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Abstract

Cosmological observations have revealed that our universe is in an accelerated ex-
pansion phase. This fact suggests that an extra energy component with negative
pressure, which is called dark energy, is present in the universe. It is known that
a cosmological constant best explains the cosmological observations, but there is a
fundamental problem, called the cosmological constant problem.

On the other hand, modified gravity theories can serve as an alternative to dark
energy models to explain the cosmic acceleration. There are many models of the
modified gravity: for example, the f(R) model, which introduces a nonlinear function
of the Ricci scalar in addition to the Einstein—Hilbert term; the Dvali-Gabadaze—
Porrati (DGP) model, motivated by the 5D brane world scenario; and the Galileon
model, which introduces a scalar field with higher derivative terms in the Lagrangian,
but keeps a second-order differential equation as the equation of motion. These
models introduce additional degrees of freedom, which give rise to a fifth force. For
example, the chameleon model, which is equivalent to the f(R) model, modifies
gravity by introducing a scalar field which is non-minimally coupled with the matter
components and gives rise to a fifth force that can be of the same order as the
standard gravitational force. The DGP model and the Galileon model also include a
scalar field, which gives rise to a fifth force.

Any fifth forces are, however, severely constrained by experiments in the solar sys-
tem. So viable models with modified gravity must employ screening mechanisms to
evade these constraints. For example, the chameleon and f(R) models are equipped
with the chameleon mechanism, and the DGP and Galileon models are equipped
with the Vainshtein mechanism. These mechanisms screen behavior of the fifth force
depending on the matter density and the space-time curvature. The screening mech-
anisms work in high-density regions where the matter density contrast is nonlinear
but do not work over large cosmological scales. In the context of screening mecha-
nisms, galaxy clusters are a useful regime for testing modified gravity because they
are objects on the transition between linear and nonlinear scales. Namely, standard
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gravitational behavior is recovered thanks to the screening mechanism in the interior
of a galaxy cluster, but the screening mechanism may not completely screen the fifth
force in the outer region of the galaxy cluster.

In this thesis, we propose a novel method to test modified gravity models using
galaxy clusters. When the scalar field is coupled with gas components in galaxy
clusters, the fifth force due to the scalar field would affect the gas distribution be-
cause of an additional pressure gradient for the gas that balances with the fifth force.
Thus, modified gravity models can be tested by combining gas measurements from
galaxy clusters. Through various physical processes, galaxy clusters can be observed
at multiple wavelengths, for example, the X-rays from thermal gas radiation, the
Sunyaev—Zel’dovich effect due to inverse Compton scattering of cosmic microwave
background photons and the gravitational weak-lensing effect due to the matter dis-
tribution in a galaxy cluster. This suggests that a gravity model can be tested using
these observations by precisely modeling the matter distribution of a galaxy cluster.

We develop a theoretical model of galaxy clusters under the influence of modi-
fied gravity, and compare theoretical predictions with the observational data set of
nearly galaxy clusters. With this approach we have obtained useful constraints on
the chameleon model and a generalized cubic Galileon model using multi-wavelength
observations. For the chameleon model, we obtained constraints on the model pa-
rameters, § and ¢, the coupling strength of the scalar field and the field value
in the cosmological background. This result provides a powerful constraint on the
f(R) model, corresponding to a particular choice of the chameleon coupling constant
B = \/1/_6, for which we obtained an upper bound for the parameter frq, which is
equivalent to ¢uo: | fro| < 6x107° at the 95% CL. This bound is competitive with the
current strongest cosmological constraints on the f(R) model. For the generalized
cubic Galileon model, which contains the DGP model and a Galileon model, we ob-
tained constraints on the model parameters, €, g and pp,, which are the parameters
characterizing the screening scale, and the amplitudes of modification of the gravita-
tional potential and the lens potential, respectively. In these models, the fifth force
affects not only the gas distribution characterized by pug but also the weak-lensing
profile characterized by p;,. We showed that these features can be investigated by
a combination of the observations of a galaxy cluster reflecting the gas distribution
profiles and the weak-lensing signals. The multi-wavelength observations are com-
plementary and can, therefore, put a constraint on the modified gravity model by
breaking the degeneracy between the model parameters. We also carefully discuss
systematic errors which may affect our method.
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Chapter 1

Introduction

That our universe is undergoing an accelerated expansion phase at the present time
is indicated by many observations: for example, the Ia supernova [1,2], the cosmic
microwave background (CMB) radiation [3,4], the large scale structure (LSS) [5, 6],
and the number density of galaxies [7,8]. Why the expansion of our universe is
accelerating is one of the most fundamental mysteries in basic science. One basic
interpretation of this fact is that our universe does not contain only matter and ra-
diation energy components but also other extra energy components with negative
pressure, which are called dark energy. Recently, it has been shown that the cosmo-
logical constant and cold dark matter (ACDM) model best describes our universe.
However, this model has some theoretical problems, such as the cosmological constant
problem, so it is still incomplete.

On the other hand, modifying gravity theory is an interesting approach to explain-
ing the accelerated expansion of the universe. However, any covariant modification
of general relativity introduces additional degrees of freedom, giving rise to a fifth
force. This is strictly constrained by gravity tests in the solar system. Solar system
experiments [9, 10] are in excellent agreement with general relativity, requiring that
this additional degree of freedom be hidden on the scale of the solar system. Such a
process is referred to as a screening mechanism, and is key for any viable modified
gravity model. In general, this screening mechanism works in high-density regions
where the matter density contrast is nonlinear. However, this does not work on large
cosmological scales. This screening mechanism that characterizes viable modified
gravity models is an important feature to be tested with observations.

The chameleon mechanism [11,12] is a screening mechanism that works in an
f(R) gravity model and the chameleon gravity model [13-15]. In these models,
a scalar degree of freedom that gives rise to the fifth force is screened in a high-



density region due to coupling with matter. The chameleon gravity model and an
f(R) model can be viable owing to the chameleon mechanism [16]. The Vainshtein
mechanism [17] is another relevant screening mechanism, which is employed in the
Dvali-Gabadaze—Porrati (DGP) model [18,19], the simplest cubic Galileon model
[20-23], and its generalized version [24,25]. The DGP model is an archetypal modified
gravity model developed in the context of the brane-world scenario. There are two
branches of solutions in the DGP model. The self-acceleration branch DGP (sDGP)
model [26-28] includes a mechanism to explain self-acceleration in the late universe,
while the normal branch DGP (nDGP) model [29-31] with a cosmological constant is
a healthy modified gravity model avoiding the ghost problem [32,33]. The simplest
cubic Galileon model is also a typical modified gravity model that explains self-
acceleration of the universe while avoiding the ghost problem. In these models, a
scalar field giving rise to a fifth force is screened due to self-interaction on small
scales where density perturbations become nonlinear.

Galaxy clusters provide a unique laboratory for testing modified gravity models
with screening mechanisms, because they are objects on the borderline between linear
and nonlinear scales. That is, they cover non-screened and screened scales: while the
interior of a cluster may be screened, the screening mechanism may not completely
screen the modifications of gravity in the outer regions of the cluster [34-46].

In this thesis, we investigate a cosmological constraint on modified gravity models
focusing on use of gas distributions in galaxy clusters. The pressure gradient of gas
in a galaxy cluster balances with the gravitational force. When the gas components
feel the fifth force due to modifications of gravity, the balance will be changed, which
creates a change of gas distribution in the cluster. We will review this idea and
establish a method of testing modified gravity models by comparing observations of
gas distribution with theoretical predictions of gas distributions in the presence of
the fifth force.

This thesis is organized as follows. In Chapter 1, we briefly review the standard
ACDM model and modified gravity models considered in this thesis. In Chapter 2, we
review physical processes in galaxy clusters. In Chapter 3, we construct theoretical
cluster profiles in the presence of a fifth force. In Chapter 4, we demonstrate the
testing of modified gravity models using multi-wavelength observations of galaxy
clusters and put useful constraints on modified gravity models. In Chapter 5, we
present a summary and our conclusions.
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1.1 Units and notation

First of all, let us mention the units and notation that we use throughout this thesis.
Unless otherwise noted, we use units in which the speed of light, ¢, and the reduced
Planck constant, A, are unity, ¢ = h = 1, and we also use the reduced Planck mass,
Mpy, which is defined by Mp; = 1/+/87G with Newton’s gravitational constant, G.
We adopt a present Hubble parameter of Hy = 100 hkm/s/Mpc with h = 0.7, and
the present matter and dark energy density parameters of 0,0 = 0.3 and Qpg =
1 — Quo, respectively. Then we ignore the radiation and curvature in the universe
(0 = Qxo = 0). We also follow the metric signature convention of (—, +,+, +).
The Christoffel symbol is defined by

1 4
Fgﬂ - §gﬂ (aﬁgaﬂ + 804951/ - augocﬁ) (11)
where g, is the metric tensor. The Riemann tensor is given by

RP«

b5 =0y — 9Dl + T D0, — TV.T9 (1.2)

oo~ vB va

and the Einstein tensor is given by

1
G;w = R,LLI/ - ég;wRa (13)

where R, = R}, is the Ricci tensor and R = g"" R, is the Ricci scalar.

The energy momentum tensor is defined by
2 0Ly
vV =g 69/ﬂ/ 7

where g is the determinant of the metric, g,,, and L, is the matter Lagrangian.

T,

(1.4)

We denote the derivative operator with respect to the physical time ¢ by

d
dt

(1.5)

1.2 ACDM model

Historically, the cosmological constant, A, was introduced by Einstein to explain a
static universe. However, it has been found that this idea well describes the observed
accelerating expansion of the universe. The action is given by the Einstein—Hilbert



4 1.2 ACDM model

term with cosmological constant,

S:/d4x\/—_g {%(R—QAHQD : (1.6)

Variation of the action (1.6) with respect to the metric, g,,, yields the Einstein
equations

M3Gru = Ty + TS, (1.7)
where
T;Eﬁ) = Mg (1.8)

is the energy momentum tensor coming from the cosmological constant.

For a homogeneous, isotropic and spatially flat universe, with the Friedmann—
Lemaitre-Robertson—Walker (FLRW) metric,

ds® = —dt* + a(t)?6;;dx'da? | (1.9)

where a is the scale factor, the Einstein equations (1.7) are reduced to the following
equations,

SMp H? = p + pa, (1.10)
—MA(2H + 3H?) = py (1.11)

where H = a/a is the Hubble parameter, and p; and p; are the energy density
and pressure, respectively, and the subscript ¢« = m, A denotes contributions from
the matter and cosmological constant, respectively. The energy density of matter
evolves! as pn(2) = pmo(1 + 2)%. On the other hand, we obtain the energy density of
the cosmological constant as py = —py = M3, Acos, which means that the cosmological
constant causes repulsive pressure and leads to the accelerated expansion of the
universe.

Here we introduce the critical density, p., and density parameters, €;, as

pe(2) = 3Mp H?(2), (1.12)

'The densities of radiation and curvature evolve as p;(2) = pro(1 + 2)* and px(z) = 3ME K (1 + 2)?,
respectively.
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() = Z(é; (1.13)

The Friedmann equation (1.10) normalized by the Hubble parameter at the present
time, Hy, is given by

H2
—(22) = Quo(1 + 2)* + Qo (1.14)

Hy
where we define €;(0) = Q0 with i = m, A. Then we find that 1 = Q.,(2) + Qa(2)
is satisfied.

Distances

Here, we introduce the definitions of distance between our solar system and an object
at redshift z.

When we know the actual size of the object, x, and the angular size of the
object 6, the angular diameter distance is defined by D = x/6. Using cosmological
parameters, the angular diameter distance is given by

1 /Z dz
(L+2)Ho Jo /Quo(1 +2)3 + Qo

Dy = (1.15)

When we know the luminosity and flux of the object, L and F', the luminosity
distance is defined by Dy, = (L/47F)Y2. The luminosity distance is related to the
angular diameter distance by Dy, = (1 + 2)%2Da.

1.3 Modified gravity theories

We now briefly review modified gravity models used in this thesis.

1.3.1 Chameleon model

We consider an action in which a scalar field is non-minimally coupled with the
matter field:

2
S = /d4x\/—g {%R — %g’“’@uqb&,qb — V(qb)] — /d%ﬁm(\II,G%WMP‘gW), (1.16)
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where ¢ is the scalar field, V(¢) is the potential of the scalar field, 5 is the coupling
constant and VU is the potential of the matter field. The action (1.16) can be trans-
formed into an action in which the scalar field is minimally coupled with the matter
field, but is non-minimally coupled with gravity. The frame for the action (1.16)
is called the Finstein frame, and the frame for the transformed action in which the
scalar field is minimally coupled with matter field is called the Jordan frame. These
frames are related by a conformal transformation. The detail of the transformation
is summarized in Appendix (A.1.2). It is interesting to study this model because this
model includes the f(R) model (see the next subsection) in the Jordan frame, and
the screening mechanism to pass local gravity tests is easy to understand.

First, we review the cosmology in the chameleon model. For the spatially flat
FLRW metric (1.9), we obtain the modified Friedmann equation

1.
3SH>M3, = 5(;52 + V(@) + pme’®Mr1, (1.17)

where pp, is the matter density conserved in the Einstein frame (Appendix A.1.2).
Then, we obtain the critical density p. and matter density parameter €2, as

pe(2) = %qbZ + V(o) + pm(z)eﬁ"ﬁ/Mp1 (1.18)
z e/gd)/MPl
O (2) % (1.19)

On the other hand, the variation of the action (1.16) with respect to the scalar field
(chameleon field) gives the equation of motion for the chameleon field as

¢+3Hdp=V4+ MimpmeWMPl (1.20)
= —Verr,6(9), (1.21)

where we assume that the chameleon field is homogeneous and Vg is the effective
potential defined by

Ver(9) = V(9) + pme/Mr1. (1.22)

Chameleon Force

Since the chameleon field is coupled with the matter field, particles feel not only
the gravitational force but also the fifth force coming from chameleon field, which is
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called the chameleon force.

The geodesic equation in the Jordan frame is given by
it + T ata” =0, (1.23)

where * = d/d7 means the derivative with respect to proper time in the Jordan frame,
7. Using the relation between the metrics of the Jordan and Einstein frames,

gml _ 626¢/MP19“V7 (1.24)

Eq. (1.23) can be transformed into the geodesic equation in the Einstein frame as

A Mi(zqs,ua':%* +g%p,) =0 (1.25)
Pl

The third term of the left-hand side of Eq. (1.25) gives the chameleon force. In the
non-relativistic limit, a test particle feels the chameleon force represented by

B
Iy = —M—PIW- (1.26)

Chameleon mechanism

The chameleon field equation is given by the variation of the action (1.16) with
respect to the chameleon field, ¢:

O¢ =V, — Miple%’prlguva’ (1.27)

where [0 = ¢V, V, is the d’Alembertian and

S 2 0Ln
V=g ogm

is the energy-momentum tensor in the Jordan frame which satisfies the energy and

(1.28)

momentum conservation laws

VT = 0. (1.29)

Under the assumption of a perfect fluid, using the mater energy density p and the
pressure p, we have

T# G, = —(1 — 3w)p (1.30)
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where we assume p = wp with a parameter w. The energy density conserved in the

Einstein frame is given by
p= 63(1+w)5¢>/MP1ﬁ (1.31)

Using Eq. (1.31), the chameleon field equation is reduced to

O¢ =V, + ipe/jd)/MPl (1.32)
Mp,
AVeg
= — 1.33
g (1.33)

where Vg is the effective potential defined by Eq. (1.22). Because the effective
potential depends on the matter density, the chameleon field also depends on the
matter density. When the effective potential reaches a minimum with ¢ = ¢, the
mass of the chameleon field m,,;, is given by the second derivative of the effective
potential with respect to ¢

2

i = Voo i) + e mm/ M, (13
Pl

where the first derivative of the effective potential satisfies

= Vo (Pmin) + Mipeﬂ‘bmim/MPl = 0. (1.35)
Pl

AVesi
de

Figure 1.1 shows the effective potential as a function of ¢ (red curve) in the case that

the matter density is high (left panel) and in the case of the matter density is low
(right panel). This figure shows that the curvature of the effective potential, which is
equivalent to the mass of the chameleon field (1.34), in a high density region is larger
than that in a low density region. Since the Compton wave length of the chameleon
field is inversely proportional to the mass, o< 1/my;,, we find that the Compton wave
length in a high density region is shorter, which means the interaction between the
matter field and the chameleon field becomes weak. Therefore, in a high density
region, the chameleon force effectively does not appear.

1.3.2  f(R) model

We consider the action

S:/d4x\/—_g {MTPQ’I(RJrf(R))JrEm , (1.36)
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Vert (¢)
Veit (@)

Figure 1.1: The effective potential as a function of ¢ (red curve) in a high density region
(left panel) and in a low density region (right panel). Blue dashed and dotted curves show
V(¢) and peP?/Mp1 a5 a function of ¢, respectively.

where f(R) is an arbitrary nonlinear function of the Ricci scalar.

Variation of the action (1.36) with respect to the metric g, yields the modified
Einstein equations

1 f
R;u/ = Rw/ - EguuR + fRRuV - <_

5~ DfR) G — V, Vufr=81GT,,. (1.37)

This model contains an additional degree of freedom, fr = df(R)/dR. The equation
of motion for fr is given by the trace of Eq. (1.37) as

1

Ofe =3

[R— frRR+2f —87G(p — 3p)]. (1.38)

Assuming the spatially flat FLRW metric, the (0,0) component of the modified Ein-
stein equation (1.37) gives the modified Friedmann equation

, , 8nG
H? — fr(HH' + H?) + g + H?frpR = T(p — 3p), (1.39)

where ' = d/d1Ina.

The f(R) model can be written in the form of the chameleon model by a conformal
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transformation. The detail of the equivalence between the f(R) model and the
chameleon model is given in Appendix (A.1).

A viable f(R) model for an alternative dark energy has to satisfy several con-
ditions, for example, avoid a ghost state and negative mass squared of the scalar
field, be consistent with local gravity constraints, be stable and include a late-time
de Sitter solution, which are summarized in Ref. [47].

The viable nonlinear f(R) functions in an f(R) model satisfying the above con-
ditions are

F(R) = —AR. <R£)p (1.40)
_ (R/R.)™

f(R) = —)\RCW (1.41)

F(R) = —AR. |1— (1 + 2—2) h (1.42)

f(R) = —=AR.tanh (Rﬁ) (1.43)

where the parameters satisfy 0 < p < 1 and n, A\, R. > 0. The models (1.40), (1.41),
(1.42) and (1.43) were proposed in Refs. [13-15,48], respectively.
In this thesis, we adopt the Hu-Sawiki model (1.41). The function f(R) of the
Hu-Sawiki model can be re-expressed as
2 ca(R/m?)"

f(R)=—m R+ 1 (1.44)

where n,m,c; and ¢y are constant model parameters. Eq. (1.44) has an asymptotic
form with R < m? (|fr| < 1), which is given by

F(R) = —m22 + ifl < a >_n. (1.45)

o s \m?

Note that m?c;/cy/2 can be chosen such that the modification exhibits an effective
cosmological constant and mimics the expansion history of the concordance model.
Hence, we specify m? = Q,, HZ and ¢; /¢y = 6Q4 /.. Furthermore, we have nc;/c3 =
—fro[3(1 + 494 /Q,,)]" ™!, where we introduced the model parameter, frg, which is
the value of fr at the present time and at the background. In this case, only the
parameters fro and n are needed to describe the model.
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The mass of fr, my,, is given by

1
2~ 1.46
My, 3fRR, ( )
where
471)\ R —(2n+1)
_ A 1.4
== (%) (1.47)
An(2n+ 1)\ [ R\ "
Sl s . 1.48
p = P () s

Here we use Eq. (1.41) (or Eq. (1.42)) with R > R, to give the asymptotic form

. (R%) _%] (1.49)

As mentioned in the previous subsection, the Compton wavelength of the additional

F(R) ~ AR,

degree of freedom characterizes the scale at which particles feel the fifth force. Here,
we define the wavenumber k¢ of fr which is related to the Compton wavelength by

L _ (Qmo(l +2)3 +4(1 — Qmo))2”+2

3frr B Qo +4(1 — Qo)

(1.50)

where we use 2A = AR, = 6(1 — Qu0)HZ. Then the wavenumber is given by

QmoH2 (A" [ Q 2ntl 4(1 = Qo)
2 _ _2m0%0 (A m0 AL = %mo)
ho = 4n(2n + 1) <2) (1 - Qmo) (1 - Qo ) ' (151)

1.3.3 DGP model

The Dvali-Gabadadze-Porrati (DGP) model is motivated in the context of the braneworld
scenario. The action is given by

M} M}
== / X /=g Re) + = [ dev/=gR+ / dizy/=gLly™,  (1.52)

where g(5) is the determinant of the metric in the 5D bulk, g,, = 8#XA81,BBgAB is
the induced metric on the brane with X“(z¢) being the coordinates of an event on
the brane labeled by x¢, Ms) is the 5D Planck mass and Rs is the Ricci scalar of the
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5D metric. The first and second terms in the action (1.52) are the Einstein-Hilbert
action in the 5D bulk and on the brane, respectively. £ is the matter Lagrangian
localized on the 3-brane.

When we consider a spatially flat FLRW brane, the modified Friedmann equation
is given by

H2_£H pm

= 1.53
Te 3]\/[1%l ( )

Here, € = 41, so the DGP model has two branches. When we chose ¢ = 1, which cor-
responds to a self-accelerating branch DGP (sDGP) model 2, the modified Friedmann
equation (1.53) can be rewritten as

H(a) _ 1 — Qo n \/Qmo n (1 — Quyo)? (1.54)

HO 2 a3 4 ’

where the matter density parameter is related to the crossover scale by r. = 1/(1 —
QumoHo).

On the other hand, when we chose e = —1, which corresponds to a normal branch
DGP (nDGP) model, there is no self-accelerating solution unless a cosmological con-
stant is introduced [19,21]. Here we consider the nDGP model with a dynamical dark
energy component on the brane, which is tuned such that the background evolves as
in the lambda cold dark matter model [31].

1.3.4 Galileon model
Galileon action in Minkowski spacetime

Inspired by the decoupling limit of the DGP model (Section 1.3.3), Galileon model
was originally developed by letting Mp; and r. — oo while keeping a fixed strong
coupling scale, (r;2MM?).

The action is represented by

S— / dar/=g [Lan + L] (1.55)

where Lgg is the Lagrangian for a linearized general relativity and L, = Lga (7, O, 00m)+
7'l represents the generalization of the m-Lagrangian coming from the decoupling

2However, the sDGP model suffers from a ghost instability and inconsistencies with cosmological obser-
vations.
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limit of the DGP model. The vacuum part, Lgu (7, Om, 007), is invariant under the
Minkowski spacetime transformation

T — 7w+ bt + ¢, (1.56)

in the sense that Lga — Lga + (total derivative), where b, and c are constants. This
invariant is called the Galileon shift symmetry.

The Lagrangian satisfying above invariance can be written as

5
Lya(7,0m,007) = > ciLi(m, 0m,00m), (1.57)

i=1

where ¢; are constants, and

El =T, (158)
Ly = —%(8#)2, (1.59)
Ly= —%827((’9%)2, (1.60)
Ly = —% [(327r)2 - (88702} (0m)? + (827T)6u7r81,7ra“8”7r — 0,m0"0"10,0,m0"T,
(1.61)
Ls = —% [(627r)3 — 3(0*m)(007)* + 2(887?)3} (Om)?
+ ; [(0°7)? — 2(0%7) — (907)?] 9,70, wO* 0"
+ 30,m0"0"10,0,m0”0° 0,. (1.62)

Here 9% = 9,0", (0r)? = 9wt and (90m)" = (90, 0*'7)(0ap 0°27) - - + (Oa,, 0°T0).
Even though the Lagrangian contains higher derivative terms, the equation of motion
for gravity and the Galileon field, 7, remains a second-order differential equation
owing to the Galileon shift symmetry. The variation of action (1.55) gives an equation
of motion which can be written in total derivative form as

O, J" (m, 0, 9%m) = 0, (1.63)

in the absence of matter.
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Covariant Galileon

Because the Lagrangian (1.57) is invariant under the Galileon shift symmetry only
in Minkowski spacetime, it does not represent a curved spacetime. Nonetheless, the
covariant derivative version of the Lagrangian (1.57) gives the equations of motion
for gravity and the Galileon field as second-order differential equations. So, we can
write the covariant theory of the Galileon model as

5 — / dry=g lMTI%IR Lo+ cm] , (1.64)
where
5
(0, 00,000) =Y L™ (6, Ve, VV), (1.65)
1=2
with
Ly = ¢, (1.66)
£y =5 (Vo), (1.67)
£y = —500(Vo), (1.68)
Ly= —}1 [4(0¢)* — 4V, V0V V"¢ — R(Ve)?] (V)2 (1.69)

Ly — —% [(V26)° — 3(06)V, V6V V"6
12V, VYoV, VPOV V"¢ — 6G,. (V*0) (V' V20) V8] (V). (1.70)

Simplest cubic Galileon model

We consider the Galileon model in a curved spacetime with minimal coupling to
gravity. The action is given by

2

S = /d4x\/—_g [MTFQ’IR X - (AZ—) X0 + ,cm} . (1.71)

P1

As explained in the next subsection, this model is a specific case of the covariant
Galileon model. When we adopt the late time de Sitter attractor solution [49], the
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modified Friedmann equation in the spatially flat FLRW metric is given by
H(@)\> 1 | Qo Qo \
=— | — — 4(1 — Qp, . 1.72
( H, ) 2| a? + a’ +4 0) (1.72)

1.3.5 A generalized cubic Galileon model

The most general scalar-tensor theory

First, we introduce the most general scalar-tensor theory. The theory is the most gen-
eral non-canonical and non-minimally coupled single-field scalar-tensor theory which
gives equations of motion for gravity and the scalar field as second-order differential
equations. The expression was first derived by Horndeski [50], so the theory is often
called Horndeski theory. The action is given by [50-52]

5
S = /d4x\/—_g S Lit L], (1.73)

=2

where

Ly =K(¢,X), (1.74)
Ly =—Gs(¢, X )0, (1.75)
Ly =Gy(¢, X)R+ Gux [(O0)* — (V. V,0)7] (1.76)
Ls = G5(0, X)G W V'V ¢ — % [(0¢)? = 3(0¢)(V,V.,0)? + 2(V,.V,0)° |, (1.77)

Note that the covariant Galileon can be reproduced by setting K = c1¢ — 2 X,
G3 = c3X/M3, Gy = M3,/2 — ¢, X? /M and G5 = c5X?/M? where ¢; are dimension-
less parameters and M is a mass-dimension constant.

A subclass of the most general scalar-tensor theory

Here, we consider a subclass of the most general scalar-tensor theory with an action
given by [53]

5= / 42/ G| Gu(G)R + K (6.X) ~ Ca(6. X)D6 + L], (1.78)
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which is produced by setting Gy4x = G5 = 0 in action (1.73). This model is a
non-minimal coupling version of the kinetic gravity braiding model [54]. This model
contains the simplest cubic Galileon and DGP models. The simplest cubic Galileon
model is defined by G4 = M3,/2, K = —X and G3 = (r?/Mp;)X, which corre-
sponds to taking ¢; = —1 in Ref. [55]. The DGP model is originally a 5-dimensional
brane-world model, however, it can be effectively described as a Galileon model.
So, here we call this model the generalized cubic Galileon model. Note that the
DGP model has two branches of cosmological solutions, the self-accelerating branch
(sDGP) model [26,27] and the normal branch DGP (nDGP) model [29]. The relations
between the generalized Galileon model and these specific models are summarized in
Appendix (A.2).
The background solutions are given by

2XKx — K +6X¢HGsx — 2X Gy — 6H?Gy — 6HPGy = pr, (1.79)
K = 2X (Gag+ §Gix ) +2 (3H2 + 20) Gy +2 ($+ 2H) Gy + 4X Cag = 0,
(1.80)

where p,, is the non-relativistic matter energy density and H = a/a is the Hubble
parameter. The background equation for the scalar field can be written as

J+3HJ - P =0, (1.81)

with
J = ¢Kx +6HXGsx — 20Gsy, (1.82)
P = Ky—2X (Gago + $Gagx ) +6 (202 + H) G, (1.83)

Vainshtein mechanism

The DGP model in the decoupling limit, the simplest cubic Galileon model and
the covariant Galileon model include a self-interaction term for the Galileon field,
L o< (V$)?O¢. This term causes screening. To understand the screening mechanism,
we consider the Lagrangian of the DGP model in the decoupling limit, whose action
is given by

L= —M—glh“”(é‘h) — 3(dn)% — r—g(aw)QDn + L, ¢ Lo (1.84)
4 m Mp, 2 S R ‘
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where £%hqp is the linearized Einstein tensor. To understand the effect of the
Galileon field around a point source, we consider the equation of motion of the scalar
field, which is given by

O [6Mp 10,7 + 2r20,70r — r20,(07)*] = —T. (1.85)

Note that the energy density of a point source is given by T = —Md3(r). For
the spherically symmetric and static case, Eq. (1.85) can be integrated once, which
reduces it to

7' (r) 3r 47"{3,
—L = -1 14 -—=]. 1.86
Mp1 47’3 < * + 9 T3 ( )

Here, ry = (r2r,)/? is called the Vainshtein radius and r, is the Schwarzschild radius.
Since 7 is of the order of the Hubble horizon (~ Hy*'), rv is much larger than the
Schwarzschild radius. Note that two solutions can be obtained by solving for 7/, and
we choose the solution for which 7’ — 0 at » — oo. The other solution corresponds
to the sDGP model. At very small scales r < rv, the ratio of the scalar force to
Newton’s force can be written as

F, |Vl r\*?
E_ vrl ([ . 1.87
F, ~ Mp|VV] <rv) < (1.87)

Therefore, the Galileon field is screened inside the Vainshtein radius, and general rel-
ativity behavior is recovered through nonlinear effects. This is called the Vainshtein
mechanism.

1.4 Constraints on modified gravity theories

Any gravity theory has to pass stringent constraints from the Solar System. There are
several methods to test gravity theories. For example, the fifth force is tested by con-
sidering a modification of Newton’s inverse-square law with a Yukawa-like potential
parametrization [9,56,57] and the Parametrized Post-Newtonian (PPN) formalism
gives a constraint on the time-space curvature [58]. As described in previous sections,
the chameleon model and the f(R) model pass these tests thanks to the chameleon
mechanism, while the Galileon model and the DGP model also pass thanks to the
Vainshtein mechanism.

Lots of cosmological observations also give constraints on modifications of grav-
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ity [59]: for example, the CMB, the large scale structure and cluster abundance.

To obtain tighter constraints on modifications of gravity, many unique methods
of testing are being investigated: for example, the gravitational weak-lensing ef-
fect of galaxy clusters [41, 60], redshift-space distortions [61], the peculiar velocity
dispersion of satellite galaxies in halos [62], and higher order cosmological density
perturbations [63,64]. Their approaches commonly focus on exploring the screening
scale of the fifth force depending on the matter density. In this sense, galaxy clusters
are a unique laboratory for exploring the screening scale, because they are objects
on the borderline between linear and nonlinear scales of the matter density pertur-
bation. That is, they cover non-screened and screened scales: while the interior of
a cluster may be screened, the screening mechanism may not completely screen the
modifications of gravity in the outer regions of the cluster.

We provide a novel method of testing gravity using gas distributions in galaxy
clusters in the following chapters. To illustrate the effectiveness of our approach, in
Fig. 1.2, we compare our result to current constraints from cosmological, astrophys-
ical, and local tests in the well-studied case that the chameleon model reduces to an
f(R) model. The parameter fry characterizes the f(R) model. Our Coma Cluster
constraint is currently the tightest constraint on cosmological scales (see Section 4.2).
In Ref. [44] a tighter constraint is obtained by using a technique developed from our
approach which also shows its usefulness.
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Figure 1.2: Comparison of our Coma Cluster constraint to current constraints on f(R)
gravity from the Solar System [14,65], distance indicators in unscreened dwarf galaxies [66],
the cosmic microwave background (CMB) [67,68], cluster density profiles [37] and abun-
dance [34,69]. The figure is adapted from [37]. Also compare to Fig. 2 (resp. 3) of [70,71]
for prospective constraints on f(R) gravity.
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Galaxy clusters

2.1 Introduction to galaxy clusters

Galaxy clusters are the largest gravitationally bound systems in the universe. The
orders of magnitude of physical quantities in a cluster are summarized in Table 2.1
The number density of galaxy clusters in the present universe is 107> Mpc ™. Clusters
contain more than 10 galaxies, but it is hard to know the exact number of galaxies
in a cluster because of uncertainty in estimates of the number of dark galaxies. The
system smaller than a cluster is called a galaxy group, but the boundary between
clusters and groups is unclear because they are continuous objects. The matter
density of a cluster is a few hundred times higher than that of the universe. The
clusters are strictly not isolated systems because the environmental gas and galaxies
are falling. The clusters are composed of dark matter, intracluster medium (ICM,
hot baryon, gas) and galaxies (cold baryon). Their abundance ratios are summarized
in Table. 2.2.

Table 2.1: Orders of magnitude in a galaxy cluster.

Scale | Order

Tvir ~ MpC
My | ~ 10" M,
Ngas | ~ 10 3cm 3

Tyas | ~ 10°K (~ keV)

20
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The dark matter is dominant and determines the gravitational behavior of galaxy
clusters; its mass is roughly M, ~ 10 M. The dynamical time, t4y,, characterizes
the time scale of the gravitational structure formation and is given by

T'vir 1
tdvn ~ ~ oy — 2.1
b 01D Gp (2.1)
7 -1/2
~4x107 [ —— r 2.2
(10‘24g/cm3> Y (22)

for galaxy clusters, where r;, is the size of a cluster, op ~ /GMyi/ryir is the
1-dimensional velocity dispersion of the matter and p ~ 3M.,/47r3, is the mean

matter density. On the other hand, the age of the universe is given by
to ~ 1.4 x 10' yr. (2.3)

Thus we have tqy, < to, which means that galaxy clusters contain information about
the history of cosmological evolution because they evolve with the universe, while
being roughly in dynamical equilibrium. So, galaxy clusters are important for in-
vestigating cosmological evolution, structure formation and the screening scale of
modified gravity (see Section 1.4).

The ICM is mainly composed of electrons, protons, and helium gas, which are
faint and smoothly distributed in clusters. The mean interval between each gas
particle in a cluster is

-1/3 Mgas
dmean ~ ngas ~ 10 <m> cim. (24)

On the other hand, the mean free path determined by the Coulomb scattering of

Table 2.2: Components of a galaxy cluster.

Components | Mass ratio

Dark matter ~ 85%
ICM ~ 15%
Galaxies ~ 5%
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electron or proton pairs is given by

n -3 T
Ayas ~ 20 ( gas ) kpe. 25
g 10-3cm -3 108K ) “P° (2.5)

Thus we have dpean <K Agas, Which allows us to treat gases as fluids. In addition, the

ratio of the energy of the electromagnetic interaction to the kinetic energy for each
gas component is given by

1/3
62ngz{ts -~ 10712 ( Ngas ) Tgas (2 6)
ET s 10—3cm3 108K )’ '
which is very small. Therefore, gas in clusters can be treated as perfect fluid, so the
equation of motion for gas is given by

V Pyas

v+(v-V)v=—
( ) Pgas

- Vv, (2.7)
where v is the velocity of gas, P, is the gas pressure and W is the gravitational

potential. The sound crossing time which characterizes the time scale of structure
formation by gas is given by

bong = 15 0 7 108 [ L (e (2.8)
sound — Cs 108K MpC yr, :

where ¢, is sound speed for monatomic gas. On the other hand, the free fall time

which characterizes the time scale of the variation of the gravitational potential is

3- p —1/2
te — ~4x107 [ —C— ) 2.9
S Ter <1OOPc0) " (29)

Thus we have tgouna < tg, which means that the galaxy clusters are roughly in

given by

hydrostatic equilibrium. In this case, the velocity of gas can be set to v ~ 0 in
Eq. (2.7), which then reduces to

V Pyas
Pgas

— VU (2.10)

Thus the gas distribution in a cluster is in balance with the gravitational force, which
is important for our strategy to test modified gravity.
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Dark matter and the ICM cause various physical phenomena, which allow us to
observe galaxy clusters in a variety of different ways. In this chapter, we review
the physical processes caused by a cluster’s components: the physics of the ICM in
Section 2.2 and the physics of dark matter in Section 2.3.

Throughout this chapter, we explicitly include the speed of light, ¢, and the
reduced Planck constant, h.

2.2 Intracluster medium

Because of ultraviolet rays emitted during the process of galaxy formation, the ICM
is hot, which causes the ionization of gas. The ionized gas causes thermal radiation
and the scattering of cosmic microwave background (CMB) photons. In this section,
we review the thermal physical processes caused by the thermally ionized gas.

2.2.1 X-ray emission

In galaxy clusters, the X-ray emission is dominated by the bremsstrahlung and line
emissions from heavy elements, such as iron and oxygen. The emissivity of this
radiation is dominated and characterized by one in the thermalized system. In this
subsection, we review the emissivity for the thermal bremsstrahlung and the line
emissions.

Thermal bremsstrahlung

The bremsstrahlung is typically electromagnetic radiation produced by the deceler-
ation of an electron when deflected by a proton, a quasi-quantum process that is
reviewed in Appendix B.1.

The emissivity per unit time and per unit volume from two-body scattering is
given by Eq. (B.9) as

bme 672
max 16m e Znen;
dP = /};min neninhwdeWvbdb = 3_\/§Wgﬁdw’ (211)
where /3
3 bmax
gr=""1n (bmin) (2.12)

is the Gaunt factor for free-free emission. Here, for the ICM, the maximum value of
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the integral interval is given by
v

bmax = — (213)

w
and the minimum value of the integral interval is determined by the uncertainty
relation AxAp < h, with Az ~ byin and Ap ~ mev, which gives

h

bmin = . 2.14
o (2.14)

Using Eqgs. (B.9), the emissivity of the frequency between v and v + dv, per unit
time and per unit volume from the thermal electron gas is given by

00 m U2
dvd Pv? -2

ey = Fmin_ > (2.15)
MV
/0 dvv? exp (— 51T )

PBreS [ o \ V2 hv
( ) ne;ZJangff(Z, T,v) x (KT)"Y%exp (_ﬁ) dv, (2.16)

3mec3

2me

where gg is the Maxwell distribution weighted mean Gaunt factor, and we use that
fact that electrons in thermal equilibrium satisfy

1
hy < §m602, (2.17)

when there is emission of photons with the energy hw = hv, which gives the minimum
value of the incident velocity, vy, as

2hw
Umin = . (2.18)
me

For X-ray observations, the emissivity is given by integrating Eq. (2.15) with
respect to the frequency v within the observable frequency range [Vmin, Vmax),

Vmax(1+z)
€ = / Tdy = \g(Eumaxs B, T, Z)n?. (2.19)
Vmin(l“l‘z)
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in units of [ergs cm™3 s7!], or
Vrnax(l"rz) Eff
€ = / L dv = M\g(Emax, Buin, T, Z)n? (2.20)
Vmin(l"rz) hl/

in units of [counts cm™ s7!], where z is the redshift of the cluster and Ag, in units
of [ergs cm?® s71] or [counts cm?® 57, is the cooling function, which depends on the
observable energy range, the electron temperature and the abundance of heavy ele-
ments.

Line emission

X-ray emissions from thermal gas in clusters include line emissions from heavy el-

ements. For example, the energy levels of an ion having a single electron is given
by

72
E, = —13.6- eV, (2.21)

where Z; is the charge of the ion and n is the principal quantum number. Thus the
line emissions from the Ly-a (n = 2 — 1) transitions of the ions listed in Table 2.3
are X-rays. The K-a (n = 2 — 1) transition of Fe XXV having two electrons also
emits an X-ray. The emissivity per unit time and per unit volume of the n =k — [
transition of ion X; is represented by

€line — FlinenXi,m (222)

where T, is the spontaneous transition rate per unit time and ny, , is the number
density of ion, X;, with energy level, k. Because the energy density of the photon in
clusters is lower than that from blackbody radiation with the same temperature, the

Table 2.3: Ly-a (n =2 — 1) transitions for heavy elements

Ton O VIII | Ne X | Mg XII | Si XIV | S XVI | Fe XXVI

Z; 8 10 12 14 16 26

E, — E; [keV] | 0.65 1.0 1.5 2.0 2.6 6.9
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stimulated radiation can be neglected. So I'jj,. does not depend on the temperature
of the ion. Even though ny,, is determined by the detailed balance between the
energy levels, the main process of excitation is the collision with electrons in clusters.
In this case, we have ny,, o< nenx;. Then Eq. (2.22) reduces to

€line = fline(T>Zn§ - )\line(Ta Z)n<237 (223)

where fii,e is a function determined for each transition, which depends on the temper-
ature of the ion in thermal and ionized equilibrium, and Ay, is the cooling function
for the transition.

Surface brightness

Using Eqgs. (2.19) and (2.23), the total emissivity of the X-ray emission for the ICM
electron gas in thermal and ionized equilibrium can be represented as

€X = € + €line = (>\ff + )\line)ng = )\Cng (224)

where \. is the cooling function for the thermal bremsstrahlung and line emission.
The observed X-ray flux is given by

1
- - dV. 2.25
D) / xdV, (2.25)

where Dy, is the luminosity distance and 7., is the observable maximum radius.
Here, we decompose the volume element, dV, into the line of sight, dl, and the solid
angle on the celestial sphere, df?,

dV = Dx(z)*dld6?, (2.26)

where r? = [2 + D%6% Da = (1 + 2)72Dy, is the angular diameter distance, and
Dy > r. Using this relation, we obtain the observed surface brightness in units of
[ergs/cm? /s/rad?] or [counts/cm?/s/rad?] by integrating the emissivity along the line
of sight, I,

S(ry) = 45—3% / ex(r)dl (2.27)
1

- i / Ao (1) 2dl, (2.28)
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where r; = 0D, is the perpendicular radius with the apparent angle, ¢, from the
cluster center.

2.2.2 Sunyaev—Zel’dovich effect

The cosmic microwave background (CMB) is an evidence of the Big-Bang universe
and its secondary anisotropy is important for galaxy clusters.

The intensity of the CMB follows a practically isotropic perfect blackbody distri-
bution which is given by the Planck distribution,

L(v) = %“3 {exp (#VB(Z)) - 1] 71, (2.29)

where v is the frequency of the CMB photon, h = 27h is the Planck constant, k is
the Boltzmann constant and Teump(2) = Temso(l + z) is the CMB temperature at
redshift z, with the present CMB temperature being Teympo = 2.725 K. Note that
I, < (1 + 2)3 because Teyp o (1 + 2) and v o< (1 + z2).

When the CMB photons pass through a galaxy cluster, their intensity is shifted
by inverse Compton scattering caused by hot electrons in the cluster, which is called
the Sunyaev—Zel’dovich (SZ) effect [72]. The process of inverse Compton scattering is
reviewed in Appendix B.2. The radial intensity profile of inverse Compton scattering,
given by Eq. (B.20), is

AL (v,r1) 1 AWen (v, To(r))
L(v) :m,,(V)/ A (2:30)

where AI®® is the difference between the intensities after and before scattering,
dWsz/dtdy is the emissivity per unit time and per unit frequency caused by an
electron, and r = y/r? + 2. The lowest order of Eq. (B.29), which corresponds to
the case of the Maxwell distribution

3/2 2
fu(v)dv = 4w (277:;}e> exp (—?;;;e) v dv (2.31)
for thermal electrons, gives the SZ spectrum as
dWSz(V) . dWIC(V, U)
dtdv / atdy Tuwdvfe
xe® T
o~ 47TO‘T[,/(V)6:E 7 [96 (—4 + x coth <§>> + 510,&] ; (2.32)



28 2.3 Dark matter

where 3y, is the bulk velocity of the cluster electrons and p is the angle of the bulk
motion. The first term of Eq. (2.32) gives isotropic radiation which is called the
thermal SZ effect, and the second term of Eq. (2.32) gives anisotropic radiation
depending on the bulk motion of cluster electrons, which is called the kinematic SZ

effect.

Thermal SZ effect

Assuming an isotropic distribution for electrons in the rest frame of CMB photons,
the second term of Eq. (2.32) vanishes when integrating with respect to angle, u, so
we obtain

AL (v, r)) _ we”
I,(v) Cer—1

<x coth g - 4> y (2.33)
where we define the Compton-y parameter as

T
y= / diorn, 2L (2.34)

MeC?

Kinematic SZ effect

When the electrons in a cluster have bulk velocity, the second term of Eq. (2.32) is
not negligible, which gives

AIS (v, r)) 1 AWz (v)
’ = o d 2.
L) L) / " atava (235)
— /dlaTne,uﬂ (2.36)
er —1
re® |
| 2.
er — 1T c (2:37)

where 7, is the optical depth for Thomson scattering and v is the mean velocity
toward the line of sight of the bulk motion of the electron gas.

2.3 Dark matter

The presence of dark matter is one of the fundamental mysteries of cosmology, and
it is also important for galaxy clusters. Assuming that the gravitational potential,
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galaxy kinematic energy, and gas temperature energy are of the same order,

kTas GMvir
ol v ES ~ =, (2.38)
P vir

we can estimate the total cluster mass from optical and X-ray observations as

2
My ~ 3 x 10 < 71D ) ( thi ) M., (2.39)

1000 km/s Mpc
and
kT, Tui
My ~ 2 x 10* £9% ) M. 2.40
% (108 K) (Mpc) © ( )

Egs. (2.39) and (2.40) are of the same order; however, the sum of the masses of a
galaxy and its gas is only 20% of M. It is therefore suggested that there is a large
amount of dark matter in galaxy clusters, which dominates their gravitational be-
havior. Many N-body simulations provide information about the nonlinear evolution
of dark matter. These simulations suggest that the radial profile of dark matter in a
galaxy cluster is the Navarro-Frenk—White (NFW) profile [73],

— Ps
p(r) = Y L (2.41)

It is known that this profile roughly agrees with many observations.



Chapter 3

Modeling of cluster profiles

We review our model focusing on connecting gas distributions with observational
quantities (the X-ray brightness, X-ray temperature and Sunyaev—Zel’dovich [SZ]
effect profiles). Our gas distribution model is based on an assumption of hydrostatic
equilibrium, which is a key assumption needed to connect with modifications of
gravity. We also review the tangential shear profile due to weak- gravitational lensing.
At the end of this chapter, we review analytic solutions for modifications of gravity
in spherical symmetric systems, and construct the modified cluster profiles.

3.1 DMatter distribution profile

We assume that the dark matter component dominates over the baryonic contribution
in the cluster and that the matter density of the cluster, p, is well described by

p(r) = psym(r/75), (3.1)

where ps and ry are parameters, and the dimensionless profile, y,,, is given by a
generalized NFW profile [74],

1

s (3.2)

Ym (33)

Taking b = 2, Eq. (3.2) corresponds to the NFW profile (2.41) which is motivated
by predictions from numerical simulations [73]. The mass enclosed within a radius

30
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r, M(< r), is given by a volume integral of Eq. (3.1):

M(<r)=4n /07“ drr?p(r) = dmpgrim(r /1), (3.3)
where
N —1+2% —bx(l+z)+ (1+2)° -
m(z) = / dun*yy, (u) = (b— 2)(17; (1 + )’ orb#2 . (34)
0 In(1+4 ) — for b =2

1+2x

Note that the NFW proifle is based on N-body dark matter simulations of the
concordance model. It is nontrivial to extend this assumption to modified gravity
models. However, it was shown in [38] that the NFW profile provides equally good
fits for f(R) clusters as it does for the Newtonian scenario. This was shown using N-
body simulations of the Hu-Sawicki f(R) gravity model corresponding to 8 = \/%,
which characterizes only a subgroup of the more general chameleon model studied
here. The effects of the modifications on observables are, however, qualitatively
similar between different values of the coupling strength 5 and can even partially be
mapped into each other, suggesting the applicability of the NF'W profile. Its validity
for the full range of the parameters considered in this paper may still be worthwhile
checking using N-body simulations. From an observational perspective, recent work
b [75,76] supports the consistency of the NF'W profile with measurements. Hence,
even independent of the simulation results, the NFW profile could be used for the
reconstruction of the lensing mass with the same motivation as introducing the gas
profiles in the reconstruction of the hydrostatic mass in Chapter 4.

Here, we introduce the virial mass, M., and the concentration, ¢, instead of r;
and pSa

My = M(< 1) = ?TvirAC(Z)pC(Z)a (3.5)

where 7, is the virial radius, which is defined by

M.. 1/3
Tvir = - )
(47/3)Ac(2)pe(2)

and A.(z) is the critical overdensity contrast, which is the ratio of the mean matter

(3.7)
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density within the virial radius, p(< i), to the critical density,

_ P(< rvir)

Ac(z) = ) (3.8)
given by spherical collapse models [77-80]. We adopt A. = 100 based on Ref. [80]
with z ~ 0. Note that the critical overdensity contrast, A., generally depends on the
modified gravity parameters. For example, the authors in Ref. [81] found A, ~ 80
in an f(R) model, which is equivalent to Ay;, ~ 300 at redshift z ~ 0. Nonetheless,
our final conclusion is independent of this modification of A, because our analysis
includes the parameters M,;, and ¢, which re degenerate with A.. Therefore, the
change of A, only introduces shifts in the values of M, and c.

The relations between M., ¢, rs and pg are

1 Mvir 1/
rs = — : (3.9)
¢ [(47/3)Ac(2)pe(2)
Mvir
s = ———. 3.10
P Amr3m(c) (310)

In addition, we introduce the radius at which the mean matter density corresponds
to the cosmological reference density, 7aref, its concentration, caref = T'aref/7s), and
the mass enclosed within this radius, Ma,et = M(< rawer). Using Egs. (3.5) and
(3.6), the relations between raer and Ma,er are

T Aref 1 MAref e
L _ L 3.11
ot =20 = e ) (3.1)
and
My — m('l"Aref/Ts>MVir’ (3.12)
m(c)

where the reference density is prr = pe Or pm. We note that pn(2) = Qu(2)pe(2).
From Egs. (3.11) and (3.12), we can compute 7aps and Mayer when ¢ and M, are
given.

Gravitational potential

The gravitational potential is given by the Poisson equation,

B 1
B QMPlp'

AT (3.13)
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Assuming that the matter distribution of the cluster is given by Eq. (3.1), we can
solve Eq. (3.13) to get

1= (1+7/ry)*"

- for b # 2
\I/(T) _ _GM(< T) _ 0 (b - 2)7’ Ts o 7& (3 14)
B r2 o 11’1(1 +T/Ts ’ ’
—Yyg——F—= for b =2
/Ty
where x = r/rs and
2
IOSTS
Uyg= —0p 5 — 1
"= SR GB- 1) (3.15)

is the gravitational potential at the center of the cluster.

3.2 Gas distribution profiles

In this section, we construct the radial distribution profiles of the thermal gas de-
scribed by the gas pressure, P,,, the gas temperature, Tj,s, and the gas density,

Pgas-

3.2.1 Equation of state for gas components

First, we summarize the equation of state for gas components. The intracluster
medium is dominated by ionized Hydrogen and Helium gas. In this section, assuming
complete ionization of the gas, we review the equation of state for the gas components.
In the following, n; and m; are the number density and mass, and their subscripts,
1 = e, p, H, He, denote the electron, proton, hydrogen and helium, respectively.

We define the mean molecular weight p as
(Ne + N + Nge) WMy = My + MueNHe, (3.16)

where we neglect the electron mass. Assuming an electrically neutral intracluster
gas, we then have

Ne = Ny + 2nHe. (317)
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Using Egs. (3.16) and (3.17), we obtain the mean molecular weight as

ny + 4an 4
_ _ ~ 0.59 3.18
A onm + 3nme 345X ’ (3.18)

where we use the approximations myg ~ m, and mge ~ 4m;, and an abundance ratio
between Hydrogen and Helium of X = ny/(ng + 4nge) ~ 0.75.

Here we define the gas number density as ng,s = ne + Ny + Npe. Assuming that
the intracluster gas is an ideal fluid, the equation of motion for the intracluster gas
can be written as

aSkT as
Pras = NgnohiTas = 22282 (3.19)

Hmy
where k is the Boltzmann constant, P, is the gas pressure, Tg,s is the gas temper-
ature, and pgs is the gas density. Assuming the gas temperature is equal to the
electron temperature, that is Tyas = 7t, the equation of state for the electron is

2(X +1)

2+ u
S “lp
5X +3

Pe —= ’]’Lek‘Te —_= Pgas = 5 gas) (320)

where P, is the electron pressure, and we use the relation

C2(X+1) 24 p

Ne = mngas = Tngas. (321)

Note that the assumption of Ty,s = T is nontrivial because the equipartition timescale
between electrons and protons through Coulomb collisions is close to the dynamical
timescale of the cluster (see, e.g., [82]).

3.2.2 Hydrostatic equilibrium

We first assume hydrostatic equilibrium in the spherically symmetric system as

| dP.  dU
Peas dr — dr’

(3.22)

Assuming the gas physics described in Section (3.2.1), we derive the solution of
Eq. (3.22). We review some solutions of Eq. (3.22) to link with observations of gas
distributions in the following subsections.
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3.2.3 Polytropic model

Here we derive the gas distribution profiles based on [83-85]. We assume the poly-
tropic equation of state for thermal gas:

Pyas X pgasTgas X Pgas (3.23)

where 7 is the polytropic index. Using the dimensionless gas profile yg,s, We can write

pgas(r) = pgas,Oygas<T)a (324)
Tgas(r) = T‘ga&OygaL_s1 (’l“), (325)
Pias(r) = Pga&oygas(r), (3.26)

where Pyas 0, Peas,0 and Tyas 0 are the pressure, density and temperature at the cluster
center, satisfying the equation of state

kTgas,Opgas,O
J
M

Pgas,O = (327)

and Ygas(0) = 1. Under the assumption of hydrostatic equilibrium (Eq. (3.22)), we
can obtain a differential equation for ygas,

dyga_sl _ _ Himp Y 1 ﬂ (3 28)
dr kT gas.0 v dr’ ’

which has the solution

o = {1 _ iy (7 = 1) () \P(0>]}W_1) (3.20)

kTgas,O v

for the dimensionless gas profile.

3.2.4 Non-polytropic model

Here, we consider two models as the solution of hydrostatic equilibrium (3.22) with-
out the polytropic relation.
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Model A (n.-based model)

For the electron number density profile, we assume the functional form of the so-called

B-model [86]:
1+ <%)2] _ (3.30)

where ng is the electron number density at the cluster center, and b; and r; are pa-
rameters. The [-model is well-established to represent the observed surface bright-
ness of galaxy clusters with low angular resolution. Integrating Eq. (3.22) and using
Eq. (3.30), we obtain the electron pressure profile

Ne = Ny

(3.31)

" dv
P, =noTy + ump/ drne(r) [ } )
0

Cdr

where Tj is the electron temperature at the cluster center. Then, the electron tem-
perature profile is given by kT,(r) = Po(r)/ne(r) from Egs. (3.30) and (3.31). Model
A is thus characterized by 6 parameters: M., ¢, ng, Ty, by, and 7.

Model B (7.-based model)

For the electron temperature profile, we assume the functional form

b, b2/t
1+ <1> ] , (3.32)
(A

where Tj is the electron temperature at the cluster center and by, by and r; are

Te(T) = TO

parameters. Integrating Eq. (3.22) and using Eq. (3.32), we obtain the electron

Po(r) = Ty exp ( [t [_‘ji_‘l’]) , (3.3)

where ng is the electron number density at the cluster center. Then, the electron
number density profile is given by ne(r) = P.(r)/kTs(r) from Eqgs. (3.33) and (3.32).
The model B is thus characterized by 7 parameters: M., ¢, ng, 1o, b1, be, and ry.

pressure profile




Chapter 3 Modeling of cluster profiles 37

3.2.5 Observables

Using our model of the 3-dimensional profiles, we construct the observables for X-
rays and the cosmic microwave background (CMB) temperature distortion by the SZ
effect.

