
 

 

博士論文 

 
Theoretical Study of the Phase Transition and 

Low-Temperature Property in Two-Dimensional 

Coupled Antiferromagnets 

 

 

二次元複合磁性体における 

相転移と低温物性の理論的研究 

 

 

 

 

 

 

 

 

伊 藤 和 博 
 

 

広島大学大学院先端物質科学研究科 

 
 

2016年 3月 



目次 
 

１．主論文 

Theoretical Study of the Phase Transition and Low-Temperature 

Property in Two-Dimensional Coupled Antiferromagnets 

（二次元複合磁性体における相転移と低温物性の理論的研究） 

伊藤 和博 

 

２．公表論文 

(1) Mean Field Theory of a Coupled Heisenberg Model and Its Application 

to an Organic Antiferromagnet with Magnetic Anions  

Kazuhiro Ito and Hiroshi Shimahara  

Journal of the Physical Society of Japan, 85, 024704-1 - 024704-7 

(2016). 

(2) Stabilization of Long-Range Order by Additional Anisotropic Spins in 

Two-Dimensional Isotropic Heisenberg Antiferromagnets —A Possible 

Model of an Organic Compound with Magnetic Anions—  

Hiroshi Shimahara and Kazuhiro Ito 

Journal of the Physical Society of Japan, 83, 114702-1 - 114702-7 

(2014). 

 



 

 

 

 

 

 

主論文 



Acknowledgments

I would like to express my thanks to Professor Hiroshi Shimahara for his

guidance and support throughout the course of my study. I am indebted

to Professor Yutaka Nishio, Dr. Hiroshi Akiba, and Dr. Kazuo Shimada for

useful discussions, information, and experimental data. I would also like to

thank to Professor Katsuhiko Higuchi, Dr. Arata Tanaka, and Dr. Tatsuya

Shishido for their encouragement.

i



Contents

1 Introduction 1

1.1 Background and purpose of the thesis . . . . . . . . . . . . . . 1

1.2 Stability of the antiferromagnetic order and dimensionality . . 7

1.2.1 Mermin–Wagner theorem . . . . . . . . . . . . . . . . 7

1.2.2 Spin wave theory . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Tyablikov approximation . . . . . . . . . . . . . . . . . 19

2 Theoretical Model for the Insulating Phase in λ-(BETS)2FeCl4 27

3 Analysis of the Low-Temperature Behavior 30

3.1 Low temperature limit . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Some typical cases . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Reproduction of experimental results . . . . . . . . . . 39

3.4 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . 49

4 Phase Transition —Stabilization Mechanism of Antiferro-

magnetic Order— 52

4.1 Extension of the Tyablikov approximation . . . . . . . . . . . 52

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ii



4.3 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusion 67

iii



Chapter 1

Introduction

1.1 Background and purpose of the thesis

The two-dimensional organic conductor λ-(BETS)2FeCl4, where BETS stands

for bis(ethylenedithio)tetraselenafulvalene, shows many intriguing proper-

ties [1–22], which originate from the magnetic anions FeCl4 and the two-

dimensionality of the conduction-electron system on BETS molecules. The

system exhibits the antiferromagnetic insulating phase [1,7,23] at zero mag-

netic field and the magnetic-field-induced superconductivity [10, 24] at high

fields, which may include the Fulde–Ferrell–Larkin–Ovchinnikov state [24–

26]. The occurrence of the magnetic-field-fields induced superconductivity

is explained by Jaccarino–Peter mechanism [27], in which the superconduct-

ing transition temperature is maximum when the effective Zeeman energy

is zero. This suggests that conduction electrons are subject to the strong

exchange field created by the 3d spins. Experimentally, the maximum tran-

sition temperature is 3K at 33T, i.e., Hc20(3K) = 33T, where Hc20(T ) is the

pure orbital limit of the upper critical field in the absence of the Pauli para-

magnetic pair-breaking effect. Such high pure-orbital limit means that the
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interlayer hopping energy is very small in accordance with the presumption

from the lattice structure.

The magnetic properties originate from two kinds of degrees of freedom,

i.e., conduction π electrons in the BETS layers and localized 3d spins in the

FeCl4 anions. The five electrons in 3d orbitals of Fe3+ behave as a single

localized spin with length S = 5/2 because they are in the high-spin state

because of the strong Hund coupling. In the antiferromagnetic phase, π

electrons are also considered to behave as localized spins with length s = 1/2

due to the strong correlation because the number of the π electrons per lattice

site is equal to 1. Note that each pair of dimerized BETS molecules forms a

lattice site. The strong electron correlation is supported by the fact that the

transition temperature is high (Tc ≈ 8.3K) despite the absence of the Fermi-

surface nesting. Furthermore, the metal-insulator transition was observed in

the resistivity measurement [6]. The strong exchange fields created by the

3d spins may also favor the large spin moments of the π spins.

Just after the discovery of λ-(BETS)2FeCl4, the antiferromagnetic long-

range order was considered to be mainly formed by the 3d spins because of

the large spin length. This picture was considered to be plausible because

the antiferromagnetic order is formed by the 3d spins in the similar com-

pounds κ-(BETS)2FeBr4 [28–30] and κ-(BETS)2FeCl4 [29,30], which we call

the κ systems hereafter. From the temperature dependence of the specific

heat in these compounds, the sublattice magnetization in the 3d-spin system

increases rapidly below the transition temperature. The phase diagrams for

the κ systems, which include the antiferromagnetic phase at low fields and

the field-induced superconducting phase at high fields [31], are explained by

a unified model [32]. This model implies that the 3d spins play an indispens-

able role in forming the antiferromagnetic order.
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Recently, it was found that roles of the π electrons and the 3d spins in

λ-(BETS)2FeCl4 are different from those in the κ systems. The specific-heat

measurement by Akiba et al. [17] revealed that the entropy of the 3d spins

in λ-(BETS)2FeCl4 is consumed slowly when the temperature is lowered, in

contrast to that in the κ systems. Thus, the 3d-spin system does not actively

form the antiferromagnetic order but passively follows the antiferromagnetic

order in the π-spin system. This picture is also supported by the experimental

result of Mössbauer spectroscopy [33]. Therefore, the main interaction that

sustains the antiferromagnetic order is the exchange interaction between the

π spins. On the basis of these facts, the Schottky model [17] or paramagnetic

model [33] has been studied. In this model, the 3d spins passively follow the

constant exchange field ∆d created by the π spins, as if they are free spins.

The Schottky model exhibits the six-level Schottky-type specific heat,

which agrees well with the experimental data in λ-(BETS)2FeCl4 [18]. Some

authors adopted this model [18,22,33], and reproduced not only the specific

heat [18] but also the Mössbauer effect [33]. In the analysis of the specific

heat by Akiba et al. [17], an additional scale factor is introduced to change

the magnitude of specific heat. However, this factor causes a deviation of

the total entropy from NkB ln (2S + 1), which directly follows from the fact

that there are (2S + 1)N microscopic states, where N is the number of 3d

spins. The derivation of the specific heat in the Schottky model is shown at

the end of this chapter.

The Schottky model does not explain the stabilization mechanism of an-

tiferromagnetic long-range order. The picture that the 3d spins passively

follow the constant exchange field may give the idea that solely the π-spin

system forms the antiferromagnetic order without the 3d-spin system. This

presumption is incompatible with the experimental results for the sister com-
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pound λ-(BETS)2GaCl4 [1, 6, 18, 34], in which the π-spin system on BETS

molecules does not exhibit the antiferromagnetic order. Therefore, the 3d

spins are indispensable for the antiferromagnetic order, but the stabilization

mechanism and the roles of the π and 3d spins are not described by the

Schottky model.

The roles of the 3d spins are explained as follows: According to the

Mermin–Wagner theorem, the isotropic low-dimensional system with short-

range interactions does not undergo the magnetic transition at any finite

temperature [35]. The low-dimensional thermal fluctuation suppresses the

long-range order regardless the strength of the exchange interactions between

the π spins are [12]. The anisotropy of the 3d spins and/or the interlayer

interactions between BETS layers can stabilize the antiferromagnetic long-

range order. In this thesis, we examine the stabilization mechanism by the

anisotropy, which was addressed by Akiba et al. [17].

The anisotropy of λ-(BETS)2FeCl4 has been studied in some experiments

[11,18,23]. The magnetic susceptibility strongly depends on the direction of

the magnetic fields [23]. From the result of the magnetic torque experiment,

the angle between the magnetic easy axis and crystal c-axis is estimated to

be θ ≈ 30◦ [11, 18,36].

We assume a model based on the above argument. The absence of the

antiferromagnetic order in λ-(BETS)2GaCl4 indicates that the π-spin sys-

tem on the BETS layers is isotropic in spin space. Thus, we adopt the

two-dimensional isotropic antiferromagnetic Heisenberg model with s = 1/2

for π-electron system on BETS layers, which we call subsystem 1. In con-

trast, the 3d spins on the FeCl4 anions are considered to have the uniaxial

anisotropy. Thus, we adopt the anisotropic Heisenberg model with S = 5/2

to the 3d-spin system, which we call subsystem 2. In λ-(BETS)2FeCl4, the
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exchange interactions in subsystem 1 are stronger than those in subsystem

2, as mentioned above. The localized spin model that consists of subsystems

1 and 2 is called the coupled Heisenberg model, hereafter. The model is a

possible minimum model that can describe the stabilization mechanism of

the antiferromagnetic long-range order [37].

As a model of λ-(BETS)2FeCl4, the Kondo lattice model is more funda-

mental than the coupled Heisenberg model in a sense that π electrons are not

assumed to be localized. Many authors have studied λ-(BETS)2FeCl4 in this

model. Brossard et al. [7] studied the effect of the Ruderman–Kittel–Kasuya–

Yosida (RKKY) interactions between 3d spins and the spin-flop transition in

magnetic fields. Hotta and Fukuyama [38] obtained a unified phase diagram

for the organic compounds including BETS molecules. They suggested that

π electrons are localized in λ-(BETS)2FeCl4. Cépas et al. [39] interpreted the

magnetic field dependence of the electron state including the field-induced

superconductivity. However, since these studies were carried out before the

passive character of the 3d spins was revealed [17], this character was not

taken into account.

As mentioned above, the coupled Heisenberg model is based on the local-

ized spin picture of π electrons, which can be used only in the insulating phase

of λ-(BETS)2FeCl4. The metal-insulator transition is explained in the Kondo

lattice model, and the coupled Heisenberg model is derived from the Kondo

lattice model in the insulating phase. However, we adopt the localized spin

model as an effective model in the insulating phase from a phenomenological

viewpoint.

For simplicity, we assume the square lattice. In the real material, the

lattice structure and the configuration of the exchange interactions are more

complex [12]. The triangular lattice may cause the geometrical frustration.
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Because the antiferromagnetic order is stabilized in λ-(BETS)2FeCl4, the im-

balance of the coupling constants is considered to overcome the frustration

effect from the phenomenological viewpoint. The difference in the spin-wave

energy dispersion ωq does not change the qualitative result significantly be-

cause the behavior only near q = 0 concerns for the stabilization of the

long-range order.

