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Abstract

Cosmological observations have revealed that our universe is in an accelerated ex-

pansion phase. This fact suggests that an extra energy component with negative

pressure, which is called dark energy, is present in the universe. It is known that

a cosmological constant best explains the cosmological observations, but there is a

fundamental problem, called the cosmological constant problem.

On the other hand, modified gravity theories can serve as an alternative to dark

energy models to explain the cosmic acceleration. There are many models of the

modified gravity: for example, the f(R) model, which introduces a nonlinear function

of the Ricci scalar in addition to the Einstein–Hilbert term; the Dvali–Gabadaze–

Porrati (DGP) model, motivated by the 5D brane world scenario; and the Galileon

model, which introduces a scalar field with higher derivative terms in the Lagrangian,

but keeps a second-order differential equation as the equation of motion. These

models introduce additional degrees of freedom, which give rise to a fifth force. For

example, the chameleon model, which is equivalent to the f(R) model, modifies

gravity by introducing a scalar field which is non-minimally coupled with the matter

components and gives rise to a fifth force that can be of the same order as the

standard gravitational force. The DGP model and the Galileon model also include a

scalar field, which gives rise to a fifth force.

Any fifth forces are, however, severely constrained by experiments in the solar sys-

tem. So viable models with modified gravity must employ screening mechanisms to

evade these constraints. For example, the chameleon and f(R) models are equipped

with the chameleon mechanism, and the DGP and Galileon models are equipped

with the Vainshtein mechanism. These mechanisms screen behavior of the fifth force

depending on the matter density and the space-time curvature. The screening mech-

anisms work in high-density regions where the matter density contrast is nonlinear

but do not work over large cosmological scales. In the context of screening mecha-

nisms, galaxy clusters are a useful regime for testing modified gravity because they

are objects on the transition between linear and nonlinear scales. Namely, standard
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gravitational behavior is recovered thanks to the screening mechanism in the interior

of a galaxy cluster, but the screening mechanism may not completely screen the fifth

force in the outer region of the galaxy cluster.

In this thesis, we propose a novel method to test modified gravity models using

galaxy clusters. When the scalar field is coupled with gas components in galaxy

clusters, the fifth force due to the scalar field would affect the gas distribution be-

cause of an additional pressure gradient for the gas that balances with the fifth force.

Thus, modified gravity models can be tested by combining gas measurements from

galaxy clusters. Through various physical processes, galaxy clusters can be observed

at multiple wavelengths, for example, the X-rays from thermal gas radiation, the

Sunyaev–Zel’dovich effect due to inverse Compton scattering of cosmic microwave

background photons and the gravitational weak-lensing effect due to the matter dis-

tribution in a galaxy cluster. This suggests that a gravity model can be tested using

these observations by precisely modeling the matter distribution of a galaxy cluster.

We develop a theoretical model of galaxy clusters under the influence of modi-

fied gravity, and compare theoretical predictions with the observational data set of

nearly galaxy clusters. With this approach we have obtained useful constraints on

the chameleon model and a generalized cubic Galileon model using multi-wavelength

observations. For the chameleon model, we obtained constraints on the model pa-

rameters, β and ϕ∞, the coupling strength of the scalar field and the field value

in the cosmological background. This result provides a powerful constraint on the

f(R) model, corresponding to a particular choice of the chameleon coupling constant

β =
√

1/6, for which we obtained an upper bound for the parameter fR0, which is

equivalent to ϕ∞: |fR0| <∼ 6×10−5 at the 95% CL. This bound is competitive with the

current strongest cosmological constraints on the f(R) model. For the generalized

cubic Galileon model, which contains the DGP model and a Galileon model, we ob-

tained constraints on the model parameters, ϵ, µG and µL, which are the parameters

characterizing the screening scale, and the amplitudes of modification of the gravita-

tional potential and the lens potential, respectively. In these models, the fifth force

affects not only the gas distribution characterized by µG but also the weak-lensing

profile characterized by µL. We showed that these features can be investigated by

a combination of the observations of a galaxy cluster reflecting the gas distribution

profiles and the weak-lensing signals. The multi-wavelength observations are com-

plementary and can, therefore, put a constraint on the modified gravity model by

breaking the degeneracy between the model parameters. We also carefully discuss

systematic errors which may affect our method.
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Chapter 1

Introduction

That our universe is undergoing an accelerated expansion phase at the present time

is indicated by many observations: for example, the Ia supernova [1, 2], the cosmic

microwave background (CMB) radiation [3, 4], the large scale structure (LSS) [5, 6],

and the number density of galaxies [7, 8]. Why the expansion of our universe is

accelerating is one of the most fundamental mysteries in basic science. One basic

interpretation of this fact is that our universe does not contain only matter and ra-

diation energy components but also other extra energy components with negative

pressure, which are called dark energy. Recently, it has been shown that the cosmo-

logical constant and cold dark matter (ΛCDM) model best describes our universe.

However, this model has some theoretical problems, such as the cosmological constant

problem, so it is still incomplete.

On the other hand, modifying gravity theory is an interesting approach to explain-

ing the accelerated expansion of the universe. However, any covariant modification

of general relativity introduces additional degrees of freedom, giving rise to a fifth

force. This is strictly constrained by gravity tests in the solar system. Solar system

experiments [9, 10] are in excellent agreement with general relativity, requiring that

this additional degree of freedom be hidden on the scale of the solar system. Such a

process is referred to as a screening mechanism, and is key for any viable modified

gravity model. In general, this screening mechanism works in high-density regions

where the matter density contrast is nonlinear. However, this does not work on large

cosmological scales. This screening mechanism that characterizes viable modified

gravity models is an important feature to be tested with observations.

The chameleon mechanism [11, 12] is a screening mechanism that works in an

f(R) gravity model and the chameleon gravity model [13–15]. In these models,

a scalar degree of freedom that gives rise to the fifth force is screened in a high-
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density region due to coupling with matter. The chameleon gravity model and an

f(R) model can be viable owing to the chameleon mechanism [16]. The Vainshtein

mechanism [17] is another relevant screening mechanism, which is employed in the

Dvali–Gabadaze–Porrati (DGP) model [18, 19], the simplest cubic Galileon model

[20–23], and its generalized version [24,25]. The DGP model is an archetypal modified

gravity model developed in the context of the brane-world scenario. There are two

branches of solutions in the DGP model. The self-acceleration branch DGP (sDGP)

model [26–28] includes a mechanism to explain self-acceleration in the late universe,

while the normal branch DGP (nDGP) model [29–31] with a cosmological constant is

a healthy modified gravity model avoiding the ghost problem [32, 33]. The simplest

cubic Galileon model is also a typical modified gravity model that explains self-

acceleration of the universe while avoiding the ghost problem. In these models, a

scalar field giving rise to a fifth force is screened due to self-interaction on small

scales where density perturbations become nonlinear.

Galaxy clusters provide a unique laboratory for testing modified gravity models

with screening mechanisms, because they are objects on the borderline between linear

and nonlinear scales. That is, they cover non-screened and screened scales: while the

interior of a cluster may be screened, the screening mechanism may not completely

screen the modifications of gravity in the outer regions of the cluster [34–46].

In this thesis, we investigate a cosmological constraint on modified gravity models

focusing on use of gas distributions in galaxy clusters. The pressure gradient of gas

in a galaxy cluster balances with the gravitational force. When the gas components

feel the fifth force due to modifications of gravity, the balance will be changed, which

creates a change of gas distribution in the cluster. We will review this idea and

establish a method of testing modified gravity models by comparing observations of

gas distribution with theoretical predictions of gas distributions in the presence of

the fifth force.

This thesis is organized as follows. In Chapter 1, we briefly review the standard

ΛCDM model and modified gravity models considered in this thesis. In Chapter 2, we

review physical processes in galaxy clusters. In Chapter 3, we construct theoretical

cluster profiles in the presence of a fifth force. In Chapter 4, we demonstrate the

testing of modified gravity models using multi-wavelength observations of galaxy

clusters and put useful constraints on modified gravity models. In Chapter 5, we

present a summary and our conclusions.
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1.1 Units and notation

First of all, let us mention the units and notation that we use throughout this thesis.

Unless otherwise noted, we use units in which the speed of light, c, and the reduced

Planck constant, ℏ, are unity, c = ℏ = 1, and we also use the reduced Planck mass,

MPl, which is defined by MPl = 1/
√

8πG with Newton’s gravitational constant, G.

We adopt a present Hubble parameter of H0 = 100 hkm/s/Mpc with h = 0.7, and

the present matter and dark energy density parameters of Ωm0 = 0.3 and ΩΛ0 =

1 − Ωm0, respectively. Then we ignore the radiation and curvature in the universe

(Ωr0 = ΩK0 = 0). We also follow the metric signature convention of (−, +, +, +).

The Christoffel symbol is defined by

Γµ
αβ =

1

2
gµν(∂βgαµ + ∂αgβν − ∂νgαβ) (1.1)

where gµν is the metric tensor. The Riemann tensor is given by

Rµ
ναβ = ∂αΓµ

νβ − ∂βΓµ
να + Γµ

σαΓσ
νβ − Γµ

σβΓσ
να, (1.2)

and the Einstein tensor is given by

Gµν = Rµν − 1

2
gµνR, (1.3)

where Rµν ≡ Rα
µαν is the Ricci tensor and R ≡ gµνRµν is the Ricci scalar.

The energy momentum tensor is defined by

Tµν ≡ − 2√−g

∂Lm

∂gµν

, (1.4)

where g is the determinant of the metric, gµν , and Lm is the matter Lagrangian.

We denote the derivative operator with respect to the physical time t by

˙ ≡ d

dt
(1.5)

1.2 ΛCDM model

Historically, the cosmological constant, Λ, was introduced by Einstein to explain a

static universe. However, it has been found that this idea well describes the observed

accelerating expansion of the universe. The action is given by the Einstein–Hilbert
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term with cosmological constant,

S =

∫
d4x

√−g

[
MPl

2
(R − 2Λ) + Lm

]
, (1.6)

Variation of the action (1.6) with respect to the metric, gµν , yields the Einstein

equations

M2
PlGµν = Tµν + T (Λ)

µν , (1.7)

where

T (Λ)
µν ≡ M2

PlΛgµν (1.8)

is the energy momentum tensor coming from the cosmological constant.

For a homogeneous, isotropic and spatially flat universe, with the Friedmann–

Lemaitre–Robertson–Walker (FLRW) metric,

ds2 = −dt2 + a(t)2δijdxidxj, (1.9)

where a is the scale factor, the Einstein equations (1.7) are reduced to the following

equations,

3M2
PlH

2 = ρm + ρΛ, (1.10)

−M2
Pl(2Ḣ + 3H2) = pΛ (1.11)

where H ≡ ȧ/a is the Hubble parameter, and ρi and pi are the energy density

and pressure, respectively, and the subscript i = m, Λ denotes contributions from

the matter and cosmological constant, respectively. The energy density of matter

evolves1 as ρm(z) = ρm0(1 + z)3. On the other hand, we obtain the energy density of

the cosmological constant as ρΛ = −pΛ ≡ M2
PlΛcos, which means that the cosmological

constant causes repulsive pressure and leads to the accelerated expansion of the

universe.

Here we introduce the critical density, ρc, and density parameters, Ωi, as

ρc(z) = 3MPlH
2(z), (1.12)

1The densities of radiation and curvature evolve as ρr(z) = ρr0(1 + z)4 and ρK(z) = 3M2
PlK(1 + z)2,

respectively.
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Ωi(z) =
ρi(z)

ρc(z)
. (1.13)

The Friedmann equation (1.10) normalized by the Hubble parameter at the present

time, H0, is given by

H2(z)

H2
0

= Ωm0(1 + z)3 + ΩΛ0, (1.14)

where we define Ωi(0) ≡ Ωi0 with i = m, Λ. Then we find that 1 = Ωm(z) + ΩΛ(z)

is satisfied.

Distances

Here, we introduce the definitions of distance between our solar system and an object

at redshift z.

When we know the actual size of the object, x, and the angular size of the

object θ, the angular diameter distance is defined by DA = x/θ. Using cosmological

parameters, the angular diameter distance is given by

DA =
1

(1 + z)H0

∫ z

0

dz√
Ωm0(1 + z)3 + ΩΛ0

(1.15)

When we know the luminosity and flux of the object, L and F , the luminosity

distance is defined by DL = (L/4πF )1/2. The luminosity distance is related to the

angular diameter distance by DL = (1 + z)2DA.

1.3 Modified gravity theories

We now briefly review modified gravity models used in this thesis.

1.3.1 Chameleon model

We consider an action in which a scalar field is non-minimally coupled with the

matter field:

S =

∫
d4x

√−g

[
M2

Pl

2
R − 1

2
gµν∂µϕ∂νϕ − V (ϕ)

]
−
∫

d4xLm(Ψ, e2βϕ/MPlgµν), (1.16)
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where ϕ is the scalar field, V (ϕ) is the potential of the scalar field, β is the coupling

constant and Ψ is the potential of the matter field. The action (1.16) can be trans-

formed into an action in which the scalar field is minimally coupled with the matter

field, but is non-minimally coupled with gravity. The frame for the action (1.16)

is called the Einstein frame, and the frame for the transformed action in which the

scalar field is minimally coupled with matter field is called the Jordan frame. These

frames are related by a conformal transformation. The detail of the transformation

is summarized in Appendix (A.1.2). It is interesting to study this model because this

model includes the f(R) model (see the next subsection) in the Jordan frame, and

the screening mechanism to pass local gravity tests is easy to understand.

First, we review the cosmology in the chameleon model. For the spatially flat

FLRW metric (1.9), we obtain the modified Friedmann equation

3H2M2
Pl =

1

2
ϕ̇2 + V (ϕ) + ρmeβϕ/MPl , (1.17)

where ρm is the matter density conserved in the Einstein frame (Appendix A.1.2).

Then, we obtain the critical density ρc and matter density parameter Ωm as

ρc(z) =
1

2
ϕ̇2 + V (ϕ) + ρm(z)eβϕ/MPl (1.18)

Ωm(z) =
ρm(z)eβϕ/MPl

ρc(z)
(1.19)

On the other hand, the variation of the action (1.16) with respect to the scalar field

(chameleon field) gives the equation of motion for the chameleon field as

ϕ̈ + 3Hϕ̇ = V,ϕ +
β

MPl

ρmeβϕ/MPl (1.20)

= −Veff,ϕ(ϕ), (1.21)

where we assume that the chameleon field is homogeneous and Veff is the effective

potential defined by

Veff(ϕ) ≡ V (ϕ) + ρmeβϕ/MPl . (1.22)

Chameleon Force

Since the chameleon field is coupled with the matter field, particles feel not only

the gravitational force but also the fifth force coming from chameleon field, which is
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called the chameleon force.

The geodesic equation in the Jordan frame is given by

ẍλ + Γ̃λ
µν ẋ

µẋν = 0, (1.23)

where ˙ ≡ d/dτ̃ means the derivative with respect to proper time in the Jordan frame,

τ̃ . Using the relation between the metrics of the Jordan and Einstein frames,

g̃µν = e2βϕ/MPlgµν , (1.24)

Eq. (1.23) can be transformed into the geodesic equation in the Einstein frame as

ẍλ + Γ̃λ
µν ẋ

µẋν +
β

MPl

(2ϕ,µẋ
µẋλ + gλνϕ,ν) = 0 (1.25)

The third term of the left-hand side of Eq. (1.25) gives the chameleon force. In the

non-relativistic limit, a test particle feels the chameleon force represented by

Fϕ = − β

MPl

∇ϕ. (1.26)

Chameleon mechanism

The chameleon field equation is given by the variation of the action (1.16) with

respect to the chameleon field, ϕ:

□ϕ = V,ϕ − β

MPl

e4βϕ/MPlgµνTµν , (1.27)

where □ ≡ gµν∇µ∇ν is the d’Alembertian and

T̃µν ≡ 2√−g̃

δLm

δg̃µν
(1.28)

is the energy-momentum tensor in the Jordan frame which satisfies the energy and

momentum conservation laws

∇̃νT̃µν = 0. (1.29)

Under the assumption of a perfect fluid, using the mater energy density ρ̃ and the

pressure p̃, we have

T̃ µν g̃µν = −(1 − 3w)ρ̃ (1.30)
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where we assume p̃ = wρ̃ with a parameter w. The energy density conserved in the

Einstein frame is given by

ρ ≡ e3(1+w)βϕ/MPl ρ̃ (1.31)

Using Eq. (1.31), the chameleon field equation is reduced to

□ϕ = V,ϕ +
β

MPl

ρeβϕ/MPl (1.32)

=
dVeff

dϕ
, (1.33)

where Veff is the effective potential defined by Eq. (1.22). Because the effective

potential depends on the matter density, the chameleon field also depends on the

matter density. When the effective potential reaches a minimum with ϕ = ϕmin, the

mass of the chameleon field mmin is given by the second derivative of the effective

potential with respect to ϕ

m2
min = V,ϕϕ(ϕmin) +

β2

M2
Pl

ρeβϕmim/MPl , (1.34)

where the first derivative of the effective potential satisfies

dVeff

dϕ
= V,ϕ(ϕmin) +

β

MPl

ρeβϕmim/MPl = 0. (1.35)

Figure 1.1 shows the effective potential as a function of ϕ (red curve) in the case that

the matter density is high (left panel) and in the case of the matter density is low

(right panel). This figure shows that the curvature of the effective potential, which is

equivalent to the mass of the chameleon field (1.34), in a high density region is larger

than that in a low density region. Since the Compton wave length of the chameleon

field is inversely proportional to the mass, ∝ 1/mmin, we find that the Compton wave

length in a high density region is shorter, which means the interaction between the

matter field and the chameleon field becomes weak. Therefore, in a high density

region, the chameleon force effectively does not appear.

1.3.2 f(R) model

We consider the action

S =

∫
d4x

√−g

[
M2

Pl

2
(R + f(R)) + Lm

]
, (1.36)
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Figure 1.1: The effective potential as a function of ϕ (red curve) in a high density region
(left panel) and in a low density region (right panel). Blue dashed and dotted curves show
V (ϕ) and ρeβϕ/MPl as a function of ϕ, respectively.

where f(R) is an arbitrary nonlinear function of the Ricci scalar.

Variation of the action (1.36) with respect to the metric gµν yields the modified

Einstein equations

Rµν = Rµν − 1

2
gµνR + fRRµν −

(
f

2
− □fR

)
gµν − ∇µ∇νfR = 8πGTµν . (1.37)

This model contains an additional degree of freedom, fR ≡ df(R)/dR. The equation

of motion for fR is given by the trace of Eq. (1.37) as

□fR =
1

3
[R − fRR + 2f − 8πG(ρ − 3p)] . (1.38)

Assuming the spatially flat FLRW metric, the (0, 0) component of the modified Ein-

stein equation (1.37) gives the modified Friedmann equation

H2 − fR(HH ′ + H2) +
f

6
+ H2fRRR′ =

8πG

3
(ρ − 3p), (1.39)

where ′ = d/d ln a.

The f(R) model can be written in the form of the chameleon model by a conformal
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transformation. The detail of the equivalence between the f(R) model and the

chameleon model is given in Appendix (A.1).

A viable f(R) model for an alternative dark energy has to satisfy several con-

ditions, for example, avoid a ghost state and negative mass squared of the scalar

field, be consistent with local gravity constraints, be stable and include a late-time

de Sitter solution, which are summarized in Ref. [47].

The viable nonlinear f(R) functions in an f(R) model satisfying the above con-

ditions are

f(R) = −λRc

(
R

Rc

)p

(1.40)

f(R) = −λRc
(R/Rc)

2n

(R/Rc)2n + 1
(1.41)

f(R) = −λRc

[
1 −

(
1 +

R2

R2
c

)−n
]

(1.42)

f(R) = −λRc tanh

(
R

Rc

)
(1.43)

where the parameters satisfy 0 < p < 1 and n, λ, Rc > 0. The models (1.40), (1.41),

(1.42) and (1.43) were proposed in Refs. [13–15,48], respectively.

In this thesis, we adopt the Hu-Sawiki model (1.41). The function f(R) of the

Hu-Sawiki model can be re-expressed as

f(R) = −m2 c1(R/m2)n

c2(R/m2)2 + 1
, (1.44)

where n,m, c1 and c2 are constant model parameters. Eq. (1.44) has an asymptotic

form with R ≪ m2 (|fR| ≪ 1), which is given by

f(R) = −m2 c1

c2

+
m2c1

c2
2

(
R

m2

)−n

. (1.45)

Note that m2c1/c2/2 can be chosen such that the modification exhibits an effective

cosmological constant and mimics the expansion history of the concordance model.

Hence, we specify m2 = ΩmH2
0 and c1/c2 = 6ΩΛ/Ωm. Furthermore, we have nc1/c

2
2 =

−fR0[3(1 + 4ΩΛ/Ωm)]n+1, where we introduced the model parameter, fR0, which is

the value of fR at the present time and at the background. In this case, only the

parameters fR0 and n are needed to describe the model.
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The mass of fR, mfR
, is given by

m2
fR

≃ 1

3fRR

, (1.46)

where

fR = −4nλ

Rc

(
R

Rc

)−(2n+1)

, (1.47)

fRR =
4n(2n + 1)λ

R2
c

(
R

Rc

)−(2n+2)

. (1.48)

Here we use Eq. (1.41) (or Eq. (1.42)) with R ≫ Rc to give the asymptotic form

f(R) ≃ λRc

[
1 −

(
R

Rc

)−2n
]

(1.49)

As mentioned in the previous subsection, the Compton wavelength of the additional

degree of freedom characterizes the scale at which particles feel the fifth force. Here,

we define the wavenumber kC of fR which is related to the Compton wavelength by

1

3fRR

= k2
C

(
Ωm0(1 + z)3 + 4(1 − Ωm0)

Ωm0 + 4(1 − Ωm0)

)2n+2

(1.50)

where we use 2Λ = λRc = 6(1 − Ωm0)H
2
0 . Then the wavenumber is given by

k2
C =

Ωm0H
2
0

4n(2n + 1)

(
λ

2

)2n(
Ωm0

1 − Ωm0

)2n+1(
1 +

4(1 − Ωm0)

Ωm0

)
. (1.51)

1.3.3 DGP model

The Dvali-Gabadadze-Porrati (DGP) model is motivated in the context of the braneworld

scenario. The action is given by

S =
M3

(5)

2

∫
d5X

√
−g(5)R(5) +

M2
Pl

2

∫
d4x

√−gR +

∫
d4x

√−gLbrane
m , (1.52)

where g(5) is the determinant of the metric in the 5D bulk, gµν = ∂µX
A∂νB

BgAB is

the induced metric on the brane with XA(xc) being the coordinates of an event on

the brane labeled by xc, M(5) is the 5D Planck mass and R5 is the Ricci scalar of the
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5D metric. The first and second terms in the action (1.52) are the Einstein-Hilbert

action in the 5D bulk and on the brane, respectively. Lbrane
m is the matter Lagrangian

localized on the 3-brane.

When we consider a spatially flat FLRW brane, the modified Friedmann equation

is given by

H2 − ϵ

rc

H =
ρm

3M2
Pl

. (1.53)

Here, ϵ = ±1, so the DGP model has two branches. When we chose ϵ = 1, which cor-

responds to a self-accelerating branch DGP (sDGP) model 2, the modified Friedmann

equation (1.53) can be rewritten as

H(a)

H0

=
1 − Ωm0

2
+

√
Ωm0

a3
+

(1 − Ωm0)2

4
, (1.54)

where the matter density parameter is related to the crossover scale by rc = 1/(1 −
Ωm0H0).

On the other hand, when we chose ϵ = −1, which corresponds to a normal branch

DGP (nDGP) model, there is no self-accelerating solution unless a cosmological con-

stant is introduced [19,21]. Here we consider the nDGP model with a dynamical dark

energy component on the brane, which is tuned such that the background evolves as

in the lambda cold dark matter model [31].

1.3.4 Galileon model

Galileon action in Minkowski spacetime

Inspired by the decoupling limit of the DGP model (Section 1.3.3), Galileon model

was originally developed by letting MPl and rc → ∞ while keeping a fixed strong

coupling scale, (r−2
c M

1/3
Pl ).

The action is represented by

S =

∫
d4x

√−g [LGR + Lπ] , (1.55)

where LGR is the Lagrangian for a linearized general relativity and Lπ = Lgal(π, ∂π, ∂∂π)+

πT represents the generalization of the π-Lagrangian coming from the decoupling

2However, the sDGP model suffers from a ghost instability and inconsistencies with cosmological obser-
vations.
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limit of the DGP model. The vacuum part, Lgal(π, ∂π, ∂∂π), is invariant under the

Minkowski spacetime transformation

π → π + bµx
µ + c, (1.56)

in the sense that Lgal → Lgal + (total derivative), where bµ and c are constants. This

invariant is called the Galileon shift symmetry.

The Lagrangian satisfying above invariance can be written as

Lgal(π, ∂π, ∂∂π) =
5∑

i=1

ciLi(π, ∂π, ∂∂π), (1.57)

where ci are constants, and

L1 = π, (1.58)

L2 = −1

2
(∂π)2, (1.59)

L3 = −1

2
∂2π(∂π)2, (1.60)

L4 = −1

2

[
(∂2π)2 − (∂∂π)2

]
(∂π)2 + (∂2π)∂µπ∂νπ∂µ∂νπ − ∂µπ∂µ∂νπ∂ν∂ρπ∂ρπ,

(1.61)

L5 = −1

2

[
(∂2π)3 − 3(∂2π)(∂∂π)2 + 2(∂∂π)3

]
(∂π)2

+
3

2

[
(∂2π)2 − 2(∂2π) − (∂∂π)2

]
∂µπ∂νπ∂µ∂νπ

+ 3∂µπ∂µ∂νπ∂ν∂ρπ∂ρ∂σπ∂σπ. (1.62)

Here ∂2 = ∂µ∂
µ, (∂π)2 = ∂µπ∂µπ and (∂∂π)n = (∂α1∂

α1π)(∂α2∂
α2π) · · · (∂αn∂αnπ).

Even though the Lagrangian contains higher derivative terms, the equation of motion

for gravity and the Galileon field, π, remains a second-order differential equation

owing to the Galileon shift symmetry. The variation of action (1.55) gives an equation

of motion which can be written in total derivative form as

∂µJ
µ(π, ∂π, ∂2π) = 0, (1.63)

in the absence of matter.
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Covariant Galileon

Because the Lagrangian (1.57) is invariant under the Galileon shift symmetry only

in Minkowski spacetime, it does not represent a curved spacetime. Nonetheless, the

covariant derivative version of the Lagrangian (1.57) gives the equations of motion

for gravity and the Galileon field as second-order differential equations. So, we can

write the covariant theory of the Galileon model as

S =

∫
d4x

√−g

[
M2

Pl

2
R + Lcov

gal + Lm

]
, (1.64)

where

Lcov
gal (ϕ, ∂ϕ, ∂∂ϕ) =

5∑

i=2

ciLcov
i (ϕ,∇ϕ,∇∇ϕ), (1.65)

with

L1 = ϕ, (1.66)

L2 = −1

2
(∇ϕ)2, (1.67)

L3 = −1

2
□ϕ(∇ϕ)2, (1.68)

L4 = −1

4

[
4(□ϕ)2 − 4∇µ∇νϕ∇µ∇νϕ − R(∇ϕ)2

]
(∇ϕ)2, (1.69)

L5 = −1

2

[
(∇2ϕ)3 − 3(□ϕ)∇µ∇νϕ∇µ∇νϕ

+2∇µ∇νϕ∇ν∇ρϕ∇ρ∇νϕ − 6Gµν(∇µϕ)(∇ν∇λϕ)∇λϕ
]
(∇ϕ)2. (1.70)

Simplest cubic Galileon model

We consider the Galileon model in a curved spacetime with minimal coupling to

gravity. The action is given by

S =

∫
d4x

√−g

[
M2

Pl

2
R − X −

(
r2
c

MPl

)
X□ϕ + Lm

]
. (1.71)

As explained in the next subsection, this model is a specific case of the covariant

Galileon model. When we adopt the late time de Sitter attractor solution [49], the
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modified Friedmann equation in the spatially flat FLRW metric is given by

(
H(a)

H0

)2

=
1

2


Ωm0

a3
+

√(
Ωm0

a3

)3

+ 4(1 − Ωm0)


 . (1.72)

1.3.5 A generalized cubic Galileon model

The most general scalar-tensor theory

First, we introduce the most general scalar-tensor theory. The theory is the most gen-

eral non-canonical and non-minimally coupled single-field scalar-tensor theory which

gives equations of motion for gravity and the scalar field as second-order differential

equations. The expression was first derived by Horndeski [50], so the theory is often

called Horndeski theory. The action is given by [50–52]

S =

∫
d4x

√−g

[
5∑

i=2

Li + Lm

]
, (1.73)

where

L2 = K(ϕ,X), (1.74)

L3 = −G3(ϕ,X)□ϕ, (1.75)

L4 = G4(ϕ, X)R + G4X

[
(□ϕ)2 − (∇µ∇νϕ)2

]
, (1.76)

L5 = G5(ϕ, X)Gµν∇µ∇νϕ − G5X

6

[
(□ϕ)3 − 3(□ϕ)(∇µ∇νϕ)2 + 2(∇µ∇νϕ)3

]
, (1.77)

Note that the covariant Galileon can be reproduced by setting K = c1ϕ − c2X,

G3 = c3X/M3, G4 = M2
Pl/2 − c4X

2/M6 and G5 = c5X
2/M9 where ci are dimension-

less parameters and M is a mass-dimension constant.

