ensure the operation
of the swarm should be relatively undisturbed by changes in the group sizes.)

12

• Flexibility

The individuals of a swarm should be able to coordinate their behaviors to tackle

tasks of different nature (Fig. 2.2). For instance, the individuals in an ant colony can

collectively find the shortest path to a food source or carry a large prey through the

utilization of different coordination strategies.

2.4 Definitions of SRS

We pointed out that the SRS is an application of MRS, however it is not enough to make

people know what exactly SRS is. There are also some different branches of MRS, For ex-

ample, collective robotics (Kube and Zhang, 1997), distributed robotics (Yim et al., 2001)

and robot colonies (Arkin and Bekey, 1997). The Distinguishing characteristics of SRS are

showed as the follows:

• Physical embodiment

That means every single robot in the SRS should be able to physically interact with

their environment. The main emphasis in swarm robotics is the interaction between

the robots and its environment. Sensing, signaling and communications are the basic

interaction here (Akyildiz et al., 2002). The robots get signals through the sensors

and the physical interaction between robots or obstacles. Most of the time, a robot

system can not be called as SRS without sensor network (Akyildiz et al., 2002), how-

ever, researchers see the metamorphic robot system (Chirikjian, 1994) (Yim et al.,

2001) as a kind of SRS even the robots interact without centralized control.

• Large size

SRS should be scalable for a wide range of swarm size. That means not only one or

two robots, but more then ten robots to cooperate at the same swarm. Large numbers

of robots lead to the properties of scalability. The SRS can work with all of the robots

and can also work even some of the robots in the swarm have some problems. The

researchers also use a large number of robots to archive complex tasks and to analyze

the collective behavior of its swarm.

13

• Homogeneity

That is, the individuals that makes up the swarm should be rather identical, at the

level of interactions. Coordination strategies developed for heterogeneous multi-

robot systems, which consist of individuals that differ in their interactions due to their

physical embodiment or their behavioral control, fall outside of the swarm robotics

approach (Şahin and Winfield, 2008).

• Simple robots

The definition of simplicity does not refer to the hardware or software, but rather

meant to emphasize the limitations in their individual capabilities relative to the task.

A robot in the SRS cannot complete the task by itself without other robots’ coopera-

tion. The cooperation of a group of robots should be essential and the deployment of

a group of robots should improve the performance or robustness of the handling of

task.

• Local interaction

The members in a SRS should have basic local interaction abilities. This constraint

ensures that the coordination between the robots is distributed, and the coordination

abilities are adaptive with the size of the swarm. Mechanisms that rely on global

interaction capabilities is likely to be bounded by the bandwidth and the range of

communication channel and may develop unscalable coordination mechanisms.

2.5 Coordination Mechanisms

Researchers of biology show that there are a number of coordination mechanisms in natural

systems, in which two main coordination mechanisms are known as: self-organization and

stigmergy.

Self-organization is common in natural systems. It is defined as GA process in which

pattern at the global level of a system emerges solely from numerous interactions among the

lower-level components of the systemh (Camazine et al., 2001). Studies of self-organization

14

in natural systems show that an interplay of positive and negative feedback of local interac-

tions among the individuals is essential (Bonabeau et al., 1999). In these systems, positive

feedback is typically generated through autocatalytic behaviors; that is the change occurs

in the swarm-environment system by the execution of a behavior increases the triggering

of the very same behavior. In addition to these mechanisms, self-organization also depends

on the existence of randomness within the system and multiple interactions.

Studies of self-organization in natural systems often develop models that are built with

simplified interactions in the environment and abstract behavioral mechanisms in individ-

uals. The self-organization models of social insects and animals have already been used as

inspiration sources since, in a sense, swarm robotics can be considered as the engineering

and utilization of self-organization in physically embodied swarms.

Stigmergy was first proposed by Grasse (Grasse, 1959) to explain the coordination

mechanisms behind the building of nests in termites. Stigmergic communication is quite

common between social insects. Grasse showed that a particular configuration of a termite

colony’s environment can triggered a termite to modify its environment (drop a mud in a

particular place for building or maintaining the nest). The modification in turn stimulates

the original or other termites in colony to further transform its environment. Grasse made a

general definition of stigmergy as: the stimulation of the workers by the very performances

they have achieved. The stigmergy process has been observed in termites, ants, bees, and

wasps in a wide range of activities. As the SRS provides a local, distributed scalable com-

munication mechanism, it is the same to swarm robotics.

2.6 Research directions

2.6.1 Controller Design of SRS

The main problem of swarm robotic system can be stated as follows: How should one

design individuals, both in terms of their physical embodiment as well as their behavioral

control, such that a desired swarm-level behavior emerges from the interactions among

the individuals as well as between the individuals and the environment. This goal, which

can also be considered as the engineering of self-organization in multi-robot systems, is a

15

challenging task that is difficult, if not impossible, to solve in general terms. The studies

within this category can be grouped into two as: ad-hoc and principled approaches.

Although SRSs may be controlled by many different ways, they are categorized as

either ad hoc or principled. In the ad hoc approach, almost all robot behavior is prepro-

gramed by a human designer (Kube and Zhang, 1997) (Mataric, 1997) . Although the ad

hoc approach is much more widely used in SR research, we believe that there may be a

physical limit reachable for the human ability in programming all robot behavior when a

task is highly complex or a swarm is large enough. In this approach, the behaviors used as

inspiration sources are observed at a certain abstraction level that captures the essential pa-

rameters of these behavior needed to adapt to robots and yet reproduce similar swarm-level

behaviors.

The principled approach introduces a set of principles for generating robot behavior.

In principled approaches, instead of designing a specific swarm-level behavior, a general

methodology through which desired swarm-level behaviors can be used to build necessary

individual behaviors, is proposed or utilized. One of such approach is the use of artificial

evolution. In most of these studies, simple feedforward or recurrent multi-layer perceptrons

were used to encode the behaviors and that the evolved behaviors in the simulation envi-

ronment were later successfully transferred to the physical robot system. (Dorigo et al.,

2005). Relatively few such methods have been developed so far, but one widely used prin-

cipled approach is Evolutionary Robotics (ER), in which robot controllers are represented

by Evolving Artificial Neural Networks (EANNs) (Yao, 1999) (Floreano et al., 2008). Al-

though this is a minor approach, with few reports available, we feel that it has great potential

in freeing human beings from programming robot behavior.

ER performance clearly depends on the evolvability of EANNs. Classical EANNs are

defined as having a fixed topological structure for all generations and a fixed number of

evolving synaptic weights (Eiben et al., 2007) (Tuci et al., 2008). This approach matches

the classical methodology of evolutionary algorithms in the sense that conventional artifi-

cial evolution works under the condition of a fixed-length genotype. Given that the topo-

logical structure depends on evolution performance, a drawback exists in that human pro-

grammers must provide an appropriate topological structure beforehand based on intuition

and experience. Another approach, called Topology and Weight Evolving Artificial Neural

16

Networks (TWEANNs), has therefore been investigated. Among the several approaches

proposed thus far are GNARL (Angeline et al., 1994), EPNet (Yao and Liu, 1997), ESP

(Gomez and Miikkulainen, 1999), NEAT (Stanley and Miikkulainen, 2002), and EANT

(Siebel and Sommer, 2007). Our research group has proposed a TWEANN method called

the MBEANN (Mutation-Based Evolving Artificial Neural Network) (Ohkura et al., 2007).

MBEANN has been confirmed to yield better solutions to the cooperative package-pushing

problem with 10 robots (Ohkura et al., 2008), although the swarm size is considered the

minimum for an SRS. An SRS is generally expected to consist of a large number of robots

so that it can utilize its high redundancy to exhibit different strategies in different situations

to complete a given task. It is thus assumed that many situations exist in which only some

of the available robots are contributing directly. Accordingly, we frequently observe the

other robots doing something else other than helping the hard-working robots.

2.6.2 Analysis methods of SRS

Robotic swarms are highly redundant systems and controlled by a way of emergent syn-

thesis, to the best of our knowledge, no methods are available for grasping the collective

behavior of robotic swarm in a macroscopic manner so far. However, analyzing collec-

tive behavior can be useful to develop more sophisticated swarm robotic systems. From

the viewpoint that biological swarms perform task allocation suitable for situations, we

have developed a technique for extracting autonomous specialization developed in a robotic

swarm (Harvey et al., 1997). This technique can extract subgroups consisting of robots that

play the same role for a given situation. A robotic swarm is regarded as a network according

to the interaction between robots, and divided into subgroups by using a clustering method.

2.7 Benchmark Problems

During the last ten years, most of the SRS researches are still at the computer simulation

level to complete benchmark tasks or examine the properties of SRS. This subsection would

introduce some basic tasks of SRS.

• Aggregation

17

Aggregation is a common behavior observed in organisms ranging from bacteria to

social insects and mammals. That means the grouping of individuals of a swarm into

a cluster without using any environmental clues. In SRS, this is a precursor to other

behaviors such as flocking and self-assembly. Aggregation behaviors were developed

for myopic robots (Dorigo et al., 2005) (Soysal and Şahin, 2007), robots perceive

only a small part of the environment, confined in a large arena using evolutionary

approaches the same as controllers inspired from social insects.

• Dispersion

This kind of tasks are regard as the opposite side of aggregation and it often of in-

terest in surveillance scenarios. Researchers challenged to obtain uniform spread-

ing of a swarm of robots into a space maximizing the area covered which remain-

ing connected through some form of communication channel. (Payton et al., 2005)

(Payton et al., 2001) (Christensen et al., 2007)

• Foraging

This problem is inspired from the behavior of ants which search for food sources

distributed around their nest and bring them back to the nest. In this problem, the

difficulty is to find the optimum search strategies that let the robots have enough

time or space to return food sources. different foraging strategies were explored and

analyzed in terms of performance (Sugawara and Sano, 1997) (Krieger et al., 2000)

(Liu et al., 2006) and the modelling of foragaing were developed. (Lerman et al.,

2002) (Hamann and Worn, 2006)

• Self-assembly

This behavior is also observed in ants, where they form chains through connecting

to each other to build bridges or float-like structures to stay above water. The task

of self-assembly means to create the structures through the formation of physical

connections among a swarm of individual robots. Self-assembly has been studied

in physical robots (Christensen et al., 2007) (Grady et al., 2007) such that a desired

self-assembled structure is formed.

18

• Connected movement

This problem can be described as follows: How can a swarm of mobile robots, phys-

ically connected to each other, coordinate their movement such that the group moves

smoothly in an environment and avoids environmental obstacle, such as holes, in a

coordinated way. This problem has been studied by Trianni et al. (Dorigo et al.,

2005) within the Swarm-bots project. In this study, evolutionary approach was used

to develop behaviors that can control a number of connected robots to avoid holes

within the environment. The robots, which are physically connected to each other

through their grippers, were able to sense the forces acting on their bodies through

traction sensors and were able to feel holes underneath them.

• Cooperative transport

Ants are known to transport large preys to their nest through coordinating their push-

ing and pulling actions. Such a coordination ability is obviously valuable for swarm

robotic systems since it allows individuals to join forces generating a combined force

large enough to pull a heavy object. This problem is partially related to the connected

movement, with the difference that it includes a passive object that needs to be trans-

ported. In (Dorigo et al., 2004) a recurrent neural network controller is evolved to ob-

tain solitary and group transport behaviors in a physics based simulator. The robots

used the angular position of the goal (marked with a light source), the distance and

angular position of prey and a connection sensor which indicates whether the robot

is connected to other robots or not, were used to control the motors of the robot.

• Pattern formation

This is a rather generic term for the problem of how a desired geometrical pattern

can be obtained and maintained by a swarm of robots without any centralized coor-

dination. The problem can be categorized into two; namely geometric and functional

pattern formation. In geometric pattern formation problem, the challenge is to de-

velop behaviors such that individuals of a swarm form a desired geometrical pattern,

similar to the formation of crystals. In this task, the environment is assumed to be

uniform and that the focus is on the use of inter-robot interactions to create such

19

patterns. In functional pattern formation, the pattern to be formed is dictated by the

environment. In natural swarms, encircling of a prey by a group of predators or the

formation of pulling chains by weaver ants can be considered as examples of func-

tional pattern formation, where the geometrical shape or size of the patterns formed

are partially determined by the task at hand.

• Self-organized construction

This problem can be formulated as follows: How can a number of passive objects,

randomly distributed in an environment, can be clustered together by a swarm of

robots. This problem, sometimes also being referred as aggregation has been one

of first problems studied. Beckers et al. (Beckers et al., 1994) studied how a swarm

of physical robots can cluster frisbees spread in an environment, and showed that

despite the lack of communication and signaling among robots, frisbee clusters can

be obtained.

2.8 Summary

In this chapter, we introduced the concept of swarm robotic systems by describe the origin

of SRS and what properties should a swarm robotic system contain. We also provided a

brief review of swarm robotics as a new approach to the control and coordination of multi-

robot systems. We stated the inspirations behind this approach, the desirable properties,

and the requirements to clarify the defining characteristics of this approach in relation to

other existing studies.

Chapter 3

Evolutionary Robotics

3.1 Introduction

The topic of this chapter is evolutionary robotics (ER) and evolutionary algorithms (EAs)

which EAs are used for generating and optimizing the artificial brains of robots. Evolu-

tionary Robotics is the application of artificial evolution to robotic systems with a sensory-

motor interface to the world. EAs are methods for search and optimization based on dar-

winian evolution, which will be described further in the later section.

3.2 The Origin of Evolutionary Robotics

Evolutionary robotics is a new technique for the automatic creation of autonomous robots.

Inspired by the Darwinian principle of selective reproduction of the fittest, it views robots

as autonomous artificial organisms that develop their own skills in close interaction with the

environment and without human intervention. Drawing heavily on biology and ethology,

it uses the tools of neural networks, genetic algorithms, dynamic systems, and biomorphic

engineering. The resulting robots share with simple biological systems the characteristics

of robustness, simplicity, small size, flexibility, and modularity.

The term evolutionary robotics has been introduced only quite recently (Cliff, Harvey

and Husband) (Cliff et al., 1993), but the idea of this kind of control system of a robot as

an artificial chromosome subject to the laws of genetics and of natural selection dates back

20

21

to the end of the 1980’s when the first simulated artificial organisms with a sensory motor

system began evolving on computer screens. At that time, however, real robots were still

machines that requires accurate programming efforts and careful manipulation, Toward the

end of that period, a few engineers began questioning some of the basic principles of robot

design and came up with a new generation of robots that shard important characteristics

with simple biological systems. Above all, these robots were designed so that they could

be programmed and controlled by people with different backgrounds and levels of technical

skills. In the year 1992 and 1993, the first experiments on artificial evolution of autonomous

robots were reported by the team at the Swiss Federal institute of Technology in Lausanne,

by a team at the University of Sussex at Brighton, and by a team at the University of

Southern California. The success and potentials of these researches triggered a whole new

activity in evolutionary robotics in labs across Europe, Japan, and the United States.