In the analysis of the low temperature behaviors, we apply the mean-field

approximation to the coupled Heisenberg model. We call the resultant model

the mean-field model. The model is valid at low temperatures where the

fluctuation is sufficiently small. Because the specific heat is reproduced very

well by the Schottky model [17], the fluctuation is small at low temperatures.

We reanalyze the experimental data using the least-squares method, and find

the deviation from the Schottky model, where we check the validity of the

mean-field approximation and the localized spin picture. We estimate the

model parameters and confirm that the condition J12, J2 ≪ J1 is satisfied.

We also reveal some properties of the magnetic anisotropy.

For the study of the phase transition, we extend the Green function theory

called the Tyablikov approximation [40]. The two subsystems are different in

the spin length and the anisotropy in the spin space. Therefore, they fluctuate

in the quite different spatial and temporal scales. Since the 3d spins fluctuate

more slowly than the π spins, we adopt the mean-field approximation for the

3d spins. In this approximation, the transition temperature tends to be

higher than the true value. In spite of this tendency, it is non-trivial whether

the experimental transition temperature is reproduced by this model because

the mean-field transition temperature of the independent 3d-spin subsystem

is much smaller than the experimental value. The treatment for the π-spin

subsystem needs to be consistent with Mermin–Wagner theorem [35]. Thus,
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we apply the Tyablikov approximation to the π spins. In this approximation,

the isolated π-spin system does not exhibit the antiferromagnetic long-range

order at any finite temperature.

We summarize the outline of the thesis. In Chap. 1.2, we review the spin

wave theory and the Tyablikov approximation for the ferromagnetic and anti-

ferromagnetic Heisenberg models. In Chap. 2, the coupled Heisenberg model

is presented. In Chap. 3, we adopt the mean-field approximation for the

coupled Heisenberg model at low temperatures, and analyze the experimen-

tal data of the specific heat and the spin susceptibility in λ-(BETS)2FeCl4.

In Chap. 4 we examine the coupled Heisenberg model on the basis of the

Tyablikov approximation, and calculate the critical temperature and the sub-

lattice magnetizations. In Chap. 5, the conclusion of this thesis is presented.

We use units in which ℏ = 1 and kB = 1, and define β ≡ 1/kBT .

1.2 Stability of the antiferromagnetic order

and dimensionality

1.2.1 Mermin–Wagner theorem

In this section, we shall review the Mermin–Wagner theorem, which shows

that the isotropic Heisenberg model with short-range interactions does not

exhibit the ferromagnetic or antiferromagnetic long-range order at any finite

temperature.

We examine the Heisenberg model

H = −
∑
RR′

JR−R′SR · SR′ − h
∑
R

Sz
R eiK·R. (1.1)
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We assume that J0 = 0 and JR = J−R.

We define

Sk ≡
∑
R

e−ik·RSR, (1.2)

Jk ≡
∑
R

e−ik·RJR. (1.3)

Thus, we obtain

SR =
1

N

∑
k

eik·RSk, (1.4)

JR =
1

N

∑
k

eik·RJk, (1.5)

where N is the number of the sites and the summation
∑

k is taken over the

1st Brillouin zone.

The Bogoliubov’s inequality is

1

2
⟨{A,A†}⟩⟨[[C,H], C†]⟩ ≥ kBT |⟨[C,A]⟩|2 (1.6)

for any operators A, B, and C, whereH is the Hamiltonian, and ⟨· · · ⟩ denotes

the thermal average. Thus, we obtain

1

2
⟨{A,A†}⟩ ≥ kBT

|⟨[C,A]⟩|2

⟨[[C,H], C†]⟩
≥ 0. (1.7)

When A = S−
−k−K , C = S+

k , we obtain

1

2

∑
k

⟨{S−
−k−K , (S−

−k−K)†}⟩ ≥ kBT
∑
k

|⟨[S+
k , S

−
−k−K ]⟩|2

⟨[[S+
k , H], (S+

K)†]⟩
≥ 0. (1.8)
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We also find that

⟨{S−
−k−K , (S−

−k−K)†}⟩ < 2N2S(S + 1), (1.9)

|⟨[S+
k , S

−
−k−K ]⟩|2 = 4N2M2, (1.10)

⟨[[S+
k , H], (S+

K)†]⟩ < 2N

(
2S(S + 1)k2

∑
R

R2|JR|+ |hM |

)
, (1.11)

where we define

M ≡ 1

N

∑
R

eiK·R⟨Sz
R⟩. (1.12)

Therefore, we obtain

S(S + 1) >
2kBTM

2

N

∑
k

1

αk2 + γ

=
2kBTM

2

v

∫
ddk

(2π)d
1

αk2 + γ
(1.13)

for d-dimensional systems, where the integral is taken over the 1st Brillouin

zone. α and γ are defined as

α ≡ 2S(S + 1)
∑
R

|JR|R2, (1.14)

γ ≡ |hM |. (1.15)

v denotes the volume of the unit cell.

In the case of one-dimensional systems, we find

∫
dk

2π

1

αk2 + γ
>

∫ k0

−k0

dk

2π

1

αk2 + γ
=

1

π
√
αγ

arctan

(√
α

γ
k0

)
. (1.16)
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Thus, we obtain

|M |3 < |h|ω

 πvS(S + 1)

2kBTk0 arctan
(√

ω/|Mh|
)
2

(1.17)

with ω ≡ αk2
0. We find that M becomes zero when h vanishes, which implies

the absence of the ferromagnetic or antiferromagnetic long-range order in the

one-dimensional isotropic spin system at any finite temperature.

In the case of two-dimensional systems, we find

∫
dk

2π

1

αk2 + γ
>

1

(2π)2

∫ k0

0

dk

∫ 2π

0

dθ
1

αk2 + γ

=
1

4πα
ln

(
α

γ
k2
0 + 1

)
. (1.18)

Thus, we obtain

M2 <
2πvS(S + 1)

k2
0

ω/kBT

ln (1 + ω/|Mh|)
. (1.19)

Therefore, we also find that M becomes zero when h vanishes, which implies

the absence of the ferromagnetic or antiferromagnetic long-range order in the

one-dimensional isotropic spin system at any finite temperature.

1.2.2 Spin wave theory

In this section, we review the spin wave theory for the ferromagnetic and

antiferromagnetic Heisenberg models. We use the Holstein-Primakoff trans-

formation, which rewrites the spin operators in terms of the creation and

annihilation operators of bosons. The Bose excitations correspond to the

fluctuations of the spins. At sufficiently low temperatures, the Hamiltonian

is approximately expressed as that of the free boson system because the num-
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ber of bosons is small. We derive the expressions of the dispersion relation

of the bosons, the magnetization, the internal energy, and the specific heat.

The ferromagnetic case

We briefly review the ferromagnetic case. The Hamiltonian of the ferromag-

netic Heisenberg model is

H = −J
∑
(i,j)

Si · Sj, (1.20)

where J > 0. The Holstein-Primakoff transformation is defined as

Sz
i = S − a†iai, (1.21)

S+
i =

√
2S

√
1− a†iai

2S
ai, (1.22)

S−
i =

√
2S a†i

√
1− a†iai

2S
, (1.23)

where a†i and ai are the creation and annihilation operators of bosons, re-

spectively, which satisfy the commutation relations as [ai, a
†
i′ ] = δii′ and

[a†i , a
†
i′ ] = [ai, ai′ ] = 0. The eigenvalue mi of Sz

i in Eq. (1.21) takes not

only mi = −S, −S +1, · · · , S, but also −S − 1,−S − 2, · · · , −∞ due to the

property of the number operator n̂i ≡ a†iai. We refer to the eigenstate of Sz
i

that belongs to the eigenvalue mi as |mi⟩.

At sufficiently low temperatures, the spin deviation is sufficiently small,

i.e., ⟨a†iai⟩/S ≪ 1. Thus, we expand the Holstein-Primakoff transformation
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given in Eqs. (1.22) and (1.23) with respect to a†iai and find

S+
i ≃

√
2S

(
ai −

1

4S
a†iaiai

)
, (1.24)

S−
i ≃

√
2S

(
a†i −

1

4S
a†ia

†
iai

)
, (1.25)

where a†i and ai are the creation and annihilation operators of the boson at

site i, respectively. We define

ak ≡ 1√
N

∑
i

e−ik·Riai, (1.26)

a†k ≡ 1√
N

∑
i

eik·Ria†i , (1.27)

where Ri is the position vector of site i. Thus, the inverse transformations

are

ai =
1√
N

∑
k

eik·Riak, (1.28)

a†i =
1√
N

∑
k

e−ik·Ria†k. (1.29)

Therefore, we obtain

S+
i ≃

√
2S

N

(∑
k

eik·Riak −
1

4NS

∑
kk′k′′

ei(−k+k′+k′′)·Ria†kak′ak′′

)
, (1.30)

S−
i ≃

√
2S

N

(∑
k

e−ik·Ria†k −
1

4NS

∑
kk′k′′

ei(−k−k′+k′′)·Ria†ka
†
k′ak′′

)
, (1.31)

Sz
i = S − 1

N

∑
kk′

ei(k
′−k)·Ria†kak′ . (1.32)
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From Eqs. (1.30)–(1.32), the Hamiltonian is rewritten as

H ≃
∑
k

ωkn̂k −NzJS2 (1.33)

with

ωk ≡ zJS(1− γk), (1.34)

γk ≡ 1

z

∑
ρ

eik·ρ, (1.35)

where z is the number of the nearest neighbor sites, n̂k ≡ a†kak, and ρ are

the vectors connecting the nearest neighbor sites.

At sufficiently low temperatures, the low-energy excitations play an im-

portant role in the property of the system. By using γk ≃ 1−Dk2 for small

k ≡ |k|, the dispersion relation of those excitations is approximately written

as

ωk ≃ zJSDk2 ≡ ak2, (1.36)

where D is a constant which depends on the crystal structure. Omitting the

constant term of Eq. (1.33), we obtain

H ≃
∑
k

ωkn̂k. (1.37)

Thus, in three dimensional systems, the magnetization M is expressed as

M ≡ 1

N

∑
i

⟨Sz
i ⟩ = S − ζ(3/2)

8π3/2

V

N
a−3/2 T 3/2 (1.38)

where ζ(x) is the Riemann zeta function, ζ(3/2) ≃ 2.612, and V is the volume
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of the system. The internal energy U and specific heat C are written as

U ≡ ⟨H⟩ = 3 ζ(5/2)

16π3/2
V a−3/2 T 5/2, (1.39)

C ≡ ∂U

∂T
=

15 ζ(5/2)

32π3/2
V a−3/2 T 3/2, (1.40)

where ζ(5/2) ≃ 1.342.

