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Outline 
 

The first artificial acceleration of charged particles to a high kinetic energy was 

performed nearly a century ago [1]. Since then, a variety of machines that enable one to 

accelerate electrons, protons, heavy ions, and even anti-particles, have been invented for 

diverse experimental purposes [2]. We now have linear accelerators of various kinds 

such as DTL (Drift Tube Linac), DAW (Disk-And-Washer structure), RFQ 

(Radio-Frequency Quadrupole linac), etc., and circular accelerators such as cyclotrons 

[3], synchrotrons [4], storage-ring colliders, etc. [5]. In the early 20th century, particle 

accelerators were mostly employed for fundamental physics purposes. The usefulness of 

charged-particle beams for other fields were, however, realized soon and, as a result, 

many accelerators began to be constructed all over world. For instance, both hadron and 

lepton machines have widely been used for radiation therapy [6,7]. The so-called 

photon factories are also available in many countries now. To explore high-energy 

frontier, extremely large colliders have been built in Europe, the United States, and 

Asia. 

   The physical property of a charged-particle beam is characterized by “energy”, 

“intensity”, and “emittance”. Among them, the emittance is particularly important in 

almost all kinds of applications. This concept is defined as the volume occupied by the 

beam in six-dimensional phase space. To put it briefly, the emittance corresponds to the 

beam temperature. A beam of lower emittance is certainly more preferable because we 

can focus it thinner or generate a nearly parallel beam. The emittance is, however, an 

approximate invariant in regular accelerators that can be regarded as a sort of 

conservative dynamical system. Main components of an accelerator, i.e. multipole 

magnets, radio-frequency cavities, etc. yield conservative forces, which means that the 

phase-space volume of a beam is unchanged due to the Liouville’s theorem [8]. We thus 

need to introduce some dissipative interaction in the machine to control the emittance 

artificially. 

   The process of improving the beam quality or, in other words, reducing the 

emittance is called “cooling” because the temperature becomes lower as the beam is 

compressed in phase space. There are only few cooling methods technically 

well-established and applicable to hadron beams; namely, electron cooling [9], 
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stochastic cooling [10], and laser cooling [11,12]. Electron cooling and stochastic 

cooling are very popular in the community. On the other hand, Doppler laser cooling 

has been employed only at three laboratories so far, despite the fact that this relatively 

new cooling technique can produce an ultracold ion beam in principle. The TSR group 

of Max Planck Institute in Germany carried out the first proof-of-principle experiment 

[13], immediately followed by another attempt at the ASTRID ring in Denmark [14]. 

These two teams succeeded in cooling the longitudinal beam motion, but unfortunately, 

it turned out that efficient cooling of the transverse betatron motion is very difficult to 

achieve in practice. 

   More than 10 years after the European attempts, a Japanese group constructed a 

compact cooler storage ring equipped with a Doppler cooling system [15,16]. The ring 

is named “S-LSR” (Small Laser-equipped Storage Ring). The lattice design of S-LSR 

has been designed carefully to minimize possible beam heating due to collective 

resonance. Most importantly, the so-called “resonant coupling method” [17,18] can be 

applied in this ring for indirect transverse laser cooling. The ultimate goal of this 

experiment is to crystallize an ion beam by reducing the beam temperature near the 

absolute zero. The cooling system, however, has some technical limitations. Careful 

optimization of the lattice and laser parameters is thus crucial for the best cooling 

performance. For this purpose, I carried out a number of systematic multi-particle 

simulations using the molecular dynamics (MD) code “CRYSTAL” developed at 

Hiroshima University [19]. As demonstrated below, a one-dimensional quasi-crystalline 

state could be reached in S-LSR only by adjusting several parameters to optimum 

values [20].  

   There exist various sources of instabilities that seriously deteriorate the beam quality. 

As is well-known, the periodic nature of alternating gradient beam focusing gives rise to 

resonance under specific conditions. Even if the machine operating point is chosen 

sufficiently away from resonance lines, we may still need to care about wake fields, 

residual gases, electron clouds, colliding beams, etc. [21] In a high-intensity hadron 

accelerator, serious beam heating can occur spontaneously even without all these 

external origins of instability. The strong Coulomb potential of an intense beam can be 

a source of root-mean-squared (rms) emittance growth when the beam is deviated from 

the perfect stationary state. Since it is practically impossible to provide an ideal matched 

beam at injection, such self-field-induced instability is an important issue that has to be 
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studied in detail. The latter part of the present thesis is devoted to this issue. 

   In what follows, I start from a brief overview of the standard beam orbit theory in 

Chapter 1 for later convenience. I then go to systematic MD simulations of laser cooling 

in Chapter 2 and search for the best set of fundamental parameters assuming the 

experimental condition of S-LSR. It is shown that a unique ultracold state of beam 

could be established by means of the resonant coupling method with optimum 

laser-cooling parameters. As mentioned above, Chapter 3 is devoted to the derivation of 

simple analytic formulas that allow us to make a quick estimate of rms emittance 

growth in an initially mismatched beam. The two-dimensional free-energy model 

developed by Martin Reiser [22] is generalized to treat an ellipsoidal bunches of 

arbitrary aspect ratio. Theoretical predictions are compared with Particle-In-Cell (PIC) 

simulations. 
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1. Beam orbit theory 
 

1.1 Hamiltonian formalism for beam dynamics 
 
The basic structures of particle accelerators can be classified roughly to two types; 

namely, linear and circular accelerators. In both types, electromagnetic fields are used 

to focus, guide, and accelerate a group of charged particles in the machines. 

Considering that the beam motion is usually relativistic, the starting point of 

single-particle dynamics is the classical Hamiltonian 

! = !" + (!− !!)! +!!!!, (1.1) 

where ! and ! are the charge state and rest mass of the particle, ! and ! are the 

scalar and vector potentials of the electromagnetic fields generated by multipole 

magnats, radio-frequency (rf) cavities, and other components in the machine, ! is the 

canonical momentum, and ! is the speed of light in vacuum. 

   In general, we take the path length s along the beam orbit, instead of time t, as the 

independent variable because the external potentials ! and ! cannot be well defined 

in time; in other words, electromagnetic components that create ! and ! are spatially 

fixed. It is thus much more convenient to redefine the Hamiltonian (1.1) in a new 

coordinate system as illustrated in Fig. 1.1. This system is referred to as “Frenet-Serret 

coordinates”. The Hamiltonian canonically transformed to this coordinate system can be 

written as 

 

 
Fig. 1.1 The Frenet-Serret system in circular accelerators 
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!(!,!! ,!,!! , !,−!; !)

= − 1+ !
! ! !! − !! − !"! ! − !! − !"!

!

− !!! 1+ !
! ! . 

(1.2) 

where ρ(s) is the local curvature of the beam orbit, and !  is the total kinetic 

momentum defined as ! = (! − !")!/!! −!!!!.  Note that the longitudinal 
canonical variables are no longer the spatial coordinate z and the conjugate momentum 

but changed to (t, -E) where E represents the total energy of the particle. Assuming 

!!/! ≪ 1 and !!/! ≪ 1, we can expand the square root in Eq. (1.2) and keep only 

low-order terms to obtain 

! ≈ − 1+ !
! ! !!! + ! −

!! − !"! ! + !! − !"!
!

2!  . (1.3) 

Ideally, only the longitudinal component of the vector potential is necessary to describe 

the effects of acceleration by rf cavities and transverse Lorentz forces from multipole 
magnets; namely,  In addition if we use the following relation between 

momentum deviation !" = ! − !! and !" = ! − !!, 

!" ≈  !"!!!
− 1
2!!

!"
!!!!!

!
. (1.4) 

!! and !! are Lorentz factor of a reference particle, !! is the design momentum, and 

!! is the design energy. The following generating function !! !,−!"  gives us a 

canonical transformation from (!,−!) to (!,−!"). 

!! !,−!" = −(!! + !")! (1.5) 

As a result Hamiltonian can be rewritten as 

! !,!! ,!,!! , !,−!"; !

≈ − 1+ !
! ! !!! + !! +

!"
!!!

− 1
2!!

!"
!!!!!

!

− !!
! + !!!
2!  . 

(1.6) 

Another canonical transformation to verify the variables from (!,−!") to (!,!!) is 

carried out with Eq. (1.7). 

Ax = Ay = 0
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!! !,!! = !!!!! ⋅ ! − !! !! . (1.7) 

! and !! are defined as ! = !!!!! ! − !!  and  !! = −!"/!!!!! respectively, !! 

is the reference time of a design particle injected to an accelerator. 
! !,!! ,!,!! , !,!!; !

≈ 1+ !
! ! !!!!

+ 1+ !
! !

!!! + !!! + !!!
2 − 1− !!!!!

 . 

(1.8) 

The transformation and the scaling of canonical variables shown in Eq. (1.9) is the 

well-known analytical technic of the beam-dynamics theory. 
! → !/!!,!! → !!/!!,!! → !!/!!,!! → !!/!!. (1.9) 

   Quadrupole magnets, drift space, Bending magnets, and rf cavities of TM010 mode is 

the basic components of circler accelerators. The vector potentials of them are shown in 

Eq. (1.10). 

 !! = −!!! 1+ !
! ! − !! !2 !! + !! !2 !!

+ !!
ℎ!"!!

cos ℎ!"!!
!!!!!

! + !! − cos !!

+ ℎ!"!!
!!!!!

! + !! sin !! !!(! − !!"). 

(1.10) 

Substituting Eq. (1.10) into Eq. (1.8), then the Hamiltonian of the basic storage ring is 

written by 

! ≈ 1+ !
! ! !!!! +

1
2 !!! + !!! + !!! + 12 !! ! !! + !! ! !!

+ !!!
!!ℎ!"!!

cos ℎ!"!!
!!!!!

! + !! − cos !!

+ ℎ!"!!
!!!!!

! + !! sin !! !!(! − !!"), 

(1.11) 

where !! ! = 1/! ! ! − !! ! /2 and !! ! = !! ! /2. !! !  is the gradient of  

the magnetic field expressed as !! ! = !
!!

!!!!"#
!" , !! is the electric field of a rf cavity, 

ℎ!" is the harmonic number of a storage ring, !! is a rf phase of a design particle, and 
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!! is the circulating frequency of a beam.  

 

1.1.1 Transverse dynamics 
 

Considering the orbit dynamics of a charged particle in accelerators, we usually separate 

a motion of the transverse and longitudinal directions for the convenience of the 

theoretical treatment. Let us explain the transverse dynamics at first. The basic linear 

theory of the transverse-beam dynamics was constructed by Courant and Snyder [23]. 

From the Hamiltonian of a storage ring shown in Eq. (1.8), we obtain the following 

parts as a Hamiltonian of the transverse degree of freedom. 

! = 1
2 !!! + !!! + 12 !!(!)!! + !!(!)!! . (1.12) 

The equations of motion are given automatically from Eq. (1.12). 

!!!
!!! = −!! ! !. (1.13.a) 

!!!
!!! = −!! ! !. (1.13.b) 

Eqs. (1.13) are known as Hill’s equation, !! !  and !! !  represent focusing force in 

an accelerator. When we suppose a circular accelerator, !! !  and !! !  are periodic 

functions given from the lattice so they can expressed algebraically as !! ! = !!(! +
!) and !! ! = !!(! + !). ! is the lattice length. Eqs. (1.13) have same character 

mathematically, therefore we only focus on the horizontal direction. According to 

Flouqet’s theory a general solution of Hill’s equation is known as follows. 

! ! = !!!! ! exp !" ! + !! . (1.14) 

If we consider only a real part of Eq. (1.14), the single-particle orbit of the horizontal 

direction is written as 

! ! = !!!! ! cos (! ! + !!). (1.15) 

!" !
!" = cos ! ! + !!

!
!" !!!! !

− !! !
!" !!!! ! sin ! ! + !! . 

(1.16) 
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Equation. (1.15) is so-called betatron oscillation. !! !  is betatron function of the 

twiss parameters and it is the periodic function of the lattice length (!! ! = !!(! + !)). 
!! is the Courant-Snyder invariant and it roughly means the emittance referred in 

outline. An invariant is an essential element in Hamiltonian formalism for the better 

understanding of the dynamics. By means of Eq. (1.15) and (1.16) (the differential of 

Eq. (1.15)), Courant-Snyder invariant is given by 

! ! !! ! + 2! ! ! ! !" !
!" + ! ! !" !

!"
!
= !! . (1.17) 

! !  ,! ! , and ! !  are known as twiss parameters defined by 

!! ! = − 12
!!! !
!" , (1.18.a) 

!! ! = 1
4!! !

!!! !
!"

!
+ 1
!! !

. (1.18.b) 

The equation of ! !  can be derived by Eq. (1.13.a) and Eq. (1.15) as follows. We 

often solve Eq. (1.19) numerically and get the solution of the beta function entire the 

storage ring. 

!! !! !
!!! + !! ! !! ! − 1

!! ! !/! = 0, (1.19) 

Integrating Eq. (1.20) throughout a storage ring means a betatron tune of a particle. 

!! !
!" = 1

!! !
. (1.20) 

!! =
1
2!

1
!! !

!

!
!". (1.21) 

Needless to say, the same discussion can be done for the vertical degree of freedom.  

As we mentioned in the previous section, the beam-transport system is constructed by 

the three-different parts, drift space, quadrupole magnets, and bending magnets. The 

transfer-matrix theory of each beam-transport system is shown in the following section. 
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�Drift space 
A drift space is the section of no electromagnetic fields in the beam-transport system, so 
the beam-focusing function !! !  and !! !  are zero. As a result the Hamiltonian of 

this section is written as 

! = 1
2 !!! + !!! . (1.22) 

In general the transfer matrix is expressed as !!"# = !!"#$%&'"!!"#$" , where ! =
(!,!!) and !!"#$%&'" is called as a transfer matrix. In the case of a drift space, the 

particle motion in matrix formulation is written by a following formula. 

!
!! !"#

= 1 !!
0 1

!
!! !"#$"

, (1.23) 

where !! is the length of a drift space. We can apply the same procedure to the vertical 

direction. 

 

�Bending magnet 

A bending magnet is the component to circulate the beam, so there is only a dipole 

magnetic field. The vector potential of this section is written as !! = − !!
!

!
!!

. As a 

result the Hamiltonian of this section is written as 

! = 1
2 !!! + !!! + 1

!!! !!, (1.24) 

where !! is the curvature radius at bending magnets. Therefore, the transfer matrix of 

a bending magnet is written by a following formula. 

!
!! !"#

=
cos 1

!!
!! !! sin

1
!!

!!

− 1
!!

sin 1
!!

!! cos 1
!!

!!

!
!! !"#$"

, (1.25) 

where !! is the length of a bending magnet. Ideally the vertical direction will not be 

influenced in this section, so the transfer matrix of the vertical direction is same as the 

drift space one.  

   Next, we will mention about the dispersion effect generated by the bending magnets. 

The strength of a magnetic field in a bending magnet is defined as  
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!! = !!/!!!. (1.26) 

The designed particle with the momentum !!  keeps staying at the origin of the 

horizontal direction, however a curvature of a particle with the momentum deviation 

!" is changed at the bending magnet. As a result the horizontal orbit deviates from a 

design orbit due to a bending-magnet section. The orbit deviation can be expressed as 

! ! = !! !
!"
! . (1.27) 

!! !  is know as a dispersion function which can be derived from the following 

equation of motion. 

!!!
!!! + !! ! ! =

!"
!

1
!(!). (1.28) 

Substituting Eq. (1.31) to Eq. (1.32), the equation of a dispersion function is given as 

!!!!(!)
!!! + !! ! !! ! = 1

! ! . (1.29) 

By means of Eqs. (1.23) and (1.31), an orbit of the horizontal direction is written as 

! ! = !!!! ! cos ! ! + !! + !! !
!"
! . (1.30) 

 

��Quadrupole magnet 

In the quadrupole-magnet section, the vector potential is written by !! = − !!
!! !!!! −

!!!!  and a Hamiltonian is given by 

! = 1
2 !!! + !!! + !!!! − !!!!. (1.31) 

When !! has positive value, the transfer matrix is expressed as  

!
!! !"#

=
cos !!!!

1
!!
sin !!!!

− !! sin !!!! cos !!!!

!
!! !"#$"

. (1.32) 

On the other hand, when !! is negative, the transfer matrix is expressed as 

!
!! !"#

=
cosh !!!!

1
!!
sinh !!!!

− !! sinh !!!! cosh !!!!

!
!! !"#$"

. (1.33) 
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where !! is a length of a quadrupole magnet in the longitudinal direction. Finally the 

transfer matrix of an entire storage ring is expressed as Eq. (1.34). !! ,!! , and !! are 

twiss parameters shown in Eq. (1.18) 

!!"#$%&" =
cos 2!!! + !! sin 2!!! !! sin 2!!!

−!! sin 2!!! cos 2!!! − !! sin 2!!! . (1.34) 

 

1.1.2 Longitudinal dynamics 
 

For the purpose of the beam acceleration and the beam bunching, a rf cavity of TM010 

mode is the most convenient component. According to Eq. (1.11), the Hamiltonian of 

the longitudinal direction obeys  

! ≈ 1
2!!

! + !!!
!!ℎ!"!!

cos ℎ!"
!
!!
+ !! − cos !!

+ ℎ!"
!
!!
+ !! sin !! !!(! − !!"). 

(1.35) 

The equation of motion in the longitudinal direction is automatically obtained as 

!!!
!!! ≈ − !"!

!(!!!!!)!
cos !! sin ℎ!"

!
!!

!! ! − !!"

≈ − !ℎ!"!! cos !!!!!(!!!!!)!
!!! ! − !!" . 

(1.36) 

The thin-lens approximation of a rf cavity is supposed in Eq. (1.35). When we set the rf 

phase of a design particle to !! = 0, the beam acceleration will not be occurred. The 

accurate-energy gain of a design particle per passage can be calculated by the 

integration through the entire rf cavity. 

∆! = !"!!!! cos(ℎ!"!!! + !!)!"
!!"#/!!!!

!!!"#/!!!!
= !"! cos !! !. (1.37) 

where !!"#  is the gap length, !! = !!"#!!  is the maximum voltage, !  is the 

transit-time factor defined by 

! = sin(ℎ!"!!"#/2!!)
ℎ!"!!"#/2!!

 (1.38) 

It represents the effective-acceleration voltage for a design particle. !  is always 

smaller than unity and the more ! large, the more charged particles obtain the large 

acceleration. When !!! cos !!  has a positive value, a particle oscillates around 
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! = 0. This is known as a synchrotron motion. Then, we should mention about the two 

important parameters related to the longitudinal motion. First one is the 

momentum-compaction factor defined as  

! = 1
2π !!

!!(!)
!(!)

!" !!

!
!". (1.40) 

The closed orbit of the entire ring is longer when the momentum deviation exists. The 

relation between a momentum deviation and the closed-orbit length can be given as 

!2π !!
2π !!

= ! !"! , (1.39) 

where !! is the average curveture of a ring. 

The second one is the phase-slip factor defined by ! − !
!!!

. In the case of a designed 

particle, the circulation time of a storage ring is given by ! = 2π !!/!!!, the particle 

with the momentum deviation !" takes extra time !! to circulate the ring. 

!!
!  = !2π !!

2π !!
− !!!!!!!

 =  !2π !!
2π !!

− 1
!!!
!"
!  =  ! !"!  . (1.41) 

If a phase slip factor is zero, a lap time of all particles have same value. !! defined by 

Eq. (1.42) is called transition energy. 

!! =
1
! = !! . (1.42) 

 

1.1.3 Resonance instabilities 
 
There are many potential sources of the beam instability that seriously deteriorate the 

quality of a charged-particle beam. Even if the operating point of an accelerator is 

properly chosen on the tune diagram to avoid intrinsic resonance lines, the beam may 

still be unstable due to various extra factors including magnetic error fields, 

coupling-impedance sources, radio-frequency (rf) noises, etc. The beam loss of 

high-energy accelerators, due to these instabilities, will generate the radioactive 

substance. In order to avoid this worst situation, the better understanding of resonance 

instabilities is essential.  
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   Sum resonance and difference resonance are famous beam instabilities [21, 24 – 27]. 

When a coupling potential !(!)!!!!!! exists in an accelerator, the Hamiltonian of the 
transverse direction can be obtained as  

! = 1
2 !!! + !!! + 12 !! ! !! + !! ! !! + !(!)!!!!!! . (1.43) 

!! and !! are natural numbers. Usually !(!) is much smaller than !! !  and !! ! . 

The canonical transformation, with the generating functions Eqs. (1.44) and (1.46), are 

convenient for the analytic calculation of the nonlinear-beam dynamics. 

!! !, !,!! ,!! = − !!
2!! !

tan!! −
!!′ !
2 − !!

2!! !
tan!! −

!!′ !
2 , (1.44) 

! = !!
!! !

+ !!
!! !

+ !(!)

2
!!!!!
!

!!
!!
! ! !!

!!
! ! !!

!!
! !!

!!
! (cos !!!! + !!!!

+ cos !!!! − !!!! +���). 

(1.45) 

!! !! ,!! , !! , !! = !! −
!"
!! !

!

!
+ !!

!
!!

!! + !! −
!"

!! !
!

!
+ !!

!
!!

!! . (1.46) 

! = !!
!!
!! +

!!
!!
!! + !!

!!
! !!

!!
! (!!!,!!,!! cos !!!! + !!!! − !!

!
!0
+ !!!

+ !!!,!!,!! cos !!!! − !!!! − !!
!
!0
+ !!! +���). 

(1.47) 

The Fourier amplitudes !!!,!!,!! , !!!,!!,!!  and the phase !!! , !!!  are expressed 

respectively as 

!!!,!!,!!!!!!! =
!(!)

2
!!!!!
!

!!
!!
! ! !!

!!
! ! !! !!!!!!!!! ! !!!!!!!!!!!! !

!0 !", (1.48.a) 

!!!,!!,!!!!!!! =
!(!)

2
!!!!!
!

!!
!!
! ! !!

!!
! ! !! !!!!!!! ! !!!!!!!!!!!! !

!0 !". (1.48.b) 

We will explain the sum resonance at first. Under the condition of !!!! + !!!! = !!, the 

Hamiltonian can be approximated as 

! = !!
!!
!! +

!!
!!
!! + !!

!!
! !!

!!
!!!!,!!,!! cos !!!! + !!!! − !!

!
!0
+ !!! . (1.49) 

From the Eq. (1.47), we obtain the following equation. 
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!!
!!!
!" − !!

!!!
!" = 0. (1.50) 

Finally we lead to the following formula of sum resonance. 

!!!! − !!!! = !"#$%&#%. (1.51) 

When tunes set to the condition !!!! − !!!! = !! , the relation of the difference 

resonance is given by the similar procedure as follows. 

!!!! + !!!! = !"#$%&#%. (1.52) 

Under the sum-resonance condition, the beam emittances of the two degrees of freedom 

keep increasing. Therefore we must pay attention to the sum resonance condition for the 

accelerator operation. 

 

1.1.4 Definition of beam temperatures 
 

In general the kinetic energy is used for the definition of a temperature. Accordingly we 

define beam temperatures as follows. 

!!!! =
!!!
2!  , (1.53.a) 

!!!! =
!!!
2!  , (1.53.b) 

!!!! =
!!!
2!  , (1.53.c) 

where ! is the beam temperature, !! is the Boltzmann constant, and  stands for 

taking the average of the quantity A over the whole phase space. These definitions are 

correct when a beam is hot enough, however we must not use them for a ultralow 

temperature beam. Because Eqs. (1.53) include the coherent motion of particles for the 

evaluation of temperatures. Therefore, instead of the conventional definition, the 

following new definitions of temperatures have proposed in ref. [28]. 

!!!! =
!!!
8!

!!
!!

!
 , (1.54.a) 

!!!! =
!!!
8!

!!
!!

!
 , (1.54.b) 

A
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!!!! =
!!!
8!

!!
!!

!
 , (1.54.c) 

where !! = 4 !! !!! − !!! !/!!!!!! , !! = 4 !! !!! − !!! !/!!!!!! 

!! = !! !!! − !!! !/!!!!!!, !! = 2 !! , and !! = 2 !!  respectively. As 
is shown in Eqs. (1.54), in the new definition of temperature, the beam emittance is 

used for the calculation of the beam temperature. Thanks to this new defitition, we are 

able to evaluate the beam temperature without the coherent motion of particles. 

 

1.1.5 Liouville’s theorem 
 
It is well known that the 6 dimensional-phase-space volume of a dynamical system is 

constant if it obeys Hamiltonian formalism. It is called Liouville’s theorem [8]. Let us 

prove this theorem below.  
   First we define !(!,!! ,!,!! , !,!! , !) as a function of the phase-space density. 

From the equation of continuity, a following equation is carried out. 

!"
!" +

!(!!!)
!!!

+ !(!!!)!!!

!

!!!
= 0, (1.55) 

where !!  and !!  are canonical variables. The total derivative of the phase-space 
density !(!,!! ,!,!! , !,!! , !) is expressed as 

!"
!" =

!"
!" +

!"
!!!