In very last few years ER has gathered the interest of a large community of researchers

with different research interests and backgrounds. Continuous investment, growth, and

progress in ER has caused a substantial maturation of the methodology and of the issues

involved, and at the same time has generated a diversification of the basic methodology.

3.3 Related Works

Important work on an evolutionary approach to agent control using neural networks has

been done by Beer and Gallagher. They explore the evolution of continuous time recurrent

neural networks as a mechanism for adaptive agent control using as example tasks chemo-

taxis and locomotion control for a six legged insect like agent. The networks are based

on the continuous. Hoped model but allow arbitrary recurrent connections. They used a

standard genetic algorithm (GA) to determine neuron time constants and thresholds and

connection weights. Axed number of network parameters are encoded in a straightforward

way on bit string genotypes. They report success in their objectives in the case of locomo-

tion control controllers were evolved that in practice generated a tripod gait front and back

legs on one side in phase with the middle leg on the opposite side. This was achieved both

with and without the use of sensors which measured the angular position of each leg.

Beer develops a dynamical systems perspective on control systems for autonomous

22

agents in fenced by early work in Cybernetics. In further developments of their evolution-

ary approach. Yamauchi and Beer evolve networks which can control autonomous agents

in tasks requiring sequential and learning behavior. The prime focus of Beers use of arti-

ficial evolution is as a means of developing models of simple nervous systems in order to

test theories of how real nervous systems may work.

Colombetti and Dorigo use Classier Systems (CSs) for robot control. In this work the

leeches implementation is used to build a hierarchical architecture of CSs one for each

desired behavior plus a coordinating CS. Results are reported which have been generated

in simulations and then transferred to a real robot.

Floreano and Mondada were able to run a GA on a real robot in real time rather than

a simulation they used the Khepera robot developed at Lausanne. The GA set the weights

and thresholds in a simple recurrent network where every sensory input was connected to

both motor outputs. The task was to traverse a circular corridor while avoiding obstacles

and this work demonstrates that with well designed equipment it is possible to avoid the

problems associated with simulations.

In related work with Nol similar experiments were performed to compare evolving in

simulation with using a real Khepera robot. The problem of transferring control systems

evolved in simulation over to the real robot was discussed. One approach advocated was

that of continuing the evolution for some time further on the real robot to compensate for

any inadequacies in the simulation. In contrast to Beers primarily scientific motivation this

work primarily emphasizes the practical engineering problems.

Koza used the technique of Genetic Programming to develop subsumption architectures

for simulated robots engaged in wall following and box moving tasks. Craig, Reynolds

also uses Genetic Programming (GP) to create control programs which enable a simple

simulated moving vehicle to avoid collisions. He comments that these solutions are brittle

vulnerable to any slight changes or to noise. In further work where the testing includes

noise he reports that the brittleness problem is overcome and only compact robust solutions

survive.

23

3.4 Characteristics of Evolutionary Robotics

Evolutionary robotics shares many of characteristics with other approaches, such as behavior-

based robotics, robot learning, and artificial life.

• Behavior-Based Robotics

The behavior-based robotics approach is based upon the idea of providing the robot

with a collection of simple basic behaviors. The global behavior of the robot emerges

through the interaction between those basic behaviors and the environment in which

the robot finds itself (Brooks 1986,1999; Arkin 1998).(R.A.Brooks, 1986) (R.A.Brooks,

1999) (Arkin, 1998)Basic behaviors are implemented in separate subparts of the con-

trol system and a coordination mechanism is responsible for determining the relative

strength of each behavior in a particular moment. Coordination may be accomplished

by means of competitive or cooperative methods. In competitive methods only one

behavior affects the motor output of the robot in a particular moment. In cooperative

methods different behaviors may contribute to a single motor action although with

different strength.(Arkin, 1998)

In this approach, as in evolutionary robotics, the environment plays a central role

by determining the role of each basic behavior at any given time. Moreover, these

systems are usually designed through a trial and error process in which the designer

modifies the current behaviors and progressively increase the number of basic be-

haviors while testing the resulting global behavior in the environment. However,

evolutionary robotics, by relying on an automatic evaluation process, usually makes

a larger use of the trial and error process described above. Moreover, while in the

behavior-based approach the break down of the desired behavior into simpler basic

behaviors is accomplished intuitively by the designer, in evolutionary robotics this is

often the result of a self-organizing process. Indeed, the entire organization of the

evolving system, including its organization into subcomponents, is the result of an

adaptation process that usually involves a large number of evaluations of the interac-

tions between the system and the environment.

• Robot Learning

24

Robot learning is based on the idea that a control system can be trained using incom-

plete data and then allowed to rely on its ability to generalize the acquired knowledge

to novel circumstances. The general motivation behind this approach is that it may

produce better results than approaches based on explicit design, given the well known

difficulties of engineering behavioral systems. In some cases the neural control sys-

tem learns to perform a mapping between sensory inputs and motor states while in

other cases learning is used to develop subsystems of the controller. Different learn-

ing algorithms can be used for this purpose: back-propagation learning (Rumelhart

et al. 1986); reinforcement learning (Barto et al. 1995); classifier systems (Booker

et al. 1989); self-organized maps (Kohonen 1982), etc. These algorithms impose dif-

ferent constraints on the type of architecture that can be used and on the quantity and

quality of the supervision required from the designer. Evolutionary robotics shares

with these approaches the emphasis on self-organization. Indeed, artificial evolution

may be described as a form of learning. However, evolutionary robotics differs from

robot learning in two respects. The amount of supervision required by evolution is

generally much lower and the evolutionary method in principle does not introduce

any constraint on what can be part of the self-organization process.

• Artificial Life

Artificial life represents an attempt to understand all life phenomena through their

reproduction in artificial systems (typically through their simulation on a computer).

More specifically, artificial life provides a unique framework for studying how en-

tities at different levels of organization interact among themselves (Parisi 1997) al-

though at the cost of introducing crude simplifications. To attain this ambitious goal,

artificial life relies on the theory of complex dynamical systems and, from an exper-

imental point of view, on the power of computers. A complex dynamical system is

a system that can be described at different levels, in which global properties at one

level emerge from the interaction of a number of simple elements at lower levels.

Global properties are emergent in the sense that, even if they result from nothing else

but local interactions among the elements, they cannot be predicted or inferred from

a knowledge of the elements or of the rules by which the elements locally interact,

25

given the high nonlinearity of these interactions. Evolutionary robotics shares most

of these characteristics with artificial life, but it also stresses the important of using

physical robots instead of simulated agents.

By using real robots, several additional factors due to the physical properties of the

robot and of the environment must be taken into account (Brooks 1992). Moreover,

only types of sensors and actuators can be used. Similarly, the sensory inputs and

the motor out puts should necessarily correspond to physical measures or forces; that

is, they are grounded representations (Harnad 1990) and can not include any abstract

information truly available in the environment can be used for training.

3.5 Artificial Evolution in Swarm Robotic Systems

Evolutionary computational methods are inspired by the natural evolution. In nature, a

population of animals struggle to survive and produce the next generation. The principle

of survival of the fittest applies: individuals that are fitter within their environments are

more likely to survive and also more likely to produce offsprings, transferring their genetic

material to the next generation. By this way, nature eliminates weak individuals and the

population gets more adapted to the environmental conditions generation by generation.

Early studies on evolving behaviors for swarm robotic systems reported limited success

and expressed pessimistic conclusions. One of the earliest studies, Zaera et al. (Zaera et al.,

1996) used artificial evolution to develop behaviors for dispersal, aggregation, and school-

ing in fish. Although they had evolved controllers for dispersal and aggregation success-

fully; the performance of the evolved behaviors for schooling was considered not very

good, and they concluded that for complex actions like schooling, manual design of a con-

troller would require less time and effort than evolving one, mainly due to the difficulty of

determining a useful evaluation function for the specific task.

Mataric et al. (Mataric and Clifi, 1996) have made a comprehensive review of the stud-

ies until 1996 on evolving controllers to be used in physical robots and they have discussed

the key challenges. They addressed approaches and problems such as evolving morphol-

ogy or controller, evolving in simulation or with real robots, fitness function design, co-

evolution, and genetic encodings. They emphasized that for an evolved controller to be

26

beneficial, the effort to produce it in evolution should be less than the effort needed to man-

ually design a controller for the same robotic task. They stated that it has not been the

case, yet; but when the challenges and problems are handled, they may become a practical

alternative to controllers designed by hand.

Lund et al. used evolution to develop minimal controllers for exploration and homing

task in (Lund and Hallam, 1997). They evolved controllers for the Khepera robot (K-Team,

Switzerland) for the task considered where the robot was desired to leave a light source,

i.e., home, explore the surrounding for some time, and then return back home where it

is virtually recharged. To obtain this periodic behavior, they used sampled sensory input

and a minimal network architecture without recurrent connections, which can be used to

obtain the notion of return period. Instead their evolution exploited the geometrical shape

as perceived by robot and produced a suitable controller.

In contrast to some of these pessimistic conclusions, during the recent years optimistic

results are being reported on the evolution of swarm behaviors. In the Swarm-bots Project

(Dorigo et al., 2005), Baldassarre et al. successfully evolved controllers for a swarm of

robots to aggregate and move toward a light source in a clustered formation. Moreover, for

this specific task, several distinct movement types emerged: constant formation, amoeba

(extending and sliding), and rose (circling around each other). In (Dorigo et al., 2005),

Trianni et al. also evolved successful controllers for a swarm of robots that can grip each

other, called a swarm-bot, to fulfill tasks such as aggregation, coordinated motion in a com-

mon direction, cooperative transport of heavy loads (as in ants), and all-terrain navigation

to avoid holes (connected in swarm-bot formation). Their evolved controllers made use of

sound sensors, traction sensors, and flexible links. Trianni et al. has also identified two

types aggregation behaviors emerged from evolution: a dynamic and a static clustering be-

havior. In static clustering, robots move in circles until they are attracted to a sound source.

Then they bounce against each other until an aggregate is formed. The clusters are tight

and static with the robots involved turning on the spot, whereas in dynamic aggregation,

the clusters are loose and they flock around. This study is a good example of evolution of

different strategies, or behaviors, for a specific task. Furthermore, in (Dorigo et al., 2005)

Dorigo et al. evolved aggregation behaviors for a swarm robotic system. They analyzed

two of the evolved behaviors and showed that evolution was able to discover rather scalable

27

behaviors.

Despite these studies, the use of artificial evolution to generate swarm robotic behav-

iors for a desired task is a rather unexplored field of study. The effort in using evolutionary

methods can be reduced by suggestions on choosing parameters required in applying ar-

tificial evolution to swarm robotics. To the best of our knowledge, no systematic study

has been made to investigate effects of parameters to help such choices. In this study, we

addressed this lack of systematic analysis studies to deduce some rules of thumb on the

choice of some parameters used in evolution of swarm robotic behaviors.

3.6 Controller Design

The control operate of evolutionary robotics is as follows:

1. An initial population of different artificial chromosomes, each encoding the control

system of a robot, are random create and put in the environment.

2. Each robot is then let free to act (move, look around, manipulate) according to

a genetically specified controller while its performance on various tasks is automatically

evaluated.

3. The fittest robots are allowed to reproduce by generating copies of their genotypes

with the addition of changes introduced by some genetic operators (mutations, crossover,

duplication).

4. Repeat step 2 for a number of generations until an individual is born which satisfies

the performance criterion (fitness function) .

In this chapter, we thesis, we aimed at applying artificial neural networks to evolution-

ary robotics.

3.7 Bootstrap Problem

Evolutionary algorithms have been widely used to design controllers, and especially neuro-

controllers, for robots (Murphy et al., 2000) (Şahin, 2005) (Şahin and Winfield, 2008).

Compared to other learning methods, one of their main strength is their ability to evolve

both the structure and the parameters of complex architectures using a high-level reward

28

Gen.0

Gen.1

Gen.n

Select

Reproduce

Mutate

Select

Reproduce

Mutate

Candidate for solution

Select

Reproduce

Mutate

Decode

Decode

Decode

Controll system

Evaluation

Population

Figure 3.1: Basic Evolutionary Robotics methodology

29

function. However, this huge amount of work hides many unsuccessful attempts to evolve

complex behaviors by only rewarding the performance of the global behavior. The boot-

strap problem is often viewed as the main cause of this difficulty, and consequently as

one of the main challenges of evolutionary robotics: if the objective is so hard that all

the individuals in the first generation perform equally poorly, evolution cannot start and

no functioning controllers will be found. For instance, it has been found hard to evolve

a light-seeking behavior for a robot in a complex arena without having first evolved an

obstacle-avoidance reflex (Şahin et al., 2008).

In consequence, many researchers added some kind of rewards for intermediate steps,

leading to successful incremental evolution processes (Şahin and Winfield, 2008) (Kube and Zhang,

1997). Nonetheless, these evolutionary approaches rely on some assumptions that require

an accurate knowledge of the problem to solve and can lead the evolutionary algorithm to

a local extremum. Most of them, for instance, require to precisely order the different sub-

tasks or to determine when to switch from a sub-task to another one. These biases prevent

them from scaling up well to more complex or more open tasks; remarkably, most of them

have been tried with only two or three sub-tasks.

Another idea to bootstrap an evolutionary process is to efficiently explore the neighbor-

hood of current candidate solutions to find one with a non-minimal fitness. This concept is

close to diversity-preserving mechanisms, widely investigated in evolutionary computation

(Dorigo et al., 2005), which typically rely on a distance between the genotypes or the phe-

notypes. However, such distances are conceptually and computationally difficult to employ

with complex structures as neural networks.

Drawing inspiration from these diversity-preserving mechanisms and adapting them

to evolutionary robotics, we introduce in this paper the behavioral diversity, an original

method to maintain the diversity in a population that relies on a distance between be-

haviors and a multi-objective evolutionary algorithm (MOEA, (Crespi et al., 2008)). We

then show how such a diversity preservation mechanism can efficiently overcome the boot-

strap problem in an evolutionary robotics experiment in which a simulated robot that has

to successively reach some lights in an arena. As a reference point, we compare the re-

sults obtained using this new approach with the ones obtained with multi-subgoal evolution

(Beni and Wang, 1989), a recently published incremental method based on multi-objective

30

evolution.

3.8 Summary

This chapter described that the evolutionary robotics is the application of artificial evolution

to robotic systems. This approach is fit for robotic systems with a sensory-motor interface

to the world. The use of artificial evolution to generate swarm robotic behaviors for a

desired task is a unexplored field so far. The next chapter is the introduction of artificial

neural networks, which implement simplified models of their biological counterparts and

biological neural networks

Chapter 4

Complex Networks

4.1 Introduction

A network is, in its simplest form, a collection of points joined together A in pairs by lines.

In the jargon of the field the points are referred to as vertices’ or nodes and the lines are

referred to as edges. Many objects of interest in the physical, biological, and social sciences

can be thought of as networks and thinking of them in this way can often lead to new and

useful insights.