The antiferromagnetic case

Next, we review the antiferromagnetic case. The Hamiltonian of the antifer-

romagnetic Heisenberg model is

H = J
∑
(i,j)

Si · Sj, (1.41)

where J > 0.

We divide the lattice into sublattices A and B. Similarly to the ferro-

magnetic case, the Holstein-Primakoff transformation is defined as

Sz
l = S − a†lal, (1.42)

S+
l =

√
2S

√
1− a†lal

2S
al, (1.43)

S−
l =

√
2Sa†l

√
1− a†lal

2S
(1.44)
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for l ∈ A,

Sz
m = −S + b†mbm, (1.45)

S+
m =

√
2Sb†m

√
1− b†mbm

2S
, (1.46)

S−
m =

√
2S

√
1− b†mbm

2S
bm (1.47)

for m ∈ B, where a†l , al, b
†
m, and bm are the creation and annihilation opera-

tors of bosons, which satisfy the commutation relations of bosons, [al, a
†
l′ ] =

δll′ , [bm, b
†
m′ ] = δmm′ , and [a†l , a

†
l′ ] = [al, al′ ] = [b†m, b

†
m′ ] = [bm, bm′ ] = 0, and

the orthogonality condition [al, b
†
m] = [a†l , b

†
m] = 0.

At sufficiently low temperatures, the spin deviations are sufficiently small,

i.e., ⟨a†lal⟩/S ≪ 1, and ⟨b†mbm⟩/S ≪ 1. Thus, the Holstein-Primakoff trans-

formations given in Eqs. (1.42)–(1.47) are approximately written as

S+
l ≃

√
2S

(
al −

a†lalal
4S

)
, (1.48)

S−
l ≃

√
2S

(
a†l −

a†la
†
lal

4S

)
, (1.49)

for l ∈ A,

S+
m ≃

√
2S

(
b†m − b†mb

†
mbm
4S

)
, (1.50)

S−
m ≃

√
2S

(
bm − b†mbmbm

4S

)
, (1.51)

for m ∈ B. When only the 1st terms in Eqs. (1.48)–(1.51) are retained, we
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find

Sl · Sm ≃ −S2 + S(a†lal + a†l b
†
m + albm + b†mbm). (1.52)

We define the transformation as

ak ≡
√

2

N

∑
l

′
e−ik·Rlal, (1.53)

a†k =

√
2

N

∑
l

′
eik·Rla†l , (1.54)

bk ≡
√

2

N

∑
m

′
e−ik·Rmbl, (1.55)

b†k =

√
2

N

∑
m

′
eik·Rmb†l , (1.56)

where the sums
∑

l
′ and

∑
m

′ are taken over all sites of sublattices A and B,

respectively. Rl and Rm are the position vectors of site l in sublattice A and

site m in sublattice B, respectively. Thus, the inverse transformations are

al =

√
2

N

∑
k

′
eik·Rlak, (1.57)

a†l =

√
2

N

∑
k

′
e−ik·Rla†k, (1.58)

bm =

√
2

N

∑
k

′
eik·Rmbk, (1.59)

b†m =

√
2

N

∑
k

′
e−ik·Rmb†k, (1.60)

where the sum
∑

k
′ is taken over k in the 1st Brillouin zone in the antiferro-

16



magnetic phase. Therefore, we find

H ≃zJS
∑
k

′
(a†kak + γ−ka

†
kb

†
−k + γkakak + b−kb

†
−k)

− 1

2
NzJS(S + 1) (1.61)

with

γk ≡ 1

z

∑
ρ

eik·ρ. (1.62)

The Bogoliubov transformation is defined as αk

β†
−k

 ≡

 uk vk

vk uk

 ak

b†−k

 , (1.63)

where u2
k − v2k = 1, and uk and vk are real. αk and βk satisfy the commu-

tation relations of bosons [αk, α
†
k′ ] = [βk, β

†
k′ ] = δkk′ , [αk, αk′ ] = [α†

k, α
†
k′ ] =

[βk, βk′ ] = [β†
k, β

†
k′ ] = 0, and the orthogonality condition [αk, β

†
k′ ] = [α†

k, β
†
k′ ] =

0. To diagonalize the Hamiltonian given in Eq. (1.61), we choose uk and vk

as

uk =
1√
2

(
1√

1− γ2
k

+ 1

)1/2

, (1.64)

vk =
1√
2

(
1√

1− γ2
k

− 1

)1/2

. (1.65)

Therefore, we obtain

H ≃
∑
k

′
ωk(α

†
kαk + β†

kβk) + E0, (1.66)
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where

E0 =
∑
k

′
ωk −

1

2
NzJS(S + 1), (1.67)

ωk = zJS
√
1− γ2

k. (1.68)

At sufficiently low temperatures, using γk ≃ 1−Dk2, we find

ωk ≃ zJS
√
Dk ≡ ak. (1.69)

Thus, in the three-dimensional system, the sublattice magnetization M is

obtained as

M ≡ 2

N

∑
l

′
⟨Sz

l ⟩ = − 2

N

∑
m

′
⟨Sz

m⟩

= S − 2

N

∑
k

′ 1√
1− γ2

k

1

eβωk − 1
− 1

N

∑
k

′
(

1√
1− γ2

k

− 1

)

= S −∆S − 1

6a2
√
D

V

N
T 2 (1.70)

for l ∈ A and m ∈ B, where ∆S is the shrinkage of spin expectation value

at T = 0, which is expressed as

∆S =
1

N

∑
k

′
(

1√
1− γ2

k

− 1

)
. (1.71)

The internal energy U and the specific heat C are written as

U ≡ ⟨H⟩ = E0 +
π2

15
V a−3 T 4, (1.72)

C ≡ ∂U

∂T
=

4π2

15
V a−3 T 3. (1.73)
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1.2.3 Tyablikov approximation

In this section, we explain the Tyablikov approximation for the ferromag-

netic and antiferromagnetic Heisenberg models. This method is a decoupling

method for the Green function, in which the fluctuation effect is incorporated.

We derive the expression for the Green function by solving the equation of

motion. From the Green function, we derive the self-consistent equation for

the magnetization or the sublattice magnetization, and obtain the expres-

sion of the critical temperature. We show that the one- and two-dimensional

systems do not exhibit the long-range order at any finite transition temper-

atures. This result agrees with the Mermin–Wagner theorem.

The ferromagnetic case

We examine the ferromagnetic Heisenberg model

H = −J
∑
(i,j)

Si · Sj (1.74)

with the coupling constant J > 0 and the spin at site i, Si = (Sx
i , S

y
i , S

z
i ),

where the sum
∑

(i,j) is taken over all pairs of the nearest neighbor sites.

Let us derive the expression for the Green function. We consider the

retarded Green function

Gij(t) ≡ ⟨S+
i | S−

j ⟩, (1.75)

where S±
i ≡ Sx

i ± iSy
i , ⟨A | B⟩ ≡ −iθ(t)⟨[A(t), B]⟩, and A(t) ≡ eiHtAe−iHt.

In the equation of motion for the retarded Green function

i
∂

∂t
⟨A | B⟩ = δ(t)⟨[A,B]⟩+ iθ(t)⟨[[H,A(t)], B]⟩, (1.76)
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setting A = S+
i and B = S−

j , we obtain

i
∂

∂t
Gij(t) = 2⟨Sz

i ⟩δijδ(t) + J
∑
ρ

⟨(Sz
i+ρS

+
i − Sz

i S
+
i+ρ) | S−

j ⟩, (1.77)

where the site index i+ρ means the nearest neighbor site of the site i in the

direction of ρ. Adopting the Tyablikov approximation

⟨Sz
i+ρS

+
i | S−

j ⟩ ≃ ⟨Sz
i+ρ⟩⟨S+

i | S−
j ⟩, (1.78)

⟨Sz
i S

+
i+ρ | S−

j ⟩ ≃ ⟨Sz
i ⟩⟨S+

i+ρ | S−
j ⟩, (1.79)

we obtain

i
∂

∂t
Gij(t) = 2Mδijδ(t) + zJM

{
Gij(t)−

1

z

∑
ρ

Gi+ρ,j(t)

}
, (1.80)

where M ≡ ⟨Sz
i ⟩. To solve this equation, we define

Gk(ω) ≡
∑
Rij

e−ik·Rij

∫ ∞

−∞
dt eiωtGij(t), (1.81)

where Ri is the position vector of site i and Rij ≡ Ri − Rj. The inverse

transformation is

Gij(t) =
1

N

∑
k

eik·Rij

∫ ∞

−∞

dω

2π
e−iωtGk(ω). (1.82)

From Eqs. (1.80) and (1.82), we obtain

Gk(ω) =
2M

ω − ϵk
, (1.83)
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where

ϵk ≡ zJM(1− γk), (1.84)

γk ≡ 1

z

∑
ρ

eik·ρ. (1.85)

In the identical equation

⟨BA(t)⟩ = i

2π

∫ ∞

−∞
dω e−iωt {Gr

AB(ω)−Ga
AB(ω)}

1

eβω − 1
(1.86)

for the Green functions

Gx
AB(ω) ≡

∫ ∞

−∞
dt eiωtGx

AB(t), (1.87)

GR
AB(t) ≡ −iθ(t)⟨[A(t), B]⟩, (1.88)

GA
AB(t) ≡ iθ(−t)⟨[A(t), B]⟩, (1.89)

with x = R and A, setting A = S+
i and B = S−

j , we find

⟨S−
j S

+
i (t)⟩ =

i

2π

∫ ∞

−∞
dω e−iωt {Gij(ω + iη)−Gij(ω − iη)} 1

eβω − 1
, (1.90)

where η is the infinitesimal, i.e., η = +0. From Eq. (1.82), we obtain

⟨S−
i S

+
i ⟩ =

2M

N

∑
k

1

eβϵk − 1
. (1.91)

In the case of S = 1/2, because ⟨S2
i ⟩ = S(S + 1) = 3/4, ⟨(Sz

i )
2⟩ =

(±1/2)2 = 1/4 and S2
i −(Sz

i )
2 = Sz

i +S−
i S

+
i , we obtain ⟨S−S+⟩ = 1/2−⟨Sz

i ⟩.
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Thus, Eq. (1.91) leads to the self-consistent equation for S=1/2:

1

2M
=

1

N

∑
k

coth

(
βϵk
2

)
. (1.92)

At sufficiently low temperatures, we obtain

M ≃ 1

2
− cT

3
2 , (1.93)

using the expansion γk ≃ 1−Dk2 with a constant D for small k ≡ |k|, where

c is a constant.