A subclass of the most general scalar-tensor theory

Here, we consider a subclass of the most general scalar-tensor theory with an action

given by [53]

S =

∫
d4x

√−g
[
G4(ϕ)R + K(ϕ,X) − G3(ϕ,X)□ϕ + Lm

]
, (1.78)
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which is produced by setting G4X = G5 = 0 in action (1.73). This model is a

non-minimal coupling version of the kinetic gravity braiding model [54]. This model

contains the simplest cubic Galileon and DGP models. The simplest cubic Galileon

model is defined by G4 = M2
Pl/2, K = −X and G3 = (r2

c/MPl)X, which corre-

sponds to taking c1 = −1 in Ref. [55]. The DGP model is originally a 5-dimensional

brane-world model, however, it can be effectively described as a Galileon model.

So, here we call this model the generalized cubic Galileon model. Note that the

DGP model has two branches of cosmological solutions, the self-accelerating branch

(sDGP) model [26,27] and the normal branch DGP (nDGP) model [29]. The relations

between the generalized Galileon model and these specific models are summarized in

Appendix (A.2).

The background solutions are given by

2XKX − K + 6Xϕ̇HG3X − 2XG3ϕ − 6H2G4 − 6Hϕ̇Gϕ = ρm, (1.79)

K − 2X
(
G3ϕ + ϕ̈G3X

)
+ 2

(
3H2 + 2Ḣ

)
G4 + 2

(
ϕ̈ + 2Hϕ̇

)
G4ϕ + 4XG4ϕϕ = 0,

(1.80)

where ρm is the non-relativistic matter energy density and H = ȧ/a is the Hubble

parameter. The background equation for the scalar field can be written as

J̇ + 3HJ − P = 0, (1.81)

with

J ≡ ϕ̇KX + 6HXG3X − 2ϕ̇G3ϕ, (1.82)

P ≡ Kϕ − 2X
(
G3ϕϕ + ϕ̈G3ϕX

)
+ 6

(
2H2 + Ḣ

)
G4ϕ. (1.83)

Vainshtein mechanism

The DGP model in the decoupling limit, the simplest cubic Galileon model and

the covariant Galileon model include a self-interaction term for the Galileon field,

L ∝ (∇ϕ)2□ϕ. This term causes screening. To understand the screening mechanism,

we consider the Lagrangian of the DGP model in the decoupling limit, whose action

is given by

L = −M2
Pl

4
hµν(Eh)µν − 3(∂π)2 − r2

c

MPl

(∂π)2□π +
1

2
hµνTµν +

1

Pl
πT, (1.84)
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where Eαβ
µν hαβ is the linearized Einstein tensor. To understand the effect of the

Galileon field around a point source, we consider the equation of motion of the scalar

field, which is given by

∂µ[6MPl∂µπ + 2r2
c∂µπ□π − r2

c∂µ(∂π)2] = −T. (1.85)

Note that the energy density of a point source is given by T = −Mδ3(r). For

the spherically symmetric and static case, Eq. (1.85) can be integrated once, which

reduces it to

π′(r)

MPl

=
3r

4r2
c

(
−1 +

√
1 +

4

9

r3
V

r3

)
. (1.86)

Here, rV = (r2
crg)

1/3 is called the Vainshtein radius and rg is the Schwarzschild radius.

Since rc is of the order of the Hubble horizon (∼ H−1
0 ), rV is much larger than the

Schwarzschild radius. Note that two solutions can be obtained by solving for π′, and

we choose the solution for which π′ → 0 at r → ∞. The other solution corresponds

to the sDGP model. At very small scales r ≪ rV, the ratio of the scalar force to

Newton’s force can be written as

Fπ

Fg

=
|∇π|

MPl|∇Ψ| =

(
r

rV

)3/2

≪ 1 (1.87)

Therefore, the Galileon field is screened inside the Vainshtein radius, and general rel-

ativity behavior is recovered through nonlinear effects. This is called the Vainshtein

mechanism.

1.4 Constraints on modified gravity theories

Any gravity theory has to pass stringent constraints from the Solar System. There are

several methods to test gravity theories. For example, the fifth force is tested by con-

sidering a modification of Newton’s inverse-square law with a Yukawa-like potential

parametrization [9, 56, 57] and the Parametrized Post-Newtonian (PPN) formalism

gives a constraint on the time-space curvature [58]. As described in previous sections,

the chameleon model and the f(R) model pass these tests thanks to the chameleon

mechanism, while the Galileon model and the DGP model also pass thanks to the

Vainshtein mechanism.

Lots of cosmological observations also give constraints on modifications of grav-
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ity [59]: for example, the CMB, the large scale structure and cluster abundance.

To obtain tighter constraints on modifications of gravity, many unique methods

of testing are being investigated: for example, the gravitational weak-lensing ef-

fect of galaxy clusters [41, 60], redshift-space distortions [61], the peculiar velocity

dispersion of satellite galaxies in halos [62], and higher order cosmological density

perturbations [63, 64]. Their approaches commonly focus on exploring the screening

scale of the fifth force depending on the matter density. In this sense, galaxy clusters

are a unique laboratory for exploring the screening scale, because they are objects

on the borderline between linear and nonlinear scales of the matter density pertur-

bation. That is, they cover non-screened and screened scales: while the interior of

a cluster may be screened, the screening mechanism may not completely screen the

modifications of gravity in the outer regions of the cluster.

We provide a novel method of testing gravity using gas distributions in galaxy

clusters in the following chapters. To illustrate the effectiveness of our approach, in

Fig. 1.2, we compare our result to current constraints from cosmological, astrophys-

ical, and local tests in the well-studied case that the chameleon model reduces to an

f(R) model. The parameter fR0 characterizes the f(R) model. Our Coma Cluster

constraint is currently the tightest constraint on cosmological scales (see Section 4.2).

In Ref. [44] a tighter constraint is obtained by using a technique developed from our

approach which also shows its usefulness.
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Figure 1.2: Comparison of our Coma Cluster constraint to current constraints on f(R)
gravity from the Solar System [14,65], distance indicators in unscreened dwarf galaxies [66],
the cosmic microwave background (CMB) [67, 68], cluster density profiles [37] and abun-
dance [34, 69]. The figure is adapted from [37]. Also compare to Fig. 2 (resp. 3) of [70, 71]
for prospective constraints on f(R) gravity.



Chapter 2

Galaxy clusters

2.1 Introduction to galaxy clusters

Galaxy clusters are the largest gravitationally bound systems in the universe. The

orders of magnitude of physical quantities in a cluster are summarized in Table 2.1

The number density of galaxy clusters in the present universe is 10−5 Mpc−3. Clusters

contain more than 10 galaxies, but it is hard to know the exact number of galaxies

in a cluster because of uncertainty in estimates of the number of dark galaxies. The

system smaller than a cluster is called a galaxy group, but the boundary between

clusters and groups is unclear because they are continuous objects. The matter

density of a cluster is a few hundred times higher than that of the universe. The

clusters are strictly not isolated systems because the environmental gas and galaxies

are falling. The clusters are composed of dark matter, intracluster medium (ICM,

hot baryon, gas) and galaxies (cold baryon). Their abundance ratios are summarized

in Table. 2.2.

Table 2.1: Orders of magnitude in a galaxy cluster.

Scale Order

rvir ∼ Mpc

Mvir ∼ 1014M⊙

ngas ∼ 10−3cm−3

Tgas ∼ 108K (∼ keV)

20
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The dark matter is dominant and determines the gravitational behavior of galaxy

clusters; its mass is roughly Mvir ∼ 1014M⊙. The dynamical time, tdyn, characterizes

the time scale of the gravitational structure formation and is given by

tdyn ∼ rvir

σ1D

∼
√

1

Gρ̄
(2.1)

∼ 4 × 109

(
ρ̄

10−24g/cm3

)−1/2

yr (2.2)

for galaxy clusters, where rvir is the size of a cluster, σ1D ∼
√

GMvir/rvir is the

1-dimensional velocity dispersion of the matter and ρ̄ ∼ 3Mvir/4πr3
vir is the mean

matter density. On the other hand, the age of the universe is given by

t0 ∼ 1.4 × 1010 yr. (2.3)

Thus we have tdyn
<∼ t0, which means that galaxy clusters contain information about

the history of cosmological evolution because they evolve with the universe, while

being roughly in dynamical equilibrium. So, galaxy clusters are important for in-

vestigating cosmological evolution, structure formation and the screening scale of

modified gravity (see Section 1.4).

The ICM is mainly composed of electrons, protons, and helium gas, which are

faint and smoothly distributed in clusters. The mean interval between each gas

particle in a cluster is

dmean ∼ n−1/3
gas ∼ 10

( ngas

10−3cm−3

)
cm. (2.4)

On the other hand, the mean free path determined by the Coulomb scattering of

Table 2.2: Components of a galaxy cluster.

Components Mass ratio

Dark matter ∼ 85%

ICM ∼ 15%

Galaxies ∼ 5%
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electron or proton pairs is given by

λgas ∼ 20
( ngas

10−3cm−3

)−3
(

T

108K

)
kpc. (2.5)

Thus we have dmean ≪ λgas, which allows us to treat gases as fluids. In addition, the

ratio of the energy of the electromagnetic interaction to the kinetic energy for each

gas component is given by

e2n
1/3
gas

kTgas

∼ 10−12
( ngas

10−3cm3

)( Tgas

108K

)
, (2.6)

which is very small. Therefore, gas in clusters can be treated as perfect fluid, so the

equation of motion for gas is given by

v̇ + (v · ∇)v = −∇Pgas

ρgas

− ∇Ψ, (2.7)

where v is the velocity of gas, Pgas is the gas pressure and Ψ is the gravitational

potential. The sound crossing time which characterizes the time scale of structure

formation by gas is given by

tsound =
rvir

cs

∼ 7 × 108

(
Tgas

108K

)−1/2(
rvir

Mpc

)
yr, (2.8)

where cs is sound speed for monatomic gas. On the other hand, the free fall time

which characterizes the time scale of the variation of the gravitational potential is

given by

tff =

√
3π

32Gρ̄
∼ 4 × 109

(
ρ

100ρc0

)−1/2

yr. (2.9)

Thus we have tsound < tff , which means that the galaxy clusters are roughly in

hydrostatic equilibrium. In this case, the velocity of gas can be set to v ∼ 0 in

Eq. (2.7), which then reduces to

∇Pgas

ρgas

= −∇Ψ. (2.10)

Thus the gas distribution in a cluster is in balance with the gravitational force, which

is important for our strategy to test modified gravity.
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Dark matter and the ICM cause various physical phenomena, which allow us to

observe galaxy clusters in a variety of different ways. In this chapter, we review

the physical processes caused by a cluster’s components: the physics of the ICM in

Section 2.2 and the physics of dark matter in Section 2.3.

Throughout this chapter, we explicitly include the speed of light, c, and the

reduced Planck constant, ℏ.

2.2 Intracluster medium

Because of ultraviolet rays emitted during the process of galaxy formation, the ICM

is hot, which causes the ionization of gas. The ionized gas causes thermal radiation

and the scattering of cosmic microwave background (CMB) photons. In this section,

we review the thermal physical processes caused by the thermally ionized gas.

2.2.1 X-ray emission

In galaxy clusters, the X-ray emission is dominated by the bremsstrahlung and line

emissions from heavy elements, such as iron and oxygen. The emissivity of this

radiation is dominated and characterized by one in the thermalized system. In this

subsection, we review the emissivity for the thermal bremsstrahlung and the line

emissions.

Thermal bremsstrahlung

The bremsstrahlung is typically electromagnetic radiation produced by the deceler-

ation of an electron when deflected by a proton, a quasi-quantum process that is

reviewed in Appendix B.1.

The emissivity per unit time and per unit volume from two-body scattering is

given by Eq. (B.9) as

dP ≡
∫ bmax

bmin

neniηℏωdω2πvbdb =
16π

3
√

3

e6Z2neni

vm2
ec

3
gffdω, (2.11)

where

gff ≡
√

3

π
ln

(
bmax

bmin

)
(2.12)

is the Gaunt factor for free-free emission. Here, for the ICM, the maximum value of
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the integral interval is given by

bmax ≡ v

ω
(2.13)

and the minimum value of the integral interval is determined by the uncertainty

relation ∆x∆p <∼ ℏ, with ∆x ∼ bmin and ∆p ∼ mev, which gives

bmin ≡ ℏ
mev

. (2.14)

Using Eqs. (B.9), the emissivity of the frequency between ν and ν + dν, per unit

time and per unit volume from the thermal electron gas is given by

ϵff
ν dν ≡

∫ ∞

vmin

dvdPv2 exp

(
−mev

2

2kT

)

∫ ∞

0

dvv2 exp

(
−mev

2

2kT

) (2.15)

=
25πe6

3mec3

(
2π

2me

)1/2

ne

∑

j

Z2
j niḡff(Z, T, ν) × (kT )−1/2 exp

(
− hν

kT

)
dν, (2.16)

where ḡff is the Maxwell distribution weighted mean Gaunt factor, and we use that

fact that electrons in thermal equilibrium satisfy

hν ≤ 1

2
mev

2, (2.17)

when there is emission of photons with the energy ℏω = hν, which gives the minimum

value of the incident velocity, vmin, as

vmin =

√
2ℏω

me

. (2.18)

For X-ray observations, the emissivity is given by integrating Eq. (2.15) with

respect to the frequency ν within the observable frequency range [νmin, νmax],

ϵff =

∫ νmax(1+z)

νmin(1+z)

ϵff
ν dν = λff(Emax, Emin, T, Z)n2

e . (2.19)
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in units of [ergs cm−3 s−1], or

ϵff =

∫ νmax(1+z)

νmin(1+z)

ϵff
ν

hν
dν = λff(Emax, Emin, T, Z)n2

e (2.20)

in units of [counts cm−3 s−1], where z is the redshift of the cluster and λff , in units

of [ergs cm3 s−1] or [counts cm3 s−1], is the cooling function, which depends on the

observable energy range, the electron temperature and the abundance of heavy ele-

ments.

Line emission

X-ray emissions from thermal gas in clusters include line emissions from heavy el-

ements. For example, the energy levels of an ion having a single electron is given

by

En = −13.6
Z2

i

n2
eV, (2.21)

where Zi is the charge of the ion and n is the principal quantum number. Thus the

line emissions from the Ly-α (n = 2 → 1) transitions of the ions listed in Table 2.3

are X-rays. The K-α (n = 2 → 1) transition of Fe XXV having two electrons also

emits an X-ray. The emissivity per unit time and per unit volume of the n = k → l

transition of ion Xi is represented by

ϵline = ΓlinenXi,k
, (2.22)

where Γline is the spontaneous transition rate per unit time and nXi,k
is the number

density of ion, Xi, with energy level, k. Because the energy density of the photon in

clusters is lower than that from blackbody radiation with the same temperature, the

Table 2.3: Ly-α (n = 2 → 1) transitions for heavy elements

Ion O VIII Ne X Mg XII Si XIV S XVI Fe XXVI

Zi 8 10 12 14 16 26

E2 − E1 [keV] 0.65 1.0 1.5 2.0 2.6 6.9
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stimulated radiation can be neglected. So Γline does not depend on the temperature

of the ion. Even though nXi,k
is determined by the detailed balance between the

energy levels, the main process of excitation is the collision with electrons in clusters.

In this case, we have nXi,k
∝ nenXj

. Then Eq. (2.22) reduces to

ϵline = fline(T )Zn2
e = λline(T, Z)n2

e , (2.23)

where fline is a function determined for each transition, which depends on the temper-

ature of the ion in thermal and ionized equilibrium, and λline is the cooling function

for the transition.

Surface brightness

Using Eqs. (2.19) and (2.23), the total emissivity of the X-ray emission for the ICM

electron gas in thermal and ionized equilibrium can be represented as

ϵX = ϵff + ϵline = (λff + λline)n
2
e = λcn

2
e (2.24)

where λc is the cooling function for the thermal bremsstrahlung and line emission.

The observed X-ray flux is given by

F =
1

4πDL(z)2

∫

r<rmax

ϵXdV, (2.25)

where DL is the luminosity distance and rmax is the observable maximum radius.

Here, we decompose the volume element, dV , into the line of sight, dl, and the solid

angle on the celestial sphere, dθ2,

dV = DA(z)2dldθ2, (2.26)

where r2 = l2 + D2
Aθ2, DA = (1 + z)−2DL is the angular diameter distance, and

DA ≫ r. Using this relation, we obtain the observed surface brightness in units of

[ergs/cm2/s/rad2] or [counts/cm2/s/rad2] by integrating the emissivity along the line

of sight, l,

S(r⊥) =
D2

A

4πD2
L

∫
ϵX(r)dl (2.27)

=
1

4π(1 + z)4

∫
λcne(r)

2dl, (2.28)
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where r⊥ = θDA is the perpendicular radius with the apparent angle, θ, from the

cluster center.

2.2.2 Sunyaev–Zel’dovich effect

The cosmic microwave background (CMB) is an evidence of the Big-Bang universe

and its secondary anisotropy is important for galaxy clusters.

The intensity of the CMB follows a practically isotropic perfect blackbody distri-

bution which is given by the Planck distribution,

Iν(ν) =
2hν3

c2

[
exp

(
hν

kTCMB(z)

)
− 1

]−1

, (2.29)

where ν is the frequency of the CMB photon, h = 2πℏ is the Planck constant, k is

the Boltzmann constant and TCMB(z) = TCMB,0(1 + z) is the CMB temperature at

redshift z, with the present CMB temperature being TCMB,0 = 2.725 K. Note that

Iν ∝ (1 + z)3 because TCMB ∝ (1 + z) and ν ∝ (1 + z).

When the CMB photons pass through a galaxy cluster, their intensity is shifted

by inverse Compton scattering caused by hot electrons in the cluster, which is called

the Sunyaev–Zel’dovich (SZ) effect [72]. The process of inverse Compton scattering is

reviewed in Appendix B.2. The radial intensity profile of inverse Compton scattering,

given by Eq. (B.20), is

∆I
(SZ)
ν (ν, r⊥)

Iν(ν)
=

1

4πIν(ν)

∫
ne(r)

dWSZ(ν, Te(r))

dtdν
dl, (2.30)

where ∆I
(SZ)
ν is the difference between the intensities after and before scattering,

dWSZ/dtdν is the emissivity per unit time and per unit frequency caused by an

electron, and r =
√

r2
⊥ + l2. The lowest order of Eq. (B.29), which corresponds to

the case of the Maxwell distribution

fM(v)dv = 4π

(
me

2πkTe

)3/2

exp

(
−mev

2

2kTe

)
v2dv (2.31)

for thermal electrons, gives the SZ spectrum as

dWSZ(ν)

dtdν
=

∫
dWIC(ν, v)

dtdν
fM(v)dv/c

≃ 4πσTIν(ν)
xex

ex − 1

[
θe

(
−4 + x coth

(x

2

))
+ βbµ

]
, (2.32)
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where βb is the bulk velocity of the cluster electrons and µ is the angle of the bulk

motion. The first term of Eq. (2.32) gives isotropic radiation which is called the

thermal SZ effect, and the second term of Eq. (2.32) gives anisotropic radiation

depending on the bulk motion of cluster electrons, which is called the kinematic SZ

effect.

Thermal SZ effect

Assuming an isotropic distribution for electrons in the rest frame of CMB photons,

the second term of Eq. (2.32) vanishes when integrating with respect to angle, µ, so

we obtain

∆I
(TSZ)
ν (ν, r⊥)

Iν(ν)
=

xex

ex − 1

(
x coth

x

2
− 4
)

y (2.33)

where we define the Compton-y parameter as

y ≡
∫

dlσTne
kBT

mec2
(2.34)

Kinematic SZ effect

When the electrons in a cluster have bulk velocity, the second term of Eq. (2.32) is

not negligible, which gives

∆I
(kSZ)
ν (ν, r⊥)

Iν(ν)
=

1

Iν(ν)

∫
ne

dWSZ(ν)

dtdνΩ
dz (2.35)

=
xex

ex − 1

∫
dlσTneµβ (2.36)

=
xex

ex − 1
τe

v̄∥
c

(2.37)

where τe is the optical depth for Thomson scattering and v̄∥ is the mean velocity

toward the line of sight of the bulk motion of the electron gas.

2.3 Dark matter

The presence of dark matter is one of the fundamental mysteries of cosmology, and

it is also important for galaxy clusters. Assuming that the gravitational potential,
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galaxy kinematic energy, and gas temperature energy are of the same order,

σ2
1D ∼ kTgas

mp

∼ GMvir

rvir

, (2.38)

we can estimate the total cluster mass from optical and X-ray observations as

Mvir ∼ 3 × 1014

(
σ1D

1000 km/s

)2(
rvir

Mpc

)
M⊙, (2.39)

and

Mvir ∼ 2 × 1014

(
kTgas

108 K

)(
rvir

Mpc

)
M⊙. (2.40)

Eqs. (2.39) and (2.40) are of the same order; however, the sum of the masses of a

galaxy and its gas is only 20% of Mvir. It is therefore suggested that there is a large

amount of dark matter in galaxy clusters, which dominates their gravitational be-

havior. Many N -body simulations provide information about the nonlinear evolution

of dark matter. These simulations suggest that the radial profile of dark matter in a

galaxy cluster is the Navarro–Frenk–White (NFW) profile [73],

ρ(r) =
ρs

r/rs(1 + r/rs)2
. (2.41)

It is known that this profile roughly agrees with many observations.
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Modeling of cluster profiles

We review our model focusing on connecting gas distributions with observational

quantities (the X-ray brightness, X-ray temperature and Sunyaev–Zel’dovich [SZ]

effect profiles). Our gas distribution model is based on an assumption of hydrostatic

equilibrium, which is a key assumption needed to connect with modifications of

gravity. We also review the tangential shear profile due to weak- gravitational lensing.

At the end of this chapter, we review analytic solutions for modifications of gravity

in spherical symmetric systems, and construct the modified cluster profiles.

3.1 Matter distribution profile

We assume that the dark matter component dominates over the baryonic contribution

in the cluster and that the matter density of the cluster, ρ, is well described by

ρ(r) = ρsym(r/rs), (3.1)

where ρs and rs are parameters, and the dimensionless profile, ym, is given by a

generalized NFW profile [74],

ym(x) =
1

x(1 + x)b
. (3.2)

Taking b = 2, Eq. (3.2) corresponds to the NFW profile (2.41) which is motivated

by predictions from numerical simulations [73]. The mass enclosed within a radius

30
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r, M(< r), is given by a volume integral of Eq. (3.1):

M(< r) = 4π

∫ r

0

drr2ρ(r) = 4πρsr
3
s m(r/rs), (3.3)

where

m(x) ≡
∫ x

0

duu2ym(u) =





−1 + x2 − bx(1 + x) + (1 + x)b

(b − 2)(b − 1)(1 + x)b
for b ̸= 2

ln(1 + x) − x

1 + x
for b = 2

. (3.4)

Note that the NFW proifle is based on N -body dark matter simulations of the

concordance model. It is nontrivial to extend this assumption to modified gravity

models. However, it was shown in [38] that the NFW profile provides equally good

fits for f(R) clusters as it does for the Newtonian scenario. This was shown using N -

body simulations of the Hu-Sawicki f(R) gravity model corresponding to β =
√

1/6,

which characterizes only a subgroup of the more general chameleon model studied

here. The effects of the modifications on observables are, however, qualitatively

similar between different values of the coupling strength β and can even partially be

mapped into each other, suggesting the applicability of the NFW profile. Its validity

for the full range of the parameters considered in this paper may still be worthwhile

checking using N -body simulations. From an observational perspective, recent work

b [75, 76] supports the consistency of the NFW profile with measurements. Hence,

even independent of the simulation results, the NFW profile could be used for the

reconstruction of the lensing mass with the same motivation as introducing the gas

profiles in the reconstruction of the hydrostatic mass in Chapter 4.

Here, we introduce the virial mass, Mvir, and the concentration, c, instead of rs

and ρs,

Mvir ≡ M(< rvir) =
4π

3
r3
vir∆c(z)ρc(z), (3.5)

c ≡ rvir

rs

, (3.6)

where rvir is the virial radius, which is defined by

rvir =

[
Mvir

(4π/3)∆c(z)ρc(z)

]1/3

, (3.7)

and ∆c(z) is the critical overdensity contrast, which is the ratio of the mean matter
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density within the virial radius, ρ̄(< rvir), to the critical density,

∆c(z) ≡ ρ̄(< rvir)

ρc(z)
, (3.8)

given by spherical collapse models [77–80]. We adopt ∆c = 100 based on Ref. [80]

with z ∼ 0. Note that the critical overdensity contrast, ∆c, generally depends on the

modified gravity parameters. For example, the authors in Ref. [81] found ∆c ∼ 80

in an f(R) model, which is equivalent to ∆vir ∼ 300 at redshift z ∼ 0. Nonetheless,

our final conclusion is independent of this modification of ∆c because our analysis

includes the parameters Mvir and c, which re degenerate with ∆c. Therefore, the

change of ∆c only introduces shifts in the values of Mvir and c.

The relations between Mvir, c, rs and ρs are

rs =
1

c

[
Mvir

(4π/3)∆c(z)ρc(z)

]1/3

, (3.9)

ρs =
Mvir

4πr3
s m(c)

. (3.10)

In addition, we introduce the radius at which the mean matter density corresponds

to the cosmological reference density, r∆ref , its concentration, c∆ref = r∆ref/rs), and

the mass enclosed within this radius, M∆ref ≡ M(< r∆ref). Using Eqs. (3.5) and

(3.6), the relations between r∆ref and M∆ref are

c∆ref =
r∆ref

rs

=
1

rs

[
M∆ref

(4π/3)∆ρref(z)

]1/3

, (3.11)

and

M∆ref =
m(r∆ref/rs)

m(c)
Mvir, (3.12)

where the reference density is ρref = ρc or ρm. We note that ρm(z) = Ωm(z)ρc(z).

From Eqs. (3.11) and (3.12), we can compute r∆ref and M∆ref when c and Mvir are

given.

Gravitational potential

The gravitational potential is given by the Poisson equation,

△Ψ =
1

2MPl

ρ. (3.13)
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Assuming that the matter distribution of the cluster is given by Eq. (3.1), we can

solve Eq. (3.13) to get

Ψ(r) = −GM(< r)

r2
=





−Ψ0
1 − (1 + r/rs)

2−b

(b − 2)r/rs

for b ̸= 2

−Ψ0
ln(1 + r/rs)

r/rs

for b = 2
, (3.14)

where x = r/rs and

Ψ0 ≡ ρsr
2
s

2M2
Pl(b − 1)

(3.15)

is the gravitational potential at the center of the cluster.

3.2 Gas distribution profiles

In this section, we construct the radial distribution profiles of the thermal gas de-

scribed by the gas pressure, Pgas, the gas temperature, Tgas, and the gas density,

ρgas.

3.2.1 Equation of state for gas components

First, we summarize the equation of state for gas components. The intracluster

medium is dominated by ionized Hydrogen and Helium gas. In this section, assuming

complete ionization of the gas, we review the equation of state for the gas components.

In the following, ni and mi are the number density and mass, and their subscripts,

i = e, p, H, He, denote the electron, proton, hydrogen and helium, respectively.

We define the mean molecular weight µ as

(ne + nH + nHe)µmp = mHnH + mHenHe, (3.16)

where we neglect the electron mass. Assuming an electrically neutral intracluster

gas, we then have

ne = nH + 2nHe. (3.17)
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Using Eqs. (3.16) and (3.17), we obtain the mean molecular weight as

µ =
nH + 4nHe

2nH + 3nHe

=
4

3 + 5X
≃ 0.59, (3.18)

where we use the approximations mH ∼ mp and mHe ∼ 4mp, and an abundance ratio

between Hydrogen and Helium of X = nH/(nH + 4nHe) ≃ 0.75.