!!!
!" +

!"
!!!

!!!
!"

!

!!!
, (1.56) 

The Eq. (1.56) can be transformed as follows by Eq. (1.55), in addition, Eq. (1.58) is 

concluded in the Hamiltonian formalism. 

!"
!" = −! !

!!!
!!!
!" +

!
!!!

!!!
!"

!

!!!
. (1.57) 

!!!
!" =

!"
!!!

, −!!!!" =
!"
!!!

 . (1.58) 

Finally the total derivative of the phase-space density !(!,!! ,!,!! , !,!! , !) leads to 
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!"
!" = 0. (1.59) 

Equation. (1.59) means that the phase-space density is conserved when a dynamical 

system obeys Hamiltonian formalism. The external force of accelerators are basically 

comes from the electromagnetic field. In this system, the beam emittance is an invariant. 

Therefore some dissipative forces are needed in order to decrease a beam emittance. 

Several methods are known for the effective hadron-beam cooling, for example, the 

electron cooling, the stochastic cooling, and Doppler laser cooling. The theoretical idea 

employing a laser cooling to decrease a gas temperature had proposed by Wineland in 

1975 [12]. This method enables us to decrease a temperature of an atom on the order of 

mK instantly. After that several laser cooling methods have been found. Doppler laser 

cooling method is recognized as the most effective way for a beam cooling. We will 

explain a principle of Doppler laser cooling in the Sect. 2.2. 

 

1.2  Space charge effects 
 

Charged-particle beams in regular machines are generally quite hot and low density in 

real space, which means that the motion of each individual particle is approximately 

independent of others. Recent progress in accelerator technologies is, however, making 

it possible to produce extremely intense or high-power hadron beams where 

inter-particle Coulomb interactions play a noticeable role. For instance, the strong 

Coulomb potential can be a source of liner and nonlinear coherent resonances that can 

seriously affect the beam stability. In this subsection, a brief description is given of 

some theoretical models useful to explore the collective motion of 

space-charge-dominant beams. For simplicity, we here concentrate upon the transverse 

betatron motion, ignoring the synchrotron oscillations of particles in the longitudinal 

direction. 

 

1.2.1 Vlasov-Poisson model 
 

In order to investigate space-charge-induced collective effects in intense beams, the 

scalar potential φsc of the Coulomb interaction has to be included explicitly in the 
betatron Hamiltonian in Eq. (1.11): 
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! = 1
2 !!! + !!! + 12 !! ! !! + !! ! !! + !!!"(!,!, !)!!!!!!!!!

. (1.60) 

The third term on the right hand side is the source of various collective effects when the 

beam density is high. Since the Coulomb potential is multiplied by the factor , 

the space-charge effects are particularly severe in a region of low beam energy. Given 

the number density !(!,!, !) of charged particles forming the beam, the corresponding 

Coulomb potential can be calculated from the Poisson equation 

∆!!"(!,!, !) = − !
!!
!(!,!, !). (1.61) 

Needless to say, the particle distribution within a beam evolves in a complex manner as 

a result from nonlinear Coulomb interactions. The density !(!,!, !) in real space is 
obtained from the distribution function ! !, !, !! , !! , !  in four-dimensional transverse 

phase space by integrating it over momentum space: 

! !,!, ! = ! !, !, !!, !!, !  !!!!!!. (1.62) 

The function f obeys the Boltzmann equation 

!"
!" + !,! = !"

!" !"##$%$"&
, (1.63) 

where the right hand side is referred to as the collision term, and [ , ] stands for the 

Poisson bracket. Since Coulomb collisions among individual particles are generally 

negligible in a regular beam as already noted, we usually drop the collision term and 

adopt the simpler Vlasov equation 

!"
!" + !,! = 0. (1.64) 

Instead of the Boltzmann equation. Naturally, the Vlasov equation requires the 

Hamiltonian to be well defined. The Hamiltonian in Eq. (1.60) depends on the scalar 

potential φsc determined by the Poisson equation in Eq. (1.61). To solve the Poisson 

equation, we need to know the number density in advance, but !(!,!, !) comes from 

the distribution function f satisfying the Vlasov equation. For a self-consistent treatment 

of space-charge effects, therefore, we must simultaneously solve the Vlasov and 

Poisson equations together with the Hamiltonian. It is, however, hopelessly difficult to 

find a self-consistent solution to the Vlasov-Poisson equations when the external 

driving force is time-dependent. Multi-particle computer simulations are thus often 

1 / β0
2γ 0

3
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employed to clarify the collective behavior of hadron beams in modern high-intensity 

and/or high-power accelerators. For instance, the Particle-In-Cell (PIC) simulation 

technique is very popular these days and has actually become a very useful means to 

collective beam dynamics due to the recent rapid improvement of CPU performance. 

   It is probably impossible to construct a purely analytic theory that self-consistently 

describes the time evolution of an arbitrary initial distribution function. Past theoretical 

attempts to solve the Vlasov-Poisson equations thus mostly rely on a perturbative 
approach. Specifically, we first find a certain stationary distribution  that satisfies 

the Vlasov equation. The distribution function is then separated into two parts as 
 where  is small perturbation to the stationary state. The Hamiltonian 

and the Coulomb potential are also separated into two parts as ! = !! + !"!!"(!,!,!)
!!!!!!!!!

 

and !!" = !!"! + !!!"  where H0 is the stationary Hamiltonian that includes the 

stationary Coulomb potential !!"!. This allows us to expand the basic equations about 

the stationary state. Leaving only linear perturbative terms, we have 

!"#
!" + !",!! = !

!!!!!!!!!
!!!" , !! . (1.65) 

∆!!!" = − !
!!

!" !!!!!!. (1.66) 

This equation is still difficult to solve especially for periodic lattices. Hofmann et al. 

developed a numerical theory over thirty years ago, taking the Kapchinsky-Vladimirsky 

(KV) model explained in the next section. A fully analytic theory for a one-dimensional 

sheet beam was constructed by Okamoto and Yokoya who derived the general condition 

of space-charge-induced coherent resonance [29]. 

 

1.2.2 Kapchinsky-Vladimirsky distribution 
 

It is straightforward to define a stationary state in a uniform focusing channel. Since the 

driving force is completely static, the corresponding Coulomb potential φsc is 
independent of s, which makes the Hamiltonian itself a constant of motion. An arbitrary 

function of the stationary Hamiltonian can then be a solution to the Vlasov equation 
(recalling the fact that Eq. (1.61) can be rewritten as ). This is why most 

Vlasov theories in the past have employed the smooth approximation. In contrast, it is 

f0

f = f0 + δ f δ f

df / ds = 0
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extremely difficult to define a perfect stationary state when the beam is exposed to a 

periodic focusing force. Kapchinsky and Vladimirsky discovered that the following 

distribution function satisfies the Vlasov-Poisson equations, no matter whether the 

external beam-focusing potential is periodic or uniform: 

!! !! , !! = !
!!!!!

! 1 − !!
!!
− !!
!!

, (1.67) 

where ! 1− !!
!!
− !!

!!
 is the Dirac’s delta function, ! is the number of particles in 

the beam per unit length in the longitudinal direction, !! and !! are full emittances in 

the transverse directions. 

   We can obtain the real space distribution of KV distribution by integrate the velocity 

space [30, 31]. 

! !, !, ! = !
!!!!!

! 1 − !!
!!
− !!
!!

!!!!!! =
!

!!!!!
,   if  !

!

!!!
+ !!
!!!

≤ 1 .
0                 otherwise,

 (1.68) 

where !! and !! are the edge beam radius of each direction. As we confirmed from Eq. 

(1.68), the real space distribution of KV distribution is uniform. Due to this fact, we 

obtain the self-field potential of a KV beam as  

!!" !,!, ! = − !"
2!!!

!!
!!(!! + !!)

+ !!
!!(!! + !!)

. (1.69) 

As a result, we rewrite the Hamiltonian of a beam in the case of KV distribution as 

! = 1
2 !!! + !!! + 12 !! ! − 2!!"

!!(!! + !!)
!!

+ 12 !! ! − 2!!"
!!(!! + !!)

!!, 

(1.70) 

where !!" is expressed as !!" = !!!/2!!!!!!!!!!!!.  
  The KV distribution is currently the only known, perfectly self-consistent solution to 

the Vlasov-Poisson equations with a s-dependent external focusing potential. The KV 

model has thus been often adopted for stability studies of intense hadron beams. In 

reality, however, the distribution of any particle beam is quite different from the unique 

four-dimensional spherical shell as in Eq. (1.67) that produces a completely linear 

space-charge force. We must thus be careful in interpreting theoretical results based on 

the KV model. This distribution actually has a unique instability mechanism (known as 
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the KV instability) that is activated at high beam density [32, 33-41]. 

 

1.2.3 Root-mean-squared envelope equations 
 

It is convenient to consider rms quantities instead of single-particle quantities because 

we can only observe a sort of averages in actual experiments. In particular, we often pay 

attention to the second moments of canonical variables. The temperature definition in 

Eq. (1.54) is one such example. The concept of rms beam size is also frequently 

employed in past various studies of beam dynamics. The horizontal rms beam size 

!!"# can be evaluated by averaging !! with the distribution function f over the whole 

phase space: 

!!"# = !! = !!! !,!,!! ,!! !"!#!!!!!! . 
(1.71) 

Needless to say, we can define similar rms quantities for other variables. Making use of 

the Vlasov equation in Eq. (1.64) and the canonical equations derived from Eq. (1.60), 

we can obtain the so-called rms envelope equations  

!!!!"#
!!! + !! ! !!"# −

!!"#
(!) !

!!"#! − 2!!"
!!"# + !!"#

= 0, (1.72.a) 

!!!!"#
!!! + !! ! !!"# −

!!"#
(!) !

!!"#! − 2!!"
!!"# + !!"#

= 0, (1.72.b) 

where !!"#
(!)  and !!"#

(!)  are the rms beam emittances defined by 
!!"#
(!) = !! !!! − !!! ! and !!"#

(!) = !! !!! − !!! !. Sacherer proved that 
this set of coupled equations strictly folds for an arbitrary phase-space distribution as 

long as the transverse beam profile has elliptical symmetry [42]. Note that the 

second-moment equations in Eq. (1.72) form a closed set if the time evolutions of the 

rms emittances are known a priori. In general !!"#
(!)  and !!"#

(!)  are constants after beam 
injection, !! !  and !! !  are periodic functions of an independent variable !, then 

!!"#  and !!"#  should be periodic functions of !. When a beam injected into an 

accelerator, we should change a beam shape into the proper shape in phase space. This 

is called as a beam matching. If we don’t transact a beam matching, several serious 

problems will happen, for example beam instabilities and a beam halo formation. From 

Eq. (1.72) we can obtain the periodic function of !!"# and !!"# numerically and we 
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avoid an emittance growth and a formation of a beam halo.  

   When we investigate a higher mode collective oscillation, we have to use a higher 

order momentum equation. Actually beams have infinite collective mode, therefore we 

can’t deal with every mode analytically in principle. As we mentioned before, !!"#
(!)  

and !!"#
(!)  are constants, therefore Eq. (1.72.a) and (1.72.b) become the second 

momentum equations. In order to make an analytic estimate of the tunes of linear 

collective modes, let us assume a coasting round beam for the sake of simplicity. We 
further apply the smooth approximation, replacing the focusing functions  by a 

constant parameter . The envelope equations can then be simplified to give 

!!!!"#
!!! + !!!!!"# −

!!"#
!

!!"#! − !!"
!!"#

= 0, (1.73) 

where !!"#
(!) = !!"#

(!) !!"#, and the same equation holds for !!"#. In a stationary state 
where !!"# !! = !"#$%., the above equation leads to 

!! =
1
!!

!!" + !!"! + 4!!"#(!) !!!!

2  . 
(1.74) 

If we neglect a space-charge effect, a beam tune can be represented as !! = !!!!/2!, 

however a space-charge effect is included, a beam tune can be written as ! =

!! !!! − !!"/!!!/2!. It means a beam tune is depressed by Coulomb self-force. We 

usually use !! and ! as an indicator of beam intensity. This parameter is called 

tune-depression and it’s expressed by 

! = !
!!
= 1− !!"

!!!!!!
 . (1.75) 

Suppose that !!"#  and !!"#  is expressed as !!"# = !! + !"(!) and !!"# = !! +
!"(!) respectively. Substitute them into Eqs. (1.72.a) and (1.72.b), we reached to the 

following equations. 

!!!"(!)
!!! + 1

2!!!
3!!! + 5!! !" ! + 1

2!!!
!!! − !! !"(!) = 0, (1.76.a) 

!!!"(!)
!!! + 1

2!!!
3!!! + 5!! !" ! + 1

2!!!
!!! − !! !"(!) = 0. (1.76.b) 

Define !"! ! = !" ! + !"(!)  and !"! ! = !" ! − !"(!)  as a new variable, 

Kx(y) (s)

k⊥

≡
≡
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finally we obtain following equations. 

!!!"! !
!!! + 2

!!!
!!! + !! !"! ! = 0, (1.77.a) 

!!!"! !
!!! + 1

!!!
!!! + 3!! !"! ! = 0. (1.77.b) 

Two collective-oscillation modes can be given from Eqs. (1.77) as 

!!"#$%!!"# = 2 !!! + !! , !!"#$%"&'() = !!! + 3!! . (1.78) 

These collective modes are called a breathing mode and a quadrupole mode. The 

systematic study of the rms-envelope equation of several kinds of beams had done by 

Sacherer. We can see his study in Ref. [43]. 
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2 Optimization of laser-cooling parameters for 

beam crystallization at the storage ring S-LSR 
 

2.1 Crystalline beam 
 

As already mentioned, the emittance, i.e. the phase-space volume occupied by a beam, 

is a measure of the beam quality. The quality becomes higher as the emittance is 

reduced. Since the emittance is proportional to the beam temperature, we can state that a 

beam with lower temperature has higher quality. Recently, particle accelerators have 

been applied to diverse purposes and, as a result, beam users of various fields are 

demanding higher quality beams. In theory, it is possible to construct the ultimate 

“zero-emittance” state or, in other words, “zero-temperature” state where the beam is 

Coulomb crystallized. The concept of beam crystallization was first discussed by 

Russian researchers in early 1980’s when they tried to explain anomalous Schottky 

signals from proton beams electron-cooled in the NAP-M ring [44, 45]. Later, Schiffer 

and his co-workers conducted a systematic theoretical study of beam crystallization, 

employing the molecular dynamics (MD) technique [46]. His seminal work was 

generalized by Wei and others who incorporated the discrete AG lattice structure of a 

storage ring into MD simulations [47-50].  

   There are several beam cooling method applicable to a hadron beam; namely, 

electron cooling [9], stochastic cooling [10], and laser cooling [11, 12]. Among them, 

laser cooling is the most powerful while this method is applicable to limited ion species. 

Doppler laser cooling of a heavy-ion beam was first carried out at the Test Storage Ring 

(TSR) of the Max Planck Institute, Heidelberg [13], and then at the ASTRID ring of 

Aarhus University, Denmark [14]. These proof-of-principle experiments in Europe were 

successful, reducing the longitudinal beam temperature down to an ultracold level. 

Reaching a Coulomb crystallized state in these cooler rings was, however, found to be 

physically impossible due to the lack of several essential conditions [47]. Twenty years 

after the European attempts, another compact ring equipped with a Doppler laser 

cooling system was constructed at Kyoto University [15, 51]. The ring was named 

S-LSR, the abbreviation of “Small Laser-equipped Storage Ring”. Compared to TSR 
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and ASTRID, S-LSR has an AG lattice more suitable for beam crystallization. In 

addition, this machine was designed to allow the application of the so-called resonant 

coupling method that is a key to transverse laser cooling [17, 18].  

   In the following sections, we first explain the physical properties of a crystalline 

beam, and the principle of laser cooling. The careful optimization of laser-cooling 

parameters is performed considering the actual experimental conditions of S-LSR. The 

MD simulation code CRYSTAL [19] is employed for this purpose. We shall 

numerically demonstrate that the production of a one-dimensionally ordered unltracold 

beam is feasible in S-LSR. 

 

2.1.1 Properties of a crystalline beam 
 
It is well known that the structure of a coasting crystalline-beam changes depending on 

the line density. At low line density, all ions are aligned along the design beam orbit at 

equal intervals. Such an ordered state is called “string”. Increasing the line density, we 

can transform the string into a “zigzag” crystal as shown in Fig. 2.1. At higher density, a 

three-dimensional “shell” structure is eventually formed. 

Hasse and Schiffer developed an analytic theory to predict the line density at which a 

 
Fig. 2.1: The structure of crystalline beams in real space. Upper panels are transverse 

planes and lower figures are longitudinal-horizontal planes. A (a) string, (b) zigzag 

and (c) shells state are formed respectively. 
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particular crystalline-configuration is converted into another one [46]. In their theory, 

the Wigner-Seitz radius defined below plays an important role: 

!!" =
3!!

8!!!!(!!!)!

!
!
, (2.1) 

Making use of the Wigner-Seitz radius, we introduce the dimensionless line-density 

! = !!!", (2.2) 

where ! is the dimensionless line-density. Hasse and Schiffer derived the transition 

line-densities listed in Table 2.1 [46]. The validity of their theoretical predictions has 

been confirmed with past MD simulations. 

 

2.1.2 Coulomb coupling parameter 
 

The phase of a non-neutral plasma can be characterized by the Coulomb-coupling 

constant 

Γ! =
!!

4!!!!
1
!!!

!, (2.3) 

where 2! is the average distance between neighboring particles. A charged-particle 

beam travelling in an accelerator is generally very and thin, which means that Γ! is 

much smaller than unity. Then, the beam is in the gaseous state. Γ! can be made larger 

by cooling the beam. The so-called liquid state is reached when the average Coulomb 

energy becomes comparable to the average kinetic energy; namely, Γ! ~ 1. In the solid 

state where the beam is crystallized, we have Γ! ≥ 170 [52, 53]. 

Table 2.1: The relation between line density and crystalline structure 

           Line density � � �   Crystalline structure 

        0� H� λ� H0.709� � � � � String (1D) 

     0.709� H� λ� H0.964� � �    Zigzag (2D) 

     0.964� H� λ� H3.10    �   Single shell (3D) 

     3.10 � H� λ� H5.70� � Single Shell + String (3D) 

     5.70 � H� λ� H9.50� � �  Double shells (3D) 
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   Coulomb crystallization has been experimentally realized in compact ion traps [54, 

55]. On the other hand, nobody has succeeded in generating a crystalline beam in a 

storage-ring accelerator. It, however, seems natural to expect beam crystallization, 

considering dynamical similarity between an ion trap and an accelerator [56,57]. 

According to previous theoretical studies [47,50], there are several necessary conditions 

for a cooler ring to satisfy as explained below. Specifically, the ring must have a proper 

lattice to avoid collective instability due to linear resonance crossing. Another serious 

obstacle toward beam crystallization is the existence of momentum dispersion induced 

by bending magnets. Ion traps are completely free from this effect, which makes it 

much easier for us to produce a Coulomb crystal. Before proceeding to MD simulations, 

we describe these fundamental issues of beam crystallization in detail. 

 

�Lattice requirement 
As already pointed out in a previous section, there is a possibility of coherent and 

incoherent beam instabilities depending on the lattice conditions of a storage ring. Once 

a beam encounters any serious instability, it may just become impossible to cool it 

further. It is thus quite important to choose a proper operating point, so that no severe 

beam heating occurs in the cooling process toward an ultracold state. Systematic PIC 

simulations have indicated that the linear collective resonance is too strong to be 

overcome with any realistic cooling methods [58]. The condition to avoid this type of 

resonance can be derived from the rms envelope equation. As shown in Sec. 1.2.4, we 

can find the tunes of the linear coherent modes (breathing and quadrupole oscillations) 

from the envelope equation. It is known that a collective oscillation mode becomes 

resonantly unstable when its tune comes close to a half integer [29]. For the breathing 

mode, the collective resonance condition can be written as 

2 !!! + !! = !!"
2  , ( 2 . 4 ) 

where !!" is the lattice superperiodicity of the storage ring. As the beam cooling 

process advances, the left hand side of Eq. (2.4) becomes smaller because σ approaches 

zero. At the low temperature limit, we have σbreathing = σ0 from which we can derive 

the so-called maintenance condition  [47]. Note, however, that at the 

2

σ 0 < Nsp / 2 2
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beginning σ is close to σ0 rather than zero. σ0 should thus be smaller than  to 

avoid the linear resonance throughout the whole cooling process toward the 

zero-temperature state. Since ! ≈ !! at the initial stage of cooling, the ring has to meet 

the following lattice requirement [58]: 

!! ≤
!!"
4 . ( 2 . 5 ) 

 

�Cooling requirement 

After the beam injection into an accelerator, we start the laser cooling in order to 

produce a crystalline beam. However, due to a property of the laser cooling, we only 

can decrease the beam temperature of the longitudinal direction. In the past 

laser-cooling experiments of a hadron beam, for example ASTRID or TSR, the 

transverse-beam temperature decreased by intra-beam scattering (IBS). But the cooling 

effect from the IBS is not strong enough to overcome the IBS heating rate of a liquid 

state like shown in a following figure. Because of this problem they could not produce a 

crystalline beam. To improve this problem, an epoch-making method was established 

[17, 18], this method is called a resonance-coupling method (RCM). Thanks to this idea 

we expect to obtain a strong transverse-cooling force with a conventional component of 

accelerators. 

 

Nsp / 2 2

 

Fig. 2.2: The IBS heating rate as a function of the beam temperature. According to the 

previous studies it is known that the maximum heating rate exists in the range of liquid 
state. 
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The storage ring S-LSR in Kyoto University is the unique accelerator equipped with the 

laser-cooling system and a resonance-coupling method. An innovative beam-cooling 

experiment had been done with S-LSR. 

 

�Tapered cooling 
The Strong-cooling force is the fundamental-physical condition for the production of a 

crystalline beam. According to the past laser-cooling experiments, Doppler laser 

cooling enables us to reduce the longitudinal-beam temperature on the order of mK, so 

the longitudinal velocities of all particles settle into almost the same value. As shown in 

Fig. 2.1, a 3D crystalline beam spreads in the horizontal degree of freedom, so the lap 

time of each particle has different value respectively, as a result the laser-cooling 

method can’t maintain the shell structure of a crystalline beam. This is called the 

bending-shear effect. A string and a zigzag crystalline beams would be generated by 

Doppler laser cooling because they don’t have the spatial spread in horizontal direction. 

   In order to produce a 3D crystalline beam, we should prepare a particular-cooling 

force that enables us to produce a beam condition like Fig 2.3. The candidate of this 

special-cooling force has proposed in the these references [47,50,60], and that can be 

written as 

∆ !"
! = −!!

!"
! − !!!!"!!

!  , ( 2 . 6 ) 

 

Fig. 2.3: To maintain a crystal structure of the shell state, the special cooling force 

which enable us to keep the beam velocity as a function of the horizontal amplitude is 
necessary. The special cooling force is known as a tapered cooling. 

inner orbit
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where !!  is the strength of the longitudinal-linear-friction force and !!"  is the 

tapering factor. This cooling method is called Tapered cooling [47,50,60]. At the 

equilibrium state, we have ∆ !"/! = 0, so the tapering factor !!" is written as 

!!" =
!!
!!!

!"
!  . ( 2 . 7 ) 

In addition, a betatron oscillation is completely suppressed at crystal state, the following 

condition will be satisfied. 

! = !! !
!"
!  , (2.8.a) 

! = !! !
!"
!  , (2.8.b) 

where !!(!) and !!(!) are the periodic-orbit function given from the following 

equations. 

!!!!(!)
!!! + !! ! !! ! − !!"

2 (!"/!)! (!! ! + !! ! )
= 1
! , (2.9.a) 

!!!!(!)
!!! + !! ! !! ! − !!"

2 (!"/!)! (!! ! + !! ! )
= 0 (2.9.b) 

Finally we obtain Eq. (2.10) as a relational expression. 

!!" =
!!

!!!! !
 . (2.10) 

 

2.2 Doppler laser cooling 
 

2.2.1 Principle 
 

The principle of Doppler laser cooling is based on resonant interactions between laser 

photons and ions [61, 62]. Figures 2.4 and 2.5 illustrate how Doppler cooling works. 

(a) Suppose an ion that is not fully stripped and moving along a particular orbit at the 

velocity !. This ion is assumed to have a closed transition between the ground state 

and a certain excited level. The transition angular frequency is !!. We introduce a 

laser light along the same orbit and let it interact with the moving ion. 

(b) The angular frequency !! of the laser light seen from the ion is Doppler shifted 

depending on the velocity !. If we adjust !! to the resonant frequency !!, this ion 
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absorbs a single photon and is excited to the upper level. In this process, the ion is 

slightly accelerated (or decelerated) along the direction of the laser propagation, 

receiving the tiny momentum of the photon. 