The critical temperature Tc at which M vanishes is derived as

Tc =
zJ

4

(
1

N

∑
k

1

1− γk

)−1

. (1.94)

In d-dimensional systems, the summation over k can be replaced with the

integral as

1

N

∑
k

1

1− γk
=

1

N

(
L

2π

)d ∫
ddk

1

1− γk
, (1.95)

where L is the linear dimension of the system, and the integral is taken over

the 1st Brillouin zone. The integral diverges when d = 1 and 2, but does not

when d = 3:

∫
d1k

1

1− γk
> 2

∫ kmax

0

dk k−2 = ∞, (1.96)∫
d2k

1

1− γk
>

∫ 2π

0

dθ

∫ kmax

0

dk k−1 = ∞, (1.97)∫
d3k

1

1− γk
>

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ kmax

0

dk = 4πkmax, (1.98)
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where kmax is the upper limit of the region in which the approximation γk ≃

1 − Dk2 is valid. Hence, the critical temperature is zero for one- and two-

dimensional systems, which is consistent with the Mermin–Wagner theorem.

The function γk for the simple cubic (sc), body-centered cubic (bcc) and

face-centered cubic (fcc) structure are expressed as

γsc
k =

1

3
(cos kx + cos ky + cos kz) , (1.99)

γbcc
k = cos

kx

2
cos

ky

2
cos

kz

2
, (1.100)

γfcc
k =

1

3

(
cos

kx

2
cos

ky

2
+ cos

ky

2
cos

kz

2
+ cos

kz

2
cos

kx

2

)
, (1.101)

respectively, where the lattice constant is taken to be unity. When kµ is

sufficiently small, we obtain approximate expressions

γsc
k = 1− 1

6
k2, (1.102)

γbcc
k = 1− 1

8
k2, (1.103)

γfcc
k = 1− 1

12
k2. (1.104)

The antiferromagnetic case

We examine the antiferromagnetic Heisenberg model

H = J
∑
(i,j)

Si · Sj, (1.105)

where J > 0 and Si = (Sx
i , S

y
i , S

z
i ) denotes the spin at site i.

In analogy with the ferromagnetic case, we find the expression for the

Green function. To examine the antiferromagnetic order, we divide the lattice
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into two sublattices A and B. We consider the retarded Green function

GX
ij (t) ≡ ⟨S+

i∈X | S−
j∈A⟩, (1.106)

where X = A,B. From Eq. (1.76), the equations of motion for these Green

functions are

i
∂

∂t
GX

ij (t) = 2⟨Sz
i ⟩δijδXAδ(t)− J

∑
ρ

⟨(Sz
i+ρS

+
i − Sz

i S
+
i+ρ) | S−

j ⟩ (1.107)

for i ∈ X, j ∈ A. Adopting the Tyablikov approximation given in Eqs. (1.78)

and (1.79), we obtain

i
∂

∂t
GX

ij (t) =2MδijδXAδ(t)

+ (−1)XzJM

{
GX

ij (t) +
1

z

∑
ρ

GX̄
i+ρ,j(t)

}
, (1.108)

where M ≡ ⟨Sz
l∈A⟩ = −⟨Sz

m∈B⟩, which is assumed for the antiferromagnetic

order. (−1)X is defined as (−1)A ≡ +1, (−1)B ≡ −1. To solve this equation,

we define

GX
k (ω) ≡

∑
Rij

e−ik·Rij

∫ ∞

−∞
dt eiωtGX

ij (t), (1.109)

for sublattice X. The inverse transformation is

GX
ij (t) =

2

N

∑
k

′
eik·Rij

∫ ∞

−∞

dω

2π
e−iωtGX

k (ω). (1.110)
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From Eqs. (1.109) and (1.110), we obtain

GA
k (ω) = M

(
1 + gk
ω −∆k

+
1− gk
ω +∆k

)
, (1.111)

GB
k (ω) = −M

γk√
1− γ2

k

(
1

ω −∆k

− 1

ω +∆k

)
, (1.112)

where

∆k ≡ zJM
√

1− γ2
k, (1.113)

gk ≡ 1√
1− γ2

k

, (1.114)

γk ≡ 1

z

∑
ρ

eik·ρ. (1.115)

From the identical equation given in Eq. (1.86), we find

⟨S−
j∈AS

+
i∈X(t)⟩

=
i

2π

∫ ∞

−∞
dω e−iωt

{
GX

ij (ω + iη)−GX
ij (ω − iη)

} 1

eβω − 1
, (1.116)

where η is the infinitesimal, i.e., η = +0. Taking the limit t → −0 in

Eq. (1.116), we obtain

⟨S−
l′∈AS

+
l∈A⟩ =

2M

N

∑
k

{
−1 +

1√
1− γ2

k

coth

(
β∆k

2

)}
(1.117)

for X = A, i = l ∈ A, and j = l′ ∈ A, and

⟨S−
l∈AS

+
m∈B⟩ = −2M

N

∑
k

γk√
1− γ2

k

coth

(
β∆k

2

)
eik·Rml (1.118)

for X = B, i = m ∈ B, and j = l ∈ A.

In the case of S = 1/2, since ⟨S2
i ⟩ = S(S + 1) = 3/4 and ⟨(Sz

i )
2⟩ =
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(±1/2)2 = 1/4, we obtain ⟨S−S+⟩ = 1/2 − ⟨Sz
i ⟩. Equation (1.117) leads to

the self-consistent equation for S = 1/2:

1

2M
=

2

N

∑
k

1√
1− γ2

k

coth

(
β∆k

2

)
. (1.119)

At sufficiently low temperatures, we obtain

M ≃ 1

2
−∆S − cT 2, (1.120)

where c is a constant and ∆S is the shrinkage of spin expectation value at

T = 0 due to the quantum effect, which is written as

∆S =
1

2

(
1− 1

W

)
(1.121)

with

W ≡ 2

N

∑
k

1√
1− γ2

k

. (1.122)

The critical temperature Tc at which M vanishes is derived as

Tc =
zJ

4

{
1

N

∑
k

(
1

1− γk
+

1

1 + γk

)}−1

. (1.123)

From Eqs. (1.95)–(1.98), the critical temperature is zero for one- and two-

dimensional systems, which is consistent with the Mermin–Wagner theorem.
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Chapter 2

Theoretical Model for the

Insulating Phase in

λ-(BETS)2FeCl4

In this chapter, we define the coupled Heisenberg model and present the

formulation of physical quantities on the basis of the Tyablikov approxima-

tion and the mean-field approximation. In this model, the system consists of

two kinds of spins with different lengths. We call the spins with small and

large lengths the small and large spins, respectively. The spins of each kind

form two-dimensional layer, and these layers of the small and large spins are

stacked alternately. The Hamiltonian includes three kinds of the exchange

interactions: those between the small spins, those between the large spins,

and those between the small and large spins. We derive the self-consistent

equations for the sublattice magnetizations and the expression for the critical

temperature.
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The coupled Heisenberg model is

H = H1 +H2 +H12 (2.1)

with

H1 =
∑
(i,j)

∑
µ=x,y,z

Jµ
1 s

µ
i s

µ
j − h ·

∑
i

si, (2.2)

H2 =
∑
(i′,j′)

∑
µ=x,y,z

Jµ
2 S

µ
i′S

µ
j′ − h ·

∑
i′

Si, (2.3)

H12 =
∑
(i,i′)

∑
µ=x,y,z

Jµ
12s

µ
i S

µ
i′ , (2.4)

where si = (sxi , s
y
i , s

z
i ) with length s at site i of lattice L1 and Si′ = (Sx

i′ , S
y
i′ , S

z
i′)

with length S at site i′ of lattice L2. We assume that s < S. Jµ
1 , J

µ
2 and

Jµ
12 are positive coupling constants. h = (hx, hy, hz) is a magnetic field. The

sums
∑

(i,j),
∑

(i′,j′), and
∑

(i,i′) are taken over all pairs of the nearest neigh-

bor sites in L1, those in L2, and those between L1 and L2, respectively. In

the antiferromagnetic phase, we divide the lattice Lℓ into sublattices Aℓ and

Bℓ. An example structure of the model is shown in Fig. 2.1.
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A1 B1

B2 A2

J1

J2

J12

Figure 2.1: Example structure of the coupled Heisenberg model. The small
and large arrows indicate the small and large spins, respectively. The solid
lines indicate the lattices L1 and L2. This figure is presented in Ref. [41].
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Chapter 3

Analysis of the

Low-Temperature Behavior

3.1 Low temperature limit

The Schottky model is given by

H = −α
∑
i

(−1)iSz
i − h ·

∑
i

Si, (3.1)

where Si = (Sx
i , S

y
i , S

z
i ), h = (hx, hy, hz), and α is an constant. We divide

the lattice into sublattices A and B. We define notations

(−1)i ≡

 +1 for i ∈ A

−1 for i ∈ B
(3.2)

(−1)X ≡

 +1 for X = A

−1 for X = B .
(3.3)

For convenience, the sublattice magnetizations per site for sublattice X are

defined as Mµ
X ≡ ⟨Sµ

i ⟩, where i ∈ X. Expanding Mµ
X ≡ ⟨Sµ

i ⟩ with respect to
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hµ, we find Mµ
X = M

µ(0)
X +∆Mµ

X + · · · , where M
µ(0)
X and ∆Mµ

X are the 0th

and 1st order terms, respectively. Thus, the spin susceptibilities per site for

sublattice X and the total spin susceptibility per site are defined as

χµ
X ≡ lim

hµ→0

∆Mµ
X

hµ

, (3.4)

χµ ≡ 1

2
(χµ

A + χµ
B) . (3.5)

In the case of h = (0, 0, hz), the Hamiltonian given in Eq. (3.1) becomes

H = −
∑
i

{
(−1)iα + hz

}
Sz
i . (3.6)

Thus, we find

M z
X =SBS

(
β
{
(−1)iα + hz

}
S
)

=(−1)iSBS(βαS) + βS2B′
S(βαS)hz + · · · , (3.7)

where BS(x) is the Brillouin function

BS(x) ≡
2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

(
1

2S
x

)
(3.8)

and B′
S(x) ≡ ∂BS(x)/∂x. Therefore, we obtain

M
z(0)
A = −M

z(0)
B = SBS(βαS) ≡ M0, (3.9)

χz = χz
A = χz

B = βS2B′
S(βαS) ≡ χ∥. (3.10)
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In the case of h = (hx, 0, 0), the Hamiltonian given in Eq. (3.1) becomes

H =−
∑
i

{
(−1)iαSz

i + hxS
x
i

}
=−

∑
X=A,B

∑
i∈X

{
(−1)XαSz

i + hxS
x
i

}
=−

∑
X=A,B

∑
i∈X

(−1)X α̃XS
z′

i , (3.11)

where Sx′
i and Sz′

i are defined as

 Sz′
i

Sx′
i

 ≡

 cosφX sinφX

− sinφX cosφX

 Sz
i

Sx
i

 (3.12)

with

cosφX ≡ α

α̃X

, (3.13)

sinφX ≡ (−1)X
hx

α̃X

(3.14)

for i ∈ X. From Eqs. (3.11) and (3.12), we obtain

 M z
X

Mx
X

 =
1

α̃X

SBS(βα̃XS)

 (−1)Xα

hx

 . (3.15)

Expanding α̃X with respect to hx, we find α̃X = α + ∆α̃X + · · · , where α

and ∆α̃X are the 0th and 1st order terms. Thus, we find

1

α̃X

SBS(βα̃XS)

=
1

α

[
M0 +

{
βS2B′

S(βαS)−
M0

α

}
∆α̃X + · · ·

]
(3.16)
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and

∆Mx
X =

M0

α
hx. (3.17)

Therefore, we obtain

χx = χx
A = χx

B =
M0

α
. (3.18)

We also obtain χy = χx ≡ χ⊥ from the symmetry of the system. The spin

susceptibility in the direction of h is given by

χ(θ) = χ∥ cos2 θ + χ⊥ sin2 θ, (3.19)

where θ is the angle between z-axis and h.