Here we define the gas number density as ngas = ne + nH + nHe. Assuming that

the intracluster gas is an ideal fluid, the equation of motion for the intracluster gas

can be written as

Pgas = ngaskTgas =
ρgaskTgas

µmp

, (3.19)

where k is the Boltzmann constant, Pgas is the gas pressure, Tgas is the gas temper-

ature, and ρgas is the gas density. Assuming the gas temperature is equal to the

electron temperature, that is Tgas = Te, the equation of state for the electron is

Pe = nekTe =
2(X + 1)

5X + 3
Pgas =

2 + µ

5
Pgas, (3.20)

where Pe is the electron pressure, and we use the relation

ne =
2(X + 1)

5X + 3
ngas =

2 + µ

5
ngas. (3.21)

Note that the assumption of Tgas = Te is nontrivial because the equipartition timescale

between electrons and protons through Coulomb collisions is close to the dynamical

timescale of the cluster (see, e.g., [82]).

3.2.2 Hydrostatic equilibrium

We first assume hydrostatic equilibrium in the spherically symmetric system as

1

ρgas

dPgas

dr
= −dΨ

dr
. (3.22)

Assuming the gas physics described in Section (3.2.1), we derive the solution of

Eq. (3.22). We review some solutions of Eq. (3.22) to link with observations of gas

distributions in the following subsections.
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3.2.3 Polytropic model

Here we derive the gas distribution profiles based on [83–85]. We assume the poly-

tropic equation of state for thermal gas:

Pgas ∝ ρgasTgas ∝ ργ
gas, (3.23)

where γ is the polytropic index. Using the dimensionless gas profile ygas, we can write

ρgas(r) = ρgas,0ygas(r), (3.24)

Tgas(r) = Tgas,0y
γ−1
gas (r), (3.25)

Pgas(r) = Pgas,0y
γ
gas(r), (3.26)

where Pgas,0, ρgas,0 and Tgas,0 are the pressure, density and temperature at the cluster

center, satisfying the equation of state

Pgas,0 =
kTgas,0ρgas,0

µmp

, (3.27)

and ygas(0) = 1. Under the assumption of hydrostatic equilibrium (Eq. (3.22)), we

can obtain a differential equation for ygas,

dyγ−1
gas

dr
= − µmp

kTgas,0

(
γ − 1

γ

)
dΨ

dr
, (3.28)

which has the solution

ygas =

{
1 − µmp

kTgas,0

(
γ − 1

γ

)
[Ψ(r) − Ψ(0)]

}1/(γ−1)

(3.29)

for the dimensionless gas profile.

3.2.4 Non-polytropic model

Here, we consider two models as the solution of hydrostatic equilibrium (3.22) with-

out the polytropic relation.
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Model A (ne-based model)

For the electron number density profile, we assume the functional form of the so-called

β-model [86]:

ne = n0

[
1 +

(
r

r1

)2
]−b1

(3.30)

where n0 is the electron number density at the cluster center, and b1 and r1 are pa-

rameters. The β-model is well-established to represent the observed surface bright-

ness of galaxy clusters with low angular resolution. Integrating Eq. (3.22) and using

Eq. (3.30), we obtain the electron pressure profile

Pe = n0T0 + µmp

∫ r

0

drne(r)

[
−dΨ

dr

]
, (3.31)

where T0 is the electron temperature at the cluster center. Then, the electron tem-

perature profile is given by kTe(r) = Pe(r)/ne(r) from Eqs. (3.30) and (3.31). Model

A is thus characterized by 6 parameters: Mvir, c, n0, T0, b1, and r1.

Model B (Te-based model)

For the electron temperature profile, we assume the functional form

Te(r) = T0

[
1 +

(
r

r1

)b1
]−b2/b1

, (3.32)

where T0 is the electron temperature at the cluster center and b1, b2 and r1 are

parameters. Integrating Eq. (3.22) and using Eq. (3.32), we obtain the electron

pressure profile

Pe(r) = n0T0 exp

(∫ r

0

dr
µmp

kTe(r)

[
−dΨ

dr

])
, (3.33)

where n0 is the electron number density at the cluster center. Then, the electron

number density profile is given by ne(r) = Pe(r)/kTe(r) from Eqs. (3.33) and (3.32).

The model B is thus characterized by 7 parameters: Mvir, c, n0, T0, b1, b2, and r1.
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3.2.5 Observables

Using our model of the 3-dimensional profiles, we construct the observables for X-

rays and the cosmic microwave background (CMB) temperature distortion by the SZ

effect.

X-ray surface brightness

The X-ray surface brightness, which reflects X-ray emission from thermal bremsstrahlung

emission and line emission, is given by Eq. (2.27),

SX(r⊥) =
1

4π(1 + z)4

∫ ∞

−∞
n2

e(r)λc(r)dl, (3.34)

where r⊥ =
√

r2 + l2 is the radius perpendicular to the line-of-sight, l, and λc is the

cooling function, which depends on the electron temperature, abundance of heavy

elements and observable energy range (e.g., [87]). Here, to estimate the cooling

function, we use XSPEC [88], adopting the thermal plasma emission spectra model

with the APEC code [89]. The XSPEC software gives the X-ray flux based on the

APEC model. The X-ray flux can be converted to the cooling function by the flux-

luminosity relation.

We also define the X-ray brightness as BX ≡ norm/area, where norm is the spec-

trum normalization obtained from the XSPEC software [88] using the APEC emission

spectrum [89], and area is the area of the spectrum. The spectrum normalization is

given by norm ∝
∫

nenHdV , where nH = 0.86ne is the hydrogen number density and

V is the volume of the spectrum. Then, we write the X-ray brightness as

BX(r⊥) =
10−14

4π(1 + z)2

∫ ∞

−∞
ne(r)nH(r)dl [cm−5/arcmin2]. (3.35)

X-ray temperature

The thermal gas temperature is given by a spectral fit of the observed X-ray spectrum,

which is represented by a weighted temperature,

TX(r⊥) =

∫ ∞

−∞
W (r)Tgas(r)dl

∫ ∞

−∞
W (r)dl

, (3.36)
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where r⊥ =
√

r2 + l2 the radius perpendicular to the line-of-sight, l, and W is the

weight factor which is given by W = n2
eT

1/2
gas for the emission-weighted temperature

and as W = n2
eT

−3/4
gas for the spectroscopic-like temperature. Because the emission-

weighted temperature is systematically higher than the actual measurement, the

spectroscopic-like temperature was proposed by [90] to avoid this systematic error. In

this thesis, we use the emission-weighted temperature to avoid numerical singularities.

Compton-y parameter

The CMB temperature distortion is caused by CMB photons passing through clusters

and being scattered by electrons in the clusters, namely, the SZ effect. The difference

between the averaged CMB temperature and the observed CMB temperature, ∆TSZ,

or y-parameter can be expressed as

y(r⊥) = − ∆TSZ

2TCMB

=
σT

me

∫
Pe(r)dl, (3.37)

where r⊥ =
√

r2 + l2 is the radius perpendicular to the line-of-sight, l, and TCMB =

2.725 K is the CMB temperature, σT is the Thomson cross section and me is the

electron mass.

3.3 Tangential shear profile due to weak-gravitational lens-

ing

We consider a spatially flat cosmological background, and work with the cosmological

Newtonian gauge, in which a line element is written as

ds2 = −(1 + 2Ψ(t,x))dt2 + a(t)2(1 + 2Φ(t,x))dx2, (3.38)

where a is the scale factor, and Ψ and Φ are the gravitational and curvature potentials,

respectively. The propagation of light is determined by the lensing potential (Φ −
Ψ)/2, which means that the weak-lensing signal is determined by (Φ − Ψ)/2. For

example, the convergence is given by

κ = −1

2

∫ χ

0

dχ′ (χ − χ′)χ′

χ
△(2D)(Φ − Ψ), (3.39)

where χ is the comoving distance and △(2D) is the comoving two-dimensional Lapla-

cian. For the case of general relativity, we set △Ψ = −△Φ = 4πGa2ρ. Then, using
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the thin lens approximation, (3.39) reduces to

κ =
(χS − χL)χL

χS

∫ χS

0

dχ′ [4πGρ(r′)] a2
L, (3.40)

where χL and χS denote the comoving distance between the observer and lens and

that between the observer and the source, respectively, and aL = 1/(1 + zL) is the

scale factor specified by the redshift of the lensing object, zL. For a spherically

symmetric cluster, (3.40) is given by

κ(r⊥) =
2

Σc

∫ ∞

0

dzρ(r) (3.41)

with the physical coordinate r =
√

r2
⊥ + z2. We define the critical surface mass

density, Σc = χS/[4πG(χS − χL)χLaL]. We then define the reduced shear

g+(r⊥) ≡ γ+(r⊥)

1 − κ(r⊥)
, (3.42)

where γ+(r⊥) is the tangential shear, which is related to the convergence by

γ+(r⊥) = κ̄(< r⊥) − κ(r⊥), (3.43)

with

κ̄(< r⊥) ≡ 2

r2
⊥

∫ r⊥

0

dr′
⊥r′

⊥κ(r′
⊥). (3.44)

For the NFW profile, the convergence (3.40) can be integrated to obtain [91]

κnfw(x) =





2rsρs

Σc(x2 − 1)

[
1 − 2√

1 − x2
arctanh

√
1 − x

1 + x

]
, (x < 1)

2rsρs

3Σc

, (x = 1)

2rsρs

Σc(x2 − 1)

[
1 − 2√

x2 − 1
arctan

√
x − 1

1 + x

]
, (x > 1)

(3.45)
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and Eq. (3.41) also can be integrated to obtain

κ̄nfw(< x) =





4rsρs

Σcx2

[
2√

1 − x2
arctanh

√
1 − x

1 + x
+ ln

(x

2

)]
, (x < 1)

4rsρs

Σc

[
1 + ln

(
1

2

)]
, (x = 1)

4rsρs

Σcx2

[
2√

x2 − 1
arctan

√
x − 1

1 + x
+ ln

(x

2

)]
, (x > 1)

(3.46)

with x = r/rs.

Here, we assume that the source galaxies have a random orientation of ellipticity,

ϵS, the average of which is ⟨ϵS⟩ = 0. Once the tangential ellipticity of the source

galaxies, ϵobs is averaged, we obtain an average lensing signal from galaxy clusters

g+ = ⟨ϵobs.⟩ due to the random orientations.

3.4 Modification of gravitational and lens potentials

3.4.1 Chameleon field

We first review an analytic solution for the chameleon field for a spherically symmet-

ric galaxy cluster [42, 92, 93]. Next, we construct the gas distribution profile using

the analytic solution assuming a polytropic gas distribution, and review how the

modification of gravity affects the gas distribution.

The equation of motion for the chameleon field is given by Eq. (1.27):

∇2ϕ(r) = V,ϕ +
β

MPl

ρ(r), (3.47)

where we assume the potential V (ϕ) = Λ4+n/ϕn, and use the approximation, βϕ/MPl ≪
1. In the inner region of the cluster we assume the condition

MPl∇2ϕ

βρ(r)
≪ 1. (3.48)

In this case, Eq. (3.47) reduces to

0 ≃ V,ϕ +
β

MPl

ρ(r). (3.49)

Assuming the generalized NFW matter distribution profile given in Eq. (3.2), Eq. (3.49)
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gives an inner solution for the chameleon field of

ϕint(x) = ϕs[x(1 + x)b]1/(n+1), (3.50)

where x = r/rs and

ϕs ≡
(

nΛn+4MPl

βρs

)1/(n+1)

. (3.51)

Next, for the outer region of the cluster, we assume the condition

V,ϕ ≪ ∇2ϕ. (3.52)

In this case, Eq. (3.47) reduces to

∇2ϕ(r) ≃ βρ(r)

MPl

. (3.53)

Assuming the generalized NFW matter distribution profile in Eq. (3.2), Eq. (3.53)

gives an outer solution for the chameleon field of

ϕext(x) =





−2βϕ0
1 − (1 + x)2−b

(b − 2)x
− C

x
+ ϕ∞, b ̸= 2

−2βϕ0
log(1 + x)

x
− C

x
+ ϕ∞, b = 2

(3.54)

where C and ϕ∞ are the integration constants. The constant ϕ∞, which defined by

ϕ∞ = ϕ(r = ∞), is the background chameleon field.

C and ϕ∞ are related by connecting the inner solution and the outer solution at

the radius xc,

C = −2βϕ0
1 − (1 + xc)

2−b

b − 2
+ ϕ∞xc − ϕs[xc(1 + xc)

b]1/(n+1)xc, (3.55)

ϕ∞ − 2βϕ0(1 + xc)
1−b = ϕs(xc(1 + xc)

b)1/(n+1)

(
1 +

(1 + b)xc + 1

(n + 1)(1 + xc)

)
, (3.56)

for b ̸= 2, and

C = −2βϕ0 ln(1 + xc) + ϕ∞xc − ϕs[xc(1 + xc)
2]1/(n+1)xc, (3.57)

ϕ∞ − 2βϕ0(1 + xc)
−1 = ϕs[xc(1 + xc)

2]1/(n+1) (n + 4)xc + n + 2

(n + 1)(1 + xc)
, (3.58)
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for b = 2.

Here, ϕs is the typical chameleon field in the interior region where the matter

density is high and the chameleon mechanism works, which gives ϕs ≪ ϕ∞ ∼ ϕ0.

Therefore, we can use the approximation ϕs → 0. Then Eqs. (3.55) and (3.56) can

be approximated as

C ≃ −2βϕ0
1 − (1 + xc)

2−b

b − 2
+ ϕ∞xc, (3.59)

ϕ∞ − 2βϕ0(1 + xc)
1−b ≃ 0. (3.60)

In this case, the solution for the chameleon field does not depend on the parameters

of the potential, n and Λ, but is characterized by the NFW parameters and the

background chameleon field, ϕ∞.

By a conformal transformation, we can also construct the solution in the Jordan

frame, obtaining the solution for fR, which is the degree of freedom in the f(R)

model. This procedure is summarized in Appendix A.1.3.

Chameleon Force

The chameleon force is given by Eq. (1.26):

Fϕ = − β

MPl

∇ϕ. (3.61)

Using the analytic solution for the chameleon field, the chameleon force is given by

F (x) =





ϕ0

MPlrs

[
1 + (b − 1)x − (1 + x)b−1

(b − 2)x2(1 + x)b−1

− βϕs

(n + 1)ϕ0

(1 + (1 + b)x)(x(1 + x)b)1/(n+1)

x(1 + x)

]
, x ≤ xc

ϕ0

MPlrs

[
(1 + 2β2)

1 + (b − 1)x − (1 + x)b−1

(b − 2)x2(1 + x)b−1
− βC

ϕ0x2

]
, x > xx

(3.62)
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Figure 3.1: Total force as a function radius x = r/rs. In the left figure, the red, blue and
green curves are for the chameleon field with the virial mass Mvir = 1013M⊙, 1014M⊙, and
4 × 1014M⊙, respectively. In the right figure, the colored curves are also for the chameleon
field, but with the coupling constant β = 0.5 (red), 1 (blue), and 1.5 (red), where the virial
mass is fixed at Mvir = 1014M⊙. Black curves are the Newtonian case.

for b ̸= 2, and

F (x) =





ϕ0

MPlrs

[(
1

x(1 + x)
− ln(1 + x)

x2

)

− βϕs

(n + 1)ϕ0

(1 + (1 + b)x)(x(1 + x)b)1/(n+1)

x(1 + x)

]
, x ≤ xc

ϕ0

MPlrs

[
(1 + 2β2)

(
1

x(1 + x)
− ln(1 + x)

x2

)
− βC

ϕ0x2

]
, x > xc

(3.63)

for b = 2.

Figure 3.1 shows the radial total force per unit mass acting on a test particle.

The black line shows the Newtonian case, and the red, blue and green lines show

the cases with the chameleon force assuming the NFW profile (b = 2) with virial

masses Mvir = 1013M⊙, 1014M⊙ and 4 × 1014M⊙, respectively. In the inner region,

the chameleon force is screened by the chameleon mechanism, but in the outer region,

the chameleon force appears and depends on the virial mass.
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Gas distribution with the chameleon field

In the presence of the fifth force, the gravitational potential (3.14) is effectively

modified as

Ψ → Ψ +
β

MPl

ϕ. (3.64)

Then, the solutions for gas distributions are also modified to

ygas =

{
1 − µmp

kTgas,0

(
γ − 1

γ

)[
Ψ(r) − Ψ(0) +

β

MPl

(ϕ(r) − ϕ0)

]}1/(γ−1)

, (3.65)

for the polytropic model,

Pgas(r) = Pgas,0 + µmp

∫ r

0

ne(r)

(
−dΨ

dr
− β

MPl

dϕ(r)

dr

)
dr, (3.66)

for Model A, and

Pe(r) = P0 exp

(∫ r

0

µmp

kTe(r)

[
−dΨ

dr
− β

MPl

dϕ

dr

]
dr

)
, (3.67)

for Model B.

Here, we demonstrate how the modification of gravity affects gas distributions

using the polytropic gas distribution. Using the solution for the chameleon field, the

solution (3.65) can be explicitly written as

ygas(x) =





[
1 − A

(
1 +

(1 + x)2−b − 1

(b − 2)x
− βϕs

ϕ0

(x(1 + x)b)1/(n+1)

)]1/(γ−1)

, x ≤ xc

[
1 − A

(
1 + (1 + 2β2)

(1 + x)2−b − 1

(b − 2)x
− β

ϕ0

(
ϕ∞ − C

x

))]1/(γ−1)

, x > xc

(3.68)
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Figure 3.2: Gas density profile as a function of x = r/rs. The solid lines are the cases with
the chameleon force, and the dashed lines are the cases without the chameleon force. Green,
blue and red lines shows the cases of Mvir = 4 × 1014M⊙, 1014M⊙, 1013M⊙, respectively,
where we fix β = 1 and ϕ∞ = 1.1 × 10−5MPl.

for b ̸= 2, and

ygas(x) =





[
1 − A

(
1 − log(1 + x)

x
− βϕs

ϕ0

(x(1 + x)2)1/(n+1)

)]1/(γ−1)

, x ≤ xc

[
1 − A

(
1 − (1 + 2β2)

log(1 + x)

x
− β

ϕ0

(
ϕ∞ − C

x

))]1/(γ−1)

, x > xc

(3.69)

for b = 2, where

A ≡ µmpϕ0

kTgas,0MPl

γ − 1

γ
. (3.70)

Typically, we find ϕs/ϕ0 ≪ 1. Then the inner solution can be represented by the

solution for the Newtonian case,

y(NG)
gas (x) =





[
1 − A

(
1 +

(1 + x)2−b − 1

(b − 2)x

)]1/(γ−1)

, b ̸= 2
[
1 − A

(
1 − log(1 + x)

x

)]1/(γ−1)

, b = 2.

(3.71)
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Figure 3.2 shows radial density profiles. The solid curves show the Newtonian

cases and the dashed curves show the cases with the chameleon field. The red, blue

and green curvesare for virial masses of Mvir = 1013M⊙, 1014M⊙ and 4× 1014M⊙, re-

spectively. The gas density decreases rapidly in the outer region, where the chameleon

force is influential. For a large mass cluster, the chameleon mechanism works out to

large radii, because the density of the matter is high enough even outside the cluster.

On the other hand, for a small mass cluster, the chameleon mechanism works only

at small radii, because the matter density is high only in the central region. Because

the chameleon force is an attractive force, a larger pressure gradient is necessary to

balance it. This makes the gas distribution compact. This feature is more significant

for smaller-mass clusters.

3.4.2 Galileon field

In this section, we review an analytic solution for the Galileon field of the generalized

Galileon model. The solution was derived in [25], assuming spherical symmetry of

the system within the sub-horizon scale, the quasi-static approximation and keeping

the Vainshtein mechanism.

We consider perturbations of the space-time metric, the matter density and the

Galileon field .

ds2 = −(1 + 2Ψ(x))dt2 + a(t)2(1 + 2Φ(x))dx2, (3.72)

ρ(t,x) = ρ(t)(1 + δ(x)) (3.73)

ϕ(t,x) = ϕ(t)(1 + Q(x)) (3.74)

where the perturbed values, Ψ, Φ, δ and Q are expressed in the comoving coordinate

frame. Within the sub-horizon scale in the quasi-static approximation, the Einstein

equation and the Galileon field equation yield the following perturbed equations.

△
a2

Φ = −4πGδρ + ξ
△
a2

Q, (3.75)

Φ + Ψ = −αQ, (3.76)

△
a2

Q + λ2

(
Q,ij

a2

Q,ij

a2
+

(△
a2

Q

)2
)

= −4πGξδρ (3.77)

where △ is the Laplacian in the comoving coordinate frame, and α, ξ, ζ and λ2,

are the model parameters, which are determined by the arbitrary functions G4(ϕ),
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K(ϕ,X) and G3(ϕ,X). The expressions for α, ξ, ζ and λ2 are summarized in Ap-

pendix A.2. In the spherically symmetric system, Eqs. (3.75), (3.76) and(3.77) reduce

to

dΨ

dr
=

GM(< r)

r2
− (α + ξ)

dQ

dr
, (3.78)

dΦ

dr
= −GM(< r)

r2
+ ξ

dQ

dr
, (3.79)

dQ

dr
=

r

4λ2

(
1 −

√
1 +

8Gλ2ζM(< r)

r3

)
, (3.80)

where M(< r) ≡ 4π
∫ r

0
dr′r′2ρ(r′) is the mass of the halo enclosed within the physical

radius r. Note that the perturbed values Ψ, Φ and Q in Eqs. (3.78)∼(3.80) are

written in the physical coordinate frame. The explicit expressions for the simplest

cubic Galileon, the sDGP and the nDGP models were also presented in [25], and are

summarized in Appendix A.2.

Here, we define the Vainshtein radius rV as

rV ≡ [8Gλ2ζMvir]
1/3 =

[
8Gϵ2Mvir

H2
0

]1/3

, (3.81)

where we define ϵ =
√

H2
0λ

2ζ using the Hubble constant H0. For r ≪ rV, the

scalar field is negligible compared with the Newton potential, so Newtonian gravity

is recovered. For r ≫ rV the scalar field cannot be neglected, and we have

dΨ

dr
≃ (1 + ζ(α + ξ))GM(< r)

r2
, (3.82)

dΦ

dr
≃ −(1 + ζξ)GM(< r)

r2
. (3.83)

Thus the gravitational and curvature potentials are modified at r ≫ rV. These

modifications affect both the gas and weak-lensing profiles. We next construct obser-

vational quantities for the gas and weak-lensing profiles, taking the scalar field into

account.

Since gas components feel the gravitational force through the gravitational po-

tential Ψ, the X-ray brightness and the SZ profiles are modified by the modification

of Ψ. On the other hand, the gravitational lensing is characterized by the lensing

potential (Φ − Ψ)/2, so the modified lensing potential alters the observed lensing
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profile. We, therefore, introduce the parameters

µG ≡ (α + ξ)ζ, (3.84)

µL ≡ 1

2
(α + 2ξ)ζ, (3.85)

with which we can write dΨ/dr ≃ (1 + µG)GM(< r)/r2 and d(Ψ − Φ)/dr/2 ≃
(1 + µL)GM(< r)/r2 at r ≫ rV.

In the generalized Galileon model, with the use of parameters µG, µL and ϵ our

modeling for the electron pressure profiles in Eqs. (3.29), (3.31), and (3.33), and the

weak-lensing profile in Eq. (3.41) are modified.



Chapter 4

Testing modified gravity models

As described in Section 3.4, the presence of a fifth force or the modification of the

gravitational and lens potentials causes the modification of gas distribution and shear

profiles. Using these characteristic features, we shall consider constraints on modified

gravity models. This chapter is organized as follows. We first demonstrate that the

presence of a fifth force affects the observations of X-ray temperature of the Hydra

A cluster using the polytropic gas distribution model in Section 4.1. From that we

can obtain a useful constraint on the chameleon model. In Section 4.2, we develop

our method of testing the chameleon model used in 4.1 by joint fitting with multi-

wavelength observations of the Coma Cluster. In Section 4.3, we apply the method

used in Section 4.2 to the generalized Galileon model.

4.1 The chameleon field applied to the Hydra A cluster

4.1.1 Introduction

In this section, we compare the theoretical predictions of X-ray temperature with the

Suzaku observation of the Hydra A cluster out to virial radius [94]. Because of the

steep drop of the gas distribution in the presence of the attractive chameleon force, a

similar drop in X-ray observations is expected to be found in the outer region. The

Hydra A cluster is a medium-sized cluster located at a distance of 230 Mpc. Two

different fields are observed [94]. One is the northwest offset from the X-ray peak of

the cluster, and the other is the northeast offset. The former and latter fields are

called the filament and void fields, respectively, because each field continues into the

filament and void structures, respectively. In Fig. 4.1 the points with error bars show

the data for the filament direction from Ref. [94].

49
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Figure 4.1: Temperature profiles as a function of the radius r⊥. The points with error
bars show the observation data of the filament direction [94]. The curves are the theo-
retical predictions of the chameleon model. The solid curve uses the best-fit parameters
(ϕ∞,Mvir, c, Tg(0)) = (5.4 × 10−5MPl, 5.1 × 1014M⊙, 5.8, 4.9keV). The dashed curve uses
ϕ∞ = 2 × 10−5MPl, while the dotted curve uses ϕ∞ = 1.3 × 10−4MPl, where the other
parameters are the same as those of the solid curve. Here we fixed β = 1 and b = 2. The
dotted and dashed curves correspond to limits of the modified gravity in Eq. (4.2) and
Newtonian gravity in Eq. (4.5), respectively.

4.1.2 Comparison with X-ray temperature

Here, we assume a generalized NFW profile and the polytropic equation of state for

gas components. In this case, the gas distribution with an analytic solution for the

chameleon field is described by the dimensionless gas profile, ygas, which is given by

Eq. (3.65),

ygas(x) =





[
1 − A

(
1 +

(1 + x)2−b − 1

(b − 2)x

)]1/(γ−1)

, x ≤ xc

[
1 − A

(
1 + (1 + 2β2)

(1 + x)2−b − 1

(b − 2)x
− β

ϕ0

(
ϕ∞ − C

x

))]1/(γ−1)

, x > xc
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(4.1)

for b ̸= 2, and

ygas(x) =





[
1 − A

(
1 − log(1 + x)

x

)]1/(γ−1)

, x ≤ xc

[
1 − A

(
1 − (1 + 2β2)

log(1 + x)

x
− β

ϕ0

(
ϕ∞ − C

x

))]1/(γ−1)

, x > xc

(4.2)

for b = 2, where

A ≡ µmpϕ0

kTgas,0MPl

γ − 1

γ
, (4.3)

and ϕs is neglected. Then the X-ray temperature, TX, is characterized by the pa-

rameters Mvir, c, b, Tgas,0, γ, β and ϕ∞, but we determine the polytropic index γ by

using Eq. (17) in Ref. [95]. The relation between the polytropic index, γ, and the

concentration, c, asymptotically follows the equation [95])

γ = 1.137 + 8.94 × 102 ln(c/5) − 3.68 × 103(c − 5). (4.4)

Our conclusions are not altered qualitatively for 1.1 ≤ γ ≤ 1.3. The curves in

Fig. 4.1 show our theoretical model of the X-ray temperature. The solid curve is the

best-fit curve, whose parameters are noted in the caption. The dashed curve and

the dotted curve use ϕ∞ = 2 × 10−5MPl and 1.3 × 10−4MPl, respectively, where the

other parameters are the same as those for the solid curve. The dotted curve, the

solid curve, and the dashed curve in Fig. 4.1 represent the characteristic curves which

appear when we vary ϕ∞ from a sufficiently large value to a smaller one. First, the

dotted curve represents the limit of the modified gravity. Namely, for the large value

of ϕ∞ ≥ ϕ0, xc becomes negative from Eq. (3.60). This means that no interior region

where the chameleon mechanism works to recover Newtonian gravity appears in a

cluster. Thus, for the case ϕ∞ ≥ ϕ0, we have ϕ(x) = ϕout(x) for the entire region

and, therefore, the solution of Eqs. (4.1) and (4.2) should be replaced with

y(MG)
gas (x) =





[
1 − A(1 + 2β2)

(
1 +

(1 + x)2−b − 1

(b − 2)x

)]1/(γ−1)

, b ̸= 2
[
1 − A(1 + 2β2)

(
1 − log(1 + x)

x

)]1/(γ−1)

, b = 2

(4.5)
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On the other hand, the dashed curve represents the limit of Newtonian gravity,

y(NG)
gas (x) =





[
1 − A

(
1 +

(1 + x)2−b − 1

(b − 2)x

)]1/(γ−1)

, b ̸= 2
[
1 − A

(
1 − log(1 + x)

x

)]1/(γ−1)

, b = 2

(4.6)

From Eq. (3.60), the value of xc becomes larger as ϕ∞ becomes smaller. This means

that the chameleon force is influential at only very large radii, so Newtonian behavior

is recovered for the entire region of the cluster. Note that the interior solution ygas(x),

given by Eq. (4.2) for x < xc, can be approximated by taking the limit of β → 0 in

Eq. (4.5), because, in order to screen the scalar field where the chameleon mechanism

works, ϕs takes a very small value. In summary, the dotted curve and the dashed

curve are the two opposite limits, and our theoretical curve is restricted by these two

limits. Note that the modified gravity limit of Eq. (4.5) depends on the coupling

constant β.