4.2 Example of Networks

One of the best known and most widely studied examples of a network is the Internet,

the computer data network in which the vertices are computers and the edges are physical

data connections between them, such as optical fiber cables or telephone lines. Figure 1.1

shows a picture of the structure of the Internet, a snapshot of the network as it was in

2003, reconstructed by observing the paths taken across the network by a large number of

Internet data packets traveling between different sources and destinations. It is a curious

fact that although the Internet is a man-made and carefully engineered network we don’t

know exactly what its structure is, since it was built by many different groups of people

with only limited knowledge of each other’s actions and little centralized control. Our best

current data on its structure are derived from experimental studies, such as the one that

31

32

produced this figure, rather than from any central repository of knowledge or coordinating

authority.

There are a number of excellent practical reasons why we might want to study the

network structure of the Internet. The function of the Internet is to transport data between

computers (and other devices) in different parts of the world, which it does by dividing

the data into pieces or packets and shipping them from vertex to vertex across the network

until they reach their intended destination. Certainly the structure of the network will affect

how efficiently it accomplishes this function and if we know the network structure we can

address many questions of practical relevance. How should we choose the route by which

data are transported? Is the shortest route always necessarily the fastest? If not, then what

is, and how can we find it? How can we avoid bottlenecks in the traffic flow that might

slow things down? What happens when a vertex or an edge fails (which they do with some

regularity)? How can we devise schemes to route around such failures? If we have the

opportunity to add new capacity to the network, where should it be added?

4.3 Modularity and Community Structure in Networks

Many systems of scientific interest can be represented as networks-sets of nodes or ver-

tices joined in pairs by lines or edges. Examples include the Internet and the worldwide

web, metabolic networks, food webs, neural networks, communication and distribution net-

works, and social networks. The study of networked systems has a history stretching back

several centuries, but it has experienced a particular surge of interest in the last decade,

especially in the mathematical sciences, partly as a result of the increasing availability of

large-scale accurate data describing the topology of networks in the real world. Statisti-

cal analyses of these data have revealed some unexpected structural features, such as high

network transitivity, power-law degree distributions, and the existence of repeated local

motifs.

Past work on methods for discovering groups in networks divides into two principal

lines of research, both with long histories. The first, which goes by the name of graph

partitioning, has been pursued particularly in computer science and related fields, with

applications in parallel computing and VLSI design, among other areas (Yim et al., 2001).

33

Figure 4.1: The network structure of the Internet. The vertices in this representation of
the Internet are ”class C subnets”-groups of computers with similar Internet addresses that
are usually under the management of a single organization-and the connections between
them represent the routes taken by Internet data packets as they hop between subnets. The
geometric positions of the vertices in the picture have no special meaning; they are chosen
simply to give a pleasing layout and are not related, for instance, to geographic position of
the vertices. Figure created by the Opte Project (www.opte.org).

34

The second, identified by names such as block: The vertices in many networks fall naturally

into groups or communities, sets of vertices (shaded) within which there are many edges,

with only a smaller number of edges between vertices of different groups. Modeling, hier-

archical clustering, or community structure detection, has been pursued by sociologists and

more recently also by physicists and applied mathematicians, with applications especially

to social and biological networks.

Community structure detection, by contrast, is per 2 haps best thought of as a data

analysis technique used to shed light on the structure of large-scale network datasets, such

as social networks, Internet and web data, or biochemical networks. Community structure

methods normally assume that the network of interest divides naturally into subgroups

and the experimenter’s job is to find those groups. The number and size of the groups is

thus determined by the network itself and not by the experimenter. Moreover, community

structure methods may explicitly admit the possibility that no good division of the network

exists, an outcome that is itself considered to be of interest for the light it sheds on the

topology of the network.

4.4 Modularity Optimization

Suppose then that we are given, or discover, the structure of some network and that we wish

to determine whether there exists any natural division of its vertices into nonover lapping

groups or communities, where these communities may be of any size.

Let us approach this question in stages and focus initially on the problem of whether

any good division of the network exists into just two communities. Perhaps the most ob-

vious way to tackle this problem is to look for divisions of the vertices into two groups

so as to minimize the number of edges running between the groups. This minimum cut

approach is the approach adopted, virtually without exception, in the algorithms studied

in the graph partitioning literature. However, as discussed above, the community structure

problem differs crucially from graph partitioning in that the sizes of the communities are

not normally known in advance. If community sizes are unconstrained then we are, for

instance, at liberty to select the trivial division of the network that puts all the vertices in

one of our two groups and none in the other, which guarantees we will have zero intergroup

35

edges. This division is, in a sense, optimal, but clearly it does not tell us anything of any

worth. We can, if we wish, artificially forbid this solution, but then a division that puts just

one vertex in one group and the rest in the other will often be optimal, and so forth.

The problem is that simply counting edges is not a good way to quantify the intuitive

concept of community structure. A good division of a network into communities is not

merely one in which there are few edges between communities; it is one in which there

are fewer than expected edges between communities. If the number of edges between two

groups is only what one would expect on the basis of random chance, then few thoughtful

observers would claim this constitutes evidence of meaningful community structure. On

the other hand, if the number of edges between groups is significantly less than we expect

by chance-or equivalently if the number within groups is significantly more-then it is rea-

sonable to conclude that something interesting is going on. This idea, that true community

structure in a network corresponds to a statistically surprising arrangement of edges, can be

quantified using the measure known as modularity (Bonabeau et al., 1999). The modularity

is, up to a multi-placative constant, the number of edges falling within groups minus the

expected number in an equivalent network with edges placed at random. (A precise math-

ematical formulation is given below.) The modularity can be either positive or negative,

with positive values indicating the possible presence of community structure. Thus, one

can search for community structure precisely by looking for the divisions of a network that

have positive, and preferably large, values of the modularity (Şahin, 2005).

The evidence so far suggests that this is a highly effective way to tackle the problem.

For instance, Guimer‘a and Amaral (Guimera and Amaral, 2005) and later Danon et al.

(Danon et al., 2005) optimized modularity over possible partitions of computer generated

test networks using simulated annealing. In direct comparisons using standard measures,

Danon et al. found that this method outperformed all other methods for community de-

tection of which they were aware, in most cases by an impressive margin. On the basis of

considerations such as these we consider maximization of the modularity to be perhaps the

definitive current method of community detection, being at the same time based on sensible

statistical principles and highly effective in practice.

Unfortunately, optimization by simulated annealing is not a workable approach for the

36

large network problems facing today’s scientists, because it demands too much computa-

tional effort. A number of alternative heuristic methods have been investigated, such as

greedy algorithms (Newman, 2004) and extremal optimization (Duch and Arenas, 2005).

Here we take a different approach based on a reformulation of the modularity in terms of

the spectral properties of the network of interest.

Chapter 5

Neuroevolution Based on Covariance
Matrix Adaptation Evolution Strategy

5.1 CMA-NeuroES

CMA-ES is evolutionary function optimization proven efficient for a variety of test func-

tions and benchmark problems (Hansen and Ostemeier, 1996). CMA-ES optimization is

based on mutation. Each solution point x(g)
k at generation g in this algorithm presents a

n-dimension real-valued decision variable vector. These variables are altered by recombi-

nation and mutation, which correspond to calculating the mean value of µ solution points

selected from offspring λ. In this algorithm, mutation is used to add a normally distributed

random vector with zero mean and the covariance matrix are updated during evolution to

improve searching. Formally, solution point x(g+1)
k of offspring k = 1, ... , λ created in

generation g are calculated by

x(g+1)
k = m(g) + N(g)

k (0, σ(g)2
C(g)) (5.1)

This is realized by adding a zero-mean random vector drawn from multivariate nor-

mal distribution specified with step size σ(g) and covariance matrix C(g). m(g) denotes the

mean value of the population in generation g and N(g)
k (0, σ(g)2

C(g)) is a multivariate normal

distribution with zero mean and covariance matrix C in the g-th generation.

37

38

CMA-ES efficiency is provided by self-adaptation of C and σ. This allows CMA-ES to

search efficiently in highly correlated search space. For details, see reference (Hansen and Ostemeier,

1996).

CMA-NeuroES is a weight evolving artificial neural network that applies CMA-ES to

weight optimization. Weight optimization of neural networks has highly correlated search

space. Since the adaptation of C allows efficient searching in the existence of correlation

between parameters, we expect that CMA-NeuroES would show good performance on the

optimization of the synaptic weights for our robot controller.

Every robot in our SRS have the same type of CMA-NeuroES controller. Each robot

gets 16 input information from the environment. Our robots act independently after cal-

culating different input data. Swarm behavior fitness is calculated from a fitness table to

evaluate a robotic swarm and then update mean value m, covariance matrix C and global

step-size σ. This is called a one-generation loop. CMA-NeuroES operates in five steps:

Algorithm 1 CMA-ES
1: procedure CMA–ES
2: Initialize:
3: x(g+1)

k ← 0, σ← σinit, C← I, g=0
4: while Stop condition is not satisfied do
5: for k=1 to λ do
6: x(g+1)

k = m(g) + N(g)
k (0, σ(g)2

C(g))
7: end for
8: select µ solution points from offspring λ
9: adapt mean value m(g) accordingly

10: adapt step size σ accordingly
11: adapt covariance matrix C accordingly
12: end while
13: end procedure

S tep 1: Set all synaptic neural network weights randomly at initial generation. If it is

not the first generation, create offspring from (1).

S tep 2: Start simulation, then evaluate the fitness of λ offspring by using the fitness

table.

S tep 3: Send fitness and µ parents to CMA-NeuroES to create new offspring, and

update all synaptic weights.

39

S tep 4: Choose synaptic weights with higher fitness as parents for the next generation.

S tep 5: Repeat step 1 to start a new generation until the terminal condition is met.

5.2 Simulation Experiment with 10 robots

5.2.1 Cooperative Package Pushing Problem

Experimental Setup

The purpose of the cooperative package pushing problem is that robots cooperate in push-

ing all three packages to the right side of the goal line within 2,000 time steps, which means

the center of a package should pass the goal line. The SRS is evaluated by points based

on rules in Table 5.1. A swarm gets 100 points when a robot touches a package. For each

package, a swarm also gets its moving distance of x axis’ s toward the goal line as a moving

points. When a package reaches a goal, a swarm gets 1,000 bonus points and the distance

that its x axis is to be moved.

The objective of the food foraging problem is to collect all food and bring it back to the

nest within 3,000 time steps. In a preliminary experiment, the swarm could not generate

foraging behavior because the swarm has got the same point no matter robots touched food

once then left or touched the food all the time. One of the key points in the foraging task

thus becomes how to increase chances for touch between robots with food. As a result, the

fitness function was changed as shown in Table 5.2. A swarm gets 0.1 points in each time

step when a robot touches a package. In the 3,000th time step, a swarm gets the same point

as the distance that packages are pushed toward the goal line. When food is collected, a

swarm gets 1,000 bonus points and the moving distance of its x axis. If the swarm solves

the food foraging problem successfully, it gets the same number of points as the remaining

Table 5.1: Fitness table for cooperative package pushing problem
robots touched packages +100

package move towards goal line + moving distance of x axis
packages goals + moving distance of x axis

bonus when a package goals + 1000

40

Table 5.2: Fitness table for food foraging problem
Robots touch packages +0.1/time step

Package moved towards nest + moving distance of x axis
Packages goals + moving distance of x axis

Bonus when goals + 1000
Bonus when problem complete + Left time steps

Table 5.3: 10-robot cooperative package pushing problem

Strategy Success Rate Max Fitness Point First Success Generation Average Evaluation Times
FES 7/10 12023 122 2100
FESplus 7/10 12056 48 1400
DE/rand/1/bin 7/10 11912 84 4900
CMA-NeuroES 10/10 12058 27 1820

time steps as a bonus.

To compare CMA-NeuroES with others approaches, we usedthree evolutionary algo-

rithms: (µ, λ)-FastES (FES) (Yao and Liu, 1997), (µ+λ)-FastES (FESplus) and differential

evolution (DE) (Storn and Price, 1997) are adopted. Three patterns in our cooperative pack-

age pushing experiment decrease the number of robots from ten to seven in simulation as a

preliminary experiment.

The parameter setting of the four evolutionary algorithms is as follows. FES parameter

setting: FES and FESplus have the same number of parents µ= 10, offspring λ= 70, strategy

parameter: [1e-8, 3.0], start from 1.0. DE parameter setting: we use the best-performing

DE parameter from our preliminary experiment. We tested DE by changing its crossover

constant (CR) from 0.0 to 1.0 and the select weighting factor (F) from 0.5 to 1.0 in the ten-

robot cooperative transport problem. As a result, the best-performing DE/rand/1/bin with

population NP=70, scale factor F =0.2 and crossover rate CR = 0.9 were chosen. CMA-

NeuroES parameters are set at the number of offspring λ= 70, initial standard deviation 0.2

and initial covariance matrix C= I.

41

Figure 5.1: Success rate of cooperative package pushing

5.2.2 Results

Fig. 5.1 shows success times for the cooperative package pushing problem. CMA-NeuroES

succeeds in all trials for the 10-robot and 9-robot experiments. When the success rate of

other algorithms decreased sharply in 8-robot and 7-robot experiments, CMA-NeuroES

still has a high success rate of 90% and 60%, respectively.

Results for the 10-robot cooperative package pushing problem are given in Table 5.3.

We get maximum fitness point information from Table 5.3 showing that the CMA-NeuroES

has the highest max fitness value. First success generation is the generation number that the

problem was solved at the first time in 10 trials and the fastest CMA-NeuroES takes only 27

generations to succeed. The average evaluation time here refers to the average search speed

of the algorithm. In this pattern, FESplus is fastest. Fig. 5.2 shows the learning history of

four evolutionary algorithms’ maximize and average fitness. Typical behavior observed in

one simulation trial for a robot swarm with a CMA-NeuroES controller is shown in Fig.

7. Robots pushed a package located nearest to the start line smoothly (Fig. 5.3(a)), then

robots started to separate into three subgroups to push all packages over the goal line at the

same time (Fig. 5.3(b)-5.3(f)).

Results for the 9-robot cooperative package pushing problem are shown in Table 5.4.

Max fitness of CMA-NeuroES is higher than that for other algorithms. FES is faster than

42

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

M
ax

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(a) 10 Robots Max Fitness in 10 trails

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

A
ve

ra
ge

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(b) 10 Robots Average Fitness in success
trails

Figure 5.2: Experiment results (10 robots)

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3

(d) Snapshot 4 (e) Snapshot 5 (f) Snapshot 6

Figure 5.3: Snapshot of cooperative behavior (10 robots)

FESplus in succeeding, but CMA-NeuroES still performs the best. FESplus again gets a

low average evaluation time for its fast search ability. Fig. 5.4 shows the learning history of

max and the average fitness for the four algorithms with 9 robots. By decreasing the number

of robots, the SRS must take more generations to succeed. Typical behavior observed in

one simulation trial for a SRS with a CMA-NeuroES controller is shown in Fig. 5.5. Robots

push a package located nearest to the start line (Fig. 5.5(b)). In this pattern, it becomes

impossible for robots to push three packages over the goal line at the same time due to

the shortage of robots. Snapshots in Fig . 5.5 shows that our SRS pushed the two small

packages first (Fig. 5.5(e)), and then robots turned back to cooperate to push the heaviest

package over the goal line (Fig. 5.5(f)).