At h = 0, the internal energy U is

U ≡ ⟨H⟩ = −NαM0. (3.20)

The specific heat C is

C ≡ ∂U

∂T
= NkB(βαS)

2B′
S(βαS), (3.21)

which is the (2S + 1)-level Schottky-type specific heat.

3.2 Mean-field theory

In this section, we apply the mean-field approximation to the coupled Heisenberg

model given in Eq. (2.1) and derive the expressions for sublattice magneti-

zation, internal energy, specific heat, entropy and spin susceptibility.
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We assume the easy axis is z-axis so that at zero magnetic field the

sublattice magnetization in sublattice A is parallel to z-axis and that in B

is antiparallel. The magnetic field is assumed to be oriented in xz plane,

i.e., h = (hx, 0, hz). Applying the mean-field approximation, we obtain the

mean-field Hamiltonian as

HMF =
∑
ℓ=1,2

∑
X=A,B

∑
k∈Xℓ

∑
µ=x,z

hX
ℓµS

ℓµ
k + (const.) (3.22)

with the effective field

hX
ℓµ = J µ

ℓ M
X̄
ℓµ + J µ

12M
X̄
ℓ̄µ − hµ, (3.23)

where Sℓµ
k is µ component (µ = x, z) of spin at site k in sublattice Xℓ,

i.e., S1µ
k = sµk and S2µ

k = Sµ
k , and MX

ℓµ is µ component of the sublattice

magnetization in sublattice Xℓ, i.e., M
X
ℓµ = ⟨Sℓµ

k ⟩ for k ∈ Xℓ. J µ
ℓ ≡ zℓJ

µ
ℓ

and J µ
12 ≡ z12J

µ
12 are defined, where zℓ and z12 are the number of nearest

neighbour sites in subsystem ℓ and between subsystems 1 and 2, respectively.

In the effective field shown in Eq. (3.23), the 1st and 2nd terms originate from

the intrasubsystem and intersubsystem interactions, respectively.

To obtain the self-consistent equations, we rotate the coordinates as Sℓz′

k

Sℓx′

k

 =

 cosφX
ℓ sinφX

ℓ

− sinφX
ℓ cosφX

ℓ

 Sℓz
k

Sℓx
k

 (3.24)

for k ∈ X. We choose φX
ℓ so that MX

ℓx′ = 0. Then, the mean-field Hamilto-

nian given in Eq. (3.22) is transformed into

HMF =
∑
ℓ=1,2

∑
X=A,B

∑
k∈Xℓ

hX
ℓ S

ℓz′

k + (const.) (3.25)
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with hX
ℓ =

√
(hX

ℓx)
2 + (hX

ℓz)
2. From this Hamiltonian, we derive the self-

consistent equations

MX
ℓz′ = −SℓBSℓ

(βhX
ℓ Sℓ). (3.26)

Using the rotation shown in Eq. (3.24) again, we obtain the self-consistent

equations in the original coordinate as

MX
ℓµ = −

hX
ℓµ

hX
ℓ

SℓBSℓ
(βhX

ℓ Sℓ). (3.27)

Next, we examine the case of h = 0. For the preparation, we expand

MX
ℓµ, h

X
ℓµ and hX

ℓ in powers of hµ as

MX
ℓµ = M

X(0)
ℓµ +∆MX

ℓµ + · · · , (3.28)

hX
ℓµ = h

X(0)
ℓµ +∆hX

ℓµ + · · · , (3.29)

hX
ℓ = h

X(0)
ℓ +∆hX

ℓ + · · · , (3.30)

where ∆MX
ℓµ, ∆hX

ℓµ and ∆hX
ℓ are the 1st order terms. From Eq. (3.23), we

find

h
X(0)
ℓµ = J µ

ℓ M
X̄(0)
ℓµ + J µ

12M
X̄(0)

ℓ̄µ
, (3.31)

∆hX
ℓµ = J µ

ℓ ∆M X̄
ℓµ + J µ

12∆M X̄
ℓ̄µ − hµ. (3.32)

The spontaneous sublattice magnetizationM
X(0)
ℓµ in the antiferromagnetic

phase are derived from the 0th order terms in the self-consistent equations
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(3.27)

M
X(0)
ℓµ = −

h
X(0)
ℓµ

h
X(0)
ℓ

SℓBSℓ
(βh

X(0)
ℓ Sℓ). (3.33)

From the symmetry of the system, we find

M
A(0)
ℓz = −M

B(0)
ℓz ≡ Mℓ0 > 0, (3.34)

h
B(0)
ℓz = −h

A(0)
ℓz = JℓMℓ0 + J12Mℓ̄0 ≡ hℓ0 > 0 (3.35)

and M
X(0)
ℓx = 0, h

X(0)
ℓx = 0, h

X(0)
ℓ =

√
(h

X(0)
ℓx )2 + (h

X(0)
ℓz )2 = hℓ0. Therefore,

we obtain the self-consistent equations of the sublattice magnetization Mℓ0

as

Mℓ0 = SℓBSℓ
(βhℓ0Sℓ). (3.36)

In the paramagnetic phase, we obtain M
X(0)
ℓµ = 0 as expected.

The critical temperature Tc at which Mℓ0 vanishes in Eq. (3.36) is ob-

tained as

Tc =
1

2

(Tc1 + Tc2) +

√
(Tc1 − Tc2)2 + 4Tc1Tc2

J 2
12

J1J2

 (3.37)

with the critical temperatures of the independent subsystems Tcℓ = JℓSℓ(Sℓ+

1)/3. When J12 is zero, the critical temperature is reduced to higher one of

critical temperatures of the subsystems, i.e., Tc = Tcℓ when Tcℓ > Tcℓ̄.

The internal energy U = ⟨H⟩ is obtained as

U

N
= −1

2
J1(M10)

2 − 1

2
J2(M20)

2 − J12M10M20 (3.38)
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because ⟨Sℓµ
k Sℓµ

l ⟩ ≃ ⟨Sℓµ
k ⟩⟨Sℓµ

l ⟩ in the mean-field theory. The specific heat

C ≡ ∂E/∂T is obtained as

C

N
=− J1M10

∂M10

∂T
− J2M20

∂M20

∂T

− J12

(
M10

∂M20

∂T
+

∂M10

∂T
M20

)
. (3.39)

The entropy is given by

S =

∫ T

0

C

T
dT. (3.40)

The spin susceptibilities in the antiferromagnetic phase are derived from

the 1st order terms in the self-consistent equations given in Eq. (3.27)

hℓ0∆MX
ℓµ +Mℓ0∆hX

ℓµ

+
{
M

X(0)
ℓµ + βh

X(0)
ℓµ (Sℓ)

2B′
Sℓ
(βhℓ0Sℓ)

}
∆hX

ℓ = 0. (3.41)

In the case of h = (0, 0, hz), using ∆hX
ℓ = sgn(h

X(0)
ℓ )∆hX

ℓz, Eq. (3.41) reduces

to

{
β(Sℓ)

2B′
Sℓ
(βhℓ0Sℓ)

}−1
∆MX

ℓz + Jℓ∆M X̄
ℓz + J12∆M X̄

ℓ̄z = hz. (3.42)

In the case of h = (hx, 0, 0), Eq. (3.41) reduces to

hℓ0

Mℓ0

∆MX
ℓx + J ′

ℓ∆M X̄
ℓx + J ′

12∆M X̄
ℓ̄x = hx. (3.43)

On the other hand, the spin susceptibilities in the paramagnetic phase are
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derived from the 1st order terms

T

Tcℓ

Jℓ∆MX
ℓµ + J µ

ℓ ∆M X̄
ℓµ + J µ

12∆M X̄
ℓ̄µ = hµ (3.44)

because M
X(0)
ℓµ = 0, h

X(0)
ℓµ = 0 and h

X(0)
ℓ = 0. Solving Eqs.(3.42)–(3.44), we

obtain the spin susceptibilities as

χµ
ℓ ≡ lim

hµ→0

∆M ℓµ

hµ

= χµ
ℓ0

1− J µ
12χ

µ

ℓ̄0

1− (J µ
12)

2χµ
10χ

µ
20

, (3.45)

using ∆Mℓµ = (∆MA
ℓµ +∆MB

ℓµ)/2, where χµ
ℓ0 is defined as

χz
ℓ0 =

1

β(Sℓ)2B′
Sℓ
(βhℓ0Sℓ) + Jℓ

, (3.46)

χx
ℓ0 =

1

Jℓ + J ′
ℓ + J12(Mℓ̄0/Mℓ0)

(3.47)

in the antiferromagnetic phase and

χµ
ℓ0 =

Sℓ(Sℓ + 1)/3

T + (J µ
ℓ /Jℓ)Tcℓ

(3.48)

in the paramagnetic phase.

3.3 Results

3.3.1 Some typical cases

We study the thermodynamic and magnetic properties of the coupled Heisenberg

model on the basis of the mean-field approximation. Figure 3.1 shows the

temperature dependence of the sublattice magnetizationsM1 andM2 and the

specific heat C. For J12 = 0, the sublattice magnetization and specific heat

are the summations of those of two simple Heisenberg models with different
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spin lengths. In this case, two phase transitions of subsystems occur suc-

ceedingly. Two sublattice magnetizations vanish at different temperatures,

and the specific heat has the two cusps. The specific heat of subsystem ℓ is

given by

Cℓ

NkB
= −JℓMℓ0

∂Mℓ0

∂T
. (3.49)

For J12 ̸= 0, only one phase-transition occurs at Tc of Eq. (3.37): M2 becomes

finite even above Tc2 because of non-zero M1, and in the specific heat the

cusp at lower temperature broaden as J12 increases, as shown in Fig. 3.1.

3.3.2 Reproduction of experimental results

We reanalyze the specific heat and spin susceptibility in λ-(BETS)2FeCl4 on

the basis of the mean-field model. For the specific heat, we assume three

models in low, intermediate, and high temperature regions and estimate the

model parameters J1, J2, and J12 using the least-squares method, where we

calculate the root-mean-square-residual (RMSR) σ. For the spin susceptibil-

ity, we examine the four limiting cases with respect to the anisotropies of J µ
2

and J µ
12. We estimate the angle θ between z-axis and c-axis, and examine

the origin of the magnetic anisotropy.