X-ray surface brightness

The X-ray surface brightness, which reflects X-ray emission from thermal bremsstrahlung
emission and line emission, is given by Eq. (2.27),

Sur1) = gy | AL (3.34)
where | = /72 + (2 is the radius perpendicular to the line-of-sight, [, and A. is the
cooling function, which depends on the electron temperature, abundance of heavy
elements and observable energy range (e.g., [87]). Here, to estimate the cooling
function, we use XSPEC [88], adopting the thermal plasma emission spectra model
with the APEC code [89]. The XSPEC software gives the X-ray flux based on the
APEC model. The X-ray flux can be converted to the cooling function by the flux-
luminosity relation.

We also define the X-ray brightness as Bx = norm/area, where norm is the spec-
trum normalization obtained from the XSPEC software [88] using the APEC emission
spectrum [89], and area is the area of the spectrum. The spectrum normalization is
given by norm o« [ nenydV, where ny = 0.86n, is the hydrogen number density and
V' is the volume of the spectrum. Then, we write the X-ray brightness as

Bx(ry) = Zhrg)—_—i—z) /00 ne(r)ng(r)dl [em™® /arcmin?]. (3.35)

o0

X-ray temperature

The thermal gas temperature is given by a spectral fit of the observed X-ray spectrum,
which is represented by a weighted temperature,

/Wgasdl
/W

TX(TJ_ (336)
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where r; = v/r2 4 [? the radius perpendicular to the line-of-sight, [, and W is the
weight factor which is given by W = nzTgIB{SQ for the emission-weighted temperature
and as W = nng_ag’/ * for the spectroscopic-like temperature. Because the emission-
weighted temperature is systematically higher than the actual measurement, the
spectroscopic-like temperature was proposed by [90] to avoid this systematic error. In
this thesis, we use the emission-weighted temperature to avoid numerical singularities.

Compton-y parameter

The CMB temperature distortion is caused by CMB photons passing through clusters
and being scattered by electrons in the clusters, namely, the SZ effect. The difference
between the averaged CMB temperature and the observed CMB temperature, ATgy,
or y-parameter can be expressed as

ATsz; ot /
— =2 [ pya, 3.37
) =t = 7 [ ) (3.7

where | = v/r?2 + [2 is the radius perpendicular to the line-of-sight, [, and Toyp =
2.725 K is the CMB temperature, or is the Thomson cross section and m, is the
electron mass.

3.3 Tangential shear profile due to weak-gravitational lens-
ing

We consider a spatially flat cosmological background, and work with the cosmological

Newtonian gauge, in which a line element is written as

ds® = — (14 2U(t,x))dt* + a(t)*(1 + 2®(t, x))dx>, (3.38)

where a is the scale factor, and W and ® are the gravitational and curvature potentials,
respectively. The propagation of light is determined by the lensing potential (& —
V) /2, which means that the weak-lensing signal is determined by (& — W)/2. For
example, the convergence is given by

1 X AW
R=—3 / d%%&m)@ ), (3.39)
0

where y is the comoving distance and A®P) is the comoving two-dimensional Lapla-
cian. For the case of general relativity, we set AU = —A® = 47Ga?p. Then, using
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the thin lens approximation, (3.39) reduces to

e A R 3 (3.40)
Xs 0

where x1, and yg denote the comoving distance between the observer and lens and

that between the observer and the source, respectively, and a, = 1/(1 4 z1,) is the

scale factor specified by the redshift of the lensing object, z;,. For a spherically

symmetric cluster, (3.40) is given by

K(ry) = Zlc /000 dzp(r) (3.41)

with the physical coordinate r = /2 + 22. We define the critical surface mass
density, X. = xs/[47G(xs — xr.)xLar]. We then define the reduced shear

Y4 (r1)
Tt Pt (3.42)

g+(r1)

where «y, (r) is the tangential shear, which is related to the convergence by

Vo(ri) = R(<ri) —kK(ry), (3.43)
with
2 [T
R(<r))=— / dr' ' k(). (3.44)
L Jo
For the NFW profile, the convergence (3.40) can be integrated to obtain [91]
( 2rips | 2 11—z
————— |l — ——=arctanhy/ —— <1
S = 1) T zarctanhy /o x} , (z<1)
273 ps i
Foutr () = 32’2 , (x=1)  (345)
2rips | x—1
= |1 — t >1
SxeEnl ﬁarc an +x} : (x > 1)
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and Eq. (3.41) also can be integrated to obtain

(dreps [ 2 1—x x
SRl W Igarctanh T2 + In <§>] ., (x<1)
4Argps 1
Fntr (< @) = < ;p 1+m(?ﬂ, (t=1)  (3.46)
47 s [ 2 z—1 T
t 1 (—) , > 1
(X2 _\/xQ—larC anv 1+ s ] (z>1)

with z = r/r.

Here, we assume that the source galaxies have a random orientation of ellipticity,
€s, the average of which is (es) = 0. Once the tangential ellipticity of the source
galaxies, €., is averaged, we obtain an average lensing signal from galaxy clusters
g+ = (€ops.) due to the random orientations.

3.4 Modification of gravitational and lens potentials

3.4.1 Chameleon field

We first review an analytic solution for the chameleon field for a spherically symmet-
ric galaxy cluster [42,92,93]. Next, we construct the gas distribution profile using
the analytic solution assuming a polytropic gas distribution, and review how the
modification of gravity affects the gas distribution.

The equation of motion for the chameleon field is given by Eq. (1.27):

V26(r) = Vi + ipl0), (347

where we assume the potential V(¢) = A*™™/¢" and use the approximation, S¢/Mp; <
1. In the inner region of the cluster we assume the condition

Mp V29
— < L 3.48
50lr) .
In this case, Eq. (3.47) reduces to
02V, + D). (3.49)
o Mp

Assuming the generalized NF'W matter distribution profile given in Eq. (3.2), Eq. (3.49)
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gives an inner solution for the chameleon field of

Gine(2) = s[(1 + )]V, (3.50)
where = = r/rs and
AnH o VD)
b, = (”6—/)1”) . (3.51)

Next, for the outer region of the cluster, we assume the condition

Vo < V2. (3.52)
In this case, Eq. (3.47) reduces to
Bp(r)
V2¢(r) ~ : 3.53
or) = 221 (359

Assuming the generalized NFW matter distribution profile in Eq. (3.2), Eq. (3.53)
gives an outer solution for the chameleon field of

1—(1 =6
e —25950—[5 _*'2;2 — S ey DA 550
ext\ L) = .
—25¢o—10g 1; 2 _ % + Goos b=2

where C' and ¢, are the integration constants. The constant ¢.,, which defined by
oo = O(r = 0), is the background chameleon field.

C and ¢, are related by connecting the inner solution and the outer solution at
the radius z.,

C = —2860— (; J_r ;UC)H + Gooe — Pulme(1 + )] Ve, (3.55)
_ 1-b _ b\1/(n+1) (1+0b)z.+1 )
b = 2860(1+ 2™ = a1+ s (14 LEREE s
for b # 2, and
C = —28¢oIn(1 + z.) + Pootc — Ps[e(l + 2)*M "V, (3.57)

n+4)z.+n+2
(n+ 1)(1+ )

Doo — 2B0(1 + ze) F = dylze(1 + o) Y : (3.58)
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for b = 2.

Here, ¢ is the typical chameleon field in the interior region where the matter
density is high and the chameleon mechanism works, which gives ¢s < ¢ ~ ¢@g.
Therefore, we can use the approximation ¢s — 0. Then Egs. (3.55) and (3.56) can
be approximated as

—(1+ . 2—-b
(b_;) + oot (3.59)

G0 — 208¢0(1 + zc)' " ~ 0. (3.60)

C ~ —28, "

In this case, the solution for the chameleon field does not depend on the parameters
of the potential, n and A, but is characterized by the NFW parameters and the
background chameleon field, ¢.

By a conformal transformation, we can also construct the solution in the Jordan
frame, obtaining the solution for fr, which is the degree of freedom in the f(R)
model. This procedure is summarized in Appendix A.1.3.

Chameleon Force

The chameleon force is given by Eq. (1.26):

B
Fy= =3 V0. (3.61)

Using the analytic solution for the chameleon field, the chameleon force is given by

( Qb() -1+(b—1)1‘_<1_’_$b71
Mpirg | (b—2)22(1 + 2)b-1 -
= Bos (1 + (1 + b)x)(m(l + x)b)l n+1
F(zx) = B (n+ 1) bxl(l t ) } ; r <z
% | 1+(b—1)z—(1+2z)t BC
(. Mpr _(1 +23?) (b—2)22(1 + z)b-1 - qﬁow?} T > Ty

(3.62)
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Figure 3.1: Total force as a function radius = r/rs. In the left figure, the red, blue and
green curves are for the chameleon field with the virial mass My;, = 103 M, 1014 M, and
4 x 10" M), respectively. In the right figure, the colored curves are also for the chameleon
field, but with the coupling constant 5 = 0.5 (red), 1 (blue), and 1.5 (red), where the virial
mass is fixed at My;, = 10 M. Black curves are the Newtonian case.

for b # 2, and
(%o 1 In(1 + )
Mprs {(3:(1 +z) a2 o
= Bos  (1+ (1 +b)x)(x(l +x)")
F(z) = ~(n+ gy ( ).:1:(1 + ) } ; T < %o
o 1 In(l1+=x BC
e (s ) -5 e
(3.63)
for b = 2.

Figure 3.1 shows the radial total force per unit mass acting on a test particle.
The black line shows the Newtonian case, and the red, blue and green lines show
the cases with the chameleon force assuming the NFW profile (b = 2) with virial
masses M, = 10 My, 10M, and 4 x 101 M, respectively. In the inner region,
the chameleon force is screened by the chameleon mechanism, but in the outer region,
the chameleon force appears and depends on the virial mass.
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Gas distribution with the chameleon field

In the presence of the fifth force, the gravitational potential (3.14) is effectively
modified as

U — v+ Miqﬁ. (3.64)

P1

Then, the solutions for gas distributions are also modified to

oo = {12 () oy w0+ L]} 6

for the polytropic model,

" A B do(r)
as == as e - - d ) .
Pras(1) = Praso —|—/me/0 ne(r) < o Mo dr r (3.66)
for Model A, and
"opumg dv 6 do
P = P, —_ 3.67
(r) = Pyexp < /O KTo(r) { o Mmar| ) (3.67)

for Model B.

Here, we demonstrate how the modification of gravity affects gas distributions
using the polytropic gas distribution. Using the solution for the chameleon field, the
solution (3.65) can be explicitly written as

- 1/(v=1)
[1 B A(l N (1+x)>v -1 _ B (2(1 + )b) /) ’ z < 7,
ygas($) = (b B 2)(11 + x)g_(fo_ 1 3 C 1/(v=1)

(3.68)
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Figure 3.2: Gas density profile as a function of z = r/r;. The solid lines are the cases with
the chameleon force, and the dashed lines are the cases without the chameleon force. Green,
blue and red lines shows the cases of My, = 4 x 10" My, 1014 My, 1013 M), respectively,
where we fix 8 =1 and ¢oo = 1.1 x 1075 Mpy.

for b # 2, and

1/(v-1)

ygas(x) - v lo <1¢_T_ ZE) B C 1/(7:1)
[1—A<1—(1+252)g———((boo——))] , T > I
x oo x
(3.69)
for b = 2, where
A= Hmeto =1 (3.70)

kTgas,OMPl Y

Typically, we find ¢s/¢9 < 1. Then the inner solution can be represented by the
solution for the Newtonian case,

(NG) () = {1 - A(l i - +$ 5 ba: 1)} - 7 (3.71)

ygas - 1/(r—1)
{1—,4(1 log“”c )] bh=2.
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Figure 3.2 shows radial density profiles. The solid curves show the Newtonian
cases and the dashed curves show the cases with the chameleon field. The red, blue
and green curvesare for virial masses of M, = 1013M), 10" M, and 4 x 10" M, re-
spectively. The gas density decreases rapidly in the outer region, where the chameleon
force is influential. For a large mass cluster, the chameleon mechanism works out to
large radii, because the density of the matter is high enough even outside the cluster.
On the other hand, for a small mass cluster, the chameleon mechanism works only
at small radii, because the matter density is high only in the central region. Because
the chameleon force is an attractive force, a larger pressure gradient is necessary to
balance it. This makes the gas distribution compact. This feature is more significant
for smaller-mass clusters.

3.4.2 Galileon field

In this section, we review an analytic solution for the Galileon field of the generalized
Galileon model. The solution was derived in [25], assuming spherical symmetry of
the system within the sub-horizon scale, the quasi-static approximation and keeping
the Vainshtein mechanism.

We consider perturbations of the space-time metric, the matter density and the
Galileon field .

ds® = — (14 2¥(x))dt* + a(t)*(1 + 2®(x))dx?, (3.72)
p(t, ) = p(t)(1+0(x)) (3.73)
¢(t,x) = o(1)(1 + Q(x)) (3.74)

where the perturbed values, ¥, ®, § and ) are expressed in the comoving coordinate
frame. Within the sub-horizon scale in the quasi-static approximation, the Einstein
equation and the Galileon field equation yield the following perturbed equations.

A A
@+m:—m; (3.76)
JiJ 2
CL a a

where A is the Laplacian in the comoving coordinate frame, and a, &, ¢ and A2,
are the model parameters, which are determined by the arbitrary functions G4(¢),
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K(¢,X) and G3(¢, X). The expressions for «, &, ¢ and \? are summarized in Ap-
pendix A.2. In the spherically symmetric system, Egs. (3.75), (3.76) and(3.77) reduce
to

v  GM(<r) dQ

% - r2 - (Oé + 5)%7 (378)
de  GM(<r)  ,dQ

= + £ e (3.79)
Q r [ \/ 8GA2(M (< r)

where M (< r) = 4r [ dr'r’! ?p(r') is the mass of the halo enclosed within the physical
radius r. Note that the perturbed values ¥, ® and @ in Egs. (3.78)~(3.80) are
written in the physical coordinate frame. The explicit expressions for the simplest
cubic Galileon, the sSDGP and the nDGP models were also presented in [25], and are
summarized in Appendix A.2.

Here, we define the Vainshtein radius ry as

8Ge2 M, 13
6—} , (3.81)

rv = 8GN M,;)Y3 = { 2
0

where we define ¢ = /HZN?¢ using the Hubble constant Hy. For r < ry, the
scalar field is negligible compared with the Newton potential, so Newtonian gravity
is recovered. For r > ry the scalar field cannot be neglected, and we have

dv (14 ¢(a+§)GM(<r)

— = > : (3.82)
d® (14 {)GM(< )
— 5 : (3.83)

Thus the gravitational and curvature potentials are modified at » > ry. These
modifications affect both the gas and weak-lensing profiles. We next construct obser-
vational quantities for the gas and weak-lensing profiles, taking the scalar field into
account.

Since gas components feel the gravitational force through the gravitational po-
tential W, the X-ray brightness and the SZ profiles are modified by the modification
of . On the other hand, the gravitational lensing is characterized by the lensing
potential (& — W)/2, so the modified lensing potential alters the observed lensing
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profile. We, therefore, introduce the parameters

o = (a+€)C, (3.84)

1
pL = 5(04 +26)(, (3.85)
with which we can write d¥/dr ~ (1 + ug)GM(< r)/r* and d(V — ®)/dr/2 ~
(14 pL)GM(< r)/r? at > ry.

In the generalized Galileon model, with the use of parameters g, pr, and € our
modeling for the electron pressure profiles in Egs. (3.29), (3.31), and (3.33), and the

weak-lensing profile in Eq. (3.41) are modified.



Chapter 4

Testing modified gravity models

As described in Section 3.4, the presence of a fifth force or the modification of the
gravitational and lens potentials causes the modification of gas distribution and shear
profiles. Using these characteristic features, we shall consider constraints on modified
gravity models. This chapter is organized as follows. We first demonstrate that the
presence of a fifth force affects the observations of X-ray temperature of the Hydra
A cluster using the polytropic gas distribution model in Section 4.1. From that we
can obtain a useful constraint on the chameleon model. In Section 4.2, we develop
our method of testing the chameleon model used in 4.1 by joint fitting with multi-
wavelength observations of the Coma Cluster. In Section 4.3, we apply the method
used in Section 4.2 to the generalized Galileon model.

4.1 The chameleon field applied to the Hydra A cluster

4.1.1 Introduction

In this section, we compare the theoretical predictions of X-ray temperature with the
Suzaku observation of the Hydra A cluster out to virial radius [94]. Because of the
steep drop of the gas distribution in the presence of the attractive chameleon force, a
similar drop in X-ray observations is expected to be found in the outer region. The
Hydra A cluster is a medium-sized cluster located at a distance of 230 Mpc. Two
different fields are observed [94]. One is the northwest offset from the X-ray peak of
the cluster, and the other is the northeast offset. The former and latter fields are
called the filament and void fields, respectively, because each field continues into the
filament and void structures, respectively. In Fig. 4.1 the points with error bars show
the data for the filament direction from Ref. [94].

49
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101 102 10°
r.[kpc]

Figure 4.1: Temperature profiles as a function of the radius ;. The points with error
bars show the observation data of the filament direction [94]. The curves are the theo-
retical predictions of the chameleon model. The solid curve uses the best-fit parameters
(Goos Myir, ¢, Ty(0)) = (5.4 x 107°Mp), 5.1 x 1014M,, 5.8,4.9keV). The dashed curve uses
boo = 2 x 107°Mpy, while the dotted curve uses ¢oo = 1.3 x 107*Mp;, where the other
parameters are the same as those of the solid curve. Here we fixed 5 =1 and b = 2. The
dotted and dashed curves correspond to limits of the modified gravity in Eq. (4.2) and
Newtonian gravity in Eq. (4.5), respectively.

4.1.2 Comparison with X-ray temperature

Here, we assume a generalized NFW profile and the polytropic equation of state for
gas components. In this case, the gas distribution with an analytic solution for the
chameleon field is described by the dimensionless gas profile, yg.s, Which is given by
Eq. (3.65),

- /6=

(1+2)>—1\]"

- Al 14— <
G = | te

) (1_’_%.)276_1 8 C 1/(v=1)
I ey =i T G ) RS

Ygas (33) =
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(4.1)
for b # 2, and
1/(v=1)
i)
ygas(m) = 1/(v—1)
{1—14(1—(14‘252)@—%(éﬁm—%))] , T > T
(4.2)
for b = 2, where
A= FmePo 71 (4.3)

kTgas,OMPl v

and ¢4 is neglected. Then the X-ray temperature, Tk, is characterized by the pa-
rameters My, ¢, b, Tyas0, 7, B and ¢o,, but we determine the polytropic index v by
using Eq. (17) in Ref. [95]. The relation between the polytropic index, -, and the
concentration, ¢, asymptotically follows the equation [95])

v = 1.137 + 8.94 x 10*In(c/5) — 3.68 x 10*(c — 5). (4.4)

Our conclusions are not altered qualitatively for 1.1 < ~ < 1.3. The curves in
Fig. 4.1 show our theoretical model of the X-ray temperature. The solid curve is the
best-fit curve, whose parameters are noted in the caption. The dashed curve and
the dotted curve use ¢oo = 2 X 1075 Mp; and 1.3 x 10~ Mpy, respectively, where the
other parameters are the same as those for the solid curve. The dotted curve, the
solid curve, and the dashed curve in Fig. 4.1 represent the characteristic curves which
appear when we vary ¢, from a sufficiently large value to a smaller one. First, the
dotted curve represents the limit of the modified gravity. Namely, for the large value
of oo > b0, T. becomes negative from Eq. (3.60). This means that no interior region
where the chameleon mechanism works to recover Newtonian gravity appears in a
cluster. Thus, for the case ¢, > ¢, we have ¢(x) = ¢ou(z) for the entire region
and, therefore, the solution of Eqgs. (4.1) and (4.2) should be replaced with

[1 — A(1+28?) <1 + %)] W_l), b2

[1 —A(L+287) (1 - M)} T

Yy (x) =

(4.5)

X
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On the other hand, the dashed curve represents the limit of Newtonian gravity,

1/(v—1)
[1_A(1_M)] C b=2

T

Y () =

(4.6)

From Eq. (3.60), the value of z, becomes larger as ¢, becomes smaller. This means
that the chameleon force is influential at only very large radii, so Newtonian behavior
is recovered for the entire region of the cluster. Note that the interior solution yg.s(),
given by Eq. (4.2) for x < x., can be approximated by taking the limit of 5 — 0 in
Eq. (4.5), because, in order to screen the scalar field where the chameleon mechanism
works, ¢4 takes a very small value. In summary, the dotted curve and the dashed
curve are the two opposite limits, and our theoretical curve is restricted by these two
limits. Note that the modified gravity limit of Eq. (4.5) depends on the coupling
constant f3.

4.1.3 Constraint on chameleon model

Let us define x? is by

TX T'J_ i Tobs.)2
Z 4.7)
obs. ) (
=1 T )

where TP and AT?" are the observed data and the error of the filament direction,
respectively, and Tx (7, ;) is our theoretical model. Let x2; be the minimum value
of x%. Figure 4.2 shows the contours of Ax? = x? — x2., on the parameter plane
for ¢ and M. Here, we have fixed f = 1 and b = 2, but the parameters ¢ and
Tyaso are varied so as to minimize x2. These parameters are varied within the ranges

Upper limit for ¢ in unit of [Mp]
Filament Void
b=1.7 14 x 1074 0.9 x 10~*
b=2.0 1.0 x 1074 0.8 x 10~*
b=25 0.8 x 1072 0.6 x 1077

Table 4.1: Upper bounds of ¢, at the 2-sigma level for different values of b and the data
for the filament and void directions. Here we have fixed g = 1.
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Figure 4.2: The contours of Ax? on the parameter plane ¢oo- Myir. Here we have fixed
B =1and b= 2, but c and Tgas0 are varied as fitting parameters. The contour levels of
the inner dashed curve and the outer solid curve are Ax? = 2.7 and 6.6, respectively.

3<c<10and Tj /o < Tyaspo < Tja with o = 1.1, where T is given by Eq. (19) in
Ref. [95]:

4 GmpMVir
" = 4.
0= M3T5X " 3y (4.8)
with
no = 2.235 + 0.202(c — 5) — 1.16 x 10*(c — 5)*. (4.9)

When taking Ty.s0 as a completely free parameter, it is difficult to obtain a useful
constraint from the present data due to the degeneracy between Ty,so and M.
The minimum value of x? is x2,, = 1.0, where the number of degrees of freedom
(d.o.f.) is 3. The behavior of the contour is explained by the fact that the theoretical
curve approaches that of Newtonian gravity as ¢., becomes small and that the steep
drop becomes significant as ¢, increases. Figure 4.2 gives an upper bound of ¢, <
10~*Mp, at the 2-sigma level for the case b = 2 and f = 1. We obtain a similar
upper bound of ¢, for different values of b, which are summarized in Table 4.1. The
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upper bound of ¢, becomes larger as b becomes smaller, but we conclude that the
results do not significantly depend on b. Table 4.1 includes the results for the void
direction. The upper bound of ¢, depends on the data, that is, whether we consider
the filament direction or the void direction; however, our conclusion does not alter
significantly.

Constraint on an f(R) model

So far, we have considered the case 3 = 1; we shall now discuss the case 3 = 1//6,
which corresponds to an f(R) model [13-15]. In this case, we could not obtain a
useful constraint on ¢, which is explained as follows. The theoretical density profile
is limited by two characteristic curves: Eq. (4.5) and Eq. (4.5) with 8 = 0. When
is small, the difference between these two characteristic curves is small, because the
drop of the gas distribution is not steep. This is the reason why no useful constraint
on the f(R) model was obtained from the current X-ray data here.

4.1.4 Systematic effects

We cannot rule out the possibility that the assumption of hydrostatic equilibrium of
the hot gas is crucial for constraints on the chameleon field. To estimate the effect,
we consider the effect of the non-thermal pressure by simply introducing a constant
parameter, e,

1 + € dPyas AV B do

__&7_r 4.10
Peas AT dr  Mp dr’ (4.10)

and we attempt to obtain similar constraints by inserting the nonzero values of
¢ = £0.5 in Eq. (4.10). The upper bound of ¢, changes from 10~*Mp, for € = 0
to 0.6 x 107*Mp; and 2.1 x 10~*Mp; for € = 0.5 and —0.5, respectively. Thus, the
assumption of hydrostatic equilibrium is crucial to the constraint, but we may obtain
a useful constraint if we can model the state of the gas correctly. Further study of
this problem is necessary.

Finally, we assumed spherical symmetry for a cluster. The validity of the as-
sumption should be checked when comparing with observational data. In the present
paper, the results in Table 4.1 do not depend significantly on the direction (filament
or void) which suggests the validity of this assumption.
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4.2 The chameleon field applied to the Coma Cluster

4.2.1 Introduction

When the chameleon field is coupled with the gas component, the fifth force due to
the chameleon field affects the gas density profile of the galaxy cluster. This causes
an additional pressure gradient that balances the extra force, which leads to a more
compact gas distribution in the cluster. This effect has been used in [42] (Section 4.1)
to compare the X-ray temperature profile predicted by the chameleon model with
measurements of the Hydra A cluster, yielding an upper bound of ¢, < 10=4Mp, for
the asymptotic scalar field value at large distances with a coupling constant between
the chameleon field and matter of § = 1.

In the presence of a chameleon force, due to its effect on the gas distribution,
the hydrostatic mass of a cluster, if interpreted assuming Newtonian gravity, will
deviate from its underlying dark matter distribution, which can be measured via weak
gravitational lensing, resulting in different mass estimates for the cluster (see [96] for
a recent analysis of this mass bias in hydrodynamic simulations of f(R) gravity).
Therefore, the combination of gas and lensing measurements of a cluster may yield
a powerful probe of gravity if they give statistically different mass estimates, which
are not due to other astrophysical reasons.

In this section, we demonstrate the operability of this method with the Coma
cluster. This is a massive cluster at a distance of approximately 100 Mpc, whose
properties have been measured using several independent methods. The Planck team
has, for instance, reported a precise observation of the Sunyaev-Zel’dovich (SZ) ef-
fect [97]. Moreover, the X-ray surface brightness and X-ray temperature have been
measured [98-100], and weak-lensing observations have been conducted [101, 102].
We use the combination of these measurements to place tight constraints on § and
0. Figure 1.2 illustrates the effectiveness of our approach. In that figure, we com-
pare our result to current constraints from cosmological, astrophysical, and local
tests in the well-studied case that the chameleon model reduces to f(R) gravity. Our
Coma constraint is currently the tightest constraint on cosmological scales.

An important element of our method is the reconstruction of the gas distribution
in a galaxy cluster under the influence of the fifth force. In previous work [42], the
hydrostatic equilibrium of the gas components was assumed when modeling the gas
distribution of the Hydra A cluster in chameleon gravity. Hydrostatic equilibrium
may, however, not always be realized because of turbulence and bulk motions of the
gas caused by mergers with other clusters and groups of galaxies, as well as infalling
material. The authors of Ref. [103] have demonstrated that the cluster masses in
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numerical simulations, estimated under the assumption of hydrostatic equilibrium,
can deviate from the true mass by up to 30%, and that the deviation is explained
by the acceleration term in the Euler equation. We, therefore, carefully examine the
systematic errors that deviations from hydrostatic equilibrium in the Coma Cluster
may introduce to our results.

We first reconstruct the 3-dimensional profiles of the gas density, temperature, and
pressure from the observational results using Newtonian gravity. We then compare
the mass estimates from the gas observations with the mass estimate from lensing,
finding good agreement between them and concluding that the assumption of hy-
drostatic equilibrium is a good approximation given the observational errors of the
lensing mass. Moreover, these mass estimates are only marginally affected by the in-
clusion of an extremized non-thermal pressure component, which has been calibrated
to hydrodynamical simulations.

While non-thermal pressure and other deviations from hydrostatic equilibrium
enhance the hydrostatic mass estimate, we find a strong decrease of the reconstructed
hydrostatic mass when the chameleon fifth force is introduced. The detection of an
enhanced hydrostatic mass with respect to the lensing mass when interpreted in a
Newtonian framework, may, therefore, be a smoking gun for modified gravity. On
the other hand, the effects of non-thermal pressure and the chameleon force may
become degenerate in the reconstruction, as the change in the hydrostatic mass by
enhancing modifications of gravity can be compensated by increasing deviations from
hydrostatic equilibrium. Given the small effect of the non-thermal pressure compared
to the effect from modifying gravity, however, we decide that it is safe to assume
hydrostatic equilibrium of the gas, and perform our analysis under this assumption.

Finally, note that Fusco-Femiano et al. [104] recently investigated the consistency
between the X-ray observations of surface brightness and temperature and the SZ
measurement in the Coma Cluster, adopting a “Supermodel”. The Supermodel ex-
presses the profiles of density and temperature in an entropy-modulated equilibrium
of the intracluster plasma within the potential wells provided by the dominant dark
matter [105]. This yields a direct link between the X-ray and SZ observations based
on the entropy profile. They found a tension between the SZ and X-ray pressures of
the plasma. In our analysis, we confirm these results, by finding a similar tension
between the SZ and X-ray pressures. However, the tension is mainly represented by
the asymptotic difference of the values of the pressure between the inner and the
outer regions. On the other hand, the constraint on the chameleon gravity model
comes from the shape of the density profile in the intermediate regime, so we can
nevertheless put a useful constraint on the chameleon model.
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This section is organized as follows. In Section 4.2.2, we review the hydrostatic
equilibrium equations and hydrostatic mass, including a brief review of an analytic
approximate solution of the scalar field profile in the cluster. In Section 4.2.3, we
perform a Markov chain Monte Carlo (MCMC) analysis to place constraints on the
Newtonian and chameleon model parameter space. We then discuss the systematic
effects introduced by deviations from spherical symmetry, and study deviations from
the hydrostatic equilibrium of the gas in Newtonian gravity by comparing the hy-
drostatic mass inferred from X-ray and SZ measurements with the lensing mass and
analysing the effects of including non-thermal pressure in comparison to the effects
from the chameleon force.

4.2.2 Hydrostatic and lensing mass in the presence of a chameleon force

We describe the hydrostatic mass of a spherically symmetric system of gas and in-
troduce a non-thermal pressure model, which we use to analyze deviations from
hydrostatic equilibrium. Then, we briefly review the derivation of an analytic ap-
proximate solution for the chameleon scalar field profile within a dark matter cluster,
which we use to determine the effects on hydrostatic masses in the presence of the
extra force. Next, we compare the reconstructed hydrostatic masses obtained from
different gas observations with the observed lensing mass and discuss the effect on
the mass reconstruction when incorporating the non-thermal pressure model and the
chameleon modification.

We consider a spherically symmetric system of gas and dark matter. In this case,
we can write the equation for the gas component in hydrostatic equilibrium as
1 d-Ptot (T) GM<< T)

= 4.11
) dr T )

where pg,s is the gas density, P is the ‘total’ gas pressure, including both ther-
mal and non-thermal pressure, and M (< r) is the mass enclosed within the radius
r. This equation describes the balance between the gas pressure gradient and the
gravitational force. Note that we have not yet included the chameleon force. The
total gas pressure can be written as the combination of the thermal pressure and the
non-thermal pressure, Py = Pyas + Poth- Eq. (4.11) can then be rewritten as

M(<r) = Mpu(r)+ Myn(r) (4.12)
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with the definitions

12 dPys(r)
 Gpgas(r)  dr

r?  dPun(r)
C Gpgs(r)  dr

My (r) = (4.13)

Myn(r) =

(4.14)

M is introduced to help mathematically describe the non-thermal pressure contri-
bution to the total mass. Note that M, is expressed in terms of Py and pgas in
Eq. (4.13). If we introduce the equation of state of the gas, Pyas = kNgasTgas, We can
express the thermal mass in terms of 7,5 and pg,s instead:

_k:Tgas(T)r d1n peas(r) N dInT,.s(r)
pm,G dlnr dlnr ’

Min(r) = (4.15)

where we have used pgas = (1M pNgas.

We define the fraction of the total pressure attributed to the non-thermal contri-
bution by

Pun(r) = g(r) Pos(r). (4.16)
Hence, using Piot = ¢ Pagh = (1 — futn) ™' Pyas, We may write

Pan(r) = 1) k(). (4.17)

1= fum(r)
According to hydrodynamical simulations [106,107], the non-thermal contribution to
the total pressure can be modeled with the expression

o\ Moo "
(1) = apg (1 4+ 2)P [ —— 20 ) 4.18
f th(r) @ t( * Z) (7"500) (3 X 1014M®) ( )

where ay, But, Mnt, and ny are constants. For illustration, and for an estimation of
the effects of neglecting the non-thermal contribution, we adopt the parameter values
(Qtnt, Bt Mut, nv) = (0.3,0.5,0.8,0.2), which are the best-fit values in [107] with the
exception of ay. The best-fit value of ay is 0.18, which is an averaged value over 16
simulated clusters. We set ay,; = 0.3, which is the maximum value obtained in the 16
clusters [107], in order to study the effect of the non-thermal pressure contribution
in the extremized case.

We refer to next subsubsection for our approach to the reconstruction of the 3-
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dimensional profiles of pgas, Tyas, and Fy,s from the gas observations via the X-ray
temperature, X-ray surface brightness, and SZ effect, which enables us to estimate
My,. Using Egs. (4.16) and (4.18), we can then estimate the non-thermal contribution
M, employing the results from hydrodynamical simulations.

In the presence of the chameleon field, the hydrostatic equilibrium in Eq. (4.11)
is modified by the introduction of the extra force Fyy = —(/5/Mp1)d¢/dr on the right-
hand side of the equation. The chameleon force then modifies the mass inferred from
hydrostatic equilibrium in Eq. (4.12) as

M(<r) = Mu(r)+ Myn(r) + Mg(r), (4.19)

where we define an extra mass

8 deln)
Motr) = =G ar

(4.20)

associated with the enhanced gravitational force due to the chameleon field.

Reconstruction of the 3-dimensional gas profiles

Here, we summarize the method for the reconstruction of the 3-dimensional profiles of
the gas density, temperature, and pressure, using observations of X-ray temperature,
surface brightness, and the SZ effect to derive hydrostatic masses.

Having summarized the quantities observed in the X-ray and SZ measurements
in Section 3.2.5, we now use them to reconstruct the 3-dimensional gas density,
temperature, and pressure profiles. For this purpose, we adopt the following fitting
functions for the 3-dimensional profiles of T,.s(7), ne(r), and Pu(r). For Tyas(r), we
use the fitting formula calibrated to numerical simulations [108§]

Ty (r) = T [1 +A (1)} i , (4.21)

To

where Ty, A, 19, and by are free parameters. For the electron number density, we

1+ <%)2] ’ , (4.22)

where the free parameters are ng, r1, and b;. Finally, we adopt the generalized NF'W

assume a simple isothermal § model [86]:

ne(r) = Mo
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profile for the pressure proposed in Ref. [109],

Fy
Fe(r) = (r/r9)b2(1 + (1 /1ry)bs)ba’ (4.23)

for the 3-dimensional electron pressure profile with the fitting parameters Py, 72, bs,
and by.

We compute the projected profiles in Egs. (3.34), (3.36), and (3.37) with the fitting
functions of Egs. (4.21), (4.22), and (4.23), and determine the best fit parameters
Ty, A, ro, by, ng, 71, b1, Py, ra, by, by and by by comparing the profiles with the
observations from the X-ray temperature, X-ray surface brightness, and SZ effect
of the Coma Cluster in Section 4.2.4. In this way, we obtain the reconstructed 3-

dimensional gas density, temperature, and pressure profiles of the cluster.

Note that since we assume the hydrostatic equilibrium of Eq. (4.29) in the MCMC
analysis in Section 4.2.3, we only need to define two of these profiles, from which the
other profiles can be derived. One profile could also be the matter density profile;,
however, in that case, the exact analytic expressions of the fitting functions are not
necessarily reproduced. In Section 4.2.3, we choose to work with the electron number
density Eq. (4.22) and the NFW profile Eq. (2.41). The choice of the NFW profile
simplifies the computation of the chameleon force and allows the use of the analytic
approximation derived in Section 3.4.1. Hence, the degrees of freedom reduce to Ty,
ng, 71, b1, including the NF'W parameters M,;, and ¢ as well as the chameleon model
parameters [ and ¢ (or f2 and ¢ 2), where Tj is required to set the integration
constant in Eq. (4.30). This approach yields reasonable reduced x? values when fitted
to the observational data in Section 4.2.3.

Inferring hydrostatic and lensing masses from observations

The thermal mass M, of a cluster in Eq. (4.15) is determined by its gas density,
temperature, and pressure, which can be deduced from X-ray and SZ observations.
To obtain My, from observations, we reconstruct the 3-dimensional gas profiles using
parametric fits as described in detail in Appendix 4.2.2, which we substitute into
Eq. (4.15). We assume that the gas is fully ionized and that the electron temper-
ature is equal to both T, and the proton temperature. Note, however, that this
assumption is nontrivial because the equipartition timescale between electrons and
protons through Coulomb collisions is close to the dynamical timescale of the cluster
(see, e.g., [110]).

With the 3-dimensional temperature, electron density, and pressure profiles re-
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constructed as described above, we can now determine the thermal mass profile of
the cluster. From X-ray observations, we infer

I KTy cﬂndm_%wnﬂ%) (1.24)
e pm,G \  dlnr dlnr '
and similarly, from the SZ observations, we obtain
7,2 d P(ESZ)
Mthermal = _W dgT‘ y (425)

G pgas

where we use ne = (2 4+ [)Ngas/d and Po = nekTyes = (2 4 ) Peas/5. With this
reconstruction, we can directly compare the two mass profiles with the lensing mass

/TS

MWL = 47Tps7“§ ln(l +T/TS) — m s

(4.26)
which is obtained by integration over the NEFW density profile in Eq. (2.41), assuming
that ¢/Mp; < 1 so that the lensing potential is related to the matter distribution by
the standard Poisson equation. The subscript WL denotes weak lensing.

In the presence of a non-thermal pressure, Eqgs. (4.24) and (4.25) are modified
according to Eq. (4.18) with the mass

KTr (dinn®  din T 2 g
M+ My, = T (e | Dl )t (),
um,G dlnr dlnr Gpsa dr \1 — fun

(4.27)

inferred from X-ray observations, whereas a combination of SZ and X-ray observa-
tions implies

72 qdpS?) r? d g
My, + My, = — 2= - —< P%O. 4.28
th th Gpgags) dr Gpga(s) dr 1 — fnth g ( )

To derive our constraints in Section 4.2.3, we will assume hydrostatic equilibrium,
Eq. (4.11), and thus require

Mth + Mnth + M¢ = MWL; (429)
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where M, is the chameleon contribution described in Eq. (4.20) and My, << My, +
M. We refer the reader to Section 4.2.4 for an analysis of the validity of the hydro-
static equilibrium assumption in the case of the Coma Cluster.

4.2.3 Constraints on the model parameters from an MCMC analysis

We chose to work with the Coma Cluster where the non-thermal pressure is expected
to be subdominant (see, e.g., [111] and Section 4.2.4) and which has been well ob-
served with a range of different methods [111-114]. The contribution of non-thermal
pressure can also be assumed small in modified gravity [96]. Ref. [115] has recently
pointed out that the cluster may not be very typical: its X-ray temperature and star
formation rate is high but its kinematic features, like substructure and velocity dis-
persion, are not conspicuous. The authors urge caution in using the Coma Cluster as
a z ~ 0 baseline cluster in galaxy evolution studies. On the other hand, according to
references [116,117], the Coma cluster is in agreement with scaling relations obtained
from typical cluster samples. We cannot exclude the possibility that extraordinary
features of the cluster may affect our conclusions. However, our constraints rely
only on the observed distribution of gas and dark matter and we allow a number of
degrees of freedom in phenomenological models of these distributions, finding good
agreement of our fits with the observational data. We also carefully examine a dy-
namical equilibrium model of the Coma Cluster. Note that our method applies to
any cluster which is in hydrostatic equilibrium, and is not restricted to the Coma
Cluster.

Method

The NFW density profile is specified by the virial mass M,; and the concentration
parameter c. For the gas distribution, we use Model A which is characterized by the
NFW parameters and the parameters, Ty, ng, 7, and b;. Then the solution for gas
pressure is given by Eq. (3.66),

_GM(<r) B dW)) dr, (4.30)

Pgas(r) = Pgas,l) + Mmp/o ne(r) ( r2 Mp, dr

with the electron number density, n., represented by Eq. (3.30),

1+ (%)2] - . (4.31)

Ne = Ny
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The configuration of the scalar field is given by specifying the parameters 5 and ¢...
Then, the complete list of parameters we analyze in our MCMC study becomes Ty,
ng, by, r1, My, ¢, B, and ¢o. Once these parameters are specified, we can compute
the projected gas profiles in Eqgs. (3.34), (3.36) and (3.37), which are then compared
with the observational data from the X-ray surface brightness and temperature, and
the SZ observations. Here, to estimate the cooling function for the surface brightness,
we use the X-ray flux based on the APEC model corresponding to the observational
band from 0.5 keV to 2.5 keV [98], and we adopt the metal abundance of Z = 0.3Z
throughout the cluster. The metal abundance in the innermost region of the cluster
is larger than in the outer region, Z = 0.4Z; [104] and Z = 0.3Z, [118], respectively.
However, as the difference is small and does not affect our conclusions, we use Z =
0.325.

We estimate the “goodness-of-fit” by computing the chi-squared statistic

X2<Mvir7 C, To, Ny, bla 1, ﬁa ¢oo) = X%(T + X%B + X%Z + X%VL? (432)
where
(Tx(ri) —TRY)?
2 ) 7
X = E ooy , (4.33)
X p (ATXE)i )2
(Sx(rLs) — S%)?
2 s 7
X = E oy , (4.34)
Sp (ASXI,){)Q
Z (?J(M,z‘) - y?bs'>2
X%Z = (Ay(')bs.)z ? (435)
9 (Mvir - MWL)2 (C - CWL)2
= . 4.36
L (AMwi)? | (Bewn)? (4.36)

Here, Tx(ry ;) and T: ;g?;- are the theoretical and observed X-ray temperatures, and
AT;E':;S refers to the observational error. We adopt the analogous notation for the sur-
face brightness Sx and the y-parameter, defined by the SZ temperature as ATsz /Tewvs
—2y. In addition, Mwr, and cwy, are the observed virial mass and the concentration
parameter from weak lensing, respectively.

For the X-ray temperature profile, we use the XMM-Newton data reported in
Ref. [99] for the inner region and Suzaku data reported in Ref. [100] for the outer re-
gion. For the X-ray surface brightness profile, we use the XMM-Newton data reported
in Ref. [98] and for the SZ pressure profile, we use the Planck measurements [97].
Finally, we use the weak-lensing measurement of the Coma Cluster reported by Ok-
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abe et al. [102], who adopt a NFW fit in their analysis to obtain a virial mass for
the cluster of M;, = 8.927242°x10h~1 M, and a concentration of ¢ = 3.57%327 with
virial overdensity A, = 100.

In our likelihood analysis, we assume that the information contained in each data
point is independent of the other data points, in other words, that there is no corre-
lation between these four observations. This could be an over-simplification. These
four observations are based on different measurement principles, and the X-ray, SZ
effect, and weak-lensing observations are obtained at different wavelengths. On the
other hand, the information contained in the data comes from the same astrophysical
object, and thus the systematic errors might be correlated. For instance, the clumpi-
ness of the cluster and other non-spherically symmetric features would introduce a
correlated systematic error between the data sets. We do not take into account such
correlations in our analysis and leave it for future work to address these observational
issues in more detail. See, however, Section 4.2.4 for a discussion of these effects.
We also note that the covariance of errors is not taken into account in our analysis
because it is not available to us. For now, we assign a 5% systematic error to the
measurement error of the X-ray surface brightness.

MCMC analysis

We perform an MCMC analysis with the 8 model parameters Ty, ng, b1, 71, My, ¢, B,
and ¢o. 2, which completely describe the X-ray temperature and surface brightness
profiles, the SZ effect, and the weak-lensing mass profile as well as the chameleon
modified gravity model. We use the re-normalized parameters

_ b
1+

Poo2 = 1 — exp {— (m?%%ﬂ , (4.38)

instead of $ and ¢, as P2 and @2 span the complete available parameter space
of B and ¢ in the interval [0, 1]. Note, however, that some of the approximations
made in Section 3.4.1 do not hold in the extreme limits of ¢, » — 1 and 32 — 1. For
our analysis, we use the MCMC module included in the cosmomc [119] package,
which employs a Metropolis-Hastings [120, 121] sampling algorithm. We require a

B2 (4.37)

Gelman-Rubin statistic [122] of R — 1 < 0.03 to ensure convergence of our runs.
In Fig. 4.3 we compare the overall best-fit curves for the chameleon gravity model
(solid) and Newtonian gravity (dashed) from the combination of all of the observa-
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Figure 4.3: Top left panel: Radial gas temperature profile of the Coma Cluster. The circles
and boxes represent the data points and errors from the XMM-Newton measurements
by Snowden et al. [99] and the Suzaku measurements by Wik et al. [100], respectively.
Top right panel: Radial surface brightness profile of the Coma Cluster. The data points
represent the XMM-Newton measurements by Churazov et al. [98]. The error bars in
the original data, which only account for the Poisson noise contribution, are small. We
assign a systematic error of 5% to each data point to take into account clumpiness and
other non-spherically symmetric features of the cluster. Bottom panel: Radial Sunyaev-
Zel’dovich CMB temperature profile. The data points represent the Planck measurements
by Ade et al. [97]. The best-fit values of the chameleon model parameters are (3, ¢oo)=(15,
4 x10~*Mp,), where the model parameters characterizing the profiles are given in Table 4.3.
In the data analysis, we use the data points included within the radial range 100 kpc < r; <
1 Mpc and fit them using the model parameters Ty, ng, b1, 71, Myir, ¢ in the Newtonian case
(dashed lines) and in addition S and ¢ 2 in the chameleon scenario (solid lines). Note
that the best-fits of the Newtonian and chameleon cases almost overlap.
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Table 4.2: Best-fit values and 1-dimensional marginalized constraints (95% CL) for the
model parameters (7o, ng, b1, 71, Myir, ¢) characterizing the gas and dark matter profiles

obtained from an MCMC analysis of the joint observational data sets.

parameter Newtonian gravity Modified gravity
My 2.57T097 10'° Mg 2.461533 10'° Mg
c 2561049 2647072
no 2.337922 1073 /cm? 2.347521 1073 /cm?
by —0.92115-0%9 —0.91515-05
r 3.02+932 10 kpc 2.9975:9¢ 10% kpc
To 11.27078 keV 11.37079 keV

tional data sets, that is, minimizing x? in Eq. (4.32). The corresponding best-fit
parameter values are listed in Table 4.3 along with the 1-dimensional marginalized
95% confidence levels (CL). We show the 2-dimensional marginalized contours for dif-
ferent combinations of the model parameters for the Newtonian case, that is, where
we have fixed f§ = 0 and ¢, = 0, in Fig. 4.8. The best fit in this case yields a
reduced x? of x?/d.o.f. = 32/41. In Fig. 4.9, we show the analogous constraints for
the model parameters of the chameleon modified gravity scenario. The best fit in
this case yields a good reduced x? of x?/d.o.f. = 32/39. We refer to Section 4.2.4
for a discussion of possible sources of systematic error that have not been taken into
account in this analysis.

Finally, in Fig. 4.4, we show the 2-dimensional marginalized contours of the pa-
rameters [, and ¢, 2. Note that the lower shaded region is the allowed region.
We recall that [ describes the strength of the chameleon fifth force and ¢, deter-
mines the efficiency of the chameleon screening, and we introduced the parameters
Ba = B/(1+ B) and doo2 = 1 — exp(—¢oo/107*Mp)) instead of 8 and ¢, to de-
scribe the entire parameter space of the chameleon modification. Newtonian gravity
is recovered in the limits of 83 = 0 or ¢ 2 = 0.

The boundaries in Fig. 4.4 can be understood by considering the phenomenology
of the chameleon modification. At large 3, if the chameleon field is not screened,
the extra chameleon force reduces the hydrostatic mass compared to the Newtonian
mass estimate and it becomes inconsistent with the lensing mass (see Section 4.2.4).
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Figure 4.4:  95% (deep gray region) and 99% CL (pale gray region) contours for the
chameleon model parameters B2 = 3/(1+ ) and ¢oo 2 = 1 —exp(—¢oo/10~*Mpy), obtained
from the MCMC analysis of the 8 model parameters, Tp, no, b1, 1, Myir, ¢, B2, and ¢ 2,
using the joint set of X-ray, SZ, and weak-lensing data. The shaded region is the allowed
region.

This causes a tension in the desired parameter values when fitting the joint set of
observations and places constraints on the chameleon modification. On the other
hand, the chameleon force contributes only outside of the critical radius r., which is
determined by Eq. (3.60) as

re  Bpsr?

14 % = .
Ts MPl(boo

Due to the chameleon suppression mechanism, Newtonian gravity is recovered below
r.. To put a useful constraint on the chameleon force, r. must be smaller than the
size of the cluster, which is about 1 Mpc. More precisely, with increasing 5Mp)/ (oo,
the transition scale r, becomes large and eventually surpasses the size of the cluster,
in which case the chameleon mechanism completely screens the fifth force within the

(4.39)

cluster. At this point, no further constraints on the chameleon model can be obtained.
This implies that there is an upper bound on SMp;/¢s, which can be constrained.
In the opposite limit, when £ is small, the fifth force is weak and the modifications
become consistent with the observations within the given errors. Hence, at low (5 in
Fig. 4.4 the chameleon scalar field amplitude ¢ 2 is unconstrained.

With the minimal scalar field in the background, —A"™* ~ n=13 Ry ¢"H Mpy, the
Compton wavelength of the background scalar field today, assumed to be ¢, here,
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becomes [65]

RVARESL Mo 712
-1~ {_ﬁ Ry Pl} ~ {10—6—5 Pl} Mpec. (4.40)

* T n+1 o n+1 o

Whereas the chameleon mechanism suppresses the scalar field on scales below 7., on
scales larger than the Compton wavelength m_!, modifications of gravity are Yukawa
suppressed. With Solar System tests requiring that ¢, < 10793 [14,65] and with
n ~ O(1), one obtains m_! ~ Mpc. Hence, requiring Solar System tests to be
satisfied, standard gravity is recovered on scales beyond O(1) Mpec (cf. [123]). Since
we use observations on only scales smaller than 1 Mpc and constraints are weaker

than the local bounds, we can safely ignore the Yukawa suppression.

Constraint on f(R) gravity

Our constraints have important implications for f(R) gravity [13-15], which corre-
sponds to a subset of our models with the particular choice of the coupling constant
B = 4/1/6. Here, we adopt the Hu-Sawiki model [14]. The f(R) modification can
be related to the chameleon field ¢ via

2 ¢

fr=—\/3 Vo (4.41)

and hence, assuming that the Coma Cluster is isolated such that ¢, corresponds
to the background scalar field value, we have fry = —\/m(%o /Mpy). From the 2-
dimensional contours of (2, ¢oo2) in Fig. 4.4 we, therefore, estimate an upper bound
on f(R) gravity of ¢, < 7 x 107°Mp; or, equivalently, | fro| < 6 x 1075 at the 95%
CL.

We emphasize that this result is comparable with the bounds on f(R) gravity
obtained from cosmology, such as from the abundance of clusters [34, 69, 124] (see
Fig. 1.2) and the current constraints from redshift-space distortions in the large scale
structure of galaxies [125]. Note that, in the case of n = 1, the value of |fgo| is
related to the Compton wavenumber of the scalar field k- by

104\ /2
ko ~ 0.04 (| fR0|) hMpc ™. (4.42)

Then, |fro| < 6 x 107 can be rephrased as ke < 0.05 hMpc ™.
Note that the assumption that the Coma Cluster is an isolated system is non-
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trivial. It is well known that, on large scales, the cluster is connected to a network
of filaments [126,127]. Hence, ¢, or fro should really be understood as the scalar
field value in the mean density environment within a large radius around the Coma
Cluster, which we expect to be close to the background value [128]. This interpre-
tation does not differ from approaches taken to derive the constraints reported in
Fig. 1.2. Another possible violation of our assumptions which may be introduced
by the environment could be the presence of a large-scale non-spherically symmetric
feature, as discussed in Section 4.2.4.

4.2.4 Systematic effects

So far we have assumed hydrostatic equilibrium of the gas and a spherically symmetric
matter distribution. We therefore devote the remainder of this section to discuss the
systematic errors that can be introduced in our analysis due to deviations from
hydrostatic equilibrium and the presence of non-spherically symmetric features.

Invalidity of hydrostatic equilibrium

By employing the assumption of hydrostatic equilibrium in our analysis of the model
parameter space, we have supposed that, for the Coma Cluster, the hydrostatic
mass inferred from temperature and density, and that from pressure and density, are
consistent with each other as well as with the lensing mass. Here, we test the validity
of hydrostatic equilibrium within Newtonian gravity by comparing the different mass
estimates, and study the effects of introducing non-thermal pressure.

In the top left and top right panels of Fig. 4.5, we compare the observed X-
ray temperature and surface brightness, respectively, with the corresponding best fit
curves, which are obtained by fitting the projected profiles of Eqgs. (3.34) and (3.36)
with Egs. (4.21) and (4.22) to the combined X-ray data. Note that in the top right
panel, for each data point, we have assigned a 5% systematic error on top of the
measured errors. The measured errors for the X-ray surface brightness are extremely
small because they include only the Poisson noise contribution. Systematic errors can
be introduced by the clumpiness and non-spherical symmetry of the gas distribution
and should be taken into account.

The bottom panel of Fig. 4.5 shows the SZ observations, which we compare with
two different best-fit curves. The dashed curve is the best fit obtained by fitting the
SZ profile Eq. (3.37) with Eq. (4.23) and the solid curve is the best fit to the joint X-
ray temperature and surface brightness data, that is, with the same parameter values
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Figure 4.5: Same as Fig. 4.3, but curves are fitted by model-independent methods. Top
left panel: The solid curve is the projected emission-weighted X-ray temperature profile
in Eq. (3.36), using the fitting functions in Egs. (4.21) and (4.22) for the 3-dimensional
temperature and electron density profiles with best-fit parameter values (Tp, A, rg,by) =
(8.6 keV,0.082,3.9 Mpc, —5.3) and (ng,r1,b1) = (2.3 x 1073cm~=3,0.34 Mpc, —1), respec-
tively, for the joint X-ray data. Top right panel: The solid curve is the surface brightness
profile Eq. (3.34), using the fitting functions Eqgs. (4.22) and (4.21) for the 3-dimensional
electron density profile temperature profile with best-fit parameter values (Tp, A, 79, by) =
(8.6 keV,0.082,3.9 Mpc, —5.3) and (ng,r1,b1) = (2.3 x 1073cm~3,0.34 Mpc, —1), respec-
tively, for the joint X-ray data. Bottom panel: The dashed curve is the SZ effect of
Eq. (3.37), using the fitting function Eq. (4.23) for the 3-dimensional pressure profile with
best-fit parameter values (Py, b3, by, bs,74) = (1.1 x 1072 keV /cm?,0.14,2.2,1.1,0.53 Mpc).
The solid curve is the best fit model from the joint X-ray observations.
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Figure 4.6: Radial mass profile of the Coma Cluster. The shaded region is the obser-
vationally allowed lo region from the weak-lensing observations of Ref. [102]. The blue
solid curve is the thermal mass component My, estimated from the X-ray observations
only, and the black solid curve is My, estimated from the combination of X-ray and SZ
observations. The blue dashed and black dashed curves correspond to the same colour solid
lines, however, now including a large non-thermal pressure contribution.

used in the top left and top right panels of Fig. 4.5. Note the difference between the
two curves.