(c) Provided the lifetime of the upper state is short, the excited ion immediately comes 

back to the ground level emitting a single photon. In this process, the ion gains the 

recoil momentum. The recoil effect, however, becomes negligible after absorption 

and emission of many photons because the photon emission is spatially isotropic.  

(d) Finally, the ion is in the original ground state but the velocity is slightly changed 

  along the orbit. 

 

 

   We employ the basic cycle in Fig. 2.4 to decrease the temperature of an ion beam. 

Let us assume that the beam initially has a Maxwell velocity distribution of ions in the 

longitudinal direction, as shown in Fig. 2.5(a). By properly choosing the angular laser 

frequency !! of a laser in the laboratory frame, we can accelerate ions within a very 

narrow velocity region as indicated in Fig. 2.5(b). We then slightly shift the laser 

                

                
Fig. 2.4: A principle of Doppler laser cooling. The velocity of an ion is controllable 
by absorption and emission of photons. 
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frequency in order to have resonance continuously with those accelerated ions. After a 

frequency scan over possible Doppler shifts, we reach the final velocity distribution in 

Fig. 2.5(c) where the majority of ions are confined within a narrow range. Note that the 

laser light must be injected along a straight section of the storage ring, so that the beam 

can interact with many photons over a certain distance; otherwise, no efficient cooling 

takes place. This means that Doppler cooling is effective only in the direction of beam 

motion.  

 

 

2.2.2 Optimization of laser frequency detuning 
 
As we explained in the previous section, a laser has an ability of producing the 

dissipative force that can decrease a beam temperature. The formula of the laser 

dissipative force !! is known as a following function when an ion has a Lorentzian of 

transition. 

!! !! = 1
2ℏ!!Γ

!

1+ ! + 2
Γ∆

!, (2.11) 

where ℏ!! is the momentum of a laser photon, Γ is a natural-line width of an ion, ! 

is a saturation parameter of a laser, and ∆ is a laser detuning. The laser detuning is 

defined as 

∆= !!!! 1− !! + !!! − !! . (2.12) 

The !! is a speed of a design particle in the longitudinal direction and !! is a speed of 

an ion from a center-of-mass system of a beam. Therefore a laser detuning means a 

 
Fig. 2.5: The process of Doppler laser cooling with a sweep laser frequency is shown in 

the velocity space. 
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difference of the laser frequency for a moving ion in a velocity !! + !! and the 

transition frequency of an ion in the laboratory frame. This is one of the most important 

physical parameter for Doppler laser cooling, because the strength of the cooling force 

in the laser dissipative force can be decided by a laser detuning. According to a formula 

(2.11), the following formula can be obtained from the Taylor expansion of Eq. (2.11) 

by !!. 

!! !! ≈ 1
2ℏ!!Γ

!
1+ ! + (2∆!/Γ)!

+ 2ℏ!!!!
2∆!/Γ

1+ ! + (2∆!/Γ)! ! !!

= !!! + !!! ∙ !! , 

(2.13) 

here, ∆! is a laser detuning of !! = 0, !!! is the constant force, and !!! ∙ !! is the 

linear friction force in the longitudinal direction. To maximize the friction force, the 

following mathematical condition should be satisfied. 

!!!!
!∆!

= 0 (2.14) 

Finally, we found Eq. (2.15) as an optimum condition of a laser detuning to maximize 

the linear friction force.  

∆!=
Γ
2

1+ !
3 . (2.15) 

 
2.2.3 Doppler limit 
 
The previous studies have verified that Doppler laser cooling can decrease the 

longitudinal-beam temperature dramatically, however it is well known that there exists 

the temperature limitation we can reach with this method. It is so-called Doppler limit. 

Due to the reiteration of the absorption and emission of photons, a momentum in the 

laser propagating direction is decreased. However the randomness of the absorption and 

spontaneous emissions of photons give rise to the beam heating. The formulas of the 

momentum diffusion are written by Eqs. (2.16) and (2.17) respectively. 
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!!"# =
1
2ℏ

!!!!Γ
!

1+ ! + (2∆!/Γ)!
1+ℳ . (2.16) 

!!"# =
1
2ℏ

!!!!Γ
!

1+ ! + (2∆!/Γ)!
!!. (2.17) 

ℳ  is Mendel parameter [62] and !!  is the geometry factor of the spontaneous 

emission from ions [62, 63]. From Eq. (2.11), the total friction force from the 

co-propagating and the counter-propagating lasers are expressed as 

!!!_!"!#$ = 4ℏ!!!!
2∆!/Γ

1+ ! + (2∆!/Γ)! ! !! =  2!!! ∙ !! . (2.18) 

The temperature of Doppler limit can be estimated by the balance between the friction 

force and the momentum diffusion. Eq. (2.19) shows the balanced dynamical situation. 

It is given from Eqs. (2.16) 	 (2.18). 

−2!!! !!! + !
2!  = 0, (2.19) 

where ! is the momentum diffusion from two lasers expressed as ! = 2(!!"# +
!!"#), and !!! /2! is the longitudinal temperature. Finally we can obtain the beam 

temperature of Doppler limit. 

1
2 !!!! =

!
8!!!

= ℏΓ
16 (1+ℳ + !!)

1+ ! + (2∆!/Γ)!
2∆!/Γ

. (2.20) 

Suppose that ! ≪ 1 and 2!!/Γ = (1+ !)/3, Eq. (2.27) is transformed as  

1
2 !!!! =

ℏΓ
4 1+ !!

1+ !
3  . 

(2.21) 

If we suppose a one-dimensional system and the low-laser intensity, we achieve the 

following formula. 

1
2 !!!! ≈

ℏΓ
4  . (2.22) 

The lowest temperature we can expected from Doppler laser cooling is usually on the 

order of mK. The beam-cooling experiments with Doppler laser cooling method had 

been done in 1990’s and the effectiveness of laser cooling had confirmed in those 

experiments. They succeeded to decrease the longitudinal beam temperature, however 

the temperatures in the transverse direction are still hot compare to the longitudinal 

direction [13, 14]. Because the reachable temperature in the transverse direction is most 



 37 

likely limited by intra beam scattering (IBS), therefore the cooling efficiency in the 

transverse direction is lower than the longitudinal direction. The resonance coupling 

method was proposed two decades ago to extend a one-dimensional (1D) dissipative 

effect to the other two degrees of freedom. Thanks to this theory, the strong 

multi-dimensional cooling comes true. 

 

2.3 Multi-dimensional cooling by means of resonance coupling  
 

The idea of the resonance coupling method had proposed by Okamoto, Sessler, and 

Möhl in 1994 [17]. Owing to this idea, we are able to extend the cooling effect from the 

longitudinal to the other two dimensions easily. We explain the concept of the 

resonance coupling method below. 

 

2.3.1 A theoretical model of multi-dimensional laser cooling 
 

First we suppose the smoothed two-dimensional dynamical system to simplify the 

physical situation. 

! = 1
2 !!! + !!! + 12 !!!!! + !!!!! + !!!" . (2.23) 

!!  and !!  are betatron tunes of each direction and !!  is a factor of the 

coupling-potential strength. From the Hamiltonian (2.23), the equations of motion for 

the two degrees of freedom are given as follows. 

!!!
!"! = − !!!! − !!!, (2.24.a) 

!!!
!"! = − !!!! − !!!. (2.24.b) 

Due to the coupling potential, motions of each direction affect each other and when the 

condition of Eq. (2.25) is satisfied, the temperature exchange will be occurred. The 

coupling-potential strength !! determines the frequency of the temperature exchange. 

This phenomenon is known as the difference resonance referred in sect. 1.1.3. Thanks to 

the utilization of the difference resonance, the extension of the laser cooling force to the 

other two degrees of freedom becomes possible.  
!! − !! ≈ !"#$%$&. (2.25) 
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2.3.2 Optimization of coupling strengths 
 
For circular accelerators, the momentum dispersion can be used for the 

coupling-potential source. First, according to Eq. (1.8), the beam Hamiltonian of storage 

rings can be derived as Eq. (2.26). The terms related to the vertical direction are ignored 

to simplify the problem. 

! ≈ − !!
! ! !!! +

1
2 !!! + !!! + 12!! ! !

!

+ !!!
!!ℎ!"!!

cos ℎ!"!!
!!!!!

! + !!" !!(!!" − !). 

(2.26) 

We suppose the thin-less approximation of a rf cavity, and !!" represents a position of 

the rf cavity in a circular accelerator. 

  The temperature comes from the betatron motion should be small to reduce the 

horizontal emittance. In order to see the effect of the only betatron motion, the 

canonical transformation with the generation function !! enables us to redefine the 

coordinates without the dispersion effects. 

!! = !! ! − !!!!!! + !!!!!!!! −
!!!!!!!′

2 !!! −  !!! (2.27) 

From the generation function !!, we obtain the following canonical transformations. 

! = ! + !!!!!! , (2.28.a) 

!! = !! + !!!!′!! , (2.28.b) 

! = ! + !!(!!!! − !!!!), (2.28.c) 

!! = !! . (2.29.d) 

The Hamiltonian (2.25) can be rewritten by the new canonical variables as 

! = !
2!!!

!!!  + 12!!
! + 12!! ! !

!

+  !!!!!
ℎ!"!!!!!

cos ℎ!"
!!!!

! + ℎ!"!!
(!!!! − !!!!) !!(!!" − !). 

(2.30) 

We here rewrite the circulate frequency !! as !!!/!!. 
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For the effective multi-dimension cooling, the cooling efficiency of the horizontal and 

longitudinal direction should be similar. The strength of the coupling potential is the 

parameter to optimize the cooling efficiency of the two degrees of freedom, therefore 

the rf-cavity voltage must be optimized in this case. The theoretical method of 

optimizing the coupling potential is known as the transfer-matrix theory. 

   We first have applied the smooth approximation and Taylor expansion of the cosine 

function to the Hamiltonian (2.30) as follows to simplify the theoretical calculation. 

! = !
2!!!

!!! +
1
2
(2!!!)!
!!!

!! + 12 !!
!

−  !!!!0
ℎ!"!!!!!

1 − 12
ℎ!"
!!!!

! + ℎ!"!! (!!
!! − !!!!)

!
!!(!!" − !). 

(2.31) 

In order to calculate the theoretical cooling efficiency, the one-turn transfer matrix is 

necessary. Therefore we have separated the storage ring into the three parts, an 

arc-section, a cooling section, and a rf-cavity section. And then define the transfer 

matrix of each part. We have used the linear friction cooling force in the theoretical 

calculation. From the Hamiltonian (2.30), the transfer matrix of each section can be 

expressed as 

 

M!"# =
cos 2!!!!!/!! !! sin 2!!!!!/!! 2!!! 0 0

−2!ν!sin 2!!!!!/!! /!! cos 2!!!!!/!! 0 0
0 0 1 −!!!/!!!
0 0 0 1

. 

M!""# =
cos 2!!!!!/!! !! sin 2!!!!!/!! 2!!! 0 0

−2!ν!sin 2!!!!!/!! /!! cos 2!!!!!/!! 0 0
0 0 1 (!!!!"#!! − 1)!/!!!!!"#
0 0 0 !!!!"#!!

. 

M!" !"#$%& =
1 +!!!!!!! /!! −!!!!!/!!! !!!!/!! 0

!!!!′! 1 −!!!!!!! /!! !!!!! 0
0 0 1 0

!!!!′ −!!!!/!! !! 1
. 

 
 
!! is the length of an arc section, !! is the length of a cooling section, and −!!"#!! is 
the linear-cooling force. The new characters in M!" !"#$%& are defined as follows. 



 40 

!!! =
!ℎ!"!!!
2!!!!!!

  , !! =
2!!!!
!  (2.32) 

 

Finally the transfer matrix through a turn of a circular accelerator can be calculated 

from the following matrix. 

 
M!"#!!"#$ = M!"#M!""#M!" !"#$%& . 

 

It is known the cooling rate of each dimension can be estimated from the eigenvalues of 

this one-turn transfer matrix and it must be the function of the rf voltage. Therefore we 

should find the optimum voltage of a rf cavity that satisfy the similar cooling efficiency 

for both the horizontal and longitudinal direction. 

  Fig. 2.6 shows the comparison of the theoretical calculation and the single-particle 

simulation result. The left side of Fig. 2.6, we can see below, is the result of the matrix 

calculation as a function of rf voltage. The typical horizontal tune in the experiments at 

S-LSR is 2.07, therefore we set the horizontal tune to ν! = 2.07 in the calculation. 

 

   
Fig. 2.6: 2D Cooling efficiency of the transfer matrix estimation (left panel) and the 

single particle simulation with the simulation code “CRYSTAL” (right panel). The 

maximum longitudinal cooling rate without coupling, i.e. the longitudinal direct 

cooling efficiency by the laser, is normalized to unity. The sum of the three cooling 

rates at a certain solenoid field is equal to unity. The good agreement of them is 

confirmed. 
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Thanks to the difference resonance, the theoretical calculation shows the similar cooling 

efficiency of the horizontal and longitudinal direction when the synchrotron tune is 

around ν! = 0.07. The right pannel of Fig. 2.6 shows the single-particle simulation 

results with the simulation code CRYSTAL. The detail of CRYSTAL code is explained 

in Appendix. A. We apply the linear-friction force in the simulations. The emittances of 

the horizontal and longitudinal direction at the end of the simulation have minimized 

when the synchrotron tune have set to 0.07. From these results, the good agreement of 

the beam cooling efficiency between theoretical calculations and the single-particle 

simulations has confirmed. The vertical emittance of simulation keeps constant because 

there is no coupling potential between the vertical and the other two degrees of freedom. 

We define this multi-dimension cooling as the 2D cooling mode. 

   Next, consider the 3D cooling mode. In order to extend the dissipative force in the 

vertical direction, another artificial linear coupling is needed. Past studies have 

proposed several devices for the new coupling potential sources between the vertical 

and horizontal direction, for example a skew magnet or a solenoid magnet. The solenoid 

magnet is adopted as a coupling scheme in S-LSR. First the Hamiltonian of a circular 

accelerator with the rf cavity and the solenoid magnet can be written as 

! = − !!
! ! !!! +

1
2!!

! + 12 !! ! !! + !! ! !!

+ 12 !! +
!!! ! !
2!!

!
+ !! +

!!! ! !
2!!

!

+  !!!
!!ℎ!"!!

cos ℎ!"!!
!!!!!

! + ! ! ! − !!" . 

(2.33) 

Denoting the axial magnetic field of a solenoid to be Bsol, we have !! ! = !!"# within 

the solenoid while !! ! = 0 elsewhere. Similar to the case of the 2D cooling mode, 

the new coordinate system of free dispersion can be defined and finally we have 

obtained the Hamiltonian (2.34). 
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! = 1
2 − !

!!!
+ ! ! !!!! !!! + !!! !!! +

1
2 (!!!+! ! !!!!)!! + (!!!+! ! !!!!)!!  

− !!! ! ! !!!!! + ! ! !!!!!! − !!! ! ! !!!!! + ! ! !!!!!!

+ ! ! !!!! !!!! − !!!! + ! ! !! !!! − !!! + 12 !!! + !!!

+ !!!!!
ℎ!"!!!!!

 cos ℎ!"
!!!!

! + ℎ!"!!
(!!!! + !!! ! − !!!! − !!!!) ! ! − !!" . 

(2.34) 

where ! ! = !!! !
!!!

. The transfer matrix of a solenoid magnet section can thus be 

given by  

 
M!"#

=

cos! !!"#
1
! cos !!"# sin !!"# cos !!"# sin !!"#

1
! sin

! !!"# 0 0
−!cos !!"# sin !!"# cos! !!"# −!sin! !!"# cos !!"# sin !!"# 0 0
−cos !!"# sin !!"# − 1! sin

! !!"# cos! !!"#
1
! cos !!"# sin !!"# 0 0

!sin! !!"# −cos !!"# sin !!"# −!cos !!"# sin !!"# cos! !!"# 0 0
!! !! !! !! 1 !!
0 0 0 0 0 1

, 

 

where  with Lsol being the axial length of the solenoid. The new 

characters in M!"# are defined as 

 

!! =
!!!
2 !! !!"# + !! !!"# cos(2!!"#) + !! !!"# sin(2!!"#) − 2!! 0 , (2.35.a) 

!! =
!!
2 !! !!"# + !! !!"# sin(2!!"#) − !! !!"# cos(2!!"#) , (2.35.b) 

!! =
!!!
2 −!! !!"# − !! !!"# cos(2!!"#) + !! !!"# sin(2!!"#) + 2!! 0 , (2.35.c) 

!! =
!!
2 !! !!"# − !! !!"# sin(2!!"#) − !! !!"# cos(2!!"#) , (2.35.d) 

!! = − !
!!!!

!!"# + !!!! !! ! ! + !! ! ! !!
!!"#

!
. (2.35.e) 

 

 

θsol = qBsolLsol / 2p0
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The transfer-matrix theory is again employed for 3D-cooling system and one-turn 

matrix can be obtained as 

 
M!"#!!"#$ = M!"#M!""#M!" !"#$%&M!"# . 

 

Needless to say, the eigenvalues of M!"#!!"#$ denote the cooling rates of the three 

directions. The optimum narrow range of the solenoid field strength for the most 

efficient 3D cooling must be specified theoretically. From the Fig. 2.7, we see that the 

vertical cooling rate increases at the expense of the cooling rates of the other two 

directions as the solenoid field is strengthened. The cooling efficiency of the three 

directions can be made approximately equal when the field strength is about 65 Gauss. 

The right pannel of Fig. 2.7 is the single particle simulation results with CRYSTAL. 

The simulation results show the similar tendency with the transfer-matrix theory. 

 

 

 
 
 
 

     
Fig. 2.7: Cooling rates of the three directions estimated from transfer-matrix 

calculations and the single particle simulations. The lattice parameters in Table 2.2  

have been assumed, except for the solenoid field. The good agreement of them is 

confirmed. 
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2.4 Molecular dynamics simulations 
 
Accompany with the evolution of calculators, numerical simulations gradually begin to 

be utilized in many fields recently, for example physics, chemistry, meteorology and 

social science. In the field of accelerator physics, calculators are often used to explore 

the space charge effect and to confirm the stability of the beam transport through a 

lattice. Two simulation methods are mainly employed for the numerical calculation of 

the multi-particle simulation. The Particle-in-cell code (PIC) and the 

Molecular-Dynamics code (MD). Each method has strengths and weaknesses, 

respectively. PIC codes are good at numerical simulations of intense beams but they 

can’t calculate Coulomb collisions between each particle. Therefore we can’t use a PIC 

code for the phenomena where Coulomb collisions have important roles such as 

crystalline beam. On the other hand, MD code can include accurate Coulomb collisions, 

however calculation of Coulomb interaction between all particles is very 

time-consuming when the particle number is large. Therefore MD codes are seldom 

used for the intense beams simulation. When we consider the multi-dimension cooling 

in the storage ring S-LSR, the beam intensity is extremely low. Therefore the MD code 

is available for the numerical simulations of a multi-dimension cooling. In the following 

section, we explain the storage ring S-LSR at first, and then show the simulation results 

of the multi-dimension beam cooling. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 45 

2.4.1 S-LSR storage ring 

 
Storage ring S-LSR is the circular accelerator in Kyoto University. It was constructed in 

2006 and there are several purposes for this accelerator, for example the research of the 

cancer therapy and the beam cooling with Doppler laser cooling [47, 17, 18]. Fig. 2.8 

show the storage ring S-LSR and a schematic drawing of the S-LSR lattice is given in 

Fig. 2.9. The rf cavity for the longitudinal-horizontal coupling and the solenoid magnet 

for horizontal-vertical coupling sit in different straight sections. The ion numbers in the 

bunch reduced by scrapers in order to weaken the effect of the intra-beam scattering 

(IBS). The cooling laser is introduced in the direction co-propagating with the 24Mg+ 

beam. The frequency of the cooling transition of 24Mg+ ions from the ground state 

3s2S1/2 to the excited level 3p2P3/2 is about 1 PHz, corresponding to a wavelength of 280 

nm. The Doppler limit is about 1mK. The reason of six-super periodicity is quite simple. 

As we said in the section of crystalline beam, Eq. (2.5) should be satisfied to avoid 

 
Fig. 2.8 : The storage ring S-LSR in Kyoto University. This accelerator is equipped 

a laser system, the rf cavity, and the solenoid coil for the experiment of 
multi-dimensional beam cooling. 
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resonance crossings in the process of the beam cooling. Therefore the minimum tune we 

are able to set in the transverse direction must be settled to 1.44. Thanks to this 

transverse tune, we can meet the maintenance condition. 

  The main parameters of S-LSR for the multi-dimensional beam cooling are shown in 

Table 2.2. The beam energy is fixed at the extremely low value to achieve the 

high-laser-cooling efficiency. In the following sections, the optimization of the 

multi-dimension cooling including space-charge effects will be shown.  

 

 

 

 

 

 

 

 

 

Fig. 2.9: The simple layout of storage ring S-LSR. The beam rotated clockwise and 

the co-propagating laser, the beam scrapers, the rf cavity, and the solenoid magnet 

set in each position. 
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Table 2.2 Main parameters of storage ring S-LSR 

 

 

 

 

 

 

 

 

 

 

 

Ion species 24Mg+ 

Kinetic energy 40kev 

Lorentz factor !! = 1.892! − 3 

!! = 1.00000179 

Ion numbers ~1000 (for a bunch) 

Rms beam size 2mm (after scrape a beam) 

Momentum spread 7e-4 

Circumference of ring 22.56m 

Life time of a beam 10 sec 

Super period 6 

Harmonic number 100 

Total laser power  

(only co-propagating laser) 
8.0mW~16.0mW 
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2.4.2 Two-dimensional cooling 
 

It goes without saying that the high power laser is the essential device for the 

efficient-Doppler laser cooling experiments. According to the previous studies, the 

utility factor of the laser cooling method can be estimated by the saturation parameter 

defined in Eq. (2.11). The saturation parameter of larger than unity is preferred for the 

efficient laser cooling, however the laser power we apply for the beam cooling 

experiment at S-LSR is limited only to 10mW. In addition, both the co-propagating and 

the counter- propagating laser lead beams to the strong cooling, however the S-LSR 

equips only a single co-propagating laser. Therefore we should determine the optimum 

laser parameters carefully to enhance the laser-cooling efficiency. For reference, 

examples of typical-beam profiles before and after multi-dimensional laser cooling are 

shown in Fig. 2.10. The upper figures are the initial distribution and the lower figures 

are the final distribution after laser cooling with 2D cooling mode. Owing to the limited 

laser power at S-LSR as well as strong IBS, a considerable number of ions remain 

uncooled after a few seconds of cooling. It is possible to remove these hot ions with the 

scrapers if necessary because they have relatively large transverse oscillation 

amplitudes. In the following, therefore, we calculate the beam temperature only from 

the cold laser-cooled portion, disregarding the hot tail particles. In order to separate 

laser-cooled ions from the other hot ions in MD simulations, we set a tiny closed 

boundary in each of the horizontal, vertical, and longitudinal phase planes. The area (i.e., 

emittance) inside each boundary is typically chosen a few times larger than the expected 

final emittance of the laser-cooled portion. An ion is defined as “laser-cooled” if it is 

inside the boundaries in all three-phase planes simultaneously. We have confirmed that 

this definition works well because the ultra cold portion of the beam is generally stable 

with the cooling laser on and has very small emittances in all directions (see Fig. 2.10). 

In order to evaluate the efficiency of laser cooling for each numerical simulation, we 

define the new parameter called the particle capture rate (PCR) that represents the 

number of cooled ions at final state divided by the number of ions in a bunch. After that 

we calculate the beam temperatures of three directions. 

   In the case of 2D cooling scheme, the vertical direction is independent of the other 

two directions unless imperfection fields and/or inter-particle Coulomb interactions play 

a noticeable role. Table 2.3 summarizes typical S-LSR parameters in the 2D cooling 
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mode. The artificial coupling strength between the longitudinal and horizontal degrees 

of freedom is determined by the magnitude of momentum dispersion at the rf cavity. 