The specific heat

We define the RMSR σ for the specific heat as

σ(Tul) ≡

[
Nul∑
i=1

∆Ti

Tul

(
Cth(Ti)

NkB
− Cexp(Ti)

NkB

)2
]1/2

(3.50)
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Figure 3.1: Temperature dependence of the sublattice magnetizations M1

and M2 and the specific heat C for J1 = 1. The dotted curves indicate the
results of J12 = 0. Cℓ is the specific heat of the subsystem ℓ of Eq. (3.49).
This figure is presented in Ref. [41].
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for a temperature region [0, Tul], where ∆Ti is the temperature interval de-

fined as

∆Ti ≡



T2

2
for i = 1

Ti+1 − Ti−1

2
for 1 < i < Nul

TNul
− TNul−1

2
for i = Nul ,

(3.51)

with Tul = TNul
. Here, Ti is the temperature of the data point i, and Nul

is the number of the data points in a temperature region [0, Tul]. Cth(Ti)

and Cexp(Ti) are the theoretical and experimental values of the specific heat

in units of NkB at the temperature Ti, respectively. From Eq. (3.51), it is

verified that

Tul =

Nul∑
i=1

∆Ti . (3.52)

In Eq. (3.51), ∆Ti is not constant because the distribution of the experimental

data point is not uniform. If ∆Ti is constant as ∆Ti = Tul/Nul, Eq. (3.50)

reduces to the usual RMSR. We refer to the minimum σ given by optimum

model parameter as σmin.

We reanalyze the specific-heat data by Akiba et al. [17]. We start from

the data near T = 0, where the shrinkage of the sublattice magnetizations

are sufficiently small, i.e., Mℓ0 ≈ Sℓ. Thus, we obtain the Schottky model

H ≃ HSch
MF ≡ −

∑
X=A,B

∑
i∈X2

(−1)X∆dS
z
i , (3.53)

where ∆d ≡ J2S2+J12S1 is a constant exchange field. According to Eq. (3.21),
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Figure 3.2: Minimum RMSR σmin and optimum parameter ∆opt
d for HSch

MF .
The horizontal and vertical dotted lines indicate 5.61K and 2K, respectively.
This figure in presented in Ref. [41].

the specific heat C is

C ≃ NkB(β∆dS)
2B′

S(β∆dS), (3.54)

which is the six-level Schottky-type specific heat. Regarding ∆d as a fitting

parameter, we obtain σmin and the optimum ∆d for each Tul, which are shown

in Fig. 3.2. Below 2.2K, σmin is so small that HSch
MF can be regarded as an

effective model. However, below 1.8K, ∆opt
d varies significantly because the

number of the data points is small. Near 2K, ∆opt
d is saturated, and thus we

regard this saturated value of ∆opt
d as the true value. Therefore, we obtain

∆d ≈ 5.61K. (3.55)

In Fig. 3.2, above 2.5K, σmin increases and ∆opt
d decreases, which implies

that the shrinkage of M20 is not small. Thus, above 2.5K the Schottky

model is invalid. Taking into account only the shrinkage of the large spins,
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the effective Hamiltonian is

H ≃ H ′
MF ≡ −

∑
X=A,B

∑
i∈X2

(−1)Xα′
2S

z
i (3.56)

with α′
1 ≡ J1S1 + J12M20 and α′

2 ≡ J2M20 + J12S1. Thus, M10 ≈ S1, and

M20 is obtained by the self-consistent equation

M20 = S2BS2(βα
′
2S2). (3.57)

Equation (3.57) coincides with Eq. (3.36) in the limit of J1/kBT → ∞.

According to Eq. (3.39), the specific heat C is

C

NkB
≃ −J2M20

∂M20

∂T
− J12S1

∂M20

∂T
. (3.58)

Regarding J2 and J12 as fitting parameters, we obtain σmin under the con-

dition given in Eq. (3.55). As shown in Fig. 3.3, below 6K, σmin is so small

that H ′
MF can be regarded as an effective model. The σmin of HSch

MF is smaller

than that of H ′
MF, which implies that the approximation is improved signif-

icantly. Below 3K, J opt
12 varies largely because the shrinkage of M20 is too

small for J opt
12 to be determined. We find the saturated part of J opt

12 for

3.5K ≲ Tul ≲ 6K and adopt it as the true value. Therefore, we obtain

J12 ≈ 9.3K,

J2 ≈ 0.384K. (3.59)

In Fig. 3.3, above 6K, since σmin is not so small, H ′
MF is not justified.

Taking into account not only the shrinkage of M20 but also M10, we calculate

σmin and the optimum J1 for the mean-field model HMF under the condition
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Figure 3.3: Minimum RMSR σmin and optimum parameter J opt
12 for H ′

MF.
The horizontal dotted lines indicate J opt

12 = 9.3K. This figure is presented
in Ref. [41].

given in Eq. (3.59). M10 and M20 are obtained from the self-consistent equa-

tions given in Eq. (3.36). As shown in Fig. 3.4, below 6K, σmin of H ′
MF and

that of HMF almost coincide. σmin of HMF is small below 6.8K, increases sig-

nificantly above 6.8 K, and becomes large above 7.4K. J opt
1 is not saturated

because HMF ignores the fluctuation near Tc = 8.3K. The rate of decrease of

J opt
1 decreases below 6.5K and increases above 7.4K, which implies that the

critical fluctuation increases before the saturation. Therefore, probably, the

value of J opt
1 for 6.5K ≲ Tul ≲ 7.4K is the true value, and thus we obtain

60K ≲ J1 ≲ 80K. (3.60)

Above 7.4K, both σmin and the rate of decrease of J opt
1 increase. Therefore,

the mean-field theory completely breaks down. Figure 3.5 shows the J1

dependence of RMSR σ. Below 60K, σmin increases rapidly as J1 decreases,

which implies that J1 ≳ 60K.
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Figure 3.5: J1 dependence of RMSR σ for HMF. J2 = 0.384K and J12 =
9.3K are fixed. The solid, dashed, and dotted curves are the results for
Tul = 6.5, 6, and 7K, respectively. This figure is presented in Ref. [41].
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Figure 3.6: Temperature dependence of the specific heat. The circles are
the experimental data in λ-(BETS)2FeCl4 by Akiba et al. [17]. The solid,
dashed, and dotted curves are the theoretical result of J1 = 80, 70, and 60K,
respectively. J2 = 0.384K and J12 = 9.3K are fixed. The thin dot-dashed
curve is the result of the Schottky model with ∆d = 5.61K. The thin dotted
vertical line indicates Tc ≈ 8.3K. This figure is presented in Ref. [41].

Figure 3.6 shows the comparison between the theoretical curves and the

experimental data. The curves of J1 = 70 and 80K give good agreement

below 6K, that of J1 = 60K gives the best below 7K. Compared with

the curve of Schottky model, the mean-field model improves the results sig-

nificantly because the temperature dependences of the exchange fields are

taken into account. The Schottky model does not reproduce the height of

the peak because the parameter ∆d affects the only horizontal scale but not

the vertical scale.

In Eq. (3.60), we improve the lower limit of J1 from Fig. 3.6. The theoret-

ical curve should be smaller than the experimental data because the specific

heat is proportional to the fluctuation of the energy, and the mean-field model

ignores the fluctuation. Therefore, if the experimental error ∆C is smaller
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than 0.02NkB, the curve of J1 = 60K is inadequate. Thus, J1 ≳ 70K is

obtained. Similarly, if ∆C is smaller than 0.01NkB, J1 ≳ 80K is estimated.

The spin susceptibility

We investigate the spin susceptibility of λ-(BETS)2FeCl4 using the experi-

mental data by Akiba et al. [18]. We find the values of the coupling constants

J x
2 and J x

12, and the angle θ between the easy axis and c-axis. We define the

RMSR

σχ(r2, r12) ≡

[
1

Nul

Nul∑
i=1

(
χth
mag(r2, r12, θ, Ti)− Cχ χexp

mag(Ti)
)2 ]1/2

, (3.61)

where r2 ≡ J x
2 /J2, r12 ≡ J x

12/J12, and Cχ is a constant multiplier due to the

experimental technique. Here, the weight 1/Nul is constant unlike ∆Ti/Tul in

the RMSR for the specific heat given in Eq. (3.50) because the distribution of

the data points is almost uniform, and the absence of the data points below

2K gives the too large weight ∆Ti/Tul of the leftmost point.

We examine the four cases of (r2, r12) = (0, 0), (1, 0), (0, 1) and (1, 1),

where r2 and r12 are equal to 0 and 1 correspond to anisotropic and isotropic

limits, respectively. For θ ≈ 30◦ given by the magnetic torque experiments

[11,36], (r2, r12) = (1, 0) minimizes σχ. For (r2, r12) = (1, 0), the best parame-

ters are θ ≈ 26.6◦ and Cχ ≈ 1.22, which gives σχ ≈ 4.1×10−4K−1. Similarly,

(r2, r12) = (0, 0), (0, 1) and (1, 1) give the best parameters θ = 24.6◦, 22.9◦,

and 25.3◦, respectively. Figure 3.7 shows the theoretical results and exper-

imental data. The curve of (r2, r12) = (1, 0) and θ = 26.6◦ agrees with the

experimental data. For θ = 27◦, we obtain J µ
12 is anisotropic, and J µ

2 is

isotropic. Therefore, the origin of the magnetic anisotropy is J µ
12 rather than

J µ
2 .
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Table 3.1: The values of RMSR σχ(r2, r12). J1 = 70K, J2 = 0.384K, and
J12 = 9.30K are adopted from the result of the specific-heat. This table is
presented in Ref. [41].

θ 32◦ 31◦ 30◦ 27◦ 26◦

σχ(0, 0) 12.5 10.7 8.9 3.8 2.2
σχ(1, 0) 8.1 6.5 5.0 0.68 0.94
σχ(0, 1) 17.1 15.0 13.0 7.2 5.3
σχ(1, 1) 10.9 9.1 7.5 2.6 1.1

3.4 Summary of the chapter

In this chapter, we examined the antiferromagnetic coupled Heisenberg model

on the basis of the mean-field approximation. We derived the self-consistent

equations for the sublattice magnetizations and the expression of the spin

susceptibility. We reanalyzed the temperature dependence of the specific heat

and spin susceptibility in λ-(BETS)2FeCl4 using the least-squares method.

For h = 0, we examined three effective models for high, intermediate,

and low temperature regions. As a result, we obtained the parameters ∆d ≈

5.6K, J12 ≈ 9.3K, J2 ≈ 0.4K, and J1 ≳ 60K. If the error of the experiment

is sufficiently small, we can narrow down the condition of J1 as J1 ≳ 80K.

The approximations M2 ≈ S2 and M1 ≈ S1 are appropriate below 2K and

6K, which correspond the energy scales ∆d/3 ≈ 2K and Tc1/3 ≈ 5K - 6K,

respectively. Therefore, only 3d spins fluctuate significantly for 2K ≲ T ≲
6K.