Recently, Fusco-Femiano et al. [104] analyzed the consistency between the ob-
servations of the X-ray surface brightness, X-ray temperature, and SZ observations,
adopting a “Supermodel”. The Supermodel yields a direct link between the X-ray
and the SZ observations based on the entropy profile. They report a tension between
the pressure from the X-ray observations and that from SZ observations in the Coma
Cluster. The authors argue that an additional non-thermal pressure resolves the
tension. In this paper, we adopt a similar observational data set and reconstruct
the 3-dimensional gas profiles using the relations described in Appendix 4.2.2. We
find a similar tension in our results and model a non-thermal pressure component as
described in Section 4.2.2; this, however, is slightly different from the non-thermal
pressure discussed in Ref. [104]. The non-thermal pressure in Ref. [104] is a con-
stant, which is independent of the radius. The non-thermal pressure we introduce in
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Figure 4.7: Same as Fig. 4.6 but in the presence of the chameleon field. The red solid and
red dashed curves are the combination of the thermal mass and chameleon mass compo-
nents, Mgy, + My, when (8, poo/Mp1) = (1,1.5 x 107%) and (1.2,2 x 107, respectively.

Section 4.2.2 is a function of radius, and its fraction in the total pressure becomes
large only in the outer region. Nevertheless, our models fit the data reasonably well
and can be used to put a useful constraint on the chameleon modification. This is
because we use limited data in only the range of radius 100 kpc < r; < 1 Mpc, where
the shape of the mass profile drives the constraints.

Figure 4.6 shows the different radial mass profiles reconstructed from the different
gas observations and the lensing mass in Newtonian gravity, including effects from
the non-thermal pressure introduced in Section 4.2.2. The blue solid curve is the
hydrostatic mass from Eq. (4.15) with ne(= pgas(2+p)/5pm,,) and Tyas reconstructed
from the X-ray observations. The black solid curve is the hydrostatic mass from
Eq. (4.13) with pg.s and P, reconstructed from the X-ray and SZ observations.
Finally, the shaded region in Fig. 4.6 shows the allowed lo-region of the weak-lensing
mass profile fitted using an NFW density profile with M5, = 8.92724%°x10h~1 M,
and ¢ = 3.5ij:%. At the scales of 100 kpc < r < 1 Mpc, the blue and black
curves are consistent within the shaded region, while for » < 100 kpc, the curves
are out of the shaded region. Thus, for 100 kpc < r < 1 Mpc, although the mass
estimates differ up to the 50% level, within the observational error of the lensing
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mass, the mass profiles estimated by the gas observations are consistent with each
other and the lensing mass profile. This suggests that hydrostatic equilibrium is a
good approximation for the outer region of the Coma Cluster, given the error of the
lensing measurement. The discrepancies in the inner region » < 100 kpc are a known
problem in the mass reconstruction and beyond the scope of this thesis. The validity
of hydrostatic equilibrium in the inner region has been investigated by many authors
(see, e.g., [129-131] and references therein) with no consensus found. Note, however,
that the weak-lensing observations are not sensitive to the density profile in the inner
region [102]. We therefore base our analysis on a simple extrapolation of the NFW
profile. Recent lensing observations of the Coma Cluster [132] support the validity
of this assumption for 100 kpc < r < 1 Mpc as well as indicating its limitations for
r < 100 kpc.

To estimate the influence of the non-thermal pressure on the mass profile, the blue
and black dashed curves in Fig. 4.6 show the sum of the thermal mass profile M, and
the non-thermal mass component M, determined by Eq. (4.18). The blue dashed
curve is obtained from X-ray observations using Eq. (4.27), whereas the black dashed
curve is obtained from the combination of SZ and X-ray observations using Eq. (4.28).
At r = 1 Mpc, the non-thermal pressure enhances the total hydrodynamical mass
estimate by a few tens of percent. This reflects the limited effect of the non-thermal
pressure predicted by hydrodynamical simulations.

Finally, we include the chameleon field in our mass comparison. In Fig. 4.7, we
show the thermal radial mass profile in combination with the chameleon mass com-
ponent: My, + M, (red curves). The red solid and red dashed curves are obtained for
(B, oo/ Mp1) = (1,1.5 x 107%) and for (1.2,2 x 107?), respectively. These two sets of
parameters for the chameleon model illustrate typical scenarios where the chameleon
force causes a possible discrepancy between the gas and the lensing masses. Note
that these curves are determined from My, and My in Eq. (4.19), where M,y is recon-
structed from the observational data and M, is given by Eq. (4.20), and, therefore,
the slightly oscillatory feature of the 8 = 1.2 curve does not reflect any physically
meaningful effect. The blue curve represents the case without the chameleon force,
which is close to the red solid curve and the red dashed curve in the inner region,
where the chameleon field is suppressed. Further out, the chameleon force reduces
the hydrostatic mass My, + M, with respect to the mass obtained in Newtonian
gravity because the chameleon force introduces an extra attractive force. As is clear
from this figure, we can put a constraint on the chameleon model that influences
the gas distribution in only the range » < 1 Mpc. The critical radius at which the
chameleon force begins to contribute is determined by 3/¢« [see Eq. (4.39)] and the
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amplitude of the chameleon force is determined by . Thus, these two parameters
in the chameleon models are constrained by comparing the hydrostatic mass and
lensing mass under the assumption of hydrostatic equilibrium.

Non-spherical symmetry

Next, let us consider systematic effects that can be introduced by deviations from
spherical symmetry. Here, we assume that the 3-dimensional profiles of the electron
number density, temperature, and pressure are

ne(r, 0, (10> = ﬁe(r)[l + 0n, (7‘, 0, @)]’ (4'43)
Tgas(T‘, 87 @) - Tgas(r)[l + 6Tgas (Ta 97 90)]7 (444)
Pe(rv 07 ‘:0) = ]36(7’)[1 + 5Pe (7’, 9’ 90)]7 (445)

where d,,,d7,,, and dp, describe deviation from the spherically symmetric profiles,
7e(1), Tyas(r), and Pu(r), respectively.

The effect of clumpiness on the electron number density can then be estimated
as follows. Introducing an average over the spherical symmetric profiles, we assume
(6n.) = 0 and (62 ) # 0. Assuming that the temperature perturbation is negligible,
that is, d7,,. = 0, the observed X-ray temperature profile is not changed. The SZ
profile is not affected by clumping either because (0p,) = (d,,,) = 0 from the equation
of state. However, the surface brightness is increased by the clumpiness and can be
rewritten as

Sx o /ngdz =(1+ <5§e>)/ﬁ§dz, (4.46)

where 1+ (62 ) is referred to as the clumping factor. This affects the reconstruction of
the electron number density. When the clumping factor is non-zero, n, is replaced by
Ne/+/1 + (62 ). Then, the thermal mass profile reconstructed from observations of the
SZ effect and X-ray surface brightness, Eq. (4.25), is enhanced by a factor /1 + (02 ).
However, the thermal mass profile reconstructed from X-ray observations, Eq. (4.24),
is not affected by the clumpiness. In the case where 14-(d2 ) = 1.5, which corresponds
to the estimated clumping factor for the A1835 cluster [133], we have an enhancement
of the hydrostatic mass by a factor ~ 1.2. Thus, systematics from the clumpiness
could be a few tens of percent.

Besides the clumpiness, large-scale spherical asymmetries of a cluster may cause
an additional systematic bias. Three-dimensional ellipticity as well as substructures
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of the Coma Cluster have been studied in Ref. [134]. They reported an ellipticity
of the electron density in the cluster of only ¢ = /1 —e? = 0.84, where e is the
eccentricity, so we can ignore the effect in our analysis. Nonetheless, the assumption
of spherical symmetry introduces systematic errors which should be investigated in
more quantitative detail in a future work.
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4.3 The Galileon field applied to the Coma Cluster

4.3.1 Introduction

The Vainshtein mechanism [17] is another relevant screening mechanism, which oc-
curs in the Dvali-Gabadaze-Porrati (DGP) model [18,19], the simplest cubic Galileon
model [20-23], and its generalized version [24,25]. Our generalized cubic Galileon
model is a generalized version of the simplest cubic Galileon model that retains im-
portant features and contains the DGP models. In these models, a scalar field giving
rise to a fifth force is screened due to self-interaction on small scales where density
perturbations become nonlinear.

Suto et al. [41,60] have investigated a constraint on a generalized Galileon model
exhibiting the Vainshtein mechanism, using the observed weak-lensing profile of clus-
ters. They put a constraint on the transition scale and the amplitude of the modifi-
cation of the lensing potential.

The purpose of the present analysis is twofold. First, it is a generalization of the
methodology for testing a modified gravity model with a galaxy cluster. For this, we
consider a generalized cubic Galileon model. Within the quasi-static approximation,
the generalized cubic Galileon model is effectively characterized by 3 parameters: g,
pr, and e. Detailed definitions are given later but, broadly, uc and pup, are parameters
that modify the effective amplitude of the gravitational potential and the lensing
potential in the non-screened region, while € determines the scale of the transition
from the non-screened region to the screened region due to the Vainshtein mecha-
nism. The parameters ug are constrained by observations of the gas distribution,
in particular the X-ray surface brightness profile and the SZ effect. However, the
parameter py, is constrained by observations of lensing measurements alone. There-
fore, a combination of observations of the gas distribution and the lensing signal is
essential to put a constraint on the 3 parameters characterizing the modified gravity
model. We demonstrate how a combination of multi-wavelength observations of a
cluster can be used to put a constraint on a generalized Galileon model.

The other purpose is to improve the analysis in Ref. [43] using new X-ray data
[135,136] and lensing [132] observations of the Coma Cluster. In our method of test-
ing gravity modifications with a galaxy cluster, the modeling of the gas distribution
is important. A basic assumption of the model for the gas distribution is hydro-
static equilibrium, that is, a balance between the gas pressure gradient force and the
gravitational force. In the region where the fifth force is influential, the condition
of the hydrostatic equilibrium is changed, and the gas density profile is modified.
However, in general, galaxy clusters are dynamically evolving, and a deviation from
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the equilibrium could be influential. Therefore, we first check the consistency of our
model by comparing theoretical predictions with various observations of the Coma
Cluster, including new X-ray data and lensing measurements.

This section is organized as follows. We first demonstrate how well our model
fits observations of the Coma Cluster in Section 4.3.2. We also validate our model
against the influence of non-thermal pressure. In Section 4.3.3, we put a constraint
on the generalized cubic Galileon model. In Section 4.3.4, we discuss degeneracies of
parameters and systematic errors focusing on the special circumstance of using the
Coma Cluster.

4.3.2 Consistency test with Newtonian gravity

In this section, we use Coma Cluster observations. The Coma Cluster is one of the
best observed nearby clusters, and has redshift of z = 0.0236. The X-ray distribu-
tion [98-100, 118, 135-140], the SZ effect [97] and weak-lensing [102, 132] have been
reported. These observations revealed that the Coma Cluster has substructures and
orientation dependence in the gas temperature profiles. The Coma Cluster is thus an
unrelaxed system. However, we will show that our model based on hydrostatic equi-
librium fits the data of the X-ray brightness profiles [135,136], the SZ effect profile
from the Planck measurement [97], and the weak-lensing profile from Subaru obser-
vations [132]. In general, the assumption of hydrostatic equilibrium holds only in the
intermediate region of clusters, because of the cooling of the gas in the innermost
region and environmental effects in the outermost region. So we use data points in
the range 200 kpc to 1.5 Mpc to get rid of systematic effects from the innermost and
outermost regions of the cluster.

In this work, we use the observational data of the XMM-Newton [135,136], which
are different from those used in a previous paper [43]. In that paper, the weak-
lensing profile is not used; only the parameters M; and c are used as a prior profile
from [102]. However, use of the weak-lensing profile is essential to our analysis of the
generalized Galileon model.

Method

We first assume hydrostatic equilibrium between the gas pressure gradient and the
gravitational force in the galaxy cluster:

| dPy AU
Pgas dr — dr’

(4.47)



80 4.3 The Galileon field applied to the Coma Cluster

where Pt = Pgas + Pon is the sum of the thermal gas pressure, Py,g, and the non-
thermal pressure, P.y,. Here, we assume the NF'W profile (2.41) and Model B for
the solution of the gas distribution, which is given by Eq. (3.33),

P.(r) = noTp exp ( /O Cdr k‘ﬁi) {—%D , (4.48)

with electron temperature

. b —b2/b1
1+ (—) ] . (4.49)
(&1

Thus our gas distribution model includes 7 parameters: My, ¢, ng, 1o, b1, be, and
r1. Using our model of the 3-dimensional profiles, we construct X-ray observables
and the CMB temperature distribution. We use the X-ray brightness, By, defined
by Eq. (3.35) for the X-ray observable, and the CMB temperature distortion charac-
terized by Agz or the y-parameter defined by Eq. (3.37).

Next, considering a spatially flat cosmological background, and working in the
cosmological Newtonian gauge, we use the reduced shear profile, g,, defined by
Eq. (3.43) for the lensing observable.

To compare the above theoretical predictions with observations of the Coma Clus-

Te(’l“) = TO

ter, we introduce the chi-squared statistic produced by summing the chi-squared
statistic for each observation as

X§<B+SZ+WL = X%B + X8z + XL (4.50)
where

(Bx(ri) — BYr)?

Xg(B - Z (ABs)2 ) (4.51)
p X,
(y(roiq) —y™)?
Xz = Z (J_qubs.)Z ) (4.52)
(g1 (riq) —g2%)?
X%VL - Z (Agobs.);_7 ) (453)
i +51

are the chi-square values for the X-ray brightness, the SZ effect and the weak-lensing,
respectively. We note that covariance of errors is not taken into account in our
analysis and leave it for future work to study how the observational systematics
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Table 4.3: Best-fit parameters and 1-dimensional marginalized constraints (68% CL) to
characterize the gas and lensing profiles. To avoid degeneracy of parameters, we fix by
and bs. Our results do not depend on whether these parameters are fixed or not. This
table shows the results for Newtonian gravity (second column) and the generalized Galileon
model with all modification parameters (third column). The minimum chi-squared and the
number of degrees of freedom, d.o.f. = (number of data points) — (number of model
parameters), are listed at the bottom of each column.

Parameter Newtonian gravity Modified gravity (full parameters)

My 1.0819:88 x 10'° Mg, 1.0410-38 < 10'° M,

c 3.591033 3.6470:20

no 6.141038 x 1073 /em? 6.177020 x 1073 /em?
To 6.36701! keV 6.357017 keV

by 2.6 (fixed) 2.6 (fixed)

by 0.5 (fixed) 0.5 (fixed)

) 0.747008 Mpc 0.75700% Mpc

¢ - 0.43

e - 0.24

1 - 0.55

Minimum y2/d.o.f. 58/44 57/41

affect our analysis.

We perform an MCMC analysis using modified Monte Python code [141] that
employs a Metropolis—Hastings [120,121] sampling algorithm. This analysis includes
5 parameters in the chi-squared statistic, xjx sziwr- We require Gelman-Rubin
statistics [122] of R — 1 < 0.001 for each parameter to ensure convergence of our
runs. The black dashed curve in each panel of figure 4.10 shows the best-fit pro-
files for Newtonian gravity. The minimum value of the chi-squared statistic is
XxBiszewr/d.of. = 58/44, and the 2-dimensional marginalized contours of differ-
ent combinations of model parameters are shown in figure 4.13.
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M(<r) [10" M )]

radius [Mpc]

Figure 4.11:  Spherical masses enclosed within different radii. The gray hatched region
denotes the 1o uncertainty interval for the lensing mass determined solely by weak-lensing
analysis [102]. The blue and red regions denote the 1o uncertainty intervals for hydrostatic
masses without and with the non-thermal pressure component, respectively, determined by
our joint-fit method. The hydrostatic and lensing masses agree with each other, irrespective
of the presence or absence of a non-thermal pressure component.

Non-thermal pressure possibly caused by turbulent gas and bulk motion causes
a systematic error when comparing observations of clusters with theoretical predic-
tions. The estimated fraction of non-thermal pressure in the Coma Cluster can be
larger than that of the thermal pressure by 10% [142]. Here, we estimate how non-
thermal pressure affects our fitting based on a numerical simulation. To this end,
we estimate the hydrostatic masses by comparison with the X-ray brightness and SZ
effect profiles of the Coma Cluster. Here we define the non-thermal fraction f., by
futh = Path/(Path + Pias), where Py, and Py, are the non-thermal pressure and the
thermal pressure, respectively. In the case which includes the non-thermal pressure,
the thermal pressure is replaced by Pgas = (1 — futh)Piot- We consider the following
non-thermal pressure fraction as a function of the radius,

r Nnt M200 nMm
in (1) = Qe (1 4 2)% [ — —) 4.54
f th(r) o t( + Z) (%OO) (3 % 1014M®) ( )
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which is a theoretical prediction from numerical simulations in Ref. [106,107]. The
parameters 500 and Msgy mean the radius and mass where the matter density in the
galaxy cluster is 500 and 200 times of the critical density, respectively. In the present
analysis we adopt (g, Bnt, Tnt, andny) = (0.18,0.5,0.8.0.2), which are the best-fit
values in Ref. [106] and are consistent with those in [142].

The best-fit profile in the presence of non-thermal pressure is not significantly
different from the best-fit profile in the absence of non-thermal pressure. Figure 4.11
shows the enclosed mass profiles as a function of radius. The gray hatched region
is the 1o uncertainty interval for the lensing mass. The blue and red solid regions
show the 1o uncertainty intervals for hydrostatic masses fitted without and with non-
thermal pressure, respectively. The hydrostatic mass estimates are in good agreement
with the lensing mass, regardless of whether the non-thermal pressure components
are included. This shows that our fitting method is not affected by non-thermal
pressure, so we do not consider the non-thermal effect when putting a constraint on
the modified gravity in the next section.

4.3.3 Constraints on the model parameters from an MCMC analysis

As described in Section 3.4.2, using the solution for the Galileon field, the gas pressure
profile assuming Model B (3.33) and convergence (3.39) is given by

_ Toowmy | GM(<T) | pG ps T8
P.(r) = Pyexp (/0 drkTe(r) E— + PHOT 1—y/1+ 1262£ﬁm(7“) ,

(4.55)
2 [ 3
K(rp) = E_/o dz [p(r) — N;;OQCO <1 — \/1 + 1262%%771(7’))
p(r) — 3psrim(r)/r® ML} (456)
V1 +12Ep3m(r) [ peor

Since the gas pressure tracing the matter density deceases as the cluster-centric radius
increases, the pressure gradient is restricted to dP,/dr < 0. This gives constraints
on ug. Instead of pg, pr, and €, we introduce

/ MG
—_H#e 4.57
j27¢! 1+ |NG| ( )
= (4.58)

L+ [’
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Figure 4.12:  The 68% CL (dark gray regions) and 95% CL (light gray regions) 2-
dimensional marginalized contours for the generalized Galileon model parameters. The red
plus, green cross, and yellow Y symbols indicate models for the simplest cubic Galileon,
sDGP, and nDGP models, respectively.

¢ =1—exp(—e), (4.59)

which, respectively, span the complete available parameter space of ug and py, in the
interval [—1, 1] and that of € in the interval [0, 1]. General relativity is recovered when
pe = pp, = 0 or € — 1. Using the same method adopted for the Newtonian case, we
perform an MCMC analysis for the modified gravity model including 8 parameters
with the chi-squared statistic, X%y g7 wr, defined by Eq. (4.50).

Figure 4.14 shows the 2-dimensional marginalized contours of different combi-
nations of the model parameters. The best-fit parameters and their 1-dimensional
marginalized 68% errors are listed in Table 4.3. The red curve in each panel of
figure 4.10 shows the best-fit profile for the generalized Galileon model with the
minimum value of the chi-squared/d.o.f., xXp, sz wi/d-0.f. = 57/41. These profiles
almost overlap with the profiles for Newtonian gravity (black dashed curves), which
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shows that a large deviation from Newtonian gravity is rejected. We note that there
is no significant difference between the red and black curves in the best-fit profiles.
There is a slight difference in the shear profiles at large radii, » > 1Mpc, which seems
to originate from the large error bars of the shear data.

Figure 4.12 shows 2-dimensional marginalized contours of the confidence levels for
the parameters pi, py, and €. The parameters p and pp, are from the modification
of the gravitational potential and the lensing potential, and €' is a parameter char-
acterizing the Vainshtein radius. Large values of pg and pf, are rejected at the 68%
confidence level, which indicates that the possibility of a large deviation from Newto-
nian gravity may be ruled out, depending on the parameter ¢/. When € is smaller, the
Vainshtein radius is smaller and we can put a tighter constraint on pug and py,. How-
ever, when ¢ is large, the Vainshtein radius becomes large, which makes it difficult
to distinguish between the Newtonian gravity model and the modified gravity model
due to the Vainshtein mechanism. The red-plus, green cross, and yellow Y symbols
in figure 4.12 indicate representative models (the simplest cubic Galileon model, the
sDGP model and the nDGP model, respectively) at the redshift of z = 0.0236. The
parameter values for each model are shown in Table 4.4.

In a previous work [41], only a constraint on the ur and e parameter space is
obtained, based on the lensing observations. In another recent related study, Barreira
et al. investigated cluster masses and the concentration parameters in modified
gravity models using shear profiles [143]. They focused their investigation on the
mass—concentration relation of 19 X-ray selected clusters from the CLASH survey in
the simplest cubic Galileon and Nonlocal gravity models. They found that the mass—
concentration relation obtained from the shear profiles for the cubic Galileon model is
the same as those for the ACDM model, and no stringent constraint on the modified
gravity models is obtained. Unfortunately the constraint obtained in the present
paper is not very stringent either, but there is one advantage. Models with p;, = 0,
like the sDGP and nDGP models, are indistinguishable from Newtonian gravity in the
method based on lensing observations. On the other hand, our method of combining
the gas and weak-lensing profiles can solve the problem of this degeneracy. Future
observations should improve our constraint.

4.3.4 Discussion

Degeneracies of parameters

In the MCMC analysis in the previous section, we do not take the range of 0 < e < 0.1
into account because it is hard to converge the MCMC runs because of degeneracy in
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Table 4.4: Values of modified gravity parameters for each model at the redshift of z =
0.0236.

Models € (€) e (pe) pr, (k)
simplest cubic Galileon | 0.77 (0.44) 0.77 (0.44) 1.12 (0.67)

sDGP ~0.26 (—0.22) 0 (0) 0.53 (0.43)

nDGP 0.20 (0.18) 0 (0) 0.10 (0.09)

the parameter space. Here, we consider this parameter region to provide a complete
discussion.

First, taking the limit € — 0, which means the fifth force is unscreened everywhere,
the solutions of the gas pressure (4.55) and the convergence (4.56) are reduced to

P.(r) = Pyexp < /0 Cdr k‘;”é;) {— GMT(; D ue)D 7 (4.60)
) = (k) [ dzpto) (4.61)

Then, the pressure profile and the convergence profile are simply modified by factors
of (1+pg) and (1+ py), respectively. In this case, we have P, oc (14 ug)Myiem(c)/c?
and k o< pg o¢ (1+ ) Myic®/m(c), so there are degeneracies between the parameters,
M, ¢, pi, and pp,. Figure 4.15 compares the results of the MCMC analysis with €
fixed at zero (dark blue region (68% CL) and medium blue region (95% CL)) and the
results of Newtonian gravity (dark gray region and medium gray region), which are
the same as those of figure 4.13. The best-fit parameters are shown in the Table 4.5.
The CL contours of the blue regions reflect the degeneracy between the parameters
My, ¢, pa, and pg,.

Next, we show how the presence of the fifth force affects the parameter estimation.
For example, the blue confidence contours in figure 4.16 show the 68% and 95%
confidence contours of the case with ¢ = 0.05, ug = 0.2 and pur, = 0. M, and ¢
are different from those of Newtonian gravity (gray regions), but other parameters,
ng, Tp and by, are not changed. The minimum value of chi-squared/d.o.f. in the
presence of the fifth force is x%p gz 4wr,/d.0.f. = 60/44, which is almost the same
as the Newtonian case, despite the different cluster parameter, M, ~ 0.9 x 10" M,
(see Table 4.5). This result exemplifies the general result that the presence of the
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Table 4.5:

Same as Table 1 but for the results of the generalized Galileon model in the

unscreened limit with only € fixed (¢ = 0, second column), and the case of fixing all the
modified gravity parameters (¢ = 0.05, p = 0.2, and g, = 0, third column).

Parameter Modified gravity (unscreened) | Modified gravity (fifth force)

My 1.261793% x 10'° Mg 0.861002 x 10 Mg

c 3781012 3.841024

no 6.151027 x 1073 /em? 6.207027 x 1073 /cm?
To 6.35701% keV 6.367013 keV

by 2.6 (fixed) 2.6 (fixed)

by 0.5 (fixed) 0.5 (fixed)

1 0.75700% Mpc 0.757008 Mpc

€ 0 (fixed) 0.05 (fixed)

e —0.10 0.2 (fixed)

s —0.05 0 (fixed)

Minimum y2/d.o.f. 57/42 60/44

attractive fifth force affects the estimation of the NFW parameters, M,; and c.
This is understood to be a consequence of the degeneracy between the modification
parameters pug and pp, and M, and c.

Systematic errors

We now discuss possible systematic errors. In our analysis, we have assumed spherical
symmetry for the matter distribution and an equilibrium state for the gas component,
that is, balance between the pressure gradient and the gravitational force (including
the fifth force in the case of its presence). We have demonstrated that non-thermal
pressure at the level suggested by numerical simulations does not alter our results.
A future X-ray satellite, ASTRO-H [144], will observe turbulent gas motion in the
Coma Cluster in more detail, which will provide relevant information relating to
our result. However, observations of the Coma Cluster suggest substructures [102,
132,138, 145-147] and orientation dependence [118,137,140], so the cluster is not



Chapter 4 Testing modified gravity models 89

thought to be a relaxed system. Dynamical states of the Coma Cluster would give
a systematic difference between our results and temperature measurements. Our
fitting results show that the temperature of the Coma Cluster is around 6.4 keV (see
Table. 4.3), but this result seems lower than those of X-ray observations [99,100,118,
135-137,140], which estimate that the temperature of the Coma Cluster is around
8-9 keV. Comparing the mass-temperature scaling relation for a sample of relaxed
clusters [148] with an X-ray temperature observation of the Coma Cluster [135,136],
we find that the observed temperature is higher than the temperature expected from
the mass. The enhancement is at the 3¢ level of intrinsic scatter [148]. Similar
results of high temperatures have also been reported by a comparison with other
clusters [115]. Depending on the orientation and excluding the central region, the
temperature of the Coma Cluster could be around 6-7 keV [135,137], but it is difficult
to take this dependence into account. Therefore, a systematic error in temperature of
the Coma Cluster would have a substantial impact on the proposed fitting method.
To reduce the possible dependence of cluster-dynamical states and halo triaxiality,
it is of vital importance to increase the number of sampled clusters. Ongoing and
future multi-wavelength surveys, such as the Hyper Suprime-Cam (HSC) optical
survey', the Dark Energy Survey (DES) [149], the eROSITA X-ray survey [150], and
the ACT-Pol [151] and SPT surveys [152], will be powerful aids to providing better
constraints on gravity models.

"http:/ /subarutelescope.org/Projects/HSC/surveyplan.html



4.3 The Galileon field applied to the Coma Cluster

90

*(pe110p) SUOTINGLIISIP POOYI[eYI] pue (PI[OS) SIUTRIISUOD PIZI[RUISIRUI [RUOISUSWIP-T Y} MOYS
Mo1 yoeo jo sjo[d jsow-yysir oy, “[pdy] T pue [Aoy] Of ‘[o_wo. 1] Ou O [Opy,,01] My ‘s1ejourered [ppouw G oYy 10§
SINOJUOD PAZI[RUISIRW [RUOISUSWIP-¢ (U018l ARIS wnipew) ) %G pue (uordar Aeid sy1ep) ) %9 Y], :£1'§ 2Im3rg

. S |
s¢¢ 67 sgL VL 856

/0 =

GLg S

6'9
6'¢

GG'e ©

cv




91

‘stshene HINDIN A3 ut Trf pue Pl ¢ 5 s1ojourered woryeoyrpowr oty Surpnydul jnq ¢ ISy se owreg T 2SI

Chapter 4 Testing modified gravity models

b o % L oL ou 2 o
0 0 I S50 VO ¥60 S50 /S0 89 9 69 SI9  ¥S vv  S9E 6T bl ! g
i I L — —v
I-
L b=
—1
: 10
‘ ,« - i
4 !,
————150
‘ Hsszo >
i 60
9

O




4.3 The Galileon field applied to the Coma Cluster

92

(e1'F 31 se oures) A)ARIS URTHOIMAN I0] SINSAI oY) a1e ()
94G6) UOLSaI ARIS WNIPOW oY) pue () %89) UOISal ARI3 YIep oY, "() = 2 UM [opowl A}IARIS POYIPOW 9y} I0] SISATeuR
DINDIN @3 Jo symsal o) are () %G6) WOISal anjq wnipsw oY) pue (7T %K9) UOI3aI an[q YIep oy ], :GT'F 2I3rg

g Ol ) 2
29€0 ¥2/00 8lg0- 8620 80¥0'0 ZS1'0- ¥6°0 §9S82°0 /50 89 ) ’ ) 88'€ 9/¢ 8
" FT " ] F J SR F ‘ _ T ™ _ - 8120~

¥2.0°0 =<

129€°0

LG91°0-

80500 S~

8€2°0
LS50

6620 =

89
'S

G193

69
9/'¢

8g'e @

Aunelb payipoN —
Ainelb uejuoymeN  ——




93

Chapter 4 Testing modified gravity models

(gT°F S14 se oures) A)ARIS URTUOIMAN 0] SINSAI oY) aIe (D) %GE) UOISal ARIS wnIpawu
o) pue (D) %R89) uordax Le1d yrep ayy, ‘0 = W pue g0 = P ‘o0 = 2 YIM [opowr £)1ARIS POYIpOW A} 10§ SIsATeue
DINDIN @3 Jo symsal o) are () %G6) WOISal anjq wnipsw oY) pue (T %K9) UOI3aI an[q YIep oy ], :9T'F 2I3rg

o) HSE\«
_.o,.¢ mh,.m 6'¢ N.,NF _..,o_‘

8’9
'S

GL'g S

69
6'¢

QL€ o

C 119'v

Auneib payipoyy —
AlAelb ueluoymaN =—




Chapter 5

Summary and conclusion

In this thesis, we have studied the effects of modifications of gravity on gas distribu-
tions in galaxy clusters.

First, in Section 3, we derived the gas distribution profiles in an analytic manner
under the assumption of hydrostatic equilibrium between the gas pressure gradient
and the gravitational and fifth forces. In particular, using an analytic chameleon field
solution, we also demonstrated that the attractive fifth force may give rise to a steep
drop in the gas distribution in the outer region of a galaxy cluster. This feature is
more significant when the mass of the cluster is small.

The gas density profile depends on the coupling strength between the chameleon
field and gas components, 3, and the background chameleon field, ¢, but it does not
depend on the potential parameters, n and A. This provides us with an opportunity to
constrain # and ¢, by comparison with observations. Using this feature, we showed
that we can put a constraint on ¢, in the chameleon model, using the observation
of the X-ray temperature profile of the Hydra A cluster [94] in Section 4.1. We
obtained a useful upper bound of ¢o, < 107*Mp; in the case B = 1 !; however,
no useful constraint was obtained in the case = 1/ v/6, which corresponds to an
f(R) model. To obtain a useful constraint, observations of the outer region of a
smaller mass cluster are more advantageous. Furthermore, a combination with other
observations, like weak-lensing measurements, might improve the constraint.

Next, in Section 4.3.2, we proposed a novel method to test gravity in the outskirts
of galaxy clusters by comparing their hydrostatic and lensing mass estimates. The
hydrostatic mass profile of a cluster can be inferred from the 3-dimensional gas tem-
perature, electron number density, and electron pressure profiles obtained from the

'"When we take environmental effects into account, this bound might be understood as a bound around
the Hydra A cluster.

94
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projected observations of the X-ray surface brightness, the X-ray temperature, and
the Sunyaev—Zel’dovich (SZ) cosmic microwave background temperature profile, by
implementing a parametric reconstruction method. The dark matter density profile
can be further constrained by weak-lensing observations. Here, we adopt the NF'W
density profile to describe the dark matter distribution within the cluster. In the
case of hydrostatic equilibrium of the gas and standard gravity, the different mass
estimates should agree. In the presence of a chameleon field, coupling to the matter
fields and introducing an attractive fifth force, the masses estimated from gas obser-
vations and from lensing changes differ and can therefore be used as a test of gravity
models.

Combining measurements of the X-ray surface brightness, the X-ray tempera-
ture, the SZ effect, and lensing of the Coma Cluster, we performed a Markov chain
Monte Carlo analysis of the model parameter space describing the cluster profiles
and gravity theory. We have obtained competitive constraints on the chameleon
gravity model parameters, § and ¢, the coupling strength of the chameleon field
and the field value in the environment of the cluster, which we approximate here by
the cosmological background. In contrast to the study in Ref. [42] (Section 4.1) that
constrains the modified gas distribution in the Hydra A cluster measured using the
X-ray temperature, our constraint does not rely on the assumption of a polytropic
equation for the state of the gas, employs a Bayesian statistical approach for infer-
ring parameter constraints on the full set of model parameters, and yields a tighter
bound on the modified gravity parameters by using the combination of X-ray, SZ, and
lensing observations available for the Coma Cluster. We emphasize that our results
provide a powerful constraint on f(R) gravity models, corresponding to a particular
choice of the chameleon coupling constant § = \/m, for which we obtain an upper
bound of | fro| < 6% 107° at the 95% CL. This bound is comparable with the current
strongest cosmological constraints on f(R) gravity (see Fig. 1.2).

Finally, in Section 4.3, we obtained a constraint on a generalized cubic Galileon
model using observations of Coma Cluster of X-ray brightness, the SZ effect, and
weak lensing. We have constructed a simple analytic model of the gas distribution
profiles and the weak-lensing profile (see [41,43,44]). The fifth force affects not only
the gas distribution but also the weak-lensing profile. In general, the effects depend on
the various parameters characterizing the generalized Galileon model. These features
can be investigated by a combination of observations of a galaxy cluster reflecting
the gas density profile and the lensing signals. These multi-wavelength observations
are complementary to each other, and are useful for putting a constraint on the
modified gravity model by breaking the degeneracy between the model parameters.
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A systematic study compiling multi-wavelength datasets for a large number of clus-
ters will enable us to reduce systematic errors and improve constraints on modified
gravity models. However, the degeneracy between the parameters, M, ¢, ug and
i1, persists in the limit of the weak screening of the fifth force, which affects the
estimation of the cluster parameters.

An important systematic that can affect our analysis is deviation from hydrostatic
equilibrium of the cluster gas. We have therefore carefully examined the validity of
the assumption of hydrostatic equilibrium in the Coma Cluster. Assuming Newto-
nian gravity, we compared the different mass estimates from the three different gas
observations and the weak-lensing mass. We found that the mass profiles from the
gas and weak-lensing observations can deviate from each other by up to 50% but
that they are consistent within the observational errors of the lensing measurement.
We also analyzed the effect of including a non-thermal pressure component with a
radial profile calibrated to hydrodynamic simulations but with extremized amplitude.
This contribution only marginally affects our reconstructed masses, and we conclude
that hydrostatic equilibrium is a good approximation to describe the outer region of
the Coma Cluster. Note, however, that the effect from the chameleon force on the
hydrostatic mass is opposite to the effect of the non-thermal pressure. Hence, the
chameleon force can compensate for a large contribution from non-thermal pressure
and cause a degeneracy between the two effects. On the other hand, the magnitude
of the non-thermal pressure that would be required to compensate for the effects of
the chameleon force tested here is not expected from current hydrodynamical sim-
ulations. It is, however, not clear whether the presence of a chameleon field could
significantly enhance the non-thermal pressure contribution in the Coma cluster, such
that it could cancel the effects of the chameleon field and act to alleviate the con-
straints on the modification of gravity. In this regard, it will be useful to analyze
the non-thermal pressure in chameleon gravity models using hydrodynamical simu-
lations along with a more detailed study of the Newtonian case. As for f(R) gravity,
such hydrodynamical simulations have recently been conducted by Arnold et al. [96].
They estimate the non-thermal pressure from the bulk motion in the intracluster
medium and find that it only leads to substantial contributions in merging clusters,
which can be identified and excluded to obtain statistical quantities like X-ray and
SZ scaling relations. Their results suggest that the effects of non-thermal pressure in
a relaxed cluster are not significant, as in the case of the Coma Cluster, at least in
the case of f(R) gravity models.

Further effects which may cause deviations from the hydrostatic equilibrium have
been discussed in Refs. [103,104,133]. Ref. [103] found that the mass in a simulated
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halo estimated under the hydrostatic equilibrium assumption deviates from the true
mass due to gas acceleration on average by ~ (10 — 20)%. Given the large errors
in the measurement of the lensing mass of the Coma cluster, we can ignore this
deviation in our current analysis. Future measurements, such as those from Astro-H
X-ray observations, will allow more precise modeling of the Coma Cluster.

Our results demonstrate that galaxy clusters are useful probes of gravity. The
method described in this paper may be applied to other clusters. However, one
should be cautious about the individual properties of each cluster: the assumptions
adopted in the present paper might not be valid for other galaxy clusters and need
to be considered in each case. The key is to understand the motion and distribution
of the gas component in clusters. The combination of multi-wavelength observations,
such as the recent results from the Planck satellite [153-156], will provide a clue on
how to solve this difficult issue. In the near future, we will have stacked lensing, SZ,
and X-ray profiles for hundreds of clusters. The combination of multi-wavelength
observations for many clusters will significantly improve the tests of gravitational
interactions on cluster scales.



Appendix A

Tips for modified gravity models

A.1 Equivalence between f(R) model and chameleon model

In this appendix, we show the equivalence of the f(R) model and the chameleon
model (e.g., [157,158]) in two steps, which are given in Sections A.1.1 and A.1.2. In
Section A.1.3, we give the expression of the solution (3.50) and (3.54) in the Jordan
frame.

A.1.1 Equivalence with the Brans—Dicke model

Introducing a scalar field x, we consider the following action

2

=7

[ dev=aber 160+ @+ LR =)+ [ dola(Ta,gu), (A1)
where f, = df /dx. First, the variation of the action (A.1) with respect to x gives

o ()R = x) = 0. (A.2)

When f,, # 0, the equation of motion for x is R = yx, then the action (A.1) is

equivalent with the f(R) model (1.36). Next, introducing a new scalar field defined
by

Mg,

p=— 1+ f) (A3)
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the action (A.1) can be rewritten as

s= | dw—[ o= UG + [ a0, (A4)

where we define the potential U(y) by

2

5 [B(L+ fr) — (B+ f(R))]. (A.5)

Ulp) =

On the other hand, the Brans—Dicke model with a potential is given by

S = /d4:c\/—g {@R - w%g,w@“goa”go — U(go)} +/d4a:£m(\lfm,gw,). (A.6)

Then, by setting the Brans—Dicke parameter wgp to zero, we find that the Brans—
Dicke model is equivalent with the action (A.4); that is, it is equivalent to the f(R)
model.

A.1.2 Conformal transformation
Next, we consider the conformal transformation
= Q2guw (A7)

where g,,, and §,, are the metrics in the Einstein and Jordan frames, respectively.
By this transformation, the first term of the action (A.6) reduces to

Q0,8
= /d4x\/—gQ_2g0 [R +60InQ — Gg“y%

2¢
0=, /M_{él’ (A.9)

the action is minimally coupled with the scalar field. In this case, the first and the

(A.8)

When we choose

second terms of the action (A.6) reduce to

2
S = MPI/d4x\/ [R— 2329“”8“908Vg0 : (A.10)
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5, = Mo [ o[ g o A1l
2 = g | = 50" 0| (A.11)
Thus, we obtain
lj 4 1 v
Sl + SQ d Ty — R — 7(3 + 2&)]3]3) - MQO@VQO . (Al?)

Introducing a new scalar field ¢ defined by

2
o= %GIM), (A.13)
with
A= 5 2 , (A.14)
MP](S -+ 2&)]3]))

we obtain the relations

G = 6_26¢/MP1§,U,V7 (A‘15)
1

=)\ A.16
ﬁ 2(3 + QMBD) ( )

When we define the potential V' by
V(9) = MU (p(9), (A.17)

we obtain the expression of the action in the Einstein frame (1.16),

/ d'zy/—g { Morp 1 gﬂ”awa,,d)—V((p)] + / A e Lo (T, P9 Mrg ) (A18)

The action for the f(R) model is obtained by setting

B = \/7 (A.19)

2/3(6/Mp1) — 1 4 fr, (A.20)
vy = MB RO+ ) = (R + 1)

2 A+ I A2y
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A.1.3 Analytic solution in the Jordan frame

Using the conformal transformation (A.7), we can obtain an analytic solution of the
equation of motion for fg.

In the Jordan frame, the equation of motion for fr is given by

9 1 Qp fro @+
= — 1+4— —_— - . A.22
v fR 3M1%1 pe ( " Qm) (fR) fm ( )

Assuming the generalized Navarro-Frenk—White profile (3.2) for the matter density
profile, we obtain a solution for fg in the same manner as in Sec. 3.4.1:

frint = frslr(1 + 2)7]" T x < T, (A.23)
JRext = —A%—;Q%b - g + fro, T > e, (A.24)
for b # 2, and
frint = frelz(1 + z)?)" 1, r < 2, (A.25)
TRext = _Anto) g + fro, T > T, (A.26)

for b = 2, where D is the integration constant and
n+1 2
Pc QO PsT
s = —(14+4— , A= ——"">2—— A.27
e = Jno {ps ( i Qm)] 3Mg,(b—1) il

The values of x. and D are related by connecting the inner solution and the outer
solution at the radius z., which gives

(1+z.)%0—1

D=A P + fro®e — frslwe(1 + x)°" M., (A.28)
— AL+ 20)*" + fro(1 + ) = frs[re(1 4 2) (1 + (b4 Dae)it + 2+ (b + 2)a].
(A.29)

Assuming ¢/ Mp) < 1, the conformal transformation (A.19) ~ (A.21) gives a rela-
tion between fr and the chameleon field ¢:

_ 2o
fn = \@ i (A.30)
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and

_ |20
T ==\ 337 (A31)

P T R oL R el
fis = 3 Mp’ B 3 Mp’ B 3 Mp’

Furthermore, assuming the potential in the Einstein frame to be V(¢) = A% /¢,
we also obtain the relations
1 A*Fn 1

n/2
3
n+1= =— = O +4Q .. A.32
L L V70 2n(2> (i + 49| frol ™ p (A.32)

A.2 Definitions of the coefficients

In this appendix, we summarize the relations between the parameters in the La-
grangian and the coefficients in Eq. (3.75), and the relation between the generalized
Galileon model and the specific models used in Sec. 4.3.3: the DGP model and the
simplest cubic Galileon model (see also [40,41]).

The coefficients in the perturbation equations (3.78)—(3.80) are defined by

a=ay, (A.33)
£ =a, (A.34)
4 H
¢ = Mot ar) GuH (A.35)
p e
N = W, (A.36)
5X¢
G, H?
B = —4(ap + 20105 + 3) ;2 , (A.37)
where
o o Gi. E+P) 1
g = ﬁ+ﬁ_2G4_4ﬁ_ 22 > 2_6147 (A38)
[ 9Gas ) 1
a; = |2 I 2G47 <A39)
B 9XGax  ¢Guy ) 1
Qg = i — H 2G4, (A40)
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_ 9XGax | 1
O = —pXGix + 2HG + ¢Gy. (A.42)

These coefficients are determined by the background solutions in Eq. (1.79).

The coefficients in the perturbation equations of the simplest cubic Galileon model

are

a=0, (A.43)

§= 4WG3G3X¢2¢7 (A-44)

Gix¢?

_ A.45

¢ 5o (A.45)

= G?g ¢ (A.46)
B=—1+2Gsx(d+2H¢) — AnG3G2 . (A.47)

When we adopt the late time de Sitter attractor solution [49], the combinations £(
and \2¢ are given by

(1 —Qum)(2— Q)
Qn(d—Qn)

N2( = < 7 Qi(;gimﬁm)f , (A.49)

where Q,(a) = pw(a)/3M3 H?(a) is the matter density parameter.

& = (A.48)

Within the sub-horizon approximation, the DGP model [26,27,30] can be effec-
tively described by the coefficients

a=—1, (A.50)

£ = %7 (A.51)
2

N = e (A.53)
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H

where r. = 1/(1 — Quo)Hy and the sign “+” in  represents the cases of the sDGP
model with the “—” sign and the nDGP model with the “+” sign.



Appendix B

Astrophysics of ionized gas in
clusters of galaxies

B.1 Bremsstrahlung

The Bremsstrahlung is a quantum process [159], but we review this process as a
quasi-quantum process in the following.

When an electron passes an ion with charge Z, an electromagnetic wave is radi-
ated. The radiation has the energy

> 2e%a(t)?
E=| = dt B.1
[ (B.1)

—0o0

where c is the light speed, e is the elementary charge, v is the relative speed between
the electron and the ion, b is the collision efficiency, and a is the rate of acceleration
of the electron toward to the ion. Here, we consider the Fourier transformation F
for a,

F(w) = 1 /OO a(t)e ™“dt, (B.2)

21 J_ o

and its inverse,
a(t) = / F(w)e™'dw, (B.3)
where w is the angular frequency. First, by substituting Eq. (B.3) for Eq. (B.1), we
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have

> 8re? )
o /0 R () (B.4)

Eq. (B.2) and a become large when —b/v < t < b/v. Then, we can approximate
Eq. (B.3) as

1 & ,
@)= o / (e =0 (B.5)
for w > v/b, and
1 [~ it Av  Ze?
Fw)= 5 /_ alte i~ 58— (B.6)

for w < v/b, where m, is the electron mass and

v = o P 2RPR T maby (B1)

_Zé? /°° bdt 27¢e?

Me

Therefore, from Eqs. (B.4), (B.6), (B.5), the emissivity with angular frequency be-
tween w and w + dw, nhwdw, is given by
8 Z2%° 1

nhwdw = dF = —

_— B.g
3T v2mecd b2 W (B8)

where i = h/2m is the reduced Planck constant. Multiplying Eq. (B.8) by the
electron number density n., the ion number density n; and 27vbdb, and integrating
with respect to b, we obtain the emissivity per unit time and per unit volume, dP,
as

bmax .
dPE/b nenlnhwdeWvbdb:nggdw, (Bg)

o= Lo () B0

bmin

where

is the Gaunt factor for free-free emission.
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B.2 Inverse Compton scattering

The spectrum of scattered cosmic microwave background (CMB) photons from an
arbitrary frequency to the frequency v is given by [160, 161]

dWout<V7 /8) /gmax v
— = drorl, | = ) Pic(&, B)dE, B.11
T | Amonl | ic (&, B)d§ (B.11)
where [, is the intensity of incident CMB photons, which is
2hyv3 hyv -1
1 =P P -1 B.12

and Pi¢ is the probability that the energy of an incident CMB photon is by a factor
&, which is

_ 3 [
16636

O ORBO 724+ 1) — (297 + 1) (10 s — |1nf|>}}, (B.13)

P 12_55‘ {1+ (4" +6)6+¢&%}

and the range of integration is given by

I 1+8
gmin 1— B
On the other hand, CMB photons which have frequency v are scattered partially.
This is represented by

. (B.14)

€max -

d‘;{?diy) = drorl,(v). (B.15)
Then the net spectrum is given by
AWic(, ) dWou  dW;
dtdv dtdv dtdv
-~ tror | " (%) - 10| Pcte. a1 (B.16)

1 1 x
B , , er —1
= 4morl,(v) /1 ity /1 it [ex(Hb’u’l)/(Hﬂué) -1 1
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PT(:“lla ,u,2)
e B.17
2y4(1 + Buy)? (P17

where p) and pf, are, respectively, the angles before and after scattering in the electron
rest frame, and Pr is given by

3 1
Prlut i) = § |1 w50 = )0 = ) (B.13)

If we know the velocity distribution of electrons, f(/3), we obtain the SZ spectrum

dWsz(v) _/dWIC(Va 5)
dtdv

= F(B)dB. (B.19)

Therefore, the radial profile of SZ effect is

dz. (B.20)

AL vr) 1 /n AWz (v)
I,(v)  4rl,(v) ¢ dtdv

Extended thermal SZ effect

We assume the following distribution function as the thermal electron distribution:

7567(771)/06
O.e'/% K5(1/6,)

frel(ﬁ)dﬁ = 62dﬁ7 (B21)

where 0, = kT, /m.c? and K, is the modified Bessel function. For the case of 3 < 1
and 0, < 1, this distribution function can be approximated by

2 38 56 562 358  1058°
fra(B) = exp (_fee) (1_ 856 N 16696) (H g * 86 * 166 )
2/ 15 9
X(ﬁ“_4ﬂﬁ;5’ B2

In particular, the lowest order reproduces the well-known non-relativistic Maxwell
distribution

3/2 2
m Mev
4 e _ U7 2, B.2
fu(v)dv = 4w (27rkTe) exp ( QkTe> vedv (B.23)
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On the other hand, the inverse Compton intensity (B.17) in this limit can be approx-
imated by

T _1 P / /
dWIC(V 8) = 4norl, (v / d/iz/ dpy { ; 1~ 1] (i, 115)
-1

 dtdv (1+8p1)/ (1+Bus) — 2v4(1 + But)?

(B.24)

T 1
~ 2norl,(v) e / dpio (B.25)

e —1),

3+ 11

x {uzﬁ + { 1=y +wcoth (3) (2—0“) } B2+ O(6%) + O(ﬁﬂ ,
(B.26)

where © = hyv/kTomp and po = (ph + 8)/(1 4 Sud) is the angle after scattering in
the observer rest frame. Then the SZ spectrum (B.19) is represented by

dWSz<l/) . dWIC(V, 5)
dtdv / diay e (A)ds (B.27)
~ dmorl, (V) e;ce_x 1 (B.28)
X [0Fy (z) + 62 F (z) + BuFos(x, 1) + BEEE (2, 1) + 008y FF (2, DIF
(B.29)

where £, is the bulk velocity of the electron cluster, i is the angle of the bulk motion,
and the functions Fy, Fi', F¥, FE and F{'¥ are defined by

Ff(z) = -4+ F, (B.30)
47 42 7 7
F'z)=-104+ —F — =F?’+ —F>+ -G*(-3+ F B.31
R = (B.32)
112 F
F () = 1 — e O (B.33)
ATE  TF?
™S, 1) = p (9u - 77 + % 1—7002) (B.34)

where F' = x coth(z/2) and G = x/sinh(z/2).

Fig. B.1 shows the intensity of SZ effect as a function of x for thermal electron.
The blue and green curves show the intensity up to orders , and 62 in Eq. B.19,
respectively. The red curve shows the exact solution. This figure shows that the
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Figure B.1: The inverse Compton intensity as a function of = for a thermal electron. The
blue and green curves show the intensity up to orders , and 62 in Eq. (B.19), respectively.
The red curve shows the exact solution.

intensity of low frequency photons become lower than that before scattering, and the
intensity of high frequency photons become higher than that before scattering. The
borderline of the sign of the SZ intensity is x = 3.83 (v = 218 GHz, A = 1.38 mm).
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We investigate the gas density, temperature, and pressure profiles in a dark matter halo under the
influence of the chameleon force. We solve the hydrostatic equilibrium equation for the gas coupled with
the chameleon field in an analytic manner, using an approximate solution for the chameleon field equation
with the source term, with a generalized Navarro-Frenk-White universal density profile. We find that the
gas distribution becomes compact because a larger pressure gradient is necessary due to the additional
chameleon force. By confronting the theoretical prediction with the data of the temperature profile of the
Hydra A cluster according to Suzaku x-ray observations out to the virial radius, we demonstrate that a
useful constraint on a model parameter can be obtained depending on the value of the coupling constant.
For example, the upper bound of the background value of chameleon field, ¢o, < 10™*Mp, is obtained in
the case B = 1, where 3 is the coupling constant between the chameleon field and the matter, and Mp is
the Planck mass. However, the error of the present data is not so small that we obtain a useful constraint
in the case B = 1/+/6, which corresponds to an f(R) model.

DOI: 10.1103/PhysRevD.86.103503

The accelerated expansion of the Universe is one of the
most fundamental mysteries in basic science. Long-distance
modification of the gravity theory is a challenging approach
to this problem. However, any gravity theory must pass the
stringent constraints from the Solar System. The chameleon
mechanism is a noble mechanism for screening a scalar
degree of freedom which appears in a class of modified
gravity models, depending on the density of matter in the
local environment [1,2]. Newtonian gravity is recovered in
a high-density region, thereby evading the Solar System
constraints. Recently, it has been pointed out that the modi-
fication of gravity might be detected using halos of galaxies
and galaxy clusters, because the screening mechanism
could not be complete in their outer regions [3-8].

In the present paper, we focus on the gas distribution in
a dark matter halo under the influence of the chameleon
force. In Ref. [9], the authors found an analytic solution of
the chameleon field, assuming the matter distribution of the
Navarro-Frenk-White (NFW) universal density profile [10]
(cf. Ref. [11]). Utilizing their analytic method, we inves-
tigate the gas density, temperature, and pressure profiles
under the influence of the chameleon force. We find that
the chameleon force significantly influences the gas distri-
bution. We also demonstrate a useful constraint on the
chameleon gravity model from confronting the theoretical
temperature profile with x-ray observations of a cluster of
galaxies.

The chameleon field equation for a quasistatic system in
the Einstein frame is

V2¢ = V¢ + £p65¢/MP1’ (D
Mp

*telkina@theo.phys.sci.hiroshima-u.ac.jp
"kazuhiro @hiroshima-u.ac.jp

1550-7998/2012/86(10)/103503(5)

103503-1

PACS numbers: 98.62.Gq, 95.35.+d, 98.80.—k

where V is the potential, p is the matter density, B is the
coupling constant, and we have defined the reduced Planck
mass by Mp*> = 1/(87G) with the gravitational constant
G. Here, we assume V(¢) = A**"/¢p", where A is the
mass dimension parameter and n is the dimensionless
parameter. We also assume B¢ /Mp < 1. The coupling
between the scalar field and the matter density is the key
for the chameleon mechanism, as we see below.

We follow the analytic method in Ref. [9] to find a
solution for Eq. (1). In the present paper, we assume the
generalized NFW density profile p(x) = p,/x(1 + x)°
with x = r/r,, where p, and r, are the characteristic
density and scale of a halo, respectively, and b is a
parameter. The NFW density profile is the case b = 2.
The mass within the radius x of the halo is given by M(x) =
4arr} [ dxx?p(x). Instead of the parameters r, and p,, we
introduce the virial mass M,;, and the concentration pa-
rameter ¢, which are defined by My, = (47/3)r,; A p,
and ¢ = ry;,/r,, where A, is the ratio of the spherical
overdensity p(<c) within the virial radius r;, to the critical
density of the universe p_; i.e., A, = p(<c)/p,, for which
we adopt A. = 100 in a spherical collapse model.

The analytic solution for Eq. (1) is obtained by matching
the interior solution ¢;, and the exterior solution ¢,
where ¢;,; is given by solving Eq. (1) while neglecting the
term on the left-hand side, while ¢, is given by neglect-
ing the first term on the right-hand side of Eq. (1). Then,
we find

Gslx(1 + )P ]/ = ¢y,

1-(1 2=b _ (2)
B~ St b = o x> 1,

x <X

¢(x) =

where we have defined ¢, = (nA""*Mp/Bp,)"/ "D,
B = Bp,r?/Mp,, and C and x, are determined by solving
the matching conditions at x = x,:
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14+ x)>t—-1
b—2

C=8B

d)oo - B(l + xc)lib

= &1+ xc)”)”(”“)(l DAL ) (4

(m+ D+ x,.)

The validity of the analytic solution is demonstrated for the
case b = 2 in Refs. [5,9].

Note that ¢ is the typical value of the chameleon field
in the interior region, where the chameleon mechanism
works. This means that ¢, < ¢, because the chameleon
mechanism screens the chameleon field. With this fact,
Egs. (3) and (4) are approximated as

C=B(1+x)""=1D/(b=2) + pooxe, (5

bo — B(1 +x.)' 7" =0, (6)

since we are considering the case x. = (O(1). Hence,
the scalar field in the exterior region is independent of n
and A. This is important because the constraint we obtain
becomes independent of n and A.