4.1.3 Constraint on chameleon model

Let us define χ2 is by

χ2 =
7∑

i=1

(TX(r⊥,i) − T obs.
i )2

(∆T obs.
i )2

, (4.7)

where T obs.
i and ∆T obs.

i are the observed data and the error of the filament direction,

respectively, and TX(r⊥,i) is our theoretical model. Let χ2
min be the minimum value

of χ2. Figure 4.2 shows the contours of ∆χ2 = χ2 − χ2
min on the parameter plane

for ϕ∞ and Mvir. Here, we have fixed β = 1 and b = 2, but the parameters c and

Tgas,0 are varied so as to minimize χ2. These parameters are varied within the ranges

Upper limit for ϕ∞ in unit of [MPl]
Filament Void

b = 1.7 1.4 × 10−4 0.9 × 10−4

b = 2.0 1.0 × 10−4 0.8 × 10−4

b = 2.5 0.8 × 10−4 0.6 × 10−4

Table 4.1: Upper bounds of ϕ∞ at the 2-sigma level for different values of b and the data
for the filament and void directions. Here we have fixed β = 1.
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Figure 4.2: The contours of ∆χ2 on the parameter plane ϕ∞- Mvir. Here we have fixed
β = 1 and b = 2, but c and Tgas,0 are varied as fitting parameters. The contour levels of
the inner dashed curve and the outer solid curve are ∆χ2 = 2.7 and 6.6, respectively.

3 ≤ c ≤ 10 and T ∗
0 /α ≤ Tgas,0 ≤ T ∗

0 α with α = 1.1, where T ∗
0 is given by Eq. (19) in

Ref. [95]:

T ∗
0 = η0

4

3 + 5X

GmpMvir

3rvir

, (4.8)

with

η0 = 2.235 + 0.202(c − 5) − 1.16 × 103(c − 5)2. (4.9)

When taking Tgas,0 as a completely free parameter, it is difficult to obtain a useful

constraint from the present data due to the degeneracy between Tgas,0 and Mvir.

The minimum value of χ2 is χ2
min = 1.0, where the number of degrees of freedom

(d.o.f.) is 3. The behavior of the contour is explained by the fact that the theoretical

curve approaches that of Newtonian gravity as ϕ∞ becomes small and that the steep

drop becomes significant as ϕ∞ increases. Figure 4.2 gives an upper bound of ϕ∞ <

10−4MPl at the 2-sigma level for the case b = 2 and β = 1. We obtain a similar

upper bound of ϕ∞ for different values of b, which are summarized in Table 4.1. The
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upper bound of ϕ∞ becomes larger as b becomes smaller, but we conclude that the

results do not significantly depend on b. Table 4.1 includes the results for the void

direction. The upper bound of ϕ∞ depends on the data, that is, whether we consider

the filament direction or the void direction; however, our conclusion does not alter

significantly.

Constraint on an f(R) model

So far, we have considered the case β = 1; we shall now discuss the case β = 1/
√

6,

which corresponds to an f(R) model [13–15]. In this case, we could not obtain a

useful constraint on ϕ∞, which is explained as follows. The theoretical density profile

is limited by two characteristic curves: Eq. (4.5) and Eq. (4.5) with β = 0. When β

is small, the difference between these two characteristic curves is small, because the

drop of the gas distribution is not steep. This is the reason why no useful constraint

on the f(R) model was obtained from the current X-ray data here.

4.1.4 Systematic effects

We cannot rule out the possibility that the assumption of hydrostatic equilibrium of

the hot gas is crucial for constraints on the chameleon field. To estimate the effect,

we consider the effect of the non-thermal pressure by simply introducing a constant

parameter, ϵ,

1 + ϵ

ρgas

dPgas

dr
= −dΨ

dr
− β

MPl

dϕ

dr
, (4.10)

and we attempt to obtain similar constraints by inserting the nonzero values of

ϵ = ±0.5 in Eq. (4.10). The upper bound of ϕ∞ changes from 10−4MPl for ϵ = 0

to 0.6 × 10−4MPl and 2.1 × 10−4MPl for ϵ = 0.5 and −0.5, respectively. Thus, the

assumption of hydrostatic equilibrium is crucial to the constraint, but we may obtain

a useful constraint if we can model the state of the gas correctly. Further study of

this problem is necessary.

Finally, we assumed spherical symmetry for a cluster. The validity of the as-

sumption should be checked when comparing with observational data. In the present

paper, the results in Table 4.1 do not depend significantly on the direction (filament

or void) which suggests the validity of this assumption.
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4.2 The chameleon field applied to the Coma Cluster

4.2.1 Introduction

When the chameleon field is coupled with the gas component, the fifth force due to

the chameleon field affects the gas density profile of the galaxy cluster. This causes

an additional pressure gradient that balances the extra force, which leads to a more

compact gas distribution in the cluster. This effect has been used in [42] (Section 4.1)

to compare the X-ray temperature profile predicted by the chameleon model with

measurements of the Hydra A cluster, yielding an upper bound of ϕ∞ < 10−4MPl for

the asymptotic scalar field value at large distances with a coupling constant between

the chameleon field and matter of β = 1.

In the presence of a chameleon force, due to its effect on the gas distribution,

the hydrostatic mass of a cluster, if interpreted assuming Newtonian gravity, will

deviate from its underlying dark matter distribution, which can be measured via weak

gravitational lensing, resulting in different mass estimates for the cluster (see [96] for

a recent analysis of this mass bias in hydrodynamic simulations of f(R) gravity).

Therefore, the combination of gas and lensing measurements of a cluster may yield

a powerful probe of gravity if they give statistically different mass estimates, which

are not due to other astrophysical reasons.

In this section, we demonstrate the operability of this method with the Coma

cluster. This is a massive cluster at a distance of approximately 100 Mpc, whose

properties have been measured using several independent methods. The Planck team

has, for instance, reported a precise observation of the Sunyaev-Zel’dovich (SZ) ef-

fect [97]. Moreover, the X-ray surface brightness and X-ray temperature have been

measured [98–100], and weak-lensing observations have been conducted [101, 102].

We use the combination of these measurements to place tight constraints on β and

ϕ∞. Figure 1.2 illustrates the effectiveness of our approach. In that figure, we com-

pare our result to current constraints from cosmological, astrophysical, and local

tests in the well-studied case that the chameleon model reduces to f(R) gravity. Our

Coma constraint is currently the tightest constraint on cosmological scales.

An important element of our method is the reconstruction of the gas distribution

in a galaxy cluster under the influence of the fifth force. In previous work [42], the

hydrostatic equilibrium of the gas components was assumed when modeling the gas

distribution of the Hydra A cluster in chameleon gravity. Hydrostatic equilibrium

may, however, not always be realized because of turbulence and bulk motions of the

gas caused by mergers with other clusters and groups of galaxies, as well as infalling

material. The authors of Ref. [103] have demonstrated that the cluster masses in
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numerical simulations, estimated under the assumption of hydrostatic equilibrium,

can deviate from the true mass by up to 30%, and that the deviation is explained

by the acceleration term in the Euler equation. We, therefore, carefully examine the

systematic errors that deviations from hydrostatic equilibrium in the Coma Cluster

may introduce to our results.

We first reconstruct the 3-dimensional profiles of the gas density, temperature, and

pressure from the observational results using Newtonian gravity. We then compare

the mass estimates from the gas observations with the mass estimate from lensing,

finding good agreement between them and concluding that the assumption of hy-

drostatic equilibrium is a good approximation given the observational errors of the

lensing mass. Moreover, these mass estimates are only marginally affected by the in-

clusion of an extremized non-thermal pressure component, which has been calibrated

to hydrodynamical simulations.

While non-thermal pressure and other deviations from hydrostatic equilibrium

enhance the hydrostatic mass estimate, we find a strong decrease of the reconstructed

hydrostatic mass when the chameleon fifth force is introduced. The detection of an

enhanced hydrostatic mass with respect to the lensing mass when interpreted in a

Newtonian framework, may, therefore, be a smoking gun for modified gravity. On

the other hand, the effects of non-thermal pressure and the chameleon force may

become degenerate in the reconstruction, as the change in the hydrostatic mass by

enhancing modifications of gravity can be compensated by increasing deviations from

hydrostatic equilibrium. Given the small effect of the non-thermal pressure compared

to the effect from modifying gravity, however, we decide that it is safe to assume

hydrostatic equilibrium of the gas, and perform our analysis under this assumption.

Finally, note that Fusco-Femiano et al. [104] recently investigated the consistency

between the X-ray observations of surface brightness and temperature and the SZ

measurement in the Coma Cluster, adopting a “Supermodel”. The Supermodel ex-

presses the profiles of density and temperature in an entropy-modulated equilibrium

of the intracluster plasma within the potential wells provided by the dominant dark

matter [105]. This yields a direct link between the X-ray and SZ observations based

on the entropy profile. They found a tension between the SZ and X-ray pressures of

the plasma. In our analysis, we confirm these results, by finding a similar tension

between the SZ and X-ray pressures. However, the tension is mainly represented by

the asymptotic difference of the values of the pressure between the inner and the

outer regions. On the other hand, the constraint on the chameleon gravity model

comes from the shape of the density profile in the intermediate regime, so we can

nevertheless put a useful constraint on the chameleon model.
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This section is organized as follows. In Section 4.2.2, we review the hydrostatic

equilibrium equations and hydrostatic mass, including a brief review of an analytic

approximate solution of the scalar field profile in the cluster. In Section 4.2.3, we

perform a Markov chain Monte Carlo (MCMC) analysis to place constraints on the

Newtonian and chameleon model parameter space. We then discuss the systematic

effects introduced by deviations from spherical symmetry, and study deviations from

the hydrostatic equilibrium of the gas in Newtonian gravity by comparing the hy-

drostatic mass inferred from X-ray and SZ measurements with the lensing mass and

analysing the effects of including non-thermal pressure in comparison to the effects

from the chameleon force.

4.2.2 Hydrostatic and lensing mass in the presence of a chameleon force

We describe the hydrostatic mass of a spherically symmetric system of gas and in-

troduce a non-thermal pressure model, which we use to analyze deviations from

hydrostatic equilibrium. Then, we briefly review the derivation of an analytic ap-

proximate solution for the chameleon scalar field profile within a dark matter cluster,

which we use to determine the effects on hydrostatic masses in the presence of the

extra force. Next, we compare the reconstructed hydrostatic masses obtained from

different gas observations with the observed lensing mass and discuss the effect on

the mass reconstruction when incorporating the non-thermal pressure model and the

chameleon modification.

We consider a spherically symmetric system of gas and dark matter. In this case,

we can write the equation for the gas component in hydrostatic equilibrium as

1

ρgas(r)

dPtot(r)

dr
= −GM(< r)

r2
, (4.11)

where ρgas is the gas density, Ptot is the ‘total’ gas pressure, including both ther-

mal and non-thermal pressure, and M(< r) is the mass enclosed within the radius

r. This equation describes the balance between the gas pressure gradient and the

gravitational force. Note that we have not yet included the chameleon force. The

total gas pressure can be written as the combination of the thermal pressure and the

non-thermal pressure, Ptot = Pgas + Pnth. Eq. (4.11) can then be rewritten as

M(< r) = Mth(r) + Mnth(r) (4.12)
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with the definitions

Mth(r) ≡ − r2

Gρgas(r)

dPgas(r)

dr
, (4.13)

Mnth(r) ≡ − r2

Gρgas(r)

dPnth(r)

dr
. (4.14)

Mnth is introduced to help mathematically describe the non-thermal pressure contri-

bution to the total mass. Note that Mth is expressed in terms of Pgas and ρgas in

Eq. (4.13). If we introduce the equation of state of the gas, Pgas = kngasTgas, we can

express the thermal mass in terms of Tgas and ρgas instead:

Mth(r) = −kTgas(r)r

µmpG

(
d ln ρgas(r)

d ln r
+

d ln Tgas(r)

d ln r

)
, (4.15)

where we have used ρgas = µmpngas.

We define the fraction of the total pressure attributed to the non-thermal contri-

bution by

Pnth(r) ≡ g(r)Ptot(r). (4.16)

Hence, using Ptot = g−1Pnth = (1 − fnth)
−1Pgas, we may write

Pnth(r) =
fnth(r)

1 − fnth(r)
ngas(r)kTgas(r). (4.17)

According to hydrodynamical simulations [106,107], the non-thermal contribution to

the total pressure can be modeled with the expression

fnth(r) = αnt(1 + z)βnt

(
r

r500

)nnt
(

M200

3 × 1014M⊙

)nM

, (4.18)

where αnt, βnt, nnt, and nM are constants. For illustration, and for an estimation of

the effects of neglecting the non-thermal contribution, we adopt the parameter values

(αnt, βnt, nnt, nM) = (0.3, 0.5, 0.8, 0.2), which are the best-fit values in [107] with the

exception of αnt. The best-fit value of αnt is 0.18, which is an averaged value over 16

simulated clusters. We set αnt = 0.3, which is the maximum value obtained in the 16

clusters [107], in order to study the effect of the non-thermal pressure contribution

in the extremized case.

We refer to next subsubsection for our approach to the reconstruction of the 3-
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dimensional profiles of ρgas, Tgas, and Pgas from the gas observations via the X-ray

temperature, X-ray surface brightness, and SZ effect, which enables us to estimate

Mth. Using Eqs. (4.16) and (4.18), we can then estimate the non-thermal contribution

Mnth employing the results from hydrodynamical simulations.

In the presence of the chameleon field, the hydrostatic equilibrium in Eq. (4.11)

is modified by the introduction of the extra force Fϕ = −(β/MPl)dϕ/dr on the right-

hand side of the equation. The chameleon force then modifies the mass inferred from

hydrostatic equilibrium in Eq. (4.12) as

M(< r) = Mth(r) + Mnth(r) + Mϕ(r), (4.19)

where we define an extra mass

Mϕ(r) ≡ −r2

G

β

MPl

dϕ(r)

dr
(4.20)

associated with the enhanced gravitational force due to the chameleon field.

Reconstruction of the 3-dimensional gas profiles

Here, we summarize the method for the reconstruction of the 3-dimensional profiles of

the gas density, temperature, and pressure, using observations of X-ray temperature,

surface brightness, and the SZ effect to derive hydrostatic masses.

Having summarized the quantities observed in the X-ray and SZ measurements

in Section 3.2.5, we now use them to reconstruct the 3-dimensional gas density,

temperature, and pressure profiles. For this purpose, we adopt the following fitting

functions for the 3-dimensional profiles of Tgas(r), ne(r), and Pe(r). For Tgas(r), we

use the fitting formula calibrated to numerical simulations [108]

Tgas(r) = T0

[
1 + A

(
r

r0

)]b0

, (4.21)

where T0, A, r0, and b0 are free parameters. For the electron number density, we

assume a simple isothermal β model [86]:

ne(r) = n0

[
1 +

(
r

r1

)2
]b1

, (4.22)

where the free parameters are n0, r1, and b1. Finally, we adopt the generalized NFW
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profile for the pressure proposed in Ref. [109],

Pe(r) =
P0

(r/r2)b2(1 + (r/r2)b3)b4
, (4.23)

for the 3-dimensional electron pressure profile with the fitting parameters P0, r2, b3,

and b4.

We compute the projected profiles in Eqs. (3.34), (3.36), and (3.37) with the fitting

functions of Eqs. (4.21), (4.22), and (4.23), and determine the best fit parameters

T0, A, r0, b0, n0, r1, b1, P0, r2, b2, b3 and b4 by comparing the profiles with the

observations from the X-ray temperature, X-ray surface brightness, and SZ effect

of the Coma Cluster in Section 4.2.4. In this way, we obtain the reconstructed 3-

dimensional gas density, temperature, and pressure profiles of the cluster.

Note that since we assume the hydrostatic equilibrium of Eq. (4.29) in the MCMC

analysis in Section 4.2.3, we only need to define two of these profiles, from which the

other profiles can be derived. One profile could also be the matter density profile;,

however, in that case, the exact analytic expressions of the fitting functions are not

necessarily reproduced. In Section 4.2.3, we choose to work with the electron number

density Eq. (4.22) and the NFW profile Eq. (2.41). The choice of the NFW profile

simplifies the computation of the chameleon force and allows the use of the analytic

approximation derived in Section 3.4.1. Hence, the degrees of freedom reduce to T0,

n0, r1, b1, including the NFW parameters Mvir and c as well as the chameleon model

parameters β and ϕ∞ (or β2 and ϕ∞,2), where T0 is required to set the integration

constant in Eq. (4.30). This approach yields reasonable reduced χ2 values when fitted

to the observational data in Section 4.2.3.

Inferring hydrostatic and lensing masses from observations

The thermal mass Mth of a cluster in Eq. (4.15) is determined by its gas density,

temperature, and pressure, which can be deduced from X-ray and SZ observations.

To obtain Mth from observations, we reconstruct the 3-dimensional gas profiles using

parametric fits as described in detail in Appendix 4.2.2, which we substitute into

Eq. (4.15). We assume that the gas is fully ionized and that the electron temper-

ature is equal to both Tgas and the proton temperature. Note, however, that this

assumption is nontrivial because the equipartition timescale between electrons and

protons through Coulomb collisions is close to the dynamical timescale of the cluster

(see, e.g., [110]).

With the 3-dimensional temperature, electron density, and pressure profiles re-
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constructed as described above, we can now determine the thermal mass profile of

the cluster. From X-ray observations, we infer

Mth = −kT
(X)
gas r

µmpG

(
d ln n

(X)
e

d ln r
+

d ln T
(X)
gas

d ln r

)
(4.24)

and similarly, from the SZ observations, we obtain

Mthermal = − r2

Gρ
(X)
gas

dP
(SZ)
gas

dr
, (4.25)

where we use ne = (2 + µ)ngas/5 and Pe = nekTgas = (2 + µ)Pgas/5. With this

reconstruction, we can directly compare the two mass profiles with the lensing mass

MWL = 4πρsr
3
s

[
ln(1 + r/rs) − r/rs

1 + r/rs

]
, (4.26)

which is obtained by integration over the NFW density profile in Eq. (2.41), assuming

that ϕ/MPl ≪ 1 so that the lensing potential is related to the matter distribution by

the standard Poisson equation. The subscript WL denotes weak lensing.

In the presence of a non-thermal pressure, Eqs. (4.24) and (4.25) are modified

according to Eq. (4.18) with the mass

Mth + Mnth = −kT
(X)
gas r

µmpG

(
d ln n

(X)
e

d ln r
+

d ln T
(X)
gas

d ln r

)
− r2

Gρ
(X)
gas

d

dr

(
g

1 − fnth

n(X)
gaskT (X)

gas

)
,

(4.27)

inferred from X-ray observations, whereas a combination of SZ and X-ray observa-

tions implies

Mth + Mnth = − r2

Gρ
(X)
gas

dP
(SZ)
gas

dr
− r2

Gρ
(X)
gas

d

dr

(
g

1 − fnth

P (SZ)
gas

)
. (4.28)

To derive our constraints in Section 4.2.3, we will assume hydrostatic equilibrium,

Eq. (4.11), and thus require

Mth + Mnth + Mϕ ≡ MWL, (4.29)
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where Mϕ is the chameleon contribution described in Eq. (4.20) and Mnth ≪ Mth +

Mϕ. We refer the reader to Section 4.2.4 for an analysis of the validity of the hydro-

static equilibrium assumption in the case of the Coma Cluster.

4.2.3 Constraints on the model parameters from an MCMC analysis

We chose to work with the Coma Cluster where the non-thermal pressure is expected

to be subdominant (see, e.g., [111] and Section 4.2.4) and which has been well ob-

served with a range of different methods [111–114]. The contribution of non-thermal

pressure can also be assumed small in modified gravity [96]. Ref. [115] has recently

pointed out that the cluster may not be very typical: its X-ray temperature and star

formation rate is high but its kinematic features, like substructure and velocity dis-

persion, are not conspicuous. The authors urge caution in using the Coma Cluster as

a z ∼ 0 baseline cluster in galaxy evolution studies. On the other hand, according to

references [116,117], the Coma cluster is in agreement with scaling relations obtained

from typical cluster samples. We cannot exclude the possibility that extraordinary

features of the cluster may affect our conclusions. However, our constraints rely

only on the observed distribution of gas and dark matter and we allow a number of

degrees of freedom in phenomenological models of these distributions, finding good

agreement of our fits with the observational data. We also carefully examine a dy-

namical equilibrium model of the Coma Cluster. Note that our method applies to

any cluster which is in hydrostatic equilibrium, and is not restricted to the Coma

Cluster.

Method

The NFW density profile is specified by the virial mass Mvir and the concentration

parameter c. For the gas distribution, we use Model A which is characterized by the

NFW parameters and the parameters, T0, n0, r1 and b1. Then the solution for gas

pressure is given by Eq. (3.66),

Pgas(r) = Pgas,0 + µmp

∫ r

0

ne(r)

(
−GM(< r)

r2
− β

MPl

dϕ(r)

dr

)
dr, (4.30)

with the electron number density, ne, represented by Eq. (3.30),

ne = n0

[
1 +

(
r

r1

)2
]−b1

. (4.31)
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The configuration of the scalar field is given by specifying the parameters β and ϕ∞.

Then, the complete list of parameters we analyze in our MCMC study becomes T0,

n0, b1, r1, Mvir, c, β, and ϕ∞. Once these parameters are specified, we can compute

the projected gas profiles in Eqs. (3.34), (3.36) and (3.37), which are then compared

with the observational data from the X-ray surface brightness and temperature, and

the SZ observations. Here, to estimate the cooling function for the surface brightness,

we use the X-ray flux based on the APEC model corresponding to the observational

band from 0.5 keV to 2.5 keV [98], and we adopt the metal abundance of Z = 0.3Z⊙
throughout the cluster. The metal abundance in the innermost region of the cluster

is larger than in the outer region, Z = 0.4Z⊙ [104] and Z = 0.3Z⊙ [118], respectively.

However, as the difference is small and does not affect our conclusions, we use Z =

0.3Z⊙.

We estimate the “goodness-of-fit” by computing the chi-squared statistic

χ2(Mvir, c, T0, n0, b1, r1, β, ϕ∞) = χ2
XT + χ2

SB + χ2
SZ + χ2

WL, (4.32)

where

χ2
XT =

∑

i

(TX(r⊥,i) − T obs.
X,i )2

(∆T obs.
X,i )2

, (4.33)

χ2
SB =

∑

i

(SX(r⊥,i) − Sobs.
X,i )2

(∆Sobs.
X,i )2

, (4.34)

χ2
SZ =

∑

i

(y(r⊥,i) − yobs.
i )2

(∆yobs.
i )2

, (4.35)

χ2
WL =

(Mvir − MWL)2

(∆MWL)2
+

(c − cWL)2

(∆cWL)2
. (4.36)

Here, TX(r⊥,i) and T obs.
X,i are the theoretical and observed X-ray temperatures, and

∆T obs
X,i refers to the observational error. We adopt the analogous notation for the sur-

face brightness SX and the y-parameter, defined by the SZ temperature as ∆TSZ/TCMB ≡
−2y. In addition, MWL and cWL are the observed virial mass and the concentration

parameter from weak lensing, respectively.

For the X-ray temperature profile, we use the XMM-Newton data reported in

Ref. [99] for the inner region and Suzaku data reported in Ref. [100] for the outer re-

gion. For the X-ray surface brightness profile, we use the XMM-Newton data reported

in Ref. [98] and for the SZ pressure profile, we use the Planck measurements [97].

Finally, we use the weak-lensing measurement of the Coma Cluster reported by Ok-
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abe et al. [102], who adopt a NFW fit in their analysis to obtain a virial mass for

the cluster of Mvir = 8.92+20.05
−5.17 ×1014h−1M⊙ and a concentration of c = 3.5+2.57

−1.79 with

virial overdensity ∆c = 100.

In our likelihood analysis, we assume that the information contained in each data

point is independent of the other data points, in other words, that there is no corre-

lation between these four observations. This could be an over-simplification. These

four observations are based on different measurement principles, and the X-ray, SZ

effect, and weak-lensing observations are obtained at different wavelengths. On the

other hand, the information contained in the data comes from the same astrophysical

object, and thus the systematic errors might be correlated. For instance, the clumpi-

ness of the cluster and other non-spherically symmetric features would introduce a

correlated systematic error between the data sets. We do not take into account such

correlations in our analysis and leave it for future work to address these observational

issues in more detail. See, however, Section 4.2.4 for a discussion of these effects.

We also note that the covariance of errors is not taken into account in our analysis

because it is not available to us. For now, we assign a 5% systematic error to the

measurement error of the X-ray surface brightness.

MCMC analysis

We perform an MCMC analysis with the 8 model parameters T0, n0, b1, r1, Mvir, c, β2,

and ϕ∞,2, which completely describe the X-ray temperature and surface brightness

profiles, the SZ effect, and the weak-lensing mass profile as well as the chameleon

modified gravity model. We use the re-normalized parameters

β2 =
β

1 + β
, (4.37)

ϕ∞,2 = 1 − exp

[
−
(

ϕ∞
10−4MPl

)]
, (4.38)

instead of β and ϕ∞, as β2 and ϕ∞,2 span the complete available parameter space

of β and ϕ∞ in the interval [0, 1]. Note, however, that some of the approximations

made in Section 3.4.1 do not hold in the extreme limits of ϕ∞,2 → 1 and β2 → 1. For

our analysis, we use the MCMC module included in the cosmomc [119] package,

which employs a Metropolis-Hastings [120, 121] sampling algorithm. We require a

Gelman-Rubin statistic [122] of R − 1 < 0.03 to ensure convergence of our runs.

In Fig. 4.3 we compare the overall best-fit curves for the chameleon gravity model

(solid) and Newtonian gravity (dashed) from the combination of all of the observa-
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Figure 4.3: Top left panel : Radial gas temperature profile of the Coma Cluster. The circles
and boxes represent the data points and errors from the XMM-Newton measurements
by Snowden et al. [99] and the Suzaku measurements by Wik et al. [100], respectively.
Top right panel : Radial surface brightness profile of the Coma Cluster. The data points
represent the XMM-Newton measurements by Churazov et al. [98]. The error bars in
the original data, which only account for the Poisson noise contribution, are small. We
assign a systematic error of 5% to each data point to take into account clumpiness and
other non-spherically symmetric features of the cluster. Bottom panel : Radial Sunyaev-
Zel’dovich CMB temperature profile. The data points represent the Planck measurements
by Ade et al. [97]. The best-fit values of the chameleon model parameters are (β, ϕ∞)=(15,
4×10−4MPl), where the model parameters characterizing the profiles are given in Table 4.3.
In the data analysis, we use the data points included within the radial range 100 kpc < r⊥ <
1 Mpc and fit them using the model parameters T0, n0, b1, r1, Mvir, c in the Newtonian case
(dashed lines) and in addition β2 and ϕ∞,2 in the chameleon scenario (solid lines). Note
that the best-fits of the Newtonian and chameleon cases almost overlap.
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Table 4.2: Best-fit values and 1-dimensional marginalized constraints (95% CL) for the
model parameters (T0, n0, b1, r1, Mvir, c) characterizing the gas and dark matter profiles
obtained from an MCMC analysis of the joint observational data sets.

parameter Newtonian gravity Modified gravity

Mvir 2.57+0.97
−0.54 1015 M⊙ 2.46+1.33

−0.61 1015 M⊙

c 2.56+0.49
−0.52 2.64+0.72

−0.7

n0 2.33+0.22
−0.17 10−3/cm3 2.34+0.21

−0.19 10−3/cm3

b1 −0.921+0.089
−0.109 −0.915+0.085

−0.107

r1 3.02+0.54
−0.47 102 kpc 2.99+0.56

−0.45 102 kpc

T0 11.2+0.76
−0.84 keV 11.3+0.79

−0.9 keV

tional data sets, that is, minimizing χ2 in Eq. (4.32). The corresponding best-fit

parameter values are listed in Table 4.3 along with the 1-dimensional marginalized

95% confidence levels (CL). We show the 2-dimensional marginalized contours for dif-

ferent combinations of the model parameters for the Newtonian case, that is, where

we have fixed β = 0 and ϕ∞ = 0, in Fig. 4.8. The best fit in this case yields a

reduced χ2 of χ2/d.o.f. = 32/41. In Fig. 4.9, we show the analogous constraints for

the model parameters of the chameleon modified gravity scenario. The best fit in

this case yields a good reduced χ2 of χ2/d.o.f. = 32/39. We refer to Section 4.2.4

for a discussion of possible sources of systematic error that have not been taken into

account in this analysis.