We shall compare the present result with the estimations by other meth-

ods. The relation J1 ≫ J12 ≫ J2 is consistent with the result of Hückel

method by Mori and Katsuhara [12]. However, with respect to the magni-

tudes of the coupling constants, the present estimates do not agree with those

of the previous theories: J1 = 448K, J12 = 14.62K, J2 = 0.64K by Mori

and Katsuhara, J12 ∼ 25K by Hotta and Fukuyama [38], and J2 = 55K,
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J12 = 88K by Brossard et al. [7]. These differences are probably because the

present coupling constants are effective parameters in the simplified model

that are different from more microscopic values. Furthermore, the estima-

tion based on the microscopic theory is difficult. For example, up to the

2nd-order perturbation with respect to hopping integrals, the perturbation

theory is not accurate.

λ-(BETS)2FeCl4 has also been studied as a magnetic-field-induced super-

conductor, which shows the maximum transition temperature Bcent ≈ 33T

[9,24]. According to the Jaccarino–Peter compensation effect [27], this mag-

netic flux density is compensated by the exchange field. This consideration

and the value of Bcent are supported by the NMR measurement [42] and

Shubnikov–de Hass oscillations [10, 39]. In this mechanism, we obtain that

J12S2/2 = µeBcent, where µe is the electron magnetic moment. Thus, we find

that J12 ≈ 17.8K and ∆d > J12S1 ≈ 8.9K, where the g-factor is assumed to

be 2. The value of ∆d disagree with the present result of the Schottky model.

Therefore, the effective coupling constant in the localized spin model can be

used only in the antiferromagnetic insulator phase but not in the high-field

metallic phase.

For h ̸= 0, we reanalyzed the spin susceptibility of λ-(BETS)2FeCl4.

It was found that the magnetic anisotropy originates from J µ
12 rather than

J µ
2 for θ ≈ 30◦ based on the magnetic torque experiment [36]. The spin

susceptibility is reproduced better for θ ≈ 26 – 27◦ than for θ ≈ 30◦.

In conclusion, the mean-field model reproduces the specific heat and spin

susceptibility in λ-(BETS)2FeCl4 below 6 – 6.8K. We obtain J1 ≫ J12 ≫

J2. Hence, the present model gives a specific heat similar to Schottky-type

specific heat. In the mean-field model, the resultant specific heat is not accu-

rate above 6.8K. In particular, the model becomes completely inappropriate
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above 7.4K because the mean-field approximation and/or localized spin pic-

ture breaks down. The detailed study of the phase transition beyond the

localized spin picture is left for the future.
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Chapter 4

Phase Transition

—Stabilization Mechanism of

Antiferromagnetic Order—

4.1 Extension of the Tyablikov approxima-

tion

In this section, we apply the Tyablikov approximation to the coupled Heisenberg

model given in Eq. (2.1), assuming that the exchange interactions between

the small spins are isotropic, i.e., Jx
1 = Jy

1 = Jz
1 ≡ J1, and that the others

are anisotropic. We derive the self-consistent equations for the sublattice

magnetizations and the expression of the critical temperature.

Assuming that the fluctuation of the large spins is sufficiently small, we

apply the mean-field approximation to the large spins. Thus, the Hamilto-
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nian is approximately expressed as

H ≃ H̃1 + H̃2 (4.1)

with

H̃1 = H1 −
∑
i

(−1)iα10δ1s
z
i , (4.2)

H̃2 = −
∑
i′

(−1)i
′
α2S

z
i′ , (4.3)

where the exchange fields α1 and α2 are

α1 = z1J1m+ z12J12M, (4.4)

α2 = z2J2M + z12J12m, (4.5)

which are expressed as αℓ = αℓ0(1+δℓ) with α10 = z1J1m, α20 = z2J2M , δ1 =

z12J12M/z1J1m, and δ2 = z12J12m/z2J2M . The sublattice magnetizations

are defined by m ≡ ⟨szl∈A⟩ = −⟨szm∈B⟩ and M ≡ ⟨Sz
l′∈A⟩ = −⟨Sz

m′∈B⟩. We

define the notations

(−1)k ≡

 +1 for k ∈ Aℓ

−1 for k ∈ Bℓ

(4.6)

(−1)X ≡

 +1 for X = A

−1 for X = B .
(4.7)

From Eqs. (4.1)–(4.3), we obtain the self-consistent equation

M = SBS(βα2S). (4.8)
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We define the Green function as

DXA
ij (τ) ≡ −⟨Tτ [s

+
i (τ)s

−
j ]⟩, (4.9)

where Â(τ) ≡ eτHÂe−τH , and Tτ [Â(τ)B̂] ≡ Â(τ)B̂ θ(τ)+ B̂Â(τ) θ(−τ). The

Green function satisfies the equations of motion

− ∂

∂τ
DXA

ij (τ) = (−1)i2mδijδ(τ) + ⟨Tτ [[H, s+i (τ)]s
−
j ]⟩. (4.10)

From Eqs. (4.1)–(4.3), we find

⟨Tτ [[H, s+i (τ)]s
−
j ]⟩

= J1
∑
ρ

⟨Tτ [(s
z
i+ρs

+
i − s+i+ρs

z
i )τ s

−
j ]⟩+ (−1)iα10δ1D

XA
ij (τ). (4.11)

By adopting the Tyablikov approximation

⟨Tτ [(s
z
i+ρs

+
i )τ s

−
j ]⟩ ≃ ⟨szi+ρ⟩⟨Tτ [s

+
i (τ)s

−
j ]⟩, (4.12)

⟨Tτ [(s
+
i+ρs

z
i )τ s

−
j ]⟩ ≃ ⟨szi ⟩⟨Tτ [s

+
i+ρ(τ)s

−
j ]⟩, (4.13)

we rewrite Eq. (4.10) as

− (−1)i
∂

∂τ
DXA

ij (τ)

= 2mδijδ(τ) + α1D
XA
ij (τ) + α10

1

z1

∑
ρ

DX̄A
i+ρ,j(τ). (4.14)

We define the transformation

DX(q, iνm) ≡
∫ β

0

dτ eiνmτ
∑
i∈X1

′
e−iq·RijDXA

ij (τ), (4.15)
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where νm ≡ 2mπT is the Matsubara frequency with m = 0,±1,±2, · · · .

From

∫ β

0

dτ ei(νm−νm′ )τ = βδmm′ , (4.16)∑
νm

eiνm(τ−τ ′) = 2πδ(τ − τ ′), (4.17)

∑
i∈X1

′
ei(q−q′)·Ri =

N

2
δqq′ , (4.18)

∑
q

′
eiq·(Ri−Rj) =

N

2
δii′ , (4.19)

the inverse transformation is

DXA
ij (τ) =

1

2π

∑
νm

e−iνmτ 2

N

∑
q

′
eiq·RijDX(q, iνm). (4.20)

Therefore, we obtain

(−1)X iνmD
X(q, iνm)

= 2mδXA + α1D
X(q, iνm) + α10γqD

X̄(q, iνm), (4.21)

where

γq ≡ 1

z1

∑
ρ

eiq·ρ. (4.22)

By solving Eq. (4.21), we find

DA(q, iνm) =
−2m(iνm + α1)

ν2
m + ω2

q

, (4.23)

DB(q, iνm) =
2mα10γq
ν2
m + ω2

q

, (4.24)
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where ωq ≡ α10

√
(1 + δ1)2 − γ2

q.

Note the identical equation

⟨s−j∈As
+
i∈X(t)⟩ =

i

2π

2

N

∑
q

′
eiq·Rij

∫ ∞

−∞
dω e−iωt

{DX(q, ω + iη)−DX(q, ω − iη)} 1

eβω − 1
, (4.25)

where η is the infinitesimal, i.e., η = +0. We find

DA(q, ω + iη)−DA(q, ω − iη)

= (−2πi)m{(α1/ωq + 1)δ(ω − ωq)− (α1/ωq − 1)δ(ω + ωq)}, (4.26)

DB(q, ω + iη)−DB(q, ω − iη)

= −(−2πi)
mα10γq

ωq

{δ(ω − ωq)− δ(ω + ωq)}, (4.27)

because

lim
η→+0

(
1

x+ iη
− 1

x− iη

)
= −2πiδ(x). (4.28)

Thus, we obtain

⟨s−j∈As
+
i∈A(t)⟩

= m
2

N

∑
q

′
eiq·Rij

{
(α1/ωq + 1)e−iωqt

eβωq − 1
− (α1/ωq − 1)eiωqt

e−βωq − 1

}
, (4.29)

⟨s−j∈As
+
i∈B(t)⟩ = −mα10

2

N

∑
q

′
eiq·Rij

γq
ωq

(
eiωqt

eβωq − 1
− e−iωqt

e−βωq − 1

)
. (4.30)
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When i = j = l ∈ A and t = 0, Eq. (4.29) becomes

⟨s−l∈As
+
l∈A⟩ = m

2

N

∑
q

′
{
α1

ωq

coth

(
βωq

2

)
− 1

}
. (4.31)

When i = l ∈ A, j = m ∈ B and t = 0, Eq. (4.30) becomes

⟨s−l∈As
+
m∈B⟩ = −mα10

2

N

∑
q

′ γq
ωq

coth

(
βωq

2

)
eiq·Rml . (4.32)

By using Eq. (4.31) and the relation ⟨s−l∈As
+
l∈A⟩ = 1/2 −m for s = 1/2, we

obtain the self-consistent equation is

1

2m
=

2

N

∑
q

′ 1 + δ1√
(1 + δ1)2 − γ2

q

coth

(
z1J1m

2T

√
(1 + δ1)2 − γ2

q

)
. (4.33)

The critical temperature at which m and M vanish is obtained as

Tc =
1 + δ1c
fn(δ1c)

TMF
1c , (4.34)

where

fn(δ1) ≡
2

N

∑
q

′ 1

1− {γq/(1 + δ1)}2
, (4.35)

δ1c ≡ lim
T→Tc

δ1 = lim
T→Tc

z12J12M

z1J1m
=

(z12J12)
2

z1J1z2J2

TMF
c2

Tc − TMF
c2

. (4.36)

TMF
cℓ is the critical temperature of subsystem ℓ in the mean-field approxima-

tion, which is expressed as

TMF
cℓ ≡ zℓJℓSℓ(Sℓ + 1)

3
. (4.37)
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Figure 4.1: J2 dependence of the critical temperature Tc. J12 = J1/10 is
fixed. The solid, dashed, and short-dashed curves indicate Tc, Tc2MF, and
T

(FM)
c2MF, respectively, where Tc2MF and T

(FM)
c2MF are the transition temperatures

in subsystem 2 based on the mean-field approximation for J2 > 0 and J2 < 0,
respectively. This figure is presented in Ref. [37].