43

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

M
ax

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(a) 9 Robots Max Fitness in 10 trails

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

A
ve

ra
ge

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(b) 9 Robots Average Fitness in success
trails

Figure 5.4: Experiment results (9 robots)

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3

(d) Snapshot 4 (e) Snapshot 5 (f) Snapshot 6

Figure 5.5: Snapshot of cooperative behavior (9 robots)

Results for the 8-robot cooperative package pushing problem are shown in Table 5.5.

Max fitness for CMA-Neuro ES is higher than that of others. The first success generation

is also as we expected that CMA-NeuroES has the over all fastest speed. FESplus with the

low success rate gets lower average evaluation time. Fig. 5.6 shows the learning history of

max and the average fitness for the 4 evolutionary algorithms with 8 robots. Some of these

robots have problem choosing which package to push at first as the time limitation lapses.

Typical behavior in one simulation trial for a robot swarm with a CMA-NeuroES controller

is shown in Fig. 5.7. This time, the robots starting by pushing the heavier packages first

(Fig . 5.7(b)), then pushing the two heavier to the goal line (Fig. 5.7(e)). After that, robots

44

Table 5.4: 9-robot cooperative package pushing problem

Strategy Success Rate Max Fitness Point First Success Generation Average Evaluation Times
FES 7/10 11704 91 12054
FESplus 8/10 11590 95 9044
DE/rand/1/bin 2/10 11231 106 13342
CMA-NeuroES 10/10 11782 48 6776

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

M
ax

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(a) 8 Robots Max Fitness in 10 trails

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

A
ve

ra
ge

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(b) 8 Robots average fitness in success trails

Figure 5.6: Experiment results (8 robots)

turn back and push the small package to the goal line (Fig. 5.7(f)). This may be recognized

as smart behavior coordinated by CMA-NeuroES.

A typical failure in the cooperate package pushing problem is shown in Fig. 5.7. At the

start, all robots move toward the first package, which requires five or more robots to move

it, and start to push it from the start position (Fig. 5.7(a)- Fig.5.7(b)). Robots then separate

into two groups to push two packages in front of them Fig. 5.7(c). 5 robots push the

largest packages toward the down side of the field while the other 3 robots push the second

package toward the goal line (Fig. 5.7(c)). After the 5 robots pushed the first package to the

down side, they left it and searched for a new package (Fig. 5.7(d)), with 4 of the 5 finding

the second package and one leaving the group and moving toward the goal line itself. The

robots separate into two groups and a single robot, with 5 robots trying to push the second

package to the goal line and 2 robots pushing the last package. The single robot passed the

goal line at that time (Fig. 5.7(e)). Two packages are successfully moved over the goal line

and the first package is still left in the field, when the time limitation is reached, meaning

that robots cannot behave so as to return to other packages (Fig. 5.7(f)). This failure infers

that to complete the problem, the robot controller should make full use of time and decide

45

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3

(d) Snapshot 4 (e) Snapshot 5 (f) Snapshot 6

Figure 5.7: Snapshot of cooperative behavior (8 robots)

Table 5.5: 8-robot cooperative package pushing problem

Strategy Success Rate Max Fitness Point First Success Generation Average Evaluation Times
FES 4/10 11420 144 13573
FESplus 5/10 11390 141 11221
DE/rand/1/bin 2/10 11231 106 13265
CMA-NeuroES 9/10 11494 64 11935

which package to push first.

As a result, we made the following hypotheses: the difficulty of this cooperate package

pushing problem is in letting robots learn to turn back and push the rest of the packages

because the shortage of robots make it impossible for them to goal at the same time. If

we continue decreasing the number of robots, we can see much more clearly that CMA-

NeuroES performs better in our problem. To test these hypotheses, we conducted a 7-robot

experiment as followed.

We decreased the robot number to 7 and increased time steps into 2,700 to avoid time

limitation failure. Result in Table 5.6 show that FES (1 success) and FESplus (1 suc-

cess) almost failed this time. DE (2 successes) performed better and CMA-NeuroES (6

successes) had the best performance. We also infer that CMA-NeuroES max fitness still

46

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3

(d) Snapshot 4 (e) Snapshot 5 (f) Snapshot 6

Figure 5.8: Snapshot of failed cooperative trial behavior (8 robots)

Table 5.6: 7-robot cooperative package pushing problem

Strategy Success Rate Max Fitness Point First Success Generation Average Evaluation Times
FES 1/10 11420 156 19890
FESplus 1/10 11390 106 18660
DE/rand/1/bin 2/10 11231 106 18950
CMA-NeuroES 6/10 10985 79 15830

increased very sharply and started to converge after the 130th generation, compared to the

other three.

Typical behavior observed in one simulation trial for a 7-robot swarm with a CMA-

NeuroES controller is shown in Fig. 5.8. Robots push three packages located nearest to the

start line (Fig. 5.8(a)-13(b)), pushing the heaviest package to the goal first (Fig. 5.8(d)) and

then turning back and separating into two groups to keep pushing the two small packages

to the goal (Fig. 5.8(d)- 5.8(f)). Based on this behavior, we concluded that robots with a

CMA-NeuroES controller do not just move forward to push the packages to the goal, but

also have learned to turn around and even separate into two subgroups and cooperate to get

packages to the goal.

47

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3

(d) Snapshot 4 (e) Snapshot 5 (f) Snapshot 6

Figure 5.9: Snapshot of cooperative behavior (7 robots)

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

M
ax

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(a) 7 Robots Max Fitness in 10 trails

 0

 2500

 5000

 7500

 10000

 12500

 0 50 100 150 200

A
ve

ra
ge

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(b) 7 Robots Average Fitness in success
trails

Figure 5.10: Experiment results (7 robots)

5.2.3 Cooperative Food Foraging Problem

5.2.4 Results

Results for the food foraging problem are summarized in Table 5.7. CMA-NeuroES suc-

ceeds 10 times in 10 trials again, with the success rate of the other algorithms 60% (FES),

70% (FESplus) and 20% (DE). We also get max fitness value information from Table 5.7

showing that CMA-NeuroES has the highest max fitness. The first success generation

shows the fastest succeed generation in 10 trials, the fastest CMA-NeuroES takes only 81

48

Table 5.7: Food foraging problem

Strategy Success Rate Max Fitness Point First Success Generation Average Success Generation
FES 6/10 15448 116 180
FESplus 7/10 15542 120 160
DE/rand/1/bin 2/10 15025 461 461
CMA-NeuroES 10/10 15613 81 98

generations to succeed. The average evaluation succeed generation means the average gen-

eration an algorithm requires to complete this problem. CMA-NeuroES only required 98

generations to overcome this problem, where as FES required 160 and FESplus required

180. DE performed the worst.

Typical behavior observed in one simulation trial for a SRS with a CMA-NeuroES

controller is shown in Fig. 5.11. Robots exit from the nest then all try to touch food (Fig.

5.11(b)). Three of them then start to bring the smallest food back to the nest (Fig. 5.11(c)),

while other robots are still contacting three food items still left in the field. As soon as three

robots complete collection of their first food, they turn back and work for the nearest food,

which requires five robots to move it (Fig. 5.11(d)-5.11(f)). The other two food items have

the same weight and require four or more robots to move them. Robots finally separate into

two groups and bring the last two food items back to the nest at the same time. Fig. 5.12

shows the learning history of the maximum and average fitness of the four algorithms in

the food foraging problem. As we increased the difficulty of the problem, CMA-NeuroES

showed fast evolution and a high success rate again. In the food foraging problem, even

the average fitness of CMA-NeuroES increased faster than that of the other evolutionary

algorithms.

Fig. 5.13 shows the history of step-size σ in 10 trials that represent the CMA-NeuroES

evolution path. From this figure, we infer that in the first 125 generations, most of the trials

involve searching for the global best optimize solutions by increasing searching distribu-

tion, the covariance matrix of CMA-NeuroES. All step-size σ started to decrease after 200

generations, which means CMA-NeuroES found the direction of the optimize solution area

that contains the best optimize solution. After that, all σ start to become convergent and

are seen to converge.

49

(a) Snapshot 1 (b) Snapshot 3 (c) Snapshot 4

(d) Snapshot 5 (e) Snapshot 6 (f) Snapshot 8

Figure 5.11: Snapshot of food foraging problem

 0

 2500

 5000

 7500

 10000

 12500

 15000

 0 50 100 150 200 250 300 350 400 450 500

M
ax

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(a) Food foraging problem max fitness in 10
trails

 0

 2500

 5000

 7500

 10000

 12500

 15000

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 F
itn

es
s

Generation

CMA-ES
FES

FESplus
DE

(b) Food foraging problem average fitness in
success trails

Figure 5.12: Experiment results (Food foraging problem)

5.3 Simulation Experiment with 100 robots

5.3.1 Cooperative Food Foraging Problem

The cooperative food foraging problem was inspired by the behavior of ants searching

for food sources and bringing the food to the nest. The task is to find better search

strategies that maximize the ratio of bringing food to the nest in a specified environment

(Sugawara and Sano, 1997) (Yu et al., 2013). Figure 6.1 shows the food foraging problem

we investigate in this thesis. The field is a 5,000×5,000 length square unit. The nest, a

1,000×1,000 square unit goal area, is located at the center of the field. One hundred au-

tonomous mobile robots are randomly placed in the nest as the initial condition. Three food

50

 0

 0.2

 0.4

 0.6

 0.8

 0 125 250 375 500

Generation

σ 1

σ 2

σ 3

σ 4

σ 5

σ 7

σ 8

σ 9

σ 10

Figure 5.13: Learning history of step-size σ

sources, F, are randomly placed in the field. Every robot is set to be able to move a food

source up to a five-unit weight. However, all of the food sources are 24-unit weight, which

means that one food source requires at least five robots to move it cooperatively in a spe-

cific direction. A new food source appears soon after one food source is collected during

5,000 time steps. Three obstacles are fixed in the field at a given point that we set in the

field. The large static friction we set for each obstacle are impossible for robots to move it,

which means the SRS must avoid these obstacles and maximize the ratio of bringing food

sources to the nest. The goal of cooperative food foraging task is that SRS should collect

as many food sources as possible.

5.3.2 Robot Setup

The SRS in this thesis is assumed to be homogenous, i.e., all the robots in the system are

assumed to have the same specifications, as shown in Figure 6.2. Each robot is 50 length

units in diameter and has two types of sensors: eight infrared (IR) sensors and an omni-

Vision camera. The eight IR sensors are arranged around a robot. 4 IR sensors equally

distributed in the front of the robot, and 2 IR sensors are equally distributed in the back of

51

Figure 5.14: The cooperative food foraging problem

robot. The other 2 IR sensors are set at two sides of the robot, separately. Each IR sensor

provides a value that is inversely proportional to the distance to an object, which might be a

food source, an obstacle, a wall, or other robots within the sensor range of 64 length units.

The values are normalized between zero and one. The omni-Vision camera is located at the

center of each robot.

The robot’s sensor abilities are summarized as follows:

• Distance from an IR sensor to objects: Oi(i = 0, 1, · · · , 7).

• Distance and direction to the nearest robot: rR1, sin θR1 and cos θR1.

• Distance and direction to the second nearest robot: rR2, sin θR2 and cos θR2.

• Distance and direction to the nearest food source: rF1, sin θF1 and cos θF1.

• Distance and direction to the second nearest food source: rF2, sin θF2 and cos θF2.

• Direction to the nest: sin θN and cos θN .

52

The second nearest
robot

The nearest
robot

The nearest
food

– IR sensor
– OmniVision camera

The second nearest food

Nest

x

y

Dθ

Fθ

Rθ

Nθ

Direction

rP

rR

Figure 5.15: Robot information

• Global direction of the robot: sin θD and cos θD.

Information obtained by the two types of sensor forms an input layer of a robot con-

troller comprising 24 inputs connected to a motor on the right and another motor on the

left that controls two differential driven wheels, enabling robot to move forward or to turn

left or right using the rotational difference between wheels. In addition, each input neuron

receives Gaussian noise, whose mean and standard deviation (SD) are 0 and 0.03, respec-

tively. Four fully inter-connected hidden layers are adopted from our preliminary experi-

ments for computer simulation. Because the two motor wheels are controlled by EANN

output, the output layer consists of two neurons. The neurons of recurrent artificial neural

networks (RANN) are connected as shown in Figure 6.3, as in our previous study (Yu et al.,

2013). Therefore, the number of synaptic connections is 162. All robots are assumed to

have the same RANN controller.

53

Figure 5.16: Artificial neural networks for robot controller

5.3.3 Experimental Setup

CMA-ES is a stochastic, iterative method for difficult nonlinear and nonconvex optimiza-

tion problems. It has been proven to be a powerful evolutionary optimization algorithm

for a variety of test functions, and benchmark problems, and it performs especially well

in searching landscapes with discontinuities, noise, and local optima (Hansen, 2011) (Igel,

2003).

CMA-ES was introduced by Hansen Ostermeier in 1996 (Hansen and Ostemeier, 1996),

and its use of covariance matrix adaptation made this evolution strategy a highly elaborate

optimization algorithm. After weighted recombination was introduced to CMA-ES in 2001

(Hansen and Ostemeier, 2001), the so-called rank-μ-update greatly reduced time com-

plexity (Hansen et al., 2003) in 2003. The performance of CMA-ES was improved after

researchers found that increasing the population size can enhance global search character-

istics (Hansen and Kem, 2004). In 2008, Raymond and Hansen presented a new approach

that reduces evaluation time and space complexity for CMA-ES (Ros and Hansen, 2008).

54

In CMA-ES, the offspring for the next generation (g + 1) are generated by sampling a

multivariate normal distribution with mean m ∈ Rn and covariance C ∈ Rn×n (Hansen et al.,

2010). Each solution point x(g+1)
k at generation (g + 1) in this algorithm presents an n-

dimensional real-valued decision variable vector. These variables are altered by recombi-

nation and mutation, which correspond to the calculation of the mean value of µ solution

points selected from offspring λ. In this algorithm, mutation is used to add a normally

distributed random vector with zero mean, and the covariance matrix is updated during

evolution to improve searching. Formally, solution points x(g+1)
k of offspring k = 1, ... , λ

created in generation g are calculated as Algorithm.

This is realized by adding a zero-mean random vector drawn from a multivariate normal

distribution specified with step size σ(g) and covariance matrix C(g). m(g) is the mean value

of the population in generation g, and N(g)
k (0, σ(g)2

C(g)) is a multivariate normal distribution

with zero mean and covariance matrix C in the g-th generation.