Finally, in Fig. 4.4, we show the 2-dimensional marginalized contours of the pa-

rameters β2 and ϕ∞,2. Note that the lower shaded region is the allowed region.

We recall that β describes the strength of the chameleon fifth force and ϕ∞ deter-

mines the efficiency of the chameleon screening, and we introduced the parameters

β2 = β/(1 + β) and ϕ∞,2 = 1 − exp(−ϕ∞/10−4MPl) instead of β and ϕ∞ to de-

scribe the entire parameter space of the chameleon modification. Newtonian gravity

is recovered in the limits of β2 = 0 or ϕ∞,2 = 0.

The boundaries in Fig. 4.4 can be understood by considering the phenomenology

of the chameleon modification. At large β, if the chameleon field is not screened,

the extra chameleon force reduces the hydrostatic mass compared to the Newtonian

mass estimate and it becomes inconsistent with the lensing mass (see Section 4.2.4).
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Figure 4.4: 95% (deep gray region) and 99% CL (pale gray region) contours for the
chameleon model parameters β2 = β/(1+β) and ϕ∞,2 = 1−exp(−ϕ∞/10−4MPl), obtained
from the MCMC analysis of the 8 model parameters, T0, n0, b1, r1,Mvir, c, β2, and ϕ∞,2,
using the joint set of X-ray, SZ, and weak-lensing data. The shaded region is the allowed
region.

This causes a tension in the desired parameter values when fitting the joint set of

observations and places constraints on the chameleon modification. On the other

hand, the chameleon force contributes only outside of the critical radius rc, which is

determined by Eq. (3.60) as

1 +
rc

rs

=
βρsr

2
s

MPlϕ∞
. (4.39)

Due to the chameleon suppression mechanism, Newtonian gravity is recovered below

rc. To put a useful constraint on the chameleon force, rc must be smaller than the

size of the cluster, which is about 1 Mpc. More precisely, with increasing βMPl/ϕ∞,

the transition scale rc becomes large and eventually surpasses the size of the cluster,

in which case the chameleon mechanism completely screens the fifth force within the

cluster. At this point, no further constraints on the chameleon model can be obtained.

This implies that there is an upper bound on βMPl/ϕ∞, which can be constrained.

In the opposite limit, when β is small, the fifth force is weak and the modifications

become consistent with the observations within the given errors. Hence, at low β2 in

Fig. 4.4 the chameleon scalar field amplitude ϕ∞,2 is unconstrained.

With the minimal scalar field in the background, −Λn+4 ≃ n−1β R̄0 ϕn+1
∞ MPl, the

Compton wavelength of the background scalar field today, assumed to be ϕ∞ here,
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becomes [65]

m−1
∞ ≃

[
β R̄0

n + 1

MPl

ϕ∞

]−1/2

∼
[
10−6 β

n + 1

MPl

ϕ∞

]−1/2

Mpc. (4.40)

Whereas the chameleon mechanism suppresses the scalar field on scales below rc, on

scales larger than the Compton wavelength m−1
∞ , modifications of gravity are Yukawa

suppressed. With Solar System tests requiring that ϕ∞ ≲ 10−6β [14, 65] and with

n ∼ O(1), one obtains m−1
∞ ∼ Mpc. Hence, requiring Solar System tests to be

satisfied, standard gravity is recovered on scales beyond O(1) Mpc (cf. [123]). Since

we use observations on only scales smaller than 1 Mpc and constraints are weaker

than the local bounds, we can safely ignore the Yukawa suppression.

Constraint on f(R) gravity

Our constraints have important implications for f(R) gravity [13–15], which corre-

sponds to a subset of our models with the particular choice of the coupling constant

β =
√

1/6. Here, we adopt the Hu-Sawiki model [14]. The f(R) modification can

be related to the chameleon field ϕ via

fR = −
√

2

3

ϕ

MPl

(4.41)

and hence, assuming that the Coma Cluster is isolated such that ϕ∞ corresponds

to the background scalar field value, we have fR0 = −
√

2/3(ϕ∞/MPl). From the 2-

dimensional contours of (β2, ϕ∞,2) in Fig. 4.4 we, therefore, estimate an upper bound

on f(R) gravity of ϕ∞ <∼ 7 × 10−5MPl or, equivalently, |fR0| <∼ 6 × 10−5 at the 95%

CL.

We emphasize that this result is comparable with the bounds on f(R) gravity

obtained from cosmology, such as from the abundance of clusters [34, 69, 124] (see

Fig. 1.2) and the current constraints from redshift-space distortions in the large scale

structure of galaxies [125]. Note that, in the case of ñ = 1, the value of |fR0| is

related to the Compton wavenumber of the scalar field kC by

kC ≃ 0.04

(
10−4

|fR0|

)1/2

hMpc−1. (4.42)

Then, |fR0| <∼ 6 × 10−5 can be rephrased as kC
<∼ 0.05 hMpc−1.

Note that the assumption that the Coma Cluster is an isolated system is non-
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trivial. It is well known that, on large scales, the cluster is connected to a network

of filaments [126, 127]. Hence, ϕ∞ or fR0 should really be understood as the scalar

field value in the mean density environment within a large radius around the Coma

Cluster, which we expect to be close to the background value [128]. This interpre-

tation does not differ from approaches taken to derive the constraints reported in

Fig. 1.2. Another possible violation of our assumptions which may be introduced

by the environment could be the presence of a large-scale non-spherically symmetric

feature, as discussed in Section 4.2.4.

4.2.4 Systematic effects

So far we have assumed hydrostatic equilibrium of the gas and a spherically symmetric

matter distribution. We therefore devote the remainder of this section to discuss the

systematic errors that can be introduced in our analysis due to deviations from

hydrostatic equilibrium and the presence of non-spherically symmetric features.

Invalidity of hydrostatic equilibrium

By employing the assumption of hydrostatic equilibrium in our analysis of the model

parameter space, we have supposed that, for the Coma Cluster, the hydrostatic

mass inferred from temperature and density, and that from pressure and density, are

consistent with each other as well as with the lensing mass. Here, we test the validity

of hydrostatic equilibrium within Newtonian gravity by comparing the different mass

estimates, and study the effects of introducing non-thermal pressure.

In the top left and top right panels of Fig. 4.5, we compare the observed X-

ray temperature and surface brightness, respectively, with the corresponding best fit

curves, which are obtained by fitting the projected profiles of Eqs. (3.34) and (3.36)

with Eqs. (4.21) and (4.22) to the combined X-ray data. Note that in the top right

panel, for each data point, we have assigned a 5% systematic error on top of the

measured errors. The measured errors for the X-ray surface brightness are extremely

small because they include only the Poisson noise contribution. Systematic errors can

be introduced by the clumpiness and non-spherical symmetry of the gas distribution

and should be taken into account.

The bottom panel of Fig. 4.5 shows the SZ observations, which we compare with

two different best-fit curves. The dashed curve is the best fit obtained by fitting the

SZ profile Eq. (3.37) with Eq. (4.23) and the solid curve is the best fit to the joint X-

ray temperature and surface brightness data, that is, with the same parameter values
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Figure 4.5: Same as Fig. 4.3, but curves are fitted by model-independent methods. Top
left panel : The solid curve is the projected emission-weighted X-ray temperature profile
in Eq. (3.36), using the fitting functions in Eqs. (4.21) and (4.22) for the 3-dimensional
temperature and electron density profiles with best-fit parameter values (T0, A, r0, b0) =
(8.6 keV, 0.082, 3.9 Mpc, −5.3) and (n0, r1, b1) = (2.3 × 10−3cm−3, 0.34 Mpc, −1), respec-
tively, for the joint X-ray data. Top right panel : The solid curve is the surface brightness
profile Eq. (3.34), using the fitting functions Eqs. (4.22) and (4.21) for the 3-dimensional
electron density profile temperature profile with best-fit parameter values (T0, A, r0, b0) =
(8.6 keV, 0.082, 3.9 Mpc, −5.3) and (n0, r1, b1) = (2.3 × 10−3cm−3, 0.34 Mpc, −1), respec-
tively, for the joint X-ray data. Bottom panel : The dashed curve is the SZ effect of
Eq. (3.37), using the fitting function Eq. (4.23) for the 3-dimensional pressure profile with
best-fit parameter values (P0, b3, b4, b5, r4) = (1.1× 10−2 keV/cm3, 0.14, 2.2, 1.1, 0.53 Mpc).
The solid curve is the best fit model from the joint X-ray observations.
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Figure 4.6: Radial mass profile of the Coma Cluster. The shaded region is the obser-
vationally allowed 1σ region from the weak-lensing observations of Ref. [102]. The blue
solid curve is the thermal mass component Mth estimated from the X-ray observations
only, and the black solid curve is Mth estimated from the combination of X-ray and SZ
observations. The blue dashed and black dashed curves correspond to the same colour solid
lines, however, now including a large non-thermal pressure contribution.

used in the top left and top right panels of Fig. 4.5. Note the difference between the

two curves.

Recently, Fusco-Femiano et al. [104] analyzed the consistency between the ob-

servations of the X-ray surface brightness, X-ray temperature, and SZ observations,

adopting a “Supermodel”. The Supermodel yields a direct link between the X-ray

and the SZ observations based on the entropy profile. They report a tension between

the pressure from the X-ray observations and that from SZ observations in the Coma

Cluster. The authors argue that an additional non-thermal pressure resolves the

tension. In this paper, we adopt a similar observational data set and reconstruct

the 3-dimensional gas profiles using the relations described in Appendix 4.2.2. We

find a similar tension in our results and model a non-thermal pressure component as

described in Section 4.2.2; this, however, is slightly different from the non-thermal

pressure discussed in Ref. [104]. The non-thermal pressure in Ref. [104] is a con-

stant, which is independent of the radius. The non-thermal pressure we introduce in



72 4.2 The chameleon field applied to the Coma Cluster

100 1000
0.01

0.1

1

10

100

M
(<

 r
)
[1

0
1
4
M

]

Newtonian

Allowed region from weak lensing

Chameleon 1.2, 2 10 Pl

Chameleon 1, 1.5 10 -4
MPl� ·

�

´
�
�

´
�
� · -4

M�

�

r [kpc]

Figure 4.7: Same as Fig. 4.6 but in the presence of the chameleon field. The red solid and
red dashed curves are the combination of the thermal mass and chameleon mass compo-
nents, Mth + Mϕ, when (β, ϕ∞/MPl) = (1, 1.5 × 10−4) and (1.2, 2 × 10−4), respectively.

Section 4.2.2 is a function of radius, and its fraction in the total pressure becomes

large only in the outer region. Nevertheless, our models fit the data reasonably well

and can be used to put a useful constraint on the chameleon modification. This is

because we use limited data in only the range of radius 100 kpc < r⊥ < 1 Mpc, where

the shape of the mass profile drives the constraints.

Figure 4.6 shows the different radial mass profiles reconstructed from the different

gas observations and the lensing mass in Newtonian gravity, including effects from

the non-thermal pressure introduced in Section 4.2.2. The blue solid curve is the

hydrostatic mass from Eq. (4.15) with ne(= ρgas(2+µ)/5µmp) and Tgas reconstructed

from the X-ray observations. The black solid curve is the hydrostatic mass from

Eq. (4.13) with ρgas and Pgas reconstructed from the X-ray and SZ observations.

Finally, the shaded region in Fig. 4.6 shows the allowed 1σ-region of the weak-lensing

mass profile fitted using an NFW density profile with Mvir = 8.92+20.05
−5.17 ×1014h−1M⊙

and c = 3.5+2.57
−1.79. At the scales of 100 kpc < r < 1 Mpc, the blue and black

curves are consistent within the shaded region, while for r < 100 kpc, the curves

are out of the shaded region. Thus, for 100 kpc < r < 1 Mpc, although the mass

estimates differ up to the 50% level, within the observational error of the lensing



Chapter 4 Testing modified gravity models 73

mass, the mass profiles estimated by the gas observations are consistent with each

other and the lensing mass profile. This suggests that hydrostatic equilibrium is a

good approximation for the outer region of the Coma Cluster, given the error of the

lensing measurement. The discrepancies in the inner region r < 100 kpc are a known

problem in the mass reconstruction and beyond the scope of this thesis. The validity

of hydrostatic equilibrium in the inner region has been investigated by many authors

(see, e.g., [129–131] and references therein) with no consensus found. Note, however,

that the weak-lensing observations are not sensitive to the density profile in the inner

region [102]. We therefore base our analysis on a simple extrapolation of the NFW

profile. Recent lensing observations of the Coma Cluster [132] support the validity

of this assumption for 100 kpc < r < 1 Mpc as well as indicating its limitations for

r < 100 kpc.

To estimate the influence of the non-thermal pressure on the mass profile, the blue

and black dashed curves in Fig. 4.6 show the sum of the thermal mass profile Mth and

the non-thermal mass component Mnth determined by Eq. (4.18). The blue dashed

curve is obtained from X-ray observations using Eq. (4.27), whereas the black dashed

curve is obtained from the combination of SZ and X-ray observations using Eq. (4.28).

At r = 1 Mpc, the non-thermal pressure enhances the total hydrodynamical mass

estimate by a few tens of percent. This reflects the limited effect of the non-thermal

pressure predicted by hydrodynamical simulations.

Finally, we include the chameleon field in our mass comparison. In Fig. 4.7, we

show the thermal radial mass profile in combination with the chameleon mass com-

ponent: Mth +Mϕ (red curves). The red solid and red dashed curves are obtained for

(β, ϕ∞/MPl) = (1, 1.5 × 10−4) and for (1.2, 2 × 10−4), respectively. These two sets of

parameters for the chameleon model illustrate typical scenarios where the chameleon

force causes a possible discrepancy between the gas and the lensing masses. Note

that these curves are determined from Mth and Mϕ in Eq. (4.19), where Mth is recon-

structed from the observational data and Mϕ is given by Eq. (4.20), and, therefore,

the slightly oscillatory feature of the β = 1.2 curve does not reflect any physically

meaningful effect. The blue curve represents the case without the chameleon force,

which is close to the red solid curve and the red dashed curve in the inner region,

where the chameleon field is suppressed. Further out, the chameleon force reduces

the hydrostatic mass Mth + Mϕ with respect to the mass obtained in Newtonian

gravity because the chameleon force introduces an extra attractive force. As is clear

from this figure, we can put a constraint on the chameleon model that influences

the gas distribution in only the range r ≲ 1 Mpc. The critical radius at which the

chameleon force begins to contribute is determined by β/ϕ∞ [see Eq. (4.39)] and the
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amplitude of the chameleon force is determined by β. Thus, these two parameters

in the chameleon models are constrained by comparing the hydrostatic mass and

lensing mass under the assumption of hydrostatic equilibrium.

Non-spherical symmetry

Next, let us consider systematic effects that can be introduced by deviations from

spherical symmetry. Here, we assume that the 3-dimensional profiles of the electron

number density, temperature, and pressure are

ne(r, θ, φ) = n̄e(r)[1 + δne(r, θ, φ)], (4.43)

Tgas(r, θ, φ) = T̄gas(r)[1 + δTgas(r, θ, φ)], (4.44)

Pe(r, θ, φ) = P̄e(r)[1 + δPe(r, θ, φ)], (4.45)

where δne , δTgas and δPe describe deviation from the spherically symmetric profiles,

n̄e(r), T̄gas(r), and P̄e(r), respectively.

The effect of clumpiness on the electron number density can then be estimated

as follows. Introducing an average over the spherical symmetric profiles, we assume

⟨δne⟩ = 0 and ⟨δ2
ne

⟩ ̸= 0. Assuming that the temperature perturbation is negligible,

that is, δTgas = 0, the observed X-ray temperature profile is not changed. The SZ

profile is not affected by clumping either because ⟨δPe⟩ = ⟨δne⟩ = 0 from the equation

of state. However, the surface brightness is increased by the clumpiness and can be

rewritten as

SX ∝
∫

n2
edz = (1 + ⟨δ2

ne
⟩)
∫

n̄2
edz, (4.46)

where 1+⟨δ2
ne

⟩ is referred to as the clumping factor. This affects the reconstruction of

the electron number density. When the clumping factor is non-zero, n̄e is replaced by

n̄e/
√

1 + ⟨δ2
ne

⟩. Then, the thermal mass profile reconstructed from observations of the

SZ effect and X-ray surface brightness, Eq. (4.25), is enhanced by a factor
√

1 + ⟨δ2
ne

⟩.
However, the thermal mass profile reconstructed from X-ray observations, Eq. (4.24),

is not affected by the clumpiness. In the case where 1+⟨δ2
ne

⟩ = 1.5, which corresponds

to the estimated clumping factor for the A1835 cluster [133], we have an enhancement

of the hydrostatic mass by a factor ∼ 1.2. Thus, systematics from the clumpiness

could be a few tens of percent.

Besides the clumpiness, large-scale spherical asymmetries of a cluster may cause

an additional systematic bias. Three-dimensional ellipticity as well as substructures
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of the Coma Cluster have been studied in Ref. [134]. They reported an ellipticity

of the electron density in the cluster of only ϵ =
√

1 − e2 = 0.84, where e is the

eccentricity, so we can ignore the effect in our analysis. Nonetheless, the assumption

of spherical symmetry introduces systematic errors which should be investigated in

more quantitative detail in a future work.
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4.3 The Galileon field applied to the Coma Cluster

4.3.1 Introduction

The Vainshtein mechanism [17] is another relevant screening mechanism, which oc-

curs in the Dvali–Gabadaze–Porrati (DGP) model [18,19], the simplest cubic Galileon

model [20–23], and its generalized version [24, 25]. Our generalized cubic Galileon

model is a generalized version of the simplest cubic Galileon model that retains im-

portant features and contains the DGP models. In these models, a scalar field giving

rise to a fifth force is screened due to self-interaction on small scales where density

perturbations become nonlinear.

Suto et al. [41,60] have investigated a constraint on a generalized Galileon model

exhibiting the Vainshtein mechanism, using the observed weak-lensing profile of clus-

ters. They put a constraint on the transition scale and the amplitude of the modifi-

cation of the lensing potential.

The purpose of the present analysis is twofold. First, it is a generalization of the

methodology for testing a modified gravity model with a galaxy cluster. For this, we

consider a generalized cubic Galileon model. Within the quasi-static approximation,

the generalized cubic Galileon model is effectively characterized by 3 parameters: µG,

µL and ϵ. Detailed definitions are given later but, broadly, µG and µL are parameters

that modify the effective amplitude of the gravitational potential and the lensing

potential in the non-screened region, while ϵ determines the scale of the transition

from the non-screened region to the screened region due to the Vainshtein mecha-

nism. The parameters µG are constrained by observations of the gas distribution,

in particular the X-ray surface brightness profile and the SZ effect. However, the

parameter µL is constrained by observations of lensing measurements alone. There-

fore, a combination of observations of the gas distribution and the lensing signal is

essential to put a constraint on the 3 parameters characterizing the modified gravity

model. We demonstrate how a combination of multi-wavelength observations of a

cluster can be used to put a constraint on a generalized Galileon model.

The other purpose is to improve the analysis in Ref. [43] using new X-ray data

[135,136] and lensing [132] observations of the Coma Cluster. In our method of test-

ing gravity modifications with a galaxy cluster, the modeling of the gas distribution

is important. A basic assumption of the model for the gas distribution is hydro-

static equilibrium, that is, a balance between the gas pressure gradient force and the

gravitational force. In the region where the fifth force is influential, the condition

of the hydrostatic equilibrium is changed, and the gas density profile is modified.

However, in general, galaxy clusters are dynamically evolving, and a deviation from
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the equilibrium could be influential. Therefore, we first check the consistency of our

model by comparing theoretical predictions with various observations of the Coma

Cluster, including new X-ray data and lensing measurements.

This section is organized as follows. We first demonstrate how well our model

fits observations of the Coma Cluster in Section 4.3.2. We also validate our model

against the influence of non-thermal pressure. In Section 4.3.3, we put a constraint

on the generalized cubic Galileon model. In Section 4.3.4, we discuss degeneracies of

parameters and systematic errors focusing on the special circumstance of using the

Coma Cluster.

4.3.2 Consistency test with Newtonian gravity

In this section, we use Coma Cluster observations. The Coma Cluster is one of the

best observed nearby clusters, and has redshift of z = 0.0236. The X-ray distribu-

tion [98–100, 118, 135–140], the SZ effect [97] and weak-lensing [102, 132] have been

reported. These observations revealed that the Coma Cluster has substructures and

orientation dependence in the gas temperature profiles. The Coma Cluster is thus an

unrelaxed system. However, we will show that our model based on hydrostatic equi-

librium fits the data of the X-ray brightness profiles [135, 136], the SZ effect profile

from the Planck measurement [97], and the weak-lensing profile from Subaru obser-

vations [132]. In general, the assumption of hydrostatic equilibrium holds only in the

intermediate region of clusters, because of the cooling of the gas in the innermost

region and environmental effects in the outermost region. So we use data points in

the range 200 kpc to 1.5 Mpc to get rid of systematic effects from the innermost and

outermost regions of the cluster.

In this work, we use the observational data of the XMM-Newton [135,136], which

are different from those used in a previous paper [43]. In that paper, the weak-

lensing profile is not used; only the parameters Mvir and c are used as a prior profile

from [102]. However, use of the weak-lensing profile is essential to our analysis of the

generalized Galileon model.

Method

We first assume hydrostatic equilibrium between the gas pressure gradient and the

gravitational force in the galaxy cluster:

1

ρgas

dPtot

dr
= −dΨ

dr
, (4.47)
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where Ptot = Pgas + Pnth is the sum of the thermal gas pressure, Pgas, and the non-

thermal pressure, Pnth. Here, we assume the NFW profile (2.41) and Model B for

the solution of the gas distribution, which is given by Eq. (3.33),

Pe(r) = n0T0 exp

(∫ r

0

dr
µmp

kTe(r)

[
−dΨ

dr

])
, (4.48)

with electron temperature

Te(r) = T0

[
1 +

(
r

r1

)b1
]−b2/b1

. (4.49)

Thus our gas distribution model includes 7 parameters: Mvir, c, n0, T0, b1, b2, and

r1. Using our model of the 3-dimensional profiles, we construct X-ray observables

and the CMB temperature distribution. We use the X-ray brightness, BX, defined

by Eq. (3.35) for the X-ray observable, and the CMB temperature distortion charac-

terized by ∆SZ or the y-parameter defined by Eq. (3.37).

Next, considering a spatially flat cosmological background, and working in the

cosmological Newtonian gauge, we use the reduced shear profile, g+, defined by

Eq. (3.43) for the lensing observable.

To compare the above theoretical predictions with observations of the Coma Clus-

ter, we introduce the chi-squared statistic produced by summing the chi-squared

statistic for each observation as

χ2
XB+SZ+WL = χ2

XB + χ2
SZ + χ2

WL, (4.50)

where

χ2
XB =

∑

i

(BX(ri) − Bobs.
X,i )2

(∆Bobs.
X,i )2

, (4.51)

χ2
SZ =

∑

i

(y(r⊥,i) − yobs.
i )2

(∆yobs.
,i )2

, (4.52)

χ2
WL =

∑

i

(g+(r⊥,i) − gobs.
+,i )2

(∆gobs.
+,i )2

, (4.53)

are the chi-square values for the X-ray brightness, the SZ effect and the weak-lensing,

respectively. We note that covariance of errors is not taken into account in our

analysis and leave it for future work to study how the observational systematics
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Table 4.3: Best-fit parameters and 1-dimensional marginalized constraints (68% CL) to
characterize the gas and lensing profiles. To avoid degeneracy of parameters, we fix b1

and b2. Our results do not depend on whether these parameters are fixed or not. This
table shows the results for Newtonian gravity (second column) and the generalized Galileon
model with all modification parameters (third column). The minimum chi-squared and the
number of degrees of freedom, d.o.f. = (number of data points) − (number of model
parameters), are listed at the bottom of each column.

Parameter Newtonian gravity Modified gravity (full parameters)

Mvir 1.08+0.06
−0.06 × 1015 M⊙ 1.04+0.14

−0.06 × 1015 M⊙

c 3.59+0.23
−0.23 3.64+0.21

−0.30

n0 6.14+0.28
−0.26 × 10−3/cm3 6.17+0.26

−0.31 × 10−3/cm3

T0 6.36+0.11
−0.12 keV 6.35+0.13

−0.11 keV

b1 2.6 (fixed) 2.6 (fixed)

b2 0.5 (fixed) 0.5 (fixed)

r1 0.74+0.06
−0.06 Mpc 0.75+0.06

−0.07 Mpc

ϵ′ - 0.43

µ′
G - 0.24

µ′
L - 0.55

Minimum χ2/d.o.f. 58/44 57/41

affect our analysis.

We perform an MCMC analysis using modified Monte Python code [141] that

employs a Metropolis–Hastings [120,121] sampling algorithm. This analysis includes

5 parameters in the chi-squared statistic, χ2
BX+SZ+WL. We require Gelman–Rubin

statistics [122] of R − 1 < 0.001 for each parameter to ensure convergence of our

runs. The black dashed curve in each panel of figure 4.10 shows the best-fit pro-

files for Newtonian gravity. The minimum value of the chi-squared statistic is

χ2
XB+SZ+WL/d.o.f. = 58/44, and the 2-dimensional marginalized contours of differ-

ent combinations of model parameters are shown in figure 4.13.
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Figure 4.11: Spherical masses enclosed within different radii. The gray hatched region
denotes the 1σ uncertainty interval for the lensing mass determined solely by weak-lensing
analysis [102]. The blue and red regions denote the 1σ uncertainty intervals for hydrostatic
masses without and with the non-thermal pressure component, respectively, determined by
our joint-fit method. The hydrostatic and lensing masses agree with each other, irrespective
of the presence or absence of a non-thermal pressure component.

Non-thermal pressure possibly caused by turbulent gas and bulk motion causes

a systematic error when comparing observations of clusters with theoretical predic-

tions. The estimated fraction of non-thermal pressure in the Coma Cluster can be

larger than that of the thermal pressure by 10% [142]. Here, we estimate how non-

thermal pressure affects our fitting based on a numerical simulation. To this end,

we estimate the hydrostatic masses by comparison with the X-ray brightness and SZ

effect profiles of the Coma Cluster. Here we define the non-thermal fraction fnth by

fnth ≡ Pnth/(Pnth + Pgas), where Pnth and Pth are the non-thermal pressure and the

thermal pressure, respectively. In the case which includes the non-thermal pressure,

the thermal pressure is replaced by Pgas = (1 − fnth)Ptot. We consider the following

non-thermal pressure fraction as a function of the radius,

fnth(r) = αnt(1 + z)βnt

(
r

r500

)nnt
(

M200

3 × 1014M⊙

)nM

, (4.54)
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which is a theoretical prediction from numerical simulations in Ref. [106, 107]. The

parameters r500 and M200 mean the radius and mass where the matter density in the

galaxy cluster is 500 and 200 times of the critical density, respectively. In the present

analysis we adopt (αnt, βnt, nnt, andnM) = (0.18, 0.5, 0.8.0.2), which are the best-fit

values in Ref. [106] and are consistent with those in [142].

The best-fit profile in the presence of non-thermal pressure is not significantly

different from the best-fit profile in the absence of non-thermal pressure. Figure 4.11

shows the enclosed mass profiles as a function of radius. The gray hatched region

is the 1σ uncertainty interval for the lensing mass. The blue and red solid regions

show the 1σ uncertainty intervals for hydrostatic masses fitted without and with non-

thermal pressure, respectively. The hydrostatic mass estimates are in good agreement

with the lensing mass, regardless of whether the non-thermal pressure components

are included. This shows that our fitting method is not affected by non-thermal

pressure, so we do not consider the non-thermal effect when putting a constraint on

the modified gravity in the next section.