In our modeling of the gas distribution in a dark matter
halo, we make a few assumptions for simplicity. First, we
assume that the dark matter dominates the dark halo
described by the generalized NFW density profile. The
halo density profile could be affected by the modification
of the gravity theory; however, we assume the same profile,
since its validity is partially supported by N-body simula-
tions for the Dvali-Gabadadze-Porrati model and f(R)
model [3-5,12]. Recently, Ref. [5] confirmed this validity
for an f(R) model, and argued a qualitative explanation for
the validity. Second, we assume that the baryon density is
negligible in the dark matter halo, which allows us to
|

_ peny
kTg(O)MPI(l + E)

ye(x) = [1

[1 - A(l 4 Qb %[x(l + x)h]l/(nﬂ))]l/(%l),

(b—2)x
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neglect its effect on the scalar field equation. The effect
of the baryon component is discussed in Ref. [13]. The
validity of this assumption is also supported by the recent
measurements of the density profile of a cluster halo
through gravitational lensing, which show that the NFW
profile fits the data well [14,15]. Third, we assume that the
scalar field is coupled with the baryon component as well
as the dark matter component. For example, in an f(R)
model, the chameleon force is coupled with both the dark
matter and the baryon components.

Within Newtonian gravity, a useful model of the gas
density profile is considered in Refs. [13,16]. By assuming
hydrostatic equilibrium between the gas pressure and the
gravitational force from the dark matter with the NFW
density profile, the universal gas density, temperature, and
pressure profiles are derived. We follow the method of
Refs. [13,16], but taking into account the chameleon force
as well as the gravitational force, we derive the gas distri-
bution in a halo. Now the hydrostatic equilibrium gives

Pg dr Mp

(1+e) dP, 1 [dog deo

[ dr tB dr ]’ @)
where p, and P, are the gas density and the pressure,
respectively, and € = 0 unless explicitly stated otherwise.
Here ¢ denotes the gravitational potential, given by solv-
ing the gravitational Poisson equation, A¢s = p/(2Mp).
For the generalized NFW density profile, we find the solu-
tion ¢;(x) = po[1 — (1 + x)>7%/(b — 2)x], where we de-
fine ¢y = —p,r2/2Mp (b — 1). We assume that the gas
obeys the polytropic equation of state P, « p,T, < p}
with the polytropic index 7y and the gas temperature T,.
Introducing the function y,(x) by p,(x) = p,(0)y,(x),
P,(x) = P,(0)y)(x), and T, (x) = T,(0)y} ' (x), we obtain
the solution

- L o) = 66(0) + Bolx) - ﬁ¢<0)>]” oy ®)

for x < x,,

)]

[1 - A(l + (1 +2p2) et %(% - Q))]‘/(V’”, for x > x,,

(b—2)x

where we have defined A= —um,dpo(y—1)/
kT,(0)Mp (1 + €)y, k is the Boltzmann constant, and
mm, represents the mean molecular mass. We determine
the parameter y by following Expression (17) in Ref. [17].
Our conclusions are not altered qualitatively for the
assumption on y within 1.1 = y = 1.3.

Figure 1 shows the gas density profiles, comparing the
case with the chameleon force (solid curves) and the case

X

of Newtonian gravity (dashed curves), adopting virial
masses of M, = 1083M,, 10“My, and 4 X 10"M,,
from top to bottom, respectively. The gas density decreases
rapidly in the outer region (see the solid curves), where the
chameleon force is influential. For the large mass cluster,
the chameleon mechanism works out to large radii, be-
cause the density of dark matter is high enough even out-
side the halo. On the other hand, for the small mass cluster,
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FIG. 1 (color online). Gas density profile as a function of
the radius r/r,. The solid (dashed) curves are with (without)
the chameleon force, with virial masses M,;, =4 X 104M
(green light curve), 10"M, (blue dark curve), and M,; =
1013 M, (red curve), from top to bottom, respectively. Here we
have adopted 8 =1, n = 1.8 X 1075, A = 2.4 X 1073 eV, and
b = 1.1 X 107 Mp,.

the chameleon mechanism works only at small radii,
because the dark matter density is high only in the central
region. Because the chameleon force is an attractive force,
a larger pressure gradient is necessary for balancing
between them. This makes the gas distribution compact.
This feature is more significant for the smaller-mass halo.

Using this characteristic feature, let us consider a con-
straint on the chameleon gravity model. To this end, we
consider x-ray observations of a cluster of galaxies.
Because of the steep drop of the gas density in the presence
of the chameleon force, a similar drop in the x-ray surface
brightness may appear in the outer region. In the present
paper, we compare the x-ray temperature profile with the
data reported from Suzaku observations of the Hydra A
cluster out to the virial radius [18]. The Hydra A cluster is a
medium-sized cluster located at a distance of 230 Mpc.
Two different fields are observed in Ref. [18]. One is the
northwest offset from the x-ray peak of the cluster, and the
other is the northeast offset. The former and latter fields are
called the filament and void, respectively, because each
field continues into the filament and void structures. In
Fig. 2, the points with error bars show the data of the
filament direction in Ref. [18].

The curves in Fig. 2 show our theoretical model of the
x-ray surface brightness temperature, computed with the

formula
N (i R
f)tc(Tg)pg,(w[rﬁ_ + zz)dz

where A.(T,) is the cooling function, for which we have
assumed A (T,) = Tgl/2 (e.g., Ref. [19]), and r, is the
radial coordinate perpendicular to the line-of-sight direc-
tion. The solid curve is the best-fit curve, whose parameters

are noted in the caption. The dashed curve and the dotted
curve adopt ¢ =2 X 1075Mp and 1.3 X 107*Mp,,

Tx(ry) =

, (10)

PHYSICAL REVIEW D 86, 103503 (2012)

Tx(r.) [keV]

10! 102 10°
r.[kpc]

FIG. 2. Temperature profiles as a function of the radius r | . The
points with error bars show the observation data of the filament
direction [18]. The curves show our theoretical model. The
solid curve adopts the best-fit parameters (¢ o, M., c,T,(0))=
(5.4X1073Mp,5.1X10'%M,5.8,4.9keV). The dashed curve
adopts o, = 2 X 107 Mp;, while the dotted curve adopts
¢ = 1.3 X 107*Mp,, where the other parameters are the same
as those of the solid curve. Here we have fixed 8 = 1 and b = 2.

respectively, where the other parameters are the same as
those for the solid curve.

The dotted curve, the solid curve, and the dashed curve
in Fig. 2 represent the characteristic curves which appear
when we vary ¢, from a sufficiently large value to a
smaller one. First, the dotted curve represents the limit of
the modified gravity. Namely, for the large value of

= B, x. becomes negative from Eq. (6). This means
that there appears no interior region in a halo where the
chameleon mechanism works to recover Newtonian grav-
ity. Thus, for the case ¢, = B, we have ¢(x) = ¢y (x)
for the entire region, and therefore the solution Eq. (8)
should be replaced with

(14 x>t — 1)]1/(7*1)

yolx) = [1 —AQL+ 232)<1 e

Y

On the other hand, the dashed curve is the same as the limit
of Newtonian gravity. For a small value of ¢, we have a
large value of x, from Eq. (6). This means that the chame-
leon force is influential only at very large radii. Note that
the interior solution y,(x), Eq. (9) for x <x., can be
approximated by taking the limit of 8 — 0 in Eq. (11),
because ¢, takes a very small value to screen the scalar
field where the chameleon mechanism works. In summary,
the dotted curve and the dashed curve are the two opposite
limits, and our theoretical curve is restricted by these two
limits. Note that the limit of the modified gravity Eq. (11)
depends on the coupling constant .

Figure 3 shows the contours of A x? on the parameter
plane for ¢, and M., where x> is simply defined by
X2 =31 (Tx(ry;) — T2 /(ATS™)?, where T and
AT?b are the observed data and the error of the filament
direction, respectively, and Ty(r, ;) is our theoretical
model. Here, we have fixed 8 =1 and b = 2, but the
parameters ¢ and Tg(O) are varied so as to minimize y?
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FIG. 3. The contours of A x> on the parameter plane ¢ o-M,;..
Here we have fixed 8 =1 and b =2, but ¢ and T,(0) are
varied as fitting parameters. The contour levels of the inner
dashed curve and the outer solid curve are A x> = 2.7 and 6.6,
respectively.

within the range 3 = ¢ =10 and Tj/a = T,(0) = Tja
with @ = 1.1, where T is given by Eq. (19) in Ref. [17].
When taking 7,(0) as a completely free parameter, it is
difficult to obtain a useful constraint from the present data
due to the degeneracy between 7,(0) and M,;. The mini-
mum value of y? is 1.0, where the number of degrees of
freedom is 3. The behavior of the contour is explained by
the fact that the theoretical curve approaches that of
Newtonian gravity as ¢, becomes small and that the steep
drop becomes significant as ¢, increases. Figure 3 gives
an upper bound of ¢, < 10"*Mp, at the 2-sigma level
for the case » =2 and B = 1. We obtain a similar
upper bound of ¢, for different values of b, which are
summarized in Table 1. The upper bound of ¢, becomes
larger for smaller b, but we may conclude that the results
do not significantly depend on b. Table I includes the
results with the void direction. The upper bound of ¢
depends on the data, i.e., the filament direction and the
void direction; however, our conclusion does not alter
significantly.

So far, we have considered the case 8 = 1; let us now
discuss the case 8 =1/ /6, which corresponds to an f(R)
model [20]. In this case, we could not obtain a useful
constraint on ¢,, which is explained as follows. The
theoretical density profile is limited by two characteristic
curves, Eq. (11) and (11) with 8 = 0. When B is small, the
difference between these two characteristic curves is small,
because the drop of the gas density is not steep. This is the
reason why no useful constraint on the f(R) model was
obtained from the present x-ray data.

In summary, under the assumption of hydrostatic equi-
librium between the gas pressure gradient and the gravita-
tional and chameleon forces, we derived the gas density
profile in an analytic manner. Here we assumed the poly-
tropic equation of state for the gas and the generalized

PHYSICAL REVIEW D 86, 103503 (2012)

TABLE I. Upper bounds of ¢, at the 2-sigma level for differ-
ent values of b and the data for the filament and void directions.
Here we have fixed 8 = 1.

Upper limit for ¢, in units of [Mp]

Filament Void
b=1.7 1.4 x 107* 0.9 x 107*
b=20 1.0 X 1074 0.8 X 107*
b=25 0.8 X 107* 0.6 X 107*

NFW density profile for the dark matter distribution. The
chameleon force may give rise to a steep drop in the gas
distribution in the outer region of a halo. This feature is
more significant when the mass of a halo is small and 8 and
¢, are large. The gas density profile depends on 8 and
b+, but it does not depend on n and A. This provides us
with an opportunity to constrain 8 and ¢, by comparison
with observations. We demonstrated a constraint on ¢
in the chameleon gravity model, using the data of the
temperature profile from the x-ray observation [18]. We
obtained a useful upper bound of ¢, < 107*Mp, in the
case B =1 [21]; however, no useful constraint was
obtained in the case 8 = 1/ /6, which corresponds to an
f(R) model. In order to obtain a useful constraint, obser-
vations of the outer region of a smaller mass cluster are
more advantageous. Furthermore, a combination with
other observations like the weak lensing measurements
might improve the constraint. In our investigation, the
assumption of the hydrostatic equilibrium of hot gas might
be crucial. To estimate the effect of deviation from it,
we obtained similar constraints by adopting the nonzero
values of € = *0.5 in Eq. (7). The upper bound of ¢
changes from 10 *Mp, for € = 0 to 0.6 X 10~ *Mp, and
2.1 X 10~ *Myp, for € = 0.5 and —0.5, respectively. Thus,
the assumption of hydrostatic equilibrium is crucial to the
constraint, but we may obtain a useful constraint if we can
model the state of the gas correctly. Further study is
necessary for this problem. Finally, we assumed spherical
symmetry for a halo, an assumption whose validity must be
checked when comparing with observational data. In the
present paper, the results in Table I do not depend on the
filament direction and the void direction significantly,
which suggests the validity of our assumption.
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Abstract. We propose a novel method to test the gravitational interactions in the out-
skirts of galaxy clusters. When gravity is modified, this is typically accompanied by the
introduction of an additional scalar degree of freedom, which mediates an attractive fifth
force. The presence of an extra gravitational coupling, however, is tightly constrained by
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the chameleon field may be screened in the interior of the cluster, its outer region can still be
affected by the extra force, introducing a deviation between the hydrostatic and lensing mass
of the cluster. Thus, the chameleon modification can be tested by combining the gas and
lensing measurements of the cluster. We demonstrate the operability of our method with the
Coma cluster, for which both a lensing measurement and gas observations from the X-ray
surface brightness, the X-ray temperature, and the Sunyaev-Zel’dovich effect are available.
Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of
the parameter space describing the different profiles in both the Newtonian and chameleon
scenarios. We report competitive constraints on the chameleon field amplitude and its cou-
pling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of
the coupling, we find an upper bound on the background field amplitude of | fgo| < 6 x 1075,
which is currently the tightest constraint on cosmological scales.
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1 Introduction

Modifications of the theory of gravity can serve as an alternative approach to using dark
energy models to explain the cosmic acceleration of our Universe [1, 2]. Any covariant mod-
ification of General Relativity introduces an additional degree of freedom. The chameleon
model modifies gravity by introducing a scalar field in addition to the tensor field, which is
non-minimally coupled with the matter components and gives rise to a fifth force that can
be of the same order as the standard gravitational force. The scope for extra gravitational
forces is, however, severely constrained by experiments in the Solar System. The chameleon
model employs a screening mechanism of the scalar field which depends on the local matter
density [3, 4] and allows it to evade these constraints; however in this model cosmic acceler-
ation must be driven by the contribution of a cosmological constant or dark energy rather
than being a genuine modified gravity effect [5].When the curvature of space-time is small,
gravity remains modified, which renders galaxy clusters a useful regime for testing modified
gravity models: while the interior of a cluster may be screened, the chameleon mechanism
may not completely screen the modifications of gravity in the outer region of the cluster [6—
16]. When the chameleon field is coupled with the gas component, the fifth force due to the
chameleon field affects the gas density profile of the galaxy cluster. This causes an additional
pressure gradient that balances the extra force, which leads to a more compact gas distribu-
tion in the cluster. This effect has been used in [14] to compare the X-ray temperature profile
predicted by the chameleon model with measurements of the Hydra A cluster, yielding an
upper bound on the asymptotic scalar field value at large distances of ¢o, < 10~% Mp; for a
coupling constant between the chameleon field and matter of 5 = 1.



The chameleon model parameter 5 determines the strength of the fifth force when it
is not screened (see section 2.2). The second chameleon parameter, ¢oo, controls the ef-
fectiveness of the screening mechanism, describing the transition from the inner region of
a cluster where gravity may be Newtonian to the outer region where the fifth force con-
tributes [17, 18]. The critical radius, where the transition occurs, is determined by both
oo and B [see eq. (3.8)]. In the absence of environmental effects, we may regard ¢, as
the cosmological background value of the chameleon field. When £ = \/m the chameleon
model reduces to a f(R) gravity model [19-21] with the scalar field potential determined
by the choice of f(R) [22], a nonlinear function of the Ricci scalar R that is added to the
Einstein-Hilbert action. In this case, the parameter ¢, is proportional to the parameter | fro|
of the f(R) model, where fgo is the present background value of the scalar field df (R)/dR
(see section 3.1.3 for details).

In the presence of a chameleon force, due to its effect on the gas distribution, the
hydrostatic mass of a cluster if interpreted assuming Newtonian gravity will deviate from its
underlying dark matter distribution, which can be measured via weak gravitational lensing,
resulting in different mass estimates for the cluster (see [23] for a recent analysis of this mass
bias in hydrodynamic simulations of f(R) gravity). Therefore, the combination of the gas
and lensing measurements of a cluster may yield a powerful probe of gravity if they give
statistically different mass estimates, which are not due to other astrophysical reasons.

In this paper, we demonstrate the operability of this method with the Coma cluster;
a massive cluster at a distance of approximately 100 Mpc, whose properties are measured
with several independent methods. The Planck team has, for instance, reported a precise
observation of the Sunyaev-Zel’dovich (SZ) [24] effect [25]. Moreover, the X-ray surface
brightness and X-ray temperature have been measured in [26-28|, and weak lensing (WL)
observations have been conducted by [29, 30]. We use the combination of these measurements
to place tight constraints on § and ¢s. To illustrate the effectiveness of our approach, in
figure 1, we compare our result to current constraints from cosmological, astrophysical, and
local tests in the well studied case that the chameleon model reduces to f(R) gravity. Our
Coma constraint is currently the tightest constraint on cosmological scales.

An important element of our method is the reconstruction of the gas distribution in a
cluster of galaxies under the influence of the fifth force. In previous work [14], the hydrostatic
equilibrium of the gas components was assumed when modelling the gas distribution of the
Hydra A cluster in chameleon gravity. Hydrostatic equilibrium may, however, not always
be realised because of turbulence and bulk motions of the gas caused by mergers with other
clusters and groups of galaxies, as well as infalling material. The authors of [31] have demon-
strated that the cluster masses in numerical simulations, estimated under the assumption of
hydrostatic equilibrium, can deviate from the true mass by up to 30%, and that the deviation
is explained by the acceleration term in the Euler equation. We therefore carefully examine
the systematics that deviations from the hydrostatic equilibrium in the Coma cluster may
introduce on our results.

We first reconstruct the 3-dimensional profiles of the gas density, temperature, and pres-
sure from the observational results using Newtonian gravity. We then compare the mass esti-
mates from the gas observations with the mass estimate from lensing, finding good agreement
between them and that the assumption of hydrostatic equilibrium is a good approximation
given the observational errors of the lensing mass. Moreover, these mass estimates are only
marginally affected by the inclusion of an extremised non-thermal pressure component, which
has been calibrated to hydrodynamical simulations.
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Figure 1. Comparison of our Coma cluster constraint to current constraints on f(R) gravity from
the Solar System [20, 32], distance indicators in unscreened dwarf galaxies [33], the cosmic microwave
background (CMB) [34, 35], cluster density profiles [9] and abundance [6, 36]. The figure is adapted
from [9]. Also compare to figure 2 (resp. 3) of [2, 37] for prospective constraints on f(R) gravity.

While non-thermal pressure and other deviations from the hydrostatic equilibrium en-
hance the hydrostatic mass estimate, we find a strong decrease of the reconstructed hydro-
static mass when the chameleon fifth force is introduced. The detection of an enhanced
hydrostatic mass with respect to the lensing mass when interpreted in a Newtonian frame-
work, may, therefore, be a smoking gun for modified gravity. On the other hand, the effects
of non-thermal pressure and chameleon force may become degenerate in the reconstruction,
as the change in the hydrostatic mass by enhancing modifications of gravity can be compen-
sated by increasing deviations from hydrostatic equilibrium. Given the small effect of the
non-thermal pressure compared to the effect from modifying gravity, however, we decide that
it is safe to assume hydrostatic equilibrium of the gas, and perform our analysis under this
assumption.

Finally, note that Fusco-Femiano, Lapi, and Cavaliere [38] recently investigated the
consistency between the X-ray observations, from surface brightness and temperature, and
the SZ measurement in the Coma cluster, adopting a “Supermodel”. The Supermodel ex-
presses the profiles of density and temperature in the entropy-modulated equilibrium of the
intracluster plasma within the potential wells provided by the dominant dark matter [39].
This yields a direct link between the X-ray and the SZ observations based on the entropy
profile. They found a tension between the SZ and the X-ray pressure emitted by the plasma.
In our analysis, we confirm these results, by finding a similar tension between the SZ and the
X-ray pressures. However, the tension is mainly represented by the asymptotic difference of
the values of the pressure between the inner and the outer regions. On the other hand, the
constraint on the chameleon gravity model comes from the shape of the density profile in the
intermediate regime, so we can nevertheless put a useful constraint on the chameleon model.

The paper is organised as follows: in section 2, we review the hydrostatic equilibrium
equations and hydrostatic mass, including a brief review of an analytic approximate solution



of the scalar field profile in the cluster. In section 3, we perform a Markov chain Monte
Carlo (MCMC) analysis to place constraints on the Newtonian and chameleon model param-
eter space. We then discuss the systematic effects introduced by deviations from spherical
symmetry, and study deviations from the hydrostatic equilibrium of the gas in Newtonian
gravity by comparing the hydrostatic mass inferred from X-ray and SZ measurements with
the lensing mass and analysing the effects of including non-thermal pressure in comparison
to the effects from the chameleon force. In section 4, we present our conclusions. Finally, in
appendix A, we discuss our reconstruction method for the gas profiles.

2 Hydrostatic and lensing mass in the presence of a chameleon force

We describe the hydrostatic mass of a spherically symmetric system of gas and introduce the
non-thermal pressure model, which we use to analyse deviations from hydrostatic equilibrium.
Then, we briefly review a derivation of an analytic approximate solution for the chameleon
scalar field profile within a dark matter cluster, which we use to determine the effects on
hydrostatic masses in the presence of the extra force. Next, we compare the reconstructed
hydrostatic masses, from different gas observations, with the observed lensing mass and
discuss the effect on the mass reconstruction when incorporating the non-thermal pressure
model and the chameleon modification.

2.1 Hydrostatic mass

We consider a spherically symmetric system of gas and dark matter. In this case, we can
write the equation for the gas component in hydrostatic equilibrium as
1 dPota(r) — GM(<r)

Paas(T) dr - r2 ’ (2.1)

where pgas is the gas density, Piota is the ‘total’ gas pressure, including both thermal and
non-thermal pressure, and M (< r) is the mass enclosed within the radius r. This equation
describes the balance between the gas pressure gradient and the gravitational force. Note
that we have not yet included the chameleon force (see section 2.2). The total gas pressure
can be written as the combination of the thermal pressure and the non-thermal pressure,
Piotal = Pihermal + Poon—thermal- EqQ. (2.1) can then be rephrased as

M(< T') = Mthermal(r) + Mnon—thermal(T) (2.2)
with the definitions:

TQ dPthermal (T)

M; erma. = - ) 2.3

o i(r) Gpgas(r) dr 23)
,r2 dPnon—thermal(r)

Mnon— erma = - . 2.4

th 1(7) G,Ogas(T) dr (24)

Mon—thermal 1s introduced to help mathematically describe the non-thermal pressure contri-
bution to the total mass. Note that Mipermal is expressed in terms of Pipermal and pgas in
eq. (2.3). If we introduce the equation of state of gas, Pihermal = kNgasTgas, We can express
the thermal mass in terms of Tyas and pgas instead,

 kTgas(r)r (dInpgas(r) | dInTaq(r)
pmpG dlnr dlnr ’

Mthermal('f') = (25)



where we have used pgas = pmpngas with the mean molecular weight p and the proton
mass mp. The mean molecular weight of the fully ionised gas is defined by p(ne + ng +
NHe)Mp = Mpny +4mpnpe with ne = ny +2npe, where ne, nyg and nye is the number density
of electron, hydrogen, and helium, respectively. Adopting the mass fraction of hydrogen
nw/(nu + 4nwe) = 0.75, we have p = 0.59.

We define the fraction of the total pressure attributed to the non-thermal contribution by

Pnon—thermal(r) = g(r)Ptotal(T)- (26)

Hence, using Piotal = 9 Paon—thermal = (1 — ¢) 7' Pihormal, We may write
Pnonfthermal(r) - 1_gzr)ngas(7q)kTgas(7n)- (27)

According to hydrodynamical simulations [40, 41], the non-thermal contribution to the total
pressure can be modelled with the expression

(1) = one(1 2y () (M ) ©28)
r) = an z2)Pme | —— , .
g ¢ 7500 3 X 1014M®

where apg, But, Mnt, and ny are constants. For illustration, and for an estimation of
the effects from neglecting the non-thermal contribution, we adopt the parameter values
(vnts Buts Mnt, ) = (0.3,0.5,0.8,0.2), which are the best-fit values in [41] with the exception
of ayt. The best-fit value of ay is 0.18, which is an averaged value over 16 simulated clusters.
We set any = 0.3, which is the maximum value obtained in the 16 clusters [41], in order to
study the effect of the non-thermal pressure contribution in the extremised case.

We refer to appendix A for our approach to reconstruction of the 3-dimensional profiles
of pgas; Tgas, and Pihermal from the gas observations via the X-ray temperature, X-ray surface
brightness, and SZ effect, which enables us to estimate Mipermal. Using egs. (2.6) and (2.8),
we can then estimate the non-thermal contribution Mo, thermal €mploying the results from
hydrodynamical simulations.

2.2 Chameleon fifth force

We now consider the effect on the hydrostatically inferred cluster mass profile when intro-
ducing the chameleon force. The field equation of the chameleon field ¢ in a quasi-static
system is given by [3]

V2=V + (2.9)

MP1p7
where p is the matter density, V is the scalar field potential, 8 is the coupling between the
scalar field and matter, taken to be constant here, and Mp is the Planck mass. We shall
assume that the potential is a monotonic function of the scalar field, V = A" /¢" with
constant exponent n (see, e.g., [14, 18]). Note that the choice of the potential is not essential
to our analysis because the scalar field in the cluster is not sensitive to the parameters of
the potential, A and n, as will be described below. Our results will also be applicable to the
Hu-Sawicki f(R) model in section 3.1.3, where the potential can be written approximately as
V =V — A*"/¢" with —1 < n < 0 and a constant Vj that yields cosmic acceleration. We



also assume ¢ < Mpi, so that the coupling is not too strong and we can use the weak-field
approximation. The chameleon fifth force is written as

B
Fy MP1V¢. (2.10)
Note that we are considering a model where both matter components, i.e., baryonic and dark
matter, are coupled to the chameleon field. In this scenario, both matter components are
subject to the gravitational force and the chameleon force Fy. This is, for instance, the case
in f(R) gravity models and any other chameleon theory that can be formulated in the Jordan
frame with a single metric. It is possible to consider a model where the baryonic component
does not couple to the chameleon field [42, 43]. Such a model would not be constrained by our
method as it would not introduce a difference between the hydrostatic and lensing masses.
Hence, we do not consider this possibility in this paper, nor the possibility of introducing
different coupling strengths for the different components.
We further assume that the dark matter component dominates over the baryonic con-
tribution in the cluster and that the matter density of the cluster p is well described by a
Navarro-Frenk-White (NFW) [44] profile

r/rs (1+71/rs)%
where the characteristic density ps, and characteristic scale rg, are fitted parameters. The
mass of the dark matter within the radius r is then given by

p(r) (2.11)

r/rs

Tl (2.12)

-
M(<r)= 477/ drr?p(r) = dmpsrd |In(1 + 7/rg) —
0
Note that the NFW fitting function eq. (2.11) is based on N-body dark matter simula-
tions of the concordance model. It is nontrivial to extend this assumption to modified gravity
models. However, it was shown in [10] that the NFW profile provides equally good fits for
f(R) clusters as it does for the Newtonian scenario. This was shown using N-body simula-
tions of the Hu-Sawicki f(R) gravity model corresponding to 5 = \/m, which characterises
only a subgroup of models of the more general chameleon model studied here. The effects of
the modifications on observables are, however, qualitatively similar between different values
of the coupling strength 8 and can even partially be mapped into each other, suggesting the
applicability of the NFW profile. Its validity for the full range of parameters considered in
this paper may still be worthwhile checking using N-body simulations. From an observa-
tional perspective, recent work by [45, 46] supports the consistency of the NFW profile with
measurements. Hence, even independent of the simulation results, the NF'W profile could be
used for the reconstruction of the lensing mass with the same motivation as introducing the
gas profiles in the reconstruction of the hydrostatic mass in appendix A.
We consider the virial mass of a halo within the virial radius ry;, which is related to
the concentration parameter ¢ by

Tvir
= . 2.13
=" (2.13)

The virial radius is defined such that the averaged density within this radius is A, times the
critical density. Then the virial mass M,;, is written as

4
My, = M(< Tvir) = ?lr\?;irACﬁC7 (214)



where p. is the critical density. We use A. = 100 obtained in the spherical collapse model
in the cold dark matter scenario with cosmological constant A [47]. Note that the critical
overdensity contrast A. generally depends on the modified gravity parameters. For example,
the authors in ref. [48] found A, ~ 80 in an f(R) model, which is equivalent to Ay ~ 300
at redshift z ~ 0. Nonetheless, our final conclusion is independent of this modification of A,
because our MCMC analysis includes the parameters My and ¢, which are degenerate with
Ac. Therefore, the change of A, only introduces shifts in the values of ¢ and My;;.

Instead of ps and rg, we can alternatively use the virial mass M,;, and concentration ¢
as the underlying fitting parameters of eq. (2.11), from which one can determine ps and rg
using the relations

1 e 1/3
< _ ViIr , 2'1
= ) (215)
Mvir c -t
= n(lte)— ) . 2.1
p 4grd < n(l+c) 1+ c) (2.16)

These relations directly follow from eqs. (2.13) and (2.14).

With the assumption of a NFW dark matter density profile of the cluster, we can
derive an approximate, but analytic, solution for the radial profile of the chameleon field
from eq. (2.9) [14, 17, 18]. The analytic solution for eq. (2.9) is obtained by connecting the
interior solution ¢,y and the outer solution ¢out. The interior solution is obtained when the
scalar field is in the minimum of the effective potential, which corresponds to the right-hand
side of eq. (2.9). Thus, the solution of the chameleon field can be inferred by setting V¢
to zero. This represents the regime of the chameleon suppression of the scalar field and the
chameleon field does not mediate a fifth force. On the other hand, the outer solution is
obtained when the contribution of the scalar field potential, the first term on the right-hand
side of eq. (2.9), is subdominant to the matter density and V2¢. This describes the case
where the chameleon field mediates a long-range fifth force, the matter density is still large
compared to the background, and the scalar field has not settled in the minimum of the
effective potential. For these two limits of the chameleon field, we find

D B 10 T e (2.17)
r) = psrs (1 +7/r5) _ BN .
- MP] 74/745 7”/7“5 + Qboo - ¢out ( > C)

where C' is an integration constant and r. is the transition scale, connecting ¢yt and @oyt.
We have furthermore defined ¢2! = (nA"*Mp;/Bps), which represents the value of the
chameleon field in the interior region, and ¢, the value of the scalar field at large distance
from the cluster. The chameleon field at the background is in the minimum of the effective
potential, hence, we have ¢"+! = (nA"t*Mp;/Bpg), where pg is the matter density at large
distance from the cluster, e.g., the cosmological background density. Due to the high density
inside the cluster, ps > pg, the chameleon field is strongly suppressed with ¢s < ¢oo.
Thus the interior solution for the scalar field eq. (2.17) may be approximated as ¢y, =~ 0.
The integration constant C' and the transition scale r. are then determined from requiring

Gint(re) = Gout(re) and ¢l (re) = ¢l (re). Finally we have the approximate solution
2
C ~ —%ln(1+rc/rs)+¢mrc/rs (2.18)
Mp
2
doo — PP (1 4 pr) T 0, (2.19)
Mp



Note that in our approximation, the chameleon field eq. (2.17) and the transition relations
egs. (2.19) and (2.18) do not depend on the parameters of the scalar field potential, A and n, as
we consider ¢, as the degree of freedom of the model, which, depending on the environment
of a cluster, may be different from the cosmological background value of the scalar field.

From eq. (2.19), we can see that the critical radius r., below which the chameleon field
is screened, is determined by SMp)/¢o.. Hence, the smaller ¢, at fixed [, the larger the
critical radius becomes. As a consequence, the entire cluster can be screened. The smaller
B, the smaller the strength of the fifth force becomes. Thus, Newtonian gravity is recovered
in each of the limits 8 = 0 and ¢, = 0.

In the presence of the chameleon field, the hydrostatic equilibrium eq. (2.1) is modified
by the introduction of the extra force Fy = —(5/Mpi)d¢/dr on the right-hand side of the
equation. The chameleon force then modifies the mass inferred from hydrostatic equilibrium
in eq. (2.2) as

M(< T) = Mthermal(r) + Mnon—thermal(r) + M¢(7“), (2.20)

where we define an extra mass

(2.21)

associated with the enhanced gravitational force due to the chameleon field.

2.3 Inferring hydrostatic and lensing masses from observations

The thermal mass Mipermal Of a cluster in eq. (2.5) is determined by its gas density, tempera-
ture, and pressure, which can be measured in X-ray and SZ observations. In order to obtain
Minermal from observations, we reconstruct the three dimensional gas profiles using paramet-
ric fits as described in detail in appendix A, which we substitute into eq. (2.5). We assume
that the gas is fully ionised and that the electron temperature is equal to Ty,s. For a relaxed
cluster such as Coma, used in section 3 to derive constraints on the chameleon model, we
assume that the electrons and protons have the same temperature. Note, however, that this
assumption is nontrivial because the equipartition timescale between electrons and protons
through Coulomb collisions is close to the dynamical timescale of the cluster (see, e.g., [49]).
Here, we use the notation n. for the three dimensional electron number density, which is
related to the gas number density ngas by
24+ p

Ne = 3 Ngas- (2.22)

Similarly, we introduce the electron pressure P, which is related to the gas thermal pressure
Pthermal by

2+
P = nekTgas = %Pthermal- (223)

With the definitions in egs. (2.22) and (2.23) and the reconstructed 3-dimensional tem-
perature, electron density, and pressure profiles from appendix A, we can now determine the
thermal mass profile of the cluster. From X-ray observations, we infer

KT (dln n®  din Téé?)

Mthermal = - (2.24)

umpG dlnr * dlnr



and similarly, from the SZ observations, we obtain

r2 dP(SZ)
Mthermal = - thermﬁal. (225)
Gl dr

With this reconstruction, we can directly compare the two mass profiles with the lensing
mass

r/rs

MWL = 47Tps7":S3 ln(l + T/TS) — Tr/rs 5

(2.26)
which is obtained by integration over the NFW density profile in eq. (2.11), assuming that
¢/Mp; < 1 such that the lensing potential is related to the matter distribution by the
standard Poisson equation.

In the presence of a non-thermal pressure, egs. (2.24) and (2.25) are modified according
to eq. (2.8) with the mass inferred from X-ray by

Mthermal + Mnonfthermal

X X X
_ M (e L Lol d (9 o (2.27)
pmpG dlnr dlnr Gpgs? dr \1— g &s""gas | =

whereas a combination of SZ and X-ray infers

2 dpS? 2 d g (SZ)
M, hermal + Mnon— hermal — — thermal _ I ( P, erma) . (228)
t ol = B G dr \ T e

To derive our constraints in section 3, we will assume hydrostatic equilibrium, eq. (2.1),
and thus require
Mthermal + Mnon—thermal + Mq& = MWLv (229)

where My, is the chameleon contribution described in eq. (2.21) and Myon—thermal << Mihermal
+My. We refer the reader to section 3.2.1 for an analysis on the validity of the hydrostatic
equilibrium assumption in the case of the Coma cluster.

3 Application to the Coma cluster

Having established the notion of hydrostatic and lensing mass, and having described the
effects from the presence of a chameleon field on the relation between the two in section 2, we
now analyse constraints on the chameleon gravity model by confronting our predictions with
observations of the Coma cluster. We chose to work with the Coma cluster as it is a relaxed
system, where the non-thermal pressure is expected to be subdominant (e.g. [50] and also see
section 3.2.1) and which has been well measured through a range of different observations
[50-53]. The contribution of non-thermal pressure can also be assumed small in modified
gravity [23]. Ref. [54] has recently pointed out that the cluster may not be very typical: its
X-ray temperature and star formation rate is high but the kinematic features like substructure
and velocity dispersion are not conspicuous. The authors urge caution in using Coma cluster
as a z ~ 0 baseline cluster in galaxy evolution studies. On the other hand, according to
references [55, 56], the Coma cluster is in agreement with scaling relations obtained from
typical cluster samples. We cannot exclude that extraordinary features of the cluster may



affect our conclusions. However, our constraints rely only on the observed distribution of
gas and dark matter and we allow a number of degrees of freedom to phenomenologically
model these distributions, finding good agreement of our fits with the observational data.
We also carefully examine a dynamical equilibrium model of the Coma cluster. Note that
our method applies to any cluster which is in hydrostatic equilibrium, and is not restricted
to the Coma cluster. This section is organized as follows: in section 3.1, we first assume
hydrostatic equilibrium and model the effect from chameleon gravity using the analytic scalar
field solution described in section 2.2 to derive and compare the theoretical gas distribution
profiles with the corresponding observations of the Coma cluster. Then we simultaneously fit
for the observed X-ray surface brightness, the X-ray temperature, the SZ effect, and the WL
profile based on a parametric fit for the electron number density and the NF'W profile. We
obtain competitive constraints on the chameleon model. In particular, our method provides
the currently strongest cosmological constraint on f(R) gravity (see figure 1). In section 3.2,
we then analyse the validity of the hydrostatic equilibrium assumption of gas in the Coma
cluster and study the potential systematic effects on the reconstructed mass profiles as well
as possible errors induced by non-spherically symmetric features of the cluster.

3.1 Constraints on the model parameters from an MCMC analysis

We estimate the 3-dimensional profiles of the temperature, electron density, and pressure
from observations of the X-ray temperature, surface brightness, and SZ effect employing the
parametric fits described in appendix A, as well as the lensing mass, for which we use a
NFW profile. In hydrostatic equilibrium, the hydrostatic mass can then be inferred from
any combination of two of these profiles. Here, we choose to work with the electron number
density eq. (A.5) and the NFW profile eq. (2.12), and perform an MCMC analysis of the
model parameter space, including the chameleon model parameters S and ¢, discussed in
section 2.2.

3.1.1 Method

We write the hydrostatic equilibrium equation as

1 Ppermal(r) _ GM(<r) B do(r) (3.1)
Pgas(r) dr o r2 Mpy dr .

and assume that the equation of state for the gas is given by Pihermal = NgaskTgas, Which is
equivalent to P. = nckTyas, where the electron temperature equals to Tgs. Integration of
eq. (3.1) yields

7"2 Mp1 dr

r
Pthermal(r) = Pthermal,() + Nmp/ 710(7') ( (32)
0

_GM(<r) _ 8 4ot
Hereby, Pihermal,o is an integration constant equal to the thermal gas pressure at » = 0, which
can be written as Pihermal,0 = Ngas,0k10, Where nga,so and Tp are the thermal gas number
density and the gas (electron) temperature at r = 0, respectively. We adopt eq. (A.5) to
describe the electron number density ne(r) and the NFW profile eq. (2.11) for the matter
density which determines the cluster mass profile M (< r) in eq. (2.12). Note from eq. (2.22)
that ngaso is expressed by ng as ngas,o = 5no/(2 + ).

The NFW density profile is specified by the virial mass My;, and the concentration
parameter ¢. The configuration of the scalar field is given by specifying the parameters
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B and ¢o. Including the parameters for the electron number density, the complete list of
parameters we analyse in our MCMC study becomes Ty, ng, b1, 71, Myir, ¢, B, $oo, Where r1 and
by determine a characteristic scale and slope, respectively, for ne(r) in eq. (A.5). Once these
parameters are specified, we can compute the projected gas profiles in eqs. (A.1), (A.2),
and (A.3), which are then compared with the observational data from the X-ray surface
brightness and temperature, and the SZ observations.

We estimate the “goodness-of-fit” by computing the chi-squared distribution

XQ(MVih C, TO; n07 b17 7"17 ﬁ? ¢OO) = X%{T + X%B + X%Z + X%VL’ (33)
where

(Tx(roq) — TR)?

2

X5 = i , (3.4)
2 T gy

(Sx(riq) —Sg%)?

2 y 1

XSB = obs : ) (35)
op ; (ASXI,)[)Q
5 (y(roiq) —y™)?

Xsz = Z (Azygbs,)zg ; (3.6)
s (Myiy — Mwr)? | (c—cwr)?

XWL = (AMWL>2 + (ACWL)Z . (37)

Here, Tx(r, ;) and T are the theoretical and observed X-ray temperatures, and AT
refers to the observational error. We adopt the analogous notation for the surface brightneés
Sx and the y-parameter, defined by the SZ temperature as ATgsz/Tevp = —2y. In addition,
M1, and cwr, are the observed virial mass and the concentration parameter from weak
lensing, respectively.

For the X-ray temperature profile, we use the XMM-Newton data reported in [27] for
the inner region and Suzaku data reported in [28] for the outer region. For the X-ray surface
brightness profile, we use the XMM-Newton data reported in [26] and for the SZ pressure
profile, we use the Planck measurements [25]. Finally, we use the WL measurement of the
Coma cluster reported by Okabe et al. [30], who adopt a NFW fit in their analysis to obtain
a virial mass of the Coma cluster of My, = 8.9272%99x10"h 1M, and a concentration of
c= 3.51‘%% with virial overdensity A, = 100.

In our likelihood analysis, we assume that the information contained in each data point
is independent of the other data points, i.e., that there is no correlation between these four
observations. This could be an over-simplification. These four observations are based on
different measurement principles, and the X-ray, SZ effect, and WL observations are obtained
at different wavelengths. On the other hand, the information contained in the data comes
from the same astrophysical object, and thus the systematic errors might be correlated. For
instance, the clumpiness of the cluster and other non-spherically symmetric features would
introduce a correlated systematic error between the data sets. We do not take into account
such correlations in our analysis and leave it for future work to address these observational
issues in more detail. See, however, section 3.2 for a discussion of these effects. We also
note that the covariance of errors is not taken into account in our analysis because it is not
available to us. For now, we assign a 5% systematic error to the measurement error of the
X-ray surface brightness.
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Figure 2. X-ray temperature (top-left), surface brightness (top-right), and SZ effect (bottom). The
best-fit values of the chameleon model parameters are (3, ¢oo)=(15, 4 x 10~*Mp;), where the model
parameters characterising the profiles are given in table 1. In the data analysis, we use the data points
included within the radial range 100 kpc < r; < 1 Mpc and fit them using the model parameters
To,n0,b1,71, Myir, ¢ in the Newtonian case and in addition B2 and ¢os 2 in the chameleon scenario.
Note that the best-fits of the Newtonian and chameleon cases almost overlap.

3.1.2 MCMC analysis

We perform an MCMC analysis with the 8 model parameters Ty, ng, b1, 71, Myir, ¢, B2, and
®o0,2, Which completely describe the X-ray temperature and surface brightness profiles, the
S7Z effect, and the WL mass profile as well as the chameleon modified gravity model. We
re-normalise the parameters B2 = 8/(1 + ) and ¢oo2 = 1 — exp(—¢oo/10"*Mp)) (instead
of f and ¢ ) as P2 and ¢ 2 span the complete available parameter space of § and ¢ in
the interval [0, 1]. Note, however, that some of the approximations made in section 2 do not
hold in the extreme limits of ¢oo2 — 1 and B2 — 1. For our analysis, we use the MCMC
module included in the cosmomc [57] package, which employs a Metropolis-Hastings [58, 59]
sampling algorithm. We require a Gelman-Rubin statistic [60] of R — 1 < 0.03 to ensure
convergence of our runs.

In figure 2, we compare the overall best-fit curves for the chameleon gravity model
(dashed) and Newtonian gravity (solid) from the combination of all of the observational data
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parameter Newtonian gravity Modified gravity
My 2.571097 10 My, 2.4615:3 10 Mg
c 2.56703 2.6470 72
no 2.33%522 1073 /cm?® 2.3410-24 1073 /cm?®
by —0.92175:9%9 —0.915150%2
2l 3.02705% 10% kpc 2.9970%% 102 kpc
To 11.27378 keV 11.37079 keV

Table 1. Best-fit values and 1-dimensional marginalised constraints (95% CL) for the model param-
eters (Tp, ng, b1, 71, Myir, ¢) characterising the gas and dark matter profiles obtained from an MCMC
analysis of the joint observational data sets.

sets, i.e., minimising y? in eq. (3.3). The corresponding best-fit parameter values are listed
in table 1 along with the 1-dimensional marginalised 95% confidence levels (CL). We show
the 2-dimensional marginalised contours of the different combinations between the model
parameters for the Newtonian case, i.e., where we have fixed § = 0 and ¢ = 0, in figure 3.
The best fit in this case yields a reduced x? of x?/d.o.f. = 32/41. In figure 4, we show the
analogous constraints for the model parameters of the chameleon modified gravity scenario.
The best fit in this case yields a good reduced x? of x?/d.o.f. = 32/39. We refer to section 3.2
for a discussion of possible sources of systematic error that have not been taken into account
in this analysis.

Finally, in figure 5, we show the 2-dimensional marginalised contours of the parameters
B2 and ¢ 2. Note that the lower shaded region is the allowed region. We recall that j3
describes the strength of the chameleon fifth force and ¢~ determines the efficiency of the
chameleon screening, and we introduced the parameters 8 = §/(1 + ), which we mapped
into ¢poo2 = 1 — exp(—¢oo/107*Mp)) instead of B and ¢ to describe the entire parameter
space of the chameleon modification. Newtonian gravity is recovered in both limits of £ = 0
and ¢oo2 = 0.

The boundaries in figure 5 can be understood by considering the phenomenology of
the chameleon modification. At large (3, if the chameleon field is not screened, the extra
chameleon force reduces the hydrostatic mass compared to the Newtonian mass estimate
and it becomes inconsistent with the lensing mass (see section 3.2). This causes a tension in
the desired parameter values when fitting the joint set of observations and places constraints
on the chameleon modification. On the other hand, the chameleon force contributes only
outside of the critical radius 7, which is determined by eq. (2.19) as

re _ Bpsrd

1+—= .
Ts MPI‘boo

Due to the chameleon suppression mechanism, Newtonian gravity is recovered below r.. To

(3.8)

put a useful constraint on the chameleon force, r. must be smaller than the size of the
cluster, which is about 1 Mpc. More precisely, with increasing SMpi/ds0, the transition
scale r. becomes large and eventually surpasses the size of the cluster, in which case the
chameleon mechanism completely screens the fifth force within the cluster. At this point, no
further constraints on the chameleon model can be obtained. This implies that there is an
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Figure 3. 95% (deep gray region) and 99% CL (pale gray region) 2-dimensional marginalised contours
of the 6 model parameters Ty [keV], ng [1072ecm™®], by, 71 [Mpc], My, [101*My], and ¢ in the
Newtonian scenario, obtained from the MCMC analysis, using the joint set of X-ray, SZ, and WL
data. The most-right panels of each row show the 1-dimensional marginalised constraints (solid) and
likelihood distributions (dotted).
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Figure 5. 95% (deep gray region) and 99% CL (pale gray region) contours for the chameleon model
parameters 32 = /(1 + 8) and ¢oo2 = 1 — exp(—o/10~*Mp)), obtained from the MCMC analysis
of the 8 model parameters, To, no, b1, 71, Myir, ¢, B2, and ¢o 2, using the joint set of X-ray, SZ, and
WL data. The shaded region is the allowed region.

upper bound on SMp|/¢e, which can be constrained. In the opposite limit, when g is small,
the fifth force is weak and the modifications become consistent with the observations within
the given errors. Hence, at low 32 in figure 5 the chameleon scalar field amplitude ¢og 2 is
unconstrained.

With the minimal scalar field in the background, —A"** ~ n=!3 Ry ¢"F' Mpy, the Comp-
ton wavelength of the background scalar field today, assumed to be ¢ here, becomes [32]

mal ~ 5RO@_1/2N 1062 Mm _1/2Mc
S S n+1 oo pe

(3.9)

Whereas the chameleon mechanism suppresses the scalar field on scales below 7, on scales
larger than the Compton wavelength m_}!, modifications of gravity are Yukawa suppressed.
With Solar System tests requiring that gboo < 10793 [20, 32] and with n ~ O(1), one obtains
mgo ~ Mpec. Hence, requiring Solar System tests to be satisfied, standard gravity is recovered
on scales beyond O(1) Mpc (cf. [5]). Since we only use observations on scales smaller than
1 Mpc and constraints are weaker than the local bounds, we can safely ignore the Yukawa

suppression.

3.1.3 Constraint on f(R) gravity

Our constraints have important implications for f(R) gravity [19-21], which corresponds to
a subset of our models with a particular choice of the coupling constant 8 = 1/1/6. In f(R)
gravity, the Einstein-Hilbert action is supplemented by a free nonlinear function f(R) of the
Ricci scalar R,

= Tor G/d4x\/_ R+ f(R /d4m\/_Lm, (3.10)

where Ly, is the matter Lagrangian. Here, we adopt the particular expression f(R) =
—m?c1/ca + (m%e1/c3)(R/m?)~" of the Hu-Sawicki model [20], where i, m, ¢; and ca are
constant model parameters. Note that m?c1/c2/2 can be chosen such that the modification
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exhibits an effective cosmological constant and mimics the expansion history of the concor-
dance model. Hence, we specify m? = QmHg and ¢1/co = 6Qp/Qy,, where Qy, and Hy are
the matter density parameter and the Hubble parameter at the present epoch, respectively,
and Qp = 1 — Q. Furthermore, we have 7ici/c3 = —fro[3(1 + 4Q4/Qm)]" !, where we
introduced the model parameter fprg, which is the value of df (R)/dR at present time and at
the background. The f(R) modification can be related to the chameleon field ¢ via

2 ¢
fr=—\/2 (311)
and hence, assuming that the Coma cluster is isolated such that ¢, corresponds to the
background scalar field value, we have fro = —1/2/3(¢oo/Mp1). From the 2-dimensional
contours of (f2, poo,2) in figure 5, we therefore estimate an upper bound on f(R) gravity of
boo S 7 x 1075 Mpy or equivalently, |fro| < 6 x 107> at 95% CL.

We emphasise that this is a competitive result with the bounds on f(R) gravity obtained
from cosmology such as from the abundance of clusters [6, 36, 64] (see figure 1) and the current
constraints from redshift-space distortions in the large scale structure of galaxies [65]. Note
that in the case of 7 = 1, the value of |frp| is related to the Compton wavenumber of the
scalar field ko by

104\ '/
ke ~ 0.04 <|fR0) hMpec L. (3.12)

Then, | fro| £ 6 x 107° can be rephrased as ko < 0.05 hMpc L.

Note that the assumption that the Coma cluster is an isolated system is nontrivial. It
is well known that on large scales, the cluster is connected to a network of filaments [61, 62].
Hence, ¢o or fro should really be understood as the scalar field value in the mean density
environment within a large radius around the Coma cluster, which we expect to be close
to the background value [63]. This interpretation does not differ from approaches taken to
derive the constraints reported in figure 1. Another possible effect which may be introduced
by the environment could be a large-scale non-spherically symmetric feature as discussed in
section 3.2.2.

3.2 Systematic effects

So far we have assumed hydrostatic equilibrium of the gas and a spherically symmetric matter
distribution. We therefore devote the remainder of this section to discuss the systematic
errors that can be introduced in our analysis due to deviations of the hydrostatic equilibrium
(section 3.2.1) and to adumbrate the systematics caused by the presence of non-spherically
symmetric features (section 3.2.2).

3.2.1 Invalidity of hydrostatic equilibrium

By employing the assumption of hydrostatic equilibrium in our analysis of the model pa-
rameter space, we have supposed that for the Coma cluster, the hydrostatic masses inferred
from temperature and density, and that from pressure and density, are consistent, as well
as that the two hydrostatic masses are also consistent with the lensing mass. Here, we test
the validity of hydrostatic equilibrium within Newtonian gravity by comparing the different
mass estimates, and study the effects of introducing non-thermal pressure.
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Figure 6. Top left panel: Radial gas temperature profile of the Coma cluster. The circles and
boxes represent the the data points and errors from the XMM-Newton measurements by Snow-
den et al. [27] and the Suzaku measurements by Wik et al. [28], respectively. The solid curve
is the projected emission weighted temperature eq. (A.1), using the fitting functions eqs. (A.4)
and (A.5) for the 3-dimensional temperature and electron density profiles with best-fit parameter val-
ues (Tp, A,70,b9) = (8.6 keV,0.082,3.9 Mpc, —5.3) and (ng,r1,b1) = (2.3 x 1073ecm =3, 0.34 Mpc, —1),
respectively, to the joint X-ray data. Top right panel: radial surface brightness profile of the Coma
cluster. The data points represent the XMM-Newton measurements by Churazov et al. [26]. The
error bars in the original data, which only account for the Poisson noise contribution, are small.
We assign a systematic error of 5% to each data point to take into account clumpiness and other
non-spherically symmetrical features of the cluster. The solid curve is the surface brightness profile
eq. (A.2), using the fitting functions eqs. (A.5) and (A.4) for the 3-dimensional electron density pro-
file temperature profile with best-fit parameter values (T, A, 79, bo) = (8.6 keV,0.082, 3.9 Mpc, —5.3)
and (ng,71,b1) = (2.3 x 1073cm™3,0.34 Mpc, —1), respectively, to the joint X-ray data. Bot-
tom panel: radial Sunyaev-Zel’dovich CMB temperature profile. The data points represent the
Planck measurements by Ade et al. [25]. The dashed curve is the SZ effect eq. (A.3), using
the fitting function eq. (A.6) for the 3-dimensional pressure profile with best-fit parameter values
(Py, b3, by, bs,74) = (1.1 x 1072 keV/cm?,0.14,2.2,1.1,0.53 Mpc). The solid curve is the best fit
model from the joint X-ray observations.

In the top left and top right panel of figure 6, we compare the observed X-ray tempera-
ture and surface brightness, respectively, against the corresponding best fit curves, which are
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Figure 7. Radial mass profile of the Coma cluster. The shaded region is the observationally
allowed 1-o0 region from the WL observations of [30]. The blue solid curve is the thermal mass
component Mipermal estimated from the X-ray observations only, and the black solid curve is Mihermal
estimated from the combination of X-ray and SZ observations. The blue dashed and black dashed
curves correspond to the same colour solid lines, however, now including a large non-thermal pressure
contribution.

obtained by fitting the projected profiles of egs. (A.1) and (A.2) with egs. (A.4) and (A.5)
to the combined X-ray data. Note that in the top right panel, for each data point, we have
assigned a 5% systematic error on top of the measured errors. The measured errors for the
X-ray surface brightness are extremely small because they only include the Poisson noise con-
tribution. Systematic errors can be introduced from the clumpiness and the non-spherical
symmetry of the gas distribution and should be taken into account (see section 3.2.2).

The bottom panel of figure 6 shows the SZ observations by the Planck satellite reported
in [25], which we compare with the two different best-fit curves. The dashed curve is the best
fit obtained by fitting the SZ profile eq. (A.3) with eq. (A.6) and the solid curve is the best
fit to the joint X-ray temperature and surface brightness data, i.e., with the same parameter
values used in the top left and top right panels of figure 6. Note the deviation between the
two curves.

Recently, Fusco-Femiano, Lapi, and Cavaliere [38] analysed the consistency between
the observations of the X-ray surface brightness, X-ray temperature, and SZ observations,
adopting a “Supermodel”. The Supermodel yields a direct link between the X-ray and the SZ
observations based on the entropy profile. They report a tension between the pressure from
the X-ray observations and that from SZ observation in the Coma cluster. The authors argue
that an additional non-thermal pressure resolves the tension. In this paper, we adopt a similar
observational data set and reconstruct the 3-dimensional gas profiles using the relations
described in appendix A. We find a similar tension in our results and model a non-thermal
pressure component as described in section 2.1, which however, is slightly different from
the non-thermal pressure discussed in [38]. The non-thermal pressure in [38] is a constant,
which is independent of the radius. The non-thermal pressure we introduce in section 2.1 is
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a function of radius, and its fraction in the total pressure becomes large only in the outer
region. Nevertheless, our models fit the data reasonably well and can be used to put a useful
constraint on the chameleon modification. This is because we only use the limited data in
the range of radii of 100 kpc < r| < 1 Mpc, where the shape of the mass profile drives the
constraints.