CMA-ES efficiency is provided by self-adaptation of C and σ. This allows CMA-

ES to search efficiently in a highly correlated search space. For details, see reference

(Hansen et al., 1995) (Hansen and Ostemeier, 1996) (Moriguchi and Honiden, 2012).

CMA-NeuroES is a weight-evolving artificial neural network that applies CMA-ES to

weight optimization. Since the adaptation of C allows efficient searching in the existence

of correlation between parameters, we expect that CMA-NeuroES will show good perfor-

mance on the optimization of the synaptic weights for our robot controller (Hansen, 2011)

(Hansen and Ostemeier, 1997) (Floreano et al., 2008).

Every robot in our SRS has the same type of CMA-NeuroES controller. Each robot

receives 16-input information from the environment. Swarm behavior fitness is calculated

from a fitness table to evaluate a robotic swarm and update the mean value m, covariance

matrix C and global step-size σ. CMA-NeuroES operates in five steps:

S tep 1: Set all synaptic neural network weights randomly at the initial generation. If it

is not the first generation, create offspring from (1).

S tep 2: Start the simulation, then evaluate the fitness of λ offspring by using the fitness

table.

S tep 3: Send fitness and µ parents to CMA-NeuroES to create new offspring, and

update all synaptic weights.

55

Table 5.8: Evaluation of SRS behavior
f1 Touching a food source +0.0015 × [time steps]
f2 A food source reaches the nest +3000
f3 A food source is moved toward the nest +1500 × (1 - drem/dinit)
f4 All foods reach the nest +1.0 × [remaining time steps]

S tep 4: Choose synaptic weights with higher fitness as parents for the next generation.

S tep 5: Repeat Step 1 to start a new generation until the terminal condition is met.

5.3.4 Apply Incremental Evolution to CMA-NeuroES

In evolutionary robotics approaches, the situation where no initial search pressures exist

can occur when solving highly complex tasks. The result of our experiment on CMA-

NeuroES with conventional evolution for the cooperative food foraging problem shows

that there are three runs wherein the SRS collected nothing. This situation, the bootstrap

problem in ER, occurs when all of the individuals in the initial generation are scored with

null fitness prohibiting the progress of evolution. Overcoming the bootstrap problem is one

of the difficulties in the ER approach.

Incremental evolution is an approach for solving bootstrap problems in highly complex

tasks with evolutionary approaches. Mouret and Doncieux (Mouret and Donciex, 2008)

categorized incremental evolution into four main approaches: staged evolution, environ-

mental complexification, behavioral decomposition, and fitness shaping.

Staged evolution is an approach in which an objective task is divided into ordered sub-

tasks, with every sub-task having a corresponding fitness function. A navigation task per-

formed with staged evolution was presented by Bajaj and Ang Jr. (Bajaj and Ang, 2000).

A mobile robot was placed in a simple environment wherein only one obstacle existed. The

fitness value was calculated using a straight navigation component and an avoiding obsta-

cles component. At a later stage, the robot was placed in a more complex environment, in

which closer walls and sharp turns had been added to the environment. The fitness value

was calculated in the same manner as that in the first stage. In the third and final stages, the

fitness value was calculated as the product of the value calculated in the previous stage and

the wall-following factor. The final result was that the robot acquired the wall-following

56

behavior.

Environmental complexification works on a fitness value calculation in which the task

complexity can be continuously modified by operating on certain parameters. A typical

example was presented by Gomez and Miikkulainen (Gomez and Miikkulainen, 1997) in

1997. The task was for a predator whose behavior was controlled by an evolving artificial

neural network to capture a prey within a fixed number of time steps.

Behavioral decomposition is an approach in which the robot controller is divided into

sub-controllers. Every robot controller is evolved separately to solve a sub-task. Nardi et al.

(Nardi et al., 2006) evolved a position controller for an autonomous helicopter with three

phases of incremental evolution. In the first phase, a simple yaw controller was evolved. In

the next phase, the rest of the controller, comprising three modules, specifically, guidance,

pitch, and role modules, was evolved independently. In the final phase, these modular

controllers were simultaneously evolved to enable them to adapt to each other.

Fitness shaping uses a weighted sum of multiple evaluation criteria to create a fitness

gradient for artificial evolution to follow. Nolfi and Parisi (Nolfi et al., 1995) evolved an

autonomous robot that picks up objects. They used a fitness formula with five components,

which correspond to the following scenarios: the robot is approaching the target object, the

target object is in front of the robot, the robot tries to pick up the object, the robot has the

object in its grasp, and the robot releases the object outside the area.

To improve the performance of the SRS in solving a complex cooperative food forag-

ing problem, we proposed staged evolution with environmental complexification using the

CMA-NeuroES approach. In our cooperative food foraging task, we assume that three ba-

sic behaviors, (1) food-exploration, (2) food-transportation, and (3) obstacle avoidance, are

required to solve our problem. Therefore, three-stage incremental evolution was provided,

as shown in Figure 6.6.

Sub-Task 1 is a very simple problem, in which all three food sources are placed in the

field without any obstacles in the environment. Every food source in Sub-task 1 requires

at least three robots to move it (The dynamical friction for every food sources is 14 power

units). The expectation is that SRS will acquire the basic behavior of food-exploration

and food-transportation to the nest, i.e., collect three food sources. When the SRS solved

Sub-Task 1, Sub-Task 2, in which two obstacles are added to the field and the positions of

57

food are changed is given to the SRS. The third basic behavior of obstacle avoidance will

be acquired after Sub-Task 2. At that time, every food sources needs at least four robots to

move it (We increased the dynamical friction to 19 power units).

Our simulation will then randomly add a source after the first food source is collected.

When the SRS has solved Sub-Task 2, a final task, Goal Task, in which two new obstacles

are placed into the field with a narrow path between them is posed. In that case, food

sources are too large to be moved through the narrow path. This trap makes our cooperative

food foraging task much more difficult. The SRS learns more advanced food-transportation

through obstacle avoidance behavior. In Goal Task, new food sources are randomly created

after each food source has been collected. Every food source in Goal Task requires at

least five robots to move it. In our cooperative food foraging task, task-transitions to the

next sub-task occur only when the SRS has solved the current sub-task continuously for

ten generations. The number of generations for task-transition has been optimized in our

preliminary experiment.

The performance of SRS was also evaluated using the four components shown in Table

5.8. In the case of Sub-Task 1, the fitness value f of the SRS is calculated as f1 + f2 + f3 + f4.

In the case of Sub-Task 2, the fitness value f is calculated as f2 + f3 + f4. The f1 is omitted,

because the SRS has already learned the aggregation behavior for food sources through

Sub-Task 1. In the case of Goal Task, the simulation will run 5,000 time steps to see how

many food sources the SRS can collected. The fitness value of Goal Task f is calculated as

f2+ f3, because the SRS has already learned to touch food sources, and food sources will be

added to the field continually during the 5,000-time step simulation.

5.3.5 Results

The performance of SRS is depicted by four components shown in Table 5.8. The SRS

collects 0.0015 at each robot and each time step when a robot touches one of the food

sources. The sum of the points is set at the f1 component. The SRS collects a bonus

point each time the swarm successfully returns to the nest with a food source. The sum

of the points is set at the f2 component. However, since there can be cases wherein they

cannot finish bringing the food source to the nest within the time limit, partial evaluation

58

for moving a food source is considered. For each food source, the points awarded are

calculated as 1,500 × (1 - drem/dinit) at the end of the run, where drem and dinit, the remaining

distance to the nest and the initial distance from the nest, respectively, are produced as

points. The sum of these points is set as the f3 component. When all the food sources

have been moved to the nest, the f4 component is calculated as 1.0 × [remaining time

steps] when the task is achieved.Otherwise, f4 is evaluated as zero. The CMA-NeuroES

parameter setting is as follows. The offspring λ are set at 100, and the initial SDis set at

0.2, with the initial covariance matrix C= I. The computer simulations’ last generation is

set at 500, and 10 independent experimental runs are conducted.

In our compearation computer simulation, (µ, λ)-FastES (FES) (Rechenberg, 1973)

(Yao and Liu, 1997) and a real-coded GA (Eshleman and Schaer, 1993) (Holland, 1973)

(Koza, 1992) (Koza, 1989) were also used to evolve the synaptic connection weights of

the artificial neural network that generated the robots’ actions. To make the experiment

comparable, four approaches are proposed to solve the cooperative food foraging prob-

lem: CMA-NeuroES with conventional evolution, CMA-NeuroES, FES, and real-coded

GA with incremental evolution. The parameter settings of the other evolutionary algo-

rithms are as follows. The real-coded GA’s population size is also set at 100. Tournament

selection with size two and elite preservation with size one are adopted. The mutation rate

is set at 1.0. This means that all the synaptic connections are mutated for each generation

by adding Gaussian noise, whose mean and SDs are 0 and 0.05, respectively. No crossover

was used. These parameter tunings had been performed in our preliminary experiments.

All the last generation of the artificial evolution are set at 500, and ten independent experi-

mental runs were conducted.

5.3.6 Robustness Test

The robustness of the best robot controllers with each approach was measured by conduct-

ing a breakdown test with the Goal Task (Figure 4 (c)). In this test, the robots with the best

controllers of each approach were selected. The fact that an SRS can work dynamically as

individual robots are deployed has the advantage that the failure of individual robots will

59

Table 5.9: average number of generations in which the swarm succeeded in solving sub-
tasks for incremental evolution

Average SD
FES 31.8 31.41

Sub-Task 1 Real Coded GA 41.7 15.2
CMA-NeuroES 23.9 11.5

FES 149.4 66.3
Sub-Task 2 Real Coded GA 136.6 46.8

CMA-NeuroES 115.4 38.8

hardly affect the performance of an evolved SRS. In our test, the SRS continued its collec-

tive behavior for searching food sources and returning food sources to the nest, even after

a few robots had stopped working.

Every robots is tested to determine whether it is broken at every time step. The break-

down coefficient (Bc) is calculated as follows:

Bc =
S r

RsN
(5.2)

In this equation, S r is the stop rate, the Rs are the random steps from 0 to 5,000, and N

is the number of robots. The test system will decide if any robot is broken by comparing

Bc with a uniformly distributed double value between 0.0 and 1.0 from a random number

generator’s through at every time step. If Bc is larger than the random number, then the

robot will stop. All the broken robots remain in the field and can be detected by robot

sensors. Stop counter S c will count one after a robot is stopped to control the number of

broken robots.

Our breakdown simulation runs 5,000 time steps for ten iterations. Moreover, we con-

sider the limitation of the stop counter by 10, 20, 30, 50, meaning that 10, 20, 30, 50 robots

in the SRS, respectively, will be stopped randomly during the simulation.

Figure 5.18 shows the result of the CMA-NeuroES controller for the cooperative food

foraging problem. Our SRS successfully collected food sources in seven of ten runs and

the maximum number of collected food sources was five. However, three runs performed

very poorly; in them the SRS collected nothing at all.

Figure 6 shows the fitness transitions of the best individuals and the averages of each

60

Table 5.10: number of brought back food sources while the robots Breakdown

Conventional Evolution FES Real Coded GA CMA-NeuroES
Breakdown 10 20 30 50 10 20 30 50 10 20 30 50 10 20 30 50

Average 2.3 1.0 1.3 1 3.5 2.8 3.3 2.8 4.4 4.2 3.9 3.7 5.1 4.5 4.9 4.3
SD 1.1 0.9 0.6 0.7 1.3 1.0 1.4 0.9 1.8 1.2 0.9 0.8 1.0 0.5 0.5 0.8

individual in the best run. Figure 5.19 shows that the incremental evolution approaches

with evolutionary algorithms collected at least two food sources, indicating that they were

successful in solving the Sub-Tasks for all the runs. The best run of CMA-NeuroES col-

lected eight food sources in Goal Task, whereas conventional evolution had three runs that

collected nothing. It is clear that not only the maximum fitness but also the average fitness

of CMA-NeuroES with incremental learning is higher than those of others. Table. 5.9

shows the average number of generations and corresponding SDs required by the swarm to

succeed in solving the sub-tasks. The incremental evolution approach with CMA-NeuroES

required approximately 23 generations to solve Sub-Task 1 and approximately 115 addi-

tional generations to solve Sub-Task 2. Conversely, the FES and real-coded GA required

approximately 31 generations and 41 generations to solve Sub-Task 1, respectively, and ap-

proximately 149 generations and 136 generations to solve Sub-Task 2, respectively. There-

fore, incremental evolution with CMA-NeuroES exhibits better search ability to find better

solutions.

Table 5.10 shows the results of the average returned food source numbers, and the SD of

four approaches for ten iterations. As a result, we see that conventional evolution performs

poorly. When 50 robots stopped during our simulation, only one food source could be

returned to the nest. In the incremental approach, the number of returned food sources of

FES decreased to two, when the stopped robots number increased from 10 to 50. Real-

coded GA shows its robustness, because the returned food source numbers decreased from

four to three and the SD shows its stability. However, CMA-NeuroES with incremental

evolution performed best overall. When ten robots in the SRS stopped, the SRS could still

return at least five food sources to the nest. The robust of CMA-NeuroES enables it to

return four food sources even when half of the robots in the SRS are stopped.

61

Typical behavior observed in robustness tests for an SRS with a CMA-NeuroES con-

troller is shown in Figure 8, wherein 50 robots are stopped during the simulation. Some

robots immediately find a food source (Marked 2) after leaving the nest (Figure 8(a)-8(b)).

At the same time, some robots are stopped at the beginning of our robustness tests and

becomes obstacles in the field. In Figure 8(c), another food source (Marked 1) is found by

another group of robots, when the first group of robots is trying to return the food sources

to the nest. The food source (Marked 1) is collected after our SRS successfully bypassed

the narrow pass in the field (Figure 8(c)-8(e)) while two food sources (Marked 2, 3) are

already near the nest. An additional food source (Marked 4) is added to the field as soon

as the first food source is collected (Figure 8(f)). Nearly half of the robots are stopped at

this moment, after the food sources (Marked 4 and 5) are collected ((Figure 8(h)-8(i))). At

the end of the simulation, 50 robots in our SRS have been stopped. Two groups of robots

are still trying to collect the food sources (Marked 7 and 8) as the simulation ends (Figure

8(j)).