4.3.3 Constraints on the model parameters from an MCMC analysis

As described in Section 3.4.2, using the solution for the Galileon field, the gas pressure

profile assuming Model B (3.33) and convergence (3.39) is given by

Pe(r) = P0 exp

(∫ r

0

dr
µmp

kTe(r)

[
−GM(< r)

r2
+

µG

4ϵ2
H2

0r

(
1 −

√
1 + 12ϵ2

ρs

ρc0

r3
s

r3
m(r)

)])
,

(4.55)

κ(r⊥) =
2

Σc

∫ ∞

0

dz

[
ρ(r) − µLρc0

2ϵ2

(
1 −

√
1 + 12ϵ2

ρs

ρc0

r3
s

r3
m(r)

)

+
ρ(r) − 3ρsr

3
s m(r)/r3

√
1 + 12ϵ2ρsr3

s m(r)/ρc0r3
µL

]
. (4.56)

Since the gas pressure tracing the matter density deceases as the cluster-centric radius

increases, the pressure gradient is restricted to dPe/dr < 0. This gives constraints

on µG. Instead of µG, µL and ϵ, we introduce

µ′
G =

µG

1 + |µG| , (4.57)

µ′
L =

µL

1 + |µL| , (4.58)
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Figure 4.12: The 68% CL (dark gray regions) and 95% CL (light gray regions) 2-
dimensional marginalized contours for the generalized Galileon model parameters. The red
plus, green cross, and yellow Y symbols indicate models for the simplest cubic Galileon,
sDGP, and nDGP models, respectively.

ϵ′ = 1 − exp(−ϵ), (4.59)

which, respectively, span the complete available parameter space of µG and µL in the

interval [−1, 1] and that of ϵ in the interval [0, 1]. General relativity is recovered when

µ′
G = µ′

L = 0 or ϵ′ → 1. Using the same method adopted for the Newtonian case, we

perform an MCMC analysis for the modified gravity model including 8 parameters

with the chi-squared statistic, χ2
BX+SZ+WL, defined by Eq. (4.50).

Figure 4.14 shows the 2-dimensional marginalized contours of different combi-

nations of the model parameters. The best-fit parameters and their 1-dimensional

marginalized 68% errors are listed in Table 4.3. The red curve in each panel of

figure 4.10 shows the best-fit profile for the generalized Galileon model with the

minimum value of the chi-squared/d.o.f., χ2
XB+SZ+WL/d.o.f. = 57/41. These profiles

almost overlap with the profiles for Newtonian gravity (black dashed curves), which
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shows that a large deviation from Newtonian gravity is rejected. We note that there

is no significant difference between the red and black curves in the best-fit profiles.

There is a slight difference in the shear profiles at large radii, r > 1Mpc, which seems

to originate from the large error bars of the shear data.

Figure 4.12 shows 2-dimensional marginalized contours of the confidence levels for

the parameters µ′
G, µ′

L and ϵ′. The parameters µ′
G and µ′

L are from the modification

of the gravitational potential and the lensing potential, and ϵ′ is a parameter char-

acterizing the Vainshtein radius. Large values of µ′
G and µ′

L are rejected at the 68%

confidence level, which indicates that the possibility of a large deviation from Newto-

nian gravity may be ruled out, depending on the parameter ϵ′. When ϵ is smaller, the

Vainshtein radius is smaller and we can put a tighter constraint on µG and µL. How-

ever, when ϵ is large, the Vainshtein radius becomes large, which makes it difficult

to distinguish between the Newtonian gravity model and the modified gravity model

due to the Vainshtein mechanism. The red-plus, green cross, and yellow Y symbols

in figure 4.12 indicate representative models (the simplest cubic Galileon model, the

sDGP model and the nDGP model, respectively) at the redshift of z = 0.0236. The

parameter values for each model are shown in Table 4.4.

In a previous work [41], only a constraint on the µL and ϵ parameter space is

obtained, based on the lensing observations. In another recent related study, Barreira

et al. investigated cluster masses and the concentration parameters in modified

gravity models using shear profiles [143]. They focused their investigation on the

mass–concentration relation of 19 X-ray selected clusters from the CLASH survey in

the simplest cubic Galileon and Nonlocal gravity models. They found that the mass–

concentration relation obtained from the shear profiles for the cubic Galileon model is

the same as those for the ΛCDM model, and no stringent constraint on the modified

gravity models is obtained. Unfortunately the constraint obtained in the present

paper is not very stringent either, but there is one advantage. Models with µL = 0,

like the sDGP and nDGP models, are indistinguishable from Newtonian gravity in the

method based on lensing observations. On the other hand, our method of combining

the gas and weak-lensing profiles can solve the problem of this degeneracy. Future

observations should improve our constraint.

4.3.4 Discussion

Degeneracies of parameters

In the MCMC analysis in the previous section, we do not take the range of 0 ≤ ϵ ≤ 0.1

into account because it is hard to converge the MCMC runs because of degeneracy in



Chapter 4 Testing modified gravity models 87

Table 4.4: Values of modified gravity parameters for each model at the redshift of z =
0.0236.

Models ϵ (ϵ′) µG (µ′
G) µL (µ′

L)

simplest cubic Galileon 0.77 (0.44) 0.77 (0.44) 1.12 (0.67)

sDGP −0.26 (−0.22) 0 (0) 0.53 (0.43)

nDGP 0.20 (0.18) 0 (0) 0.10 (0.09)

the parameter space. Here, we consider this parameter region to provide a complete

discussion.

First, taking the limit ϵ → 0, which means the fifth force is unscreened everywhere,

the solutions of the gas pressure (4.55) and the convergence (4.56) are reduced to

Pe(r) = P0 exp

(∫ r

0

dr
µmp

kTe(r)

[
−GM(< r)

r2
(1 + µG)

])
, (4.60)

κ(r⊥) = (1 + µL)
2

Σc

∫ ∞

0

dzρ(r). (4.61)

Then, the pressure profile and the convergence profile are simply modified by factors

of (1+µG) and (1+µL), respectively. In this case, we have Pe ∝ (1+µG)Mvirm(c)/c3

and κ ∝ ρs ∝ (1+µL)Mvirc
3/m(c), so there are degeneracies between the parameters,

Mvir, c, µG, and µL. Figure 4.15 compares the results of the MCMC analysis with ϵ

fixed at zero (dark blue region (68% CL) and medium blue region (95% CL)) and the

results of Newtonian gravity (dark gray region and medium gray region), which are

the same as those of figure 4.13. The best-fit parameters are shown in the Table 4.5.

The CL contours of the blue regions reflect the degeneracy between the parameters

Mvir, c, µG, and µL.

Next, we show how the presence of the fifth force affects the parameter estimation.

For example, the blue confidence contours in figure 4.16 show the 68% and 95%

confidence contours of the case with ϵ = 0.05, µG = 0.2 and µL = 0. Mvir and c

are different from those of Newtonian gravity (gray regions), but other parameters,

n0, T0 and b1, are not changed. The minimum value of chi-squared/d.o.f. in the

presence of the fifth force is χ2
XB+SZ+WL/d.o.f. = 60/44, which is almost the same

as the Newtonian case, despite the different cluster parameter, Mvir ∼ 0.9 × 1015M⊙
(see Table 4.5). This result exemplifies the general result that the presence of the
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Table 4.5: Same as Table 1 but for the results of the generalized Galileon model in the
unscreened limit with only ϵ fixed (ϵ = 0, second column), and the case of fixing all the
modified gravity parameters (ϵ′ = 0.05, µ′

G = 0.2, and µ′
L = 0, third column).

Parameter Modified gravity (unscreened) Modified gravity (fifth force)

Mvir 1.26+0.15
−3.85 × 1015 M⊙ 0.86+0.05

−0.05 × 1015 M⊙

c 3.78+0.13
−0.55 3.84+0.24

−0.28

n0 6.15+0.27
−0.29 × 10−3/cm3 6.20+0.27

−0.32 × 10−3/cm3

T0 6.35+0.13
−0.11 keV 6.36+0.12

−0.12 keV

b1 2.6 (fixed) 2.6 (fixed)

b2 0.5 (fixed) 0.5 (fixed)

r1 0.75+0.06
−0.07 Mpc 0.75+0.06

−0.06 Mpc

ϵ′ 0 (fixed) 0.05 (fixed)

µ′
G −0.10 0.2 (fixed)

µ′
L −0.05 0 (fixed)

Minimum χ2/d.o.f. 57/42 60/44

attractive fifth force affects the estimation of the NFW parameters, Mvir and c.

This is understood to be a consequence of the degeneracy between the modification

parameters µG and µL and Mvir and c.

Systematic errors

We now discuss possible systematic errors. In our analysis, we have assumed spherical

symmetry for the matter distribution and an equilibrium state for the gas component,

that is, balance between the pressure gradient and the gravitational force (including

the fifth force in the case of its presence). We have demonstrated that non-thermal

pressure at the level suggested by numerical simulations does not alter our results.

A future X-ray satellite, ASTRO-H [144], will observe turbulent gas motion in the

Coma Cluster in more detail, which will provide relevant information relating to

our result. However, observations of the Coma Cluster suggest substructures [102,

132, 138, 145–147] and orientation dependence [118, 137, 140], so the cluster is not
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thought to be a relaxed system. Dynamical states of the Coma Cluster would give

a systematic difference between our results and temperature measurements. Our

fitting results show that the temperature of the Coma Cluster is around 6.4 keV (see

Table. 4.3), but this result seems lower than those of X-ray observations [99,100,118,

135–137, 140], which estimate that the temperature of the Coma Cluster is around

8–9 keV. Comparing the mass–temperature scaling relation for a sample of relaxed

clusters [148] with an X-ray temperature observation of the Coma Cluster [135,136],

we find that the observed temperature is higher than the temperature expected from

the mass. The enhancement is at the 3σ level of intrinsic scatter [148]. Similar

results of high temperatures have also been reported by a comparison with other

clusters [115]. Depending on the orientation and excluding the central region, the

temperature of the Coma Cluster could be around 6–7 keV [135,137], but it is difficult

to take this dependence into account. Therefore, a systematic error in temperature of

the Coma Cluster would have a substantial impact on the proposed fitting method.

To reduce the possible dependence of cluster-dynamical states and halo triaxiality,

it is of vital importance to increase the number of sampled clusters. Ongoing and

future multi-wavelength surveys, such as the Hyper Suprime-Cam (HSC) optical

survey1, the Dark Energy Survey (DES) [149], the eROSITA X-ray survey [150], and

the ACT-Pol [151] and SPT surveys [152], will be powerful aids to providing better

constraints on gravity models.

1http://subarutelescope.org/Projects/HSC/surveyplan.html
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Chapter 5

Summary and conclusion

In this thesis, we have studied the effects of modifications of gravity on gas distribu-

tions in galaxy clusters.

First, in Section 3, we derived the gas distribution profiles in an analytic manner

under the assumption of hydrostatic equilibrium between the gas pressure gradient

and the gravitational and fifth forces. In particular, using an analytic chameleon field

solution, we also demonstrated that the attractive fifth force may give rise to a steep

drop in the gas distribution in the outer region of a galaxy cluster. This feature is

more significant when the mass of the cluster is small.

The gas density profile depends on the coupling strength between the chameleon

field and gas components, β, and the background chameleon field, ϕ∞, but it does not

depend on the potential parameters, n and Λ. This provides us with an opportunity to

constrain β and ϕ∞ by comparison with observations. Using this feature, we showed

that we can put a constraint on ϕ∞ in the chameleon model, using the observation

of the X-ray temperature profile of the Hydra A cluster [94] in Section 4.1. We

obtained a useful upper bound of ϕ∞ < 10−4MPl in the case β = 1 1; however,

no useful constraint was obtained in the case β = 1/
√

6, which corresponds to an

f(R) model. To obtain a useful constraint, observations of the outer region of a

smaller mass cluster are more advantageous. Furthermore, a combination with other

observations, like weak-lensing measurements, might improve the constraint.

Next, in Section 4.3.2, we proposed a novel method to test gravity in the outskirts

of galaxy clusters by comparing their hydrostatic and lensing mass estimates. The

hydrostatic mass profile of a cluster can be inferred from the 3-dimensional gas tem-

perature, electron number density, and electron pressure profiles obtained from the

1When we take environmental effects into account, this bound might be understood as a bound around
the Hydra A cluster.

94
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projected observations of the X-ray surface brightness, the X-ray temperature, and

the Sunyaev–Zel’dovich (SZ) cosmic microwave background temperature profile, by

implementing a parametric reconstruction method. The dark matter density profile

can be further constrained by weak-lensing observations. Here, we adopt the NFW

density profile to describe the dark matter distribution within the cluster. In the

case of hydrostatic equilibrium of the gas and standard gravity, the different mass

estimates should agree. In the presence of a chameleon field, coupling to the matter

fields and introducing an attractive fifth force, the masses estimated from gas obser-

vations and from lensing changes differ and can therefore be used as a test of gravity

models.

Combining measurements of the X-ray surface brightness, the X-ray tempera-

ture, the SZ effect, and lensing of the Coma Cluster, we performed a Markov chain

Monte Carlo analysis of the model parameter space describing the cluster profiles

and gravity theory. We have obtained competitive constraints on the chameleon

gravity model parameters, β and ϕ∞, the coupling strength of the chameleon field

and the field value in the environment of the cluster, which we approximate here by

the cosmological background. In contrast to the study in Ref. [42] (Section 4.1) that

constrains the modified gas distribution in the Hydra A cluster measured using the

X-ray temperature, our constraint does not rely on the assumption of a polytropic

equation for the state of the gas, employs a Bayesian statistical approach for infer-

ring parameter constraints on the full set of model parameters, and yields a tighter

bound on the modified gravity parameters by using the combination of X-ray, SZ, and

lensing observations available for the Coma Cluster. We emphasize that our results

provide a powerful constraint on f(R) gravity models, corresponding to a particular

choice of the chameleon coupling constant β =
√

1/6, for which we obtain an upper

bound of |fR0| <∼ 6×10−5 at the 95% CL. This bound is comparable with the current

strongest cosmological constraints on f(R) gravity (see Fig. 1.2).

Finally, in Section 4.3, we obtained a constraint on a generalized cubic Galileon

model using observations of Coma Cluster of X-ray brightness, the SZ effect, and

weak lensing. We have constructed a simple analytic model of the gas distribution

profiles and the weak-lensing profile (see [41,43,44]). The fifth force affects not only

the gas distribution but also the weak-lensing profile. In general, the effects depend on

the various parameters characterizing the generalized Galileon model. These features

can be investigated by a combination of observations of a galaxy cluster reflecting

the gas density profile and the lensing signals. These multi-wavelength observations

are complementary to each other, and are useful for putting a constraint on the

modified gravity model by breaking the degeneracy between the model parameters.
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A systematic study compiling multi-wavelength datasets for a large number of clus-

ters will enable us to reduce systematic errors and improve constraints on modified

gravity models. However, the degeneracy between the parameters, Mvir, c, µG and

µL, persists in the limit of the weak screening of the fifth force, which affects the

estimation of the cluster parameters.

An important systematic that can affect our analysis is deviation from hydrostatic

equilibrium of the cluster gas. We have therefore carefully examined the validity of

the assumption of hydrostatic equilibrium in the Coma Cluster. Assuming Newto-

nian gravity, we compared the different mass estimates from the three different gas

observations and the weak-lensing mass. We found that the mass profiles from the

gas and weak-lensing observations can deviate from each other by up to 50% but

that they are consistent within the observational errors of the lensing measurement.

We also analyzed the effect of including a non-thermal pressure component with a

radial profile calibrated to hydrodynamic simulations but with extremized amplitude.

This contribution only marginally affects our reconstructed masses, and we conclude

that hydrostatic equilibrium is a good approximation to describe the outer region of

the Coma Cluster. Note, however, that the effect from the chameleon force on the

hydrostatic mass is opposite to the effect of the non-thermal pressure. Hence, the

chameleon force can compensate for a large contribution from non-thermal pressure

and cause a degeneracy between the two effects. On the other hand, the magnitude

of the non-thermal pressure that would be required to compensate for the effects of

the chameleon force tested here is not expected from current hydrodynamical sim-

ulations. It is, however, not clear whether the presence of a chameleon field could

significantly enhance the non-thermal pressure contribution in the Coma cluster, such

that it could cancel the effects of the chameleon field and act to alleviate the con-

straints on the modification of gravity. In this regard, it will be useful to analyze

the non-thermal pressure in chameleon gravity models using hydrodynamical simu-

lations along with a more detailed study of the Newtonian case. As for f(R) gravity,

such hydrodynamical simulations have recently been conducted by Arnold et al. [96].

They estimate the non-thermal pressure from the bulk motion in the intracluster

medium and find that it only leads to substantial contributions in merging clusters,

which can be identified and excluded to obtain statistical quantities like X-ray and

SZ scaling relations. Their results suggest that the effects of non-thermal pressure in

a relaxed cluster are not significant, as in the case of the Coma Cluster, at least in

the case of f(R) gravity models.

Further effects which may cause deviations from the hydrostatic equilibrium have

been discussed in Refs. [103,104,133]. Ref. [103] found that the mass in a simulated
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halo estimated under the hydrostatic equilibrium assumption deviates from the true

mass due to gas acceleration on average by ∼ (10 − 20)%. Given the large errors

in the measurement of the lensing mass of the Coma cluster, we can ignore this

deviation in our current analysis. Future measurements, such as those from Astro-H

X-ray observations, will allow more precise modeling of the Coma Cluster.

Our results demonstrate that galaxy clusters are useful probes of gravity. The

method described in this paper may be applied to other clusters. However, one

should be cautious about the individual properties of each cluster: the assumptions

adopted in the present paper might not be valid for other galaxy clusters and need

to be considered in each case. The key is to understand the motion and distribution

of the gas component in clusters. The combination of multi-wavelength observations,

such as the recent results from the Planck satellite [153–156], will provide a clue on

how to solve this difficult issue. In the near future, we will have stacked lensing, SZ,

and X-ray profiles for hundreds of clusters. The combination of multi-wavelength

observations for many clusters will significantly improve the tests of gravitational

interactions on cluster scales.



Appendix A

Tips for modified gravity models

A.1 Equivalence between f(R) model and chameleon model

In this appendix, we show the equivalence of the f(R) model and the chameleon

model (e.g., [157,158]) in two steps, which are given in Sections A.1.1 and A.1.2. In

Section A.1.3, we give the expression of the solution (3.50) and (3.54) in the Jordan

frame.

A.1.1 Equivalence with the Brans–Dicke model

Introducing a scalar field χ, we consider the following action

S =
M2

Pl

2

∫
d4x

√−g[χ + f(χ) + (1 + fχ(χ))(R − χ)] +

∫
d4xLm(Ψm, gµν), (A.1)

where fχ ≡ df/dχ. First, the variation of the action (A.1) with respect to χ gives

fχχ(χ)(R − χ) = 0. (A.2)

When fχχ ̸= 0, the equation of motion for χ is R = χ, then the action (A.1) is

equivalent with the f(R) model (1.36). Next, introducing a new scalar field defined

by

φ ≡ M2
Pl

2
(1 + fχ), (A.3)

98
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the action (A.1) can be rewritten as

S =

∫
d4x

√−g

[
M2

Pl

2
φR − U(φ)

]
+

∫
d4xLm(Ψm, gµν), (A.4)

where we define the potential U(φ) by

U(φ) =
M2

Pl

2
[R(1 + fR) − (R + f(R))]. (A.5)

On the other hand, the Brans–Dicke model with a potential is given by

S =

∫
d4x

√−g

[
φR − ωBD

φ
gµν∂

µφ∂νφ − U(φ)

]
+

∫
d4xLm(Ψm, gµν). (A.6)

Then, by setting the Brans–Dicke parameter ωBD to zero, we find that the Brans–

Dicke model is equivalent with the action (A.4); that is, it is equivalent to the f(R)

model.

A.1.2 Conformal transformation

Next, we consider the conformal transformation

gµν = Ω2g̃µν , (A.7)

where gµν and g̃µν are the metrics in the Einstein and Jordan frames, respectively.

By this transformation, the first term of the action (A.6) reduces to

S1 =

∫
d4x

√−gΩ−2φ

[
R + 6□ ln Ω − 6gµν ∂µΩ∂νΩ

Ω2

]
. (A.8)

When we choose

Ω =

√
2φ

M2
Pl

, (A.9)

the action is minimally coupled with the scalar field. In this case, the first and the

second terms of the action (A.6) reduce to

S1 =
M2

Pl

2

∫
d4x

√−g

[
R − 3

2φ2
gµν∂µφ∂νφ

]
, (A.10)
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S2 =
M2

Pl

2

∫
d4x

√−g

[
− ω

φ2
gµν∂µφ∂νφ

]
. (A.11)

Thus, we obtain

S1 + S2 =
M2

Pl

2

∫
d4x

√−g

[
R − 1

2φ2
(3 + 2ωBD)gµν∂µφ∂νφ

]
. (A.12)

Introducing a new scalar field ϕ defined by

φ =
M2

Pl

2
e−Aϕ, (A.13)

with

A =

√
2

M2
Pl(3 + 2ωBD)

, (A.14)

we obtain the relations

gµν = e−2βϕ/MPl g̃µν , (A.15)

β =

√
1

2(3 + 2ωBD)
. (A.16)

When we define the potential V by

V (ϕ) = e4βϕ/MPlU(φ(ϕ)), (A.17)

we obtain the expression of the action in the Einstein frame (1.16),

S =

∫
d4x

√−g

[
M2

Pl

2
R − 1

2
gµν∂µϕ∂νϕ − V (ϕ)

]
+

∫
d4xLm(Ψ, e2βϕ/MPlgµν). (A.18)

The action for the f(R) model is obtained by setting

β =

√
1

6
, (A.19)

e−
√

2/3(ϕ/MPl) = 1 + fR, (A.20)

V (ϕ) =
M2

Pl

2

R(1 + fR) − (R + f(R))

(1 + fR)2
. (A.21)
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A.1.3 Analytic solution in the Jordan frame

Using the conformal transformation (A.7), we can obtain an analytic solution of the

equation of motion for fR.

In the Jordan frame, the equation of motion for fR is given by

∇2fR =
1

3M2
Pl

[
ρc

(
1 + 4

ΩΛ

Ωm

)(
fR0

fR

)1/(ñ+1)

− ρm

]
. (A.22)

Assuming the generalized Navarro–Frenk–White profile (3.2) for the matter density

profile, we obtain a solution for fR in the same manner as in Sec. 3.4.1:

fR,int = fRs[x(1 + x)b]ñ+1, x ≤ xc, (A.23)

fR,ext = −A
1 − (1 + x)2−b

(b − 2)x
− D

x
+ fR0, x > xc, (A.24)

for b ̸= 2, and

fR,int = fRs[x(1 + x)2]ñ+1, x ≤ xc, (A.25)

fR,ext = −A ln(1 + x)

x
− D

x
+ fR0, x > xc, (A.26)

for b = 2, where D is the integration constant and

fRs = fR0

[
ρc

ρs

(
1 + 4

ΩΛ

Ωm

)]ñ+1

, A = − ρsr
2
s

3M2
Pl(b − 1)

. (A.27)

The values of xc and D are related by connecting the inner solution and the outer

solution at the radius xc, which gives

D = A
(1 + xc)

2−b − 1

b − 2
+ fR0xc − fRs[xc(1 + xc)

b]ñ+1xc, (A.28)

− A(1 + xc)
2−b + fR0(1 + xc) = fRs[xc(1 + xc)

b]ñ+1[(1 + (b + 1)xc)ñ + 2 + (b + 2)xc].

(A.29)

Assuming βϕ/MPl ≪ 1, the conformal transformation (A.19) ∼ (A.21) gives a rela-

tion between fR and the chameleon field ϕ:

fR = −
√

2

3

ϕ

MPl

(A.30)
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and

fRs = −
√

2

3

ϕs

MPl

, A = −
√

2

3

2ϕ0

MPl

, D = −
√

2

3

C

MPl

, fR0 = −
√

2

3

ϕ∞
MPl

. (A.31)

Furthermore, assuming the potential in the Einstein frame to be V (ϕ) = Λ4+n/ϕn,

we also obtain the relations

ñ + 1 =
1

n + 1
,

Λ4+n

Mn
Pl

=
1

2n

(
3

2

)n/2

(Ωm + 4ΩΛ)|fR0|n+1ρc. (A.32)

A.2 Definitions of the coefficients

In this appendix, we summarize the relations between the parameters in the La-

grangian and the coefficients in Eq. (3.75), and the relation between the generalized

Galileon model and the specific models used in Sec. 4.3.3: the DGP model and the

simplest cubic Galileon model (see also [40,41]).

The coefficients in the perturbation equations (3.78)–(3.80) are defined by

α = α1, (A.33)

ξ = α2, (A.34)

ζ =
4(α1 + α2)

β

G4H

ϕ̇ϕ
, (A.35)

λ2 =
2β0G4ϕH

βXϕ̇
, (A.36)

β = −4(α0 + 2α1α2 + α2
2)

G4H
2

ϕ̇2
, (A.37)

where

α0 =

(
Θ̇

H2
+

Θ

H
− 2G4 − 4

Ġ4

H
− E + P

2H2

)
1

2G4

, (A.38)

α1 =

(
2
ϕ̇G4ϕ

H

)
1

2G4

, (A.39)

α2 =

(
ϕ̇XG3X

H
− ϕ̇G4ϕ

H

)
1

2G4

, (A.40)
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β0 =

(
ϕ̇XG3X

H

)
1

2G4

, (A.41)

Θ = −ϕ̇XG3X + 2HG4 + ϕ̇G4ϕ. (A.42)

These coefficients are determined by the background solutions in Eq. (1.79).

The coefficients in the perturbation equations of the simplest cubic Galileon model

are

α = 0, (A.43)

ξ = 4πG3G3X ϕ̇2ϕ, (A.44)

ζ =
G3X ϕ̇2

βϕ
, (A.45)

λ2 =
G3Xϕ

β
, (A.46)

β = −1 + 2G3X(ϕ̈ + 2Hϕ̇) − 4πG3G
2
3X ϕ̇4. (A.47)

When we adopt the late time de Sitter attractor solution [49], the combinations ξζ

and λ2ζ are given by

ξζ =
(1 − Ωm)(2 − Ωm)

Ωm(5 − Ωm)
, (A.48)

λ2ζ =

(
2 − Ωm

HΩm(5 − Ωm)

)2

, (A.49)

where Ωm(a) = ρm(a)/3M2
PlH

2(a) is the matter density parameter.

Within the sub-horizon approximation, the DGP model [26, 27, 30] can be effec-

tively described by the coefficients

α = −1, (A.50)

ξ =
1

2
, (A.51)

ζ = − 2

3β
, (A.52)

λ2 = − r2
c

3β
, (A.53)
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β = 1 ± 2Hrc

(
1 +

Ḣ

3H2

)
, (A.54)

where rc = 1/(1 − Ωm0)H0 and the sign “±” in β represents the cases of the sDGP

model with the “−” sign and the nDGP model with the “+” sign.



Appendix B

Astrophysics of ionized gas in

clusters of galaxies

B.1 Bremsstrahlung

The Bremsstrahlung is a quantum process [159], but we review this process as a

quasi-quantum process in the following.