Figure 7 shows the different radial mass profiles reconstructed from the different gas
observations and the lensing mass in Newtonian gravity, including effects from the non-
thermal pressure introduced in section 2.1. The blue solid curve is the hydrostatic mass from
eq. (2.5) with the reconstructed ne(= pgas(2+p)/5pmy,) and Tyas from the X-ray observations.
The black solid curve is the hydrostatic mass from eq. (2.3) with the reconstructed pgas and
Py, from the X-ray observations and the SZ observations. Finally, the shaded region in
figure 7 shows the allowed 1o-region of the WL mass profile fitted using a NFW density profile
with My, = 8.9272995%10h =1 M, and ¢ = 3.57257. At the scales of 100 kpc < < 1 Mpc,
the blue and black curves are consistent within the shaded region, while for » < 100 kpc,
the curves are out of the shaded region. Thus, for 100 kpc < r < 1 Mpc, although the mass
estimates differ up to the 50% level, within the observational error of the lensing mass, the
mass profiles estimated by the gas observations are consistent with each other and the lensing
mass profile. This suggests that hydrostatic equilibrium is a good approximation for the outer
region of the Coma cluster, given the error of the lensing measurement. The discrepancies
in the inner region r < 100 kpc are a known problem in the mass reconstruction and beyond
the scope of the present paper: the validity of hydrostatic equilibrium in the inner region
has been investigated by many authors (see, e.g., [66-68] and references therein) with no
consensus found. Note, however, that the WL observations are not sensitive to the density
profile in the inner region [30]. We, therefore, base our analysis on a simple extrapolation of
the NFW profile. Recent lensing observations of the Coma cluster [69] support the validity
of this assumption for 100 kpc < r < 1 Mpc as well as indicate its limitation for » < 100 kpc.

In order to estimate the influence of the non-thermal pressure on the mass profile, the
blue and black dashed curves in figure 7 show the sum of the thermal mass profile Mipermal
and the non-thermal mass component Moy _thermal determined by eq. (2.8). The blue dashed
curve is obtained from the X-ray observations via eq. (2.27), whereas the black dashed curve
is obtained from the combination of the SZ and X-ray observations from eq. (2.28). At
r = 1 Mpc, the non-thermal pressure enhances the total hydrodynamical mass estimation
by a few x10%. This reflects the limited effect of the non-thermal pressure predicted by
hydrodynamical simulations.

Finally, we include the chameleon field in our mass comparison. In figure 8, we show
the thermal radial mass profile and the combination with the chameleon mass component
Mihermal+My (red curves). The red solid and red dashed curve is obtained for (5, ¢oo/Mp1) =
(1,1.5 x 107%) and for (1.2,2 x 10~%), respectively. These two sets of parameters of the
chameleon model illustrate typical scenarios where the chameleon force causes a possible
discrepancy between the gas and the lensing masses. Note that these curves are determined
from Mihermal and My in eq. (2.20), where Mipermal is reconstructed from the observational
data and My is given by eq. (2.21), and, therefore, the slightly oscillatory feature of the
B = 1.2 curve does not reflect any physically meaningful effect. The blue curve represents
the case without the chameleon force, which is close to the red solid curve and the red
dashed curve in the inner region, where the chameleon field is suppressed. Further out,
the chameleon force reduces the hydrostatic mass Minermal + My With respect to the mass
obtained in Newtonian gravity because the chameleon force introduces an extra attractive
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Figure 8. Same as figure 7 but in the presence of the chameleon field. The red solid and red dashed
curves are the combination of the thermal mass and chameleon mass components, Mipermal + Mo,
when (3, ¢oo/Mp1) = (1,1.5 x 107%) and (1.2,2 x 10~%), respectively.

force. As is clear from this figure, we can only put a constraint on the chameleon model
that influences the gas distribution in the range r < 1 Mpec. The critical radius at which the
chameleon force begins to contribute is determined by /¢« [see eq. (3.8)] and the amplitude
of the chameleon force is determined by [ (see section 2.2). Thus, these two parameters in
the chameleon models are constrained by comparing the hydrostatic mass and lensing mass
under the assumption of hydrostatic equilibrium.

3.2.2 Non-spherical symmetry

Next, let us consider systematic effects that can be introduced by deviations from spherical
symmetry. Here, we assume that the three dimensional profile of the electron number density,
temperature, and pressure are written as,

ne(ra 0, 90) = MNe (T)[l + On, (Tv 0, 90)]7 (313)
Tgas(ra 0, <P) = Tgas(r)[l + 5Tgas (’I", 0, 410)]7 (3'14)
Po(r,0, ) = Pe(r)[1+5pe(r,9,g0)], (3.15)

where 6,,,0r,,, and dp, describe deviation from the spherical symmetric profiles, 7o(r),
Tyas(r), and Pe(r), respectively.

The effect of the clumpiness on the electron number density can then be estimated as
follows. Introducing an average over the spherical symmetric profiles, we assume (d,,) = 0
and (5%e> # 0. Assuming that the temperature perturbation is negligible, i.e., d7,,, = 0, the
observed X-ray temperature profile is not changed. The SZ profile is not affected by clumping
either because (dp.) = (d,,) = 0 from the equation of state. However, the surface brightness

is increased by the clumpiness and can be rewritten as

Sx o /nzdz =(1+ <5ge>)/ﬁ§dz, (3.16)
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where 14 (02 ) is referred to as the clumping factor. This affects the reconstruction of the elec-
tron number density. When the clumping factor is non-zero, 7, is replaced by 7e/+/1 + (92_).
Then, the thermal mass profile reconstructed from observations of the SZ effect and X-ray
surface brightness, eq. (2.25), is enhanced by a factor /1 4 (02_). However, the thermal mass
profile reconstructed from X-ray observations, eq. (2.24), is not affected by the clumpiness.
In the case where 1 + (53%) = 1.5, which corresponds to the estimated clumping factor for
the A1835 cluster [70], we have an enhancement of the hydrostatic mass by a factor ~ 1.2.
Thus, systematics from the clumpiness could be of order a few x10%.

Besides the clumpiness, large-scale spherical asymmetries of a cluster may cause an
additional systematic bias. Three dimensional ellipticity as well as substructures of the
Coma cluster have been studied in ref. [71]. They have reported an ellipticity of the electron
density in the Coma cluster of € = v/1 — €2 = 0.84 with eccentricity e such that we can ignore
the effect in our analysis. Nonetheless the assumption of spherical symmetry introduces
systematics errors, which should be investigated in more quantitative detail in a future work.

4 Summary and conclusions

We have proposed a novel method to test gravity in the outskirts of galaxy clusters by
comparing their hydrostatic and lensing mass estimates. The hydrostatic mass profile of a
cluster can be inferred from the 3-dimensional gas temperature, electron number density, and
electron pressure profiles from the projected observations of the X-ray surface brightness, the
X-ray temperature, and the SZ CMB temperature profile, by implementing a parametric
reconstruction method. The dark matter density profile can furthermore be constrained
by WL observations. Here, we adopt the NF'W density profile to describe the dark matter
distribution within the cluster. In the case of hydrostatic equilibrium of the gas and standard
gravity, the different mass estimates should agree. In the presence of a chameleon field,
coupling to the matter fields and introducing an attractive fifth force, the relation between
the mass estimated from the gas observations and from lensing changes, and can therefore
be used as a test of gravity.

Combining measurements of the X-ray surface brightness, the X-ray temperature, the
SZ effect, and lensing of the Coma cluster, we performed an MCMC analysis of the model
parameter space, describing the cluster profiles and gravity theory, and have obtained com-
petitive constraints on the chameleon gravity model parameters 5 and ¢, the coupling
strength of the chameleon field and the field value in the environment of the cluster, which
we approximate here by the cosmological background. Contrary to a previous study in [14]
that constrains the modified gas distribution in the Hydra A cluster measured through the X-
ray temperature, our new constraint does not rely on the assumption of a polytropic equation
of state of the gas, employs a Bayesian statistical approach for inferring parameter constraints
on the full set of model parameters, and yields a tighter bound on the modified gravity pa-
rameters than these previous results through the combination of the X-ray, SZ, and lensing
observations available for the Coma cluster. We emphasise that our results provide a power-
ful constraint on f(R) gravity models, corresponding to a particular choice of the chameleon
coupling constant B = 1/1/6, for which we obtain an upper bound of |fre| < 6 x 107° at
the 95% CL. This bound is competitive with the current strongest cosmological constraints
inferred on f(R) gravity (see figure 1).

An important systematic that can affect our analysis can be introduced by deviations
from hydrostatic equilibrium of the cluster gas. We have therefore carefully examined the
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validity of hydrostatic equilibrium in the Coma cluster. Assuming Newtonian gravity, we
compare the different mass estimates from the three different gas observations and the WL
mass. We find that the mass profiles from the gas and WL observations can deviate from
each other by up to 50% but that they are consistent within the observational errors of the
lensing measurement. We analyse the effect of including a non-thermal pressure component,
with a radial profile calibrated to hydrodynamic simulations but with extremised amplitude.
This contribution only marginally affects our reconstructed masses, and we conclude that
hydrostatic equilibrium is a good approximation to describe the outer region of the Coma
cluster. Note, however, that the effect from the chameleon force on the hydrostatic mass is
opposite to the effect of the non-thermal pressure. Hence, the chameleon force can compen-
sate for a large contribution from non-thermal pressure and cause a degeneracy between the
two effects. On the other hand, the magnitude of the non-thermal pressure that would be
required to compensate for the effects of the chameleon force tested here is not to be expected
from current hydrodynamical simulations. It is, however, not clear whether the presence of
a chameleon field could significantly enhance the non-thermal pressure contribution in the
Coma cluster such that it could cancel the effects of the chameleon field, and act to alleviate
the constraints on the modification of gravity. In this regard, it will be useful to analyse
the non-thermal pressure of chameleon gravity models using hydrodynamical simulations
along with a more detailed study of the Newtonian case. As for f(R) gravity, such hydrody-
namical simulations have recently been conducted by Arnold et al. [23]. They estimate the
non-thermal pressure from the bulk motion in the intracluster medium and find that it only
leads to substantial contributions in merging clusters, which can be identified and excluded
to obtain statistical quantities like X-ray and SZ scaling relations. Their results suggest that
the effects of non-thermal pressure in a relaxed cluster like Coma are not significant, at least
in the case of the f(R) gravity models.

Further effects which may cause deviations from the hydrostatic equilibrium have been
discussed in [31, 38, 70]. Ref. [31] found that the mass estimated under the hydrostatic
equilibrium assumption deviates from the true mass on average by ~ (10 —20)% fractionally
in a simulated halo due to gas acceleration. Given the large errors on the measurement of
the lensing mass of the Coma cluster, we can ignore this deviation in our current analysis.
Future measurements such as from the Astro-H X-ray observations will allow more precise
modelling of the Coma cluster.

Our results demonstrate that galaxy clusters are useful probes of gravity. The method
described in this paper may be applied to other clusters. However, one should be cautious
about the individual properties of each cluster; the assumptions adopted in the present paper
might not be guaranteed for other galaxy clusters and need to be considered for each case.
The key is to understand the motion and distribution of the gas component in clusters; the
combination of multi-wavelength observations, as demonstrated by the recent results by the
Planck satellite [72-75], will provide a clue on how to solve this difficult issue. In the near
future, we will have stacked lensing, SZ, and X-ray profiles for hundreds of clusters. The
combination of multi-wavelength observations for many clusters will significantly improve
the tests of gravitational interactions on cluster scales.
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A Reconstruction of the 3-dimensional gas profiles

We summarise the reconstruction method for the 3-dimensional profiles of the gas density,
temperature, and pressure, using observations of the X-ray temperature, surface brightness,
and SZ effect used in section 3.1 to derive constraints on chameleon gravity from the Coma
cluster. We begin with a short discussion on the quantities that are observed in the X-ray
measurements and through the SZ effect.

From X-ray observations, one obtains the projected X-ray temperature profile

Jw (,/7’3 + z2> Tyas (,/ri + z2> dz
Tx(ry) = ; (A1)
fW(q/Ti—f-ZQ) dz

where r is the radius perpendicular to the line of sight direction, and W (r) is the weight

factor, which may be written as W (r) = ng(T)Tgla/sz(r) for the emission weighted temperature
and as W (r) = n? (r)Tg;2/4(r) for the spectroscopic-like temperature [76]. Here, ne(r) denotes
the electron density profile. In this paper, we use the emission weighted temperature, but
we checked that the 3-dimensional temperature and electron number density profiles do not
depend on the choice between the two weightings.

The X-ray surface brightness is given by

Sx(ry) = /ng <\/rf_ + 22> Ae (Tgas) dz, (A.2)

where Ac(Tgas) is the cooling function. To estimate the cooling function, we used XSPEC [77]
adopting the thermal plasma emission spectra model with the APEC code [78]. The XSPEC
software gives the X-ray flux based on the APEC model corresponding to the observational
band from 0.5keV to 2.5keV [26]. The X-ray flux can be converted to the cooling function by
the flux-luminosity relation. The metal abundance in the innermost region of the cluster is
larger than in the outer region, Z = 0.4Z¢, [38] and Z = 0.3Z [79], respectively. However,
as the difference is small and does not affect our constraints, we adopt a metal abundance of
Z = 0.3Z throughout the cluster.

Photons from the CMB passing through clusters are scattered by the hot gas, and this
distorts the CMB spectrum as a function of frequency. This SZ effect yields a contribution
to the CMB temperature of

o /
ATsz(TJ_) = —QTCMBE/PQ ( Tﬁ_ +2’2> dz, (A3)

where Tovmp = 2.725K is the CMB temperature, or is the Thomson cross section, m, is the
electron mass, and P(r) is the electron pressure.
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Having summarised the quantities observed in the X-ray and SZ measurements, we now
use them to reconstruct the 3-dimensional gas density, temperature, and pressure profiles.
For this purpose, we adopt the following fitting functions for the 3-dimensional profiles of
Toas(r), ne(r), and Pe(r). For Tgas(r), we use the fitting formula calibrated to numerical
simulations [80]

r

1) =To |14 4 ()]b , (A.4)

To

where Ty, A, rg, and by are free parameters. For the electron number density, we assume a
simple isothermal § model [81]

1+ (;)2] ’ , (A.5)

where the free parameters are ng, r1, and b;. Finally, we adopt the generalised NFW profile
for the pressure proposed by [82],

ne(r) = no

Py
(r/r2)b2(1 + (1/r2)bs )b’

for the 3-dimensional electron pressure profile with the fitting parameters Py, 72, b3, and by.

We compute the projected profiles in egs. (A.1), (A.2), and (A.3) with the fitting func-
tions of eqs. (A.4), (A.5), and (A.6), and determine the best fit parameters Ty, A, 7o, bo, no,
r1, b1, Py, ro, ba, b3 and by by comparing the profiles with the observations from the X-ray
temperature, X-ray surface brightness, and SZ effect of the Coma cluster in section 3.2.1. In
this way, we obtain the reconstructed 3-dimensional gas density, temperature, and pressure
profiles of the cluster.

Note that since we assume the hydrostatic equilibrium eq. (2.29) in the MCMC analysis
in section 3.1, we only need to define two of these profiles, of which one can also be the matter
density profile and from which the other profiles can be derived, however, not necessarily
reproducing the exact analytic expressions of the fitting functions. In section 3.1, we choose
to work with the electron number density eq. (A.5) and the NFW profile eq. (2.11). The
choice of the NFW profile simplifes the computation of the chameleon force and allows the
use of the analytic approximation derived in section 2.2. Hence, the degrees of freedom
reduce to Ty, ng, r1, by, including the NFW parameters M, and ¢ as well as the chameleon
model parameters [ and ¢oo (0or B2 and ¢ 2), where Tj is required to set the integration
constant in eq. (3.2). This approach yields reasonable reduced x? values when fitted to the
observational data in section 3.1.2.

Pe(r) = (AG)
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1 Introduction

Modifications of gravity theory is an interesting approach to explaining the accelerated ex-
pansion of the universe. However, any covariant modification of general relativity introduces
additional degrees of freedom, giving rise to a fifth force. This is strictly constrained by
gravity tests in the solar system. Solar system experiments [1, 2] are in excellent agreement
with general relativity, requiring that this additional degree of freedom be hidden on the
scale of the solar system. Such a process is referred to as a “screening mechanism,” which
is key for a viable modified gravity model. In general, this screening mechanism works in
high-density regions where the matter density contrast is nonlinear. However, this does not
work on large cosmological scales. A screening mechanism that characterizes viable modified
gravity models is an important feature to be tested with observations.

The chameleon mechanism [3, 4] is a screening mechanism that works in an f(R) gravity
model and the chameleon gravity model [5-7]. In these models, a scalar degree of freedom that
gives rise to the fifth force is screened in a high-density region due to coupling with matter.
The chameleon gravity model and an f(R) model can be viable owing to the chameleon
mechanism [8]. The Vainshtein mechanism [9] is another relevant screening mechanism,
which is exhibited in the Dvali-Gabadaze-Porrati (DGP) model [10, 11], the simplest cubic
Galileon model ([12-15], see also the appendix), and its generalized version [16, 17]. The
DGP model is an archetypal modified gravity model developed in the context of the brane-
world scenario. There are two branches of solutions in the DGP model. The self-acceleration
branch DGP (sDGP) model [18-20] includes a mechanism to explain self-acceleration in
the late universe, while the normal branch DGP (nDGP) model [21-23] with a cosmological
constant is a healthy modified gravity model avoiding the ghost problem [24, 25]. The simplest
cubic Galileon model is also a typical modified gravity model that explains self-acceleration
of the universe while avoiding the ghost problem. Our generalized cubic Galileon model is a
generalized version of the simplest cubic Galileon model that retains important features and



contains the DGP models. In these models, a scalar field giving rise to a fifth force is screened
due to self-interaction on small scales where density perturbations become nonlinear.

Galaxy clusters provide a unique laboratory for testing modified gravity models exhibit-
ing screening mechanisms, because they are objects on the borderline between linear and non-
linear scales, that is, between non-screened and screened scales. The authors of [26-28] have
investigated a cosmological constraint on the chameleon gravity model using galaxy clusters.
They put a constraint on the turning scale and the amplitude of the fifth force at large scales.
The authors of [29, 30] have investigated a constraint on a generalized Galileon model exhibit-
ing the Vainshtein mechanism, using an observed weak-lensing profile of clusters. They put
a constraint on the turning scale and the amplitude of modification of the lensing potential.

The purpose of the present paper is twofold. One purpose is a generalization of the
methodology for testing a modified gravity model with a galaxy cluster. In the present paper,
we consider a generalized cubic Galileon model. Within the quasi-static approximation, the
generalized cubic Galileon model is effectively characterized by three parameters, pg, pr,
and e. Detailed definitions are given later, but, broadly, ug and pup, are parameters that
modify the effective amplitude of the gravitational potential and the lensing potential in the
non-screened region, while € determines the turning scale from the non-screened region to
the screened region due to the Vainshtein mechanism. The parameters pg are constrained
by observations of the gas distribution, in particular an X-ray surface brightness profile and
the SZ effect [31]. However, the parameter pj, is only constrained by observations of lensing
measurements. Therefore, a combination of observations of gas distribution and the lensing
signal is essential to put a constraint on the three parameters characterizing the modified
gravity model. We demonstrate how a combination of multi-wavelength observations of a
cluster is useful to put a constraint on a generalized Galileon model.

The other purpose is improvement of the analysis in [27] using new X-ray data [32, 33]
and lensing [34] observations of the Coma Cluster. In our method of testing gravity with
a galaxy cluster, the modeling of the gas distribution is important. A basic assumption of
the model for the gas distribution is hydrostatic equilibrium, that is, a balance between the
gas pressure gradient force and the gravitational force. In the region where the fifth force is
influential, the condition of the hydrostatic equilibrium is changed, and the gas density profile
is modified. However, in general, galaxy clusters are dynamically evolving, and a deviation
from the equilibrium could be influential. Therefore, we first check the consistency of our
model by comparing theoretical predictions with various observations of the Coma Cluster,
including the new X-ray data and lensing measurements.

This paper is organized as follows: in section 2, we first review our model for the dark
matter and gas distribution of a galaxy cluster within Newtonian gravity. We demonstrate
how well our model fits observations of the Coma Cluster in section 3. We also validate our
model against the influence of non-thermal pressure. In section 4, we introduce a generalized
cubic Galileon model, and explain the modification of our model by the fifth force of the scalar
field. In section 5, we discuss degeneracies on parameters and systematic errors focusing on
special circumstance of using the Coma Cluster. Section 6 is devoted to a summary and
conclusions. Throughout this paper, we adopt Q2,0 = 0.3, Qz = 0.7 and Hy = 70km/s/Mpc,
and we follow the convention (—, +,+,+).

2 Modeling of cluster profiles

We review our model for the dark matter and gas density distribution connecting with obser-
vational quantities, X-ray brightness, the SZ effect temperature profile, and the weak-lensing
profile (see also [27, 29]). Our model is based on an assumption of hydrostatic equilibrium,

S



but we also take the possible influence of non-thermal pressure into account. In this section,
we first consider the case of Newtonian gravity.

2.1 Mass profile

We employ a universal mass density profile, namely the Navarro-Frenk-White (NFW) pro-
file [35], motivated by predictions of numerical simulations,

Ps
» 7 2.1

P = T ) @1)
where pg and ry are the normalization and the scale radius, respectively. The mass within
the radius 7 is given by M(< r) = 4r [ drr?p(r) = 4dwpsrim(r), with m(r) = In(1 +r/rg) —
r/rs/(1+7/rs). We introduce the concentration parameter ¢ and the virial mass My, instead
of ps and rg,

T'vir
— 2.2
o= D 22)
4
My = M(< ron) = grs’irAcpc(z) (2.3)

with the virial radius ryi;. Here, p. is the critical density at the redshift z, and A. = 100 is
the overdensity contrast determined by the spherical collapse model [36].
2.2 Gas profile with hydrostatic equilibrium

We first assume hydrostatic equilibrium between the gas pressure gradient and the gravita-
tional force in galaxy clusters as

| APy dU
Pgas dr  dr’

(2.4)

where pgas is the gas density, Pioy = Py + Pyen is the sum of the thermal pressure, Py, and
the non-thermal pressure, Py, (see below for details), and U is the gravitational potential.
We employ three assumptions to describe the gas physics. First, the equation of state for
the gas components, P, = NgaskTgas, Where ngas and Ty, are the number density and the
temperature of the total gas component, respectively. Second, the temperature of electrons
is the same as that of the gas, Tt = Tyas. Third, the electron pressure satisfies Po = nekTgas
with the electron number density ne = (2 + @t)ngas/5, where p = 0.59 is the mean molecular
weight. In the present paper, for the electron temperature we assume the functional form

by ] —b2/b1
r
1+ <7“1> ] ; (2.5)

where Tp, b1, by and r1 are parameters. Integrating (2.4) with (2.5), we obtain the electron

pressure profile
B "o pmp | GM (<r)
P.(r) = noTpexp </0 drkTe(r) [ 2 , (2.6)

and the electron number density ne(r) = Peo(r)/kTe(r), where ng is the normalization pa-
rameter of the electron number density, ne. In deriving equation (2.6), we use the relation,
Pgas = WMpNgas, Where my, is the proton mass. Equation (2.6) is the case of the absence of
non-thermal pressure; the case including non-thermal pressure is described below.

Te(r) = TO




Thus our gas distribution model includes 7 parameters (Myiy,c,n0,T0,b1,b2,71). Using our
model of the three-dimensional profiles, we construct the observables for the observations of
X-ray and the cosmic microwave background (CMB) temperature distortion. The X-ray
emission from clusters are dominated by the bremsstrahlung and line emission caused by the
ionized gas. For the X-ray observable, we define the X-ray brightness as Bx = norm/area,
where norm is the spectrum normalization obtained from XSPEC software [37, 38] adopting
the APEC emission spectrum [39], and area is the area of the spectrum. The spectrum
normalization is given by norm o [ nenudV, where ny = 0.86n, is the hydrogen number
density and V is the volume of the spectrum. Then, we write the X-ray brightness as

—14
Bx(r.) = 47r1(1)+)/ ne(r)np(r)dz [em™ farcmin®], 27)

where r, is the radius perpendicular to the line-of-sight direction, which is related with
rand z as r = ,/rf_ + 22. The CMB temperature distortion is caused by CMB photons

passsing through clusters and being scttered by electrons in clusters, can be expressed as
the difference between the averaged CMB temperature and the observed CMB temperature,
ATyy, or y-parameter,

. ATSZ _or
o) = =5t = 7% [ Ry, (28)

where Tovp = 2.725 K is the CMB temperature, o7 is the Thomson cross section, m, is the
electron mass.

2.3 Shear profile by gravitational weak-lensing

We consider a spatially flat cosmological background, and work with the cosmological New-
tonian gauge, whose line element is written as

ds® = —(1 4 20)dt* + a(t)*(1 + 2®)dx?, (2.9)

where a(t) is the scale factor, and ¥ and ® are the gravitational and curvature potentials,
respectively. The propagation of light is determined by the lensing potential (& — ¥)/2,
which means that the weak-lensing signal is determined by (® — ¥)/2. For example, the
convergence is given by

X _ ) /
o _l/ dX/MA(QD)(q) — ), (2.10)
2 Jy X

where y is the comoving distance and A2P) is the comoving two-dimensional Laplacian. For
the case of general relativity, we may set AW = —A® = 47Ga’p. Then, using the thin lens
approximation, (2.10) reduces to

K= (s = xe)a /XS dx' [4nGp(r")] at, (2.11)
XS 0

where y1, and xg denote the comoving distance between the observer and lens and that

between the observer and the source, respectively, and ay, = 1/(1 + z,) is the scale factor

specified by the redshift of the lens object z1,. For a spherically symmetric cluster, (2.11) is

represented as

K(r1) = 23 /0 " dep(r) (2.12)



with the physical coordinate r = /7% + 22. We define X¢ = xs/[47G(xs — x1)xra]. We
then define the reduced shear

V+(rL)
= — 2.13
g+(TL) 1_ Ii(’l’]_y ( )
where 4 () ) is the tangential shear, which is related with the convergence as
Vo (re) = R(<ry) —k(ry), (2.14)
with
2 [Tt
kK(<r))= —2/ dr' v’ k(). (2.15)
TL 0
For the NFW profile, the convergence is given by [40] as
2rsps [ 2 1—=x
1- tanhy / —— 1
S =) | T parctan 1+$} (x <1)
2r
ot () = 3;’25, _ (@=1) (2.16)
214 ps rz—1
1- t >1
ST | \/7arc any [ x} (x>1)
drgps | 1—=z
5.2 Warctanh,/ . + ln ] (x<1)
4
Fonw (< ) = ’;”S 1+1n )} (z=1) (2.17)
c L
4rsps :|
arctan,/ r>1
Ecx2 \/ZE -1 ( )

with & = r/rs.

Here, we assume that the source galaxies have random orientation of ellipticity eg, the
average of which is (eg) = 0. When we observe the tangential ellipticity of the source galaxies
€obs., the average is given by (€ops.) = g+. Hereafter, we assume that the redshift of the source
galaxies is (zg) = 0.6, but the results are not influenced by the redshift of the source galaxies
for nearby clusters.

3 Consistency test with Newtonian gravity

In the present paper, we use Coma Cluster observations. The Coma Cluster is one of the best
observed nearby clusters, and has redshift z = 0.0236. The X-ray distribution [32, 33, 41—
48], the SZ effect [49] and the weak-lensing measurement [34, 50] have been reported. These
observations revealed that the Coma Cluster has substructures and orientation dependence
on the gas temperature profiles. The Coma Cluster is thus an unrelaxed system. However,
we will show that our model based on the hydrostatic equilibrium fits the data of the X-ray
brightness profiles [32, 33], the SZ effect profile from the Planck measurement [49], and the
weak-lensing profile by Subaru observations [34]. In general, the assumption of hydrostatic
equilibrium holds only at the intermediate region of clusters, because of the cooling of the
gas at the innermost region and the environmental effects at the outermost region. Then we
use data points in the range 200 kpc to 1.5 Mpc to get rid of systematic effects from the
innermost and outermost regions of the cluster.



Parameter Newtonian gravity Modified gravity (full parameters)

My, 1.08F508 x 10 M, 1.047506 x 10 M,

c 3.591033 3.6415:30

no 6.147038 x 1073 /em? 6.17102% x 1073 /em?
T 6.36791 keV 6.357017 keV

b1 2.6 (fixed) 2.6 (fixed)

bo 0.5 (fixed) 0.5 (fixed)

1 0.7473:0% Mpe 0.7510:9% Mpe

¢ - 0.43

He - 0.24

L - 0.55

Minimum x?/d.o.f. 58/44 57/41

Table 1. Best-fitting parameters and 1-dimensional marginalized constraints (68% CL) to charac-
terize the gas and lensing profiles. To avoid degeneracy between parameters, we fix b; and by simply.
Our results do not depend on whether these parameters are fixed or not. This table shows the results
for the Newtonian gravity (second column) and the generalized Galileon model with all modification
parameters (third column). The minimum chi-squared and the number of degrees of freedom, d.o.f.
= (number of data points) — (number of model parameters), are listed at the bottom of each column.

In this work, we use the observational data of the XMM-Newton [32, 33], which are
different from those used in a previous paper [27]. In that paper, the weak-lensing profile is
not used; only the parameters M,;, and ¢ are used as a prior profile from [50]. However, use
of the weak-lensing profile is essential to our analysis of the generalized Galileon model.

To address the theoretical predictions in the previous section with observations of the
Coma Cluster, we introduce the chi-squared by summing the chi-squared for each observation
as

XXB4874 WL = XXB + X8z + XivL, (3.1)

where

(Bx(ri) — B )?

2
XXB = Z (ABP2 (3.2)
2 (y(riq) —yshs)?
X8z = Z (Ayo_bs.)Q ’ (33)
7 N
(94 (riq) — g3%%)?
X%VL = Z - ) (3.4)

= (A2

are the chi-square values for the X-ray brightness, the SZ effect and the weak-lensing, respec-
tively. We note that the covariance of errors is not taken into account in our analysis and
leave it for future work to study how the observational systematics affect our analysis.

We perform an MCMC analysis using modified Monte Python code [51] that employs a
Metropolis-Hastings [52, 53] sampling algorithm. This analysis includes 5 parameters with
the chi-squared (3.1), Xgx sz wr- We require Gelman-Rubin statistics [54] of R —1 < 0.001
for each parameter to ensure convergence of our runs. The black dashed curve in each panel
of figure 1 shows the best-fit profiles for the Newtonian gravity. The minimum value of the
chi-squared is x%p tsz4wr/d.of. = 58/44, and the 2-dimensional marginalized contours of
the different combinations between the model parameters are shown in figure 4.
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Figure 1. Best-fit profiles in the frameworks of Newtonian gravity (black dashed curve) and the generalized Galileon model (red solid curve),
and the observational results. The best-fit parameters are listed in table 1. Left panel: the X-ray surface brightness from the XMM-Newton
observations [32, 33]. The errors bars are composed of the Poisson noise and systematic errors that we here assume as 5%. Center panel: the SZ
temperature profile from the Planck measurements [49]. Right panel: the weak-lensing profile from the Subaru observations [50].



Non-thermal pressure possibly caused by turbulent gas and bulk motion causes a sys-
tematic error when comparing observations of clusters. The authors estimated the fraction of
non-thermal pressure in the Coma Cluster [55], which can be larger than that of the thermal
pressure by 10 percent. Here, we estimate how non-thermal pressure affects our fitting based
on an estimation with a numerical simulation. To this end, we estimate the hydrostatic
masses by comparison with the X-ray brightness and SZ effect profiles of the Coma Cluster.
Here we define the non-thermal fraction futn by futh = Path/(Path + Pin), where Py, and Py
are the non-thermal pressure and the thermal pressure, respectively. In the case including
non-thermal pressure, the thermal pressure is replaced by Py, = (1 — futh)Piot. We consider
the following non-thermal pressure fraction as a function of the radius,

Fun(r) = (1 2y (T) (Ao AT 3.5
nth(r) N am( + Z) 500 3 X 1014M® ’ ( . )
which is a theoretical prediction with numerical simulations in ref. [56, 57]. r500 and Magg
mean the radius and mass at the radius where the matter density in the galaxy cluster
is 500 and 200 times of the critical density, respectively. In the present paper we adopt
(onts Buty, Mt nm) = (0.18,0.5,0.8.0.2), which are the best-fit values in [57] consistent with
those in [55].

The best-fit profile in the presence of non-thermal pressure is not significantly altered,
compared with the best-fit profile in the absence of non-thermal pressure. Figure 2 shows the
enclosed mass profiles as a function of radius. The gray-hatched region is the 1o uncertainty
interval for the lensing mass. The blue-solid and red-solid regions show the 1o uncertainty
intervals for hydrostatic masses fitted without and with non-thermal pressure, respectively.
The hydrostatic mass estimates are in good agreement with the lensing mass, regardless of
the inclusion of the non-thermal pressure components. This shows that our fitting method
is not affected by non-thermal pressure, so we do not consider the non-thermal effect when
putting a constraint on the modified gravity in the next section.

4 Testing the generalized Galileon gravity model

We here consider the generalized cubic Galileon model, with action given by [58],

S = [ d'ay=g[Gal@)R+ K(6.X) - Galé, X)06 + L], (4.1)

where K (¢, X), G3(¢, X) and G4(¢) are arbitrary functions depending on the scalar field
¢ and its kinetic term X = —(9¢)?/2 and Ly, is the matter Lagrangian. This model is
a non-minimal coupling version of the kinetic gravity braiding mode [59], and a subclass
of the most general second-order scalar-tensor theory [60-62] with G4x = G5 = 0, where
Gix = 0G4/0X. The simplest cubic Galileon model is the case with K = —X, G5 < X,
and G4 = Mp,/2, where M3, = 1/(87G) is the Planck mass. The DGP model is originally
a b-dimensional brane-world model, however, it can be effectively described as a Galileon
model. Note that the DGP model has two branches of cosmological solutions, the self-
accelerating branch (sDGP) model [18, 19] and the normal branch DGP (nDGP) model [21].
The relation between the generalized Galileon model and the specific models are summarized
in the appendix.

We consider perturbations of space-time metric and scalar field. We choose the New-
tonian gauge for the space-time metric (2.9). Assuming spherical symmetry of the system,
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Figure 2. Spherical masses enclosed within the radii. The gray-hatched region denotes the lo
uncertainty interval for the lensing mass determined solely by weak-lensing analysis [50]. The blue-
solid and red-solid regions denote the 1o uncertainty intervals for hydrostatic masses without and
with the non-thermal pressure component, respectively, determined by our joint-fit method. The
hydrostatic and lensing masses agree with each other, irrespective of the presence of a non-thermal
pressure component.

within the sub-horizon scale with the quasi-static approximation keeping with the Vainshtein
feature, the equations for the gravity and the scalar field lead to [17]

b GM(<7r)  .dQ

E = _71“2 + fﬂ, (4'3)
aQ  r \/ 8GA2(M (< r)

m_w<1_ 1.4 SOXCM(< ) ) (14)

where Q(x) is perturbation of the scalar field defined by ¢(t,x) = ¢(¢)(1 + Q(x)), and
M(< r) = 4r [y dr'r?p(r') is the enclosed mass of the halo within the physical radius
r. Note that the perturbed values ¥, ® and @ in (4.2)~(4.4) are written in the physical
coordinate. In (4.2)~(4.4), we introduce free model parameters a, &, ¢ and A\?, which are
determined by the arbitrary functions K, G3 and G4. The expressions for a, &, ¢ and A\? are
given in the appendix A. The explicit expressions for the simplest cubic Galileon, the sDGP
and the nDGP models are also presented there.

Here, we define the Vainshtein radius ry as

2 S 11/3
8Ge Mm] ’ (4.5)

rv = [SG)‘QCMvir]l/S = [ 2
0

where we define € = \/HZA?( using the Hubble constant Hy. For r < ry, the scalar field
can be negligible compared with the Newton potential, so Newtonian gravity is recovered.



For 7 > ry the scalar field cannot be negligible, and we have

d¥ (14 ¢(a+§)GM(<r)

o= 3 , (4.6)
de (1 +¢§GM(<r)
S = . (4.7)

Thus the gravitational and curvature potentials are modified at r > ry. These modifications
affect both the gas and weak-lensing profiles.

We next construct observational quantities of the gas and weak-lensing profiles consid-
ering the scalar field. Since gas components feel gravitational force through the gravitational
potential ¥, the X-ray brightness and the SZ profiles are modified through modification of
V. On the other hand, the gravitational lensing is characterized by the lensing potential
(® —T)/2, so the modified lensing potential alters the observed lensing profile. We therefore
introduce the parameters

Ho = (a+), (48)
i = 5ot 26)C, (4.9)

with which we can write dW¥ /dr ~ (14 ug)GM (< r)/r? and d(¥ —®) /dr/2 ~ (1 + uL)GM (<
r)/r? at r>>ry.

In the generalized Galileon model, with the use of parameters pug, pr, and € our model-
ing for the electron pressure profile (2.6) and the weak-lensing profile (2.12) are modified as

follows:
GM(<r)  pa ps T3
- 7'2 + @Hg’f’ 1-— 1 + 1262%1“*377’7/(7") s

T /,me
P.(r) = Pyex / dr
( ) ! p( 0 kTe(r)
(4.10)
_ 2 [Ty L N PP
k(rp) = S z|p(r) — 52 - +12¢ %T—?)m(r)
p(/}") - 3[)57":5377/1,(7')/7‘3 :| (4 11)
V1 +12e2psr3m(r) / peor ML .

Since the gas pressure tracing the matter density deceases with the cluster-centric radius
increasing, the pressure gradient is restricted to dP./dr < 0. This gives the constraints on ug.

Instead of ug, pr, and €, we introduce p = pa/(1+ |pal),  p = pn/(1+ |pw]), and
¢ =1 — exp(—e¢), which span the complete available parameter space of j, and p in the
interval [—1,1] and € in the interval [0, 1], respectively. General relativity is recovered when
pe = py, = 0 or € — 1. Using the same method adopted for Newtonian case, we perform an
MCMC analysis for the modified gravity model including 8 parameters with the chi-squared

Xhxs 874w, defined by (3.1).
Figure 5 shows the 2-dimensional marginalized contours of the different combinations

between the model parameters. The best-fit parameters and their 1-dimensional marginalized
68% errors are listed in the table. 1. The red curve in each panel of figure 1 shows the best-fit
profile for the generalized Galileon model with the minimum value of the chi-squared/d.o.f.,
XxBysziwr/d-0.f. = 57/41. These profiles almost overlap with the profiles for Newtonian
gravity (black dashed curves), which shows that the large deviation from Newtonian gravity
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Figure 3. The 68% (dark gray regions) and the 95% CL (light gray regions) 2-dimensional
marginalized contours for the generalized Galileon model parameters. The red-plus, green-cross
and yellow-triangle points present models for the simplest cubic Galileon, the sSDGP and the nDGP
models, respectively.

is rejected. We note that there is no significant difference between the red and black curves
in the best-fit profiles. There is a slight difference in the shear profiles at the large radius
r > 1Mpc, which seems to be originated from the large errorbars of the shear data.

Figure 3 shows 2-dimensional marginalized contours of the confidence levels for the pa-
rameters pu, g, and €.y and g are parameters from the modification of the gravitational
potential and the lensing potential, and € is a parameter characterizing the Vainshtein radius.
Large values of ug and py, are rejected at the 68% confidence level, which indicates that the
possibility of a large deviation from the Newtonian gravity is ruled out, depending on the
parameter e. When € is smaller, the Vainshtein radius becomes smaller, we can put a tighter
constraint on pug and pr,. However, e is large, the Vainshtein radius becomes large, which
makes difficult to distinguish between the Newtonian gravity model and the modified grav-
ity model due to the Vainshtein mechanism. The red-plus, green-cross and yellow-triangle
points in figure 3 show the representative models, the simplest cubic Galileon model, the
sDGP model and nDGP model, respectively, at the redshift z = 0.0236. The parameter
values for each models are shown in table 2.

In a previous work [29], a constraint only on the parameter space py, and € is obtained,
based on the lensing observations. As a other recent related work, Barreira et al. investigated
cluster masses and the concentration parameters in modified gravity models from shear pro-
files [63]. They focused their investigation on the mass-concentration relation of 19 X-ray
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Models () pe (o) | ()
simplest cubic Galileon | 0.77 (0.44) 0.77 (0.44) 1.12 (0.67)

sDGP ~0.26 (~0.22) (0) 0.53 (0.43)

nDGP 0.20 (0.18) (0) 0.10 (0.09)

Table 2. Values of modified gravity parameters for each model at the redshift z = 0.0236.

Parameter Modified gravity (unscreened) | Modified gravity (fifth force)

My 1.267982 x 10 My, 0.867008 x 101 My

c 3.7817048 3.8410:24

no 6.157030 x 1073 /em? 6.2075:27 x 1073 /cm?®
T 6.357013 keV 6.3610 15 keV

b 6 (fixed) 6 (fixed)

bo 0.5 (fixed) 0.5 (fixed)

2 0.7510:55 Mpc 0.7510:58 Mpc

¢ 0 (fixed) 0.05 (fixed)

e —0.10 0.2 (fixed)

s —0.05 0 (fixed)

Minimum x?/d.o.f. 57/42 60/44

Table 3. Same as table 1 but for the results of the generalized Galileon model in the unscreened limit
with only fixing € = 0 (second column), and the case with fixing all the modified gravity parameters
€ =0.05, pui; = 0.2, and g, = 0 (third column).

selected clusters from the CLASH survey in the simplest cubic Galileon and Nonlocal gravity
models. They found that the mass-concentration relation obtaining from the shear profiles
for the cubic Galileon model is the same as those for the ACDM model, but no stringent
constraint on the modified gravity models is obtained. Unfortunately the constraint obtained
in the present paper is not very stringent too, but one can find the following possibility. We
emphasize that models with ur, = 0 like the sDGP and the nDGP models are indistinguish-
able with Newtonian gravity in the method based on the lensing observations. On the other
hand, our method of combining the gas and weak-lensing profiles can solve the problem from
this degeneracy. Future observations would improve the constraint.

5 Discussion

5.1 Degeneracies on parameters

On the MCMC analysis in the previous section, we do not take the range of €, [0,0.1],
into account because it is hard to converge the MCMC runs because of degeneracy in the
parameter space. Here, we treat this parameter region for complemental discussion.
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First, taking the limit € — 0, which means the fifth force is unscreened everywhere, the
solutions of the gas pressure (4.10) and the convergence (4.11) are reduced to

P.(r) = Pyexp </07’ drk/;Zi) [— GMT(; r) (1+ u@}) , (5.1)
K0 = (g [ dzoto) (5:2)

Then, the pressure profile and the convergence profile are simply modified by a factor of
(1+ pg) and (1+ py), respectively. In this case, we have P, o (1 + pug)Myirm(c)/c® and k o
ps o< (1 + pp,) Myicc® /m(c), then, there are degeneracies between the parameters, My, ¢, g,
and py,. Figure 6 compares the results of the MCMC analysis with fixing ¢ = 0 (dark blue
region (68% CL) and mid blue region (95% CL)) and the results of the Newtonian gravity
(dark gray region and mid gray region), which is the same as those of figure 4. The best-
fit parameters are shown in the table. 3. The CL contours of the blue regions reflect the
degeneracy between the parameters, My, ¢, pg, and pug,.

Next, we show how the presence of the fifth force affects the parameter estimation.
For example, the blue confidence contours in figure 7 shows the 68% and 95% confidence
contours of the case with fixing € = 0.05, ug = 0.2 and py, = 0. My, and c¢ are different
from those of the Newtonian gravity (gray regions), but other parameters, ng, Ty and by, are
not changed. The minimum value of the chi-squared/d.o.f. in the presence of the fifth force
is x4p tgzewr/d.o.f. = 60/44, which is almost the same as the Newtonian case, despite the
different cluster parameter, My, ~ 0.9 x 10 M, (see table. 3). This result exemplifies that
the presence of the attractive fifth force affects the estimation of the NF'W parameters, My;,
and ¢. This is understood as the consequence of the degeneracy between the modification
parameters pg and pp, and My, and c.

5.2 Systematic errors

We shall discuss possible systematic errors. In our analysis, we have assumed spherical sym-
metry for the matter distribution and an equilibrium state for the gas component of the bal-
ance between the pressure gradient and the gravitational force and the fifth force in the case
of its presence. We have demonstrated that non-thermal pressure at the level suggested by
numerical simulations does not alter our results. A future X-ray satellite, ASTRO-H [64], will
observe turbulent gas motion in the Coma Cluster in more detail, which will be informative
regarding our result. However, observations of the Coma Cluster suggest substructures [34,
50, 65—68] and orientation dependence [41, 42, 48], so the Coma Cluster is not thought to be
a relaxed system. Dynamical states of the Coma Cluster would give a systematic difference
between our results and temperature measurement. Our fitting results show that the tem-
perature of the Coma Cluster is around 6.4 keV (see table. 1), but this result seems lower
than those of X-ray observations [32, 33, 41, 42, 46-48], which estimate that the temperature
of the Coma Cluster is around 8-9 keV. Comparing the mass-temperature scaling relation for
a sample of relaxed clusters [69] with an X-ray temperature observation of the Coma Clus-
ter [32, 33], the observed temperature is higher that the temperature expected by the mass.
The enhancement is at 3¢ level of intrinsic scatter [69]. Similar results of high temperatures
have also been reported by a comparison with other clusters [70]. Depending on the orienta-
tion and excluding the central region, the temperature of the Coma Cluster could be around
6-7 keV [32, 41], but it is difficult to take this dependence into account. Therefore, systematic
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error of temperature in the Coma Cluster would cause a substantial influence to the proposed
fitting method. In order to reduce a possible dependence of cluster-dynamical states and halo
triaxiality, it is of vital importance to increase the number of sampling clusters. Ongoing and
future multi-wavelength surveys such as the Hyper Suprime-Cam (HSC) optical survey,' the
Dark Energy Survey (DES) [71], the eROSITA X-ray survey [72, 73], and the ACT-Pol [74]
and SPT surveys [75, 76] will be powerful aids to better constraining the gravity model.

6 Summary and conclusion

In this paper, we obtained a constraint on the generalized Galileon model through the Coma
Cluster observations of X-ray brightness, the SZ effect and weak lensing. We have constructed
a simple analytic model of the gas distribution profiles and the weak-lensing profile (cf. [27—
29]). The fifth force affects not only the gas distribution but also the weak-lensing profile.
In general, the effects depend on different parameters characterizing the generalized Galileon
model. These features can be investigated by combination of the observations of a galaxy
cluster reflecting the gas density profile and the lensing signals. Their multi-wavelength
observations are complementary to each other, and are useful to put a constraint on the
modified gravity model by breaking the degeneracy between the model parameters. System-
atic study compiling multi-wavelength datasets for a large number of clusters enables us to
well reduce the systematic errors and constraints on the modified gravity models. However,
the degeneracy between the parameters, M, ¢, pg and pr,, persists in the limit of the weak
screening of the fifth force, which affects the estimation of the cluster parameters. Future
and ongoing surveys and their joint analysis would be a powerful aid to obtaining a more
stringent constraint on modified gravity models.
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A Definitions of the coefficients

In this appendix, we summarize the coefficients between the generalized Galileon model and
the specific models used in section 4 (see also [29, 77]). The coefficients in the perturbation
equations (4.2)—(4.4) are defined as

o=, (A1)
£ =ay, (A.2)

"http://subarutelescope.org/Projects/HSC /surveyplan.html.
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4(041 + CMQ) G H

¢= ; (A.3)
B ol
z2 = 2PoGadH (A4)
BXe
G,H?
B =—4(ao+ 20102 + a%)ZT, (A.5)
where
(e e Gy E+P\ 1
~[,9Gas | 1
[ 9XGsx B PGag\ 1
a9 = < H H ) 2G4, (AS)
(%G 1
50 = < H ) 2G4, (A 9)
0 = —pXGx +2HG + ¢Gay. (A.10)

These coefficients are determined by the background solution, which follows:
2XKx — K +6X¢HGsx — 2XGsy — 6H?Gy — 6HOGy = pm, (A.11)

K = 2X (Gay + §Gax ) +2 (3H? +21T) Gy +2 (¢ + 2H) Gag + 4XGugs =0, (A12)

where py, is the non-relativistic matter energy density and H = a/a is the Hubble parameter.
The background equation for the scalar field is written as

J+3HJ—P =0, (A.13)

with
J = ¢Kx +6HXG3x — 260G, (A.14)
P = Ky —2X (Gagy + dGiox ) +6 (202 + ) G, (A.15)

The simplest cubic Galileon model is defined by G4 = Mf)l /2, K = —X and G3 =
(r2/Mp)) X, which corresponds to taking ¢; = —1 in ref. [78], and thus the coefficients in the
perturbation equations are

a=0, (A.16)
¢ = AnGsGsx o, (A.17)
(= GPE;&, (A.18)
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6 )
B=—142Gsx (¢ +2H¢) — 4rG3G2x ™. (A.20)

)\2

(A.19)

When we adopt the late time de Sitter attractor solution [79],

<H;l({)‘>>2 _ % % + \/(%;“]Y 41— Qo) | - (A.21)

The combinations £¢ and A2 are given by

(1 - Qm)(2 B Qm)

£ = - ) (A.22)
2-Qy
v~ (g o) 2

where Q(a) = pm(a)/3ME H?(a) is the matter density parameter.
Within the sub-horizon approximation, the DGP model [18, 19, 22] can be effectively
described by the coefficients

a=-1, (A.24)
- % (A.25)

2 re
A2 = ~35 (A.27)
B =1+2Hr, (1 + ;{HQ> : (A.28)

where the sign “+” in 8 represents the case of the sSDGP model with “—” sign and the nDGP
model with “4” sign. For the sDGP model, we adopt the self-accelerating background
solution, which is specified by the modified Friedmann equation in the sSDGP model [21],

H(a) _1- Qo \/Qmo (1 — Qumo)? (A.29)

H() 2 CL3 + 4 ’

and 7. = 1/(1 — Qumo)Hp. On the other hand, the nDGP model has no self-accelerating
solution without introducing the cosmological constant [11, 13]. Here we consider the nDGP
model with introducing a dynamical dark energy component on the brane, which is tuned
such that the background evolves as in the lambda cold dark matter model [80].
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We study the bispectrum of matter density perturbations induced by the large-scale structure formation
in the most general second-order scalar-tensor theory that may possess the Vainshtein mechanism as a
screening mechanism. On the basis of the standard perturbation theory, we derive the bispectrum being
expressed by a kernel of the second-order density perturbations. We find that the leading-order kernel is
characterized by one parameter, which is determined by the solutions of the linear density perturbations, the
Hubble parameter, and the other function specifying nonlinear interactions. This is because our model,
which may be equipped with the Vainshtein mechanism, includes only one simple function that describes
mode couplings of the nonlinear interactions. This feature does not allow for varied behavior in the
bispectrum of the matter density perturbations in the most general second-order scalar-tensor theory
equipped with the Vainshtein mechanism. We exemplify the typical behavior of the bispectrum in a kinetic

gravity braiding model.

DOI: 10.1103/PhysRevD.89.104007

I. INTRODUCTION

Researchers are interested in modified gravity models as
alternatives for explaining the accelerated expansion of the
universe without introducing the cosmological constant
[1-13]. The most general second-order scalar-tensor theory
was first constructed by Horndeski [14] and was redis-
covered in [15] as a generalization of the Galileon theories
[16-36]. In addition to the possibility of constructing
cosmological models with accelerated expansion, this
theory has the following interesting features. The equation
of motion is a second-order differential equation. Thus,
an additional degree of freedom is not introduced, which
is advantageous to avoid the appearance of ghosts.
Furthermore, the Galileon theory is endowed with the
Vainshtein mechanism [33], which is a screening mecha-
nism useful for evading local gravity constraints. In the
most general second-order scalar-tensor theory, the
Vainshtein mechanism may work depending on the model
parameters (e.g., [37-39]).

The results from the Planck satellite have shown that the
primordial perturbations almost obey Gaussian statistics
[40]. Even if the initial perturbations were completely
Gaussian, the non-Gaussian nature of the density perturba-
tions is induced in the large-scale structure formation through
nonlinear fluid equations under the influence of the gravi-
tational force. The bispectrum is often used to characterize
the nonlinear and non-Gaussian nature of the density
perturbations (e.g., [41-45]). Recently, the bispectrum and
nonlinear features in the structure formation in the Galileon
models have been investigated [46—52]. In the present paper,
we focus on the bispectrum in the most general second-order

1550-7998/2014/89(10)/104007(13)

104007-1

PACS numbers: 04.50.Kd, 95.36.+x

scalar-tensor theory, which we regard as an effective theory,
in order to elucidate the characteristic features of a wide class
of modified gravity models. An advantage of such a general
theory is that we can discuss general features of a wide class
of modified gravity models, which is useful for forecasting
their detectability in future large surveys.

In the present paper, we consider the bispectrum of the
matter density perturbations induced in the large-scale
structure formation after the matter-dominated era. We
present an expression of the bispectrum in the most general
second-order scalar-tensor theory based on the standard
density perturbation theory, which is written in terms of a
kernel of second-order perturbations. We find that the kernel
is characterized by only one parameter, which is determined
by the solutions of the linear density perturbations, the
Hubble parameter, and the other function that describes the
nonlinear interactions of the background universe. This
paper is organized as follows. In Sec. II, we apply the
standard perturbation theory to the most general second-
order scalar-tensor theory that may possess the Vainshtein
mechanism, and we find the solution of the second-order of
density perturbations. In Sec. III, we present the expression
of the bispectrum of the density perturbations, and we
investigate the influence of the modification of gravity. The
results are applied to a simple kinetic gravity braiding model
in Sec. IV. Section V presents a summary and conclusions.

II. FORMULATION

We consider the most general second-order scalar-tensor
theory on the expanding universe background. The action is
given by

© 2014 American Physical Society
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S = /d“x‘ /—9(Ls6 + L), (1)

where we define

Log = K(¢. X) — G3(¢, X)Uop + G4(, X)R
+ G4X[(|:|¢)2 - (vﬂvl/¢>2] + G5 (¢? X)Gpwvﬂvbd)
~ £ Gal(04)" =304V, 9.0)° + 2(9,9.4)".

2)

with four arbitrary functions of ¢ and X := —(9¢)?/2, K, G3,
G,, and Gs. Furthermore, G,y stands for 9G;/0X, R is the
Ricci scalar, G, is the Einstein tensor, and L, is the matter
Lagrangian, which is assumed to be minimally coupled to
gravity. This theory is found in [15] as a generalization of the
Galileon theory, but is shown to be equivalent to Horndeski’s
theory in [16]. We consider a spatially flat expanding
universe and the metric perturbations in the Newtonian
gauge, whose line element is written as

ds?> = —(1 +2®)d* + a*(1 — 20)dx>. 3)
We define the scalar field with perturbations by

¢ = §(1) + 6(1, %), @)

with which we introduce Q = Hé¢/ b.

We consider the case where the Vainshtein mechanism
may work as a screening mechanism. The basic equations
for the cosmological density perturbations are derived in
Ref. [37]. Here we briefly review the method and the
results. The basic equations of the gravitational and scalar
fields are derived on the basis of the quasistatic approxi-
mation of the subhorizon scales. The models for which the
Vainshtein mechanism works can be found as follows. The
equations are derived by keeping the leading terms sche-
matically written as (00Y)", with n > 1, where O denotes a
spatial derivative and Y denotes any of ®, ¥, or Q. Such
terms make a leading contribution of the order (L%00Y)",
where Ly is a typical horizon length scale. According to
Ref. [37], from the gravitational field equation, we have

Vz(fT‘If —Gre—-A Q)

= 2a2H2 Q@ + 2H2 (V2OV2Q — 9,0,90'0/0), (5)
a? B,
GrV2V = 7pm5 A V20 — 55 QP
2;2 (V2OV2Q — a,'a,-qfaian)
ILCTIPNE
3a*H* ' ©
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where p,, is the matter density, § is the matter density
contrast, and we define

Q¥ = (V2Q)* - (9,0,0)*, ™
QY= (V2Q)* —3V20(0,0,0)* +2(9,0,0)*. (8)

From the equation of motion of the scalar field, we have

A V20 —AIVZ\IJ — A, V2P + 2H2 Q@

(V2UV2Q — 0,0,90'0/Q)

2H2
2132 (V2OV2Q — 0,0,00'0/Q)

i 5 (V2OV2T — 0,0,00'0/ D)

C
4H4Q3 I;u@—o ©)

where we define

U3 = QPIV2P —2V200,0,00'0'®
+20,0;0070*00,0'®. (10)

The coefficients (F7, A, By, etc.) in the field equations
here and below are defined in Appendix A. A;, B;, and C;
are the coefficients of the linear, quadratic, and cubic terms
of U, &, and Q, respectively.