5.4 Summary

In this chapter, We firstly has combined an artificial neural network approach with CMA-

ES, called CMA-NeuroES, with a swarm robotics system through a cooperative transport

problem. Results shows that the evolutionary robotic approach is successfully applied to

cooperative transport problems by adapting CMA-NeuroES. Swarm behavior emerged as a

result of CMA-NeuroES. Using a recurrent artificial neural network and CMA-ES to adapt

weights led to better performance for the SRS. CMA-NeuroES evolves faster and has a

higher success rate. Unlike some of the evolutionary algorithms, CMA-NeuroES does not

require tedious parameter tuning such as DE. The contribution of this paper is (i) that we are

the first one to apply CMA-NeuroES to swarm robotic systems and successfully generated

cooperative behavior, and (ii) we compared the result with other evolution strategies and

experimentally showed that CMA-NeuroES is a better approach when applied to SRSs. In

addition, we successfully applied the ER approach to a specific complex cooperative food

foraging problem with a large SRS including one hundred homogenous robots. Swarm

62

behavior emerged as a result of CMA-NeuroES with incremental evolution. The incre-

mental evolution approach of staged evolution and environmental complexification helps

ER avoid the bootstrap problem. The result of incremental evolution outperforms the con-

ventional evolution approach for cooperative food foraging. In addition, a robustness test

confirmed that the incremental evolution approach with CMA-NeuroES is robust, because

it can solve the same cooperative food foraging problem, even when half of the robots are

stopped. We expect that our proposed method and robustness test will also hold for other

SRS benchmarks.

63

(a) Sub-Task 1

(b) Sub-Task 2

(c) Goal Task

Figure 5.17: Three-stage incremental evolution for CFFT

64

Figure 5.18: Food sources that SRS collected

Figure 5.19: Food sources that SRS collected

65

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500

Fi
tn

es
s

Generation

Max
Average

(a) Conventional evolution with CMA-NeuroES

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500

Fi
tn

es
s

Generation

Max
Average

(b) Incremental evolution with FES

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500

Fi
tn

es
s

Generation

Max
Average

(c) Incremental evolution with Real coded GA

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500

Fi
tn

es
s

Generation

Max
Average

(d) Incremental evolution with CMA-NeuroES

Figure 5.20: Fitness transitions of the best(solid line) and the average (dotted line) for each
controller’s best performed run

66

(a) Conventional evolution compares with incremental evolution

(b) CMA-NeuroES compares with other algorithms using incremental evolution

Figure 5.21: The results of breakdown test

67

(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

(g) Snapshot 7 (h) Snapshot 8

(i) Snapshot 9 (j) Snapshot 10

Figure 5.22: Snapshots of the best cooperative collective behavior found by CMA-NeuroES
with incremental evolution approach of breakdown rate 50%

Chapter 6

Understanding Autonomous Task
Allocation by a Clustering Approach

6.1 Introduction

Swarm robotics(SR) (Şahin and Winfield, 2008) (Şahin, 2005) is a novel approach inspired

by social animals, such as ants, wasps and birds. These examples of social animals show

that simple individuals can successfully accomplish difficult tasks when they coordinate

as a system. This kind of system-level behavior appear to be robust, scalable and flexi-

ble in which impressed researchers from robotics areas. To take advantage of these social

animals, a new research field of robotics is known as swarm robotic systems (SRS). Re-

searchers expected the SRS to accomplish tasks beyond the capabilities of a single robot.

The design methodology of SRS can be divided into two categories: (i) Behavior based

design is the most commonly used design method that the individual behaviors of the robots

are designed by hand. Researchers in this field proposed many different approaches to

control the SRS. Kube and Zhang (Kube and Zhang, 1997) in task-modeling uses a design

method of a robot controller using a finite state machine carefully designed by a human pro-

grammer without a global controller. They demonstrated its effectiveness in box-pushing

problems, which the collective behavior is obtained after individual behaviors iteratively

adjust and tuned. (ii) Automatic design methods can be divided into two main methods:

68

69

reinforcement learning and evolutionary robotics (ER), which ER is the application of arti-

ficial evolution to robotic systems with a sensory-motor interface to the environment, i.e.,

evolving a robot controller that represented as an artificial neural network.

The collective behaviors of SRS are basic behaviors that could be combined to take

over complex real-world applications. These collective behaviors can be classified into four

main categories: spatially-organizing behaviors focus on how to organize and distribute

robots and objects in space, navigation behaviors focus on how to organize and coordinate

the movements of a swarm of robots, collective decision making behaviors focus on

letting a group of robots agree on a common decision or allocate among different parallel

task, other collective behaviors are behaviors that no belong to the categories above.

If a SRS have the ability of coordinate these collective behaviors, the most complex

real-world applications such as food foraging problem and construction problem can be

solved. In food foraging problems, the SRS requires the self-organize behavior to cooperate

and move heavy food sources by organized groups. The SRS also need navigation behavior

to search for food source and find the way back to the nest. Last but not least, the decision-

making behaviors allow different groups of robots to do different works at the same time.

As another important research direction of SRS, only few researchers draw attention to

the analyze method for SRS. Our research group advocated the analyze of SRS’s collective

behavior will help us understand deeper details of the swarm robotics system.

As we know interdependent subgroups with different collective behaviors can be found

in social insects, which are known to have the ability of dividing complex problems into

subtasks. In that case, SRS is expected to perform task allocation through different tasks

and it can be detected through behavior analysis for researchers to grasp the characteristics

of collective behavior of SRS.

Given that biological swarms allocate tasks appropriate to situations, we have devel-

oped a technique for extracting autonomous specialization developed in a robotic swarm.

This technique identifies subgroups of robots that perform the same role in a given situa-

tion. Because of the interaction of robots, the swarm robotics system can be considered

as a network, furthermore, we divided SRS into subgroups by using a clustering method.

However, there are no researches mentioned about the duration of SRS’s behavior. In order

to grasp much more details of SRS’s behavior, we import a definition of duration times for

70

SRS’s behavior, which helps us to know the relationship between behavior’s duration time

and our food foraging task.

In this study, we propose a method for analyzing duration time in SRS’s subgroups

for a food foraging problem. Realizing that swarm robotics system is mainly inspired by

biological swarming behavior, we believe the times of behavior’s duration will help us to

know more about the behavioral sequence in the SRS from another point of view.

The remainder of this paper is organized as follows. Section 2 introduces the task and

our proposed evolution method for generating collective behavior. Section 3 describes the

clustering method and analyzes the duration time of behavioral sequence-based approach.

The results and discussion of our proposed analyze method are presented in Section 4. Sec-

tion 5 is the conclusion of our work and the future works are also suggested for analyzing

the collective behavior of SRS.

The cooperative food foraging problem was inspired by the behavior of social animals

searching for food sources distributed around their nest. As one of the most complex real-

world applications for a robotic swarm, the challenge is to find better search strategies

that maximize the ratio of bring food to the nest. Fig. 6.1 deals with the food foraging

problem in this thesis. The field is a 5000×5000 unite length square. The nest, which is a

1000×1000 square goal area, is located at the center of the field. 100 autonomous mobile

robots are randomly placed in the nest at the initial condition. Three food sources ”F” are

randomly placed in the field. In our simulation experiment, we set 24 dynamical friction

for every food sources that requires at least 5 robots to move it cooperatively in a certain

direction (The maximum pushing power of a robot is 5, based on the physical settings of

our simulator). Soon after a food source is collected, it disappears and a new food source is

placed on the field randomly during 5000 time steps. This means the SRS should maximize

the ratio of bringing food sources to the nest, which means food sources should be collected

as many as possible.

All robots in the SRS are assumed to have the same specifications as shown in fig. 6.2.

Each robot is 50 units in diameter and has two types of sensors: eight IR sensors and an

omni-direction camera. The eight IR sensors are arranged around each robot. Each IR

sensor gives a value that is inversely proportional to the distance to an object, which might

be a food source, an obstacle, the wall, or other robots within the sensor range of 64 units.

71

Figure 6.1: The cooperative food foraging problem

The values are normalized between zero and one. The omni-vision camera are located at

the center of each robot.

The robot’s sensor abilities are summarized as follows:

Information obtained by two types of sensors forms an input layer of a robot controller

composed of 24 inputs connected to a motor on the right and an output layer composed of

two neurons connected to the motor on the left. In addition, each input neuron receive the

Gaussian noise, whose mean and standard deviation are 0 and 0.03, respectively. Four fully

inter-connected hidden layers are adopted from our preliminary experiments for computer

simulation. The neurons of recurrent artificial neural networks (RANN) are connected as

shown in fig. 6.3 as our previous work (Yu et al., 2013). Therefore, the number of synaptic

connections is 156. All robots are assumed to have the same RANN controller.

All computer simulations were conducted under the following conditions. The popu-

lation size was set at 100. A size-two tournament selection and size-one elite preservation

were adopted. The mutation rate was set at 1.0. In each generation, the synaptic connec-

tions were mutated at the specified rate and Gaussian noise (of mean and standard deviation

72

The second nearest
robot

The nearest
robot

The nearest
food

– IR sensor
– OmniVision camera

The second nearest food

Nest

x

y

Dθ

Fθ

Rθ

Nθ

Direction

rP

rR

Figure 6.2: Robot information

0 and 0.05, respectively). The system was evolved through 300 generations. The evolution

of the fittest individual, identified from the best trial, is shown in Fig.

6.2 Analysis Method

6.2.1 Extracting Subgroups

From the viewpoint that task allocation is a key consideration in swarm robotic systems,

we proposed a method for dividing a SRS into subgroups, each of which plays differ-

ent roles (Ohkura et al., 2011). In our previous work, a robotic swarm is mapped onto a

complex network, where robots are represented as nodes, and informational connections

between them are represented as directed links. Using this network representation, various

tools from the field of complex networks can be applied to extract community structures.

In order to evaluate the quality of the community structure, modularity measure (Newman,

2003) is introduced. Subgroups with the maximum likelihood can be extracted according

to the largest modularity (Newman, 2004).

73

......

......

The second
nearest robot

The nearest
food

The second
nearest food

NestThe nearest
robotIR sensor

Motor L Motor R

OmniVision camera

Figure 6.3: Artificial neural networks for robot controller

in this thesis, an approximation method called CNM method, which the operation of

the algorithm involves finding the changes in Q that would result from the amalgamation of

each pair of communities, choosing the largest of them, and performing the corresponding

amalgamation. This method result in a considerable saving of calculation time.

1. Calculate the modularity assuming that the whole network is a single subgroup

2. Calculate the initial values of changed modularity matrix and and populate the max-

heap with the largest element of each row of the matrix

3. Select the largest changed modularity, join the corresponding communities, update

the matrix of changed modularity, the heap and increment the matrix of Modularity

4. Repeat step 2 until only one community remains.

74

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500

Fi
tn

es
s

Generations

Max fitness
Average fitness

Figure 6.4: Fitness transition

This procedure requires a shorter calculation time than the GN method that allowed us

to analyze a large SRS over 100 robots.

6.2.2 Analysis Based on Time Duration

Our proposed time duration based method focus on the duration that a subgroup continues

to take the same actions. In another word, it shows how long does it take for a subgroup

to change its behavior. In our food foraging task, for example, subgroup will change its

behavior from searching food source to touching a food source after the robots find a food

source.

In time duration based analysis, the expected value is calculated as we assumed that

the time duration of behavior’s frequencies are random. This kind of assumption can be

represented by a negative exponential distribution:

y = 1 e bx

75

Here b is the probability of changing into another collective behaviors in every unit

time. x stands for the duration time of behavior’s frequencies’ frequency y. In this thesis,

we set 10 time step as a unit time.

6.2.3 Test Method of Contingency Table

An analysis method using a contingency table discloses the significance of behavioral se-

quences. This method analyses residual differences between expected and observed be-

havior’s frequencies in order to locate sources of non-random association between vari-

ables (Fagen and Mankovich, 1980). In general χ2 test is used for contingency table analy-

sis. The χ2 goodness of fit test is able to compare observed transitions with expected ones.

Hence transition frequencies are examined in order to test particular hypotheses about tran-

sition probabilities. The standard analysis procedure is as follows:

In this thesis, χ2 test is adopted as a fundamental approach. The standard analysis

procedure is as follows:

1. Calculate about each cell of the transition matrix.

2. Conduct χ2 test in one degree of freedom. Here, χ2 is calculated as,

χ2 =
(ei j fi j)2

ei j
,

where fi j is the number of observations and ei j is the expected value in the i, jth cell

of a behavioral contingency table.

If a χ2 value is greater than its corresponding rejection region (χ2
a=3.84), the behavior

sequence is said to be observed significantly. In this method, the contingency table is nec-

essary to postulate whether the expected value are large. For this reason it is recommended

that expectations should not be smaller than 5 (Ohkura et al., 2011).

76

6.2.4 Behavior Category

Set up the repertoires that represent the roles of subgroups. These repertoires are defined

based on observations as in ethology. Behaviors of the robots within the subgroup are clas-

sified into repertoire from output of these robots. Classification criteria of each repertoire

is defined as follows:

Pf . Food source pushing

Action to push the package. Robots transport the package toward desired direction

in a coordinated manner. The power of subgroup is the sum of the force vectors of

the robots in the subgroup. The classification criteria for this action is whether robot

in the subgroup is touching a package, and angular difference between direction of

the power of subgroup and transport direction of the package is under ±60◦.

Ap . Assist pushing

Action to push the package, however the classification criteria is whether the robots

in a subgroup is touching a package, and angular difference between direction of the

power of subgroup and transport direction of the package is over ±60◦.

Tf . Food source touching

Action only in contact with the package. Since the number of robots needed to push

the package is not enough or robot push in a direction away from target, Robots

cannot transport the package. The classification criteria is whether the robots in

a subgroup is touching a package, and angular difference between direction of the

power of subgroup and transport direction of the package is over ±90◦. The package

is not moved.

To . Obstacle touching

Action to hit with the obstacle. If the robots in a subgroup is in contact with the

obstacle, the action is categorized into this.

Sf . Food searching

Action to search in the field. Actions except the previous five is categorized in this

case.

77

Figure 6.5: Observed times before and after evolution

78

6.3 Results

Fig.5 shows the results of observed times before and after evolution. In the early stage

of evolution, we observe food searching behavior happens the most and the SRS touches

obstacle frequently. At that time, the behavior of food source pushing hardly happens.

After evolution, the duration time of food source pushing behavior is double that of early

stage. On the other hand, the duration time of food source touching and obstacle touching

decreased with the evolution of SRS. The duration time of assisting pushing behavior and

food searching behavior increase only a little.

Fig.6 is the result of duration time’s χ2 test. In this figure, the curve is the expectation

value and the small squares stand for actual value. After evolution, duration over 100 time

steps’ behavior increases rapidly as we expected.

Table 1 shows the duration catalogue of SRS at an early stage and Table 2 shows the

duration catalogue of SRS at a late stage. First, expected value are calculated by observed

value matrices with χ2 values.

Compared with the early stage, the SRS increased the duration time for Food source

pushing and decreased the duration time for Obstacle touching. This appearance is under-

standable because in order to collect food sources, the SRS should avoid touching obstacles.

The Assist pushing does not changed very much because there are 100 robots in our swarm

robotics system and there will always have some robots surrounding the food source trying

to help foraging process. The duration time of Food source touching behavior decreased

because robots at the early stage can only touch the food sources with out any purposes.

After evolution, for the lack of food sources, SRS take most of its time for f ood searching,

pushing food sources cooperatively to the same direction lead to the result of fast and effi-

cient foraging. At last, our analyze method shows the SRS will successfully achieved food

foraging problem with the increasing of duration over 100 time steps’ behaviors.