When an electron passes an ion with charge Z, an electromagnetic wave is radi-

ated. The radiation has the energy

E =

∫ ∞

−∞

2

3

e2a(t)2

c3
dt, (B.1)

where c is the light speed, e is the elementary charge, v is the relative speed between

the electron and the ion, b is the collision efficiency, and a is the rate of acceleration

of the electron toward to the ion. Here, we consider the Fourier transformation F

for a,

F (ω) =
1

2π

∫ ∞

−∞
a(t)e−iωtdt, (B.2)

and its inverse,

a(t) =

∫ ∞

−∞
F (ω)eiωtdω, (B.3)

where ω is the angular frequency. First, by substituting Eq. (B.3) for Eq. (B.1), we
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have

E =

∫ ∞

0

8πe2

3c3
|F (ω)|2dω. (B.4)

Eq. (B.2) and a become large when −b/v < t < b/v. Then, we can approximate

Eq. (B.3) as

F (ω) =
1

2π

∫ ∞

−∞
a(t)e−iωtdt ≃ 0 (B.5)

for ω > v/b, and

F (ω) =
1

2π

∫ ∞

−∞
a(t)e−iωtdt ∼ ∆v

2π
=

Ze2

πbmev
(B.6)

for ω < v/b, where me is the electron mass and

∆v ≡ Ze2

me

∫ ∞

−∞

bdt

(b2 + v2t2)3/2
=

2Ze2

mebv
. (B.7)

Therefore, from Eqs. (B.4), (B.6), (B.5), the emissivity with angular frequency be-

tween ω and ω + dω, ηℏωdω, is given by

ηℏωdω ≡ dE =
8

3π

Z2e6

v2mec3

1

b2
dω, (B.8)

where ℏ = h/2π is the reduced Planck constant. Multiplying Eq. (B.8) by the

electron number density ne, the ion number density ni and 2πvbdb, and integrating

with respect to b, we obtain the emissivity per unit time and per unit volume, dP ,

as

dP ≡
∫ bmax

bmin

neniηℏωdω2πvbdb =
16π

3
√

3

e6Z2neni

vm2
ec

3
gffdω, (B.9)

where

gff ≡
√

3

π
ln

(
bmax

bmin

)
(B.10)

is the Gaunt factor for free-free emission.
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B.2 Inverse Compton scattering

The spectrum of scattered cosmic microwave background (CMB) photons from an

arbitrary frequency to the frequency ν is given by [160,161]

dWout(ν, β)

dtdν
=

∫ ξmax

ξmin

4πσTIν

(
ν

ξ

)
PIC(ξ, β)dξ, (B.11)

where Iν is the intensity of incident CMB photons, which is

Iν(ν) =
2hpν

3

c2

[
exp

(
hpν

kTCMB

)
− 1

]−1

(B.12)

and PIC is the probability that the energy of an incident CMB photon is by a factor

ξ, which is

PIC =
3

16γ6β6

[
−|1 − ξ|

2ξ
{1 + (4γ4 + 6)ξ + ξ2}

+ (1 + ξ){2β(γ4 + γ2 + 1) − (2γ2 + 1)(ln ξmax − | ln ξ|)}
]
, (B.13)

and the range of integration is given by

ξmax =
1

ξmin

=
1 + β

1 − β
. (B.14)

On the other hand, CMB photons which have frequency ν are scattered partially.

This is represented by

dWin(ν)

dtdν
= 4πσTIν(ν). (B.15)

Then the net spectrum is given by

dWIC(ν, β)

dtdν
=

dWout

dtdν
− dWin

dtdν

= 4πσT

∫ ξmax

ξmin

[
Iν

(
ν

ξ

)
− Iν(ν)

]
PIC(ξ, β)dξ (B.16)

= 4πσTIν(ν)

∫ 1

−1

dµ′
2

∫ 1

−1

dµ′
1

[
ex − 1

ex(1+βµ′
1)/(1+βµ′

2) − 1
− 1

]
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× PT(µ′
1, µ

′
2)

2γ4(1 + βµ′
1)

3
, (B.17)

where µ′
1 and µ′

2 are, respectively, the angles before and after scattering in the electron

rest frame, and PT is given by

PT(µ′
1, µ

′
2) =

3

8

[
1 + µ′

1µ
′
2 +

1

2
(1 − µ′

1
2
)(1 − µ′

2
2
)

]
(B.18)

If we know the velocity distribution of electrons, f(β), we obtain the SZ spectrum

dWSZ(ν)

dtdν
=

∫
dWIC(ν, β)

dtdν
f(β)d3β. (B.19)

Therefore, the radial profile of SZ effect is

∆I
(SZ)
ν (ν, r⊥)

Iν(ν)
=

1

4πIν(ν)

∫
ne

dWSZ(ν)

dtdν
dz. (B.20)

Extended thermal SZ effect

We assume the following distribution function as the thermal electron distribution:

frel(β)dβ =
γ5e−(γ−1)/θe

θee1/θeK2(1/θe)
β2dβ, (B.21)

where θe = kTe/mec
2 and K2 is the modified Bessel function. For the case of β ≪ 1

and θe ≪ 1, this distribution function can be approximated by

frel(β) ≃ exp

(
− β2

2θe

)(
1 − 3β4

8θe

− 5β6

16θe

)(
1 +

5β2

2
+

35β4

8
+

105β6

16

)

×
(√

2/π

θ
3/2
e

− 15

4
√

2πθe

)
β2, (B.22)

In particular, the lowest order reproduces the well-known non-relativistic Maxwell

distribution

fM(v)dv = 4π

(
me

2πkTe

)3/2

exp

(
−mev

2

2kTe

)
v2dv. (B.23)
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On the other hand, the inverse Compton intensity (B.17) in this limit can be approx-

imated by

dWIC(ν, β)

dtdν
= 4πσTIν(ν)

∫ 1

−1

dµ′
2

∫ 1

−1

dµ′
1

[
ex − 1

ex(1+βµ′
1)/(1+βµ′

2) − 1
− 1

]
PT(µ′

1, µ
′
2)

2γ4(1 + βµ′
1)

3

(B.24)

≃ 2πσTIν(ν)
xex

ex − 1

∫ 1

−1

dµ2 (B.25)

×
[
µ2β +

{
−1 − µ2

2 + x coth
(x

2

)(3 + 11µ2
2

20

)}
β2 + O(β3) + O(β4)

]
,

(B.26)

where x = hpν/kTCMB and µ2 = (µ′
2 + β)/(1 + βµ′

2) is the angle after scattering in

the observer rest frame. Then the SZ spectrum (B.19) is represented by

dWSZ(ν)

dtdν
=

∫
dWIC(ν, β)

dtdν
frel(β)dβ (B.27)

≃ 4πσTIν(ν)
xex

ex − 1
(B.28)

×
[
θeF

T
0 (x) + θ2

eF
T
1 (x) + βbF

K
0 (x, µ) + β2

bF
K
1 (x, µ) + θeβbF

TK
1 (x, µ)

]
,

(B.29)

where βb is the bulk velocity of the electron cluster, µ is the angle of the bulk motion,

and the functions FT
0 , FT

1 , FK
0 , FK

1 and FTK
1 are defined by

FT
0 (x) = −4 + F, (B.30)

FT
1 (x) = −10 +

47

2
F − 42

5
F 2 +

7

10
F 3 +

7

5
G2(−3 + F ), (B.31)

FK
0 (µ) = µ, (B.32)

FK
1 (x, µ) = −1 − µ2 +

(3 + 11µ2)F

20
, (B.33)

FTK
1 (x, µ) = µ

(
9µ − 47F

5
+

7F 2

5
+

7

10
G2

)
, (B.34)

where F = x coth(x/2) and G = x/ sinh(x/2).

Fig. B.1 shows the intensity of SZ effect as a function of x for thermal electron.

The blue and green curves show the intensity up to orders θe and θ2
e in Eq. B.19,

respectively. The red curve shows the exact solution. This figure shows that the
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Figure B.1: The inverse Compton intensity as a function of x for a thermal electron. The
blue and green curves show the intensity up to orders θe and θ2

e in Eq. (B.19), respectively.
The red curve shows the exact solution.

intensity of low frequency photons become lower than that before scattering, and the

intensity of high frequency photons become higher than that before scattering. The

borderline of the sign of the SZ intensity is x = 3.83 (ν = 218 GHz, λ = 1.38 mm).
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We investigate the gas density, temperature, and pressure profiles in a dark matter halo under the

influence of the chameleon force. We solve the hydrostatic equilibrium equation for the gas coupled with

the chameleon field in an analytic manner, using an approximate solution for the chameleon field equation

with the source term, with a generalized Navarro-Frenk-White universal density profile. We find that the

gas distribution becomes compact because a larger pressure gradient is necessary due to the additional

chameleon force. By confronting the theoretical prediction with the data of the temperature profile of the

Hydra A cluster according to Suzaku x-ray observations out to the virial radius, we demonstrate that a

useful constraint on a model parameter can be obtained depending on the value of the coupling constant.

For example, the upper bound of the background value of chameleon field, �1 < 10�4MPl, is obtained in

the case � ¼ 1, where � is the coupling constant between the chameleon field and the matter, and MPl is

the Planck mass. However, the error of the present data is not so small that we obtain a useful constraint

in the case � ¼ 1=
ffiffiffi
6

p
, which corresponds to an fðRÞ model.

DOI: 10.1103/PhysRevD.86.103503 PACS numbers: 98.62.Gq, 95.35.+d, 98.80.�k

The accelerated expansion of the Universe is one of the
most fundamental mysteries in basic science. Long-distance
modification of the gravity theory is a challenging approach
to this problem. However, any gravity theory must pass the
stringent constraints from the Solar System. The chameleon
mechanism is a noble mechanism for screening a scalar
degree of freedom which appears in a class of modified
gravity models, depending on the density of matter in the
local environment [1,2]. Newtonian gravity is recovered in
a high-density region, thereby evading the Solar System
constraints. Recently, it has been pointed out that the modi-
fication of gravity might be detected using halos of galaxies
and galaxy clusters, because the screening mechanism
could not be complete in their outer regions [3–8].

In the present paper, we focus on the gas distribution in
a dark matter halo under the influence of the chameleon
force. In Ref. [9], the authors found an analytic solution of
the chameleon field, assuming the matter distribution of the
Navarro-Frenk-White (NFW) universal density profile [10]
(cf. Ref. [11]). Utilizing their analytic method, we inves-
tigate the gas density, temperature, and pressure profiles
under the influence of the chameleon force. We find that
the chameleon force significantly influences the gas distri-
bution. We also demonstrate a useful constraint on the
chameleon gravity model from confronting the theoretical
temperature profile with x-ray observations of a cluster of
galaxies.

The chameleon field equation for a quasistatic system in
the Einstein frame is

r2� ¼ V;� þ �

MPl

�e��=MPl ; (1)

where V is the potential, � is the matter density, � is the
coupling constant, and we have defined the reduced Planck
mass by MPl

2 ¼ 1=ð8�GÞ with the gravitational constant

G. Here, we assume Vð�Þ ¼ �4þn=�n, where � is the
mass dimension parameter and n is the dimensionless
parameter. We also assume ��=MPl � 1. The coupling
between the scalar field and the matter density is the key
for the chameleon mechanism, as we see below.
We follow the analytic method in Ref. [9] to find a

solution for Eq. (1). In the present paper, we assume the
generalized NFW density profile �ðxÞ ¼ �s=xð1þ xÞb
with x ¼ r=rs, where �s and rs are the characteristic
density and scale of a halo, respectively, and b is a
parameter. The NFW density profile is the case b ¼ 2.
The mass within the radius x of the halo is given byMðxÞ ¼
4�r3s

R
x
0 dxx

2�ðxÞ. Instead of the parameters rs and �s, we

introduce the virial mass Mvir and the concentration pa-
rameter c, which are defined by Mvir ¼ ð4�=3Þrvir3�c ��c

and c ¼ rvir=rs, where �c is the ratio of the spherical
overdensity ��ð<cÞwithin the virial radius rvir to the critical
density of the universe ��c; i.e., �c ¼ ��ð<cÞ= ��c, for which
we adopt �c ¼ 100 in a spherical collapse model.
The analytic solution for Eq. (1) is obtained by matching

the interior solution �int and the exterior solution �out,
where �int is given by solving Eq. (1) while neglecting the
term on the left-hand side, while �out is given by neglect-
ing the first term on the right-hand side of Eq. (1). Then,
we find

�ðxÞ ¼
(
�s½xð1þ xÞb�1=ðnþ1Þ � �int; x < xc;

�B 1�ð1þxÞ2�b

ðb�2Þx � C
x þ�1 � �out; x > xc;

(2)

where we have defined �s ¼ ðn�nþ4MPl=��sÞ1=ðnþ1Þ,
B ¼ ��sr

2
s=MPl, and C and xc are determined by solving

the matching conditions at x ¼ xc:
*telkina@theo.phys.sci.hiroshima-u.ac.jp
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C ¼ B
ð1þ xcÞ2�b � 1

b� 2

þ�1xc ��s½xcð1þ xcÞb�1=ðnþ1Þxc; (3)

�1 � Bð1þ xcÞ1�b

¼ �sðxcð1þ xcÞbÞ1=ðnþ1Þ
�
1þ ð1þ bÞxc þ 1

ðnþ 1Þð1þ xcÞ
�
: (4)

The validity of the analytic solution is demonstrated for the
case b ¼ 2 in Refs. [5,9].

Note that �s is the typical value of the chameleon field
in the interior region, where the chameleon mechanism
works. This means that �s � �1, because the chameleon
mechanism screens the chameleon field. With this fact,
Eqs. (3) and (4) are approximated as

C ’ Bðð1þ xcÞ2�b � 1Þ=ðb� 2Þ þ�1xc; (5)

�1 � Bð1þ xcÞ1�b ’ 0; (6)

since we are considering the case xc ¼ Oð1Þ. Hence,
the scalar field in the exterior region is independent of n
and �. This is important because the constraint we obtain
becomes independent of n and �.

In our modeling of the gas distribution in a dark matter
halo, we make a few assumptions for simplicity. First, we
assume that the dark matter dominates the dark halo
described by the generalized NFW density profile. The
halo density profile could be affected by the modification
of the gravity theory; however, we assume the same profile,
since its validity is partially supported by N-body simula-
tions for the Dvali-Gabadadze-Porrati model and fðRÞ
model [3–5,12]. Recently, Ref. [5] confirmed this validity
for an fðRÞmodel, and argued a qualitative explanation for
the validity. Second, we assume that the baryon density is
negligible in the dark matter halo, which allows us to

neglect its effect on the scalar field equation. The effect
of the baryon component is discussed in Ref. [13]. The
validity of this assumption is also supported by the recent
measurements of the density profile of a cluster halo
through gravitational lensing, which show that the NFW
profile fits the data well [14,15]. Third, we assume that the
scalar field is coupled with the baryon component as well
as the dark matter component. For example, in an fðRÞ
model, the chameleon force is coupled with both the dark
matter and the baryon components.
Within Newtonian gravity, a useful model of the gas

density profile is considered in Refs. [13,16]. By assuming
hydrostatic equilibrium between the gas pressure and the
gravitational force from the dark matter with the NFW
density profile, the universal gas density, temperature, and
pressure profiles are derived. We follow the method of
Refs. [13,16], but taking into account the chameleon force
as well as the gravitational force, we derive the gas distri-
bution in a halo. Now the hydrostatic equilibrium gives

ð1þ �Þ
�g

dPg

dr
¼ � 1

MPl

�
d�G

dr
þ �

d�

dr

�
; (7)

where �g and Pg are the gas density and the pressure,

respectively, and � ¼ 0 unless explicitly stated otherwise.
Here�G denotes the gravitational potential, given by solv-
ing the gravitational Poisson equation, 4�G ¼ �=ð2MPlÞ.
For the generalized NFW density profile, we find the solu-
tion �GðxÞ ¼ �0½1� ð1þ xÞ2�b=ðb� 2Þx�, where we de-
fine �0 ¼ ��sr

2
s=2MPlðb� 1Þ. We assume that the gas

obeys the polytropic equation of state Pg / �gTg / ��
g

with the polytropic index � and the gas temperature Tg.

Introducing the function ygðxÞ by �gðxÞ ¼ �gð0ÞygðxÞ,
PgðxÞ ¼ Pgð0Þy�g ðxÞ, and TgðxÞ ¼ Tgð0Þy��1

g ðxÞ, we obtain
the solution

ygðxÞ ¼
�
1� �mp

kTgð0ÞMPlð1þ �Þ
�� 1

�
ð�GðxÞ ��Gð0Þ þ ��ðxÞ � ��ð0ÞÞ

�
1=ð��1Þ

(8)

¼

8>><
>>:

h
1� A

�
1þ ð1þxÞ2�b�1

ðb�2Þx � ��s

�0
½xð1þ xÞb�1=ðnþ1Þ

�i
1=ð��1Þ

; for x < xc;h
1� A

�
1þ ð1þ 2�2Þ ð1þxÞ2�b�1

ðb�2Þx � �
�0

�
�1 � C

x

��i
1=ð��1Þ

; for x > xc;
(9)

where we have defined A ¼ ��mp�0ð�� 1Þ=
kTgð0ÞMPlð1þ �Þ�, k is the Boltzmann constant, and
�mp represents the mean molecular mass. We determine
the parameter � by following Expression (17) in Ref. [17].
Our conclusions are not altered qualitatively for the
assumption on � within 1:1 � � � 1:3.

Figure 1 shows the gas density profiles, comparing the
case with the chameleon force (solid curves) and the case

of Newtonian gravity (dashed curves), adopting virial
masses of Mvir ¼ 1013M�, 1014M�, and 4� 1014M�,
from top to bottom, respectively. The gas density decreases
rapidly in the outer region (see the solid curves), where the
chameleon force is influential. For the large mass cluster,
the chameleon mechanism works out to large radii, be-
cause the density of dark matter is high enough even out-
side the halo. On the other hand, for the small mass cluster,
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the chameleon mechanism works only at small radii,
because the dark matter density is high only in the central
region. Because the chameleon force is an attractive force,
a larger pressure gradient is necessary for balancing
between them. This makes the gas distribution compact.
This feature is more significant for the smaller-mass halo.

Using this characteristic feature, let us consider a con-
straint on the chameleon gravity model. To this end, we
consider x-ray observations of a cluster of galaxies.
Because of the steep drop of the gas density in the presence
of the chameleon force, a similar drop in the x-ray surface
brightness may appear in the outer region. In the present
paper, we compare the x-ray temperature profile with the
data reported from Suzaku observations of the Hydra A
cluster out to the virial radius [18]. The Hydra A cluster is a
medium-sized cluster located at a distance of 230 Mpc.
Two different fields are observed in Ref. [18]. One is the
northwest offset from the x-ray peak of the cluster, and the
other is the northeast offset. The former and latter fields are
called the filament and void, respectively, because each
field continues into the filament and void structures. In
Fig. 2, the points with error bars show the data of the
filament direction in Ref. [18].

The curves in Fig. 2 show our theoretical model of the
x-ray surface brightness temperature, computed with the
formula

TXðr?Þ ¼
R
�cðTgÞ�2

g

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2? þ z2

q �
Tg

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2? þ z2

q �
dz

R
�cðTgÞ�2

g

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2? þ z2

q �
dz

; (10)

where �cðTgÞ is the cooling function, for which we have

assumed �cðTgÞ / T1=2
g (e.g., Ref. [19]), and r? is the

radial coordinate perpendicular to the line-of-sight direc-
tion. The solid curve is the best-fit curve, whose parameters
are noted in the caption. The dashed curve and the dotted
curve adopt �1 ¼ 2� 10�5MPl and 1:3� 10�4MPl,

respectively, where the other parameters are the same as
those for the solid curve.
The dotted curve, the solid curve, and the dashed curve

in Fig. 2 represent the characteristic curves which appear
when we vary �1 from a sufficiently large value to a
smaller one. First, the dotted curve represents the limit of
the modified gravity. Namely, for the large value of
�1 � B, xc becomes negative from Eq. (6). This means
that there appears no interior region in a halo where the
chameleon mechanism works to recover Newtonian grav-
ity. Thus, for the case �1 � B, we have �ðxÞ ¼ �outðxÞ
for the entire region, and therefore the solution Eq. (8)
should be replaced with

ygðxÞ ¼
�
1� Að1þ 2�2Þ

�
1þ ð1þ xÞ2�b � 1

ðb� 2Þx
��

1=ð��1Þ
:

(11)

On the other hand, the dashed curve is the same as the limit
of Newtonian gravity. For a small value of �1, we have a
large value of xc from Eq. (6). This means that the chame-
leon force is influential only at very large radii. Note that
the interior solution ygðxÞ, Eq. (9) for x < xc, can be

approximated by taking the limit of � ! 0 in Eq. (11),
because �s takes a very small value to screen the scalar
field where the chameleon mechanism works. In summary,
the dotted curve and the dashed curve are the two opposite
limits, and our theoretical curve is restricted by these two
limits. Note that the limit of the modified gravity Eq. (11)
depends on the coupling constant �.
Figure 3 shows the contours of �	2 on the parameter

plane for �1 and Mvir, where 	2 is simply defined by
	2 ¼ P

7
i¼1ðTXðr?;iÞ � Tobs

i Þ2=ð�Tobs
i Þ2, where Tobs

i and

�Tobs
i are the observed data and the error of the filament

direction, respectively, and TXðr?;iÞ is our theoretical

model. Here, we have fixed � ¼ 1 and b ¼ 2, but the
parameters c and Tgð0Þ are varied so as to minimize 	2
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FIG. 2. Temperature profiles as a function of the radius r?. The
points with error bars show the observation data of the filament
direction [18]. The curves show our theoretical model. The
solid curve adopts the best-fit parameters ð�1;Mvir;c;Tgð0ÞÞ¼
ð5:4�10�5MPl;5:1�1014M�;5:8;4:9keVÞ. The dashed curve
adopts �1 ¼ 2� 10�5MPl, while the dotted curve adopts
�1 ¼ 1:3� 10�4MPl, where the other parameters are the same
as those of the solid curve. Here we have fixed � ¼ 1 and b ¼ 2.
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FIG. 1 (color online). Gas density profile as a function of
the radius r=rs. The solid (dashed) curves are with (without)
the chameleon force, with virial masses Mvir ¼ 4� 1014M�
(green light curve), 1014M� (blue dark curve), and Mvir ¼
1013M� (red curve), from top to bottom, respectively. Here we
have adopted � ¼ 1, n ¼ 1:8� 10�5, � ¼ 2:4� 10�3 eV, and
�1 ¼ 1:1� 10�5MPl.
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within the range 3 � c � 10 and T	
0=
 � Tgð0Þ � T	

0


with 
 ¼ 1:1, where T	
0 is given by Eq. (19) in Ref. [17].

When taking Tgð0Þ as a completely free parameter, it is

difficult to obtain a useful constraint from the present data
due to the degeneracy between Tgð0Þ and Mvir. The mini-

mum value of 	2 is 1.0, where the number of degrees of
freedom is 3. The behavior of the contour is explained by
the fact that the theoretical curve approaches that of
Newtonian gravity as�1 becomes small and that the steep
drop becomes significant as �1 increases. Figure 3 gives
an upper bound of �1 < 10�4MPl at the 2-sigma level
for the case b ¼ 2 and � ¼ 1. We obtain a similar
upper bound of �1 for different values of b, which are
summarized in Table I. The upper bound of �1 becomes
larger for smaller b, but we may conclude that the results
do not significantly depend on b. Table I includes the
results with the void direction. The upper bound of �1
depends on the data, i.e., the filament direction and the
void direction; however, our conclusion does not alter
significantly.

So far, we have considered the case � ¼ 1; let us now

discuss the case � ¼ 1=
ffiffiffi
6

p
, which corresponds to an fðRÞ

model [20]. In this case, we could not obtain a useful
constraint on �1, which is explained as follows. The
theoretical density profile is limited by two characteristic
curves, Eq. (11) and (11) with � ¼ 0. When � is small, the
difference between these two characteristic curves is small,
because the drop of the gas density is not steep. This is the
reason why no useful constraint on the fðRÞ model was
obtained from the present x-ray data.

In summary, under the assumption of hydrostatic equi-
librium between the gas pressure gradient and the gravita-
tional and chameleon forces, we derived the gas density
profile in an analytic manner. Here we assumed the poly-
tropic equation of state for the gas and the generalized

NFW density profile for the dark matter distribution. The
chameleon force may give rise to a steep drop in the gas
distribution in the outer region of a halo. This feature is
more significant when the mass of a halo is small and� and
�1 are large. The gas density profile depends on � and
�1, but it does not depend on n and �. This provides us
with an opportunity to constrain � and �1 by comparison
with observations. We demonstrated a constraint on �1
in the chameleon gravity model, using the data of the
temperature profile from the x-ray observation [18]. We
obtained a useful upper bound of �1 < 10�4MPl in the
case � ¼ 1 [21]; however, no useful constraint was

obtained in the case � ¼ 1=
ffiffiffi
6

p
, which corresponds to an

fðRÞ model. In order to obtain a useful constraint, obser-
vations of the outer region of a smaller mass cluster are
more advantageous. Furthermore, a combination with
other observations like the weak lensing measurements
might improve the constraint. In our investigation, the
assumption of the hydrostatic equilibrium of hot gas might
be crucial. To estimate the effect of deviation from it,
we obtained similar constraints by adopting the nonzero
values of � ¼ 
0:5 in Eq. (7). The upper bound of �1
changes from 10�4MPl for � ¼ 0 to 0:6� 10�4MPl and
2:1� 10�4MPl for � ¼ 0:5 and �0:5, respectively. Thus,
the assumption of hydrostatic equilibrium is crucial to the
constraint, but we may obtain a useful constraint if we can
model the state of the gas correctly. Further study is
necessary for this problem. Finally, we assumed spherical
symmetry for a halo, an assumption whose validity must be
checked when comparing with observational data. In the
present paper, the results in Table I do not depend on the
filament direction and the void direction significantly,
which suggests the validity of our assumption.
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FIG. 3. The contours of �	2 on the parameter plane �1-Mvir.
Here we have fixed � ¼ 1 and b ¼ 2, but c and Tgð0Þ are

varied as fitting parameters. The contour levels of the inner
dashed curve and the outer solid curve are �	2 ¼ 2:7 and 6.6,
respectively.

TABLE I. Upper bounds of �1 at the 2-sigma level for differ-
ent values of b and the data for the filament and void directions.
Here we have fixed � ¼ 1.

Upper limit for �1 in units of [MPl]

Filament Void

b ¼ 1:7 1:4� 10�4 0:9� 10�4

b ¼ 2:0 1:0� 10�4 0:8� 10�4

b ¼ 2:5 0:8� 10�4 0:6� 10�4
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Abstract. We propose a novel method to test the gravitational interactions in the out-
skirts of galaxy clusters. When gravity is modified, this is typically accompanied by the
introduction of an additional scalar degree of freedom, which mediates an attractive fifth
force. The presence of an extra gravitational coupling, however, is tightly constrained by
local measurements. In chameleon modifications of gravity, local tests can be evaded by em-
ploying a screening mechanism that suppresses the fifth force in dense environments. While
the chameleon field may be screened in the interior of the cluster, its outer region can still be
affected by the extra force, introducing a deviation between the hydrostatic and lensing mass
of the cluster. Thus, the chameleon modification can be tested by combining the gas and
lensing measurements of the cluster. We demonstrate the operability of our method with the
Coma cluster, for which both a lensing measurement and gas observations from the X-ray
surface brightness, the X-ray temperature, and the Sunyaev-Zel’dovich effect are available.
Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of
the parameter space describing the different profiles in both the Newtonian and chameleon
scenarios. We report competitive constraints on the chameleon field amplitude and its cou-
pling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of
the coupling, we find an upper bound on the background field amplitude of |fR0| < 6× 10−5,
which is currently the tightest constraint on cosmological scales.
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1 Introduction

Modifications of the theory of gravity can serve as an alternative approach to using dark
energy models to explain the cosmic acceleration of our Universe [1, 2]. Any covariant mod-
ification of General Relativity introduces an additional degree of freedom. The chameleon
model modifies gravity by introducing a scalar field in addition to the tensor field, which is
non-minimally coupled with the matter components and gives rise to a fifth force that can
be of the same order as the standard gravitational force. The scope for extra gravitational
forces is, however, severely constrained by experiments in the Solar System. The chameleon
model employs a screening mechanism of the scalar field which depends on the local matter
density [3, 4] and allows it to evade these constraints; however in this model cosmic acceler-
ation must be driven by the contribution of a cosmological constant or dark energy rather
than being a genuine modified gravity effect [5].When the curvature of space-time is small,
gravity remains modified, which renders galaxy clusters a useful regime for testing modified
gravity models: while the interior of a cluster may be screened, the chameleon mechanism
may not completely screen the modifications of gravity in the outer region of the cluster [6–
16]. When the chameleon field is coupled with the gas component, the fifth force due to the
chameleon field affects the gas density profile of the galaxy cluster. This causes an additional
pressure gradient that balances the extra force, which leads to a more compact gas distribu-
tion in the cluster. This effect has been used in [14] to compare the X-ray temperature profile
predicted by the chameleon model with measurements of the Hydra A cluster, yielding an
upper bound on the asymptotic scalar field value at large distances of φ∞ < 10−4 MPl for a
coupling constant between the chameleon field and matter of β = 1.
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The chameleon model parameter β determines the strength of the fifth force when it

is not screened (see section 2.2). The second chameleon parameter, φ∞, controls the ef-
fectiveness of the screening mechanism, describing the transition from the inner region of
a cluster where gravity may be Newtonian to the outer region where the fifth force con-
tributes [17, 18]. The critical radius, where the transition occurs, is determined by both
φ∞ and β [see eq. (3.8)]. In the absence of environmental effects, we may regard φ∞ as
the cosmological background value of the chameleon field. When β =

√
1/6 the chameleon

model reduces to a f(R) gravity model [19–21] with the scalar field potential determined
by the choice of f(R) [22], a nonlinear function of the Ricci scalar R that is added to the
Einstein-Hilbert action. In this case, the parameter φ∞ is proportional to the parameter |fR0|
of the f(R) model, where fR0 is the present background value of the scalar field df(R)/dR
(see section 3.1.3 for details).