In particular, TMF
c1 = z1J1/4 for s = 1/2. In Eq. (4.36), we have used

lim
T→Tc

M

m
=

z12J12
z2J2

TMF
c2

Tc − TMF
c2

, (4.38)

which is obtained from the self-consistent equation shown in Eq. (4.8).

4.2 Results

We calculate the sublattice magnetizations m and M and the critical tem-

perature Tc from the self-consistent equations of Eqs. (4.8) and (4.33).

Figure 4.1 shows J2 dependence of the critical temperature Tc, where

J12 = J1/10 is fixed. We find that Tc takes the value near Tc1MF = J1/4

even when J2 is ferromagnetic, i.e., J2 ≤ 0.
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Figure 4.2: J12 dependence of the critical temperature Tc for J2/J1 = 0,
±0.02, and ±0.05. This figure is presented in Ref. [37].

Figure 4.2 shows J12 dependence of the critical temperature Tc. We find

the rapid increase of Tc near J12 = 0 as J12 increases. At J12 = 0, we find

that Tc = Tc2MF for J2 > 0, because the independent subsystem 1 does not

exhibit the phase transition at any finite temperature, in accordance with

Mermin–Wagner theorem, and the critical temperature of the independent

subsystem 2 is Tc2MF.

Figure 4.3 shows J1 dependence of the critical temperature Tc. When

we compare the results of J2 = 0 and 0.3K for J12 = 5K, we find that the

difference of Tc is very small. Hence, for simplicity, we examine the critical

temperature for J2 = 0. Since from the estimation of the overlap integrals

by Mori et al. [12], J12 ≈ J1/10, we obtain J1 = 40K and J12 = 4K, which

give the experimental critical temperature Tc ≈ 8.3K.

For J1 = 0, the present theory is reduced to the mean-field theory because

only the terms of J1 take into account the fluctuation by Tyablikov approxi-

mation. In Fig. 4.3, the solid lines indicate the finite value Tc =
√
105 J12/12
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Figure 4.3: J1 dependence of the critical temperature Tc. J2 = 0 is fixed
except for the dashed line. The solid curves are the result for J12 = 3, 4,
and 5K. The short-dashed curves are the result for J12/J1 = 1/5, 1/10,
and 1/20. The dashed curve is the result for J12 = 5K and J2 = 0.3K
The thin dotted line is the experimental values of the critical temperature in
λ-(BETS)2FeCl4, Tc ≈ 8.3K. This figure is presented in Ref. [37].
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at J1 = 0. The error of the mean-field theory is large for z12 = 1 and

z1J1, z2J2 ≪ J12. In this limit of z12 = 1 and J1 = J2 = 0, the system is

just an aggregation of a number of uncoupled two-spin systems, which does

not exhibit the antiferromagnetic order at any finite temperature. This dis-

crepancy is due to the fact that the mean-field approximation ignores the

fluctuation due to the small number of degrees of freedom. However, the

present theory is applicable to λ-(BETS)2FeCl4, since J1 ≫ J12 in this com-

pound.

We calculate the sublattice magnetizations m and M . According to

Mermin–Wagner theorem, in the isotropic Heisenberg model, the sublattice

magnetizations are not finite at any finite temperature. Thus, in this model

m = M = 0 when J2 = J12 = 0 even for large J1. The present theory

reproduces this behavior.

The results for J12 ̸= 0 are obtained by numerical calculations. Figure 4.4

shows the temperature dependence of the sublattice magnetizations, where

J2 ̸= 0 is fixed. The behavior of M is not similar to that of the simple

Heisenberg model. For J12 = J1/100, M is less than 1/5 at T above 0.5×Tc,

increases rapidly as T decreases below 0.25 × Tc, and reaches S = 5/2 at

T = 0, where Tc ≈ J1/10 is approximately equal to 0.4 × Tc1MF. The

temperature dependence of m is different from that of M and similar to that

of the simple Heisenberg model.

Figure 4.5 shows the temperature dependence of the sublattice magne-

tizations, where J2 is small so that |J2/J1| ≲ 1/100, and J12/J1 = 1/100

is fixed. For J2 ≥ 0, M increases rapidly near Tc2MF as the temperature

decreases, and reaches S = 5/2 at T = 0. For J2 < 0, M does not saturate

to S = 5/2 even at T = 0 with the same magnitude of Tc. Thus, even for

small finite J12, the system exhibits antiferromagnetic order.
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Figure 4.4: Temperature dependence of the sublattice magnetizations m and
M for J2 = 0. The red, black, and blue curves are the results of J2/J1 = 0.01,
0.05, and 0.1, respectively. The thin and thick curves indicate m and M ,
respectively. This figure is presented in Ref. [37].

4.3 Summary of the chapter

In this chapter, we examined the coupled Heisenberg model, where we as-

sumed the isotropic and anisotropic exchange interactions between π spins

and between 3d spins, respectively. To take into account the fluctuation of π

spins, we applied Tyablikov approximation to π spins, whereas we adopted

the mean-field approximation for 3d spins. It was found that the antiferro-

magnetic long-range order is stabilized by even weak interactions between

the subsystems, regardless of the existence of interactions between 3d spins.

The stabilization mechanism is explained as follows: Solely in the π-spin

subsystem, the long-range order is not stabilized because of the low dimen-

sionality. Through the exchange fields, the short-range order of the π spins

induces that of the 3d spins. Since the 3d spins are large and anisotropic,
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for J12 = 0. For J12 = 0, m = 0 at any T in accordance with the Mermin–
Wagner theorem. This figure is presented in Ref. [37].
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they create the anisotropic exchange field on the π spins. Hence, the fluc-

tuations of the π spins are suppressed, resulting in the long-range order at

finite temperatures.

This mechanism becomes efficient because of the marginality of the π-

spin system with respect to the phase transition. The long-range order of

two-dimensional system is marginally suppressed by the fluctuation. Be-

low the temperatures on the order of J1, the correlation length of π-spins

increases, which results in large block spins. Hence, even small J12 signif-

icantly suppresses the fluctuation and stabilizes the long-range order. For

instance, J12 ≈ 0.01 × J1 gives Tc on the order of 0.1 × J1, which is com-

parable with Tc1MF = 0.25× J1. Even extremely small J12 gives sufficiently

large Tc that can be observed experimentally. For example, J2 ∼ 1× 10−13J1

gives Tc ∼ 0.05× J1.

For J12 = 0.1 × J1, we obtain Tc ≈ 0.2 × J1, which is comparable with

Tc1MF. The experimental result Tc = 8.3K is reproduced by the parameters

J1 ∼ 40K, J12 ∼ 4K, and J2 ∼ 0.3K for the square lattice, which give J1 ∼

10K and J2 ∼ 0.08K. For the triangular lattice, because of the frustration,

J1 and J2 need to be larger than these values, which is more similar to the

real material. However, the present order estimation is consistent with the

results of the low-temperature specific heat obtained in Chap. 3.

We adopt the localized spin model for π-electron system in the insulating

phase below Tc. This assumption is inappropriate near Tc even in the insulat-

ing phase because of the precursor to the metallic phase. Since π spins begin

to spread over more than one lattice sites, the lengths of the localized spin

moments shrink and may become less than s = 1/2. The real m decreases

more rapidly than the theoretical estimation. Thus, the theoretical Tc based

on this model would be underestimated. The antiferromagnetic order plays
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an important role in the localization of π electrons. Thus, the localized spin

model is inappropriate when m is sufficiently small. It is difficult to calculate

the threshold of m taking into account the correlation effect. As shown in

Figs. 4.4 and 4.5, below Tc, m remains large in a wide temperature region

with a narrow region near Tc excluded. This picture is also supported by the

electric resistivity measurement [6], which implies that the metal-insulator

transition occurs in a temperature region between about 8 and 9.5K. There-

fore, this effect does not change the present qualitative and semiquantitative

results.

The increase of M is slow at high temperatures, and rapid near Tc2MF

as the temperature decreases as shown in Figs. 4.4 and 4.5. M becomes

S = 1/2 at T = 0. This behavior implies that 3d spins passively follow the

antiferromagnetic order of the π spins. This result is consistent with that of

the analysis of the specific heat. Therefore, the 3d spins exhibit the passive

order and induce the antiferromagnetic long-range order of the π spins.

The theory presented in this chapter does not exclude the other possibil-

ities of the stabilization mechanisms such as the interlayer interactions, and

does not explain the metal-insulator transition. These problems are left for

the future study.

In conclusion of this chapter, we explained the stabilization mechanism

of the low-dimensional isotropic quantum spin system by the additional

anisotropic semiclassical spins. In this mechanism, even weak interactions

between two subsystems induce high critical temperature comparable with

that of the mean-field theory. The antiferromagnetic order of the 3d spins is

passive in accordance with the observation on the specific heat [17]. In the

absence of the 3d spins, the π-electron system does not exhibit antiferromag-

netic long-range order. This behavior is consistent with the absence of the
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antiferromagnetic long-range order in the sister compound λ-(BETS)2GaCl4.
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Chapter 5

Conclusion

In Chap. 3, we examined the low-temperature properties of λ-(BETS)2FeCl4

on the basis of the mean-field approximation. We derived the self-consistent

equations of the sublattice magnetizations and the expressions for the specific

heat and spin susceptibility. In the analysis of the specific heat, we examined

three models in low, intermediate, and high temperature regions, and esti-

mated the values of the model parameters as ∆d ≈ 5.61K, z12J12 ≈ 9.3K,

z2J2 ≈ 3.84K, and 60K ≲ z1J1 ≲ 80K, using the least-squares method.

In the analysis of the spin susceptibility, we examined the four cases of the

isotropic or anisotropic limits, and estimated the angle θ between the easy

axis and c-axis as θ ≈ 27◦. It was found that the anisotropy originates from

Jµ
12 rather than from Jµ

2 for the experimental value θ ≈ 30◦. We consistently

reproduced the specific heat and spin susceptibility, using these estimated

parameters. We confirmed z1J1 ≫ z12J12 ≫ z2J2.

In Chap. 4, we examined the stabilization mechanism of the antiferro-

magnetic long-range order. We adopted the Tyablikov and mean-field ap-

proximations for the π and 3d spins, respectively. It was found that the

critical temperature is of the order of Tc1MF ≈ J1/4 even for the weak inter-
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action between the subsystems regardless of the existence of the interaction

between the 3d spins. It was found that the parameters z1J1 = 40K and

z12J12 = 4K reproduce the experimental critical temperature Tc ≈ 8.3K.

The temperature dependence of the sublattice magnetizations implies that

the 3d spins passively follow the antiferromagnetic long-range order formed

in the π-spin system. The antiferromagnetic long-range order of the low-

dimensional isotropic quantum-spin main system is stabilized by the addi-

tional anisotropy due to the semiclassical spin subsystem. Even when the

inter-subsystem coupling is extremely weak, the resultant Tc can be compa-

rable to the mean-field transition temperature of the isolated main system.
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