Equations for the matter density contrast 6 and the
velocity field u’ are given by

06(t,x) 1 ; B
BT +58i[(1 +6(t,x))u'(r,x)] =0, (11)
ou' (1, 1. 1. : 1,
uét x) +gu’(t,x) +Zuf(t,x)8ju’(t,x) = —;8’@(1‘,){),
12)

where the dot denotes differentiation with respect to t.
Gravity exerts an effect via the gravitational potential P,
which is determined by (5), (6), and (9). Here, we consider
the scalar mode of the density perturbations, and then we
introduce a scalar function by = Vu/(aH). Let us define
the Fourier expansion of the quantities 6 and 6:

1 .
5(1,x) = W/(Ppé(t,p)e’p'x, (13)

. _ipi ‘
w (£, %) / Bp— L aHO(t,p)e®x.  (14)
p

o
(22

The Fourier expansion of ®, ¥, and Q is defined as in (13).
Then, (5) and (6) yield
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B,

_pz(]:T\IJ(t’p)_gTq><t7p)_AlQ(t’p)) 24 2H2 [t p; Q Q] 2H2 [t P Q @] (15)
) a? B,
4 (gT\IJ(LP)+A2Q(Z’p))_7Pm5(I’P) = 2 2H2 [t p; Q Q] 2H2 {t P; Q \Ij]
C 1
3a4}{4 % /dkldkzdk35( J(k; +k, + k5 —p)
X [—kik3k3 + 3k7 (K, - K3)* = 2(k; - ko) (K, - ks) (ks - Ky)]
x Q(t,k)Q(1. k) O(t. k3), (16)
where we define

Trp:¥.2] = s [ didlad 0y + ks = D)0 = (ks k)Y 0. k)20 K, a7

Here, Y and Z denote any of Q, ®, or V. Equation (9) leads to

— p*(A00(t,p) — A ¥ (1, p) — Ay B(1,p))
By B, B,
=~ p [[6.p: Q.01+ 55 pye e, p; 0, 9] +——5 pye [[t.p: Q.0 + - T[t.p: U, ]
C 1
4134 (27)0 /dkldkzdk35 (ky + ko + k3 — p)[—kTk3k3 + 3kF (K, - k3)? — 2(k; - ko) (Ky - K3) (K3 - k)]
C 1
x Q(t,k)0(1, k,)O(1, k3) + 41114 (2r )6/dk1dk2dk35(3)(k1 + ks + k3 — p)[—kTK3KE + (K - Ky)?k3
+ 2kf(ky - k3)? — 2(k; - ko) (Kk; - k3) (ks - ky)]Q(2. k) O(2, ko) ®(1, k3). (18)
Equations (11) and (12) are rewritten as
1 95(1,p) 1 K, -k,
ﬁT+6(t’p) =— 27y /dkldk25 (ki +ky —p)| 1+ @2 0(t,k,)d(t, k), (19)

2 11

1 06(t,p) H p

H 0t

Ew/dkldk25<3)(k1 +k2—p)(

(k; - k) |k + Kk,
kiks

x 0(1,k,)0(t. ky). (20)

We find the solution in terms of a perturbative expansion,
which can be written in the form

p) =) _Y.(t.p), @1)
n=I

where Y denotes 6,0, U, ®, or Q, and Y, denotes the nth
order solution of the expansion. In the present paper, we
aim to solve the second-order solution. At the first order of
the perturbative expansion, ®;, ¥;, and Q; are expressed
by &; as (25), (26), and (27), respectively. The modified
gravity affects the matter density perturbation via ® in
the Euler equation at any order of perturbation. Using the
continuity equation (33), we find that d; obeys (34). At the

second order of the perturbative expansion, ®,, U,, and O,
are expressed by the terms in proportion to 6, and W,, (46),
(47), and (48), and we find that 5, obeys (56). Note that the
homogeneous equation of (56) is the same as the equation
for §;. The source term of (56) is given by (64). From (56)
with (64), we find that the modification due to the nonlinear
interaction enters through only the function of N, (), while
the other parts have the same structure as those in general
relativity. These facts are important for our conclusion that
the second-order kernel is characterized by only one
parameter.

Now we start from the first-order equations, which can
easily be solved as follows [53]. From (15), (16), and (18),
we have
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Frp*V,(1,p) — Grp*®,(t,p) — A p?Q,(t.p) = 0. (22)

2

Grp W (1.p) + 4290, (1.P) = =5 pud1 (1.P). (23)

Aop*0,(1,p) — A p* U, (t,p) — Ay p*®y(1,p) =0, (24)

which give the solutions

2H2
@,(1.p) = == k(1) (1.p). (25)
2H2
Wi(1.p) = = Ku(1)31(1.D) (26)
2H2
01(1:p) = == =%0(1)31(1.D) @7)
Here, we define
_ PaR(1) _ PeS(1) _PaZ(t)
o0 =grze T ze ey
(28)
and
R(t) = AgFr — A7, (29)
S(t) = ApGr + AjA,, (30)
T(t) =AGr + A Fr, (3D
Z(1) = 2(AgG7 + 24,A,Gr + A3 Fy). (32)
The first-order equation of (19) is
__105(t.p)
01(1,p) = — 55 (33)

Substituting (33) and (25) into the first-order equation of
(20), we have

8,(1,p) 96,(t,p)
where we defined
L(t) = —koH? (35)

_ (AOfT - A%)pm
2(A0GF + 2A1A2Gr + A3F )

(36)

This second-rank differential equation has the growing
mode solution D, (7) and the decaying mode solution
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D_(t). Neglecting the decaying mode solution, we write
the first-order solution,

51(t,p) = D (1)sL(p). (37

where §; (p) is a constant, which is determined by the initial
density fluctuations. We assume that 5 (p) obeys the
Gaussian random statistics. Here we adopt the normaliza-
tion D, (a) = a at a < 1. The first-order solutions for the
other quantities can be expressed in terms of &, (¢, p).

Then, we consider the second-order equations of the
perturbative expansion. From (15), (16), and (18), the
second-order equations are

— pA(Fr¥y(t.p) — Gr®,(1.p) — A O5(1.p))

B
F[r,p;Ql,Ql]+a2—;,2r[r,p;Q1,<1>1L (38)

1
2a*H?

— p2(GrUy(t.p) + A2 05(1.p)
_al 5 B, It o:
_?pm z(l,p)_m [tvp’Qth]
B
_dz_;’lzr[t’ p;le\Ill]’ (39)
— pz(AOQz(t,p) —Al\Pz(t,p) _A2¢2(t’ p))

By B,
= —ﬁr[ﬁp; 01.04] +mr[ﬁp; 0. Y]

B, . Bj .
+ o TP 0 @]+ s T ps Uy @) (40)

Using the first-order solutions (25), (26), (27), and (37), the
above equations are rewritten as

— P2(Fr¥y(t.p) — Gr@y(1.p) — A, O,(1.p))

1
= Di(l‘)asz <2BIK2Q +B3K<I>KQ> W},(p), (41)

—p*(GrVs(1,p) +A05(1.p))
2

a 1
:3pm62(tvp) + D (t)a’H? <—232’<2Q —BstIJKQ>Wy(P),

(42)
— P2 (Ap Qs (1, p) — A T, (1,p) — Ay Dy(2.p))
= D%_(t)asz(—BoKQQ + BIK\IIKQ
+ Bykgkg + Bikgky)WV, (P). (43)

where we defined
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1
W) = 5o / dkydk5) (k; + ks — p)y(ky . k)
x 8 (kp)dL(ky), (44)
(k- k,)?
r(kiky) =1— }C% k; 45)

These equations yield

a*H?
Qy(1,p) = A (ko ()65 (1, p) + DX ()T ()W, (D)),
(46)
a’H?
U, (t,p) = — o (kg (1), (1, p) + DL (1) 7y ()W, (D)),
47)
a*H?
0,(t,p) = —7(’<Q(I)5z(hp) + D3 (t)zo()W,(p)),
(48)

where we defined

T(I)( ) = E (2BOTKQ — 3B SKQ — 3BzRKQ — 6B3RK\I,KQ)

(49)

1
Ty(1) = Z (2BoA2GrkG + B (A3kg — 245G kykg)
— B(Skj + 2A,Grkokg)

— 233 (SK'\I,K'Q — A%K(I)KQ + AngK(I)K'\I;)), (50)

1
To(1) = —z = (2BoGixg + By (AyGrkg —
+ Bz(TK'Q — ngK'q)KQ)
+ 233(TK\I,KQ + AngK(I)K'Q -

2Gikyko)

Gkaky)).  (51)

The second-order equations of (19) and (20) are

1 06,(t,p)
H o1 +0,(t,p)
- _ 3/dk1dk25<3)(k1 + Kk, —p)a(ky. ky)
(27)
x 0,(t,k)8,(t.k,), (52)
1 90,(t. p p*
o 2 + < H2>92(t p)— 7‘1’2(1’1’)
3/dk1dk26 k] + k2 _p)ﬂ(kl»kZ)
( 1)01(1, k), (53)
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where we define

k, -k,
ko

a(ki ky) =1+ (54)

(k- k) |k + Kk,

ki.ky,) =
ﬂ( 1> 2) Zk%k%

(55)

Combining (52) and (53), and using the first-order solution
and (46), we have

2
076,(t,p) +2[7,8620,1))

at2 ot +L<t)52(t’p) = S&(t’p)7 (56)

where we define

S5(t,p) = (D3.(1) = L(1)D%(1))Wa(p) + D% (1)Wy(p)
+ N, (1)D% ()W, (p), (57)
We(p) = (2717)3/ dk,dk,6%) (k| + Kk, — p)
x a(ky, k,)d(k;)d (ks), (58)
Wy(p) = (271[)3/dk1dk25(3)(k1 +k,—p)
x (k. ky)d (k) (ky), (59)
and
N, (1) =toH?

4
— (2BOK3Q — 3BIK\I!K2Q — 3BzK'q>K2Q — 6B3K'<I>K'\I;K'Q).

m

(60)

In deriving (57), we use (34). Because of the symmetry
with respect to the interchange of k; and k,, we define
a¥(ky, k,) as follows:

k; - ko (ki + k3)

Ok, k) =1

(61)
Using the symmetry, we redefine W, (p) as

1
W, (p) = ) /dkldk25(3)(k1 +k, —P)am(kl,kz)

(2n)?
x 6 (ky)op(ks). (62)

By the relation

a¥ (k. ky) — (k. ky) or
W,(p) —W,(p). (63)

Bk ky) =
We(p) =
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Eq. (57) reduces to

— DA (0{(2/*H? -
+ (N, (1) - fH?)

where we define the growth rate as f = dInD_(¢)/dIna.

Note that the homogeneous equation of (56) is the same
as that of the first-order equation. Therefore, we have the
second-order solution:

S(S(t’ p) L(t))W(l(p)

W, ()}, (64)

5 (t,p) = c.(p)D4(t) + c_(p)D_(1)
t D (!)D_(t) =D (t)D_()
K W) %

(7,p),
(65)

where ¢, (p) and c¢_(p) are constants, and W(r) is the
Wronskian ~ W(r) = D, (1)D_(t) — D_(t)D_(). From
equations for D, () and D_(t), Eq. (34), the Wronskian
obeys W(t) +2HW(r) = 0, which yields

W(t) = 2 (66)

where C is a constant. In the present paper, we assume the
initial density perturbations obey the Gaussian statistics,
and we set ¢, (p) = 0. Then, the second-order solution is
written in the form

3:(10) = D) (KW, () =T HOW,(0) ). (6

with
_ —D.()D_()
t) D2 t)/ (l") -
x DX(¢)(2f*H? — L(¢))d?, (68)

D_(t)D, () =D ()D_()
W(t)
—N,(7))dr. (69)

7 ‘
0 =555,

x D2 (¢)(f2H?

These expressions are a generalization of the results
in Ref. [51]. In Sec. IV, we numerically evaluate the
function A(z) without neglecting the decaying model in a
specific model.

In the case of the matter-dominated universe within
general relativity, a(t) « >3, D, (t) = a, D_(t) = a=3/?,
L(1) = —3/(2H?), and N, (1) =0, then the second-order
solution reduces to

3:(0) = DL (Walp) =30 00)
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That is, one finds k(7) = A(¢) = 1 in the Einstein—de Sitter
universe. Even in the general second-order scalar-tensor
theory, we may consider models where the matter-
dominated era is realized in the early stage of the universe.
In this stage, the effect of the scalar field perturbations
would be negligible, and we may naturally expect that the
matter density perturbations grow in the same way as those
in general relativity. In this case, k() =1 and A(f) = 1
at a < 1.

Interestingly, we can show that (68) generally reduces to
k(t) =1 for all times. Using the expression for the
Wronskian (66), Eq. (68) is rewritten as

)= g [, OO = DD (1)

< (202 (1) + D, (!)(D. () + 2HD (1)) }d,
(71)

where we used the fact that D, (¢') satisfies (34) to
eliminate the term L(7'). Partially integrating the term
D, (7) in (71), we have

1 ! / a / /
-5 JREGILRGENT
—D_(£)D_(¢)}D,()dr. (72)

k(1)

Using the Wronskian, we finally obtain
k() =1, (73)

for all times. Therefore, the kernel (81) depends on only the
parameter A(z), which is determined by the solution of the
linear density perturbation, H(#) and the function N, (7).
This conclusion is a generalization of the results in
Ref. [46]. The authors of Ref. [46] investigated the standard
density perturbation theory in the Dvali, Gabadadze and
Porrati model, and a similar result is obtained at the second
order of perturbation (Appendix B.1 in their paper). The
result is explained by a*)(k;,k,) and y(k;,k,) being
independent of each other and the modification of gravity
coming through only the terms in proportion to y(k, k,) at
the second order of perturbation. Therefore, the term in
proportion to a*)(k;, k,) is not modified.

Finally, in this section, we present the expression of the
velocity divergence at the second order of perturbation. We
obtain the expression by inserting (¢, p), 0;(¢,p), and
5,(t,p) into (52),

0x(10) = =D 0 (Walo) = S a0V, 0) ). 4

where we defined

104007-6



BISPECTRUM OF COSMOLOGICAL DENSITY ...

do(t) = A1) + ;J([—Z (75)

In the Einstein—de Sitter universe, we have 4,(f) = 1.

III. BISPECTRUM

In this section, we consider the bispectrum of the density
perturbations in the most general second-order scalar-
tensor theory on the cosmological background. The power
spectrum and the bispectrum are defined by

(5(1,k1)8(1.k,)) = (27)°6%) (K + ko) P(t, k), (76)
(6(.k,)d(t, ky)o(t, k3))
= (27)360) (k| + Ky + k3)B(t, ky. ky, k3),  (77)

respectively. The three-point function at the lowest order of
the standard perturbation theory is evaluated as

(6(2, k1)o(1, ky)o(2, k3))
= D4 (1) ({61 (k;)dL (k2 )k (2, k3)) + 2 cyclic terms),
(78)

where we define

20W,). (19

(1K) = W, (k) >

The first term in parentheses in the right-hand side of (78) is

(6L(k)or (ky)dk (7, k3))
= &F (t.q1.k; —qq)
= (2;;)3 200,41, K3 —q
x (01 (k1)6p(K2)d(q1)0 (ks —qy)),  (80)

where we define the kernel
Fa(1. k1, ko) =l (ky, ky) —%/W)V(khkz)- (81)
Using the definition of the linear matter power spectrum,
(6L(k1)dL(ky)) = (27)*60) (ky + ko) Pyi (ki) (82)

and Wick’s theorem, we have

(01, (k1)oL(ko)dok (2, k3))
=2(27)%6%) (k; + Ky + K3)Fa(t. k1, ko) Pyy (ky ) Py (ka).
(83)
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where we use F,(t, —k |, —K,) = F,(t, k|, k,). Finally, we
have the expression for the bispectrum at the lowest order
of the perturbation theory,

B(t, kl,kz,k:;) :Di(Z)B4([, kl,kz,k3) (84)
with
By(t, ki, ko, k3) = 2F,(t, k1, k) Py (ky ) Py (ky)
+ 2 cyclic terms. (85)

The reduced bispectrum is given by

Q123(t, ki, ko, 61)
_ By(t. ki, ky. k3)
P11 (k) Pyy(ky) + Py (ko) Py (ks) 4+ Pyy(k3) Py (k)
(86)

at the lowest order of perturbations. Note that the (reduced)
bispectrum is described by the kernel (81), which depends
on only the parameter A(z), which is given by (69).

Because k; + k, +k; =0 is satisfied, the reduced
bispectrum is a function of only three parameters, which
we take as k; = |k|, ko = |k,|, and the angle 6, between
k, and k,. Explicit expressions for a'*)(k; k ;) and
y(ki,kj), where (i,j) denotes any of (1,2), (2,3),
or (3,1), are summarized in Appendix B. Each panel of
Fig. 1 shows a typical behavior of Q1,3 as a function of 6,
with fixed k; and k,, whose values are described in the
caption. In each panel, we adopt a different value of A(¢) =
1 (blue solid curve), A(z) = 1.2 (red dotted curve), and
A(t) = 0.8 (yellow dashed curve), assuming a spatially flat
universe with the CDM model and the cosmological
constant A, whose density parameters are Q, = 0.3 and
Q, = 0.7, for the linear matter power spectrum Py, (k).
Note that the reduced bispectrum depends on time ¢ through
only A(z). One can see the following features. First, the
overall amplitude of Q;,3 depends on the value of k; and
k,. However, when the values of k; and k, are fixed, the
reduced bispectrum is enhanced for 4 < 1 but reduced for
A > 1. This feature is explained by kernel (81) and the
fact y(k;. k;) > 0.

With the limit 6, =0, we have y(k;,k,) =
y(k,, k3) = y(ks, k;) =0 (see also Appendix B). Then,
Q1,3 is independent of 4 at 8, = 0. With the limit 8, = 7,
Q1,3 behave differently depending on the conditions
ki, =k, and k;#k,. If k;y#k,, then we have
r(ki,ky) = y(k,, k3) = y(ks, k;) = 0, which is the same
as with the limit ,, = 0. In the case k; = k,, however, we
have y(k;.k;) =0, y(ky k3)=r(ks, k) =1, and
ky =0; that is, Pj;(k3) =0. Then the bispectrum
approaches zero with this limit, though the rate of con-
vergence depends on A(r), as is discussed in the next
section.
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k; = ky= 0.01hMpc™

--—- A=038
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012/m

k; = ko= 0.1hMpc™’

FIG. 1 (color online).

PHYSICAL REVIEW D 89, 104007 (2014)

k; =kyx5= 0.05hMpc™!

04 06 08 10
012/m

0.0 02

k; =kox 5= 0.5hMpc™!

04 06 08 10
Op2/m

0.0 02

Q123 as a function of 6, with k; = k, = 0.01h Mpc~' (upper left panel), k; = k, = 0.1h Mpc~" (lower left

panel), k; = 5 x k, = 0.05h Mpc~! (upper right panel), and k; = 5 x k, = 0.52 Mpc~! (lower right panel). For the linear matter power
spectrum Py, (k), we adopt the spatially flat universe with the cold dark matter (CDM) model and the cosmological constant A, whose
density parameters are Q, = 0.3 and Q, = 0.7, respectively. Note that the reduced bispectrum depends on time 7 through only A(¢), for
which we adopt different values of (z) = 1 (blue solid curve), A(¢) = 1.2 (red dotted curve), and A(z) = 0.8 (yellow dashed curve),

irrespective of the ACDM model.

All the influence of the nonlinear interaction of the
modified gravity arises through only the parameter (),
which appears as the term in proportion to y(k, k) in the
kernel (81). The bispectrum of the matter density pertur-
bations behaves in a restricted way only, which is a feature
of the general second-order scalar-tensor theory equipped
with the Vainshtein mechanism.

IV. KINETIC GRAVITY BRAIDING MODEL

In this section, we consider a simple example to
demonstrate how the modification of gravity influences
the behavior of the bispectrum at a quantitative level. We
consider the kinetic gravity braiding model investigated in
Refs. [31,52], whose action is written as

M2
S:/ﬁ%m%P§R+K—Gﬂ¢+&H,@D

with the Planck mass My, which is related with the
gravitational constant Gy by 8zGy =1 /Mgl. Comparing
this action (87) with that of the most general second-order
scalar-tensor theory, the action of the kinetic gravity
braiding model is produced by setting

le
G4:7P, Gs=0 (88)
In Ref. [52], K and G5 are chosen as
}”2 n
K =-X, Gy=M;,|-5X), 89
3 pl <M§1 > ( )

where n and r,. are parameters. In this model, we have

AO‘FTpm
L(t)=— , 90
(1) 2(AgGr —|—A%fr) ©0)
BoA3 Fipm
N,(t) = . 91
= A+ BF ob

Useful expressions of the kinetic gravity braiding model are
summarized in Appendix A.
When we consider the attractor solution, which satisfies

3pHGy = 1, 92)

the Friedmann equation is written in the form
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FIG. 2 (color online). A(f) as a function of a in the ACDM
model (blue solid curve) and the kinetic gravity braiding model
with n = 1 (red dotted curve), n = 2 (yellow dashed curve), and
5 (green thick curve).

H\2 O H )\ —2/(2n-1)
( ):—2+(1—90)(H—> . 93)

Hy a 0

where H, is the Hubble constant and € is the density
parameter at the present time, and the model parameters
must satisfy

on—l 1/2n 1 (2n—1)/4n
Hyr. = . 94
o= (%)l o
On the attractor solution, L(#) and N, () reduce to
32n+ (3n—1)Q,,(1)
L(t) =—= m L H?, 95
===, ©3)
k; = ko= 0.01hMpc™!
0.0005 : : : :
T —0.005}
=
Q:) -0.010f __
S -0.015F =2
——-n=5
00 02 04 06 08 10
O12/m
ki = ky= 0.1hMpc™!
0.000F ‘ ‘ : :
T —0.005}
5
§, ~0.010}
S —0.015
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O2/m
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FIG. 3 (color online).

PHYSICAL REVIEW D 89, 104007 (2014)

Q,(1)*
Qm(t)(sn - 'Qm(t>)3

N},(t) _ _%(1 - Qm(t»(zn — H2, (96)

where Q,,(a) is defined by Q,(a) = QyH}/H(a)?a’.
Note that the quasistatic approximation on the scales of
the large-scale structure holds for n < 10 (see [52]).

Figure 2 shows the evolution of A(¢) as a function of a for
the kinetic gravity braiding model with n = 1, 2, 5 and the
ACDM model. For a < 1, we have A(f) = 1, which is
the prediction of the Einstein—de Sitter universe. However,
the accelerated expansion arises due to domination of the
Galileon field as a approaches 1, and so the value of A(t)
starts to deviate from 1.

The deviation of A(7) from 1 is small. The value of A(7) at
the present epoch is 0.994 under the ACDM model with the
density parameter Q, = 0.3. The value of A(¢) at the present
epoch is 1.003, 1.011, and 1.019 under the kinetic gravity
braiding (KGB) model with n = 1, 2, 5, respectively. Our
results demonstrate the validity of the approximation
setting A(¢) = 1, which is usually adopted in the standard
density perturbations theory.

Figure 3 shows the relative deviation of the bispectrum
at the present epoch under the KGB model from
that under the ACDM model, Q»3(t, ky,k,,601,)/
Oi123a(t ki, ky, 015) — 1, as a function of 6,, where
O123a(t, ki, ky,01) is the reduced bispectrum of the
ACDM model. The relative deviation from the ACDM
model is less than 2%. For the case k; # k,, the deviation
between the models does not appear at 8;, = 0, z, which is
simply understood by the fact that y(k; k;) =0 there.

k;= 5%k, = 0.05hMpc™!

0.0007
T
< —0.005¢}
S
= —0.010}
S
-0.015} ]
0.0 0.2 0.4 0.6 0.8 1.0
0p2/m
k;= 5xk; = 0.5hMpc™!
0.000F " T T T
T
L —0.005!
q
Q
= —0.010}
Q
~0.015} ‘ NS ‘ ]
0.0 0.2 0.4 0.6 0.8 1.0
02/

Relative deviation of the reduced bispectrum at the present epoch under the kinetic gravity braiding model with

n = 1 (blue solid curve), n = 2 (red dotted curve), n = 5 (yellow dashed curve) from that under the ACDM model Q,3,, as a function
of 6,,, where k; and k, are fixed, whose values are noted on each panel. Here the density parameter is fixed as €, = 0.3.
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In the case k; =k, with the limit 6, =z, we have
a¥)(ky ky) ~ (7= 01)%  al¥ (ks ks) = o (ks k) =
3/4, r(ki,ky) ~ (7 — 912)2, r(ky k3) = (ks k) =1,
and P(k3) « k3 o (m —605)", where n is the spectral
index. (See Appendix B for details.)

Then, the bispectrum has the asymptotic form

3 2
By(t, ki, ky,015) ~4(1—?/1(t)>P11(k3)P”(k1) 7

around the limit 8, = z. This leads to the ratio of the
reduced bispectrum in this limit,

Quns(t ki k1. 01n) 21 —8A(1)
Q123A(t9 kl,k1,912) 21 _8/1/\(1‘) ’

98)

where 1, (7) is the parameter A(7) of the ACDM model,
which explains the behavior shown in the left panels
of Fig. 3.

The behavior of the reduced bispectrum is almost the
same when the ratio k;/k, is the same. This is because
the functions a'*) (k;, k) and y(k;. k) depend only on the
ratio k;/k, and 0, (see also Appendix B). Recently, the
bispectrum in the covariant cubic galileon cosmology is
investigated in Ref. [51]. Our kinetic gravity braiding
model with n = 1 is a cubic Galileon model; however,
there is the difference between our model and the
covariant cubic Galileon cosmology in Ref. [51]. The
cosmic accelerated expansion in the covariant cubic
Galileon model is derived by a potential of the scalar
field. This causes the differences in the evolution of
the background universe and the linear density
perturbations.

V. SUMMARY AND CONCLUSIONS

In the present paper, we investigated the bispectrum of
the matter density perturbations induced by gravitational
instability in the most general second-order scalar-tensor
theory that may possess the Vainshtein mechanism. We
discussed a general feature of this wide class of modified
gravity models in the most general second-order scalar-
tensor theory. We analytically obtained the expression of
|

PHYSICAL REVIEW D 89, 104007 (2014)

the bispectrum of the second-order perturbations on the
basis of the standard density perturbation theory. The
bispectrum is expressed by the kernel (81), depending
on only the parameter A(z), which is determined by the
growing and decaying solutions of the linear density
perturbations D (¢), the Hubble parameter H(z), and the
other function N, (¢) for the nonlinear interactions. These
simple results come from the fact that the basic equations
for the gravitational and scalar fields have the same form as
the nonlinear mode couplings, which are derived as the
leading terms under the quasistatic approximation within
the subhorizon scales. Thus, all the effects of the modified
gravity in the bispectrum come via the parameter A() in the
kernel (81), which has a simple structure. This makes the
behavior of the bispectrum less complex. As an application
of our results, we exemplified the behavior of the bispec-
trum in the kinetic gravity braiding model proposed in
Ref. [52]. We investigated the evolution of A(z) in this
model and demonstrated the deviation of the reduced
bispectrum from that of the ACDM model is less than
2%. Higher order solutions of the density perturbations can
be obtained in a similar way, which is left as a future
problem.
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APPENDIX A: DEFINITION OF THE
COEFFICIENTS

We first summarize the definitions of the coefficients in
the field equations presented in Sec. II.

6 e Gr _E+7P
A=ty 2 Ty (A
A1:%+Q - F (A2)
g 7T
®
A =G — — A
,=Gr o (A3)
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By = T {#Gsx + 3(X 4+ 2HX)Gyxx + 2XXGaxxx — 3¢Gupx + 20X Guayxx + (H + H?)pGsy

+ Q2HX + (H + H*)X|Gsyy + HPXXGsyxy — 2(X + 2HX)Gsyx — pXGsgpx — X(X —2HX)Gsyxx},  (Ad)

By = 2X[Gyx + ¢(Gsy + XGsyx) — Gsy + XGsyyl, (AS)
B, = —2X(Gyx + 2XGyxx + HpGsy + HPXGsyx — Gsy — XGsyx), (A6)
B; = HpXGsy, (A7)
Co = 2X*Gyxx + ZTXZ (20Gsxx + $XGsyxx — 2Gsyx + XGsyxx), (A8)
C1 = HX(Gsx + XGixx), (A9)
where we also defined
Fr =2[Gs — X(¢Gsx + Gsy)l. (A10)
Gr = 2[Gy — 2XGyx — X(HGsy — Gs,)). (A1)

O = —(XGsx +2HG, — 8HXGyx — SHX?Gyxx + ¢pGuy + 2XPGyx
— H2p(5XGsx + 2X*Gsxx) + 2HX(3Gsy + 2XGsgx ), (A12)

£ =2XKy — K + 6X¢HGsx — 2X G35 — 6H>G, + 24H>X (Gyx + XGyxx) — 12HX PGy
— 6H}Gyy + 2HXP(5Gsx + 2XGsyy) — 6H*X (3Gsy + 2XGsyx ), (A13)

P =K —2X(Gsy + ¢pGsyx) +2(3H* + 2H)G, — 12H*X Gy — 4HXG,x
— 8HXGyx — SHXXGyxx + 2(¢p + 2H()Gyy + 4X Gy + 4X (¢ — 2Hp) Gy
—2X(2H3$ + 2HH ¢ +3H?))Gsy — 4H*X*Gsxx + 4HX(X — HX)Gs,x

+ 2[2(HX) + 3H?X|Gsy + 4HX $Gs. (Al14)
|

In the kinetic gravity braiding model considered in Sec. IV, X 2\ 7 /2] "
the coefficients are written as follows: Ay =——2nM, r“z _¢ + ”iz X", (A20)

H M, H H

fT:Mlz)p gT :Mlz)lv (Als) 5 .
re \" "
r2 " A2 :BO :nMpl <M2> %X s (AZ])
0 = —nM,, <M_21> PX" + HM?, (A16) ol
p

A1:B1:B2:B3:CO:C1: . (A22)

. r% n,, .
O = —n(2n + 1)M,, (W) 24 +HM§1’ (A1) In the present paper, we consider the attractor solution
pl satisfying (92), thus obtaining

2

£ = —X +6nM,, (#) GHX" — 3H>M?

2. (A1) .1 ¢H
pl

=i E

(A23)

r2>"-- : H  (2n-1)3Q,(a)
P=—X—-2nMy|~—5 ) X"+ (3H*> +2H)M?,, (A19) b o GO e AT
i <M12ﬂ X" + ( )M, 7 =3 (a)) (A24)
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_Mgl(l —Q,(a)2n+ 3n—1)Q,(a))

Ao = 20—, (a) B
Ay = My(1 = Q,(a)), (A26)
By = M}(1 - Q,(a)), (A27)

where we define Q,,(a) = p,,(a)/3MyH>.

APPENDIX B: EXPLICIT EXPRESSIONS
OF o AND y

For the bispectrum, we may write the wave number
vector that satisfies k; + Kk, + k3 = 0 as follows:

kl = (0,0,kl), (Bl)
k2 = (0, k2 sin 912, k2 COS 912), (B2)
k3 = (0, —k2 sin 912, _kl — k2 CcOS 9]2), (B3)

where 6, is the angle between the vectors k; and k,. Then,
we have

k,-k
]llkzz = cos 0y, (B4)
k2 . k3 _ —k2 — k1 COS 912 (BS)
k2k3 \/k% + k% + 2k1k2 COS 912 '
k3 . k] N —k] — k2 008912 (B6)

ksky  \/kZ + I3 + 2k ky cos Oy,

where we use k3 = \/k? + k3 + 2k k, cos 6}, Introducing
the constant ¢ by k; = ck,, we have

ky =k, \/02 +2ccosf, + 1, (B7)

PHYSICAL REVIEW D 89, 104007 (2014)

k2'k3_ C+COS€12

= — , (B8)
kaks \/c2 +2ccosf, + 1
k; -k, L ccosfp, + 1 (B9)
k3k, Ve +2ccos0p, + 1

For convenience, we summarize the explicit expressions of
a“(k;, k;) and y(k;, k;). The above relations yield

(c? +1)cos by,

a(ky,ky) =1+ 20 ,

(B10)

(2¢? 4+ 2ccos By, + 1)(c + cos0;5)
2¢(c® 4+ 2ccos By, + 1)

a<S) (kzs k3) =1-

’

B11)

(c* +2ccos@py +2)(ccosbpy + 1)

a¥(ks, k) 2(c2+26C05912+1)

El

(B12)
(ki ky) = 1 —cos?0),, (B13)
(k. k) = sin”1y (B14)
%2, B3 24 2ccosb+ 17
2a3 29
r(ks k) =1 (B15)

2+ 2ccosfp,+1°

Thus, ) and y depend on only ¢ and 6,,, which means
that F, (¢, k;, k ;) depends on only c and 6,,, irrespective of
t. Tt is trivial that o*)(k,, k,) and y(k;,k,) are invariant
under the interchange between k; and k,, or the replace-
ment of ¢ with 1/c. Note also that a*)(k,,k;) and
y(ky,k;) are transformed into a*) (ks k) and
y(ks, k), respectively, by the replacement of ¢ with 1/c.

[1] W. Hu and 1. Sawicki, Phys. Rev. D 76, 064004 (2007).

[2] A. A. Starobinsky, JETP Lett. 86, 157 (2007).

[3] S. Tsujikawa, Phys. Rev. D 77, 023507 (2008).

[4] S. Nojiri and S. Odintsov, Phys. Lett. B 657, 238 (2007).

[5] G.R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B
485, 208 (2000).

[6] Y.-S. Song, I. Sawicki, and W. Hu, Phys. Rev. D 75, 064003
(2007).

[7] R. Maartens and E. Majerotto, Phys. Rev. D 74, 023004
(20006).

[8] R. Maartens and K. Koyama, Living Rev. Relativity 13, 5
(2010).

[9] C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020

(2010).

[10] C. de Rham, G. Gabadadze, and A.J. Tolley, Phys. Rev.
Lett. 106, 231101 (2011).

[11] C. de Rham and L. Heisenberg, Phys. Rev. D 84, 043503
(2011).

[12] S.F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101
(2012).

[13] A.R. Gomes and L. Amendola, J. Cosmol. Astropart. Phys.
03 (2014) 041.

[14] G.W. Horndeski, Int. .
(1974).

Theor. Phys. 10, 363

104007-12



BISPECTRUM OF COSMOLOGICAL DENSITY ...

[15] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, Phys.
Rev. D 84, 064039 (2011).

[16] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Prog.
Theor. Phys. 126, 511 (2011).

[17] N. Chow and J. Khoury, Phys. Rev. D 80, 024037
(2009).

[18] F.P. Silva and K. Koyama, Phys. Rev. D 80, 121301
(2009).

[19] T. Kobayashi, H. Tashiro, and D. Suzuki, Phys. Rev. D 81,
063513 (2010).

[20] T. Kobayashi, Phys. Rev. D 81, 103533 (2010).

[21] A. De Felice and S. Tsujikawa, Phys. Rev. D 84, 124029
(2011).

[22] A. De Felice and S. Tsujikawa, J. Cosmol. Astropart. Phys.
07 (2010) 024.

[23] A. De Felice, S. Mukohyama, and S. Tsujikawa, Phys. Rev.
D 82, 023524 (2010).

[24] C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys. Rev.
D 79, 084003 (2009).

[25] R. Gannouji and M. Sami, Phys. Rev. D 82, 024011 (2010).

[26] A. Ali, R. Gannouji, and M. Sami, Phys. Rev. D 82, 103015
(2010).

[27] A.De Felice and S. Tsujikawa, Phys. Rev. Lett. 105, 111301
(2010).

[28] S. Nesseris, A. De Felice, and S. Tsujikawa, Phys. Rev. D
82, 124054 (2010).

[29] D.F. Mota, M. Sandstad, and T. Zlosnik, J. High Energy
Phys. 12 (2010) 051.

[30] A. De Felice, R. Kase, and S. Tsujikawa, Phys. Rev. D 83,
043515 (2011).

[31] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman,
J. Cosmol. Astropart. Phys. 10 (2010) 026.

[32] C. Deffayet, S. Deser, and G. Esposito-Farese, Phys. Rev. D
80, 064015 (2009).

[33] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79,
064036 (2009).

[34] C. Burrage and D. Seery, J. Cosmol. Astropart. Phys. 08
(2010) O11.

PHYSICAL REVIEW D 89, 104007 (2014)

[35] G.L. Goon, K. Hinterbichler, and M. Trodden, Phys. Rev. D
83, 085015 (2011).

[36] C. de Rham and A. J. Tolley, J. Cosmol. Astropart. Phys. 05
(2010) 015.

[37] R. Kimura, T. Kobayashi, and K. Yamamoto, Phys. Rev. D
85, 024023 (2012).

[38] R. Kase and S. Tsujikawa, J. Cosmol. Astropart. Phys. 08
(2013) 054.

[39] T. Narikawa, T. Kobayashi, D. Yamauchi, and R. Saito,
Phys. Rev. D 87, 124006 (2013).

[40] P. A.R. Ade et al. (Planck Collaboration), arXiv:1303.5084.

[41] R. Scoccimarro, H.M. Couchman, and J. A. Frieman,
Astrophys. J. 517, 531 (1999).

[42] T. Nishimichi, I. Kayo, C. Hikage, K. Yahata, A. Taruya,
Y. P. Jing, R. K. Sheth, and Y. Suto, Publ. Astron. Soc. Jpn.
59, 93 (2007).

[43] F. Bernardeau, S Colombi, E. Gaztanaga, and
R. Scoccimarro, Phys. Rep. 367, 1 (2002).

[44] N. Bartolo, S. Matarrese, and A. Riotto, J. Cosmol.
Astropart. Phys. 10 (2005) 010.

[45] N. Bartolo, S. Matarrese, and A. Riotto, J. Cosmol.
Astropart. Phys. 01 (2007) 019.

[46] K. Koyama, A. Taruya, and T. Hiramatsu, Phys. Rev. D 79,
123512 (2009).

[47] A. Barreira, B. Li, W. Hellwing, C.M. Baugh, and
S. Pascoli, J. Cosmol. Astropart. Phys. 10 (2013) 027.

[48] B. Li, A. Barreira, C. M. Baugh, W. A. Hellwing, and
K. Koyama, J. Cosmol. Astropart. Phys. 11 (2013) 012.

[49] M. Wyman, E. Jennings, and M. Lima, Phys. Rev. D 88,
084029 (2013).

[50] E. Bellini, N. Bartolo, and S. Matarrese, J. Cosmol.
Astropart. Phys. 06 (2012) 019.

[51] N. Bartolo, E. Bellini, D. Bertacca, and S. Matarrese,
J. Cosmol. Astropart. Phys. 03 (2013) 034.

[52] R. Kimura and K. Yamamoto, J. Cosmol. Astropart. Phys.
04 (2011) 025.

[53] A. De Felice, T. Kobayashi, and S. Tsujikawa, Phys. Lett. B
706, 123 (2011).

104007-13






PHYSICAL REVIEW D 92, 023523 (2015)

What can we learn from higher multipole power spectra of galaxy
distribution in redshift space?
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We investigate the potential of the higher multipole power spectra of the galaxy distribution in redshift
space as a cosmological probe on halo scales. Based on the fact that a halo model explains well the
multipole power spectra of the luminous red galaxy sample in the Sloan Digital Sky Survey, we focus our
investigation on the random motions of the satellite luminous red galaxies that determine the higher
multipole spectra at large wave numbers. We show that our theoretical model fits the higher multipole
spectra at large wave numbers from N-body numerical simulations, and we apply these results for
testing the gravity theory and the velocity structure of galaxies on the halo scales. In this analysis,
we use the multipole spectra P4(k) and Pg(k) on the small scales of the range of wave number
0.3 < k/[hMpc"] < 0.6, which is in contrast to the usual method of testing gravity by targeting the linear
growth rate on very large scales. We demonstrate that our method could be useful for testing gravity on the

halo scales.

DOI: 10.1103/PhysRevD.92.023523

L. INTRODUCTION

Redshift surveys of galaxies are a promising way to
explore the nature of dark energy and test gravity on the
cosmological scales. Recent results of the baryon oscil-
lation spectroscopic survey (BOSS) date release (DR) 11 of
the Sloan Digital Sky Survey (SDSS) III have demonstrated
the usefulness of redshift surveys [1,2]. A possible tension
in the cosmological parameters between the results by the
Planck satellite and the BOSS is reported [3—6], which
attracts the interest of researchers. An interesting question
that arises is whether this tension could be resolved in
models where the gravity gets modified from its usual
general relativistic form.

The redshift-space distortion plays an important role in
testing gravity [7,8], which reflects the information on the
velocity of galaxies. One of the targets of the redshift
surveys is a measurement of the redshift-space distortions
in the linear regime of the density perturbations [9], which
provides us with a chance to test gravity through the linear
growth rate. On the other hand, the finger-of-god (FoG)
effect is the redshift-space distortion in the nonlinear
regime of density perturbations reflecting the random
motion of galaxies. The primary purpose of the present
paper is to investigate an effective method to evaluate the
random velocity of galaxies in halos, which might provide
us with a unique chance of testing gravity on halo scales.
This can be achieved by precisely modeling the FoG effect
on the basis of the halo model.

1550-7998/2015/92(2)/023523(7)

023523-1

PACS numbers: 98.80.Es, 04.50.Kd, 04.80.Cc, 98.62.Py

In order to quantify the redshift-space distortions, the
multipole power spectrum, defined as a multipole coef-
ficient of the multipole expansion of the anisotropic power
spectrum (e.g., [6,8,10]), is useful. Recently, the authors of
Ref. [11] found that a halo model describes well the small-
scale behavior of the higher multipole power spectra of the
luminous red galaxy (LRG) sample of SDSS DR7. Based
on this new finding, we consider the potential of measuring
the velocity of satellite galaxies in halos and testing the
gravity theory on the halo scales with the multipole power
spectrum. The key to this method is the random motion of
the satellite galaxies and their one-dimensional velocity
dispersion in a halo with mass M, for which we adopt a
simple formula,

GM
=pf—

2
M ,
GV( ) 2"‘vir

(1)

where f is a constant parameter, G is the Newton’s
universal gravitational constant, and r;, is the virial radius
defined by ry;, = (3M /47py(2)Avir(2))'/3, where pp,(z) is
the mean matter density and A, (z) is the density contrast
of a halo, respectively, at the redshift z. We adopt A,;, =
265 at z = 0.3 for the sample corresponding to our LRG
mock samples. We carefully check this velocity dispersion
relation using the numerical simulations, as well as the
validity of the theoretical model for the higher multipole
power spectra. This theoretical model is compared with the
SDSS LRG sample, and we put a useful constraint on the

© 2015 American Physical Society
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velocity dispersion and the gravitational constant on the
halo scales.

II. FORMULATION

Here we briefly review the multipole spectrum in a
halo model according to Ref. [9,11]. Following the general
prescription of the halo approach [12-14], we write the
anisotropic power spectrum in the redshift space consisting
of the one-halo and two-halo terms, Pigg(k,p) =
P (k, p) + P™(k,u). We consider the model which con-
sists of the central galaxies and the satellite galaxies. We
adopt the following expression (2) for the one-halo term,

1 dn
P ) = [ am

am
X [2{Nay) gy (k, M) e~ (040w 2072
+ <Nsat>2’7‘12\IFw(k’ M)e—aszﬂz/amz]’ (2)

where we adopt the halo mass function dn/dM given by
[15], 7 is the mean number density of LRGs given by
n= fdM(dn/dM)NHOD(M)’ Nyon(M) = (Neen) + (Nar)
is the halo occupation distribution (HOD), for which we
adopt the following form [16],

O (@)

with the error function erf(x), and 62(M) and 62(M) are the
velocity dispersion of the central LRGs and the satellite
LRGs, respectively. We adopt the mass function proposed
in [15]; however, our results are not significantly altered by
the other choices of the mass functions proposed in [17] or
[18]. Table I lists the HOD parameters matching the SDSS
DR7 LRG catalog in Ref. [19]. We assume that the
distribution of the satellite galaxies follows the Navarro-
Frenk-White (NFW) profile [20] and #ngw (k) denotes
the Fourier transform of truncated NFW profile [21].
Results of Ref. [22] support this assumption. We may
assume that central LRGs reside near the halo center, thus
their velocity difference relative to the host halo should be
small (cf. [23]). On the other hand, satellite LRGs are

TABLE I. HOD parameters of the LRG sample [19].
Simulation/LRG
M o 5.7 x108My/h
GlOgM 07
M ey 3.5%x 1083My /h
M, 3.5 x 10MMy /h
a 1
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off-centered, and their random velocity should be the main
source of the FoG effect. Here we assume

oo (M) = aioy(M), (5)
o3 (M) = aioy(M), (6)

where a, and «, are the constant parameters.

In the previous paper [11], the two-halo term was
modeled with an analytic fitting formula from N-body
simulations. However, in the present paper, we adopt a very
simple treatment for the two-halo term of the higher
multipole power spectrum, because it is not trivial to
construct a precise analytic model in redshift space which
is applicable even at large wave numbers. Using the mock
catalogs corresponding to the LRG sample is an alternative
way to incorporate precise theoretical predictions for the
two-halo term. For this modeling, we adopt the results in
the previous paper [9], which has constructed mock
catalogs, corresponding to the SDSS LRG sample, and
has investigated the behavior of the multipole spectra. In
the present paper, we use the following modeling for
P3"(k) and P2'(k). The results in [9] demonstrate that
the contribution from the two-halo term to Pg(k) is
negligible, i.e., PZ" (k) = 0, and P3"(k) is simply expressed
as kP3"(k) = 15[hMpc~']?, which we also adopt here.
Because the contribution of the two-halo term to P,(k)
is rather large compared to that of P, (k) and Pg(k) [11], it
is not included in our analysis.

Even though the relative contribution of the two-halo
term to P, (k) and Pg(k) is small, it could still be influential
to our results. Therefore a more detailed modeling of the
two-halo term might be important. The above treatment for
the two-halo term is based on the simulations within the
framework of the general relativity. However, in general the
two-halo term might depend on modified gravity models.
Therefore our modeling might not be universally correct for
the modified gravity models, including the possibility that a
modification of gravity changes the mass function, the
density profile of a halo and the mass-concentration
relation, e.g., [24,25]. Nevertheless, the current treatment
should be enough for the purposes of just demonstrating the
validity of our method as a new test of the general relativity.

III. RESULTS

A. Simulation sample

We first demonstrate the validity of our theoretical model
by comparing with the results of N-body simulations. The
simulations assume the spatially flat cold dark matter
model with a cosmological constant, adopting €, =
0.273 and og = 0.82. We run ten realizations of N-body
simulations using GADGET-2 code [26] with Gaussian
initial condition. Each simulation has a side length of
600A~! Mpc and the particle number of 800* (each particle
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mass is 2.8 x 10'°47'M ). We use z = 0.3 snapshots and
identify halos by a friends-of-friends algorithm with a
linking length of 0.2. Mock catalogs are constructed so that
the bias and the HOD match the SDSS DR7 LRG catalog in
Ref. [19]. The position of a central LRG is given by the
potential minimum of the host halo and the velocity is given
as the averaged velocity of all particles within the halos. We
substitute randomly picked up dark matter particles for
satellite LRGs. In this analysis, we constructed mock
samples both with and without including the fiber collision
effect [27]. The mock samples including the effect of fiber
collisions are constructed as follows. We first make
uncollided samples by removing one of the adjacent
subhalos within 55 arcsec at z = 0.3. In this process, we
follow the method of Ref. [27], intending to maximize the
number of galaxies of the uncollided sample. For example,
if one of the galaxies in a triplet system is collided with both
of the other two which are uncollided with each other, we
remove the former galaxy only and leave the uncollided
two galaxies. In the observed survey area where the
spectroscopic tiling is overlapped, both spectra of collided
pairs can be measured. To incorporate this effect, we
randomly reintroduce a fraction of removed subhalos in
the sample at 10% probability regardless of their positions
in the sky. In our simulation, the central LRGs locate near
the halo center, and their velocity is negligible. We assume
no velocity bias for satellites. Thus, our mock catalogs
should be understood as @. = 0 and a, = 1.

Using the mock catalogs, we show the validity of our
expression (1) for the velocity dispersion of satellite
galaxies. The velocity dispersion of satellite galaxies in a
halo has not been well understood, though there are a few
works that investigate the velocity dispersion of LRGs
[28,29]. Recently, Guo et al. have studied the velocity bias
of galaxies in the SDSS III CMASS sample in the context
of a halo model [30]. Their results have implications for our
results, as will be discussed below.

Figure 1 compares the velocity dispersion ¢2(M) of
satellites as a function of the host halo’s mass M. Here
the cross symbols show the results of the N-body numerical
simulation, while the curve shows (GM/2r.;)'?, ie.,
Eq. (1) with g = 1. This suggests that Eq. (1) with g =1
reproduces well the relation between the velocity dispersion
of satellite and the halo mass of our N-body simulations.

The effect of the fiber collision, which misses galaxies
located closely to each other, could be crucial in the
analysis of the redshift-space clustering on small scales
[31]. The fiber collision dominantly occurs for pairs in the
same halo. In the previous work [11], the effect of the fiber
collision is included by a multiplying factor reducing the
satellite fraction. In the present paper, we adopt a similar
prescription, for simplicity. Instead of introducing the
satellite fraction, we float the HOD parameter M, which
changes the satellite fraction, as a fitting parameter in our
Markov chain Monte Carlo (MCMC) analysis.

PHYSICAL REVIEW D 92, 023523 (2015)
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FIG. 1 (color online). One-dimensional velocity dispersion
6,(M) as a function of halo mass. The crosses are from N-body
simulation, while the curve is Eq. (1) with g = 1.

We compare the results of the averaged power spectra
over 10 mock simulations with the theoretical multipole
power spectra, with floating the two parameters f and M.
We demonstrate that f and M, can be measured from P, (k)
and Pg(k). The errors of the simulated power spectra are
obtained from the dispersions of ten mock results multi-

plied by 1/+/10, which roughly corresponds to the errors
for their mean. In particular, we fixed @, =0 and a, =1,
taking into account the consistency with our numerical
simulations. Note that the HOD parameters other than M,
are fixed. When additional HOD parameter is floated, we
cannot obtain useful constraints due to a problem of
degeneracy between the HOD parameters. This occurs
because we use only P4(k) and Pg(k) on small scales. If
we had used the projected angular correlation function
simultaneously in our analysis, we would have been able to
avoid this problem. We leave this as a future work.

In the MCMC analysis we only use P4 (k) and P4(k) in
the range of wave numbers 0.3 < k/[hMpc~'] < 0.6 in
order to reduce the influences from the uncertain contri-
bution of the two-halo term. Table II summarizes our
results, where the best-fitting values with one sigma
statistical errors are presented for (A) simulation with
the fiber collision (F.C.), (B) simulation without the fiber
collision, and (C) LRG sample, (D) LRG sample with the
two-halo term modeled with the brightest LRG (BLRG)
sample [11], from the left to the right column, respectively.
The chi-squared and the degrees of freedom are also shown.
In this table, the values within parentheses are the results
for the data in the range of 0.2 < k/[hMpc~!] < 0.6. The
chi-squared values in the parentheses of (A) and
(B) become very large. This comes from the failure of
our analytic model in fitting the N-body simulations at the
wave numbers k < 0.3hMpc‘1, where the two-halo term
becomes relatively important. The left-hand two columns
of Fig. 2 show the best-fit curves of the HOD and the
multipole power spectra for the simulations (A) and (B).
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TABLEII. Results of our MCMC analysis with floating the two parameters f and M, where we fixed @, = 0 and a; = 1 and the other
cosmological parameters. The best-fitting values with one sigma statistical errors, the satellite fraction ['dM(dn/dM)(N,)/#, and the
chi-squared along with the number of d.o.f. are presented when fitted with (A) the simulation with the fiber collision (F.C.), (B) the
simulation without the fiber collision, (C) LRG sample and (D) LRG sample with the two-halo term modeled using the BLRG sample,
from the left to the right column, respectively. The results are obtained using the data in the range of the wave numbers
0.3 < k/[hMpc~'] < 0.6, and the values in the parentheses are the same but use the data in the range of the wave numbers
0.2 < k/[hMpc~'] < 0.6.

(A) Mock with E.C. (B) Mock without F.C. (C) LRG (D) LRG with BLRG
p L17:030(0.961053) 0.977532(0-83°05) 1702055 (1.79555 1351045 (1.385033)
M, [10%M¢ /h] 6.5 (6.1577) 4.1754(4.0%5¢) 4,055 (4.050) 4.0%55(4.0%5)
Satellite fraction(%) 3.8707(4.150%) 5.9708(6.2207) 6.3103(6.3707) 6.4702(6.4107)

27 16(58) 18(59) 47(56) 6.4(7.3)

d.o.f. 10(12) 10(12) 60(80) 60(80)

These results demonstrate that our theoretical model  in the northern cap in order to reduce systematic uncer-

reproduces those of the numerical simulations. tainties and to match the analysis in Ref. [19]. Thus, the sky
coverage is limited to 7189 deg? and the total number of
B. LRG sample LRGs is 61899. We adopt the same method for the

We next apply our method to the multipole power spectra measurement as that in Refs. [11,33,34], but with the
measured with the SDSS DR7 [32]. Our DR7 LRG sample fiducial cosmological background for the distant-redshift
is selected to cover a redshift range, 0.16 < z < 0.36, only  relation of the spatially flat ACDM cosmology with
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FIG. 2. Top panels show the HOD N (M) (dotted lines) and N, (M) (solid lines), middle panels kP,(k), and bottom panels kP¢(k). In
each panel, the curves correspond to the best-fitting models, excepting the dash-dotted curve. Each column shows the results of
(A) mock with fiber collision, (B) mock without fiber collision, (C) LRG sample, and (D) LRG sample subtracted the two-halo term
modeled using the BLRG sample, from left to right, respectively.
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Q,, = 0.3. The statistical errors of the multipole spectra
may be estimated by the formula in Ref. [10], which is
derived on the basis of the so-called FKP method [35]. The
cosmological distortion (Alcock-Paczynski) effect is very
small because we are considering the higher multipole
spectra on small scales, though it has a marginal effect of
changing the overall normalization (e.g., [6]). The right-
hand two columns in Table II list the results of the MCMC
analysis with the LRG multipole spectra, whose difference
comes from the modeling for the two-halo term. The right
two columns of Fig. 2 show the best-fitting curve and
the data.

The results of MCMC analysis with the SDSS LRG
sample can be used for testing the gravitational constant on
the halo scales. This is because the velocity dispersion in a
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modified gravity models could be written as o2(M)
GesM/2ry;,., where Gy is an effective gravitational con-
stant. Regarding G+ = G, we may put a constraint on the
effective gravitational constant from the SDSS LRG sample
on the halo scales, f = 1.70f8"§53 from the column (C) in
Table II, in which we adopted the same modeling for the
two-halo term as that of the mock catalogs. This value is
rather larger than the prediction of the numerical simu-
lations, although the error is not small.

Though the contribution of the two-halo term to P4 and
Py is rather small compared with the one-halo term, but it
might be influential to our results. As a check of our results,
we model the contribution of the two-halo term using the
BLRG sample [11]. Because the BLRG catalog roughly
corresponds to the central galaxies catalog, then we may

(d)
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Same as (C) and (D) of Fig. 2, except with different binning of k. The dashed curves in the middle panels, kP, (k), and bottom

panels, kPg(k), assume f = 1 while keep the other parameters the same.
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model the two-halo term by computing the multipole
spectrum of the BLRG catalog. The column (D) of
Table II represents the results ff = 1.35f8f§. Compared
with the case of the modeling for the two-halo term from
the numerical simulation, the value of  becomes small and
f =1 is in the one-sigma error of the results.