According to the linear theory [17,18], there is a threshold value of dispersion above 

which the horizontal cooling efficiency is roughly maintained at the same high level as 

the longitudinal direct cooling efficiency. A simple theoretical estimate using transfer 

matrices suggests that the threshold dispersion is only about 0.1m under the lattice 

conditions in Table 2.3. The actual dispersion is 1.016 m, well above the theoretically 

demanded minimum value. For the optimization of Doppler laser cooling, the laser spot 

size and the laser detuning are the most important physical parameters. We have 

conducted systematic MD simulations with the parameters listed in Table 2.3. In the 

case of S-LSR where laser photons are co-propagating with the beam, Γ must be 

negative. Assuming S ≈ 1 on axis, we have ∆ ≈ −Γ/2, which gives −21MHz for 24Mg+ 

ions. While this value of detuning guarantees the highest cooling efficiency for particles 

near the axis, the number of cooled ions could probably be improved with a larger 

detuning. We therefore focus our discussion here on four particular choices of detuning; 

namely, −21 MHz, −42 MHz, −63 MHz, and −84 MHz, which are integer multiples of 

−Γ/2. PCR also depends on the laser spot size in practice, so we change the laser spot 

size from 0.33mm to 6.0mm with 10mW total laser power. Note that in the recent 

cooling experiment at S-LSR [20], the detuning had been set, typically, at −200MHz to 

improve the PCR. The cooling laser was focused to σ <0.5 mm, much smaller than the 

initial beam extent. For comparison, we did MD simulations assuming these actual 

parameters and obtained the possible final temperature of around 10K in the transverse 

directions and around 0.3K in the longitudinal direction. These numbers are in 

reasonable agreement with the experimental observation in Ref. [20]. 
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Table 2.3 Main parameters of two-dimensional cooling simulations 

Ion numbers 300 / bunch 

Turn number of simulation 125000 (5sec) 
Betatron tunes (!! , !!) (2.075, 1.120) 

Synchrotron tune !! 0.075 

Rf voltage 41.8 V 

Dispersion function at the rf cavity 1.016 m 

Phase slip factor -0.6758 

Solenoid field OFF 

Total laser power 10mW 

Laser spot size 0.3 mm ~ 6.0 mm 

Laser detuning 
-21 MHz, -42 MHz,  

-63 MHz, -84MHz 

 
Fig. 2.10: The typical phase space distributions in the horizontal, the vertical, and the 

longitudinal direction. The initial distributions in the upper panels are changed to the 

lower ones within a few seconds after multi-dimensional laser cooling. Note that in the 

lower panels, only the vicinity of the central beam orbit is shown; there are many 

uncooled ions out of the ranges of the coordinates. We can easily separate the 

laser-cooled ions that are concentrated near the origin. 
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   PCR evaluated at 5 s after the start of each cooling procedure is plotted in Fig. 2.11 

as a function of the laser spot size. Each line corresponds to the each laser detuning 

written in Fig. 2.11. The PCR become larger when we choose large laser detuning and 

the maximum value of the PCR are around 1.5 mm, which is somewhat smaller than the 

initial beam extent (see Fig. 2.11). Ideally, the spot size should be sufficiently greater 

than the transverse extent of an initial hot beam to cover all ions for cooling. Provided 

that the transverse beam extent is initially about 3mm in radius, as in the example of Fig. 

2.11, the laser spot has to cover an area of 9π mm2 within which the photon density 

should preferably be over the saturation level. We then need a total laser power well 

beyond 70mW to cool all hot ions efficiently because the saturation intensity for 24Mg+ 

is 2.54mWmm2. The total laser power available in S-LSR is, however, only 10mW, 

which means that too much expansion of the laser spot results in a considerable 

reduction of the photon density and thus seriously affects the cooling rate. This is why 

we have an optimum range of σ for the best cooling performance. Thanks to the 

betatron oscillations, even tail ions experience finite energy dissipation in the 

 
Fig. 2.11: The simulation results of the PCR at 5 sec in the case of 2D cooling. The 

total laser power is fixed at 10 mW and the laser spot size is changed from 0.3 mm 

to 6.0 mm. The four lines correspond to the laser detuning -21MHz, -42MHz, 

-63MHz, and -84MHz. These laser detuning represent – Γ/2, – Γ, – 3Γ/2, and – 2Γ. 
The – Γ is a natural line width of the 24Mg+ ion. 
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longitudinal direction every few turns. The resonant coupling mechanism then creates a 

weak but finite cooling effect on the horizontal ion motion, leading to a gradual 

shrinkage of the beam size and consequently to a better overlap with the laser. The 

improved overlap between the beam and laser enhances PCR. Fig. 2.12 shows the time 

development of the PCR of the each 2D cooling simulation. PCR keeps rising at 10 sec 

owing to the betatron oscillation, even the particles moving with larger amplitudes than 

the laser spot size can be cooled by the co-propagating laser.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.12: The time evolution of PCR with applying laser cooling in the case of 2D 

cooling. The PCR increases still in 10sec. The laser spot size is fixed at 1.5 mm. 
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   The following figures are the final temperatures of 2D cooling at 5sec taking 

account only cooled particles. The circle points represent the horizontal temperatures, 

the square points represent the vertical temperatures, and the triangle points represent 

the longitudinal temperatures. The four figures are corresponding to the different laser 

detuning. Final temperatures of the longitudinal direction are about a hundred times 

 

    

Fig. 2.13: Beam temperature reached in 5 s after injection by the use of the 2D 

resonant coupling scheme. These values of temperature are evaluated from 

laser-cooled ions concentrating near the design beam orbit. We have ignored the 

existence of many hot uncooled ions as observed in Fig. 2.10. 
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lower than the transverse direction. The apparent difference of final temperatures 

between the transverse and longitudinal direction caused from the experimental 

situation that the longitudinal direction cooled directly by Doppler laser cooling. 

   In addition we found the existence of laser spot regions where the longitudinal 

temperatures are about ten times lower compare to the other areas. The sharp drop of 

the equilibrium beam temperature in Fig. 2.13 is a signature of the so-called 

longitudinal beam ordering. Fig. 2.14 shows the single particle orbits of the ordering 

beam (left panel) and the non-ordering beam (right panel). In the case of an ordering 

beam, the synchrotron motions are suppressed due to the strong Coulomb potential. Fig. 

2.15 shows the synchrotron tunes of each particle shown in Fig. 2.14 and we confirmed 

that tunes of the ordering beam are completely zero. The acceptable range for ordering 

becomes wider for a smaller |∆ |. Contrarily, as already found in Fig. 2.13, PCR is 

worsened as |∆ | decreases. Considering these facts, we conclude that from a practical 

point of view, |∆ | should be set around Γor slightly higher in the 2D cooling mode at 

S-LSR. The detuning of −42MHz and the spot size of around 1.5mm appear to be the 

best combination to attain a reasonably high PCR as well as an ultralow beam 

temperature. A final temperature near 1K or less is then achievable in both transverse 

dimensions. The longitudinal temperature can be reduced to about 0.01 K, slightly 

above the Doppler limit. These temperatures are one order of magnitude lower than the 

recent experimental result at S-LSR [15]. 
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Fig. 2.14: The longitudinal orbits of cooled ions with the laser detuning -42 MHz. The 

left panel show the result of �= 2.0 mm and the right panel is the case of �= 3.0 mm. 

The synchrotron motions of an ordered beam are completely suppressed due to the 

Coulomb interaction of each cooled particle. 

  

Fig. 2.15: The synchrotron tunes of each particle shown in Fig. 2.14. Tunes of the ordered 

state beam are depressed to zero due to the Coulomb interaction. 
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2.4.3 Three-dimensional cooling 
 
We now switch on the solenoid magnet to provide a linear coupling between the 

horizontal and vertical directions. In general it is easier to make a high quality beam by 

3D cooling mode than 2D cooling mode due to the artificial coupling potential of 

transverse directions. To maximize the indirect laser-cooling rate in the vertical degree 

of freedom, we need both resonance conditions in Eq. (2.24) to be simultaneously 

satisfied. The lattice parameters assumed for three-dimensional (3D) cooling 

simulations are listed in Table 2.4. The fractional parts of the three tunes have been 

equalized to excite full 3D coupling resonances. The momentum dispersion at the rf 

cavity, indispensable for transverse cooling, is 1.025 m. Corresponding to this number, 

there is the optimum narrow range of the solenoid field strength for most efficient 3D 

cooling. From the transfer-matrix theory, obtain the cooling-rate diagram in Fig. 2.7. 

We see that the vertical cooling rate increases at the expense of the cooling rates of the 

other two directions as the solenoid field is strengthened. The cooling efficiency of the 

three directions can be made approximately equal when the field strength is about 65 

Gauss. The dependence of PCR on the laser spot size at 5 sec is depicted in Fig. 2.16.  

 

Table 2.4 Main parameters of three-dimensional cooling simulations 

Kinetic energy 40kev 

Ion numbers 300 / bunch 

Turn number of simulation 125000 (5sec) 

Betatron tunes (!! , !!) (2.070, 1.070) 

Synchrotron tune !! 0.070 

Rf voltage 36.2 V 

Dispersion function at the rf cavity 1.025 m 

Phase slip factor -0.6762 

Solenoid field 65.0Gauss 

Total laser power 10mW 

Laser spot size 0.3 mm ~ 6.0 mm 

Laser detuning 
-21 MHz, -42 MHz, 

-63 MHz, -84MHz 
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We confirm the spot-size dependence similar to that in the 2D cooling case; PCR is 

maximized with the spot size around 1.5 mm. Compared to the result in Fig. 2.11, PCR 

has become slightly better in the 3D cooling operation. A preferable effect from the 

indirect vertical cooling is also visible in Fig. 2.17, which shows the beam temperature 

reached 5 s after the start of laser cooling. The spot-size range where we can expect the 

occurrence of the longitudinal beam ordering has clearly been widened. The results in 

Fig. 2.17 together with those in Fig. 2.16 suggest that the detuning should be chosen 

between −3Γ/2 and −Γ. A larger value of |∆ | guarantees more efficient capture of ions 

but makes the tolerable range of the laser spot size narrower. We thus come to the same 

conclusion as made for the 2D cooling mode; namely, σ and |∆ | should be set to 
∼1.5mm and ∼42MHz (or somewhat higher) to generate the coldest beam in S-LSR. 

The possible transverse and longitudinal temperatures we can reach with these 

parameters are roughly 1K and 0.01 K, respectively.  

 

 
Fig. 2.16: PCR after 5 s of 3D laser cooling at S-LSR vs. laser spot size σ at the 

center of the cooling straight section. Similarly to the 2D cooling simulations in Fig. 

2.11, we have taken four different values of laser detuning into consideration. The 
lattice parameters assumed here are listed in Table 2.4 . 
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Fig. 2.17: Beam temperature reached in 5 s after injection by the use of the 3D 

resonant coupling scheme. Similarly to the result in Fig. 2.13, only laser-cooled ions 

are picked out to evaluate the temperature. 
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2.4.4 Radio-frequency field ramping for string crystal formation 
 
In the previous section, we revealed that that with proper choices of experimental 

parameters, we are able to generate a high-quality beam in S-LSR even with a single 

low power laser. The beam we obtained in MD simulations is so-called ordered state 

beam and that is extremely low temperature compare to any other beams around the 

world. However in order to produce a crystalline beam, we have to make a progress. In 

this section, we make one more step forward to a Coulomb crystalline state. According 

to a previous MD study assuming two counter-propagating powerful lasers [64], a 

string-crystal-like structure could be formed in the S-LSR lattice by means of the RCM 

if the number of ions per bunch is limited to less than 10. Here we considerably increase 

the ion number and yet show that a long string beam could be attained even with a 

single low-power laser. 

   In order to generate a crystalline beam with finite transverse spatial extent, the 

longitudinal cooling force has to be properly tapered to compensate for the shear force 

induced by bending magnets [47, 60]. It is also crucial to maintain strict lattice 

symmetry to prevent transverse coherent instability [65]. Since these requirements are 

very difficult to meet in practice, the only realistic target we can aim at in S-LSR is the 

formation of a 1D string crystal. There is the critical line density at which the structural 

transition from a certain crystalline configuration to another takes place [46]. Needless 

to say, the threshold line density of the string-to-zigzag transition is the lowest. We thus 

have to keep the beam line density below a certain level so that the corresponding 

crystalline configuration, if formed, is a string. The Hasse-Schiffer theory for coasting 

crystalline beams predicts that the string-to-zigzag transition occurs at a line density of 

the order of 104m-1 under the lattice conditions in Table 2.4 [46]. The transition density 

in the present case must be much lower than this theoretical estimate because the beam 

is not coasting but bunched by a rather strong rf field. In fact, the bunched string shown 

in Ref. [64] converts into a zigzag-like configuration if we add only a few more 

particles. Even if we keep the ion number in a bunch below 10, it is possible to 

transform the string configuration into a zigzag just by raising the synchrotron tune (or, 

in other words, by more strongly compressing the beam in the axial direction). In 

Appendix A, a numerical estimation is made of the number of stored ions with which 

the formation of an ideal bunched crystalline state is expected in S-LSR. 
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   The simplest method to produce a long string crystalline beam with many ions is 

weakening the rf field in the cavity. The synchrotron tune then decreases (with the 

harmonic number fixed), which gives rise to the breakdown of the coupling resonance 

condition and to the lack of the indirect transverse cooling force. We could, however, 

rely on the sympathetic effect from Coulomb interactions once the beam is cooled down 

to an ultralow temperature range. As verified in Fig. 2.13, the sympathetic cooling 

mechanism can be effective even at low line density if the beam is already cold. We 

therefore first employ the RCM to strongly cool a low-current beam in S-LSR and, after 

that, gradually reduce the amplitude of the rf bunching field with the cooling laser on. 

This process achieves the required bunch lengthening and the maintenance of a 

three-dimensionally cold state simultaneously. In the following MD simulations, we 

start from the cold beam that has already been laser-cooled for 5 s in S-LSR under the 

lattice conditions in Table 2.5. The initial ion distribution is more or less like the one 

shown in the lower three panels of Fig. 2.10. Recalling the conclusion in the last section, 

we set the laser detuning and spot size, respectively, at −42MHz and 1.5 mm. Since the 

PCR after 5 s cooling is 24% with these parameters (see Fig. 2.16), there are 72 cold 

ions and 228 hot ions in a bunch at the beginning. The number of the initial cold ions 

can readily be controlled by changing the original beam intensity at injection. 

   The amplitude of the rf voltage, whose initial value is 36.2V for the synchrotron 

tune of 0.07, is linearly ramped to a specific final value Vf within the 12500 turns that 

corresponds to 0.5 s. We then maintain the rf voltage at Vf for the next 0.5 s, keeping 

the cooling laser on. In the rf ramping process, the hot tail ions oscillating about the 

design orbit may affect the motions of the cold laser-cooled ions, especially when Vf is 

low. Such an unfavorable source of heating can be removed effectively with the 

scrapers installed in S-LSR (see Fig. 2.9). Those scrapers have actually been used to 

reduce the beam intensity at injection and also to measure the transverse beam profiles. 

We here move both horizontal and vertical scrapers toward the central beam orbit in the 

first 12500 turns. At the beginning, the scrapers’ edges are located 5mm away from the 

beam line, which eventually comes to 0.5mm in 0.5 s.   
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Table 2.5 Main parameters of rf ramping simulations 

 

 

Ion species 24Mg+ 

Kinetic energy 40kev 

Ion numbers 300 / bunch 

Betatron tunes (!! , !!) (2.070, 1.070) 

Initial synchrotron tune !! 0.070 

Initial rf voltage 36.2 V 

Final rf voltage 1 V ~ 30 V 

Solenoid field 65.0Gauss 

Total laser power 10mW 

Laser spot size 1.5 mm 

Laser detuning -42 MHz 

Rf ramping start 5.0 sec 

Rf ramping stop 5.5 sec 

Laser cooling stop 6.0 sec 

 
Fig. 2.18: The time evolution of the rf voltage in the cavity. Start ramping the rf field 

from 5 sec and stop at 5.5 sec. After that keep cooling the beam until 6.0 sec. We 

change the final voltage of rf field from 1 V to 30 V to find the optimum beam 

cooling parameter. 
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The final beam temperature after the rf ramping procedure is plotted in Fig. 2.19 as a 

function of Vf. Each bunch contains 72 cold ions initially (but a few hot ions are 

eventually cooled before being scraped and join the ultracold beam core). As expected, 

the beam temperature can be reduced further by carefully expanding the bunch. The 

final temperatures reachable with the rf ramping are near 0.1K in the transverse 

directions and 0.001K in the longitudinal direction. These numbers correspond to the 

normalized rms emttances around the order of 10-12 m and below 10-13 m, respectively. 

After a sort of equilibrium state is reached within 1 s, we ramp the laser power toward 

zero in 0.2 s, and then wait for another 0.4 s (10000 turns) to check if the beam is stable 

without the cooling force. Two examples are given in Fig. 2.20 which shows the spatial 

configurations of ultra-cold beams 0.4 s after the cooling laser is switched off. In the 

upper example, there are 37 ions forming the string configuration while in the lower 
example, the ion number is increased to 78. In both cases, !! is set at 2V. We confirm 

that the string order of ions is well maintained for many turns around the ring even 

without the cooling force. 

 

Fig. 2.19: Final beam temperature after the rf ramping procedure. The detuning and 

the spot size of the cooling laser are fixed, respectively, at − 42MHz and 1.5 mm. 

The total number of laser-cooled particles in the ring is around 7.5×103 in each 

simulation.  
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Fig. 2.20: Spatial configurations of laser-cooled beams after the rf ramping and the 

subsequent laser-power ramping procedures are completed. The two panels on the left 

side show the top and side views of an ultracold beam consisting of (a) 37 ions or (b) 

78 ions, after 10000 turns around S-LSR without the laser cooling force. The axial 

position of each individual ion within the last turn is plotted on the right panel as a 
function of the path length along the design orbit. The final voltage !! after the rf 

ramping is 2V in both examples. We see that the synchrotron motion is almost 

completely suppressed in both cases. 
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Fig. 2.21: The left panels are the spatial configuration of the laser cooled ions and 

right panels show the calculation results of LIF measurement in S-LSR. Same 

parameters of the CCD camera and 3D cooling mode with the optimum parameters 

are supposed. The upper, middle, and lower panels show the expected images (a) at 

the beam injection into the ring, (b) after the laser cooling for 5 s, and (c) after the 

completion of the rf ramping procedure. The exposure time of the camera is set at 

0.1 s. Note that the centroid of the laser-cooled beam is axially shifted from the 

longitudinal origin (the center of the rf bucket) due to the radiation pressure by the 

co-propagation laser light. By gradually reducing the laser power to zero, the 

centroid position finally comes to the bucket center, as shown in Fig. 2.20. 
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   In the laser cooling experiment in S-LSR, the LIF measurement by the CCD camera 

is used to measure the beam size of ions moving in S-LSR. We are able to do a similar 

calculation from the simulation result using a parameter of the CCD camera used in the 

experiment in S-LSR. This calculation helps us to evaluate the number of cooled ions in 

a bunch and obtain the information of the longitudinal temperature. Because in the case 

of the laser cooling experiment with small ion numbers per a bunch (less than 103 per a 

bunch), it is difficult technically to evaluate the longitudinal temperature in the 

experiment. Therefore we can obtain the valuable information from the LIF calculation 

using the distribution of MD simulations. We can confirm the calculation result in Fig. 

2.21. The parameter of a LIF measurement and CCD camera equipped in S-LSR is 

shown in Table 2.6. We suppose the expose time of the CCD camera as 0.1 sec here and 

it is enough time to accumulate a count number of the camera that we can observe in the 

actual experiment in S-LSR. Fig. 2.21 shows calculation results of a LIF measurement 

from the distributions of a MD simulation. We use the simulation result of 3D cooling 

mode with the optimum parameters. The laser spot size is 1.5 mm, the laser detuning is 
-42MHz, and the final voltage of the cavity is !! = 2 V. The upper panel shows the 

result of a LIF measurement from 0 sec to 0.1 sec, the middle panel show the result 

from 5.0 sec to 5.1 sec, and the lower panel shows the result from 5.5 sec to 5.6 sec. 

From the result, we confirm that the count number increase after the rf-field ramping. 

 

 

 

Table 2.6 Parameters of LIF measurement and CCD camera in S-LSR 

 

 

 

Window position from the beam line 14 cm 

Diameter of the lenses 2.54 cm 

Gain of the camera 1200 

Quantum efficiency of the camera 15 % 

System gain of the camera 4 electrons / count 

Expose time of the camera 0.1 sec 
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2.5 Summary 
 

We have performed systematic MD simulations assuming the actual hardware 

conditions for Doppler laser cooling of a 40 keV 24Mg+ ion beam in S-LSR. Each 

simulation typically starts with 300 ions per bunch. This corresponds to 3×10! stored 

ions in the ring, which is on the same order of the total ion number in recent cooling 

experiments [15]. The numerical data have been used to figure out the optimum cooling 

parameters with which the ultralow-temperature state of ions can be reached in this 

particular storage ring. In the past experiments done at S-LSR [51, 15], the laser 

detuning had been chosen mostly near -200 MHz to ensure a high PCR. The spot size 

was set at either around 1.4 mm [51] or 0.47 mm [15]. In these conditions, traverse 

temperature decrease to 20 K in horizontal and to 29 K in vertical. The simulation 

results in same condition show that temperature decrease to 9.6 K in horizontal and to 

6.4 K in vertical. Compare to the experimental results, final temperatures are a little 

higher, but simulations suppose ideal situations, for example ignore the nonlinear fields 

or alignment errors of magnets, so results are reasonable. The present MD study has 

pointed out that such parameter choices are in appropriate for utilizing the full potential 

of the current Doppler cooling system. The simulation results indicate that the detuning 

and spot size of the cooling laser should be chosen, respectively, around -42 MHz and 

1.5 mm. Then, the use of the RCM makes it possible for us to reach beam-temperature 

ranges of about 1 K in both transverse dimensions and on the order of 0.01 K in the 

longitudinal dimension. These numbers are one order of magnitude lower than the 

recent experimental achievement reported in Ref. [15]. We have also demonstrated that 

a linearly ordered state of ultra-cold ions, the so-called string state, can be established at 

low line density by gradually ramping the longitudinal rf field after 3D laser cooling. It 

is possible to form a long, bunched string beam consisting of nearly 80 ions if the rf 

voltage is lowered to around 2 V (corresponding to the synchrotron tune of 0.016 for a 

40 keV 24Mg+ ion). During the rf ramping, both transverse and longitudinal equilibrium 

temperatures are even more reduced to near 0.1 K and the Doppler limit, respectively. 

The string state is stable and lasts for more than 10,000 turns with no serious heating.  

   Finally, it is interesting to ask whether we can conclude the formation of the string 

state in S-LSR from actual experimental data. According to Eq. (2.11), each 24Mg+ ion 

traveling in the cooling straight section at the kinetic energy of 40 keV scatters a photon 
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every few centimeters along the beam line provided ! ≈ 1 and ∆ ≈ Γ. At the center 

of the cooling section, there is a small window located 14 cm away from the beam line 

[51]. Fluorescence photons passing through the window are eventually focused onto the 

CCD image sensor whose diameter is 2.54 cm. Considering that a hundred bunches are 

stored in S-LSR at the revolution frequency of 25 kHz, the sensor will receive over 10! 
photons per second from the ordered beam in Fig. 2.20. Since these photons come only 

from the vicinity of the design beam line, we expect a clear fluorescence image of the 

beam to be caught by the camera. Fig. 2.21 shows an example of possible transverse 

beam images estimated from MD simulation data. The exposure time of the CCD 

camera has been assumed to be 0.1 sec. Right after the beam injection (t = 0 sec), the 

fluorescence signal looks so weak that it will probably be hidden behind background 

noise. In fact, no clear signals have been detected in past cooling experiments when the 

initial number of stored ions is below the order of 10!. After 3D laser cooling (t = 5 

sec) under the optimum condition, the beam signal is enhanced by an order of 

magnitude. The signal becomes even sharper in both transverse directions after the rf 

ramping is completed. The peak level of the signal is much higher than the possible 

noise level in S-LSR. This numerical result suggests the following: after the initial beam 

scraping to ~3×10! stored ions, we lose the uorescence signal or only have a very 

faint beam image. The signal will, however, be recovered during the most efficient 3D 

laser cooling. We will observe a sharp fluorescence peak suddenly rising on the beam 

line if the predicted, linearly ordered configuration is successfully formed. 
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3 Emittance growth estimation in intense 

mismatched beams 
 

3.1 Reiser’s free energy model 
 

A beam emittance correspond to a beam quality, therefore we must pay attention to the 

physical phenomenon related to the emittance growth. In accrual accelerators, several 

elements, such as nonlinear potentials, installation errors of focusing magnets, and 

initial beam mismatches for beam transport systems, cause the emittance growth 

[5,66,67]. Especially accelerators those need a low-emittance and a high density beam, 

the precise beam matching is inevitable to prevent a generation of low-density tail of 

charged particles around the beam core, this is so-called beam halo. Beam halos are 

troublesome particularly in the case of high-energy accelerators, so the mechanics of 

generating a beam halo have been studied for long time [5, 68-72, 56, 73-85].  

   The self-consistent treatment of such a collective effect is extremely difficult. Since 

the basic equations of motion are too complex to solve mathematically, we try 

numerical approaches in many cases. Particle-in-cell (PIC) codes are often employed 

for this purpose, but high-precision PIC simulations are quite time-consuming. In 

particular, extremely long CPU time is required to simulate the collective behavior of an 

intense long bunch containing a huge number of particles. It is thus useful in practice to 

have any mathematical formula that enables us to make a quick estimate of emittance 

growth expected in a space-charge-dominated beam under a certain non-ideal condition. 