Fig. 6.7 is snapshots of SRS’s behavior after artificial evolution. Several subgroups are

extracted in each time step with different colors and SRS performs successful cooperative

food foraging. All the robots are placed randomly in the nest at first, as shown in Fig.

6.7(a). The first three food sources are found by small subgroups of robots and a large

subgroup are trying to collect a food source from the beginning of simulation (Fig. 6.7(b)).

79

As soon as a food source is collected, a new food source appears randomly in the field.

Several subgroups of robots are trying to collect food sources while some subgroups are

moving around the field searching for food sources (Fig. 6.7(c-d)). In Fig. 7(e), robots

are cooperating to move a food source, however, at the same time, another food source get

stuck in the narrow pass. A small subgroup with 3 robots are trying to move a food source.

It is impossible because every food source requires at least 5 robots to move it (Fig. 6.7(f)).

In Fig.6.7(g)-(h), over half of the robots are moving along the field searching for food

sources. Finally, the subgroups collected another two food sources and more subgroups of

robots are working on the food source stuck in the narrow pass.

80

(a) Before Evolution

(b) After Evolution

Figure 6.6: The result of duration time’s χ2 test

81

6.4 Summary

We proposed a novel method for analyzing the collective behavior of SRS by using the

duration time of subgroups’ behavior. Firstly, we extracted the subgroups by utilizing a

clustering method based on the theory of complex networks. Behavior of the subgroups

are classified based on observation. Then, we extracted the feature of behavioral sequence

and applied the proposed method to a food foraging problem involving 100 autonomous

mobile robots. The duration based behavior analyze approach helps researchers to grasp

the relationship between behavior sequence and duration time, which make it clearly to

observe behavior generation process from another view point.

82

(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

(g) Snapshot 7 (h) Snapshot 8

Figure 6.7: Behavior of SRS after artificial evolution in cooperative food foraging problem

Chapter 7

Conclusion

Swarm robotics is a novel approach to the coordination of large numbers of robots and

has emerged as the application of swarm intelligence to multi-robot systems. Different

from other swarm intelligence studies, swarm robotics puts emphases on the physical em-

bodiment of individuals and realistic interactions among the individuals and between the

individuals and the environment. In this thesis, we proposed, i.e., a method that a robot

controller is designed by evolving artificial neural networks, is adopted.

Firstly, we point out that the definition of swarm intelligence was extended in 2004

and there is almost no relationship between the cellular robotic systems with SRS. After

that, among many evolutionary algorithms to evolving artificial neural networks in my

experiment, four evolutionary algorithms, CMA-ES, FES, FESplus and DE, are adopted

for computer simulations. The CMA-ES is known as an efficient evolutionary algorithm for

many test functions and optimization problems in continues domain and we were anticipate

its performance. As benchmark of swarm robotic systems, a cooperative package pushing

problems and a simple food foraging problems are conducted to examine the performance

of CMA-NeuroES with other three evolutionary robotics approaches.

Results have shown that the evolutionary robotic approach is successfully applied to

cooperative transport problems by adapting CMA-NeuroES. Swarm behavior emerged as a

result of CMA-NeuroES. Using a recurrent artificial neural network and CMA-ES to adapt

weights led to better performance for the SRS. CMA-NeuroES evolves faster and has a

higher success rate. Unlike some of the evolutionary algorithms, CMA-NeuroES does not

83

84

require tedious parameter tuning such as DE.

Secondly, we successfully applied the ER approach to a specific complex coopera-

tive food foraging problem with a large SRS including one hundred homogenous robots.

Swarm behavior emerged as a result of CMA-NeuroES with incremental evolution. The

incremental evolution approach of staged evolution and environmental complexification

helps ER avoid the bootstrap problem, which in highly complex tasks there are sometimes

no initial search pressures exist. The result of incremental evolution outperforms the con-

ventional evolution approach for cooperative food foraging. In addition, a robustness test

confirmed that the incremental evolution approach with CMA-NeuroES is robust, because

it can solve the same cooperative food foraging problem, even when half of the robots are

stopped. We expect that our proposed method and robustness test will also hold for other

SRS benchmarks.

Thirdly, we proposed a novel method for analyzing the collective behavior of SRS by

using the duration time of subgroups’ behavior. We extracted the subgroups by utilizing

a clustering method based on the theory of complex networks and behavior of the sub-

groups are classified based on observation. In another word, we extracted the feature of

behavioral sequence and applied the proposed method to a food foraging problem involv-

ing 100 autonomous mobile robots. The duration based behavior analyze approach helps

researchers to grasp the relationship between behavior sequence and duration time, which

make it clearly to observe behavior generation process from another view point.

The contribution of this paper is (i) that we are the first one to apply CMA-NeuroES

to swarm robotic systems and successfully generated cooperative behavior, and (ii) we

compared the result with other evolution strategies and experimentally showed that CMA-

NeuroES is a better approach when applied to SRSs. (iii) we proposed a analysis approach

based on complex networks for us to understanding the task allocation in a cooperative

food foraging problem.

About the future work, CMA-NeuroES may face some limitation with real-world appli-

cations, we should examine it through other benchmark problems. For a desired problem

to be solved, and a proposed behavioral design at the individual level, researchers must

obtain guarantees for system-level performance. We would also like to try to apply CMA-

NeuroES to a topology and weight evolving artitificial neural network approach. Since the

85

appropriate topology for a given problem is not apparent in most SRS benchmark problems,

the capability of a topology search for the ANN controller is still needed.

In addition, we will also focus primarily on the analysis of SRSs (Everitt, 1993) (Newman,

2003) (Newman, 2004). As an SRS can be considered as a large network with interactions

among robots, we investigated finding subgroups in a robotic swarm (Ohkura et al., 2011)

using the technology of temporary networks. The next step will be to describe how sub-

groups in an SRS develop and change in a large robotic swarm using a duration table.

That will enable researchers to understand the detail of task allocation in an SRS from a

macroscopic viewpoint.

Bibliography

R.R. Murphy, INTRODUCTION to AI ROBOTICS, Massachusetts Institute of Technol-

ogy, pp. 3-4, 2000.

E. Şahin, A. Winfield. Special issue on swarm robotics, Swarm Intellgence, 2: pp.69-72,

2008

E. Şahin, Swarm Robotics: From Sources of Inspiration to Domains of Application, Swarm

Robotics WS2004, LNCS 3342, pp.10-20, 2005.

E. Şahin, S. Girgin, L. Bayindir and A. E. Turgut. Swarm Robotics, SwarmIntelligence,

-introduction and Applications-, Berlin, Heidelberg, Springer Verlag, pp.87-100, 2008.

O. Soysal and E. Şahin, A macroscopic model for self-organized aggregation in swarm

robotic systems, In E. Sahin, W.M. Spears, and Alan F. T. Winfield, editors, Second In-

ternational Workshop on Swarm Robotics at SAB 2006, Vol. 4433, pages 27-42, Berlin,

Germany, 2006.

M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review from the

swarm engineering perspective, Swarm Intelligence, Volume 7, Issue 1, pp.1-41, 2013.

I. Harvey, P. Husbands, D. Cliff, Issues in Evolutionary Robotics, Journal of Adaptive

Behavior, Vol. 2, pp.73-110, 1993.

Meyer, P. J. Husbands, P. Harvey, I., Evolutionary Robotics: A Survey of Applications and

Problems, Proc. of the 1st European Workshop Evolutionary Robotics, pp. 1-21, 1998.

C. R. Kube and H. Zhang, Task Modelling in Collective Robotics, Autonomous Robots,

Vol. 4 No. 1, Kluwer Academic, pp.53-72, 1997.

86

87

M. Dorigo, E. Tuci, R. Gro, V. Trianni, TH. Labella, S. Nouyan, C. Ampatzis, JL.

Deneubourg, G. Baldassarre, S. Nolfi, et al, The swarm-bots project. In: Swarm

Robotics. Springer, pp. 31-44, 2005.

M. Dorigo, D. Floreano, LM. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Bi-

rattari, M. Bonani, M. Brambilla, A. Brutschy, et al, Swarmanoid: a novel concept for

the study of heterogeneous robotic swarms. Robotics Automation Magazine, 20(4), pp.

60-71, 2013.

Martinoli, A., Modeling swarm robotic systems: A case study in collaborative distributed

manipulation, Proceedings of the Seventh International Symposium on Distributed

Robotics Autonomous Systems, 23(4-5), pp. 415-436, 2004.

I. Harvey et al., Evolutionary Robotics: the Sussex Approach, Robotics and Autonomous

Systems, Vol.20, pp. 205-224, 1997.

Yim, M., Zhang, Y., Lamping, J., Mao, E., Distributed control for 3D metamorphosis ,

Autonomous Robots 10, pp.41-56, 2001.

W. Liu and A. Winfield. Modeling and optimization of adaptive foraging in swarm robotic

systems, International Journal of Robotics Research, 29(14): pp.1743-1760, 2010.

R. Guimera and L. A. N. Amaral, Functional cartography of complex metabolic networks.

Nature 433, 895-900, 2005.

L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas, Comparing community structure iden-

tification. J. Stat. Mech. p. P09008, 2005.

X. Yao and Y. Liu, Fast Evolution Strategies, Control and Cybernetics, 26(3), pp.467-496,

1997.

H. Moriguchi and S. Honiden, CMA-TWEANN: Efficient Optimization of Neural Net-

works via Self-adaptation and Seamless Augmentation, Genetic and Evolutionary Com-

putation Conference (GECCO’12), pp.903-910, 2012.

88

N. Hansen, The CMA Evolution Strategy: A Tutorial, Towards a new evolutionary compu-

tation Advances in estimation of distribution algorithms, Springer, pp.75-102, 2011.

R. Storn and K. Price, Differential Evolution-A Simple and Efficient Heuristic for Global

Optimization over Continuous Space, Morgan Kaufmann, Journal of Global Optimiza-

tion 11, pp.341-359, 1997.

M. Dorigo, L. M. Gambardella, Ant colonies for the traveling salesman problem, BioSys-

tems, vol. 43, pp. 73-81, 1997.

T. Fukuda, S. Nakagawa, Approach to the Dynamically Reconfigurable Robotic System,

Journal of Intelligent and Robotic Systems, Vol. 1, No. 1, pp. 55-72, 1989.

J. Kennedy, R. C. Eberhart, Particle Swarm Optimization, In proceedings of the IEEE In-

ternational Joint Conference on Neural Networks, pp. 1942-1948, 1995

N. Hansen et al, On the adaptation of arbitrary normal mutation distributions in evolution

strategies: The generating set adaptation, Morgan Kaufmann, L. Eshelman (Ed.), pp.57-

64, 1995.

C.R.Kube and H.Zhang,Task Modeling in Collective Robotics, Autonomous Robots, Vol.4,

No.1, pp. 53-72, Kluwer Academic, 1997.

M. J. Mataric, Learning Social Behavior, Robotics and Autonomous Systems, Vol.20, pp.

191-204, 1997.

A. Martinoli, Proceedings of the Seventh International Symposium on Distributed Robotics

Autonomous Systems, DARS’ 04, Toulouse, France, 2004.

R. Arkin, G. Bekey, Robotcolonies-editorial, Autonomous Robots 4, 1997.

G. Theraulaz, E. Bonabeau, Coordination in distributed building, Science, 269(4): 686-

688, 1995.

N. Hansen and A. Ostemeier, Adapting arbitrary normal mutation distributions in evolution

strategies: The covariance matrix adaptation, IEEE International Conference on Evolu-

tionary Computation, pp.312-317, 1996.

89

G. Beni, J. Wang, Swarm Intelligence in Cellular Robotic Systems, Proceedings of NATO

Advanced Workshop on Robots and Biological Systems Vol 102, 1989.

N. Hansen and A. Ostemeier, Convergence properties of evolution strategies with the deran-

domized covariance matrix adaptation: The (µ/µI ,λ)-ES, EUFIT’97, pp.650-654, 1997.

I. Akyildiz, W. Su, Y Sankarasubramaniam, Cyanic: A survey on sensor networks. IEEE

Communications Magazine, pp.102-115, 2002.

G. Chirikjian, Kinematics of a metamorphic robotic system, IEEE International Conference

on Robotics and Automation, pp.449-455, 1994.

D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee, Pheromone robotics, In E.

Sahin and William Spears, editors, Swarm Robotics Workshop: State-of-the-art Survey,

number 33-42 in Lecture Notes in Autonomous Robots, 11(3):319-324, 2001.

D. Payton, R. Estkowski, and M. Howard, Pheromone robotics and the logic of virtual

pheromones, In E. Sahin and William Spears, editors, Swarm Robotics Workshop: State-

of-the-art Survey, number 3342 in Lecture Notes in Computer Science, pages 45-57,

Berlin Heidelberg, 2005.

A. Christensen, R. O. Grady, and M. Dorigo, A mechanism to self-assemble patterns with

autonomous robots, Technical report, TR/IRIDIA/2007-009, 2007.

D. Floreano, P. Durr and C. Mattiussi, Neuroevolution: from architectures to learning,

Evolutionary Intelligence, 1(1): pp.47-62, 2008.

M. J. B. Krieger, J.B. Billeter, and L. Keller, Ant-like task allocation and recruitment in

cooperative robots, Nature, 406:992-995, 2000.

A. E. Eiben et al., Collective Specialization for Evolutionary De- sign of a Multi-Robot

System, Swarm Robotics, SAB2006 Second Int. Workshop, Revised Selected Papers,

LNCS, Vol.4433, pp. 189- 205, 2007.

E. Tuci, et al., Evolving Homogeneous Neuro-Controllers for a Group of Heterogeneous

Robots: Coordinated Motion, Cooperation, and Acoustic Communication, Artificial

Life, Vol.14, No.2, pp. 157-178, 2008.

90

P. J. Angeline et al., An Evolutionary Algorithm That Constructs Recurrent Neural Net-

works, IEEE Trans. on Neural Networks, Vol.5, pp. 54-65, 1994.

X. Yao and Y. Liu, A New Evolutionary System for Evolving Artificial Neural Networks,

IEEE Trans. on Neural Networks, Vol.8, No.3, pp. 694-713, 1997.

F. Gomez and R. Miikkulainen, Solving Non-Markovian Control Tasks with Neuroevo-

lution, Proc. of the Sixteenth Int. Joint Conf. on Artificial Intelligence, pp. 1356-1361,

1999.

K. Stanley and R. Miikkulainen, Evolving Neural Networks through Augmenting Topolo-

gies, Evolutionary Computation, Vol.10, No.2, pp. 99-127, 2002.

N. Siebel and G. Sommer, Reinforcement Learning of Artificial Neural Networks, Int. J. of

Hybrid Intelligent Systems, No.4, No.3, pp. 171-183, 2007.

W. Liu, A. Winfield, J. Sa, J. Chen, and L. Dou, Strategies for Energy Optimisation in

a Swarm of Foraging Robots, volume 4433, pages 14-26. Springer Verlag, Berlin Ger-

many, 2006.