The reason why the chi-squared of the case (D) is small
is understood as follows. Since BLRG sample is a subset of
LRGs, most of the LRG pairs hosted by different halos are
overlapped. The error for the difference AP = Pjrg —
Pgirg 18, therefore, significantly reduced and thus the
chi-squared values for the error of P;rg become small.

Our results are not altered significantly by the binning
of k. For example, when we adopt the similar binning to
that of (A) and (B), Ak = 0.05hMpc~"!, for the observa-
tional data, we obtain the best-fitting value of f,
1.797020(1.89 0 ey) and 1.4470-15(1.4479%4) for (C) and
(D), respectively. Correspondingly, Fig. 3 shows the
same as (C) and (D) of Fig. 2, but the case with the wider
binning Ak = 0.05AMpc~". Thus, the effect of the binning
does not alter our conclusions qualitatively.

Our estimation of the chi-squared is not strict but rather
optimistic because we neglected the covariances between
different k bins as well as those between different Zth
multipole spectra. Inclusion of the covariance matrix would
weaken the constraint. Some aspects and these covariances
of the multipole power spectra were investigated in [6,36],
but they focused on the lower multipole spectra at smaller
wave numbers. According to the statistical errors of the
multipole spectra on the basis of the FKP method [10,35],
the shot-noise contribution dominates the error at the larger
wave numbers k > 0.34AMpc~!. Naively, the constraint will
be improved by increasing the mean number density of a
galaxy sample. The covariances for the higher multipole
spectra need further investigations, which is out of the
scope of the present paper.

Let us discuss the reason why the higher value of £ is
obtained from the analysis of the LRG sample. It could be a
smoking gun of a modified gravity. For example, an f(R)
gravity model has an effective gravitation constant
G = 4G/3, as long as the chameleon mechanism does
not work. However, we should discuss the possible
systematics that may lead to a larger value of p.
Because the satellite fraction is small, being around 6%
of the total LRGs, the first term dominates the right-hand
side of Eq. (2). Then, taking the degeneracy in the central
and the satellite galaxy velocities, we should understand
that the constraint is

6% —Hﬁ

o

= Blag +a3) = 1351545, (7)

in the case (D) when we use the BLRG sample for
modeling the two-halo term. The results might be explained
by a larger velocity dispersion of the central galaxy in the
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multiple system. Recently, Guo et al. have reported the
velocity bias of galaxies in the SDSS CMASS samples
[30]. The sample is different from ours, but they report that
a,. ~ 0.3. However, this value a, ~ 0.3 is rather small to
explain our results, and @, ~ 0.6 is required within the
general relativity = 1. Other possible systematics is the
modeling of the two-halo term in P,(k), as we obtained
somewhat different values between (C) and (D) in Table II.
This suggests that there exists a systematic error of the
same order in our modeling of the two-halo term. More
sophisticated simulations based on subhalo catalogs from
N-body simulations could be necessary and useful.

The fiber collision effect influences pairs closer than a
critical separation. We checked that our treatment for the
fiber collisions works within the error. Namely, we have
shown that the effect of the fiber collision can be modeled
as an effective reduction of the satellite fraction, the validity
of which is limited to the range of wave numbers
k < 0.6hMpc~!. However, this effect could be more
complicated and a more careful modeling of the fiber
collision might be necessary. The fiber collision effect will
induce an additional anisotropic signature on very small
scales in redshift space. This could be a systematic for our
method, which needs more careful analysis.

IV. CONCLUSION

In summary, we have investigated the potential of the
higher multipole power spectra of the galaxy distribution in
redshift space. This method is based on the recent finding
that a halo model accounts well for the behavior of the
multipole power spectrum of LRGs on small scales. Our
method uses the data of the spectrum on small scales
0.3 < k/[hMpc~!] < 0.6. This is quite in contrast to the
usual method of testing gravity by measuring the linear
growth rate on very large scales. Our method is based on
the fact that the one-halo term makes a dominant contri-
bution to the higher multipole power spectra at large wave
numbers, which reflects the random motions of the satellite
galaxies. We carefully investigated the relation between the
velocity dispersion of the random motions of satellite
galaxies and the host halo mass on the basis of the mock
catalogs from N-body simulations. The validity of our
theoretical model for the higher multipole power spectrum
is tested using the results of the mock catalogs. By
confronting our theoretical model and the observed multi-
pole spectra of the SDSS LRG samples, we obtained a
value for an effective gravitational constant somewhat
larger than that predicted by the numerical simulations.
This could be a smoking gun of the modified gravity.
However, we might need to check our theoretical model for
the two-halo term and the fiber collision effect more
carefully. Our constraints on the velocity bias are not very
tight. This is mainly due to the degeneracy with the HOD
parameters because P, and Pg are sensitive to the fraction
of satellite galaxies [9,11]. The degeneracy can be largely
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broken by jointly analyzing the projected correlation
functions [30]. Including the information on the quadrupole
power spectrum will also improve our constraint. We leave
this for future work.
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We study the third order solutions of the cosmological density perturbations in Horndeski’s most general
scalar-tensor theory under the condition that the Vainshtein mechanism is at work. In this work, we
thoroughly investigate the independence property of the functions describing the nonlinear mode
couplings, which is also useful for models within general relativity. Then, we find that the solutions
of the density contrast and the velocity divergence up to third order are characterized by six parameters.
Furthermore, the one-loop order power spectra obtained with third order solutions are described by four
parameters. We exemplify the behavior of the one-loop order power spectra assuming the kinetic gravity
braiding model, which demonstrates that the effect of modified gravity appears more significantly in the
power spectrum of the velocity divergence than the density contrast.

DOI: 10.1103/PhysRevD.92.104033

I. INTRODUCTION

The accelerated expansion of the Universe is one of the
most fundamental problems in modern cosmology. The
standard cosmological model introducing the cosmological
constant is consistent with various observations [1,2].
However, the small value of the cosmological constant
raises the problem of fine-tuning [3—5]. As an alternative to
the cosmological constant, the cosmic accelerated expan-
sion might be explained by modifying gravity theory (see,
e.g., Refs. [6-18]). In the present paper, we focus on the
most general scalar-tensor theory with second order differ-
ential field equations [19,20], which was first discovered
by Horndeski [21]. Horndeski’s most general scalar-tensor
theory, including four arbitrary functions of the scalar
field and kinetic term, reduces to various modified gravity
models by choosing four specific functions. Because
Horndeski’s theory includes a wide class of modified
gravity models, we adopt it as an effective theory of the
generalized theories of gravity.

In the present paper, we investigate the aspects of the
quasinonlinear evolution of the cosmological density
perturbations in Horndeski’s most general scalar-tensor
theory, assuming that the Vainshtein mechanism is at work
[22-25]. The Vainshtein mechanism is the screening
mechanism, which is useful to evade the constraints from
the gravity tests in the solar system. We investigate the
effects of the nonlinear terms in the matter’s fluid
equations as well as the nonlinear derivative interaction
terms in the scalar field equation. In a previous work [26],
the second order solution of the cosmological density
perturbations was obtained. In the present paper, we
extend the analysis to the third order solution, which

1550-7998/2015/92(10)/104033(22)
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enables us to compute the one-loop order matter power
spectrum.

There are many works on the higher order cosmo-
logical density perturbations and the quasinonlinear matter
power spectrum which have been developed from the
standard perturbative approach (see, e.g., Refs. [27-37]).
Improvements to include the nonperturbative effects have
been investigated (see, e.g., Refs. [38—43]), but here we adopt
the standard perturbative approach of the cosmological
density perturbations as a starting place for the analysis of
Horndeski’s most general scalar-tensor theory. Related to
the present paper, we refer to the recent work by Lee, Park,
and Biern [44], in which a similar solution was obtained for
the dark energy model within general relativity.

This paper is organized as follows. In Sec. II, we review the
basic equations and the second order solution [26]. In Sec. III,
we construct the third order solutions of the cosmological
density perturbations. Here, we carefully investigate inde-
pendent functions of mode couplings describing nonlinear
interactions. In Sec. IV, we derive the expression of the one-
loop order power spectra of the matter density contrast and
the velocity divergence. In Sec. V, we demonstrate the
behavior of the one-loop order power spectra in the kinetic
gravity braiding (KGB) model. Section VI is devoted to a
summary and conclusions. In Appendix A, definitions of
the coefficients to characterize Horndeski’s theory are
summarized. In Appendix B, definitions of the functions
to describe the nonlinear mode coupling for the third order
solutions are summarized. In Appendix C, a derivation of
the one-loop power spectra is summarized. Expressions in
Appendix D are useful for the deviation of the one-loop
power spectra. Appendix E lists the coefficients to character-
ize the kinetic gravity braiding model.

© 2015 American Physical Society
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II. REVIEW OF THE SECOND ORDER SOLUTION

Let us start by reviewing the basic formulas [23,26]. We
consider Horndeski’s most general scalar-tensor theory,
whose action is given by

§= /d4x\/_g(£GG + L), (1)
where we define

Loc = K(9.X) — G3(¢h. X)Uep + G4(¢. X)R
+ G4X[(|:|¢)2 - (vﬂvb¢)2]
+ GS (¢’ X)G/wvﬂqul)
1

——Gsx[(Og)?

- —304(

vﬂ vy¢)2 + z(vﬂ vu¢)3] ’
(2)

where K, Gz, G4, and G5 are arbitrary functions of the
scalar field ¢ and the kinetic term X = —(9¢)*/2, Gx
denotes 9G;/0X, R is the Ricci scalar, G, is the Einstein
tensor, and L, is the Lagrangian of the matter field, which
is minimally coupled to gravity.

The basic equations for the cosmological density per-
turbations are derived in Ref. [23]. Here, we briefly review
the method and the results (see Ref. [23] for details). This
theory was discovered in Ref. [19] as a generalization of
Galileon theory (see Ref. [45] and also Refs. [20,46-64]),
but the equivalence to Horndeski’s theory [21] is shown in
Ref. [20]. We consider a spatially flat expanding universe
and metric perturbations in Newtonian gauge, whose line
element is written as

ds? = —(1+2®(t,x))dr* + a*(1)(1 = 2¥(t, x))dx>. (3)
We define the scalar field with perturbations by

¢ — (1) + 6¢(1,x), (4)

and we introduce Q = H5¢/¢.

The basic equations of the gravitational and scalar fields
are derived on the basis of the quasistatic approximation
of the subhorizon scales [23]. In the models where the
Vainshtein mechanism may work, the basic equations can
be found by keeping the leading terms schematically
written as (00Y)", with n > 1, where O denotes a spatial
derivative and Y denotes ®, W, or Q. Such terms make a
leading contribution of order (L}00Y)", where Ly is a
typical horizon length scale, and we have

v (‘FT\II gTq) A Q) 2H2Q2

2 (VEOV2Q—8,0,00'0/ Q)
(5)

2H2
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and

B,

2
27[{2@)

a2
QTVZ\IJ = 3Pm5 szzQ -

G

(V2UV2Q - 0,000 0 Q) ~ 1y

Qw),
(6)

where p,, is the background matter density and o is the
matter density contrast. We define

(0:0,0)%, (7)
- 3V20(9,0,0)* +2(0,0,0)*. (8)

2H2

@) = (V20 -
Q(3) = (sz)3
The equation of the scalar field perturbation is

By

2
e o

AgV2Q — A V2T — A, V2D +

(V2UV2Q — 0,0,00'01 Q)

2H2
2H2 (V2OV2Q - 9,0;99'0/ Q)
- —;1 (V2OV2T - 9,0,99'0' )
G
4H4 Q G) a4H4 u(%) =0, (9>

where we define

U = QRIV2D — 2V200,0,00'9/®
+20,0,00/000,0'®. (10)

Here the coefficients F;, A, B, C;, etc., are defined in
Appendix A. A;, B;, and C; are the coefficients of the linear,
quadratic, and cubic terms of ¥, ®, and Q, respectively.

From the continuity equation and the Euler equation for
the matter fluid, we have the following equations for the
density contrast § and the velocity field u’,

PUX) Lo+ st =0 ()
X))+ L) (%) = = Lo,(0.x),
(12)

respectively. The properties of the gravity sector are
influenced through ® in Eq. (12), where @ is determined
by Egs. (5), (6), and (9).

Now, introducing the scalar function = Vu/(aH),
which we call velocity divergence, we perform the
Fourier expansions for ¢ and 6,

104033-2
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5(t,x) = (2;)3/d3p5(l‘,p)eip-x, (13)
V0.3 = s [ p T8 atoi.pier, (14)

In a similar way, we perform the Fourier expansions for ®, ¥, and Q. Then, the gravity equations (5) and (6) lead to

B,
— P(FrU(.p) = Gro(tp) = 410(1.9)) = 5 5T 93 0. 0] + 32 T.p; 0.0). (15)
a? B,
—pz(gT\I/O‘,p) +A2Q( p)) _pm (t,p) = 2 22 H? [t p; 0, Q] 2H2 [t p: Q. \II]
"3 4H4 Eilnp; 0,0, 0], (16)
respectively, where we define
1
[[t,p;Z1,Z,] = (27)3/ dkdk,8%) (ki + Ky = p) (k13 — (ky - K)?)Z, (1, k) Zo(1, ko), (17)
1
Eit,psZ1, 2y, Z5] = (27)(,/ dKk dK,dk35%) (k; + K, + k3 —p)

X [~kTk3k3 4 3kF (K - k3)? = 2(ky - Ky) (K, - K3) (K3 - Ky)]Z (1. k) Z, (1, ko) Z5 (2. k3),  (18)

where Z;, Z,, and Z; denote Q, ®, or V. The equation for scalar field perturbation (9) leads to

B,
[t,p;0,0] +

—p*(Ag0(t.p) — A (. p) — Ay®(t.p)) = 2H?

2H2 Ilr,p; 0, 9]

B,
+ﬁr[ﬁp; 0.9+ —

Co —
L T[t.p: U, D] +W:1[va; 0.0.0]
C -
+W:2[I,P;Q,Q,‘I>], (19)

where we define

5P 21,25, 23] = / dk,dk,dk;6%) (k| + Kk, + k3 — p)[-k2k3KE + (K, - ky)2k3

1
(27)°
+2k7 (k; - k3)? = 2(ky - Ky) (ks - K3) (ks - k)] Zy (2. k) Z (1, ko) Z5 (2 ks). (20)
The fluid equations (11) and (12) lead to

1.05(1,p)
H 0Ot

+0(t,p) = - /dk1dk25(3)(k1 +ky —pla(k;. ky)0(.k)s(1. ka),  (21)

I
(27)*

1 96(t,p H 2 1
H (8t )+ <2+H2>9(f p) - sz (1,p) = —W/dk1dk25(3>(k1 +ky —p)Bk;, ky)0(1, k,)0(t, ky),  (22)

where we define

k; -k,

ak . ky) =1+
ki

(23)
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(k- ko) |k + k|

k. k,) =
ﬂ(l 2) Zk%k%

(24)

Note that a(k |, k,) does not have symmetry with respect
to the exchange between k; and k,. We find the solution in
terms of a perturbative expansion, which can be written in
the form

Y(t,p) = ) Y, (t.p). (25)
n=1

where Y denotes 6, 0, U, @, or Q, and Y,, denotes the nth
order solution of the perturbative expansion. Neglecting the
decaying mode solution, the linear order solution is written
as [23,65]

6, (t.p) = D (1)6.(P)- (26)

0,(1.p) = —D, (1)f(1)5.(p). 27)
a’H?

®(1p) = =D (D05 p). (29
a’H?

Wep) = - D Ox A e). (29

0,(1.p) = —“plf D.(Dkp(N5L(p).  (30)

where D (1) is the growth factor obeying

2
‘”;7;2(’) + 2HdDT+t(t) LD =0, (31
with
L(l) — (AOJ:T - A%)pm (32)

T 2(AgGE + 2A,A5Gr + Ay Fy)

and & (p) describes the linear density perturbations, which
are assumed to obey the Gaussian random distribution.
Here we adopt the normalization for the growth factor
D, (a) = a at a < 1, and introduce the linear growth rate
defined by f(1) =dInD_(1)/ Ina.

The second order solution is written as (see Ref. [26] for
details)

() = DY (W) - AW ) G

0:(1:0) = =D (0f (Walo) = SO, 0) ). (34

a*H?
7D2+(f)(K¢>(t)Wa(P) + Ao ()W, (P)).

(35)

D,(t,p) = -

PHYSICAL REVIEW D 92, 104033 (2015)

(12H2
U, (t.p) = — 7 D2 (1) (kg ()Wq(P) + A6 ()W, (P)).
(36)
a’H?
0,(1,p) = — = D% (1) (ko ()W, (P) + A0(t)W, (P)).
(37)

where the coefficients kg, Ky, Ko, 4, 49, 4p, Ay, and 1y are
determined by the functions in the Lagrangian and the
Hubble parameter, whose definitions are summarized in
Appendix A. Here W,(p) and W, (p) are defined as

1 '
Wa(B) = G5 [ ke (ky + o = ) (k)
x o (ky)o(ks), (38)
1
W,(p) = (2”)3/ dk1dk25(3)(k1 +k, —p)r(ki. ky)
x o (ky)o(ks), (39)
with

K, -k, (ki +k3)

a¥(ky, ky) =1+ TeTe , (40)
(k; - k,)?

kK ,k,)=1-—~— =L, 41

7( 1 2) k%k% ( )

where a*)(k, k,) is obtained by symmetrizing a(k, k)
with respect to k| and k,, and y(k, k,) is the function that
describes the mode couplings for the nonlinear interaction
in the gravitational field equations and the scalar field
equation. Here, a®) (k. k,), f(k.k,), and y(k;, k,) have
symmetry with respect to the exchange between k; and k.
One can easily check that the functions that describe the
nonlinear mode couplings, a'*)(k;,k,),A(k;,k,), and
r(ki,k,), satisfy

Bk Ky) = a¥ (k. ky) —y(Ky, Ky). (42)

We briefly compare our work with Ref. [44], which is
essentially the same as ours, though the authors of Ref. [44]
restrict their investigations to the dark energy model within
general relativity. The difference is that our approach
includes the relations between the functions of mode
couplings, e.g., Egs. (42), (B19), (B20), and (B21). For
example, the second order solution of the density contrast
(33) agrees with Eq. (12) in Ref. [44] by finding the relations

2 1
Cr1 = 1- 5/1(1‘), Cyy = —§ﬂ(t> (43)

This predicts the relation ¢,; — 2¢y, = 1. Thus, the differ-
ence is the inclusion of the independence property of

104033-4



THIRD ORDER SOLUTIONS OF THE COSMOLOGICAL ...

mode-coupling functions, which reduces the number of
parameters to characterize the model, as is also described
in the next sections. However, the consistency is demon-
strated by computing the power spectrum Pgss(k) for a
ACDM model (see Fig. 1).

III. THIRD ORDER EQUATIONS

In this section we consider the third order solutions. The
third order solution of the cosmological density perturbations
|

PHYSICAL REVIEW D 92, 104033 (2015)

has been investigated in various models [27-33,35-37,44].
We present the third order solution for Horndeski’s theory in
the cosmological background. Our results are general and
applicable to various modified gravity models. Plus, our
results are useful for the case of general relativity because we
clarify the independence property of the mode-coupling
functions and the relevant parameters to characterize the third
order solution. We start by solving the third order equations
for gravity and the scalar field,

PA(Fr¥;(t.p) — Gr®s(2.p) — A105(1,p)) = 5 T[t.p; Q1. O] + sz( [t,p; Q1, P,] +T[t, p; Os, P1]), (44)
2 a? 2 B;
—p°(Gr¥s(t,p) + A, 05(1,p)) —?Pm53(f’P> = —z—Hzr[f’P; 0, 0,] _W(F[I’E 01, V] + Tt p; 02, V1))
~ 34 4H4~1[f p; 01.01. 01, (45)
—p*(AgQ5(1.p) — A W5(1.p) — Ay ®5(1,p)) = 2H2 [, p; 01, 0o] + 2;12 (T[t, p; Q1. o] + T2, p; O, 1))
B, B;
+ sz( £, p; Q1, ©o] +T[t, p; Oy, @) + sz( [t,p; ¥y, D]
Tt D3 U 1)) + 51,93 01, 01 0] + o Sale.p: 01 01 )
s Ps o, P a4H4‘—‘1 Py Uy, UL, U a4H4‘—'2 Py Uy, U, Py
(46)
Inserting the first and second order solutions into the above equations, we finally have
a*H?
Fr¥s(t,p) — GrPs(t.p) — A1 Q5(t.p) = — Di(t)((BlKZQ + 2Bskpko) Wya(P)
+ (Bikghg + B3(kadg + kols) )Wy, (D)), (47)
a2 2H2 X ,
GrVs(t,p) + A, 05(1,p) + 2—1)2,011153(?, p) = D7 (1) ((Baxg + 2Bskykg)W,a(P)
Ci ,

+ (BQKQJ.Q + BS(K\P/{Q + KQ/lq;))Wyy(p)

2H2

AgQ3(t.p) — A U5(1,p) — A, 05(1,p) =

= KoWe(p)).  (48)

D (1 )((—230’@ +2B kykg +2Brkgkg +2B3kgky )W, (D)

+ ((=2Bokgdg + By (kylg + koAv) + Ba(kado + kols) + B3 (kady +kyds) )WV, (P)
+ (Cokd + Ciraky)We(p)), (49)

where we define W},a(p), Ww(p), and Wg(p) using Egs. (B1), (B2), and (B3), respectively, in Appendix B. Then, the
gravitational and curvature potentials and the scalar field perturbations are written as

a*H?

D3(t,p) = - (k3 (1)83(t.p) + DL(1) (60 ()W,a(P) + 1o ()W, (P) + va () We(p))). (50)

a*H?
\113(t7p) == p2 (K

a2H2
Os(t,p) = S (ko

w(1)33(1,p) + D (1) (0w (DW,a(P) + pu ()W, (p) + va (DWe(p))). (51)

(1)33(t.p) + DL (1) (00 ()W,ya(P) + 1o ()Wy, (P) + vo()WVe(P))). (52)
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where the coefficients o (1), g (1), vg(t), etc., are defined
in Appendix A. The third order equations for §;(z, p) and
05(1,p) are

1 955(1, p)

H
1
e / dkdk,8%) (k; + ky — p)a(k;, k)

x (0,1, k)0,(,ky) + 05(1, k)5, (2, k,)), (53)

1 065(1.p) H P’
— B\ E il -7 3
H ot + 2+H2 93(1‘,[)) asz S(tvp)
2
= __3/ dk,dk,6%) (K; + Kk, — p)B(k;. ks)
(27)
X Hl(t,kl)ﬁz(t, k2) (54)

Using the first and second order solutions, these equations
are rewritten as

%% +05(t,p) = D3(1)f (W(mR(p) - %ﬂWwR (p)
F Waa (B) =526 Weys (0)).
(55)
;1893(;,1)) N <2+%>93(,,p) _ag';l;q>3(z,p)
=2D3 (1)f? (—W,m(p) + %L%Way(p)
EWl0) =30, 0) ) (56)

where we introduce the functions defined by Egs. (B7)—
(B12), for which we find that the following relations hold,

2Wya(P) = Wayr(p) +2W,,(p) = We(p),  (57)
2Waa(p) - W(xaR(p) + W(xaL(p)? (58)
2Way(p) = WayR (p) + WayL (p) (59)

Then, Egs. (55) and (56) reduce to

1 853(I, p)
3 2 4
= D+(t)f Zwaa(p) - _/IWayR (p) - ?AHW(I}/L (p) ’

7
(60)

PHYSICAL REVIEW D 92, 104033 (2015)

1 005(t,p H p’
E—3é‘t )+ <2+E>H3(l‘vl’) T 2H2 ®5(7,p)
2 1
= 2Di(t)f2 <_W(xa(p) + (?)“9 + E) WGJ’R(p)

n %jewaﬂ(p) + (1 - jzg> W,,(p) - ;Wg(p)) .

(61)

Combining these two equations, we have the third order
equation for 8;(z,p) as

%851, 065(1,
TRUR) o PR 4 (1)6,1,) = $m(0.0). (62)

where we define

S63(t) :Di(t) (Naa(t)waa(p) +NayR<[>WayR (p)
+NayL(t)WayL(p) +Nyy(t)wyy(p) +N§(I)W§(p))v
(63)

and

Noo(t) = 6f2H? — 2L, (64)

8 2 4 ]
= —f2H? =2 f2H’A+ LA — = fH) + = H?
Noge(1) = =f*H? == fPH?4+ S Li = fHi + 5 H'6y.
(65)

8 2 4 .
Ny, (t) = —f*H? - 7 fPH? ) + ?L/I -3 fHA+N,, (66)

8 4 .
N, (1) = =2f*H* + 5 fPH? ) + 7 fHA+ H* (64 + po),

(67)

Ng(t) = f?H* + H? (—;aq, + I/q,) : (68)
where we used Egs. (A24) and (A28), and

J() = = (2fH> — L= PH = fH1),  (69)

H

which follows from the definition of the growth rate
f(t)=dInD,/dIna and Eq. (31). We can prove that
N, () is equivalent to N,,g(t), using Egs. (66) and (65),
and N, (1) = 1 H?c4, which is demonstrated by Egs. (A22)
and (A29). Then, we write

Na}/(t) ENayR(t) :NayL(t)' (70)

104033-6



THIRD ORDER SOLUTIONS OF THE COSMOLOGICAL ...

The general solution of Eq. (62) with (63) is

53(6,p) = ¢4 (P)D (1) + c_ <p>D (1)
(0D, () - D, (1)D_(1)
*A W(7)

where D () and D_(t) are the growing mode solution and
the decaying mode solution, satisfying Eq. (31), ¢, (p) and
c_(p) are integral constants, and W(z) is the Wronskian
defined by W(r) = D_(1)D_(t) — D_.(t)D_(t). Since we
assume that the initial density perturbations obey the
Gaussian distribution, we set c.(p) =0, as is done in
deriving the second order solution. Then, the solution of the
third order density perturbations is given by

Ss3(2,p)dr,

(71)

53(t’ p) D3+(t) <K53(I)Wml(p) - %&B(OW(I}/R (p)
= 22 Weys (B) = 511V, )
+gUOWLp) ) 72)

where we define

g ~ D, (O)D_(7)
K(S3(t) = Di(I)A

D_(t)D(7)

w(t)
DY IN 1) (73)
B 7 tD_(t)D (¢) =D, (t)D_()
R 1o A v
x D (¢)N,,,(1)d? . (74)
21 D)D)~ D (D7)
M0 =555 | W)
x D3.(¢)N,,(¢)dr. (75)
_ 9 'D_(1)D, () - D (1)D_(t')
{0 =57 W(7)
x D3 (¢ )N(1)dr. (76)

Here note that the parameters in front of W,,z(p) and
W, (P) in expression (72) are the same, originating from
the relation (70). In the limit of the Einstein—de Sitter
universe in general relativity, the coefficients x3(), As3(7),
u(t), and v(r) reduce to 1.

We can redefine these coefficients using the differential
equations. Inserting the general form of the solution (72)
into (62), we obtain the following differential equations for
the coefficients:

PHYSICAL REVIEW D 92, 104033 (2015)

Ks53(1) + (6f + 2)ks3(1) + (6f*H? = 2L)ks3(1) = Noy(1),
(77)
Jip(0) 4 (6 +2)ds (1) + (6722 = 2L )y (1) = = Nog (1),
(78)
(E) (6 + 2)A(e) + (67°H2 = 2L)ult) = = 2-Nyol1),
(79)
(1) + (6f +2)i(1) + (6f>H* = 2L)u(r) = IN(1). (80)

The homogeneous solution of all these equations is
1/D3(t) and D_(t)/D3(t). Therefore, the differential
equations (77)—(80) consistently yield the inhomogeneous
solutions (73)—(76), respectively.

We next show that xs(f) = 1 identically. Using the
expression (64), we easily find that k53 = 1 is the solution
of (77). This means that the inhomogeneous solution (73)
reduces to k53 = 1. We can prove ks = 1 directly from
(73), using a partial integral.

Furthermore, we can show that 453 (7)
We can rewrite Eq. (78) as follows,

Ao (1) + —L)25(1)
F2fHigs =) + (4P 2~ L) Uy~ ) =2 (PH? = N,),
1)

where we used (70) and (66). We can easily check that
As3(1) and A(¢) satisfy the same differential equation [see
Eq. (A28)], which leads to As5(t) = A(¢).

In summary, we have an expression equivalent to (72),

= A(t) identically.

(4f +2)Hs (1) + (2 H?

(4f2H2

2 2
32(10) =% 1) Warl) = 340 War(0) =30 Vo (0
2 1
~5 A OWy () +5u()We(p) ). (82)
Thus, the third order solution of density contrast is

characterized by A(r), pu(z), and v(r). Note that A(¢) is
defined in order to describe the second order solution; then
u(t) and v(t) are the new coefficients which appear at the
third order. Table I summarizes the parameters and the
mode-coupling functions necessary to describe the second
order solution and the third order solution.

Recently, the authors of Ref. [44] investigated the third
order solution of the density perturbations, in a similar way,
but within a model of general relativity. In their paper,
six parameters are introduced to describe the third order
density perturbations. Our results suggest that less param-
eters are independent.
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TABLE 1. Functions for the mode couplings and parameters
necessary to describe the second and third order solutions.

Parameters Mode-coupling functions
(1) A1) We(p)
6>(1.p) (1) W, (p)
63(” p) j’(t)’ /"([)’ I‘/([) Waa(p)’ WayR(p)’ WayL(p)
03(1.p) (1), (1), po(1), v(1) Wy () We(p)

Inserting the solution (82) into Eq. (60), we find the
solution for the velocity divergence,

05(1.0) =D (0)f ( WarlB) =300 Wor =240 Vo )
S (B) 430 (OV:(P) ). )

where we define
polt) = o) + 220 (84)
volt) = (1) + SVJ(C—Z (85)

Here note that 1,(¢) is the parameter that describes the
second order solution, and uy(f) and vy(r) are the new
parameters that appear at the third order.

In summary, we first introduced nine mode-coupling
functions in the third order equations, Eqgs. (55) and (56)
with Eq. (50). We find the three identities (57), (58), and
(59). Then, only six mode-coupling functions are indepen-
dent out of nine. This conclusion, that the number of
linearly independent mode-coupling functions is six, can be
proved by using the generalized Wronskian. The coeffi-
cients in front of W,z and W,,; in Eq. (55) are the same,
which leads to the final third order solution, Egs. (82)

|

i3 I
P (1k) = —/drPL(rk)/ dxPy (k(1 + 12 = 2rx)\/?)

X

PHYSICAL REVIEW D 92, 104033 (2015)

and (83) expressed in terms of the five mode-coupling
functions.

IV. POWER SPECTRUM

The third order solution of the density perturbations
enables one to compute the one-loop (second order) power
spectrum. The second order matter power spectrum has
been computed by many authors [27-33,35-37,44], in
general relativity and modified gravity models. We find
the expression for the one-loop order power spectra of
density contrast and velocity divergence by

(6(1.k1)8(t,ky)) = (27)*6D) (k| + ko) Pss(t, k), (86)

(8(1.k1)0(1.k,)) = (27)°6%) (K + ko) (—f) Pyy(1. k),
(87)

(0(1.k)0(1.K,)) = (27)*63) (k; + K,)f?Pgo(1. k),  (88)

where we use the notation k = |k;|. Some details of their
derivations are described in Appendix C; here we show the
results,

Pys(t,k) = DX (1)PL(K) + D (1) (P57 (1.k) +2P35Y (1, ),
(89)

Pso(t,k) = D3 (1) Py (K) + D (1) (PR (1, 6) + 2P (1,),
(90)

Poo(t,k) = D2 (1) Py(k) + D (1) (Pl (1, k) + 2PYy ) (1,K)).
(91)

where D? (1) Py (k) is the linear matter power spectrum, and
we define

(7 =42)r +Tx +2(22 = T)rx?)?

98(27)2 . (42— 2m) ; (92)
3 I
P(%Z)([, k) = 98<]€27Z)2/ drPy (rk) /_1 dxPy (k(1 + P er)l/Z)
(7 =4A)r +Tx +2(24 = T)rx?)((7 — 829)r + Tx + 2(4Ag — 7)rx?)
(1+ 72 =2rx)? ’ (93)
((7 = 8Ag)r + Tx + 2(4g — T)rx*)? . (94)

K 1
Pézgz)(t, k) = /drPL(rk)/ dxPy (k(1 + r2 = 2rx)'/2)

98(27[)2 1

(1+r*—2rx)?
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and
2P0V (1, k) :k—SPL(k)/drPL(rk) 12ﬂi—2(21 + 364+ 22u) + 4(84 — 484 — 11u)r?
% 252(27)? r
3 1
—6(21 =124 = 2u)r* + = (2 = 1)>((21 = 124 — 2u)? +2u)ln<| +1|>} (95)
r r—
K 1
+2(168 =964 — 11u — 33pg)r> — 6(21 — 124 — pu — 3py) r
3 +1
#0112 30 4 Gt ) 0 () | (96)
(13) IS 1 >
2Py, (1, k) :784(27[)2&(1@ drP, (rk) 12M9ﬁ—2(7+12/1+22M9)+4(28—161—11M9)r
—6(7—d) — a3 (T —ag— 2 r+1
6(7 — 44— 2up)r +3 (2 = 1)3((7 = 42 = 2ug)r* + 2uy) In )| (97)

The third order solutions of the density contrast and the
velocity divergence are described by six parameters in
Table I. The one-loop power spectra are described by four
parameters, and they do not depend on v(f) and vy(7) (see
Table II). In deriving the one-loop power spectrum, we find
that the relation

é(k.qp.—q;) =0 (98)

holds, which prevents the one-loop power spectrum from
depending on v(t) and wy(f). Details are described in
Appendixes C and D.

Figure 1 shows Pgss(t, k) (thick curve) and the corre-
sponding linear power spectrum D2 (¢)P; (k) (thin curve),
at the redshift z = 0 (solid curve), z = 1 (dashed curve),
and z = 1.5 (dotted curve), respectively, for the ACDM
model, with the cosmological parameters describe in the
caption. A comparison between this figure and Fig. 1 in
Ref. [44] shows the consistency between both results.

V. APPLICATION OF KGB MODEL

In this section, we exemplify the effect of modified
gravity on the one-loop power spectrum. Here we consider
the KGB model [60,66], which is considered in Ref. [26]

TABLE II. Summary of the parameters that characterize the
one-loop order power spectra Pgss, Psy, and Py, respectively.

Parameters
Pss A1), u(t)
Psy A1), (1), (1), po(t)
Py A1), Ag(t), po(t)

to demonstrate the effect of modified gravity on the
bispectrum. We briefly review the model. The action of
the KGB model is written as

/d“x\/_[ PR+ K(p. X) = G3(¢. X)Op + Ly
(99)

where M, is the Planck mass, which is related to the
gravitational constant Gy by 8zGy = 1 /Mgl. Comparing
action (99) with that of the most general second order

T T T TTTTT T T \\HH‘ T T T TTTIT
10% ACDM _|
mo /- A
S 1005 =
Lo AN
g B z=0 N .
A q02 N
Eo———-z=1
- NN
R z=1.5 ]
&
101 1 1 \\HH‘ 1 1 \\HH‘ 1 [N
10-3 102 10! 1
k hMpc-!

FIG. 1. Pgs(t, k) (thick curve) and the corresponding linear
power spectrum D2 (¢)P; (k) (thin curve) at the redshift z =0
(solid curve), z = 1 (dashed curve), and z = 1.5 (dotted curve),
respectively, for the ACDM model with the cosmological param-
eters Q) = 0.26, Q, = 0.044, h = 0.72, n; = 0.96, o3 = 0.58.
This figure shows the consistency with Fig. 1 in Ref. [44].
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scalar-tensor theory (1), the action of the kinetic gravity
braiding model is produced by setting

M2,
Gi=7"

and we choose K and G5 as

Gs =0, (100)

2

rs "
K = —X, G3 = Mpl (WX> 5 (101)
pl
where n and r, are the model parameters. Useful expres-
sions of the kinetic gravity braiding model are summarized

in Appendix E.
When we consider the attractor solution, which satisfies

3¢HG3X =1, the Friedmann equation is written in the

form
H)\?2 QO H\ —2/(2n-1)
— ] =— 1-Qy) [ — 102
<Ho) a * O)<Ho> - (102)

9(1-Q,)(2n - Q)3

4 Q.(5n-Q,)°

L 9(1 = Q)21 — Q)2 (4n2(21 4 252Q,) — 4n2, (21 + 104Q,,) + Q%21 +41Q,,))

PHYSICAL REVIEW D 92, 104033 (2015)

where H,, is the Hubble constant and € is the density
parameter at the present time, and the model parameters
must satisfy

on—=1\ 1/2n 1 (2n—1)/4n
Hyr,. = . 1
o= (5) " = o)

On the attractor solution, L(7), defined by Eq. (32), reduces
to

L(r) = 32n+ (3n-1)Q,
2 5n—-Q

H?, (104)

where Q, is defined by Q(a) = QyH3/H(a)*a’. The
linear growth factor D, is obtained from Eq. (31) with
Egs. (104) and (102). However, note that the quasistatic
approximation on the scales of the large scale structures
holds for n < 10 (see Ref. [66]).

The second and third order solutions are obtained with

H?, (105)

We have A(7) from Eq. (A23) with (105). Using these
results and Egs. (67) and (68), we have the expressions for
u(t) and v(t) from Egs. (75) and (76). Equations (A24),
(84), and (85) give expressions for Ay(t), uy(t), and vy(1),
respectively.

Table III lists the numerical values of these variables at
redshifts z = 1, 0.5, and 0, for the KGB model with n = 1,
2, 5, as well as the ACDM model with Q, = 0.3.

2802 (51 - Q,)°

H2,  (106)

(107)

Figure 2 shows 4, u, v, 4g, g, Vg as functions of the scale
factor a. In each panel, the blue dash-dotted curve is the
ACDM model, and the red dotted curve, the yellow dashed
curve, and the green thick solid curve show the KGB
model with n =1, 2, and 5, respectively. All the curves
take the limiting value of unity at a = 0 but deviate from
unity as a evolves. Note that the deviation of 4, y, v from
unity is small, of the order of a few percent, but the

TABLE III. Numerical values of the growth factor D, the linear growth rate f, and the coefficients 4, u, v, g, ug, Vg at redshifts
z=1.0, 0.5, and 0, for the ACDM model and the KGB model with n = 1, 2, 5. In each cell, set of three numbers means values at
redshifts z = 1.0, 0.5, and 0 from left to right, respectively. Here we adopted Q, = 0.3.

ACDM KGB(n = 1) KGB(n = 2) KGB(n = 5)
D, (z=1/0.5/0) 0.477/0.602,/0.779 0.496/0.642/0.858 0.489/0.628/0.838 0.484/0.620/0.827
flz=1/05/0) 0.869/0.749/0.513 0.951/0.835/0.593 0.919/0.813/0.605 0.904/0.805,/0.612
Az =1/05/0) 0.999/0.997,/0.994 1.000/0.999/1.003 1.000,/1.000/1.011 1.000/1.002/1.019
u(z =1/0.5/0) 0.999/0.998,/0.996 1.000/1.001/1.015 1.001/1.005/1.015 1.003/1.007/1.011
v(z = 1/0.5/0) 0.998/0.996,/0.991 1.000/0.999/1.014 1.000,/1.003/1.034 1.002/1.008/1.049
Jo(z = 1/0.5/0) 0.994/0.991,/0.983 0.998,/0.995/1.043 0.999/1.004/1.073 1.003/1.014/1.095
po(z = 1/0.5/0) 0.997/0.995/0.991 1.000/1.006/1.041 1.006/1.018/1.008 1.010/1.021/0.974
ve(z = 1/0.5)0) 0.994/0.990/0.980 0.998,/0.998,/1.089 1.002/1.014/1.136 1.009/1.030/1.169
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A, 1, v, g, g, Vg as functions of the scale factor a. In each panel, the blue dash-dotted curve is the ACDM model,

and the red dotted curve, the yellow dashed curve, and the green thick solid curve show the KGB model with n =1, 2, and 5,

respectively.

deviation of 4y, vy is rather large, up to 10%. This
is because the parameters associated with the velocity,
A¢ and vy defined by Eqgs. (A24) and (85), respectively,
contain the time derivative term, which makes a large
contribution. Plus, some of the difference between the
ACDM and KGB models comes from the difference of
the growth rate f. Deviation of u, in the KGB model
from that in the ACDM model is rather small compared
with the deviations of 4, and vy, which come from the fact
that y is not a monotonic increasing function but there
exists a maximum value at a < 1.

Figure 3 shows the one-loop power spectra Ps;s (thick
solid curve), Psy (dashed curve), and Py (dotted curve),
as well as the linear power spectrum (thin solid curve) at
redshift z =0 for the ACDM model (upper left panel)
and the KGB model with n =1, 2, 5, respectively, as is
noted in each panel. This figure demonstrates how the

nonlinear effect at one-loop order changes the linear
power spectrum. In this figure, we adopted the same
linear matter power spectrum. Therefore, all the models
resemble each other, but there are small differences in
the one-loop power spectra, depending on the cosmo-
logical models, which are compared in detail in Fig. 4.
This smallness of the deviation from the ACDM model
could be understood by the Vainshtein effect. The
deviation in the bispectrum from the ACDM model is
demonstrated to be small compared with that in the
quantities of the linear theory, e.g., the linear growth
rate [26,67].

Figure 4 shows the one-loop power spectra Pgss, Psy,
Pyy, from top to bottom, respectively, which are normal-
ized by those of the ACDM model in Fig. 3. These are the
snapshots at z =0, and all the models have the same
normalization og = 0.8; it follows that all four models
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FIG. 3. Comparison of Pgss(k) (thick solid curve), Pgs(k)
(dashed curve), Pgyy(k) (dotted curve), and the linear power
spectrum Py, = D% (t)P, (k) (thin solid curve), at the redshift
z = 0. The upper left panel is the ACDM model, and the other
panels show the KGB model with n = 1, 2, and 3, as described in
each panel. Here we adopted Q, = 0.3, Q, = 0.044, h = 0.7,
ny = 0.96, and og = 0.8. In this figure, the same linear power
spectrum is adopted for all the models.

have the same linear matter power spectrum. In each
panel, the red dotted curve, the yellow dashed curve, and
the green thick curve show the KGB model withn = 1, 2,
and 5, respectively. In the linear regime k < 0.1 [AMpc~!],
all the models converge because they have the same linear
matter power spectrum. The differences between the
KGB model and the ACDM model appear for the
quasinonlinear regime k 2 0.1 [AMpc~!] due to the non-
linear effect. Because all the models have the same linear
matter power spectrum, this figure shows that the
enhancement of the power spectrum due to the nonlinear
effect is small in the KGB models compared with that in
the ACDM model. Furthermore, the deviation from the
ACDM model is more significant in the velocity power
spectrum than that in the density power spectrum. In
general, the amplitudes of the one-loop power spectra
Pss, Psg, and Pgy are decreased when A(t), u(t), A4(2), or
ug(t) is increased. The behavior of Pg and Py in the
quasinonlinear regime is dominantly influenced by A,(7)
and py(1).

The nonlinear effect in Pgs is substantially influenced
by A(t), while Pgs also depends partially on p(z). On the
other hand, py(f) substantially influences the nonlinear
effect in Py, while the influence of Ay(7) is more sub-
dominant than p (). The deviation of the KGB models in
Pss and Pgy from the ACDM model reflects the behavior
A(t) and py(t), respectively. Namely, the deviation of
the values of A(¢) and p(¢) from the ACDM model at
z = 0 determines the behaviors of Pgskgp/Pssacom and

Pyokca/ Pooacom in Fig. 4.

PHYSICAL REVIEW D 92, 104033 (2015)
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FIG. 4 (color online). Relative deviation of the power spectra
Pss(k) (top panel), Psy(k) (middle panel), and Pgyy(k) (bottom
panel), under the kinetic gravity braiding model with n = 1 (red
dotted curve), n = 2 (yellow dashed curve), and n =5 (green
thick curve), which are divided by those under the ACDM model.
The panels show the snapshot at the redshift z = 0.

VI. SUMMARY AND CONCLUSIONS

We found the third order solutions of the cosmological
density perturbations in Horndeski’s most general scalar-
tensor theory assuming that the Vainshtein mechanism is at
work. We solved the equations under the quasistatic
approximation, and the solutions describe the quasinon-
linear aspects of the cosmological density contrast and the
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velocity divergence under the Vainshtein mechanism. In
this work, we thoroughly investigated the independence
property of the mode-coupling functions describing the
nonlinear interactions. We found that the third order
solution of the density contrast is characterized by three
parameters for the nonlinear interactions, one of which is
the same as that for the second order solutions. The third
order solution of the velocity divergence is characterized by
four parameters for the nonlinear interactions, two of which
are the same parameters as those of the second order
solutions. The nonlinear features of the perturbative sol-
utions up to third order are characterized by six parameters.
Furthermore, the one-loop order power spectra obtained
with the third order solutions are described by four
parameters. Assuming the KGB model, we demonstrated
the effect of the modified gravity in the one-loop order
power spectra at the quantitative level. We found that the

PHYSICAL REVIEW D 92, 104033 (2015)

deviation from the ACDM model in the power spectra of
the density contrast and the velocity divergence is small,
which can be understood as the result of the Vainshtein
mechanism in nonlinear quantities [67]. However, the
deviation from the ACDM model is more significant in
the velocity divergence than the density contrast, which is
explained by a dominant contribution of the parameters
Ag(2) and py(1). It is interesting to investigate whether this is
a general feature of modified gravity with the Vainshtein
mechanism or not.
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APPENDIX A: COEFFICIENTS IN EQUATIONS AND SOLUTIONS

We summarize the definitions of the coefficients in the gravitational and scalar field equations (5), (6), and (9).

® © Gr E+P
Ag= o G, -2 T X Al
o=ty =2 (A1)
Gr
A =—+Gr—Fr, (A2)
H
0
Ay =G — IR (A3)
X . ) ) ) )
By = ﬁ{¢G3X +3(X + 2HX)Gyxx + 2XXGuxxx — 3Gapx + 200X Gayxx
+ (H 4+ H)$Gsy + ¢p[2HX + (H + HY)X]Gsxx + HPXXGsyyx
—2(X + 2HX)Gsyx — pXGsgpx — X(X — 2HX)Gsxx (A4)
B = 2X[Gyx + ¢(Gsx + XGsyx) — Gs + XGsyx]. (AS)
By = —2X(Gay + 2XGaxx + HpGsy + HPXGsyx — Gsy — XGiyy) ; (A6)
By = HpXGsy. (A7)
5 2X2 . .
Co =2X"Gyxx + 3 (2¢Gsxx + ¢XGsxxx — 2Gsyx + XGsyxx), (A8)
C = H¢X(G5X + XGsyx). (A9)
where we define
Fr=2[Gy — X(¢Gsx + Gsyp)l, (A10)
Gr = 2[Gy — 2XGyx — X(HpGsy — Gsy)l. (A11)
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@ = —¢XGsx + 2HG, — 8HXG 4y — SHX*Gyxx + $Gay + 2XPGagy — H*P(5XGsx + 2X2Gisyy)
+ 2HX(3Gsy + 2XGsyx), (A12)

£ =2XKy — K + 6XpHGsy — 2XGsy — 6H>G, + 24H>X (Gyx + XGxx) — 12HX G yx — 6HPG.y
+ 2HXp(5Gsx + 2XGsyxx) — 6H*X(3Gsy + 2XGsyy ), (A13)

P = K —2X(Gs4 + $Gsx) + 2(3H? + 2H)G, — 12H?XG 4y — 4HXG,x — 8HXGyx — SHXX G xx

+2(d +2H()Guy + 4XGyyy + 4X(p — 2HP)Guyy — 2X(2H>§p + 2HH ¢ +3H?$)Gsy — 4H>X>PGsyx
+4HX (X — HX)Gsyy + 2[2(HX) + 3H?X]Gsy + 4HX G- (A14)

The coefficients in the first and second order solutions are defined as follows,

R(1) = AgFr — A2 (A15)
S(1) = AGr + AiA,, (A16)
T(1) = A1Gr + Ay Fr, (A17)
Z(1) = 2(AgG7 + 2A,A5Gr + A3 F7), (A18)
PmR
t) = R Al
ralt) =25 (A19)
PmS
1) = ——, A20
K\p( ) sz ( )
Pm7
=m- A21
H4
N, (1) = . (2Boky — 3B kyky — 3Brkeky — 6B3Kkekykp)., (A22)
7 'D_()D(f') =D, (t)D_()
At) = DX (¢)(f?H?* - N, (¢))dt, A23
=35 /. T ()P H? = N, (1) (A23)
A1)
= A24
hlt) =40 + 5 (A24)
2 1 2 2 2
/LI)(t) = —;K}pﬁ(l‘) + E (2BoTKQ - SBlsKQ - SBzRKQ - 6B3RK\I,K'Q), (A25)
2 1
A\y(t) = — 71(\1;/1(2‘) + E (ZBoAngKZQ + B1 (A%K'zg - 2AngK'\I;K'Q) - B2(SK'2Q + 2A2gTKq)K'Q)
—2B3 (SK\I;KQ - A%K@KQ + AngKq)K\I;)), (A26)

2 1
ﬂQ([) = —?Kgll(t) - z (ZBog%KZQ + Bl (AngKZQ — ZQQTK\I,KQ) + BQ(TKZQ — 2g%-Kq>KQ)

+2B3(TK\I;KQ + AngK@KQ - g%wK(pK\I,)). (A27)

Some details are described in the previous paper [26], but one can show that A(¢) obeys the differential equation,
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The coefficients for the third order solutions are defined as

2

G(I,(t) = E (2BOTK2Q - 3B|5K2Q - 3BzRK2Q - 6B3RK\I/KQ),
2

,Ltq;.(t) = z (ZBOTKQJQ — Bl (ZSK'QAQ + TK'Q/LI,) — Bz(zRKQﬂQ + TKQ/LI))—ZB3 (RK\I;/IQ + RKQA\I; + SK'Q/lq))),
2 3 3

l/(p(t) = 3_Z (—3COTKQ - 4C1RKQ),

2
oy(t) = z (ZBOAZQTKzg - BI(ZAngK\I/KQ - A%KZQ) - BZ(SKZQ + 2A2gTK<I>KQ)

—2B3 (SK\I,K'Q + AngK'q)K\p - A%K(I)KQ)),

2
Hy(t) = = (2BoArGrkhg — B1(A2Gr (kydg + Kohy) — A3kglg) — By (Skghg + ArGr(kedo + Kols))

—B;3(S(kyAg + kpdy) + AyGr(kply + kyds) — A3(kadg + Kola))),

2
vy(t) = 3z (—=3CoArGrky — C1(Skh + 342G1KeKp)),
2
oo(t) = Z (=2BG7xp + B1(2G7kuk — AyGrky) — Ba(Tky — 2GKaK o) =285 (Skj — Grkaky + A2Grkek)),

2
,LtQ(t) = E (—2Bog%KQlQ + Bl (g%—(K\pﬂQ + KQ/1\I/) - AngK'QlQ)

— Bz (TK'Q),Q — g%(Kq)ﬂQ + KQ/LI)))
—B3((Skgdg + Troly) — Gi(kady + Kyde) + ArGr(kedo + Kole))).

2
vo(t) = Y (3COQ%K3Q + Cl(—TK3Q + 3Q%K¢K2Q)).

APPENDIX B: THIRD ORDER MODE-COUPLING FUNCTIONS

(1) + (4f + 2)HA(D) + (2f2H? — L)A(1) = % (PH? = N,).
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(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)

In this appendix, we summarize the functions that describe the nonlinear mode couplings of the third order solutions. In

order to derive Eqgs. (47), (48), and (49), we define

1
W,.(p) / dkdk,dk;6%) (k| + k, + k3 — p)ya(k,, ko, k3)5, k)5, (k)8 (k3),

(27)°

1
W, (p) = /dkldkzdk35(3>(k1 +ky +k; —p)ry(k. Ky k3)d, (ko )6, (K)o (ks),

(27)°

1
We(p) = / ko530 (K + Ky + ks — P)ECK) . ko, Ka)5, (K1 )5, (ko) (Ks).

—~

27)°

with

W | =

7a<k17 k2’ k3) =

[OSTIE

YJ/(klykZ’k3) =

104033-15

(r(ky, k, + k3)a®) (k,, k3) + 2 cyclic terms),

(r(ky, ks + k3)y(k,, k3) + 2 cyclic terms),

(B1)

(B2)

(B3)

(B4)

(BS)
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_Ki(ky - k3)? + k(K3 - ki) Rk Ko)? = 2(k - ko) (ky - ks) (ks - k)
kk3k3

¢k ky ky) =1
In deriving Egs. (55) and (56), we define

1
—6/dk1dk2dk35(3) (k; +ky + k3 —p)aag(ky. k,. k3)6, (k)8 (k,)6, (k3).

WaaR (p) = (271_)

1
Wayr(P) = W/ dk dk,dk38% (k; + Ky + k3 — payg (K. Ko, K3)8, (k;)3, (K)8, (Ks3),

1
Wear (P) = W/dkldkzdkﬁm (ki +ky + k3 —p)aag (k. ky, k3)d; (k1)d;, (ko)dp (Kk3),
1
W (p) = W/ dk dK,dk;6%) (K; + ks + K3 — p)ay, (k1. Ko, k3)8; (k; )5, (K2)d, (K3),
1
Waa(P) = W/ dkdk,dk38%) (k; + Ky + K3 — p)aa(k. Ko, K3)5, (k)5 (K2)d, (ks),

1
Wey(P) = W/ dk dk,dk;0%) (ki + K, + K3 — p)ay (k. Ko, K3)8; (K1)8; (K2)8; (K3),
with

aog (ki Ky, k3) = = (a(k;, Ky + k3)a®) (k,, k3) + 2 cyclic terms),

(USRI

1 .

ayr(ki, ko, k3) = 3 (a(ky, ky + k3)y(ksy, k3) + 2 cyclic terms),
1

aa; (ki ky, k) = 3 (a(k; + Ky, k3)al) (ky, k3) + 2 cyclic terms),
1 .

ayr(ki, Ky, k3) = g(a(kl + ks, k3)y(Kk,, k3) + 2 cyclic terms),

aa(ky, ks, K3) = = (a9 (k. k, + k3)al® (k,, k) 4 2 cyclic terms),

[OSHIEE

ay(ky, Ky k3) = = (o (ky, k, + k3)y(k,, k3) + 2 cyclic terms).

W =

For the functions describing the mode couplings defined above, we find the following relations,
2ra(ki k. k3) = ayg(ky Ky k3) + 2ry (k. ko, ks) — &(ky Ky, Ks),
2aa(k1, kz, k3) = aaR(kl, k2, k3) + aaL(kl, k2, k3),

2ay(k. ko, k3) = ayr(ky, ko, k3) + ayp (ki ko, Kk3).

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)
(B20)

(B21)

There is no additional relation between the functions of the third order perturbations, which can be proved by using the

generalized Wronskian. These relations yield Eqgs. (57)-(59).
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APPENDIX C: DERIVATION OF THE ONE-LOOP POWER SPECTRA

The cosmological density contrast §(¢, k) and the velocity divergence 0(¢,k) up to third order of the perturbative
expansion are expressed as

5(1,K) = DL (03,0 + D2 (161, K) + D ()31 ). c1)
011, K) = =/(D (15.(K) + D% (10 (1. ) + DL ()0 (1. 10) )
where we define
S (1.K) = W, (1) = ZA0W, (), (©3)
(1K) = W) = 2 20 Weg(K) = 3 A0 Wiy () = 550 Wy, () + (W (K). ()
O (1K) = Wa(K) = S 4o ()W, (k). (©3)
O3 (1K) = Waa() =34 )W ey (K) = 2 0 Wey (K) = 2 o)W, () + 3w W (K), (c6)

and the kernels for the density contrast ', and F, and those for the velocity divergence G, and G5 are as follows,

Pl k1 k) = alky ko)~ 2407k ko), (©7)
Galt. k1. ko) =k ko) = 2 Ag(0)y k), (cs)

2 2
F3(t. k), ko, k3) = aa(ky, Ky, K3) — S A(t)ayr (ki Ko K3) — S A(H)ay, (K. Ky k)
7 7

2 1
—i/l(f)?}’(khkz’kﬁ +§V(t)f(k17k2,k3)7 (C9)

G;(1. ki, Ky, k3) = aa(k. Ky, k3) — ;fle(f)aJ’R(klakz, k3) — %l(l)ah(kl,kz, k3)
= 2 o) (1K )+ 50 60K K K. (c10)
These kernels have two types of symmetries. One type is the symmetry in the replacement of the wave numbers,
Fy(t. k1, ky) = Fo(1. ko Ky), (C11)

F3(t. k. Ky, k3) = F5(t, Ky, k3, k) = F5(t, k3, k., ky)
= F5(t. k. k3, k) = F3(t, ko, ki, k3) = F3(t, k3, ko, k). (C12)

The second is the symmetry in the conversion of the sign of the wave numbers,
Fy(t. k1, Ky) = Fy(1, —ky, —kj), (C13)
F3(t. k. Ky, k3) = F3(t, =k, —ka, —K3). (C14)
The same relations hold for G,(#,k;, k,) and G;(,k;, k,, k3).