For the better understanding of the relation between an initially non-static beam and the 

emittance growth of the beam quantitatively, Reiser had constructed the theory that 

enable us to estimate an emittance growth of an initially-mismatched-coasting beam. 

We will explain his theory briefly below. 

   To simplify the dynamical system, we suppose a uniform-focused-coasting beam 

that satisfies the following condition. 

If  ! < !, ! ! = !/!!! , 
If  ! < !, ! ! = 0 . (3.1) 
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! is an edge radius of a beam. The distribution defined (3.1) is similar to a high 

intensity beam. The spatial particle distribution of a high intensity beam is homogenized 

due to the natural Debye screening effect. The Hamiltonian of a uniformly populated 

coasting beam can be represented as 

! = 1
2 !!! + !!! + 12 !!

!!! + !!! − !(!)!!! !! log
!!"#
!

+ !!! − !(!)!!!
2 !! − !! . 

(3.2) 

In Eq. (3.2), we ignore effects of the motion in the longitudinal direction, because the 

dynamics of the longitudinal direction has no contribution to the dynamics system. !! 
is the tune of the transverse direction, ! is the amplitude of a beam orbit, !!"#"!"$%" is 

a reference point of the Coulomb potential and !(!) is the function defined as the 

following formula. 

!(!) = 1− !
2!!!!!!!!

 , (3.3) 

where !! is the vacuum permittivity and ! is the number of particles in a unit length 

of the longitudinal degree of freedom. In the case of a matched beam, Eq. (3.4) is 

derived. 

!! = !(!!) , (3.4) 

!! is so-called a tune depression of the transverse direction that represents the space 

charge strength of a beam. From the Hamiltonian (3.2), the total average energy per a 

particle can be expressed as 

! = 1
4 !!

!!! + 14 !(!)!!
!!! + 18 !!! − !(!)!!! !! 1+ 4 log !!"#! . (3.5) 

! includes the kinetic energy, the potential energy of the external focusing field, and 

the potential energy of the Coulomb self-field, is conserved in this closed system. The 

total average energy should be minimum when a beam is in a perfectly matched state. 

M.Reiser assumes that due to the excess energy of a mismatched beam, the emittance 

growth would be occurred. 

   Let us derive the excess energy of a transversely mismatched beam. Suppose both a 

mismatched and a perfectly matched beam (subscript 0) in transverse phase space. An 

initially mismatched beam should be settled into the final stationary state a little later. 
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And we define that with subscript !. The excess energy of a mismatched beam can be 

derived as follows. 

∆! = !! −!! =
1
4 !!

!!!! +
1
4 !(!!)!!

!!!!

+ 18 !!! − !(!!)!!! !!! 1 + 4 log !!"#!!
− 14 !!

!!!!

− 14 !(!!)!!
!!!! −

1
8 !!! − !(!!)!!! !!! 1 + 4 log !!"#!!

= 1
2 !!

!!!!!. 

(3.6) 

! is called free-energy parameter and defined as 

! = !!
!!

!
− 1− (1− !(!!)) ln

!!
!!
. (3.7) 

As a result we obtained the relational expression of !! and !!. 

!!
!!
= 1+ !

1+ !!!
 (3.8) 

Eq. (3.9) is the free energy and the free-energy parameter of the initially mismatched 

beam (subscript !) can be obtained with same procedure of Eqs. (3.7) and (3.8). 

∆! = !! −!! =
1
4 !!

!!!! +
1

4!!!
!(!!!!)!!!!!! 

+ 18 !!! − !(!!!!)!!! !!!!!! 1 + 4 log !!"#!!!!
− 14 !!

!!!! −
1
4 !(!!)!!

!!!!

− 18 !!! − !(!!)!!! !!! 1 + 4 log !!"#!!
= 1
2 !!

!!!!!. 

(3.9) 

! = 1
2 !!

! 1
!!!

− 1 + 12 !!! − 1 + (1− !!!) ln
1
!!

 , (3.10) 

where !! is called a mismatch factor defined as !! = !!!!. We assumed that the 

mismatched beam initially has the same rms emittance as the matched beam. The 

emittance ratio between the final state of a mismatched and a perfectly matched beam is 

given as the following formula. 
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!!!
!!!

= !!
!!

1+ 1
!!!

(!!! − 1)!. 
(3.11) 

where !! is a transverse rms emittance. From Eqs. (3.9) – (3.11), we found that if we 

know a tune depression and an initial mismatch factor of a beam, the emittance growth 

of an initially mismatched beam can be calculated. This is the abstract of Reiser’s 

free-energy model [22]. 

 

3.2 Free energy model for a bunched beam 
 

In the previous section, we briefly confirmed the abstract of Reiser’s free energy model 

for round coasting beams with a uniform-continues focusing. Thanks to his theory, we 

are able to estimate the emittance growth of an initially mismatched coasting beam 

easily. But for real, most accelerators operated with bunched beams, therefore we try to 

generalize his theory to an intense bunched beam with continues linear focusing in the 

three degrees of freedom. We suppose rotation symmetry in the transverse direction for 

simplicity. This approximation looks valid because a horizontal tune and a vertical tune 

have similar value for most accelerators. We will explain the detail of the generalized 

Reiser’s theory below. 

 

3.2.1 Free energy of an initially mismatched bunch 
 

As is well known that an ellipsoidal bunched beam moving through a continues linear 

focusing system obeys the Hamiltonian 

! = 1
2 !!! + !!! + !!! + !!"# +

2!!!!!"
!!!

!!, (3.12) 

where !!"# is the external potential provided by beam-focusing magnets,!!! is the 

Coulomb self-field potential, ! is the charge state of the particle, !! is the vacuum 

permittivity, !!" is the generalized beam perveance, and the independent variable is 

the path length s along the design beam orbit. For a beam traveling at a speed βc with c 

being the speed of light, the perveance is defined by !!" = 2!!!!/β2γ3 where !! is the 

number of particles in a bunch, !! is the classical particle radius, and γ is the Lorentz 
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factor, i.e., γ = 1/(1 – β2)1/2. Employing the smooth approximation, we can express !!"# 
as 

!!"# =
1
2 !!!!! + !!

!!! + !∥!!! , (3.13) 

where (!!, !!) and k_ determine the beam-focusing strengths on the transverse ! −
! plane and in the longitudinal ! − direction. These focusing parameters are 

proportional to the phase advances or, in other words, the tunes at zero beam intensity. 

The harmonic oscillator model as in Eq. (3.13) has been frequently used in past 

theoretical studies of intense beam dynamics [33]. For an ellipsoidal bunch with 
rotational symmetry, we can put !! = !! (≡!!). At high beam intensity, the spatial 

particle distribution is homogenized due to the natural Debye screening effect. We thus 

assume that the charge density is approximately uniform within the ellipsoidal boundary, 

so beam distribution in the real space is defined as follows. 

If !
! + !!
!! + !!

!! ≤ 1, ! !,!, ! = 3!!
4!!!! ≡ !, 

If  !
! + !!
!! + !!

!! > 1, ! !,!, ! = 0, 

(3.14) 

where ! is the maximum transverse amplitude of a beam and ! is the half bunch 

length of a beam. The corresponding Coulomb potential is given by 

!! = −!!
!!

4!!
1

!! + ! !! + ! !/!

!

!

!! + !!
!! + ! + !!

!! + ! !". (3.15) 

Substituting Eqs. (3.15) and (3.17) into (3.13), we obtain 

! = 1
2 !!! + !!! + !!! + 12 !!

!!!(!, !) !! + !! + 12 !∥
!!∥(!, !)!!, (3.16) 

where 

!! !, ! = 1− 3!!"
4!!!

!"
!! + ! ! !! + !

!
!

!

!
 , 

!∥ !, ! = 1− 3!!"4!∥!
!"

!! + ! !! + ! !/!

!

!
 . 

(3.17) 

  We will derive second momentum equations those we need later. In the transverse 

!-direction the canonical equations of motion are derived from Hamiltonian 
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!"
!" = !! ,

!!!
!" = −!!!!! !, ! !. (3.18) 

Provided that the particle distribution function obeys the Vlasov equation in phase space, 

the use of these canonical equations allows us to obtain 

!!!!"#
!"! + !!!!! !, ! !!"# −

!!!
!!"#!

= 0, (3.19.a) 

where ε⊥ is the transverse rms emittance defined by !! = (!!"#! !!! −
!!! !)!/!.Similar second� moment equations hold for the other two directions. While 

a uniform particle density has been assumed here, the rms envelope equations are 

insensitive to the type of distribution function, as theoretically proven by Sacherer [42]. 

!!!!"#
!"! + !∥!!∥ !, ! !!"# −

!∥!
!!"#!

= 0, (3.19.b) 

Ideally, an intense beam injected into an accelerator should be not only well matched to 

the machine lattice but also in thermal equilibrium (or, in other words, equipartitioned 

[86]). No emittance growth occurs in that case. The beam is perfectly stationary under 

the uniform restoring force generated by !!"# , so we write ! ≡ !!(= const) and 

! ≡ !!(= const). A uniformly populated bunch, the rms envelope equations lead to 

!!! =
!!!!!!!

5   and  !∥! =
!∥!∥!!!

5 , (3.20) 

where !!! and !∥! represent the transverse and longitudinal rms emittances of the 

matched beam, !! and !! is the maximum beam radius and half bunch length of a 

matched beam, and !! and !∥ are the tune depression of the transverse and the 

longitudinal direction represented by !! = !! !!, !! !/! and !∥ = !∥ !!, !! !/!. 
We use !!"# = !!/ 5 and !!"# = !!/ 5 when we derive Eq. (3.20). By definition, 
the tune depressions become unity at the low-beam-intensity limit, i.e. !!"→ 0. As the 

beam density increases, both parameters approach zero. 

   Assuming the thermal equilibrium state for the matched beam, we obtain 

!∥!
!!!

= !!!!
!∥!∥

= !!, (3.21) 

where !! ≡ !!/!! is the aspect ratio of the matched bunch. Under this condition, the 

tune depression factors can be written as 
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!!! = 1− !!!! !!   and  !∥! = 1− !!
!∥
!!

!
!∥ !! , (3.22) 

where !! = 3!!"/4 !!!! !!!, !! !! , and !∥ !!  are defined as 

!! !! = !"′
1+ !′ ! !!! + !′

!/!

!

!
, (3.23.a) 

!∥ !! = !!!
!"′

1+ !′ !!! + !′
!/!

!

!
. (3.23.b) 

According to Eq. (3.22) and (3.23) we found that the aspect ratio !! are uniquely 

determined for the equipartitioned bunch. 

   As we said in the previous section, if a bunch is perfectly matched to the external 

focusing potential, the total energy of the system takes the minimum value !! . 

Unfortunately, it is impossible in any realistic cases to establish such a perfect 

stationary state at the beginning; the beam is more or less deviated from the ideal 

condition because of unavoidable artificial errors. The beam then possesses a greater 

energy !! (>!!) depending on the degree of the initial mismatch. The mismatched 

bunch cannot be stationary but starts to execute a complex collective motion. It is 

reasonable to expect that, after some relaxation period, the non-stationary beam will 
settle into a stationary state with final energy !! [22]. The excess energy Δ! =!! −
!! is, according to Reiser, consumed to increase the rms emittance. Since the energy 
conservation law requires !! =!!, the emittance growth rate is directly linked to how 

much free energy is produced at the beginning by a certain mismatch. The average total 

energy of the system per particle is the sum of the kinetic energy !!, the beam focusing 
potential !!, and the Coulomb self-field energy !!. In the case of an initially matched 

beam, the second-moment equations yield the simple relations 

!!! = !!!! !!! !!, !! /5, etc. because everything is static; namely, all s-derivatives 

vanish. We then readily find 

!! =
1
2 !!! + !!! + !!! = 1

5 !!!!!! ! + 1
10 !∥!∥!! !. (3.24) 

On the other hand, !! is given by 

!! =
1
2 !!! !! + !!! !! + !∥! !! = 1

5 !!!! ! + 1
10 !∥!! !. (3.25) 

We also calculate the average of the potential energy of the Coulomb self-field !! as 
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!! =
3!!"
16

!"
!!! + ! !!! + !

!/!

!

!
− 1
10 !!!! !(1− !!!)

− 1
20 !∥!! !(1− !∥!). 

(3.26) 

Hence, the minimum energy of the matched state can be calculated by 

!! =
1
10 !!!! ! 1+ 3!!! .+

1
20 !∥!! ! 1+ 3!∥!

+ 3!!"16
!"

!!! + ! !!! + !
!/!

!

!
. 

(3.27) 

The final stationary state of an initially mismatched bunch is approximately uniform in 

real space, so the total average energy per particle can be defined with Eq. (3.28) 

!! =
1
10 !!!!

! 1+ 3!! !! , !! .+ 1
20 !∥!!

! 1+ 3!∥ !! , !!

+ 3!!"16
!"

!!! + ! !!! + !
!/!

!

!
 , 

(3.28) 

Although an initial mismatch often develops a low-density tail around the beam core, 

the number of these halo particles is typically a few percent of !!. We, therefore, 

assume a uniform density profile to be approximately valid in the final state, as Reiser 
did in his original work for a coasting beam [22]. By expanding !! about the matched 

state and keeping only low-order terms, an approximate expression of the excess energy 

Δ! takes the form 

∆!
!!!! ! =

1
20 11!!! − 3

!!
!!

!
− 1 + 1

40 11!∥! − 3
!!
!∥

! !!
!!

!
− 1

+ 3!!20 4!! !!
!!
!!

!
+ !!(!!)

!!
!!

! !!
!!

!
− 1

+ 3!!40 2!! !!
!!
!!

!
+ 3!!(!!)

!!
!!

! !!
!!

!
− 1 , 

(3.29) 

where !! !! , !! !! , and !! !!  are defined as 

!! !! = !"′
1+ !′ ! !!! + !′

!/!

!

!
, (3.30.a) 

!! !! = !!!
!"′

1+ !′ ! !!! + !′
!/!

!

!
, (3.30.b) 
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!! !! = !!!
!"′

1+ !′ !!! + !′
!/!

!

!
. (3.30.c) 

   After the relaxation process of an initially mismatched beam is completed, the 

transverse rms emittance has reached the approximate final value of Eq. (3.31), the 

emittance growth rate can thus be estimated from 

!!! =
!! !! !! , !!

!/!!!!
5   and  !∥! =

!∥ !∥ !! , !!
!/!!!!

5 , (3.31) 

!!!
!!!

≈ 1
!!

!!
!!

!
!! !! , !!

!/!

≈ !!
!!

!
1+ 2!!!! !!!!!

!!
!!

!
− 1 + !!!! !!2!!!

!!
!!

!
− 1 , 

(3.32.a) 

!∥!
!∥!

≈ 1
!∥

!!
!!

!
!∥ !! , !!

!
!

≈ !!
!!

!
1+ !!!! !!!!!

!!
!!

!
− 1 + 3!!!! !!2!!!

!!
!!

!
− 1 . 

(3.32.b) 

As already mentioned, the values of !! and !! are fixed once the tune depressions 

!! and !∥ are chosen. Therefore, the additional pieces of information required to find 
the emittance growth rates are the ratios !!/!! and !!/!!. 

   Unlike the previous study by Reiser [22], two independent conditions are necessary 

to determine the emittance growth rates because we have one more dimension. The first 

condition can be obtained from Eq. (3.29) by calculating ∆!  for a particular 

non-stationary initial state. We here focus our discussion on one of the most probable 

initial errors in general accelerators, i.e., a mismatch in the transverse and longitudinal 

beam sizes at injection. The corresponding free-energy formula can be given as a 
function of known parameters, which we employ to derive a relation of !!/!! and 

!!/!!. Although we still need one more condition to determine these ratios, it seems 

difficult to deduce another useful relation from a simple physical hypothesis. In the 

latter part of this section, therefore, we try to introduce an empirical formula on the 

basis of information from self-consistent numerical simulations.  

  Let us consider a bunch that initially has semi-axes of !!  (transverse) and !! 
(longitudinal). Ideally, !! and !! must be adjusted precisely to the matched values !! 
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and !!, but, in reality, we can only achieve an approximate matching where !! = !!!! 
and !! = !∥!! with positive constants !! and !∥ is mismatch factors same as defined 

in the previous section. The total energy !! of a mismatched bunch can be calculated 

in the same way as described in the last section: 

!! =
1
10 !!!! ! !!! + 2

!!
!!

!
+ !!!!! !!!!, !∥!!

+ 1
20 !∥!! ! !∥! + 2

!∥
!∥

!
+ !∥!!∥ !!!!, !∥!!

+ 3!!"16
!"

!!!!!! + ! !∥!!!! + !
!/!

!

!
. 

(3.33) 

where we have assumed that the mismatched beam initially has the same rms emittance 

as the matched beam. Provided that the mismatch is not too large, the free energy can be 

written as 

∆!
!!!! ! ≈

!!! − 1
20

!!
!!

!
7!!! − 4 − 3 + 4!!!!!!! !! + !!!∥!!! !!  

+ !∥
! − 1
40

!!
!∥

!
7!∥! − 4 − 3 !!

!∥

!
+ 2!!!!!!! !! + 3!!!∥!!! !! . 

(3.34) 

Given the design tune depressions !! and !∥, we can readily evaluate ∆!/ !!!! ! 

from Eq. (3.34) for a non-stationary bunch that has specific mismatch factors at 

injection. We then substitute the obtained value of ∆!/ !!!! ! into the left-hand side 
of Eq. (3.29), which leads to a simple algebraic equation of !!/!! and !!/!!. 

 

3.2.2 Temperature anisotropy after relaxation 
 

It may be rational to think that an initially mismatched bunch will relax into an 

equipartitioned state. If that is the case, the temperature ratio !! = !!!!!!!! !! , !! /
!∥!!!!!∥ !! , !!  should be close to unity after a final quasi-equilibrium is reached. We 
can then use the equation !! = 1 as the second condition to determine!!/!! and 

!!/!!. We have, however, found through numerical simulations that the final state is 

often quite anisotropic. Only when !! ≈ 1 (a spherical bunch), the bunch stays near an 

equipartitioned state unless them is match is too large. In order to judge whether a 

mismatched beam has reached a quasi-equilibrium state, we paid attention to the time 

evolution of the transverse and longitudinal rms emittances. Figure 3.2 shows the 
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typical emittance evolution calculated with the particle-in-cell code “Warp” [87]. Warp 

was originally developed in Lawrence Berkeley National Laboratory to simulate space 

charge effects in high-density ion beams for heavy ion fusion. When them is match is 

large, the rms emittances rapidly grow at the beginning in both the transverse and 

longitudinal directions and then come to a plateau. Since weak emittance oscillations do 

not completely vanish within a reasonable CPU time, we take an average over the last 

few tens of betatron periods to estimate the equilibrium emittance and temperature after 
relaxation. The temperature ratio !! in the final state is plotted in Fig. 3.1 at several 

different bunch densities and aspect ratios as a function of the transverse mismatch 

factor !!. The longitudinal mismatch factor !∥ is varied in the range 0.8 ≤ !∥ ≤ 1.2. 

The initial distribution of macro-particles is uniform in real space and Maxwellian in 

velocity space. The figure suggests that the temperature anisotropy in the final state is 

enhanced as we increase the mismatch and/or bunch density. The observed dependence 

of the anisotropy on free parameters needs to be incorporated properly into our model. 

Among a number of possible choices, we here try the following function: 

 
!! !!, !∥; !!,!!  

≈ 1+ !! − 1!!
!!!!!!!! + !!

!!!"# !!!! − 1
!

!!

+ !!!!!!!! + !!
!∥
!"# !∥!! − 1

!

!!!
 , 

(3.35) 

where constants in the function are given by !! = 1.67,!! = 0.27,!! = 1.46,!! =
−1.49,!! = 0.43, and !! = −1.71  respectively. The solid lines in Fig. 3.2 are 

represented by Eq. (3.35) and we can confirm the good agreement between simulation 

results and solid lines in wide parameters range. Naturally, the temperature anisotropy 

in the final state is not symmetric about the matched line !! = 1 because the bunch 

initially becomes denser with !! < 1 and thinner with !! > 1. From the equation 

!! = !!!!!!!! !! , !! /!∥!!!!!∥ !! , !! , we have 
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Fig. 3.1: The final temperature ratio of each simulation result as a function of the 

transverse mismatch factor !!. The dots represent the final temperature ratio of 

simulation results and solid lines are drawn by the function defined as Eq. (3.35). In 

the case of !! = 1, there is a little difference between simulation results and solid 

lines, however we can see the good agreement of the other aspect ratios. 
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!! =
!!!!!!!! !! , !!
!∥!!!!!∥ !! , !!

≈

!!
!!

!
1+ 2!!!! !!!!!

!!
!!

!
− 1 + !!!! !!2!!!

!!
!!

!
− 1

!!
!!

!
1+ !!!! !!!!!

!!
!!

!
− 1 + 3!!!! !!2!!!

!!
!!

!
− 1

 , 

(3.36) 

which gives another explicit relation of !!/!!  and !!/!!  once the initial tune 

depressions and mismatch factors are chosen. Together with the free-energy equation, 

i.e. Eq. (3.29) equated to Eq. (3.34), we now have sufficient conditions to determine 
!!/!!  and !!/!! , the values of which are inserted into Eqs. (3.32) for 

emittance-growth evaluation. 

 

 

 

 

 
Fig. 3.2: The time evolution of emittance growth rate in both transverse and 

longitudinal direction. The aspect ratio of the beam is !! = 3 and the transverse 

tune depression is !! = 0.8. The transverse mismatch factor !! are verified from 
0.8 to 1.2 and longitudinal mismatch factor !∥ fixwd at 1.2. The rms emittance 

enhanced within a few tens of betatron oscillations, after that reach to a 

quasi-equilibrium state in both transverse and longitudinal direction. 
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Fig. 3.3: The typical phase space distributions of initially mismatched beam in the 

horizontal and the longitudinal degrees of freedom. The extension of the phase space 

areas at final stationary states means the emittance growth due to initial beam 

mismatches. 

!i" Initial distribution, R0 ! 3, Η! ! 0.98, Ξ! ! Ξ# ! 1.2!i" Initial distribution, R0 ! 3, Η! ! 0.98, Ξ! ! Ξ# ! 1.2
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!ii" Final distribution, R0 ! 3, Η! ! 0.98, Ξ! ! Ξ# ! 1.2!ii" Final distribution, R0 ! 3, Η! ! 0.98, Ξ! ! Ξ# ! 1.2
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3.3 Comparison of theoretical predictions with Warp 
simulations 

 

Systematic Warp simulations were performed to verify how accurately the present 

theoretical model predicts the rms emittance growth of an initially mismatched bunch. 

We considered the fundamental parameters listed in Table 3.1. As explained above, we 

only need two given independent parameters to construct an equipartitioned matched 

state; namely, we can uniquely define the matched state by fixing two of the four 
parameters (!!, !∥, !!, and !!). In the numerical examples here, we take the aspect 

ratio R0 and the transverse tune depression η⊥ under the equipartitioning condition in 

Eq. (3.21), and then apply a spatial bunch deformation corresponding to given mismatch 
factors !! and !∥. 
 

Table 3.1 Simulation parameters of initially mismatched beams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aspect ratio !! 1, 2, 3, 6, 10, 30 

Transverse tune depression !! 0.98, 0.90, 0.80 

Transverse mismatch factor !! 0.7 ~ 1.5 

Longitudinal mismatch factor !∥ 0.8 ~ 1.2 
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3.3.1 Tune depression !! = !.!" 
 

Let us first look at a relatively low-density case, setting !! = 0.98. The longitudinal 

tune depression !∥ ranges from 0.98 to 0.80 corresponding to the change of the aspect 

ratio !! from 1 to 30. Figure 3.4 shows the transverse rms emittance growth rate 

plotted as a function of !!. Five different values of !∥ are considered in each panel 

where the aspect ratio is fixed at either 1, 3, or 30. The five colored curves are 

theoretical predictions based on the emittance-growth formula in Eq. (3.32). Following 

the prescription described in previous sections, we first insert the given numbers of !! 

and !! into the free-energy formula (Eq. (3.29) together with Eq. (3.34)) and the 

temperature anisotropy formula (Eq. (3.36) together with Eq. (3.35)). These two 

conditions are then solved with specific mismatch factors to find the ratios !!/!! and 

!!/!! that are substituted in Eq. (3.32) to predict the emittance growth rate. Colored 

dots in each panel represent Warp simulation results. We see that the free-energy model 

can explain the Warp data very well. Note that, at this tune depression, the transverse 

emittance growth rate is insensitive to the longitudinal mismatch factor !∥. Similar 

results have been obtained for other aspect ratios, i.e. !! = 2, 6, and 10. Reasonable 

agreement between the theory and self-consistent simulations is also confirmed for the 

longitudinal degree of freedom, as demonstrated in Fig. 3.5. Interestingly, the 

longitudinal growth rate appears to be almost independent of !! and !!, except for the 

spherical bunch (!! = 1). 
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Fig. 3.4: The growth rates of the rms emittance in the transverse direction are plotted 

as a function of transverse mismatch factor !!. The tune depression fixed at !!= 

0.98. Colored dots represent Warp simulation results based on the fundamental 

parameters in Table 3.1. Different colors stand for different longitudinal mismatch 

factors: !∥ = 0.8  (blue), 0.9 (red), 1.0 (black), 1.1 (green), and 1.2 (orange). Solid 

lines are the predictions from the free-energy model. The results obtained with other 

aspect ratios (!! = 2 and 6) are similar to those of !! = 3, 10, and 30.  