H. Hamann and H. Worn, An analytical and spatial model of foraging in a swarm of robots,

In E. Sahin, W.M. Spears, and Alan F. T. Winfield, editors, Second International Work-

shop on Swarm Robotics at SAB 2006, volume 4433, pages 43-55, Berlin, Germany,

2006.

R. O. Grady, R. Grofi, A. L. Christensen, F. Mondada, M. Bonani, M. Dorigo, Performance

benefits of self-assembly in a swarm-bot, Technical report, TR/IRIDIA/2007-008, 2007.

K. Lerman and A. Galstyan, Mathematical model of foraging in a group of robots: Effect

of interference, Autonomous Robots, 13:127-141, 2002.

D. Floreano, J. Urzelai, Evolutionary robotics: The next generation, Evolutionary Robotics

III, Ontario (Canada): AAI Books, 2000.

D. Cliff, I. Harvey, and P. Husbands, Explorations in evolutionary robotics, volume 2, 1993.

91

R.A.Brooks, A robust layered control system for a mobile robot, IEEE Journal of Robotics

and Autonomation, 2:14-23.

Brooks, R. A., Cambrian Intelligence, The MIT Press, 1999.

R. C. Arkin, Behavior-Based Robotics, The MIT Press, 1998.

R. C. Arkin, Motor schema-based mobil robot navigation, International Journal of Robotics

Research, 8: 92-112, 1989

N. Zaera, C. Clifi, J. Bruten, (Not) evolving collective behaviours in synthetic fish, in From

Animals to Animats 4: Proceedings of the Fourth International Conference on Simula-

tion of Adaptive Behaviour, (Cambridge, MA), pp. 635-6, MIT Press, 1996.

M. J. Mataric, D. Clifi, Challenges in evolving controllers for physical robots, Journal of

Robotics and Autonomous Systems, vol. 19, pp. 67-83, Oct. 1996.

H. H. Lund, J. Hallam, Evolving sufficient robot controllers, in Proceedings of the Fourth

IEEE International Conference on Evolutionary Computation, (Piscataway, NJ), pp. 495-

499, IEEE Press, 1997.

N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strate-

gies. Evolutionary computation, 9(2):159-95, 2001.

N. Hansen, A. Auger, R. Ros, S. finck and P. Posik, Comparing results of 31 algo-

rithms from the black-box optimization benchmarking BBOB-2009 Proceedings of

GECCO’10, ACM, pp.1689-1696, 2010.

N. Hansen,S. Muller, P. Koumoutsakos, Reducing the time complexity of the derandomized

evolution strategy with covariance matrix adaptation (cma-es), Evolutionary Computa-

tion, 11(1):1-18, 2003.

N. Hansen, S. Kern, Evaluating the cma evolution strategy on multimodal test functions.

In: Parallel problem solving from nature-PPSN VIII. Springer, :282-91, 2004

R. Ros, N. Hansen. A simple modification in cma-es achieving linear time and space com-

plexity. Parallel Problem Solving from Nature-PPSN X. Springer, 296-305, 2008.

92

J. R. Koza, Genetic programming: on the programming of computers by means of natural

selection, MIT Press, Cambridge, MA, 1992.

J. R. Koza, Hierarchical genetic algorithms operating on populations of computer pro-

grams, Proc. of the Eleventh Int. Joint Conf. on Artificial Intelligence (IJCAI-89), 1 :

768-774, 1989.

C. Igel, Neuroevolution for reinforcement learning using evolution strategies, Proceedings

of CEC’03, Vol.4, pp.2588-2595, 2003.

I. Rechenberg, Evolution strategies: Optimierung Technicher Systeme nach Prinzipien des

Biologischen Evolution, Frommann Holzboog, Stuttgart, 1973.

J. H. Holland, Genetic algorithms and the optimal allocation of trials, SIAMJ. of Comput-

ing, 2 pp. 88-105, 1973.

L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement Learning: A Survey, Journal

of Articial Intelligence Research 4, 237-285, 1996.

D. Goldberg, GENETIC ALGORITHMS in Search, Optimization and Machine Learning,

Addison-Wesley, 1989.

T. Back, F. Hoffmeister, H. Schwefel, A survey of evolution strategies, Proc. of the 4th Int.

Conf. on Genetic Algorithms, 1991.

T. B ack, H. P. Schwefel, An overview of evolutionary algorithms for parameter optimiza-

tion, Evolutionary Computation, 1(1) : 1-23, 1993.

L. J. Eshleman, and J. D. Schaer, Real-Coded Genetic Algorithms and Interval-Schemata,

Foundations of Genetic Algorithms, Vol. 2, pp. 187-202, 1993.

D. B. Fogel and L. J. Fogel, An introduction to evolutionary programming, Selected Papers

from the European Conf. on Artificial Evolution, 1063 : 21-33, 1996.

R. Alami, H. Asama, R. Chatila, Proceedings of the Seventh International Symposium on

Distributed Robotic Autonomous Systems, DARS04, Toulouse, France, 2004.

93

J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Ad-

dison Wesley Reading Vol. 1, 1999.

K. Sugawara, M, Sano, Cooperative acceleration of task performance: Foraging behavior

of interacting multi-robots system, Physical, 100, pp.343-354, 1997.

T. Yu, T. Yasuda, K. Ohkura, Y. Matsumura, and M. Goka, Cooperative Transport by a

Swarm Robotic System Based on CMA-NeuroES Approach, Journal of Advanced Com-

putational Intelligence and Intelligent Informatics (JACIII), Vol.17, No.6, pp. 932-942,

2013.

M. Dorigo, and E. Şahin, Special issue: Swarm robotics, Autonomous Robots, 17: 111-

113, 2004.

C. V. Jones and M. J. Mataric. Behavior-based coordination in multi-robot systems. In S.

S. Ge and F. L. Lewis, editors, Autonomous Mobile Robots: Sensing, Control, Decision-

Making, and Applications, pages 549-569. CRC Press, Boca Raton, FL, 2006.

R. Beckers, O. E. Holland, and J.-L. Deneubourg, From local actions to global tasks: Stig-

mergy and collective robotics, In R.A. Brooks and P. Maes, editors, Proceedings of the

4th International Workshop on the Synthesis and Simulation of Living Systems (Artifi-

cial Life IV), pages 181-189, Cambridge, MA, USA, July 1994. MIT Press.

E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial

Systems, Santa Fe Institute Studies on the Science of Complexity, Oxford University

Press, 1999.

S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-

Organization in Biological Systems. Princeton University Press, Princeton, NJ, 2001.

N.R. Franks, S.C. Pratt, E.B. Mallon, N.F. Britton, and D.J.T. Sumpter. Information flow,

opinion- polling and collective intelligence in house-hunting social insects. Philosophical

Transactions of the Royal Society B: Biological Sciences, 357(1427):1567-1583, 2002.

I.D. Couzin. Collective minds. Nature, 455(7129):715-715, 2007.

94

I.D. Couzin and J. Krause. Self-organization and collective behavior of vertebrates. Ad-

vances in the Study of Behavior, 32:1-75, 2003.

D. J.T. Sumpter. The principles of collective animal behaviour. Philosophical Transactions

of the Royal Society of London: Series B, 361:5-22, 2006.

G. Beni, From swarm intelligence to swarm robotics, In Şahin, E., Spears, W., eds, Swarm

Robotics: State-of-the-art Survey, Lecture Notes in Computer Science 3342, Springer-

Verlag, pages 1-9, 2005.

S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau, it

Self-Organisation in Biological Systems, Princeton University Press, NJ, USA, 2001.

P. Grasse, a reconstruction du nid et les coordinations inter-individuelles chez bellicositer-

mes natalensis et cubitermes sp. la theorie de la stigmergie. Essai. Insectes Sociaux,

6:41-83, 1959.

K. Ohkura, T. Yasuda, Y. Kawamatsu, Y. Matsumura and K. Ueda, MBEANN: Mutation-

Based Evolving Artificial Neural Networks, Advances in Artifical Life, the 9th European

Conference on Artificial Life, LNAI4648, pp.936–945, 2007.

K. Ohkura, T. Yasuda, Y. Kotani, and Y. Matsumura, A Swarm Robotics Approach to Co-

operative Package-Pushing Problems with Evolving Recurrent Neural Networks, Pro-

ceedings of SICE Annual Conference 2010, LNAI4648, pp.706–711, 2010.

X. Yao, Evolving Artificial Neural Networks, Proc. of the IEEE, Vol.89, No.9, pp. 1423-

1447, 1999.

K. Ohkura, T. Yasuda, and Y. Matsumura, Coordinating the Adaptive Behavior for Swarm

Robotic Systems by Using Topology and Weight Evolving Artificial Neural Networks,

Proceedings of WCCI 2010 IEEE World Congress on Computational Intelligence, 2010

IEEE Congress on Evolutionary Computation, pp.1788–1795, 2010.

K. Ohkura, T. Yasuda, T. Sakamoto and Y. Matsumura, Evolving Robot Controllers for a

Homogeneous Robotic Swarm, Proceedings of 2011 IEEE/SICE International Sympo-

sium on System Integration, pp.708–713, 2011.

95

K. Ohkura, Y. Matsumura, T. Yasuda, and T. Matsuda, Evolutionary Robotics Approach to

Autonomous Task Allocation for a Multi-Robot System, Proc. of Artificial Neural Net-

works in Engineering 2008, Intelligent Engineering Systems Through Artificial Neural

Networks, Vol.18, pp. 121-128, ASME Press, 2008.

J. B. Mouret and S. Doncieux, Incremental evolution of animats’ behaviors as a multi-

objective optimization , Lecture Notes in Computer Science, 5040, pp.210-219, 2008.

D. Bajaj and M. H. Ang Jr., An Incremental Approach in Evolving Robot Behavior , Pro-

ceedings of the Sixth International Conference on Control, Automation, Robotics and

Vision, ICARCV, 2000.

F. Gomez and R. Miikkulainen, Incremental Evolution of Complex General Behavior ,

Adaptive Behavior, No.5, pp.317-342,1997.

R. De Nardi, J. Togelius, O. Holland and S. Lucas, Evolution of Neural Networks for Heli-

copter Control: Why Modularity Matters , In: IEEE Congress on Evolutionary Compu-

tation, pp.1799-1806, 2006.

S. Nolfi, D. Paris, Evolving non-Trivial Behaviors on Real Robots: an Autonomous Robot

that Picks up Objects , Proceedings of 4th Conference of the Italian Association for

Artificial Intelligence, 1995.

B. S. Everitt, Cluster Analysis, Edward Arnold and Halsted Press, third edition, 1993.

M.E.J. Newman, Networks, Oxford University Press, 2010.

M. Girvan, and M. E. J. Newman, Community structure in social and biological networks,

Proceedings of the National Academy of Sciences of the United States of America,

Vol.99, pp.7821-7826, 2002.

M. E. J. Newman, Detecting community structure in networks, Department of Physics and

Center for the Study of Complex Systems, University of Michigan, ANN Arbor, MI

48109–1120, USA, Received 10 November 2003.

96

M. E. J. Newman, Fast algorithm for detecting community structure in networks, Depart-

ment of Physics and Center for the Study of Complex Systems, University of Michigan,

ANN Arbor, MI 48109, USA, published 18 June 2004.

M.E.J. Newman, Modularity and community structure in networks, Proceedings of the Na-

tional Academy of Sciences of the United States of America, Vol.103, No.23, pp.8577-

8582, 2006.

J. Duch and A. Arenas, Community detection in complex networks using extremal opti-

mization. Phys. Rev. E 72, 027104, 2005.

W. Liu, A. F. T. Winfield, J. Sa, J. Chen, and L. Dou, Towards Energy Optimization: Emer-

gent Task Allocation in a Swarm of Foraging Robots, Adaptive Behavior, Vol.15, Issue

3, pp.289-305, 2007.

R. M. Fagen, and N. J. Mankovich, Two-act transitions, partitioned contingency tables, and

the signi f icant cells problem, Animal Behaviour, Vol.28, Issue 4, pp.1017-1023, 1980.

G.C. William, Some Methods for Strengthening the Common x2 Tests, Biometrics, Vol.10,

No.4, pp.417-451, 1954.

K. Ohkura, T. Yasuda, Y. Matsumura, Analyzing macroscopic behavior in a swarm robotic

system based on clustering, SICE Annual Conference (SICE), pp. 13-18, 2011.

S. Kazadi, Swarm Engineering. PhD thesis, California Institute of Technology, Pasadeba,

CA, USA, 2000.

A. F. T. Winfield, C. J. Harper, and J. Nembrini, Towards dependable swarms and a new

discipline of swarm engineering, In Proceedings of the International Workshop on Sim-

ulation of Adaptive Behavior, SAB 2004, Vol. 3342 of lecture notes in computer science,

pages 126-142. Springer, Berlin, Heidelberg, 2004.

V. Crespi, A. Galstyan, and K. Lerman, Top-down vs bottom-up methodologies in multi-

agent system design, Autonomous Robots, 24(3):303-313, 2008.

Research Achievements

Journal papers

1. Tian Yu, Toshiyuki Yasuda, Kazuhiro Ohkura, Yoshiyuki Matsumura and Masanori

Goka, “Cooperative Transport by a Swarm Robotic System Based on CMA-NeuroES Ap-

proach“, Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.17

No.6, pp.932–942, 2013

2. Tian Yu, Toshiyuki Yasuda, Kazuhiro Ohkura, Yoshiyuki Matsumura and Masanori

Goka, “Robust swarm robotics system using CMA-NeuroES with incremental learning“,

International Journal of Engineering Research & Technology, Vol. 4, No. 11, pp. 217-226,

2015

International Conference

1. Tian Yu, Toshiyuki Yasuda, Kazuhiro Ohkura, Yoshiyuki Matsumura, and Masanori

Goka, “Apply Incremental Evolution with CMA-NeuroES Controller for a Robust Swarm

Robotics System“, Proceedings of the SICE Annual Conference 2014, pp.295–300, 2014.

2. Tian Yu, Tsuguo Fujita, Toshiyuki Yasuda, Kazuhiro Ohkura, Yoshiyuki Matsumura

and Masanori Goka, “Cooperative Transport by a Swarm Robotic System Based on CMA-

NeuroES Approach“, Proceeding of the 16th Asia Pacific Symposium on Intelligent and

Evolutionary Systems, pp.1-7, 2012.

3. Tian Yu, Toshiyuki Yasuda, Kazuhiro Ohkura, “A duration based behavior analyze

approach for swarm robotics system“, The 34th Chinese Control Conference & SICE An-

nual Conference, pp. 295-300 July 28-30, 2015.

97

98

4. Tian Yu, Toshiyuki Yasuda, Kazuhiro Ohkura, “Understanding autonomous task

allocation by clustering a swarm robotics system“, SWARM 2015: The first International

Symposium on Swarm Behavior and Bio-Inspired Robotics, October 28-30, Kyoto, Japan,

pp. 192-193, 2015.