The above properties are useful in deriving the expressions of the power spectra, Pss;(t, k), Psg(t, k), Pyo(t, k), defined by
Egs. (86), (87), and (88). Using the expressions (C1) and (C2), we find

104033-17
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2 13
Pas(t k) = DL(OPLK) + DL (PR (1K) + 2357 (1K),
) 4 (22) (13)
Psg(t.k) = D2 (0P (K) + DX (1) (P (1. k) + 2P (1.K)).
2 4 (22) (13)
Poo(t.K) = D2()PL(K) + DA (1) (P (1, K) + 2P (1. ).
where D% (1)Py (k) is the linear matter power spectrum,

(61(k1)8L(ky)) = (27)°6) (K + ko) Py (k).

and we define
(Box (1. 1)0ox (1. k) = (27)361) (K + kz)P{%z)(t, k),
(61 (k )33k (1, ko)) = (21)%8) (K, + ko) PSSV (1, ),
(82 (1. K1 )0 (1K) = (22)°60) (K, + ko) PG (1, k),
(O (1. K 1)02x (1. Ky)) = (27)°69) (K + kz)Pézaz)(ﬂ k),
(60 (k )03k (1, k2)) = (27)°60) (K, + Ky) Py (1K),
and

(306051 k2)) + (B0, (ko)) = (2260, + ) PG (1K),

As an example, let us explain the derivation of sz)(t, k). Inserting Eq. (C3) into (C19), we have

(Garc (1. K1 )ag (1K) = <ﬁ / P d 50 (k, — qy — @) Fs (1.1 0)5 (€))L (a)

1
X (27)? / dq3d°q48°) (K5 — q3 — qu) F5 (1, q3, Q4)5L(Q3)5L(CI4)>
1
= —6/ d*q\d*q3F5(t,q1. k1 — q1)F>(1.q3. Kk, — q3)
(27)
x (6.(q1)d; (ki —q;)5.(q3)5, (k2 — q3))-
Using the relation that holds for the Gaussian variables, we have
(62.(q1)oL (ki —q1)8.(q3)8. (ko —q3)) = (6.(q1)oL (K1 —q1))(6.(q3)0. (ky — q3))
+ (0.(q1)0.(q3)) (0. (k2 — q3)d. (k; —q)))
+ (0.(q1)0. (k2 — q3)) (0. (k1 —q1)d.(q3)),

which yields

(61, (Ky1)8. (K —Ky1)5p (Kop)8, (Ko — ko)) = (27)%6%) (q; + q3)8® (ky + Ky — q; — q3)PL(q)PL(|k; — q;])
+ (27)%6%) (q; + ky — 43)8®) (k1 — q; + q3)Pp.(q1)PL(g3).

with Eq. (C18). Then, Eq. (C25) yields
(Bok (1. K1 )65 (1. K2)) = 6@ (K + kz)/de]1(F2(t,Q1,k1 —q)Fy(t,—q;. ky +q;)

+ Fy(t.qi. ky —qq)F(t. Ky + q1. —q;))PL(g1) PL([ky — qq]).
Using the relation (C13), we have

104033-18

(C15)
(C16)

(C17)

(C18)

(C19)
(C20)
(C21)
(C22)

(C23)

(C24)

(C25)

(C26)

(C27)

(C28)
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P (1K) =

2
(27)°

/d3611F%(f,Q1»k —q)PL(q1)PL(k — q;

PHYSICAL REVIEW D 92, 104033 (2015)

) (C29)

which reduces to Eq. (92). In the derivation, we define x = cos 8, where @ is the angle between k; and q;. Similarly, the

expressions (93) and (94) are obtained for P(%Z) (t,k) and P 22

general relativity, A(¢) = 44(¢)

k3
22
Es(s )( ) =

98(2x

K 1
P(9292> (k) = —)2/ drPy (rk) /_1 dxPy((1+ r2 = 2rx)1/2)

98(27

which are constants as a function of time.

W/drPL(rk) /_1deL((1 + 72

P (k) = K drPy(rk) 1ole (1472 =2rx)"/?)

>(t, k). In the limit of the Einstein—de Sitter universe within
= u(t) = up(t) = 1, which gives the well-known expressions

3r+ 7x — 10rx?)?
—2rx)!/? ( C30
rx)%) (1+7r>=2rx)? (C30)
(Br+7x - 10rx2)(—r —|—27x — 6rx?) ’ (31)
(I 4+ r*=2rx)
_ Tx — 6rx2)?
(=r+Tx — 6rx*) (€32)

(1+7r*—2rx)?

Next, let us explain the derivation of P‘%S)(t, k). Inserting Eq. (C4) into (C20), we have

2(5, (K1 )sx (1. k) = ﬁ / B F (1. a1 . Kz — 41 — 42) (51 (K15, (01)82 (a2)5, (ks — a1 — ). (C33)

Using the relations
(61.(k1)6..(q1)0L(42)0. (k2 — 41 —q2))
= (27)°6%) (ky +q) P (k)6 (ky —q1) PL(q2)
+(27)°61) (k +q2) Py (k16 (ky ~q2) PL(q1)
+(27)%6) (K + ko —q; —q2) P (k)6 (q; +q2) PL(q)),
(C34)

and the symmetries, Eq. (C12), we have

/d3‘]1F3(t,ka(hv_QI)PL(k)PL<‘Il)'

(C35)

After performing the angular integration with respect to the
spherical coordinate of ¢, we finally have Eq. (95). Note
that Eq. (95) does not depend on u(t), which occurs

because of the identity £(k,q;,—q;) =0. P55 (t k) is
characterized by A(¢) and u(t). Slmllarly, we have the

expressions (96) and (97) for P59 '(t,k) and Pae (1K),
respectively. For the same reason as Péé J(t.k), P {(59 J(1.k)
and Pé‘l;)(t, k) do not depend on u(r) and w,(7).

Furthermore, Pfsif)(t, k) and Pg;)(t, k) do not depend on
A¢(2). This is because of the nature of the integration

/dxam(k,qh—ql) =0.

Finally, P((SE)(I, k) depends on A(r), u(t), and py(t), and
Pél;) (1, k) depends on A() and p4(t). We find the following

2P55 (t k) = (2761)3

(C36)

|
)(t, k) +

relation holds, in general: Pglf)(t, k) = [P((s?
P (1.k)]/2. from Eq. (C24).

In the limit of the Einstein—de Sitter universe within
general relativity, all the coefficients A(¢), u(7), pg(t) reduce

to 1, which reproduces the well-known expressions

3
2P0 = 555l [ drpurl

1
X {12—2 — 158 +100r> — 4274
r

+%(r2—1) (77 +2)1“<|:1LI|>]’ (C37)

3
220 = 55530 [ arp(rl

1
X {24—2 — 202 + 5672 — 30"
r

e con(2h)] e

2P50) = o) [ dru ()

(2
1 2 4
x [12 2—82—|—4r —6r
r

NEAE 1)3(r2—|—2)ln(r+ ! )] (C39)

r [r—1|
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APPENDIX D: INTEGRATIONS OF MODE-COUPLING FUNCTIONS

Here we summarize the expressions that are useful in deriving the one-loop order power spectra,

(r + x — 2rx?)?

2 k D1
a (ql’ 1~ ql) 4}" (1 + r2 _ 27')6)2 5 ( )
(r+x—=2rx*)(=1 4+ x?)
k, — Jky — = , D2
a(qi. k1 —qp)r(q1. k; —qi) (117 —2) (D2)
-1+ x2)?
2 k, — :—( D3
4 (qlv 1 ql) (1+r2_2rx)2’ ( )
2k’ 3 1
/d3CI1PL (rk)aa(k,q;,—q;) = ;2 /drPL(rk) {—2 + 1657 —6r* + 5 (1 - 1)3ln<|i+ 1|>} (D4)
r —
/dSCI Py (rk)ayg(k.q;,—q;) =0, (Ds)
2rk3 3 1
/d3q Py (rk)ay, (K, q;,—q;) = 361 drPy (rk)[6 + 167* — 614 + S (r? - 1)3ln<|:+ 1|)], (D6)
2rk3 1 3 1
/d3q PL rk }’7/ kl’ql’ q1> ;zz drPL(rk){—6—2+22+22r2_6r4+_3(r2_1)4ln<|;+l|>} (D7>
r r -
[ arriekian-a) =o. (D8)
|
APPENDIX E: COEFFICIENTS o ¢ re\" n
IN THE KGB MODEL A2 =Bo=ny My <M51> X (E7)
In the KGB model, we find the coefficients in basic
equations’ Al =B =B, =B;3= CO = Cl =0, (ES)
Fy= Mgl’ G = Mf)p (E1) and the nontrivial expressions
AoF 1Pm
e \" L(1) = - . (E9)
@ = —nMy <le> PX" + HM,. (E2) 2(A9r + A3 F7)
p
ByA3F3
2 N, (1) = 20 ZTP“‘ 5. (E10)
. ra \" 4(AgG7 + A3F 1)’ H
0 =-n(2n+1)M, e HX" + HMPI, (E3)
p Hog — BT, SBGT
2\, ’ TH?Z H*Z
E=-X+ 6nMp1< S ) $HX" —3H*M?,, (E4) ) _ _ .
M P We use the attractor solution, which satisfies 3¢ HG5y = 1.
Then we have
’,.2 n .
=-X-2nMy (-5 | ¢X*+ (3H>+2H)M?, (ES b E
P (G ) e o i e LI -
2n—1 H
X e\" (2 ¢ H  (2n-1)3Q
Ay =——2nM — X", E6 = m
0=qp—2n pl(M§1> <H +n H2> (E6) 7 ) (E13)
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_Mgl(l -Q,)2n+ (3n-1)Q,)

= , El4

0 e (E14)
Ay = M}%l(l -Qy), (E15)
By = M3 (1 - Q) (E16)

where we define Q, = p,,(a)/3M} H>. We also have

ME(1=Qu)(2n+ (3n—1)Qy,)
R=-——" P . (E17)

PHYSICAL REVIEW D 92, 104033 (2015)

_Mﬁl(l -Q,)(2n+ 3n—1)Q,)

&= 2n—-Q, - E1y

T = M4(1 - Q). (E19)
MS.Q,(5n—9,)(1 - Q,

z=2-10 S ) ). (E20)

2n — Qn,
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ABSTRACT

The chameleon gravity model postulates the existence of a scalar field that couples with
matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray
emitting gas filling the potential wells of galaxy clusters. However, it would not influence
the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles,
one can place upper limits on the strength of a fifth force. This technique has been attempted
before using a single, nearby cluster (Coma, z = 0.02). Here we apply the technique to the
stacked profiles of 58 clusters at higher redshifts (0.1 < z < 1.2), including 12 new to the
literature, using X-ray data from the XMM Cluster Survey and weak lensing data from
the Canada—France—Hawaii—Telescope Lensing Survey. Using a multiparameter Markov chain
Monte Carlo analysis, we constrain the two chameleon gravity parameters (8 and ¢,). Our
fits are consistent with general relativity, not requiring a fifth force. In the special case of f(R)
gravity (where B = /1/6), we set an upper limit on the background field amplitude today of
Ifkol < 6 x 1073 (95 per cent CL). This is one of the strongest constraints to date on |fzo| on
cosmological scales. We hope to improve this constraint in future by extending the study to
hundreds of clusters using data from the Dark Energy Survey.

Key words: gravitation — gravitational lensing: weak — X-rays: galaxies: clusters.

1 INTRODUCTION

An accepted explanation for the accelerated expansion of the late-
time Universe (Riess et al. 1998; Perlmutter et al. 1999) is to modify
the Einstein equation, either by adding a component to the energy—
* E-mail: harry.wilcox @port.ac.uk momentum tensor via dark energy or to the Einstein tensor via a
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modification to gravity (Milgrom 1983; Clifton et al. 2012). The
latter often involves the introduction of a scalar field coupled to the
matter components of the Universe, giving rise to a fifth force of the
same order of magnitude as gravity (Jain, Vikram & Sakstein 2013).
Through a variety of experiments and astronomical observations,
this fifth force has been demonstrated to be negligible at terrestrial
and Solar system densities (Wagner et al. 2012). Therefore, if a fifth
force does exist it must be it must be suppressed, or ‘screened’,
in high-density regions and only take effect in low-density
regions.

One model with such a screening is the chameleon mechanism
(Khoury & Weltman 2004). In this approach, the scalar field cou-
pling strength is sensitive to the depth of the local gravitational
potential. In regions with a large potential well, this screening sup-
presses the fifth force and gravity behaves as predicted by general
relativity (GR). However when the potential becomes small, the fifth
force is unsuppressed and gravity becomes ‘modified’ compared to
GR (Lombriser 2014).

By definition, the chameleon field satisfies

£,
Mp)

(Khoury & Weltman 2004), where V is the potential of the scalar
field, B is the coupling between matter and the scalar field, ¢ gives
the position-dependent screening efficiency, Mp is the Planck mass

and p is the matter density. This leads to the chameleon fifth force
of

Vi =Vy+ (1)

B

Fy Mo V. )

There is a particular set of gravity models, known as f{R) models
(Buchdahl 1970) which exhibit a chameleon, where the strength of
the fifth force (parametrized by § in equation 1) has a fixed value
B = 4/1/6. This force arises from adding a scalar function f(R) to
the Ricci scalar in the Einstein—Hilbert action (Capozziello 2002;
Nojiri & Odintsov 2003). These models can reproduce observed
late time acceleration of the Universe whilst still suppressing the
fifth force in high-density environments, such as the Solar system
(Chiba, Smith & Erickcek 2007). These f(R) models possess an
extra scalar degree of freedom, fr = df/dR, where the value at the
current epoch is |fro| (Sotiriou & Faraoni 2010). Then f{R) gravity
can be related to ¢, (¢ in equation 2 at infinity) via the relation
(Joyce et al. 2015)

P
3 Mp'

Hu & Sawicki (2007) provide theoretical arguments showing
that for GR to be preserved at parsec scales within the Solar sys-
tem, then |fro| < 1075, At kiloparsec scales, Jain et al. (2013)
constrained |fro| < 5 x 1077 in dwarf galaxies. On megaparsec
and larger scales, Raveri et al. (2014) used the cosmic microwave
background (CMB) to measure |fzo| < 1073, Also on large scales,
Rapetti et al. (2011), Ferraro, Schmidt & Hu (2011) and Cataneo
et al. (2014) used the abundance of galaxy clusters to constrain
|frol, e.g. Cataneo et al. (2014) measured (under the assumption of
n=1), |fro] <2.6 x 1073,

In this paper, we also use clusters of galaxies to constrain |fgo| on
megaparsec scales. However, unlike Rapetti et al. (2011), Ferraro
etal. (2011) and Cataneo et al. (2014), we use cluster profiles, rather
than abundances to do so. The hypothesis is that a fifth force would
be screened in the dense cluster cores, but not in the rarefied cluster
outskirts (Burikham & Panpanich 2012; Lombriser et al. 2012). The

frR@) =— 3)
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majority of baryonic matter in a cluster is ionized gas that has been
pressure-heated to temperatures in excess of 10’ K (Gursky et al.
1971; Loewenstein 2004), leading to the emission of X-rays via
thermal bremsstrahlung radiation (Jones & Forman 1978; Sarazin
2009). The gas can also be observed indirectly through its influence
on the cosmic background radiation, via the so-called Sunyaev—
Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1980).

By measuring the properties of this X-ray gas, we are able to
infer, under the assumption of hydrostatic equilibrium, the cluster
mass and density from its X-ray surface brightness or SZ effect
profiles (Reiprich & Bohringer 2002; Kettula et al. 2014). In a
chameleon gravity model, the intracluster gas would feel the fifth
force in addition to gravity in the cluster outskirts, i.e. the gas will
be slightly more compact and the temperature boosted (Arnold,
Puchwein & Springel 2014), compared to the influence of GR
alone.

By contrast, weak gravitational lensing is dependent only upon
the gravitational deflection of light by matter along the line of sight,
therefore providing a technique to measure the underlying mass
distribution without assuming hydrostatic equilibrium. Crucially for
this study, the fifth force would not modify the deflection of light
through the cluster (compared to GR) because the scalar chameleon
field is coupled to the trace of the energy—momentum tensor (Hui,
Nicolis & Stubbs 2009). Therefore, we can search for evidence
of a fifth force by comparing the X-ray surface brightness, and/or
SZ effect, profiles of clusters with their gravitational lensing shear
profiles (Ostriker & Vishniac 1986; Terukina & Yamamoto 2012).

Terukina et al. (2014) used this approach to constrain f{R) grav-
ity models using a combination of lensing shear, X-ray surface
brightness, X-ray temperature, and SZ profiles for the Coma cluster
(a massive cluster at z = 0.02). Combining these measurements,
they performed a Markov chain Monte Carlo (MCMC) analysis of
the parameter space describing the cluster profiles in the modified
gravity regime. Under the assumption of hydrostatic equilibrium,
they obtained constraints of |fzg| < 6 x 1073. They also examined
the assumption of hydrostatic equilibrium, and concluded that any
contribution of non-thermal pressure was small compared to the
reconstructed mass.

The Coma cluster is at low redshift meaning its weak lensing
shear signal is low. Moreover, it is known to have non-spherical
geometry (Fitchett & Webster 1987; Briel, Henry & Boehringer
1992; Colless & Dunn 1996). These factors motivate us to apply
the Terukina et al. (2014) method to many more clusters at higher
redshifts, allowing for a higher signal-to-noise weak lensing shear
profile and an averaging out of non-spherical cluster shapes. We
do this by comparing stacked X-ray surface brightness and shear
profiles of 58 X-ray-selected clusters. We utilize high-quality weak
lensing data from the Canada—France—Hawaii Telescope Lensing
Survey (CFHTLenS; Heymans et al. 2012; Erben et al. 2013), and
X-ray observations from the XMM Cluster Survey (XCS; Romer
etal. 2001; Lloyd-Davies et al. 2011; Mehrtens et al. 2012). We also
investigate the Terukina et al. (2014) conclusion that deviations from
hydrostatic equilibrium do not invalidate the chameleon gravity test.

In Section 2, we review the underlying theoretical background.
In Section 3, we describe the development of the cluster sample
used in the analysis, and the MCMC methods used to simultane-
ously fit the X-ray surface brightness and weak lensing profiles.
In Section 4, we discuss our results and the implications of our
results in the framework of f{R) gravity models. In Section 5, we
discuss the influence of cluster environment and of our assumption
of hydrostatic equilibrium. In Section 6, we present our conclu-
sions. Throughout this paper, we use a 95 per cent confidence level
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when quoting upper limits, adopt a cosmology with €, = 0.27,
Qu =0.73,and Hy =70 km s~' Mpc~'.

2 THEORETICAL BACKGROUND

In this study, we adopt the Navarro—Frenk—White (NFW; Navarro,
Frenk & White 1996) model for the dark matter halo mass distribu-
tion:

Pcle

S0+ @

p(r) =
where r here and throughout is the radial distance from the halo
centre, p. = 3H?(z)/87G is the critical density at a given redshift,
H(z) is the Hubble parameter at a given redshift, G is Newton’s
gravitational constant, §. is the characteristic overdensity, given
by

200 c?
de = — ; (%)

3 In(l+c¢)—c/(1+4c¢)

where c is a dimensionless concentration parameter and r; is the
scale radius given by

1 /3M 173
re=— = (6)
¢ \ 4mpd.

where My is the mass enclosed by ryg, the radius at which the
dark matter haloes average density is 200 times the critical density,

M(< o) = 478 per’ ( In(l +¢) - C) : ™
I+c¢

The NFW profile described in equation (7) is well supported by
N-body simulations of A cold dark matter, but it is not immediately
obvious that this profile would pertain to cluster profiles in the f{R)
regime. However, it has been shown (Lombriser et al. 2012; Moran,
Teyssier & Li 2015) that the NFW profile is able to provide fits to
both modified gravity and concordance cosmology that are equally
good, sharing the same x2. It should be noted that the simulations
in Lombriser et al. (2012) were generated using a fixed 8 = 1/1/6,
as opposed to the general chameleon gravity model investigated
here. However, as we are probing a 8 range around this value, we
expect any modifications to the profiles to be similar, suggesting the
suitability of the NFW profile. Further checks using hydrodynamical
simulations of modified gravity models would allow this assumption
to be verified.

We adopt the Terukina et al. (2014) approach describing the
chameleon mechanism using three parameters. The first of these, 8,
is the coupling between matter and the scalar field (see equation 1).
The second, ¢, describes the position-dependent screening effi-
ciency. The third, r., is a critical radius, i.e. the distance from the
dark matter halo centre at which the screening mechanism takes
effect (Terukina & Yamamoto 2012),

Bpsr!
MPl¢oc
where p is the density at this radius.

Terukina & Yamamoto (2012) showed the hydrostatic equilib-
rium equation in the presence of a fifth force (equation 2) is

I dPu()  GM(<r) B
Pas(r) dr r Ve, ©

Tss (®)

Ferit =

Mp

where pgs is the gas density, M the total mass within a radius r and
Py, is the electron pressure.
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In an ideal cluster, i.e. one that is isolated, isothermal, and spheri-
cal, this total pressure is felt by the electrons and ions in the ionized
intracluster plasma, so that Py, = n.kT, where n. is the electron
number density and 7 is the electron temperature. By adopting
the standard beta-model" electron density profile (e.g. Cavaliere &
Fusco-Femiano 1978), we can integrate equation (9) to give

GuGn b w0,
I'2 Mp] dr ’

Pc(r): Pe‘0+/1«mp/ nc(r) (_
0
(10)

where P. o is the electron gas pressure at r = 0, given by
P. o = ne okT and n. o = 5no/(2 + p) and M( < r), the halo
mass. The integral of equation (10) can be re-expressed in terms of
a projected X-ray surface brightness Sg(r) using the temperature-
and electron-density-dependent cooling function (see Section 3.2),

1 /
Sp(r) = m/”? ( ri + Zz) )"C(Tgas) dz, (11)

where r, is the projected distance from the cluster centre and z
the cluster redshift. This is the expression we fit to when comparing
stacked X-ray cluster profiles to the chameleon model (Section 3.5).

The expression used to fit the weak lensing shear profiles (under
the assumption of an underlying NFW profile) for comparison is
given in Wright & Brainerd (2000).

To recap, our method makes the following assumptions: that
modifications to GR include a chameleon screening mechanism and
can be described by equation (1); that dark matter haloes follow an
NFW profile (equation 4); that a fifth force can be included in the
hydrostatic equilibrium expression according to equation (9); that
clusters of galaxies are isolated, isothermal and spherical (which in
turn implies that the clusters are in hydrostatic equilibrium, have
an electron number density that follows a beta-model and their X-
ray emission can be predicted from a thermal cooling function);
and that the weak lensing shear profiles of clusters are given in
Wright & Brainerd (2000). We discuss the impact of some of these
assumptions in Section 5.

3 METHODS

3.1 Compiling the X-ray cluster sample

In this paper, we used public weak lensing data (galaxy ellipticities
and photometric redshifts) provided by the CFHTLenS (Heymans
et al. 2012). The CFHTLenS covers 154 deg® with high-quality
shape measurements. The galaxy ellipticities were generated by the
CFHTLenS team using the THELI (Erben et al. 2013) and LENSFIT
(Miller et al. 2013) routines. Photometric redshifts were produced
using PSF-matched photometry to an accuracy of 0.04(1 + z) with
a 4 per cent catastrophic outlier rate (Hildebrandt et al. 2012).

We also used public X-ray data taken from the XMM—-Newton
archive and have collated a sample of X-ray clusters in the
CFHTLenS region using pipelines developed for the XCS (Lloyd-
Davies et al. 2011). First, we determined which of the XMM ob-
servations overlapped with the CFHTLenS fields. We then used the
XCS pipelines to carry out the following tasks in an automated
manner: cleaning the event lists of background flares; creating de-
tector and exposure images; producing duplicate free source lists;
and identifying extended X-ray sources. A total of 348 extended
XMM sources, with more than 100 background-subtracted photon

! The beta in this model is not the same as the 8 in equation (1).
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counts, were located in the CFHTLenS fields, although 44 were
close to the edge of the XMM field of view and were not considered
further (please see Lloyd-Davies et al. 2011 for the relevant, XCS
specific, definition of source counts).

The majority of these sources were not included in the XCS
first data release (XCS-DR1; Mehrtens et al. 2012). This meant
that candidate identification needed to be carried out before the
sources could be used in our study. This process is non-trivial: as
shown in Mehrtens et al. (2012), a large fraction of XCS extended
sources (especially those with fewer than 300 counts) are either
hard to confirm as clusters — because the available imaging is not
deep enough — or are associated with other types of X-ray source.
Therefore, for this paper, we have taken a conservative approach and
only included XMM extended sources in our study if they correspond
to an overdensity of galaxies in false colour images produced using
the CFHTLenS cutout service.? 186 sources were excluded from the
study as a result. These were excluded for several different reasons:
there were no optical data as the cluster sat in a masked region of
the CFHTLenS footprint; there was a bright star or galaxy lying
close to the cluster centre that was obscuring it; or the optical image
resembled an AGN rather than a cluster. The coordinates of the
remaining 119 can be found in Table B1.

As our analysis required information about the distance to the
cluster, a further 37 sources were excluded from the study because
redshifts were not available at the time of writing. These are flagged
with a 2 in Table B1. The majority (63 of 82) of the redshifts we
used came from the new Gaussian mixture model redshift estima-
tor described in detail in Hood & Mann (2015). We also used 18
redshifts taken from NED? and 3 from Ford et al. (2014).

We judged these remaining 82 XMM extended sources in the
CFHTLenS region to be confirmed clusters and ran them through
the xspec-based XCS spectral pipeline. We determined X-ray tem-
peratures when the signal to noise was sufficient. This produced
X-ray temperatures of 58 of these clusters which form our final
sample, including 12 clusters new to the literature, the other 23
clusters were excluded from the analysis and are flagged with a 3 in
Table B1. The details of this pipeline can be found in Lloyd-Davies
et al. (2011). These 58 clusters with measured temperatures span
the redshift range 0.1 < z < 1.2 (median z = 0.33) and temperature
range 0.2 < Ty < 8 keV (median Tx = 2.3 keV). A selection of
these new to the literature clusters, along with several clusters that
were optically confirmed but excluded due to a lack of redshift, are
shown in Fig. C1.

3.2 Making stacked X-ray surface brightness profiles

Our analysis involves stacking multiple different XMM observations
of our 58 clusters, in order to build up signal to noise in the outer
parts of the ensemble cluster profile. This process needs to account
for the following complexities: most of the 58 clusters were covered
by more than one XMM observation. Each of these observations has
different background properties and flare corrected exposure times.
The X-ray telescope comprises of three cameras that operate simul-
taneously (mos1, mos2, pn), so most XMM observations comprise
of three separate images with different, energy-dependent sensitiv-

2 http://www.cadc-ccda.hia-iha.nre-cnre.ge.ca/community/CFHTLens/
cutout.html

3 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.
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ities. The clusters all have different energy spectra, because, even
if one ignores non thermal processes, they have different X-ray
temperatures, redshifts and line of sight absorbing column densi-
ties. Therefore, for each cluster, we have to calculate, using XspEc,
camera-specific count rate to luminosity conversion factors for each
XMM observation that it falls in. We then, for a given cluster, take the
photon count images generated by the XCS pipeline, divide these by
the respective exposure map and multiply by the cluster-dependent
conversion factor. This allows us to combine all the images for that
cluster in a self-consistent manner.

To produce a single stack, we first re-scaled the 58 combined im-
ages of individual clusters to a standard projected size. For this we
estimated M5, the mass enclosed within a sphere at which the av-
erage density is 500 times the critical density, using the prescription
described in Sahlén et al. (2009). A conversion between M5y, and
Mo was made following the formulae derived in Hu & Kravtsov
(2003), where we assume ¢ = 5. This is an accurate description of
the typical density profiles in clusters (Arnaud 2005) and is con-
sistent with the findings of Kettula et al. (2014) in the CFHTLenS
region. Using the My, values we calculated the radius at which
the average density is 200 times the critical density, 209, following
the method in Croston et al. (2008). The 58 stacked images could
then be re-scaled using linear interpolation to a common 500 by
500 pixel format, so that they each had an ry radius of 125 pixels.
Each of these 500 by 500 images was centred on the source centroid
as determined by XCS.

We re-scaled the individual cluster images by the overall am-
plitude of their X-ray surface brightness, as adding clusters over
a range of different masses and luminosities would result in sig-
nificant off-diagonal elements in the covariance matrix of the final
stacked profile. Therefore, we calculate the mean value of the X-ray
surface brightness profile for each cluster, and re-scale individual
cluster surface brightness maps by this value (we found that using
the median value instead of the mean gave similar results). A final
stacked surface brightness map of the 58 individual clusters is then
produced by taking the mean value for each pixel across all these
maps. This re-scaling of the amplitudes is permitted as our con-
straints on modified gravity parameters focus on the shape of the
cluster profiles; we marginalize over the amplitudes of the stacked
X-ray surface brightness profiles in Section 4. The error covariance
matrix of the stacked profile was then measured directly.

3.3 Making stacked weak lensing profiles

We outline here the procedure used to obtain the stacked clus-
ter shear profile, y, using source galaxies from CFHTLenS. The
CFHTLenS catalogue provides measurements of both ellipticity
components (e; and e,), as well as photometric redshifts for each
source galaxy. Before shears can be derived from these quantities,
small multiplicative and additive corrections (m and c¢,) must be
applied, derived from the data set. We calculate ¢, and m for each
galaxy as a function of size and signal to noise (using equations 17
and 19 in Heymans et al. 2012). Each galaxy was weighted with the
CFHTLenS catalogue WEIGHT parameter and calibrated by

€ —Ci
—,
1+m

€int,i = (12)
where ¢, was applied on a galaxy by galaxy basis and m is a
summation of 1 4 m for each galaxy, applied as an ensemble average
to each radial bin (discussed below).

We have an effective galaxy density, n.s, (Heymans et al. 2012)
of 12 galaxies per arcmin?. In order to minimize the contamination
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Figure 1. Tests around the 58 CFHTLenS stacked cluster; details are provided in the text. 1(a) Tangential and cross shear. 1(b) Tangential and cross shear
around 58 stacked random points. 1(c) Tangential shear for three different signal-to-noise bins. 1(d) Tangential shear for three different redshift cuts.

between the lensed galaxies and the cluster members, we only use
source galaxies with a photometric redshift greater than z¢jyer + 0.2.
Our redshift cut is made so that there is negligible contamination be-
tween cluster and source galaxies. The photo-z cut does not require
a redshift dependence as the photo-z errors of the source galaxies
in CFHTLenS are approximately flat close to the redshift of our
clusters (Hildebrandt et al. 2012).

For each galaxy, we calculate the tangential and cross shears (y,
yx) as a function of their position relative to the cluster position,
via the angle ¢ between the cluster and galaxy from a baseline
of zero declination. The tangential shear measured around each
XCS-determined cluster centroid was binned into 24 equal spaced
logarithmic annuli out to a distance of 10 x ryy (calculated in
Section 3.2). We then scaled the values in each of these bins in the
same way that we previously scaled the X-ray profiles in Section 3.2
for consistency.

Finally, in order to improve the signal to noise of the tangential
profiles, the 58 individual cluster profiles were stacked. This was
achieved by summing the profiles of each cluster and calculating
an average shear in each bin across all clusters (McKay et al. 2001;
Sheldon et al. 2009). The error covariance matrix was then directly
measured for our stacked profile. Due to the large uncertainty in
the central bin, driven by the low number density of galaxies, we
exclude the central 0.1 x ryq.

We perform consistency and null tests upon the CFHTLenS shape
data to ensure our recovered profiles are unbiased and not artefacts
of the data. Fig. 1(a) shows the tangential signal (solid blue) and the
cross shear (dashed red) around the stacked clusters. The tangential
shear signal has a detection significance of >300 while the cross
shear signal is consistent with zero at all radii.

Fig. 1(b) shows the tangential shear (solid blue) and cross shear
(dashed red) around 58 random stacked positions within the overlap
of the CFHTLenS region and the XCS footprint. The measurements
in both these cases were found to be consistent with zero on all
scales.

For Fig. 1(c), we show the tangential shear around the stacked
clusters after we have split the source galaxies into three bins based
upon their signal-to-noise ratio, S/N < 20, 20 < S/N < 40, and
S/N > 40, with similar redshift distributions (median redshifts of
0.85, 0.82, 0.79, respectively). We find that the three measurements
are consistent with each other as expected.

Finally, Fig. 1(d) shows the tangential shear around the stacked
clusters with the source galaxies cut into three bins based upon their
photometric redshift, z < 0.6, 0.6 < z < 0.8 and z > 0.8. At higher
redshifts there are a smaller fraction of cluster galaxies and galaxies

in front of the clusters, and the weak lensing signal grows with
redshift. We see these effects as our measured signal is strongest in
the high-redshift bin. We therefore conclude that we are detecting
a genuine weak lensing signal.

3.4 Binning in X-ray temperature

To generate tighter constraints upon the modified gravity parame-
ters, we split our data set into two separate mass bins to reduce errors
caused by mixing clusters of varying sizes and masses. We find do-
ing so improves our constraints on the modified gravity parameters
compared to using a single bin. We cut at an X-ray temperature of
T = 2.5 keV, to give two bins of mass with equal errors on their
stacked profiles. We note that this temperature cut approximately
cuts our sample into galaxy clusters and galaxy groups (Stott et al.
2012). Our low-temperature bin (7' < 2.5 keV) has a median redshift
of z = 0.32 and is flagged with a O in Table B1, while the other
(with T > 2.5 ke V) has a median redshift of z = 0.34 and a flag of 1.
We repeated the analyses with three and four temperature bins and
found no improvement in the constraints on the modified gravity
parameters. Therefore, to aid with computation, we complete our
analysis with the simplest two bin case.

3.5 MCMC analysis

We use MCMC (Gilks, Richardson & Spiegelhalter 1996) to fit
models to our stacked profiles. We allow all parameters that depend
upon the cluster properties to vary for each temperature bin. This
leads to a total of 14 free parameters for the four stacked profiles
(our measured weak lensing and X-ray profiles in two tempera-
ture bins) used to constrain modified gravity. Four of these were
used to model the weak lensing mass (defined in equations 4, 5
and 6). We introduce the notation I, II to indicate the temperature
bins T < 2.5, T > 2.5, respectively, so c!, !, M, and ML, are
the concentration and mass parameters for each temperature bin,
respectively.

We modelled the X-ray surface brightness, using the method pre-
scribed in Section 2 by defining, for both temperature bins, the
electron number density (itself dependent upon nf, nll, b}, bl rl
and r{"), and the normalization of the gas temperature 7, and T,".
We reconfigure the parameters as S, = B/(1 + B) and ¢ =
1 — exp(—¢s. /107 Mp)) to span the parameter range of 8 and ¢,
in the interval [0,1]. To obtain the cooling function (used in equa-
tion 11), we used the xspec software (Arnaud 1996) and utilize the
ApeCc model (Smith et al. 2001) over a range of 0.5-2 keV, i.e. the
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same energy range as our observations from XMM. This model has
as inputs the gas temperature, the cluster redshift, the cluster metal-
licity and a normalization, and provides the X-ray cluster flux. We
adopt a metallicity Z= 0.3 Z (Sato et al. 2011) throughout. Using
this model we generate fluxes for a range of temperatures which are
interpolated for use in our chameleon gravity model.

The chameleon parameters 8, and ¢ » are the same across the
two bins, as the modifications to gravity should be independent of
the cluster’s mass.

We performed an MCMC analysis using the EMCEE code
(Foreman-Mackey et al. 2013), which implements a Metropolis—
Hastings algorithm (MacKay 2003). We minimized the goodness
of fit using a x? statistic derived from joint fitting of both models
(see Appendix A).

Our MCMC run was a parallelized implementation using 128
walkers with 10 000 time steps. We removed the first 2000 iterations
as a ‘burn in’ phase.

X-ray Surface Brightness
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10% |
=
IS
et
o
¥ 10° |
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4 RESULTS

In Fig. 2, we show our measured X-ray and weak lensing profiles for
both X-ray temperature bins. Our X-ray surface brightness profiles
have been measured out to 1.2 x ryy with high signal to noise.
Likewise for our two weak lensing profiles, we have recovered a
shear signal out to 10 x ry99 with high signal to noise. Also shown
in Fig. 2 are our best-fitting models for the each profile using the
parameters outlined in Section 3.5 and minimizing x? as described
in equation (A1). We show the 2D contours for constraints on model
parameters in Fig. D1.

InFig. 3, we show the 2D constraints for 8, and ¢ ». To generate
our constraints, we have marginalized over the measured likelihoods
of the nuisance parameters (those that are not 8, and ¢ ). We are
able to do so as we are insensitive to the overall amplitude of
our profiles, only the profiles shape matters for our constraints. In
Fig. 3, we also show the dashed (dash—dotted) line the 95 per cent
(99 per cent) confidence limit excluded region from Terukina et al.

10!
_ _ Shear

10-4 \-1 L 0 —[ L 1
10 10 10
1/¥300

Figure 2. X-ray surface brightness profiles (left) and weak lensing (right) for the two bins of X-ray temperature: 7 < 2.5 keV (top) and 7 > 2.5 keV (bottom),
against radial distance normalized by 2o, the radius at which the density is 200 times the critical density. We choose to show the modified gravity profiles with
the highest likelihood parameters, 7 = 12.6 keV, n) = 2.0 x 1072cm™3, b = —0.42, r} = 0.06 Mpc, Miy, = 12.2 x 104 Mg, ! =3.5, T = 7.8 keV,
nll =4.9 x 1072em=3, bl = —0.89, rfl = 0.05 Mpc, M, = 13.7 x 10" M@, ! =3.8, B =2, oo = 2.1 x 107*Mp,.
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Figure 3. The 95 per cent (light grey region) and the 99 per cent confidence limit (mid grey region) constraints for the chameleon model parameters renormalized
between [0,1], B2 =B/(1 + B)and pop = 1 — exp(—qboo/IO’4 Mpy) obtained from the MCMC analysis of our combination of weak lensing and X-ray surface
brightness for our two cluster stacks. Above the dashed (dash—dotted) line is the 95 per cent (99 per cent) confidence limit excluded region from Terukina et al.
(2014). The vertical line is at 8 = 4/1/6, showing our constraints for f{R) gravity models.

(2014). The constraints are tighter from this work on larger values
of B than in Terukina et al. (2014), whilst the constraints on smaller
values of B are looser. As the profiles presented in this work extend
further from the cluster than the Coma profile, we probe further
outside the critical radius, r. and are able to better constrain large
values of B. However, as the errors on the X-ray profiles (and
the lack of available SZ data) used in this work are larger than those
measured in Terukina et al. (2014), we are less able to differentiate
a chameleon profile from a GR one at lower values of B, leading to
less constraining power.

The shape of the contours in Fig. 3 can be understood by con-
sidering the meaning of the parameters used in defining chameleon
gravity. Recall that 8 dictates the strength of the fifth force and ¢,
is the effectiveness of the screening mechanism. Therefore, at low
values of 8, the fifth force causes a deviation to the profile which is
too small to be distinguished from GR given the observational er-
rors. Likewise as GR gravity is recovered outside the critical radius
Terit, this sets an upper limit on 8/¢~. As B increases, a lower value
for ¢~ is required to keep r.i¢ within the cluster, giving rise to the
triangular shape of the excluded region.

4.1 Implications for f(R) gravity

Our constraints have implications for f{R) gravity models, which
contain a chameleon mechanism for which 8 = /1/6 (Starobinsky
2007) (shown as the vertical line in Fig. 3).

From Fig. 3, we estimate an upper bound on f(R) gravity of
oo < 5.8 x 1073 Mp, at 95 percent confidence limit, and there-
fore using equation (3), fx(z = 0.33) < 4.7 x 107> at 95 per cent
confidence limit (where z = 0.33 is our cluster samples median red-

shift). The time-evolution of the background fi (z) for a Hu—Sawicki
follows (Li et al. 2013),

1
(@) = 1 frol 11 +3824)/(Qu(1 + 2 +4Q01, (13)

where n is a free parameter of the model. At high redshifts, the
background energy density is higher, therefore fr(z) is smaller and
the screening is more efficient. So fr(z) decreases by 22 per cent
from our median redshift (z = 0.33) to z = 0, when n = 1, and our
constraint at z = 0 is |fro| < 6 x 107> at 95 percent confidence
limit. Considering a Hu—Sawicki model with n = 3, our constraint
becomes |fro| < 2 X 10~* at 95 percent confidence limit. Our
results are comparable to the results for the Coma cluster reported
in Terukina et al. (2014) of |frg| < 6 x 1075.

5 DISCUSSION

In this section, we discuss the influence of local overdensities upon
our cluster sample. We also question the validity of the assumptions
we have made while constraining chameleon gravity, primarily the
assumption that our cluster stack is in hydrostatic equilibrium.

5.1 Influence of cluster environment

In addition to self-screening, a cluster may be screened by nearby
clusters and therefore still show no evidence of modified gravity,
even in its outskirts. To check whether this was expected for any of
our clusters, we estimated the D parameter detailed in Zhao, Li &
Koyama (2011), a parametrization of the separation between a given
cluster and the nearest larger cluster, scaled by the given cluster’s
r200. We describe clusters with log oD > 1 as ‘isolated” and clusters
with logjoD < 1 as living in dense environments, and therefore
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Figure 4. The minimum D parameter for each cluster against X-ray tem-
perature, where log;oD is a measure of the distance between a cluster and the
nearest overdensity in the top 30 per cent (10 per cent) of overdensity values,
shown as a red circle (blue cross). The shaded region contains clusters with
potential screening from neighbouring overdensities. The majority of the
clusters are in an isolated region.

screened. As our X-ray clusters are an incomplete set of all clusters
in our area, we looked at overdensities in the galaxy density field as a
proxy for nearby clusters. We binned the galaxies in the CFHTLenS
catalogue into 3D pixels of volume 1 Mpc? in area, and 0.01 in
redshift. Fig. 4 shows X-ray temperature against log;oD, where we
have calculated log,(D values between each cluster and overdensity
and selected the smallest log oD as a measure of environment. It
is seen that only 7 per cent (2 per cent) of our clusters are found to
be near (log;oD < 1) the most overdense 30 per cent (10 per cent)
of the 3D pixels. We therefore conclude that our sample appears
to be largely environmentally unscreened by nearby clusters, and
therefore will apply our analysis to the full cluster sample. We note
that it is possible that clusters outside the edge of the CFHTLenS
observations could screen at most 6 per cent of our sample, which
lie within log;oD = 1 of the edge.

5.2 Assumption of hydrostatic equilibrium

Even in the absence of a fifth force, the interpretation of apparent
differences in cluster mass profiles derived from X-ray or SZ ob-
servations and lensing measurements is complicated by both astro-
physical processes in clusters, such as gas clumping in the cluster
outskirts, and systematic errors in the measurements themselves.
This has led to uncertainty in mass calibration being the dominant
source of error on cosmological constraints derived from SZ clus-
ter catalogues (e.g. Hasselfield et al. 2013; Reichardt et al. 2013;
Planck Collaboration XX 2014). The absolute cluster mass scale is
affected by uncertainty in the effects of feedback from active galac-
tic nuclei, and non-thermal processes such as bulk motions, on the
cluster gas (e.g. Nagai, Kravtsov & Vikhlinin 2007). Instrumental
calibration uncertainties may also play arole (e.g. Israel et al. 2015;
Schellenberger et al. 2015). Lensing measurements, which are af-
fected by different systematics, are being used to quantify any bias
in the absolute mass scale, but at present, samples are small, and
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there is some disagreement (e.g. von der Linden et al. 2014; Hoek-
stra et al. 2015).

In this work, we have investigated one of these issues: the impact
of non-thermal pressure on our conclusions about chameleon grav-
ity (whilst maintaining the simplifying assumptions of spherical
symmetry). We plan to investigate the other issues, using hydro-
dynamic simulations, in future publications. The thermal mass of
a cluster is defined by the gas pressure, density and temperature,
which we infer from the X-ray surface brightness. We follow the
parametric fits described in Terukina et al. (2014) to reconstruct the
stacked cluster temperature profile and electron number densities
from the profile parameters fit for by our MCMC. We infer from
X-ray observations,

—kTgr (dlnn,  dln Ty
umpG dinr dinr

Mperma = (14)
where kis the Boltzmann constant, mz, is the proton mass. According
to the hydrodynamical simulations in Shaw et al. (2010), the non-
thermal pressure can be modelled as a function of the total pressure,
such that Pron—hermal () = 8(r) Pl (r), where

r Nnt M200 nw
— . 1 'Ism P —_— 5 ]5
g(r) = an(1+2) (rsoo) <3 = 10‘4M®) (15)

with o, B, 1 and nyp are constants determined from 16 simulated
clusters, with a mass range between 0.35 and 9.02 x 10' Mg at
z = 0 (Lau, Kravtsov & Nagai 2009). We adopt their best-fitting
values of B, ny, nv = 0.5, 0.8, 0.2, respectively. In order to test
the robustness of our assumptions, we select @ = 0.3, which was
the most extreme value found in the 16 clusters in their analysis.
The extra mass component which would be inferred from X-rays
due to such non-thermal pressure would be

—r? d [ )
Gpgs dr \ 1 —g(r)

where r is the radial distance, g(r) is defined in equation (15) and
Ogas» Ngas and T, are the gas density, number density and tempera-
ture, respectively.

In Fig. 5, we show our mass profiles for 0.3 Mpc <r; < 2 Mpc
for the lensing mass and X-ray mass reconstruction, including the
effects of non-thermal pressure. The solid lines are the hydrostatic
mass recovered from the X-ray measurements using equation (14),
while the dashed lines are the hydrostatic mass plus a non-thermal
component from equation (16). The shaded area is the 68 per cent
confidence limit allowed region from the weak lensing measure-
ments, fitted with an NFW profile. The vertical dotted line is the
upper bound of our X-ray data; to the right of this line we have ex-
trapolated to illustrate the possible divergence of the mass estimates
with and without significant non-thermal pressure.

At all scales in Fig. 5 the thermal pressure profile (solid line) is
consistent with the shaded region, showing that the mass profiles es-
timated by the X-rays and lensing mass are consistent. This suggests
that hydrostatic equilibrium is an acceptable approximation for our
stacked profiles, given the error in our lensing measurements.

We also see in Fig. 5 that the thermal pressure profile with a
non-thermal component (dashed line) enhances the hydrodynami-
cal mass by 20 per cent (10 percent) inthe T < 2.5keV (T'> 2.5keV)
cluster bin, but is still seen to be consistent with our lensing mea-
surements. This shows that the non-thermal pressure expected from
simulations falls within our present observed errors’, if present
it acts in the opposite sense to chameleon gravity, reducing the
detectable signal.

M yon—thermal =

ngaskTgas) ’ (16)
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Figure 5. Mass profile from the 7 < 2.5 keV (T > 2.5 keV) cluster bin in blue (red). The shaded area is the 1o allowed region from the weak lensing
measurement and the solid line is the thermal mass reconstructed from the X-rays. The dashed line shows the thermal mass with an additional non-thermal
component as discussed in the text. The vertical line is the upper extent of our X-ray data; to its right we have extrapolated the X-ray data.

With future X-ray measurements we will be able to fit out to a
larger distance, allowing us to better constrain the effect of non-
thermal pressure, which would be most prominent at large radii. We
also note that our weak lensing profiles have lower signal to noise
than the X-ray profiles; however, with future lensing surveys we will
be able to more accurately constrain these profiles also allowing us
to better characterize not only chameleon gravity but non-thermal
pressure too.

6 CONCLUSIONS

We have investigated the constraining power of stacked galaxy
cluster profiles for testing chameleon gravity. We have examined
58 X-ray-selected galaxy clusters, which have both good quality
weak lensing data from CFHTlenS and X-ray data from XCS.
After binning our clusters by X-ray temperature, we have gener-
ated weak lensing profiles and X-ray surface brightness profiles.
Chameleon gravity predicts an additional pressure existing within
clusters, which causes their gas component to become more com-
pressed than GR gravity predicts. We have therefore investigated
this phenomena by comparing the X-ray profile with the weak lens-
ing profile, which is unaffected by the fifth force. Using a mul-
tiparameter MCMC analysis we have obtained constraints on the
common chameleon parameters S and ¢.,, which in turn lead to
constraints for |fro|, a parameter charactering f{R) theories.

We find our results are competitive with other cosmological con-
straints on chameleon models. In particular, our constraints are an
order of magnitude stronger than those from the CMB (Raveri et al.
2014). They are comparable to Cataneo et al. (2014) which provides
Ifrol < 2.6 x 103 forn =1, compared with our measurement of
Ifrol < 6 x 1073, and |fgo| < 3.1 x 10~* for n = 3 compared with
our measurement of |fro| < 2 x 1074, all at the 95 percent CL. A
comparison of these constraints is shown in Table 1.

We examined the assumption of hydrostatic equilibrium by com-
paring the masses inferred from the X-ray observations with weak
lensing and found them to be consistent. Deviations from hydro-
static equilibrium would cause a disparity between the weak lensing
and X-rays with the opposite sign to that from the chameleon effect.

Table 1. Comparison of the constraints on

logiolfrol-

Scale Scale logiolfrol
Solar system pc —6

(Hu & Sawicki 2007)

Dwarf galaxies kpc —6.3
(Jain et al. 2013)

Coma cluster Mpc —4.2
(Terukina et al. 2014)

Cluster abundance Mpc —46Mn=1)
(Cataneo et al. 2014) —35m=3)
Cluster stack Mpc —42m=1)
(This work) —37(n=3)
CMB Gpc -3.0

(Raveri et al. 2014)

We modelled a non-thermal pressure X-ray component, and given
current observational errors found this to be a subdominant effect
on our constraints.

As we are interested in the shape of the respective profiles, the ab-
solute mass of the stacked cluster, measured through both weak lens-
ing and X-rays, is a nuisance parameter which we have marginalized
over. We therefore are not sensitive to the relative biases between
these two techniques, such as reported in von der Linden et al.
(2014) and Hoekstra et al. (2015).

For the next generation of constraints via this method, we will
need detailed modified-gravity hydrodynamic simulations. These
will allow us to check a range of assumptions used in this analysis
such as hydrostaticity, non-thermal pressure, gas clumping in the
cluster outskirts, spherical symmetry and the reliability of the NFW
profile.

We find our constraint on |fgo| to be consistent with the literature,
and competitive at these cosmic scales and redshifts. We have there-
fore demonstrated that it is possible to constrain chameleon gravity
using stacked galaxy clusters; with the advent of wide-area lensing
surveys promising a much larger area, such as the Dark Energy Sur-
vey (DES; The Dark Energy Survey Collaboration 2005), the KIlo
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Degree Survey (KIDS; de Jong et al. 2013), Euclid (Laureijs et al.
2011) and the Large Synoptic Survey Telescope (LSST; LSST Dark
Energy Science Collaboration 2012), it will become possible to use
stacks containing many more clusters to beat down systematics and
obtain stronger constraints.
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APPENDIX A: GOODNESS OF FIT

To characterize the goodness of fit of our profiles, we adopt the
following x? statistic

Xz(Tol» ”%), b17 r{,MéOO,cl, Tll,n07b117 ry, %0»
" By o) = xwit + xwi” + X5+ Xsp s (A1)

where we adopt the notation I, II to indicate the temperature bins
T <25, T > 2.5, respectively, and

(y(rl ) _ .obs,l)Z
12 L,i
= E - A2
XwL : (0o Ty (A2)
()/(VH ) _ J/.obs.ll)z
I 2 L., i
= E —_— A3
XwL : (o yoo T2 (A3)
X = Y _(Sa(r ) — SpvHC (e ) — S, (A4)

i.j
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xS = (Ssrl )-S5

ij

obs H)C, | (SB(}’ ) _ Sobs II). (AS)

In the weak lensing case, we approximate the covariance matrix
as diagonal; we find strong leading diagonals for the measured
correlation matrices. For the surface brightness fits, we minimize
over the full covariance matrix due to the covariances that exist
between bins; here C is the error covariance matrix. Then y(r, ;)
is the value of the lensing model at a distance r; from the clus-
ters’ centre; likewise Sg (7 ;) is the value of the surface brightness
model at a distance | from the clusters centre. y"bb S"bg are the
observed shear profile and surface brightness profile, respectively,
while o 1,°" is the observed error on the shear profile.

APPENDIX B: SOURCE LIST

Table B1. Sample of the extended X-ray sources
in CFHTLenS footprint. The XCS name and po-
sition are listed for all clusters. Redshifts are pro-
vided where available. The clusters forming the
sample used throughout this work have a flag of
0 in the T < 2.5 keV bin and a flag of 1 in the
T > 2.5 keV bin. A flag of 2 denotes the source
was discounted for having no measured redshift.
A flag of 3 denotes the source was discounted for
having no measured X-ray temperature. The full
version of this table is provided via the online
edition of the article. An excerpt is provided to
illustrate form and content.

XCS name z Flag

XMMXCS J020045.8—064229.2  0.36
XMMXCS J020119.0-064954.6  0.33
XMMXCS J020232.1-073343.8  0.55
XMMXCS J020334.3—-055049.5
XMMXCS J020359.1-055031.6
XMMXCS J020405.2—-050142.5
XMMXCS J020428.5—-070221.6
XMMXCS J020432.7—064449.4
XMMXCS J020514.7—-045640.0  0.29
XMMXCS J020611.4—061129.2  0.88

— O N NN W= OO
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APPENDIX C: CLUSTER IMAGES

Figure C1. A selection of optically confirmed clusters as imaged by CFHTLenS. False colour composite images are 3 arcmin x 3 arcmin. From left to
right and top to bottom, the compilation shows the clusters: XMMXCS J020119.0—064954.6 at z = 0.33; XMMXCS J021226.8—053734.6 at z = 0.31;
XMMXCS J021527.9—-053319.2 at z = 0.28; XMMXCS J021843.7—053257.7 at z = 0.40; XMMXCS J022433.8—041433.7 at z = 0.39; and XMMXCS
J023142.2—045253.1 at z = 0.21. These clusters are included in our sample, flagged either with a 0 or 1 in Table B1. The remaining clusters in our compilation
have no measured redshift or temperature and are flagged with a 2 or 3 in Table B1. Continuing onwards these clusters are: XMMXCSJ021517.1—-0.60432.8,
XMMXCSJ022359.2—083543.4 and XMMXCSJ141446.9+544709.1.
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APPENDIX D: 2D CONTOURS
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Figure D1. The 95 per cent (dark grey region) and the 99 per cent CL (mid-grey region) 2D marginalized contours for the 14 model parameters 7; OI (keV), n%)

(1072em™3), B!, rl (Mpc), ML, (10™ Mg, ', T (keV), nll (1072cm™3), b1,
rightmost plots show the 1D likelihood distributions.

This paper has been typeset from a TEX/IATEX file prepared by the author.

it (Mpe), M, (101 M), ', B2, ¢oc 2 used in our MCMC analysis. The
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