!a" Transverse direction!a" Transverse direction
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Fig. 3.5: The growth rates of the rms emittance in the longitudinal direction are 

plotted as a function of transverse mismatch factor !!. The tune depression fixed at 

!!= 0.98. Similar to the case of transverse direction, the results show the good 

agreement between the theory and simulations. 

 

 

!b" Longitudinal direction!b" Longitudinal direction
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3.3.2 Tune depression !! = !.!" 
 

We now increase the bunch density from !! = 0.98 to higher levels where !! is set 

equal to 0.9 or 0.8 initially. Theoretical and simulation results in the case of !! = 0.9 

are summarized in Fig. 3.6 and 3.7. We again only show the data obtained with !! = 1, 

3, and 30. The dependence of rms emittance growth on the mismatch factors is more or 

less similar to what we found in Fig. 3.4 and 3.5. In any case, the theoretical estimate 

from the free-energy model is in good agreement with the corresponding Warp results 

over the whole parameter ranges considered here. 

 

3.3.3 Tune depression !! = !.!" 
 

Figure 3.8 and 3.9 show the results of !! = 0.8. The transverse emittance growth is 

slightly enhanced compared to the lower-density cases in Fig. 3.3 and 3.4 while, in the 

longitudinal direction, no significant change is observed. We recognize that the 

accuracy of the theoretical prediction is somewhat worsened, especially in the 

longitudinal emittance growth estimate. A possible reason for this is the deterioration of 

the fitting accuracy by Eq. (3.35). Another reason could be a deviation of the final 

bunch profile from the uniform distribution assumed in our model. In fact, a noticeable 

beam halo is inevitably formed around the core as we increase the bunch density and the 

degree of initial mismatches. Typical phase-space distributions of mismatched bunches 

after relaxation are shown in Fig. 3.10 for reference. Despite these limitations, it is 

evident from Figs. 3.6–3.10 that the present formulas are useful in estimating the rate of 

potential emittance growth. 
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Fig. 3.6: Transverse rms emittance growth at !! = 0.9. Theoretical predictions from 

the free-energy model are compared with Warp simulation results. Fundamental 

parameters considered here are the same as those in Figs. 3.5 and 3.6. except for the 
bunch density. The longitudinal tune depression !∥  ranges from 0.9 to 0.64 

corresponding to the change of !! from 1 to 30. 

!a" Transverse direction!a" Transverse direction
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Fig. 3.7: Rms emittance growth of longitudinal degree of freedom at !! = 0.9. 

!b" Longitudinal direction!b" Longitudinal direction
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Fig. 3.8: Transverse rms emittance growth at !! = 0.8. Theoretical predictions from 

the free-energy model are compared with Warp simulation results. Fundamental 

parameters considered here are the same as those in Figs. 3.5 and 3.6. except for the 

bunch density. The longitudinal tune depression !∥  ranges from 0.9 to 0.64 

corresponding to the change of !! from 1 to 30. 

!a" Transverse direction!a" Transverse direction
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Fig. 3.9: Rms emittance growth of longitudinal degree of freedom at !! = 0.8. 

 
 

!b" Longitudinal direction!b" Longitudinal direction
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Fig. 3.10: The final phase space distributions in the horizontal and the longitudinal 

direction. The upper panels are the case of a low-density bunch !! = 0.98 and 

lower panels are the case of a high-density bunch !! = 0.80. Due to the large initial 

mismatch in both transverse and longitudinal direction, we can confirm the existence 

of the beam halo around the beam core. 

!i" Final distribution, R0 ! 3, Η! ! 0.98, Ξ! ! 1.5, Ξ# ! 1.2!i" Final distribution, R0 ! 3, Η! ! 0.98, Ξ! ! 1.5, Ξ# ! 1.2
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!ii" Final distribution, R0 ! 3, Η! ! 0.80, Ξ! ! 1.5, Ξ# ! 1.2!ii" Final distribution, R0 ! 3, Η! ! 0.80, Ξ! ! 1.5, Ξ# ! 1.2
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3.4 Summary 
 
We have developed a simple analytic theory to estimate the rms emittance growth of an 

intense beam when its spatial extent disagrees with the ideal matched value at injection. 

The Reiser’s free-energy model for a coasting beam is generalized to treat an ellipsoidal 

bunch focused three-dimensionally by a linear external potential. Given the initial beam 
density, or more correctly, two of the four free parameters !!, !∥,!!,!! , the 

stationary matched state is uniquely defined. The transverse and longitudinal emittance 

growth rates can then be calculated from Eqs. (3.32.a) and (3.32.b) for a certain degree 
of initial bunch deformation characterized by the mismatch factors !! and !∥. To find 
the ratios !!/!! and !!/!! in these equations, we employ the free-energy formula 

which we have obtained. The left hand side of Eq. (3.29), i.e. the excess free energy of 

an initially mismatched bunch, is evaluated from Eq. (3.34) for specific mismatch 
factors, which yields an explicit relation of !!/!! and !!/!!. Similarly, Eq. (3.36) 

gives another relation of !!/!! and !!/!! if the temperature anisotropy !! is known 

as a function of the mismatch factors. In the present study, we carried out systematic 
numerical simulations to clarify the parameter dependence of !!. Equation (3.35) is a 

possible choice that fits numerical data over a wide range of parameters at reasonable 

accuracy. Equation of the free energy and the temperature anisotropy after relaxation of 
mismatched beams make it possible to determine !!/!!  and !!/!!  that are 

substituted in Eq. (3.32.a) and (3.32.b) to obtain the emittance growth rates. We 

compared theoretical predictions with time-consuming multi-particle simulations, 

confirming that the present model can explain self-consistent numerical results fairly 

well. The simple algebraic equations derived in this paper thus enable us to estimate the 

degree of mismatch-induced emittance growth in an intense bunch easily and quickly. 
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Appendix A 

 
   Molecular Dynamics simulation codes are used frequently when Coulomb collisions 

have an important role. In the calculation of MD codes, accurate Coulomb interactions 

between all particles can considered, as a result the calculation time of MD codes 

increases proportional to the square of the particle number. Therefore it is difficult to 

apply Molecular Dynamics simulation codes to the typical beams in accelerators due to 

the extremely long CPU time. 

   In a MD simulation code, we suppose a periodic distribution of a beam in the 

longitudinal direction and divided them into periodic cells like Fig. A.1. Coulomb 

potential of charged particles in a same MD cell (black arrows) are written like a 

following formula (A.1). ! in Eq. (A.1) is the particle number in a MD cell.  

 

!!"## ∝
1

(! − !!)! + (! − !!)! !/!

!

!!!
. (A.1) 

Coulomb potential generated from the particles in other cells like red allows is written 

as 

!!" = !(!) cosh !(! − !!)
! !!

!(! − !!)
! − 1 !"

!

!

!

!!!
. (A.2) 

where !! is Bessel function of order 0. The total self-field potential is expressed as 

! = !!" + !!"## . The periodic particle distribution in the longitudinal direction is 

 
 

Fig. A.1 : Calculation of Coulomb interactions in MD simulation code. We should 

consider not only the Coulomb force from the charged particles in the bunch, but also 

from other bunches like red allows. 

z�

r�
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assumed, therefore the following periodic boundary condition is carried out. 

!!!"(!,−!/2)
!" = !!!"(!, !/2)

!" = 0, (A.2) 

where ! is the length of a MD cell. As a result, !(!) in Eq. (A.2) can be obtained as 

! ! = 2/(!(!! − 1)). From these self-potentials, the equation of motion in the three 

degrees of freedom can be written as 

!"
!" = − ! − !!

(! − !!)! + (! − !!)! !/!

!

!!!

+ ! − !!! − !!
4
!!

!!!!
sinh ! cosh 2!(! − !!)

! !!
2!(! − !!)

! !"
!

!
, 

(A.3.a) 

!"
!" = − ! − !!

(! − !!)! + (! − !!)! !/!

!

!!!

+ ! − !!! − !!
4
!!

!!!!
sinh ! cosh 2!(! − !!)

! !!
2!(! − !!)

! !"
!

!
, 

(A.3.b) 

!"
!" = − ! − !!

! − !! ! + ! − !! ! !
!

!

!!!

+ ! − !!! − !!
4
!!

!!!!
sinh ! cosh 2! ! − !!

! !!
2! ! − !!

! !"
!

!
, 

(A.3.c) 

where !! is Bessel function of order 1. The detail of analytic calculation is written in 

Ref [17]. 

   In the process of generating a crystalline beam, the precise calculation of Coulomb 

interactions between all particles is inevitable, that’s why we employee the MD 

simulation code “CRYSTAL” in the study of S-LSR. In the case of S-LSR, Coulomb 

interaction from other bunches are very weak and take too much calculation time. 

Therefore we ignore the Coulomb interaction from other bunches this time. Dr. Yuri 

composed a MD simulation code “CRYSTAL” for the systematic study of a crystalline 
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beam. The detail of the simulation code “CRYSTAL” is explained in Ref. [17]. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We construct a theoretical model that allows a quick estimate of emittance growth in an intense
charged-particle beam initially mismatched to an external linear focusing potential. The present
theory is a natural generalization of Reiser’s free-energy model for coasting round beams in a
uniform focusing channel. The free energy generated by a spatial mismatch, i.e. a discrepancy
between the ideal beam size and an actual beam size, is calculated for an ellipsoidal bunch with
an arbitrary aspect ratio. Following Reiser’s prescription, we assume that the excess free energy
is converted into root-mean-squared emittance growth. Multi-particle simulations are performed
for comparison with theoretical predictions, which indicates that an initially mismatched bunch
eventually settles into a sort of thermally anisotropic state when the mismatch is large. It is shown
that the free-energy formula can explain simulation results over a wide range of parameters if the
degree of the temperature anisotropy in the final state is properly incorporated into the theory.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index G10, G11

1. Introduction

There are many potential sources of instabilities that seriously deteriorate the quality of a charged-
particle beam. Even if the operating point of an accelerator is properly chosen on the tune diagram
to avoid intrinsic resonance lines, the beam may still be unstable due to various extra factors
including magnetic error fields, coupling-impedance sources, radio-frequency (rf) noises, etc. (see,
e.g., Ref. [1]). At high beam density, the natural Coulomb potential also plays an important role,
leading to significant emittance growth even without these external driving forces. A typical exam-
ple is the instability caused by an initial mismatch between the ideal beam configuration in phase
space and the actual beam shape. It is known that a low-density particle cloud called a beam halo
is developed around the central core if the mismatch is large (Refs. [2–9], and R. A. Jameson, Los
Alamos Report LA-UR-93-1209, 1993 (unpublished)).

The self-consistent treatment of such a collective effect is extremely difficult. Since the basic equa-
tions of motion are too complex to solve mathematically, we try numerical approaches in many cases.
Particle-in-cell (PIC) codes are often employed for this purpose, but high-precision PIC simulations
are quite time-consuming. In particular, extremely long CPU time is required to simulate the col-
lective behavior of an intense long bunch containing a huge number of particles. It is thus useful
in practice to have any mathematical formula that enables us to make a quick estimate of emittance
growth expected in a space-charge-dominated beam under a certain non-ideal condition.

© The Author(s) 2015. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Consider an intense beam traveling through a uniform focusing channel. The total energy E per
particle, which includes the kinetic energy and the potential energies of the external focusing field
and Coulomb self-field, is conserved in this closed system. E should be minimum when the beam is
in the perfect stationary state at the beginning. Any realistic beam is, however, more or less deviated
from the stationary state, which implies that the system usually possesses an excess energy. Reiser
assumed that this free energy is consumed to increase the beam emittance. He developed a simple
analytic theory under this assumption to evaluate the possible root-mean-squared (rms) emittance
growth in a non-stationary coasting round beam [10]. We here generalize his theory to treat an intense
bunched beam focused by linear external forces in all three dimensions. An ellipsoidal bunch with
rotational symmetry is assumed for the sake of simplicity because the horizontal and vertical betatron
tunes are often close in ordinary beam transport channels. The excess free energy is calculated in the
case where a stationary bunch in the thermal equilibrium is spatially distorted in both the transverse
and longitudinal directions. Such a spatial mismatch is unavoidable in practice.

The paper is organized as follows. In Sect. 2, we first outline the Hamiltonian model employed
for the present study and then derive formulas to estimate emittance growth rates in a non-stationary
bunch. The free energy produced by a deformation of the bunch shape is calculated in Sect. 3. We also
discuss temperature anisotropy developed during the relaxation process of the initially deformed
(mismatched) bunch. On the basis of the free-energy and temperature-anisotropy equations given in
Sect. 3, the possible emittance growth due to an initial mismatch is evaluated in Sect. 4 and compared
with self-consistent multi-particle simulations. Concluding remarks are finally given in Sect. 5.

2. Model
2.1. Basic equations for a uniformly populated bunch
As is well known, the motion of a charged particle in a dense beam traveling through a linear focusing
channel obeys the Hamiltonian

H =
p2

x + p2
y + p2

z

2
+ Vext +

2πε0Kp

Nq
UC, (1)

where Vext is the external potential provided by beam-focusing magnets, UC is the Coulomb self-field
potential, q is the charge state of the particle, ε0 is the vacuum permittivity, Kp is the generalized beam
perveance, and the independent variable is the path length s along the design beam orbit. For a beam
traveling at a speed βc with c being the speed of light, the perveance is defined by Kp = 2Nrp/β

2γ 3

where N is the number of particles in a bunch, rp is the classical particle radius, and γ is the Lorentz
factor, i.e., γ = 1/(1 − β2)1/2. Employing the smooth approximation, we can express Vext as

Vext = 1
2

(
k2

x x2 + k2
y y2 + k2

∥z2
)

, (2)

where (kx , ky) and k∥ determine the beam-focusing strengths on the transverse x–y plane and in
the longitudinal z-direction. These focusing parameters are proportional to the phase advances or, in
other words, the tunes at zero beam intensity. The harmonic oscillator model as in Eq. (2) has been
frequently used in past theoretical studies of intense beam dynamics [11]. For an ellipsoidal bunch
with rotational symmetry, we can put kx = ky(≡ k⊥). At high beam intensity, the spatial particle dis-
tribution is homogenized due to the natural Debye screening effect. We thus assume that the charge
density ρ is approximately uniform within the ellipsoidal boundary

(
x2 + y2) /a2 + z2/b2 = 1.
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The corresponding Coulomb potential is given by

UC = −ρa2b
4ε0

∫ ∞

0

1
(
a2 + σ

) (
b2 + σ

)1/2

(
x2 + y2

a2 + σ
+ z2

b2 + σ

)
dσ. (3)

When the bunch contains N particles, ρ = Nq/(4πa2b/3). Substituting Eqs. (2) and (3) into Eq. (1),
we have

H =
p2

x + p2
y + p2

z

2
+ 1

2
k2
⊥ f⊥ (a, b)

(
x2 + y2

)
+ 1

2
k2
∥ f∥ (a, b) z2, (4)

where

f⊥ (a, b) = 1 −
3Kp

4k2
⊥

∫ ∞

0

dσ
(
a2 + σ

)2 (
b2 + σ

)1/2 and

f∥ (a, b) = 1 −
3Kp

4k2
∥

∫ ∞

0

dσ
(
a2 + σ

) (
b2 + σ

)3/2 .

For later convenience, we introduce several useful equations of second moments. In the transverse
x-direction the canonical equations of motion are derived from Hamiltonian (4) as dx/ds = px and
dpx/ds = −k2

⊥ f⊥(a, b)x . Provided that the particle distribution function obeys the Vlasov equation
in phase space, the use of these canonical equations allows us to obtain darms/ds = ⟨xpx ⟩/arms and
d⟨xpx ⟩/ds =

〈
p2

x
〉
− k2

⊥ f⊥(a, b)a2
rms, where the symbol ⟨A⟩ stands for averaging the quantity A over

all particles and arms is the rms beam size defined by arms =
〈
x2〉1/2. arms satisfies the rms envelope

equation

d2arms

ds2 + k2
⊥ f⊥ (a, b) arms −

ε2
⊥

a3
rms

= 0, (5)

where ε⊥ is the transverse rms emittance defined by ε⊥ =
(
a2

rms
〈
p2

x
〉
− ⟨xpx ⟩2)1/2. Similar second-

moment equations hold for the other two directions. While a uniform particle density has been
assumed here, the rms envelope equations are insensitive to the type of distribution function, as
theoretically proven by Sacherer [12].

Ideally, an intense beam injected into an accelerator should be not only well matched to the machine
lattice but also in thermal equilibrium (or, in other words, equipartitioned [13]). No emittance growth
occurs in that case. The beam is perfectly stationary under the uniform restoring force generated by
Vext, so we write a ≡ a0(= const.) and b ≡ b0(= const.). Since arms = a/

√
5 and brms = b/

√
5 for

a uniformly populated bunch, the rms envelope equations lead to

ε
(0)
⊥ =

k⊥η⊥a2
0

5
and ε

(0)
∥ =

k∥η∥b2
0

5
, (6)

where ε
(0)
⊥ and ε

(0)
∥ represent the transverse and longitudinal rms emittances of the matched

beam, and the so-called tune depressions have been introduced as η⊥ = [ f⊥(a0, b0)]1/2 and
η∥ =

[
f∥(a0, b0)

]1/2. By definition, the tune depressions become unity at the low-beam-intensity
limit, i.e. Kp → 0. As the beam density increases, both parameters approach zero. Assuming a
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matched beam initially equipartitioned, we obtain [13]

ε
(0)
∥

ε
(0)
⊥

= k⊥η⊥
k∥η∥

= R0, (7)

where R0 ≡ b0/a0 is the aspect ratio of the matched ellipsoid. Under this condition, the tune
depression factors can be written as

η2
⊥ = 1 − Q0 I⊥(R0) and η2

∥ = 1 − Q0

(
η∥
η⊥

)2

I∥ (R0) , (8)

where Q0 = 3Kp/4(k⊥a0)
2a0,

I⊥ (R0) =
∫ ∞

0

dσ ′

(1 + σ ′)2 (
R2

0 + σ ′)1/2 and I∥ (R0) = R2
0

∫ ∞

0

dσ ′

(1 + σ ′)
(
R2

0 + σ ′)3/2 .

Equations (8) indicate that, given η⊥ and η∥, the parameter Q0 and the aspect ratio R0 are uniquely
determined for the equipartitioned bunch.

2.2. Emittance growth due to excess free energy
If a bunch is perfectly matched to the external focusing potential, the total energy of the system
takes the minimum value W0. Unfortunately, it is impossible in any realistic cases to establish such
a perfect stationary state at the beginning; the beam is more or less deviated from the ideal condition
because of unavoidable artificial errors. The beam then possesses a greater energy Wi (>W0) depend-
ing on the degree of the initial mismatch. The mismatched bunch cannot be stationary but starts to
execute a complex collective motion. It is reasonable to expect that, after some relaxation period, the
non-stationary beam will settle into a stationary state with final energy W f [10]. The excess energy
$W = W f − W0 is, according to Reiser, consumed to increase the rms emittance. Since the energy
conservation law requires W f = Wi , the emittance growth rate is directly linked to how much free
energy is produced at the beginning by a certain mismatch.

The average total energy of the system per particle is the sum of the kinetic energy Ek, the beam-
focusing potential Ep, and the Coulomb self-field energy EC. In the case of an initially matched beam,
the second-moment equations yield the simple relations ⟨p2

x ⟩ = k2
⊥a2

0 f⊥(a0, b0)/5, etc. because
everything is static; namely, all s-derivatives vanish. We then readily find

Ek = 1
2

(〈
p2

x

〉
+

〈
p2

y

〉
+

〈
p2

z

〉)
= (k⊥η⊥a0)

2

5
+

(
k∥η∥b0

)2

10
. (9)

On the other hand, Ep is given by

Ep = (k⊥a0)
2

5
+

(
k∥b0

)2

10
. (10)

Integrating the Coulomb potential over the whole bunch, we obtain the average self-field energy per
particle:

EC =
3Kp

16

∫ ∞

0

dσ
(
a2

0 + σ
) (

b2
0 + σ

)1/2 − (k⊥a0)
2

10

(
1 − η2

⊥

)
−

(
k∥b0

)2

20

(
1 − η2

∥

)
. (11)

Hence, the minimum energy of the matched state can be calculated from

W0 = (k⊥a0)
2

10

(
1 + 3η2

⊥

)
+

(
k∥b0

)2

20

(
1 + 3η2

∥

)
+

3Kp

16

∫ ∞

0

dσ
(
a2

0 + σ
) (

b2
0 + σ

)1/2 . (12)
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In the final stationary state reached from a certain mismatched beam, the semi-axes of the bunch are
no longer a0 and b0 but changed to, say, a f and b f . The total energy W f can be expressed similarly
to Eq. (12) as long as the bunch density stays approximately uniform:

W f =
(
k⊥a f

)2

10

[
1 + 3 f⊥

(
a f , b f

)]
+

(
k∥b f

)2

20

[
1 + 3 f∥

(
a f , b f

)]

+
3Kp

16

∫ ∞

0

dσ
(

a2
f + σ

) (
b2

f + σ
)1/2 . (13)

Although an initial mismatch often develops a low-density tail around the beam core, the number
of these halo particles is typically a few percent of N . We, therefore, assume a uniform density
profile to be approximately valid in the final state, as Reiser did in his original work for a coast-
ing beam [10]. By expanding W f about the matched state and keeping only low-order terms, an
approximate expression of the excess energy "W takes the form

"W

(k⊥a0)
2 ≈ 1

20

(
11η2

⊥ − 3
)[(

a f

a0

)2

− 1

]

+ 1
40

(
11η2

∥ − 3
) (

η⊥
η∥

)2
[(

b f

b0

)2

− 1

]

+ 3Q0

20

[

4I1 (R0)

(
a f

a0

)2

+ I2 (R0)

(
b f

b0

)2
] [(

a f

a0

)2

− 1

]

+ 3Q0

40

[

2I2 (R0)

(
a f

a0

)2

+ 3I3 (R0)

(
b f

b0

)2
] [(

b f

b0

)2

− 1

]

, (14)

where we have used Eq. (7) and introduced the following integral functions of R0:

I1 (R0) =
∫ ∞

0

dσ ′

(1 + σ ′)3 (
R2

0 + σ ′)1/2 , I2 (R0) = R2
0

∫ ∞

0

dσ ′

(1 + σ ′)2 (
R2

0 + σ ′)3/2 , and

I3 (R0) = R4
0

∫ ∞

0

dσ ′

(1 + σ ′)
(
R2

0 + σ ′)5/2 .

For a spherical beam where R0 = 1, we have I1 = I2 = I3 = 2/5.
After the relaxation process of an initially mismatched beam is completed, the transverse rms emit-

tance has reached the approximate final value ε
( f )
⊥ ≈ k⊥a2

f

√
f⊥

(
a f , b f

)
. The emittance growth rate

can thus be estimated from

ε
( f )
⊥

ε
(0)
⊥

≈ 1
η⊥

(
a f

a0

)2 √
f⊥

(
a f , b f

)

≈
(

a f

a0

)2
√√√√1 + 2Q0 I1 (R0)

η2
⊥

[(
a f

a0

)2

− 1

]

+ Q0 I2 (R0)

2η2
⊥

[(
b f

b0

)2

− 1

]

.

(15)

Similarly, we have the longitudinal emittance-growth formula:

ε
( f )
∥

ε
(0)
∥

≈ 1
η∥

(
b f

b0

)2 √
f∥

(
a f , b f

)

≈
(

b f

b0

)2
√√√√1 + Q0 I2 (R0)

η2
⊥

[(
a f

a0

)2

− 1

]

+ 3Q0 I3 (R0)

2η2
⊥

[(
b f

b0

)2

− 1

]

.

(16)
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As already mentioned, the values of Q0 and R0 are fixed once the tune depressions η⊥ and η∥ are
chosen. Therefore, the additional pieces of information required to find the emittance growth rates
are the ratios a f /a0 and b f /b0.

3. Determination of a f /a0 and b f /b0

Unlike the previous study by Reiser [10], two independent conditions are necessary to determine the
emittance growth rates because we have one more dimension. The first condition can be obtained
from Eq. (14) by calculating "W for a particular non-stationary initial state. We here focus our
discussion on one of the most probable initial errors in general accelerators, i.e., a mismatch in the
transverse and longitudinal beam sizes at injection. The corresponding free-energy formula can be
given as a function of known parameters, which we employ to derive a relation of a f /a0 and b f /b0.
Although we still need one more condition to determine these ratios, it seems difficult to deduce
another useful relation from a simple physical hypothesis. In the latter part of this section, therefore,
we try to introduce an empirical formula on the basis of information from self-consistent numerical
simulations.

3.1. Free-energy formula for a spatially mismatched bunch
Let us consider a bunch that initially has semi-axes of ai (transverse) and bi (longitudinal). Ideally,
ai and bi must be adjusted precisely to the matched values a0 and b0, but, in reality, we can only
achieve an approximate matching where ai = ξ⊥a0 and bi = ξ∥b0 with positive constants ξ⊥ and ξ∥
called mismatch factors. The total energy Wi of a mismatched bunch can be calculated in the same
way as described in the last section:

Wi = (k⊥a0)
2

10

[

ξ2
⊥ + 2

(
η⊥
ξ⊥

)2

+ ξ2
⊥ f⊥

(
ξ⊥a0, ξ∥b0

)
]

+
(
k∥b0

)2

20

[

ξ2
∥ + 2

(
η∥
ξ∥

)2

+ ξ2
∥ f∥

(
ξ⊥a0, ξ∥b0

)
]

+
3Kp

16

∫ ∞

0

dσ
(
ξ2
⊥a2

0 + σ
)(

ξ2
∥ b2

0 + σ
)1/2 ,

(17)

where we have assumed that the mismatched beam initially has the same rms emittance as the
matched beam. Provided that the mismatch is not too large, the free energy can be written as

"W

(k⊥a0)
2 = Wi − W0

(k⊥a0)
2

≈
ξ2
⊥ − 1
20

[(
η⊥
ξ⊥

)2 (
7ξ2

⊥ − 4
)

− 3 + 4Q0ξ
2
⊥ I1 (R0) + Q0ξ

2
∥ I2 (R0)

]

+
ξ2
∥ − 1

40

[(
η⊥
ξ∥

)2 (
7ξ2

∥ − 4
)

− 3
(

η⊥
η∥

)2

+ 2Q0ξ
2
⊥ I2 (R0) + 3Q0ξ

2
∥ I3 (R0)

]

. (18)

Given the design tune depressions η⊥ and η∥, we can readily evaluate "W/(k⊥a0)
2 from Eq. (18)

for a non-stationary bunch that has specific mismatch factors at injection. We then substitute the
obtained value of "W/(k⊥a0)

2 into the left-hand side of Eq. (14), which leads to a simple algebraic
equation of a f /a0 and b f /b0.
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3.2. Temperature anisotropy after relaxation
It may be rational to think that an initially mismatched bunch will relax into an equipartitioned state.
If that is the case, the temperature ratio T f ≡ k⊥2a f

2 f⊥(a f , b f )/k∥2b f
2 f∥

(
a f , b f

)
should be close

to unity after a final quasi-equilibrium is reached. We can then use the equation T f ≈ 1 as the second
condition to determine a f /a0 and b f /b0. We have, however, found through numerical simulations
that the final state is often quite anisotropic. Only when R0 ≈ 1 (a spherical bunch), the bunch stays
near an equipartitioned state unless the mismatch is too large. In order to judge whether a mismatched
beam has reached a quasi-equilibrium state, we paid attention to the time evolution of the transverse
and longitudinal rms emittances. Figure 1 shows the typical emittance evolution calculated with the
particle-in-cell code “Warp” [14]. When the mismatch is large, the rms emittances rapidly grow at the
beginning in both the transverse and longitudinal directions and then come to a plateau. Since weak
emittance oscillations do not completely vanish within a reasonable CPU time, we take an average
over the last few tens of betatron periods to estimate the equilibrium emittance and temperature
after relaxation1. The temperature ratio T f in the final state is plotted in Fig. 2 at several different
bunch densities and aspect ratios as a function of the transverse mismatch factor ξ⊥. The longitudinal
mismatch factor ξ∥ is varied in the range 0.8 ≤ ξ∥ ≤ 1.2. The initial distribution of macro-particles
is uniform in real space and Maxwellian in velocity space2. The figure suggests that the temperature
anisotropy in the final state is enhanced as we increase the mismatch and/or bunch density. The
observed dependence of the anisotropy on free parameters needs to be incorporated properly into
our model. Among a number of possible choices, we here try the following function:

T f
(
ξ⊥, ξ∥; η⊥, R0

)
≈ 1 + R0 − 1

R0

⎡

⎢⎣
(

A1e−A2 R0 + A3

)
(
ξ

sgn(ξ⊥−1)
⊥ − 1

)2

η⊥

+
(

B1e−B2 R0 + B3

)
(
ξ

sgn(ξ∥−1)
∥ − 1

)2

η3
⊥

⎤

⎥⎦ , (19)

where the fitting constants are given by A1 = 1.67, A2 = 0.27, A3 = 1.46, B1 = − 1.49, B2 = 0.43,
and B3 = −1.71. As demonstrated in Fig. 2 (solid curves), this function fits the numerical
results (colored dots) over a sufficiently wide range of parameters. Naturally, the tempera-
ture anisotropy in the final state is not symmetric about the matched line ξ⊥ = 1 because the
bunch initially becomes denser with ξ⊥ < 1 and thinner with ξ⊥ > 1 . From the equation T f =
k⊥2a f

2 f⊥
(
a f , b f

)
/k∥2b f

2 f∥
(
a f , b f

)
, we have

T f
(
ξ⊥, ξ∥; η⊥, R0

)
·
(

b f

b0

)2
{

1 + Q0 I2 (R0)

η2
⊥

[(
a f

a0

)2

− 1

]

+ 3Q0 I3 (R0)

2η2
⊥

[(
b f

b0

)2

− 1

]}

≈
(

a f

a0

)2
{

1 + 2Q0 I1 (R0)

η2
⊥

[(
a f

a0

)2

− 1

]

+ Q0 I2 (R0)

2η2
⊥

[(
b f

b0

)2

− 1

]}

, (20)

1 The number of numerical integration steps required for a good estimate of the equilibrium temperature
tends to be larger for a longer bunch. We have so far followed the emittance evolution over at most a few
thousand betatron oscillation periods in each Warp simulation.

2 We have confirmed that the bunch is stationary (no emittance growth) without the mismatch, i.e., under
the condition ξ⊥ = ξ∥ = 1.
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Fig. 1. Time evolution of the transverse and longitudinal rms emittances obtained from Warp simulations.
Several different sizes of initial mismatches are applied to a bunch that has the aspect ratio R0 = 3 and the
transverse tune depression η⊥ = 0.8. The transverse mismatch is chosen as either ξ⊥ = 0.8, 1.0, or 1.2 while
the longitudinal mismatch is fixed at ξ∥ = 1.2.

Fig. 2. Examples of Warp simulation results on the temperature anisotropy in the final quasi-equilibrium state.
The transverse-to-longitudinal temperature ratio T f is plotted as a function of ξ⊥. Three different values, i.e.
0.8, 1.0, and 1.2, are chosen for the longitudinal mismatch factor ξ∥ in each panel. The aspect ratio is fixed at
R0 = 3 (short bunch) in the upper three panels while, in the lower three, R0 = 30 (long bunch). The transverse
tune depression η⊥ is set at 0.98 (left), 0.90 (middle), and 0.80 (right). Colored dots represent multi-particle
simulation data obtained with corresponding parameters. Solid lines are the fitting result based on Eq. (19).

which gives another explicit relation of a f /a0 and b f /b0 once the initial tune depressions and mis-
match factors are chosen. Together with the free-energy equation, i.e. Eq. (14) equated to Eq. (18),
we now have sufficient conditions to determine a f /a0 and b f /b0, the values of which are inserted
into Eqs. (15) and (16) for emittance-growth evaluation.

4. Comparison with multi-particle simulations

Systematic Warp simulations were performed to verify how accurately the present theoretical model
predicts the rms emittance growth of an initially mismatched bunch. We considered the fundamental
parameters listed in Table 1. As explained above, we only need two given independent parameters
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Table 1. Simulation parameters.

Aspect ratio R0 1, 2, 3, 6, 10, 30
Transverse tune depression η⊥ 0.98, 0.90, 0.80
Transverse mismatch factor ξ⊥ 0.7–1.5
Longitudinal mismatch factor ξ∥ 0.8–1.2

(a)

(b)

Fig. 3. Rms emittance growth at η⊥ = 0.98. The growth rates in the transverse direction (upper panels)
and longitudinal direction (lower panels) are plotted as a function of transverse mismatch factor ξ⊥. Col-
ored dots represent Warp simulation results based on the fundamental parameters in Table 1. Different colors
stand for different longitudinal mismatch factors: ξ∥ = 0.8 (blue), 0.9 (red), 1.0 (black), 1.1 (green), and 1.2
(orange). Solid lines are the predictions from the free-energy model. The results obtained with other aspect
ratios (R0 = 2, 6, and 10) are similar to those of R0 = 3 and 30.

to construct an equipartitioned matched state; namely, we can uniquely define the matched state by
fixing two of the four parameters (η⊥, η∥, R0, and Q0). In the numerical examples here, we take the
aspect ratio R0 and the transverse tune depression η⊥ under the equipartitioning condition in Eq. (7),
and then apply a spatial bunch deformation corresponding to given mismatch factors ξ⊥ and ξ∥.

Let us first look at a relatively low-density case, setting η⊥ = 0.98. The longitudinal tune depres-
sion η∥ ranges from 0.98 to 0.89 corresponding to the change of the aspect ratio R0 from 1 to 30.
Figure 3(a) shows the transverse rms emittance growth rate plotted as a function of ξ⊥. Five different
values of ξ∥ are considered in each panel where the aspect ratio is fixed at either 1, 3, or 30. The five
colored curves are theoretical predictions based on the emittance-growth formula in Eq. (15). Fol-
lowing the prescription described in previous sections, we first insert the given numbers of η⊥ and R0

into the free-energy formula (Eq. (14) together with Eq. (18)) and the temperature anisotropy formula
(Eq. (20) together with Eq. (19)). These two conditions are then solved with specific mismatch factors
to find the ratios a f /a0 and b f /b0 that are substituted in Eq. (15) to predict the emittance growth rate.
Colored dots in each panel represent Warp simulation results. We see that the free-energy model can
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(a)

(b)

Fig. 4. Rms emittance growth at η⊥ = 0.9. Theoretical predictions from the free-energy model are compared
with Warp simulation results. Fundamental parameters considered here are the same as those in Fig. 3 except
for the bunch density. The longitudinal tune depression η∥ ranges from 0.9 to 0.64 corresponding to the change
of R0 from 1 to 30.

explain the Warp data very well. Note that, at this tune depression, the transverse emittance growth
rate is insensitive to the longitudinal mismatch factor ξ∥. Similar results have been obtained for other
aspect ratios, i.e. R0 = 2, 6, and 10. Reasonable agreement between the theory and self-consistent
simulations is also confirmed for the longitudinal degree of freedom, as demonstrated in Fig. 3(b).
Interestingly, the longitudinal growth rate appears to be almost independent of ξ⊥ and R0, except for
the spherical bunch (R0 = 1).

We now increase the bunch density from η⊥ = 0.98 to higher levels where η⊥ is set equal to 0.9
or 0.8 initially. Theoretical and simulation results in the case of η⊥ = 0.9 are summarized in Fig. 4.
We again only show the data obtained with R0 = 1, 3, and 30. The dependence of rms emittance
growth on the mismatch factors is more or less similar to what we found in Fig. 3. In any case, the
theoretical estimate from the free-energy model is in good agreement with the corresponding Warp
results over the whole parameter ranges considered here. Figure 5 shows the results of η⊥ = 0.8.
The transverse emittance growth is slightly enhanced compared to the lower-density cases in Figs. 3
and 4 while, in the longitudinal direction, no significant change is observed. We recognize that the
accuracy of the theoretical prediction is somewhat worsened, especially in the longitudinal emittance-
growth estimate. A possible reason for this is the deterioration of the fitting accuracy by Eq. (19).
Another reason could be a deviation of the final bunch profile from the uniform distribution assumed
in our model. In fact, a noticeable beam halo is inevitably formed around the core as we increase the
bunch density and the degree of initial mismatches. Typical phase-space distributions of mismatched
bunches after relaxation are shown in Fig. 6 for reference. Despite these limitations, it is evident from
Figs. 3–5 that the present formulas are useful in estimating the rate of potential emittance growth.
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(a)

(b)

Fig. 5. Rms emittance growth at η⊥ = 0.8. Theoretical predictions from the free-energy model are compared
with Warp simulation results. Fundamental parameters considered here are the same as those in Fig. 3 except
for the bunch density. The longitudinal tune depression η∥ ranges from 0.8 to 0.47 corresponding to the change
of R0 from 1 to 30.

Fig. 6. Warp simulation results of initially mismatched bunches with R0 = 3. Typical particle distributions
after relaxation are plotted in the transverse and longitudinal phase spaces. The upper panels correspond to the
case where η⊥ = 0.98 and ξ⊥ = ξ∥ = 1.2. The bunch density and initial mismatch are increased in the lower
panel where η⊥ = 0.8 and ξ⊥ = ξ∥ = 1.5.
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5. Summary

We have developed a simple analytic theory to estimate the rms emittance growth of an intense
beam when its spatial extent disagrees with the ideal matched value at injection. Reiser’s free-energy
model for a coasting beam is generalized to treat an ellipsoidal bunch focused three-dimensionally
by a linear external potential. Given the initial beam density, or, more correctly, two of the four free
parameters (η⊥, η∥, R0, Q0), the stationary matched state is uniquely defined. The transverse and
longitudinal emittance growth rates can then be calculated from Eqs. (15) and (16) for a certain
degree of initial bunch deformation characterized by the mismatch factors ξ⊥ and ξ∥. To find the
ratios a f /a0 and b f /b0 in these equations, we employ the free-energy formula in Eq. (14) and the
temperature-anisotropy formula in Eq. (20). The left-hand side of Eq. (14), i.e. the excess free energy
of an initially mismatched bunch, is evaluated from Eq. (18) for specific mismatch factors, which
yields an explicit relation of a f /a0 and b f /b0. Similarly, Eq. (20) gives another relation of a f /a0

and b f /b0 if the temperature anisotropy T f is known as a function of the mismatch factors. In the
present study, we carried out systematic numerical simulations to clarify the parameter dependence
of T f . Equation (19) is a possible choice that fits the numerical data over a wide range of parameters
at reasonable accuracy. Equation (14) with Eq. (18) and Eq. (20) with Eq. (19) make it possible to
determine a f /a0 and b f /b0, which are substituted into Eqs. (15) and (16) to obtain the emittance
growth rates. We compared theoretical predictions with time-consuming multi-particle simulations,
confirming that the present model can explain the self-consistent numerical results fairly well. The
simple algebraic equations derived in this paper thus enable us to estimate the degree of mismatch-
induced emittance growth in an intense bunch easily and quickly.
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S-LSR is a compact ion storage ring constructed at Kyoto University several years ago. The ring
is equipped with a Doppler laser cooling system aimed at beam crystallization. Bearing in mind
hardware limitations in S-LSR, we try to find an optimum set of primary experimental parameters
for the production of an ultracold heavy ion beam. Systematic molecular dynamics simulations
are carried out for this purpose. It is concluded that the detuning and spot size of the cooling laser
should be chosen around −42 MHz and 1.5 mm, respectively, for the most efficient cooling of
40 keV 24Mg+ beams in S-LSR. Under the optimum conditions, the use of the resonant coupling
method followed by radio-frequency field ramping enables us to reach an extremely low beam
temperature on the order of 0.1 K in the transverse degrees of freedom. The longitudinal degree
of freedom can be cooled to close to the Doppler limit; i.e., to the mK range. We also numerically
demonstrate that it is possible to establish a stable, long one-dimensionally ordered state of ions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index G02, G10, G16

1. Introduction

Generating an ultralow temperature beam is one of the most challenging goals in accelerator physics.
The temperature of a charged-particle beam is directly linked to the concept of emittance, i.e., the
phase-space volume occupied by the beam [1]. At absolute zero temperature, the emittance also
converges to zero. This correlation allows us to say that the process of improving the beam quality
(emittance) is simply cooling. It is, however, very difficult to compress the beam in phase space
due to Liouville’s theorem, which essentially says that conservative forces preserve phase-space
volume. Since electromagnetic components in a regular accelerator, such as radio-frequency (rf)
cavities, quadrupole focusing, and dipole bending magnets, only provide conservative forces, some
dissipative interaction must be developed to reduce the beam emittance or, equivalently, the beam
temperature [2].

Doppler laser cooling, the most powerful among several beam-cooling methods, is technically well
established now [3,4]. Although this method is only usable for specific ion species, we can in principle
reach a temperature range very close to absolute zero, where the beam would be Coulomb crystal-
lized [5–7]. About twenty years ago, two European groups independently tried to produce an ultracold
beam of low-energy heavy ions by employing the Doppler cooling technique [8,9]. While they suc-
ceeded in strongly damping the longitudinal ion oscillations, the transverse degrees of freedom turned

© The Author(s) 2014. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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out to still be hot even after cooling due to some fundamental reasons [10,11]. A primary reason is
that the Doppler cooling force operates only in the longitudinal direction of beam motion. Since the
cooling laser has to be introduced along a straight section of a storage ring so as to ensure a suffi-
cient overlap between the beam and the laser photons, no direct dissipative force is available in the
direction perpendicular to the beam propagation. It is also theoretically pointed out that the lattice
designs of the two European cooler rings, i.e. TSR and ASTRID, were not suitable for ultracold beam
generation.

Ten years after the European challenge toward ultimate beam cooling, another challenging exper-
iment began at Kyoto University where a compact ion storage ring, S-LSR, was constructed [12].
S-LSR is equipped with a Doppler cooling system for 24Mg+ ions and has a highly symmetric lattice,
which lightens transverse collective beam heating. The ring is also designed to allow the application
of the resonant coupling method (RCM), which dramatically enhances the transverse laser-cooling
efficiency [13,14]. On the other hand, a few practical issues exist in the S-LSR cooling system. First,
only a single laser is available for cooling. As the S-LSR lattice has six-fold symmetry, a 24Mg+

beam is exposed to the dissipative force only over, at most, one sixth of the ring circumference every
turn. Secondly, the laser power is limited to about 10 mW. Since any ion beams are initially hot and
thus transversely expanded in size, the laser spot should be as large as possible, with the result that
the photon density is lowered, which worsens the cooling efficiency. The purpose of this paper is to
determine the optimum condition of laser cooling at S-LSR in consideration of these practical con-
straints. In Sect. 2, we outline the cooling system and also briefly describe the recent experimental
result obtained with the RCM. Section 3 is devoted to a summary of systematic molecular dynamics
(MD) simulations that lead us to the optimum set of cooling parameters. An rf ramping scheme is
studied in Sect. 4 to mitigate the heating from intrabeam scattering (IBS). The scheme is very simple
but effective in reducing the equilibrium beam temperature. MD results show that a long “string”
configuration of ultracold ions could be formed in S-LSR if the beam line density is initially set low.
Concluding remarks are given in Sect 5.

2. Transverse cooling scheme at S-LSR

The RCM was proposed two decades ago to extend a one-dimensional (1D) dissipative effect to
the other two degrees of freedom [13,14]. The idea is quite simple; we first introduce an artificial
linear coupling potential to correlate two independent degrees of freedom, and then just move the
operating point of the ring onto a proper difference resonance. In the case of laser cooling, only
the longitudinal beam motion is directly affected, as explained above. We therefore provide a linear
potential that couples the longitudinal motion with the horizontal. In the present S-LSR experiment,
an ordinary rf cavity is adopted as the coupling source. As is well known, a linear synchro-betatron
coupling between these two degrees of freedom can be developed if the cavity is placed at any position
with finite momentum dispersion [14]. A compact, double-gap drift tube cavity was designed for this
purpose and set in one of the six straight sections [15]. In order to further extend the cooling force to
the vertical direction, another coupling source is necessary. The solenoid magnet originally installed
for electron cooling experiments can be utilized in S-LSR [16]. A solenoidal field linearly couples
the two transverse degrees of freedom, which enables us to transfer the longitudinal laser-induced
dissipation to the vertical direction via the horizontal direction. The indirect transverse cooling effect
is most enhanced through the coupling potentials when the lattice fulfills the following resonance
conditions:

νx − νz = integer, νx − νy = integer, (1)

2/16

 at (D
) H

iroshim
a U

 C
huo Lib on January 20, 2016

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2014, 053G01 K. Osaki and H. Okamoto

RF Cavity

Solenoid

Laser

Horizontal Scraper

Vertical Scraper

: QF : QD : BM

Fig. 1. The lattice layout of S-LSR. QF, QD, and BM stand, respectively, for quadrupole focusing, quadrupole
defocusing, and dipole bending magnets. There are several beam scrapers installed to remove the tail of a stored
beam.

where (νx , νy) are the horizontal and vertical betatron tunes, and νz is the longitudinal synchrotron
tune. The condition (1) requires νz to be non-zero to avoid a transverse integer-resonance instability.
The beam is thus inevitably bunched in the operating mode of multi-dimensional cooling by the
RCM. The resultant synchrotron motion of 24Mg+ ions in the longitudinal phase space makes it
possible to cool the beam without sweeping the laser frequency [17]. We usually set νz at around
0.07 to put the S-LSR operating point sufficiently away from the transverse resonance. A low beam
energy (typically 40 keV) and a high rf harmonic number (typically 100) are taken for the laser
cooling mode, so that we can easily increase νz with a small rf amplitude (below a few tens of volts
for the required synchro-betatron resonance).

A schematic drawing of the S-LSR lattice is given in Fig. 1. The ring consists of six superpe-
riods, each of which includes a single doublet cell. The circumference is 22.557 m. The rf cavity
for longitudinal–horizontal coupling and the solenoid magnet for horizontal–vertical coupling sit in
different straight sections. The cooling laser is introduced in the direction co-propagating with the
24Mg+ beam. The frequency of the cooling transition of 24Mg+ ions from the ground state 3s2S1/2

to the excited level 3p2P3/2 is about 1 PHz, corresponding to a wavelength of 280 nm. The Doppler
limit is about 1 mK. So far, the laser frequency is fixed at a certain value slightly below the natural
transition frequency. The distance from the transition frequency is referred to as laser detuning, one
of the important parameters which should be optimized carefully.

The effectiveness of the RCM for indirect transverse laser cooling was recently demonstrated at
S-LSR [15,18]. In the first attempt [15], the simpler two-dimensional (2D) cooling scheme was stud-
ied by switching off the solenoid magnet. The bare betatron tunes were fixed at (νx , νy) = (2.068,
1.105). Fluorescence signals from laser-cooled Mg ions indicated a strong reduction of the horizontal
beam size when the synchrotron tune νz was close to the resonant value 0.068. The horizontal beam
temperature after cooling was estimated to be 200 K, roughly 30 times lower than the initial value
(∼6000 K). Because the reachable temperature as well as the cooling time was most likely limited by
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IBS, in the second attempt the beam tail was initially scraped to reduce the intensity [18]. As a result,
the horizontal temperature was further decreased to 20 K. Despite the fact that the solenoid coupling
was still off, the vertical degree of freedom was also cooled to 29 K through Coulomb collisions [19].
The sympathetic cooling is generally not very effective at such a low intensity, but we assume that the
artificially enhanced horizontal cooling strongly compressed the beam and the resultant increase of
the beam density made the collision rate higher. Although the final beam temperature experimentally
achieved at S-LSR is already far below the temperature of any regular beams, it is still too high to
establish a crystalline order of ions.

3. Molecular dynamics simulations

The MD simulation code CRYSTAL [20] is employed to identify the best set of primary cooling
parameters for ultralow-temperature beam generation at S-LSR. It is possible in CRYSTAL simula-
tions to take the actual lattice structure of the storage ring into account. The dissipative force induced
by laser photons is evaluated from the well-known formula

F = 1
2

!k!
S

1 + S + (2"/!)2 , (2)

where !k is the momentum vector of a laser photon, ! is a natural line width of the cooling transition,
S is the saturation parameter, and " is the detuning of the laser frequency. We assume a round Gaus-
sian laser with a saturation parameter of the form S = S0exp[−2(x2 + y2)/σ 2], where S0 stands for
the peak value on the beam line, (x, y) are the transverse spatial coordinates, and σ is the laser spot
size, which varies along the cooling section. In this paper, the size of the laser waist, in other words
the minimum value of σ at the center of the cooling section, is simply called “spot size” unless noted
otherwise.

In most recent cooling experiments at S-LSR, the initial beam intensity is taken as low as possible
to minimize IBS. The total number of 24Mg+ ions is reduced to the order of 104 by the scrapers right
after every beam injection into the ring. Since the rf frequency of the cavity is always set at 2.51 MHz
corresponding to the harmonic number of 100 for a beam of 40 keV 24Mg+ ions, a single bunch
contains roughly 100 ions. We thus start each MD simulation with 300 particles per bunch that have
Gaussian distributions with respect to all six canonical coordinates. The initial momentum spread
(∼7 × 10−4) and initial transverse root-mean-squared (rms) emittance (∼1 × 10−9 m, normalized)
are determined in consideration of past measurement data. These numbers correspond to the beam
temperature of over a few 100 K, five orders of magnitudes higher than the Doppler limit (∼1 mK).

We optimize the coupling strengths among the degrees of freedom, the laser spot size, and the
detuning. We also pay attention to the particle capture rate (PCR), defined as the number of laser-
cooled ions divided by the total number of stored ions (3 × 104) in the ring. For reference, examples
of typical beam profiles before and after multi-dimensional laser cooling is shown in Fig. 2. Owing
to the limited laser power at S-LSR as well as strong IBS, a considerable number of ions remain
uncooled after a few seconds of cooling. It is possible to remove these hot ions with the scrapers
if necessary because they have relatively large transverse oscillation amplitudes. In the following,
therefore, we calculate the beam temperature only from the cold laser-cooled portion, disregarding
the hot tail particles.

In order to separate laser-cooled ions from the other hot ions in MD simulations, we set a tiny closed
boundary in each of the horizontal, vertical, and longitudinal phase planes. The area (i.e., emittance)
inside each boundary is typically chosen a few times larger than the expected final emittance of
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Fig. 2. Typical phase-space distributions of 24Mg+ ions before and after laser cooling at S-LSR. px and py

represent the transverse kinetic momenta scaled by the design axial momentum, while pz corresponds to the
momentum spread of the beam. The initial distributions in the upper panels are changed to the lower ones
within a few seconds after multi-dimensional laser cooling. Note that in the lower panels, only the vicinity of
the central beam orbit is shown; there are many uncooled ions out of the ranges of the coordinates. We can
easily separate the laser-cooled ions that are concentrated near the origin (see text).

the laser-cooled portion. An ion is defined as “laser-cooled” if it is inside the boundaries in all three
phase planes simultaneously. We have confirmed that this definition works well because the ultracold
portion of the beam is generally stable with the cooling laser on and has very small emittances in all
directions (see Fig. 2).

3.1. Two-dimensional cooling
The experiments reported in Refs. [15] and [18] are based on the 2D cooling scheme where the
solenoid magnet is off. The vertical direction is independent of the other two directions unless imper-
fection fields and/or inter-particle Coulomb interactions play a noticeable role. Table 1 summarizes
typical S-LSR parameters in the 2D cooling mode. The artificial coupling strength between the longi-
tudinal and horizontal degrees of freedom is determined by the magnitude of momentum dispersion
at the rf cavity. According to the linear theory [13,14], there is a threshold value of dispersion above
which the horizontal cooling efficiency is roughly maintained at the same high level as the longitudi-
nal direct cooling efficiency. A simple theoretical estimate using transfer matrices suggests that the
threshold dispersion is only about 0.1 m under the lattice conditions in Table 1. The actual dispersion
is 1.016 m, well above the theoretically demanded minimum value.

Expanding Eq. (2) about the design beam velocity, we find that the coefficient of the linear fric-
tional term is maximized at the detuning |!| = ("/2)

√
(1 + S)/3 . In the case of S-LSR where laser

photons are co-propagating with the beam, ! must be negative. Assuming S ≈ 1 on axis, we have
! ≈ −"/2, which gives −21 MHz for 24Mg+ ions. While this value of detuning guarantees the
highest cooling efficiency for particles near the axis, PCR could probably be improved with a larger
detuning. PCR also depends on the laser spot size in practice. We therefore focus our discussion here
on four particular choices of detuning; namely, −21 MHz, −42 MHz, −63 MHz, and −84 MHz,
which are integer multiples of −"/2. Note that in the recent cooling experiment at S-LSR [18], the
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Table 1. S-LSR parameters in the 2D cooling mode.

Ion species 24Mg+

Kinetic beam energy 40 keV
Betatron tunes (νx , νy) (2.075, 1.120)
Synchrotron tune νz 0.075
Rf harmonic number 100
Rf voltage 41.8 V
Phase slip factor –0.6758
Dispersion at the rf cavity 1.016 m
Solenoid field OFF
Total laser power 10 mW

84MHz84MHz
63MHz63MHz
42MHz42MHz
21MHz21MHz

0 1 2 3 4 5 6
0

10

20

30

40

Laser spot size mm

PC
R

Fig. 3. Particle capture rate (PCR) after 5 s of 2D laser cooling at S-LSR vs. laser spot size σ at the center
of the cooling straight section. We have considered four different values of laser detuning, i.e. −21 MHz,
−42 MHz, −63 MHz, and −84 MHz, which correspond, respectively, to −#/2, −#, −3#/2, and −2#. The
lattice parameters assumed here are listed in Table 1.

detuning had been set, typically, at −200 MHz to improve the PCR. The cooling laser was focused
to σ < 0.5 mm, much smaller than the initial beam extent. For comparison, we did MD simulations
assuming these actual parameters and obtained the possible final temperature of around 10 K in the
transverse directions and around 0.3 K in the longitudinal direction. These numbers are in reasonable
agreement with the experimental observation in Ref. [18].

PCR evaluated at 5 s after the start of each cooling procedure is plotted in Fig. 3 as a function of the
laser spot size. As expected, the ion capture efficiency becomes better with a larger detuning. This
MD result recommends choosing the spot size σ in the range, say, 1.5–2 mm, which is somewhat
smaller than the initial beam extent (see Fig. 2). Ideally, the spot size should be sufficiently greater
than the transverse extent of an initial hot beam to cover all ions for cooling. Provided that the trans-
verse beam extent is initially about 3 mm in radius, as in the example of Fig. 2, the laser spot has to
cover an area of 9π mm2 within which the photon density should preferably be over the saturation
level. We then need a total laser power well beyond 70 mW to cool all hot ions efficiently because
the saturation intensity for 24Mg+ is 2.54 mW mm−2. The total laser power available in S-LSR is,
however, only 10 mW, which means that too much expansion of the laser spot results in a consider-
able reduction of the photon density and thus seriously affects the cooling rate. This is why we have
an optimum range of σ for the best cooling performance. Thanks to the betatron oscillations, even
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Fig. 4. Time evolution of PCR in the 2D cooling mode. The laser spot size σ is fixed at 1.5 mm in all simulations
here.
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Fig. 5. Beam temperature reached in 5 s after injection by the use of the 2D resonant coupling scheme. These
values of temperature are evaluated from laser-cooled ions concentrating near the design beam orbit. We have
ignored the existence of many hot uncooled ions as observed in Fig. 2. If we extend the cooling period from
5 s, the gradual increase of cold ions pointed out in Fig. 4 gives rise to slight temperature growth, especially in
the transverse directions, but the growth rate is low.

tail ions experience finite energy dissipation in the longitudinal direction every few turns. The reso-
nant coupling mechanism then creates a weak but finite cooling effect on the horizontal ion motion,
leading to a gradual shrinkage of the beam size and consequently to a better overlap with the laser.
The improved overlap between the beam and laser enhances PCR. Figure 4 shows how PCR grows
in time when we keep applying the cooling laser to the beam. The laser spot is fixed at 1.5 mm in
these simulations. We observe that PCR has not come to a plateau even after 10 s of cooling, and is
especially low with " = −21 MHz.

The most important question is how much we can compress the beam in phase space. Figure 5
shows the temperature of an ion bunch after 5 s of laser cooling. To save computing time, we often
limit the cooing period to 5 s, corresponding to 1.25 × 105 turns around the ring. Five seconds is
generally long enough to make a good estimate of the possible lowest beam temperature (even though
PCR is still rising slowly).1 Figure 5 points out that the vertical degree of freedom can be cooled
sympathetically via IBS, which is consistent with the experimental observation in Ref. [18]. It is
evident from this picture that the reachable minimum temperature tends to grow as the detuning
becomes larger. We also recognize that there is a narrow range of the spot size with which the beam

1 Theoretically, the application of the RCM makes the necessary cooling time much shorter than 5 s.
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Table 2. S-LSR parameters in the 3D cooling mode.

Ion species 24Mg+

Kinetic beam energy 40 keV
Betatron tunes (νx , νy) (2.070, 1.070)
Synchrotron tune νz 0.070
Rf harmonic number 100
Rf voltage 36.2 V
Phase slip factor –0.6762
Dispersion at the rf cavity 1.025 m
Solenoid field 65.0 Gauss
Total laser power 10 mW

becomes particularly cold. The sharp drop of the equilibrium beam temperature in Fig. 5 is a signature
of the so-called longitudinal beam ordering.2 Once this happens, the synchrotron oscillations of
individual ions are almost frozen out while the transverse betatron oscillations are still active. The
acceptable range for ordering becomes wider for a smaller |"|. Contrarily, as already found in Fig. 3,
PCR is worsened as |"| decreases. Considering these facts, we conclude that from a practical point of
view, |"| should be set around # or slightly higher in the 2D cooling mode at S-LSR. The detuning of
−42 MHz and the spot size of around 1.5 mm appear to be the best combination to attain a reasonably
high PCR as well as an ultralow beam temperature. A final temperature near 1 K or less is then
achievable in both transverse dimensions. The longitudinal temperature can be reduced to about
0.01 K, slightly above the Doppler limit. These temperatures are one order of magnitude lower than
the recent experimental result at S-LSR [18].

3.2. Three-dimensional cooling
We now switch on the solenoid magnet to provide a linear coupling between the horizontal and verti-
cal directions. To maximize the indirect laser-cooling rate in the vertical degree of freedom, we need
both resonance conditions in Eq. (1) to be simultaneously satisfied. The lattice parameters assumed
for three-dimensional (3D) cooling simulations are listed in Table 2. The fractional parts of the three
tunes have been equalized to excite full 3D coupling resonances. The momentum dispersion at the
rf cavity, indispensable for transverse cooling, is 1.025 m. Corresponding to this number, there is the
optimum narrow range of the solenoid field strength for most efficient 3D cooling. Transfer-matrix
theory [14] was again employed to obtain the cooling-rate diagram in Fig. 6. We see that the vertical
cooling rate increases at the expense of the cooling rates of the other two directions as the solenoid
field is strengthened. The cooling efficiency of the three directions can be made approximately equal
when the field strength is about 65 Gauss. The dependence of PCR on the laser spot size is depicted
in Fig. 7. We confirm the spot-size dependence similar to that in the 2D cooling case; PCR is maxi-
mized with the spot size around 1.5 mm. Compared to the result in Fig. 3, PCR has become slightly

2 The longitudinal ordering here is essentially different from the ordering phenomenon experimentally
observed in electron-cooled coasting ion beams at extremely low intensity [16]. In the latter ordering effect
independently reported from several institutes, the inter-particle distance is typically on the order of cm, which
means that the Coulomb coupling among individual particles is very weak. Each ion oscillates back and forth
in the longitudinal direction, unlike the present case where the synchrotron motion is almost completely sup-
pressed due to the balance between the axial beam confinement force and inter-particle Coulomb repulsion.
For detailed information of the 1D ordering effect at ultralow line density, see Refs [21–24].
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Fig. 6. Cooling rates of the three directions estimated from transfer-matrix calculations. The lattice parameters
in Table 2 have been assumed, except for the solenoid field. The maximum longitudinal cooling rate without
coupling, i.e. the longitudinal direct cooling efficiency by the laser, is normalized to unity. The sum of the three
cooling rates at a certain solenoid field is equal to unity.
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Fig. 7. PCR after 5 s of 3D laser cooling at S-LSR vs. laser spot size σ at the center of the cooling straight
section. Similarly to the 2D cooling simulations in Fig. 3, we have taken four different values of laser detuning
into consideration. The lattice parameters assumed here are listed in Table 2.

better in the 3D cooling operation. A preferable effect from the indirect vertical cooling is also vis-
ible in Fig. 8, which shows the beam temperature reached 5 s after the start of laser cooling. The
spot-size range where we can expect the occurrence of the longitudinal beam ordering has clearly
been widened. The results in Fig. 8 together with those in Fig. 7 suggest that the detuning should
be chosen between −3"/2 and −". A larger value of |#| guarantees more efficient capture of ions
but makes the tolerable range of the laser spot size narrower. We thus come to the same conclusion
as made for the 2D cooling mode; namely, σ and |#| should be set to ∼1.5 mm and ∼42 MHz (or
somewhat higher) to generate the coldest beam in S-LSR. The possible transverse and longitudinal
temperatures we can reach with these parameters are roughly 1 K and 0.01 K, respectively.

4. Radio-frequency field ramping

MD results in the last section have revealed that with proper choices of experimental parameters, we
can produce in S-LSR an extremely high-quality beam that is much colder than any existing beams.
It is even possible to reach a sort of spatially ordered state, strongly suppressing the longitudinal
synchrotron motions of individual particles. In this section, we make one more step forward to a
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Fig. 8. Beam temperature reached in 5 s after injection by the use of the 3D resonant coupling scheme. Similarly
to the result in Fig. 5, only laser-cooled ions are picked out to evaluate the temperature.

Coulomb crystalline state. According to a previous MD study assuming two counter-propagating
powerful lasers [20], a string-crystal-like structure could be formed in the S-LSR lattice by means of
the RCM if the number of ions per bunch is limited to less than 10. Here we considerably increase
the ion number and yet show that a long string beam could be attained even with a single low-power
laser.

In order to generate a crystalline beam with finite transverse spatial extent, the longitudinal cooling
force has to be properly tapered to compensate for the shear force induced by bending magnets [10,
25]. It is also crucial to maintain strict lattice symmetry to prevent transverse coherent instability [11].
Since these requirements are very difficult to meet in practice, the only realistic target we can aim
at in S-LSR is the formation of a 1D string crystal. There is the critical line density at which the
structural transition from a certain crystalline configuration to another takes place [6]. Needless to
say, the threshold line density of the string-to-zigzag transition is the lowest. We thus have to keep the
beam line density below a certain level so that the corresponding crystalline configuration, if formed,
is a string. The Hasse–Schiffer theory for coasting crystalline beams predicts that the string-to-zigzag
transition occurs at a line density of the order of 104 m−1 under the lattice conditions in Table 2 [6].
The transition density in the present case must be much lower than this theoretical estimate because
the beam is not coasting but bunched by a rather strong rf field. In fact, the bunched string shown
in Ref. [20] converts into a zigzag-like configuration if we add only a few more particles. Even if
we keep the ion number in a bunch below 10, it is possible to transform the string configuration into
a zigzag just by raising the synchrotron tune (or, in other words, by more strongly compressing the
beam in the axial direction). In Appendix A, a numerical estimation is made of the number of stored
ions with which the formation of an ideal bunched crystalline state is expected in S-LSR.

The simplest way to establish a long string formation with many ions is weakening the rf field
in the cavity. The synchrotron tune then decreases (with the harmonic number fixed), which gives
rise to the breakdown of the coupling resonance condition and to the lack of the indirect transverse
cooling force. We could, however, rely on the sympathetic effect from Coulomb interactions once the
beam is cooled down to an ultralow temperature range. As verified in Fig. 5, the sympathetic cooling
mechanism can be effective even at low line density if the beam is already cold. We therefore first
employ the RCM to strongly cool a low-current beam in S-LSR and, after that, gradually reduce
the amplitude of the rf bunching field with the cooling laser on. This process achieves the required
bunch lengthening and the maintenance of a three-dimensionally cold state simultaneously. In the
following MD simulations, we start from the cold beam that has already been laser-cooled for 5 s
in S-LSR under the lattice conditions in Table 2. The initial ion distribution is more or less like the
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Fig. 9. Final beam temperature after the rf ramping procedure. The detuning and spot size of the cooling laser
are fixed, respectively, at −42 MHz and 1.5 mm. The total number of laser-cooled particles in the ring is around
7.5 × 103 in each simulation.

one shown in the lower three panels of Fig. 2. Recalling the conclusion in the last section, we set the
laser detuning and spot size, respectively, at −42 MHz and 1.5 mm. Since the PCR after 5 s cooling
is 24% with these parameters (see Fig. 7), there are 72 cold ions and 228 hot ions in a bunch at the
beginning. The number of the initial cold ions can readily be controlled by changing the original
beam intensity at injection.

The amplitude of the rf voltage, whose initial value is 36.2 V for the synchrotron tune of 0.07, is
linearly ramped to a specific final value Vf within the 12500 turns that corresponds to 0.5 s. We then
maintain the rf voltage at Vf for the next 0.5 s, keeping the cooling laser on. In the rf ramping process,
the hot tail ions oscillating about the design orbit may affect the motions of the cold laser-cooled
ions, especially when Vf is low. Such an unfavorable source of heating can be removed effectively
with the scrapers installed in S-LSR (see Fig. 1). Those scrapers have actually been used to reduce
the beam intensity at injection and also to measure the transverse beam profiles.3 We here move
both horizontal and vertical scrapers toward the central beam orbit in the first 12500 turns. At the
beginning, the scrapers’ edges are located 5 mm away from the beam line, which eventually comes
to 0.5 mm in 0.5 s.

The final beam temperature after the rf ramping procedure is plotted in Fig. 9 as a function of Vf.
Each bunch contains 72 cold ions initially (but a few hot ions are eventually cooled before being
scraped and join the ultracold beam core). As expected, the beam temperature can be reduced further
by carefully expanding the bunch. The final temperatures reachable with the rf ramping are near 0.1 K
in the transverse directions and 0.001 K in the longitudinal direction. These numbers correspond to
the normalized rms emttances around the order of 10−12 m and below 10−13 m, respectively. After
a sort of equilibrium state is reached within 1 s, we ramp the laser power toward zero in 0.2 s, and
then wait for another 0.4 s (10000 turns) to check if the beam is stable without the cooling force.
Two examples are given in Fig. 10, which shows the spatial configurations of ultracold beams 0.4 s
after the cooling laser is switched off. In the upper example, there are 37 ions forming the string
configuration while in the lower example, the ion number is increased to 78. In both cases, Vf is set

3 H. Souda, private communication.
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Fig. 10. Spatial configurations of laser-cooled beams after the rf ramping and the subsequent laser-power
ramping procedures are completed. The two panels on the left side show the top and side views of an ultracold
beam consisting of (a) 37 ions or (b) 78 ions, after 10000 turns around S-LSR without the laser cooling force.
The axial position of each individual ion within the last turn is plotted on the right panel as a function of the
path length along the design orbit. The final voltage Vf after the rf ramping is 2 V in both examples. We see
that the synchrotron motion is almost completely suppressed in both cases.

at 2 V. We confirm that the string order of ions is well maintained for many turns around the ring
even without the cooling force.

5. Concluding remarks

We have performed systematic MD simulations assuming the actual hardware conditions for Doppler
laser cooling of a 40 keV 24Mg+ ion beam in S-LSR. Each simulation typically starts with 300 ions
per bunch. This corresponds to 3 × 104 stored ions in the ring, which is of the same order as the
total ion number in recent cooling experiments [18]. The numerical data have been used to figure out
the optimum cooling parameters with which the ultralow-temperature state of ions can be reached
in this particular storage ring. In the past experiments done at S-LSR [15,18], the laser detuning had
been chosen mostly near −200 MHz to ensure a high PCR. The present MD study has pointed out
that such parameter choices are inappropriate for utilizing the full potential of the current Doppler
cooling system. The simulation results in Sect. 3 indicate that the detuning and spot size of the
cooling laser should be chosen, respectively, around −42 MHz and 1.5 mm. Then, the use of the
RCM makes it possible for us to reach beam-temperature ranges of about 1 K in both transverse
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Fig. 11. Expected transverse fluorescence images of a linearly ordered, ultracold ion beam. The CRYSTAL
code is used for this estimation, assuming the actual optical system and specifications of the CCD camera
installed in S-LSR. As an example, we have considered the case of Fig. 10(b) where the string beam is formed
with 78 ions. The upper, middle, and lower panels show the expected images (a) at the beam injection into the
ring, (b) after the laser cooling for 5 s, and (c) after the completion of the rf ramping procedure. The exposure
time of the camera is set at 0.1 s. Note that the centroid of the laser-cooled beam is axially shifted from the
longitudinal origin (the center of the rf bucket) due to the radiation pressure by the co-propagation laser light.
By gradually reducing the laser power to zero, the centroid position finally comes to the bucket center, as shown
in Fig. 10.

dimensions and of the order of 0.01 K in the longitudinal dimension (see Fig. 8). These numbers are
one order of magnitude lower than the recent experimental achievement reported in Ref. [18]. We
have also demonstrated that a linearly ordered state of ultracold ions, the so-called string state, can be
established at low line density by gradually ramping the longitudinal rf field after 3D laser cooling. It
is possible to form a long, bunched string beam consisting of nearly 80 ions if the rf voltage is lowered
to around 2 V (corresponding to the synchrotron tune of 0.016 for a 40 keV 24Mg+ ion). During the
rf ramping, both transverse and longitudinal equilibrium temperatures are even more reduced to near
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0.1 K and the Doppler limit, respectively (Fig. 9). The string state is stable and lasts for more than
10000 turns with no serious heating.

Finally, it is interesting to ask whether we can conclude the formation of the string state in S-
LSR from actual experimental data. According to Eq. (2), each 24Mg+ ion traveling in the cooling
straight section at a kinetic energy of 40 keV scatters a photon every few centimeters along the beam
line provided S ≈ 1 and |!| ≈ ". At the center of the cooling section, there is a small window
located 14 cm away from the beam line [15]. Fluorescence photons passing through the window are
eventually focused onto a CCD image sensor whose diameter is 2.54 cm. Considering that a hundred
bunches are stored in S-LSR at the revolution frequency of 25 kHz, the sensor will receive over
105 photons per second from the ordered beam in Fig. 10. Since these photons come only from the
vicinity of the design beam line, we expect a clear fluorescence image of the beam to be caught by
the camera. Figure 11 shows an example of possible transverse beam images estimated from MD
simulation data. The exposure time of the CCD camera has been assumed to be 0.1 s. Right after the
beam injection (t = 0 s), the fluorescence signal looks so weak that it will probably be hidden behind
background noise. In fact, no clear signals have been detected in past cooling experiments when the
initial number of stored ions is below the order of 104.4 After 3D laser cooling (t = 5 s) under the
optimum conditions, the beam signal is enhanced by an order of magnitude. The signal becomes
even sharper in both transverse directions after the rf ramping is completed. The peak level of the
signal is much higher than the possible noise level in S-LSR.4 This numerical result suggests the
following: after the initial beam scraping to ∼3 × 104 stored ions, we lose the fluorescence signal or
only have a very faint beam image. The signal will, however, be recovered during the most efficient
3D laser cooling. We will observe a sharp fluorescence peak suddenly rising on the beam line if the
predicted, linearly ordered configuration is successfully formed.

Acknowledgements

The authors would like to express their sincere thanks to Drs. A. Noda, H. Souda, and M. Nakao for valuable
information on the cooling experiment at the storage ring S-LSR. They are also indebted to Drs. Z. He, Y. Yuri,
and A. M. Sessler for useful discussion on the present MD study.

Appendix A. Ion number threshold of bunched beam crystallization in S-LSR

We employ a linear friction model to figure out the threshold ion number below which ideal crys-
talline beams are obtained in S-LSR. Instead of the realistic laser cooling force, the simplest linear
dissipative forces are applied to stored ions in all three degrees of freedom until the beam comes to
an equilibrium state. The betatron tunes are fixed at the same values as given in Table 2 while the
solenoid magnet is switched off here (because we need no coupling potentials for multi-dimensional
cooling). The Coulomb coupling constant, i.e. the ratio of the average Coulomb potential energy to
the average kinetic energy of stored ions [1], is calculated after cooling and color-coded in Fig. A1.
In an ideal crystalline state, the coupling constant is supposed to exceed about 170. We find a clear
boundary below which stable crystalline beams can be attained. The crystalline structures finally
established in the parameter range with red dots are the linear string, except for a very narrow range
near the boundary where the zigzag state is sometimes reached. It is possible to slightly expand the
region of zigzag formation by strengthening the linear friction, but these zigzag crystals are mostly
unstable. No stable shell structures can be formed even with the perfect 3D cooling force, as expected.

4 H. Souda, private communication.
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Fig. A1. Coulomb coupling constant of bunched 24Mg+ beams cooled with the 3D linear frictional force. The
abscissa represents the amplitude of the longitudinal rf field provided by the double-gap drift tube cavity. The
betatron tunes are fixed at (νx , νy) = (2.070, 1.070) in each MD simulation.
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Fig. A2. Example of an ideal string crystalline configuration consisting of 78 ions. The lattice condition
assumed here is identical to that in Fig. 10 (except for the cooling force applied to the beam).

Naturally, the threshold ion number per bunch is lowered as the amplitude of the rf voltage increases.
This MD result suggests that, in order to generate a long string-like beam in S-LSR, the rf voltage
should be well below 10 V. The spatial profile of a perfect string crystalline beam consisting of 78
ions (the same as in the case of Fig. 10) is shown in Fig. A2 for reference.
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