In the presence of a chameleon force, due to its effect on the gas distribution, the
hydrostatic mass of a cluster if interpreted assuming Newtonian gravity will deviate from its
underlying dark matter distribution, which can be measured via weak gravitational lensing,
resulting in different mass estimates for the cluster (see [23] for a recent analysis of this mass
bias in hydrodynamic simulations of f(R) gravity). Therefore, the combination of the gas
and lensing measurements of a cluster may yield a powerful probe of gravity if they give
statistically different mass estimates, which are not due to other astrophysical reasons.

In this paper, we demonstrate the operability of this method with the Coma cluster;
a massive cluster at a distance of approximately 100 Mpc, whose properties are measured
with several independent methods. The Planck team has, for instance, reported a precise
observation of the Sunyaev-Zel’dovich (SZ) [24] effect [25]. Moreover, the X-ray surface
brightness and X-ray temperature have been measured in [26–28], and weak lensing (WL)
observations have been conducted by [29, 30]. We use the combination of these measurements
to place tight constraints on β and φ∞. To illustrate the effectiveness of our approach, in
figure 1, we compare our result to current constraints from cosmological, astrophysical, and
local tests in the well studied case that the chameleon model reduces to f(R) gravity. Our
Coma constraint is currently the tightest constraint on cosmological scales.

An important element of our method is the reconstruction of the gas distribution in a
cluster of galaxies under the influence of the fifth force. In previous work [14], the hydrostatic
equilibrium of the gas components was assumed when modelling the gas distribution of the
Hydra A cluster in chameleon gravity. Hydrostatic equilibrium may, however, not always
be realised because of turbulence and bulk motions of the gas caused by mergers with other
clusters and groups of galaxies, as well as infalling material. The authors of [31] have demon-
strated that the cluster masses in numerical simulations, estimated under the assumption of
hydrostatic equilibrium, can deviate from the true mass by up to 30%, and that the deviation
is explained by the acceleration term in the Euler equation. We therefore carefully examine
the systematics that deviations from the hydrostatic equilibrium in the Coma cluster may
introduce on our results.

We first reconstruct the 3-dimensional profiles of the gas density, temperature, and pres-
sure from the observational results using Newtonian gravity. We then compare the mass esti-
mates from the gas observations with the mass estimate from lensing, finding good agreement
between them and that the assumption of hydrostatic equilibrium is a good approximation
given the observational errors of the lensing mass. Moreover, these mass estimates are only
marginally affected by the inclusion of an extremised non-thermal pressure component, which
has been calibrated to hydrodynamical simulations.
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Figure 1. Comparison of our Coma cluster constraint to current constraints on f(R) gravity from
the Solar System [20, 32], distance indicators in unscreened dwarf galaxies [33], the cosmic microwave
background (CMB) [34, 35], cluster density profiles [9] and abundance [6, 36]. The figure is adapted
from [9]. Also compare to figure 2 (resp. 3) of [2, 37] for prospective constraints on f(R) gravity.

While non-thermal pressure and other deviations from the hydrostatic equilibrium en-
hance the hydrostatic mass estimate, we find a strong decrease of the reconstructed hydro-
static mass when the chameleon fifth force is introduced. The detection of an enhanced
hydrostatic mass with respect to the lensing mass when interpreted in a Newtonian frame-
work, may, therefore, be a smoking gun for modified gravity. On the other hand, the effects
of non-thermal pressure and chameleon force may become degenerate in the reconstruction,
as the change in the hydrostatic mass by enhancing modifications of gravity can be compen-
sated by increasing deviations from hydrostatic equilibrium. Given the small effect of the
non-thermal pressure compared to the effect from modifying gravity, however, we decide that
it is safe to assume hydrostatic equilibrium of the gas, and perform our analysis under this
assumption.

Finally, note that Fusco-Femiano, Lapi, and Cavaliere [38] recently investigated the
consistency between the X-ray observations, from surface brightness and temperature, and
the SZ measurement in the Coma cluster, adopting a “Supermodel”. The Supermodel ex-
presses the profiles of density and temperature in the entropy-modulated equilibrium of the
intracluster plasma within the potential wells provided by the dominant dark matter [39].
This yields a direct link between the X-ray and the SZ observations based on the entropy
profile. They found a tension between the SZ and the X-ray pressure emitted by the plasma.
In our analysis, we confirm these results, by finding a similar tension between the SZ and the
X-ray pressures. However, the tension is mainly represented by the asymptotic difference of
the values of the pressure between the inner and the outer regions. On the other hand, the
constraint on the chameleon gravity model comes from the shape of the density profile in the
intermediate regime, so we can nevertheless put a useful constraint on the chameleon model.

The paper is organised as follows: in section 2, we review the hydrostatic equilibrium
equations and hydrostatic mass, including a brief review of an analytic approximate solution
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of the scalar field profile in the cluster. In section 3, we perform a Markov chain Monte
Carlo (MCMC) analysis to place constraints on the Newtonian and chameleon model param-
eter space. We then discuss the systematic effects introduced by deviations from spherical
symmetry, and study deviations from the hydrostatic equilibrium of the gas in Newtonian
gravity by comparing the hydrostatic mass inferred from X-ray and SZ measurements with
the lensing mass and analysing the effects of including non-thermal pressure in comparison
to the effects from the chameleon force. In section 4, we present our conclusions. Finally, in
appendix A, we discuss our reconstruction method for the gas profiles.

2 Hydrostatic and lensing mass in the presence of a chameleon force

We describe the hydrostatic mass of a spherically symmetric system of gas and introduce the
non-thermal pressure model, which we use to analyse deviations from hydrostatic equilibrium.
Then, we briefly review a derivation of an analytic approximate solution for the chameleon
scalar field profile within a dark matter cluster, which we use to determine the effects on
hydrostatic masses in the presence of the extra force. Next, we compare the reconstructed
hydrostatic masses, from different gas observations, with the observed lensing mass and
discuss the effect on the mass reconstruction when incorporating the non-thermal pressure
model and the chameleon modification.

2.1 Hydrostatic mass

We consider a spherically symmetric system of gas and dark matter. In this case, we can
write the equation for the gas component in hydrostatic equilibrium as

1

ρgas(r)

dPtotal(r)

dr
= −GM(< r)

r2
, (2.1)

where ρgas is the gas density, Ptotal is the ‘total’ gas pressure, including both thermal and
non-thermal pressure, and M(< r) is the mass enclosed within the radius r. This equation
describes the balance between the gas pressure gradient and the gravitational force. Note
that we have not yet included the chameleon force (see section 2.2). The total gas pressure
can be written as the combination of the thermal pressure and the non-thermal pressure,
Ptotal = Pthermal + Pnon−thermal. Eq. (2.1) can then be rephrased as

M(< r) = Mthermal(r) + Mnon−thermal(r) (2.2)

with the definitions:

Mthermal(r) ≡ − r2

Gρgas(r)

dPthermal(r)

dr
, (2.3)

Mnon−thermal(r) ≡ − r2

Gρgas(r)

dPnon−thermal(r)

dr
. (2.4)

Mnon−thermal is introduced to help mathematically describe the non-thermal pressure contri-
bution to the total mass. Note that Mthermal is expressed in terms of Pthermal and ρgas in
eq. (2.3). If we introduce the equation of state of gas, Pthermal = kngasTgas, we can express
the thermal mass in terms of Tgas and ρgas instead,

Mthermal(r) = −kTgas(r)r

µmpG

(
d ln ρgas(r)

d ln r
+

d ln Tgas(r)

d ln r

)
, (2.5)
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where we have used ρgas = µmpngas with the mean molecular weight µ and the proton
mass mp. The mean molecular weight of the fully ionised gas is defined by µ(ne + nH +
nHe)mp = mpnH+4mpnHe with ne = nH+2nHe, where ne, nH and nHe is the number density
of electron, hydrogen, and helium, respectively. Adopting the mass fraction of hydrogen
nH/(nH + 4nHe) = 0.75, we have µ = 0.59.

We define the fraction of the total pressure attributed to the non-thermal contribution by

Pnon−thermal(r) ≡ g(r)Ptotal(r). (2.6)

Hence, using Ptotal = g−1Pnon−thermal = (1 − g)−1Pthermal, we may write

Pnon−thermal(r) =
g(r)

1 − g(r)
ngas(r)kTgas(r). (2.7)

According to hydrodynamical simulations [40, 41], the non-thermal contribution to the total
pressure can be modelled with the expression

g(r) = αnt(1 + z)βnt

(
r

r500

)nnt
(

M200

3 × 1014M⊙

)nM

, (2.8)

where αnt, βnt, nnt, and nM are constants. For illustration, and for an estimation of
the effects from neglecting the non-thermal contribution, we adopt the parameter values
(αnt, βnt, nnt, nM) = (0.3, 0.5, 0.8, 0.2), which are the best-fit values in [41] with the exception
of αnt. The best-fit value of αnt is 0.18, which is an averaged value over 16 simulated clusters.
We set αnt = 0.3, which is the maximum value obtained in the 16 clusters [41], in order to
study the effect of the non-thermal pressure contribution in the extremised case.

We refer to appendix A for our approach to reconstruction of the 3-dimensional profiles
of ρgas, Tgas, and Pthermal from the gas observations via the X-ray temperature, X-ray surface
brightness, and SZ effect, which enables us to estimate Mthermal. Using eqs. (2.6) and (2.8),
we can then estimate the non-thermal contribution Mnon−thermal employing the results from
hydrodynamical simulations.

2.2 Chameleon fifth force

We now consider the effect on the hydrostatically inferred cluster mass profile when intro-
ducing the chameleon force. The field equation of the chameleon field φ in a quasi-static
system is given by [3]

∇2φ = V,φ +
β

MPl
ρ, (2.9)

where ρ is the matter density, V is the scalar field potential, β is the coupling between the
scalar field and matter, taken to be constant here, and MPl is the Planck mass. We shall
assume that the potential is a monotonic function of the scalar field, V = Λ4+n/φn with
constant exponent n (see, e.g., [14, 18]). Note that the choice of the potential is not essential
to our analysis because the scalar field in the cluster is not sensitive to the parameters of
the potential, Λ and n, as will be described below. Our results will also be applicable to the
Hu-Sawicki f(R) model in section 3.1.3, where the potential can be written approximately as
V = V0 − Λ4+n/φn with −1 < n < 0 and a constant V0 that yields cosmic acceleration. We
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also assume βφ ≪ MPl, so that the coupling is not too strong and we can use the weak-field
approximation. The chameleon fifth force is written as

Fφ = − β

MPl
∇φ. (2.10)

Note that we are considering a model where both matter components, i.e., baryonic and dark
matter, are coupled to the chameleon field. In this scenario, both matter components are
subject to the gravitational force and the chameleon force Fφ. This is, for instance, the case
in f(R) gravity models and any other chameleon theory that can be formulated in the Jordan
frame with a single metric. It is possible to consider a model where the baryonic component
does not couple to the chameleon field [42, 43]. Such a model would not be constrained by our
method as it would not introduce a difference between the hydrostatic and lensing masses.
Hence, we do not consider this possibility in this paper, nor the possibility of introducing
different coupling strengths for the different components.

We further assume that the dark matter component dominates over the baryonic con-
tribution in the cluster and that the matter density of the cluster ρ is well described by a
Navarro-Frenk-White (NFW) [44] profile

ρ(r) =
ρs

r/rs (1 + r/rs)
2 , (2.11)

where the characteristic density ρs, and characteristic scale rs, are fitted parameters. The
mass of the dark matter within the radius r is then given by

M(< r) = 4π

∫ r

0
drr2ρ(r) = 4πρsr

3
s

[
ln(1 + r/rs) − r/rs

1 + r/rs

]
. (2.12)

Note that the NFW fitting function eq. (2.11) is based on N -body dark matter simula-
tions of the concordance model. It is nontrivial to extend this assumption to modified gravity
models. However, it was shown in [10] that the NFW profile provides equally good fits for
f(R) clusters as it does for the Newtonian scenario. This was shown using N -body simula-
tions of the Hu-Sawicki f(R) gravity model corresponding to β =

√
1/6, which characterises

only a subgroup of models of the more general chameleon model studied here. The effects of
the modifications on observables are, however, qualitatively similar between different values
of the coupling strength β and can even partially be mapped into each other, suggesting the
applicability of the NFW profile. Its validity for the full range of parameters considered in
this paper may still be worthwhile checking using N -body simulations. From an observa-
tional perspective, recent work by [45, 46] supports the consistency of the NFW profile with
measurements. Hence, even independent of the simulation results, the NFW profile could be
used for the reconstruction of the lensing mass with the same motivation as introducing the
gas profiles in the reconstruction of the hydrostatic mass in appendix A.

We consider the virial mass of a halo within the virial radius rvir, which is related to
the concentration parameter c by

c ≡ rvir

rs
. (2.13)

The virial radius is defined such that the averaged density within this radius is ∆c times the
critical density. Then the virial mass Mvir is written as

Mvir ≡ M(< rvir) =
4π

3
r3
vir∆cρ̄c, (2.14)

– 6 –



JCAP04(2014)013
where ρ̄c is the critical density. We use ∆c = 100 obtained in the spherical collapse model
in the cold dark matter scenario with cosmological constant Λ [47]. Note that the critical
overdensity contrast ∆c generally depends on the modified gravity parameters. For example,
the authors in ref. [48] found ∆c ∼ 80 in an f(R) model, which is equivalent to ∆vir ∼ 300
at redshift z ∼ 0. Nonetheless, our final conclusion is independent of this modification of ∆c

because our MCMC analysis includes the parameters Mvir and c, which are degenerate with
∆c. Therefore, the change of ∆c only introduces shifts in the values of c and Mvir.

Instead of ρs and rs, we can alternatively use the virial mass Mvir and concentration c
as the underlying fitting parameters of eq. (2.11), from which one can determine ρs and rs

using the relations

rs =
1

c

[
Mvir

(4π/3)∆cρ̄c

]1/3

, (2.15)

ρs =
Mvir

4πr3
s

(
ln(1 + c) − c

1 + c

)−1

. (2.16)

These relations directly follow from eqs. (2.13) and (2.14).
With the assumption of a NFW dark matter density profile of the cluster, we can

derive an approximate, but analytic, solution for the radial profile of the chameleon field
from eq. (2.9) [14, 17, 18]. The analytic solution for eq. (2.9) is obtained by connecting the
interior solution φint and the outer solution φout. The interior solution is obtained when the
scalar field is in the minimum of the effective potential, which corresponds to the right-hand
side of eq. (2.9). Thus, the solution of the chameleon field can be inferred by setting ∇2φ
to zero. This represents the regime of the chameleon suppression of the scalar field and the
chameleon field does not mediate a fifth force. On the other hand, the outer solution is
obtained when the contribution of the scalar field potential, the first term on the right-hand
side of eq. (2.9), is subdominant to the matter density and ∇2φ. This describes the case
where the chameleon field mediates a long-range fifth force, the matter density is still large
compared to the background, and the scalar field has not settled in the minimum of the
effective potential. For these two limits of the chameleon field, we find

φ(r) =

⎧
⎨
⎩

φs[r/rs(1 + r/rs)
2] ≡ φint(≃ 0) (r < rc)

−βρsr
2
s

MPl

ln(1 + r/rs)

r/rs
− C

r/rs
+ φ∞ ≡ φout (r > rc)

, (2.17)

where C is an integration constant and rc is the transition scale, connecting φint and φout.
We have furthermore defined φn+1

s = (nΛn+4MPl/βρs), which represents the value of the
chameleon field in the interior region, and φ∞, the value of the scalar field at large distance
from the cluster. The chameleon field at the background is in the minimum of the effective
potential, hence, we have φn+1

∞ = (nΛn+4MPl/βρ0), where ρ0 is the matter density at large
distance from the cluster, e.g., the cosmological background density. Due to the high density
inside the cluster, ρs ≫ ρ0, the chameleon field is strongly suppressed with φs ≪ φ∞.
Thus the interior solution for the scalar field eq. (2.17) may be approximated as φint ≃ 0.
The integration constant C and the transition scale rc are then determined from requiring
φint(rc) = φout(rc) and φ′

int(rc) = φ′
out(rc). Finally we have the approximate solution

C ≃ −βρsr
2
s

MPl
ln(1 + rc/rs) + φ∞rc/rs (2.18)

φ∞ − βρsr
2
s

MPl
(1 + rc/rs)

−1 ≃ 0. (2.19)

– 7 –



JCAP04(2014)013
Note that in our approximation, the chameleon field eq. (2.17) and the transition relations
eqs. (2.19) and (2.18) do not depend on the parameters of the scalar field potential, Λ and n, as
we consider φ∞ as the degree of freedom of the model, which, depending on the environment
of a cluster, may be different from the cosmological background value of the scalar field.

From eq. (2.19), we can see that the critical radius rc, below which the chameleon field
is screened, is determined by βMPl/φ∞. Hence, the smaller φ∞ at fixed β, the larger the
critical radius becomes. As a consequence, the entire cluster can be screened. The smaller
β, the smaller the strength of the fifth force becomes. Thus, Newtonian gravity is recovered
in each of the limits β = 0 and φ∞ = 0.

In the presence of the chameleon field, the hydrostatic equilibrium eq. (2.1) is modified
by the introduction of the extra force Fφ = −(β/MPl)dφ/dr on the right-hand side of the
equation. The chameleon force then modifies the mass inferred from hydrostatic equilibrium
in eq. (2.2) as

M(< r) = Mthermal(r) + Mnon−thermal(r) + Mφ(r), (2.20)

where we define an extra mass

Mφ(r) ≡ −r2

G

β

MPl

dφ(r)

dr
(2.21)

associated with the enhanced gravitational force due to the chameleon field.

2.3 Inferring hydrostatic and lensing masses from observations

The thermal mass Mthermal of a cluster in eq. (2.5) is determined by its gas density, tempera-
ture, and pressure, which can be measured in X-ray and SZ observations. In order to obtain
Mthermal from observations, we reconstruct the three dimensional gas profiles using paramet-
ric fits as described in detail in appendix A, which we substitute into eq. (2.5). We assume
that the gas is fully ionised and that the electron temperature is equal to Tgas. For a relaxed
cluster such as Coma, used in section 3 to derive constraints on the chameleon model, we
assume that the electrons and protons have the same temperature. Note, however, that this
assumption is nontrivial because the equipartition timescale between electrons and protons
through Coulomb collisions is close to the dynamical timescale of the cluster (see, e.g., [49]).
Here, we use the notation ne for the three dimensional electron number density, which is
related to the gas number density ngas by

ne =
2 + µ

5
ngas. (2.22)

Similarly, we introduce the electron pressure Pe, which is related to the gas thermal pressure
Pthermal by

Pe = nekTgas =
2 + µ

5
Pthermal. (2.23)

With the definitions in eqs. (2.22) and (2.23) and the reconstructed 3-dimensional tem-
perature, electron density, and pressure profiles from appendix A, we can now determine the
thermal mass profile of the cluster. From X-ray observations, we infer

Mthermal = −kT
(X)
gas r

µmpG

(
d ln n

(X)
e

d ln r
+

d ln T
(X)
gas

d ln r

)
(2.24)
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and similarly, from the SZ observations, we obtain

Mthermal = − r2

Gρ
(X)
gas

dP
(SZ)
thermal

dr
. (2.25)

With this reconstruction, we can directly compare the two mass profiles with the lensing
mass

MWL = 4πρsr
3
s

[
ln(1 + r/rs) − r/rs

1 + r/rs

]
, (2.26)

which is obtained by integration over the NFW density profile in eq. (2.11), assuming that
φ/MPl ≪ 1 such that the lensing potential is related to the matter distribution by the
standard Poisson equation.

In the presence of a non-thermal pressure, eqs. (2.24) and (2.25) are modified according
to eq. (2.8) with the mass inferred from X-ray by

Mthermal + Mnon−thermal

= −kT
(X)
gas r

µmpG

(
d ln n

(X)
e

d ln r
+

d ln T
(X)
gas

d ln r

)
− r2

Gρ
(X)
gas

d

dr

(
g

1 − g
n(X)

gas kT (X)
gas

)
, (2.27)

whereas a combination of SZ and X-ray infers

Mthermal + Mnon−thermal = − r2

Gρ
(X)
gas

dP
(SZ)
thermal

dr
− r2

Gρ
(X)
gas

d

dr

(
g

1 − g
P

(SZ)
thermal

)
. (2.28)

To derive our constraints in section 3, we will assume hydrostatic equilibrium, eq. (2.1),
and thus require

Mthermal + Mnon−thermal + Mφ ≡ MWL, (2.29)

where Mφ is the chameleon contribution described in eq. (2.21) and Mnon−thermal ≪ Mthermal

+Mφ. We refer the reader to section 3.2.1 for an analysis on the validity of the hydrostatic
equilibrium assumption in the case of the Coma cluster.

3 Application to the Coma cluster

Having established the notion of hydrostatic and lensing mass, and having described the
effects from the presence of a chameleon field on the relation between the two in section 2, we
now analyse constraints on the chameleon gravity model by confronting our predictions with
observations of the Coma cluster. We chose to work with the Coma cluster as it is a relaxed
system, where the non-thermal pressure is expected to be subdominant (e.g. [50] and also see
section 3.2.1) and which has been well measured through a range of different observations
[50–53]. The contribution of non-thermal pressure can also be assumed small in modified
gravity [23]. Ref. [54] has recently pointed out that the cluster may not be very typical: its
X-ray temperature and star formation rate is high but the kinematic features like substructure
and velocity dispersion are not conspicuous. The authors urge caution in using Coma cluster
as a z ∼ 0 baseline cluster in galaxy evolution studies. On the other hand, according to
references [55, 56], the Coma cluster is in agreement with scaling relations obtained from
typical cluster samples. We cannot exclude that extraordinary features of the cluster may
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affect our conclusions. However, our constraints rely only on the observed distribution of
gas and dark matter and we allow a number of degrees of freedom to phenomenologically
model these distributions, finding good agreement of our fits with the observational data.
We also carefully examine a dynamical equilibrium model of the Coma cluster. Note that
our method applies to any cluster which is in hydrostatic equilibrium, and is not restricted
to the Coma cluster. This section is organized as follows: in section 3.1, we first assume
hydrostatic equilibrium and model the effect from chameleon gravity using the analytic scalar
field solution described in section 2.2 to derive and compare the theoretical gas distribution
profiles with the corresponding observations of the Coma cluster. Then we simultaneously fit
for the observed X-ray surface brightness, the X-ray temperature, the SZ effect, and the WL
profile based on a parametric fit for the electron number density and the NFW profile. We
obtain competitive constraints on the chameleon model. In particular, our method provides
the currently strongest cosmological constraint on f(R) gravity (see figure 1). In section 3.2,
we then analyse the validity of the hydrostatic equilibrium assumption of gas in the Coma
cluster and study the potential systematic effects on the reconstructed mass profiles as well
as possible errors induced by non-spherically symmetric features of the cluster.

3.1 Constraints on the model parameters from an MCMC analysis

We estimate the 3-dimensional profiles of the temperature, electron density, and pressure
from observations of the X-ray temperature, surface brightness, and SZ effect employing the
parametric fits described in appendix A, as well as the lensing mass, for which we use a
NFW profile. In hydrostatic equilibrium, the hydrostatic mass can then be inferred from
any combination of two of these profiles. Here, we choose to work with the electron number
density eq. (A.5) and the NFW profile eq. (2.12), and perform an MCMC analysis of the
model parameter space, including the chameleon model parameters β and φ∞ discussed in
section 2.2.

3.1.1 Method

We write the hydrostatic equilibrium equation as

1

ρgas(r)

Pthermal(r)

dr
= −GM(< r)

r2
− β

MPl

dφ(r)

dr
(3.1)

and assume that the equation of state for the gas is given by Pthermal = ngaskTgas, which is
equivalent to Pe = nekTgas, where the electron temperature equals to Tgas. Integration of
eq. (3.1) yields

Pthermal(r) = Pthermal,0 + µmp

∫ r

0
ne(r)

(
−GM(< r)

r2
− β

MPl

dφ(r)

dr

)
dr. (3.2)

Hereby, Pthermal,0 is an integration constant equal to the thermal gas pressure at r = 0, which
can be written as Pthermal,0 = ngas,0kT0, where ngas,0 and T0 are the thermal gas number
density and the gas (electron) temperature at r = 0, respectively. We adopt eq. (A.5) to
describe the electron number density ne(r) and the NFW profile eq. (2.11) for the matter
density which determines the cluster mass profile M(< r) in eq. (2.12). Note from eq. (2.22)
that ngas,0 is expressed by n0 as ngas,0 = 5n0/(2 + µ).

The NFW density profile is specified by the virial mass Mvir and the concentration
parameter c. The configuration of the scalar field is given by specifying the parameters
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β and φ∞. Including the parameters for the electron number density, the complete list of
parameters we analyse in our MCMC study becomes T0, n0, b1, r1, Mvir, c, β, φ∞, where r1 and
b1 determine a characteristic scale and slope, respectively, for ne(r) in eq. (A.5). Once these
parameters are specified, we can compute the projected gas profiles in eqs. (A.1), (A.2),
and (A.3), which are then compared with the observational data from the X-ray surface
brightness and temperature, and the SZ observations.

We estimate the “goodness-of-fit” by computing the chi-squared distribution

χ2(Mvir, c, T0, n0, b1, r1, β, φ∞) = χ2
XT + χ2

SB + χ2
SZ + χ2

WL, (3.3)

where

χ2
XT =

∑

i

(TX(r⊥,i) − T obs.
X,i )2

(∆T obs.
X,i )2

, (3.4)

χ2
SB =

∑

i

(SX(r⊥,i) − Sobs.
X,i )2

(∆Sobs.
X,i )2

, (3.5)

χ2
SZ =

∑

i

(y(r⊥,i) − yobs.
i )2

(∆yobs.
i )2

, (3.6)

χ2
WL =

(Mvir − MWL)2

(∆MWL)2
+

(c − cWL)2

(∆cWL)2
. (3.7)

Here, TX(r⊥,i) and T obs.
X,i are the theoretical and observed X-ray temperatures, and ∆T obs

X,i

refers to the observational error. We adopt the analogous notation for the surface brightness
SX and the y-parameter, defined by the SZ temperature as ∆TSZ/TCMB ≡ −2y. In addition,
MWL and cWL are the observed virial mass and the concentration parameter from weak
lensing, respectively.

For the X-ray temperature profile, we use the XMM-Newton data reported in [27] for
the inner region and Suzaku data reported in [28] for the outer region. For the X-ray surface
brightness profile, we use the XMM-Newton data reported in [26] and for the SZ pressure
profile, we use the Planck measurements [25]. Finally, we use the WL measurement of the
Coma cluster reported by Okabe et al. [30], who adopt a NFW fit in their analysis to obtain
a virial mass of the Coma cluster of Mvir = 8.92+20.05

−5.17 ×1014h−1M⊙ and a concentration of

c = 3.5+2.57
−1.79 with virial overdensity ∆c = 100.

In our likelihood analysis, we assume that the information contained in each data point
is independent of the other data points, i.e., that there is no correlation between these four
observations. This could be an over-simplification. These four observations are based on
different measurement principles, and the X-ray, SZ effect, and WL observations are obtained
at different wavelengths. On the other hand, the information contained in the data comes
from the same astrophysical object, and thus the systematic errors might be correlated. For
instance, the clumpiness of the cluster and other non-spherically symmetric features would
introduce a correlated systematic error between the data sets. We do not take into account
such correlations in our analysis and leave it for future work to address these observational
issues in more detail. See, however, section 3.2 for a discussion of these effects. We also
note that the covariance of errors is not taken into account in our analysis because it is not
available to us. For now, we assign a 5% systematic error to the measurement error of the
X-ray surface brightness.
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Figure 2. X-ray temperature (top-left), surface brightness (top-right), and SZ effect (bottom). The
best-fit values of the chameleon model parameters are (β, φ∞)=(15, 4 × 10−4MPl), where the model
parameters characterising the profiles are given in table 1. In the data analysis, we use the data points
included within the radial range 100 kpc < r⊥ < 1 Mpc and fit them using the model parameters
T0, n0, b1, r1, Mvir, c in the Newtonian case and in addition β2 and φ∞,2 in the chameleon scenario.
Note that the best-fits of the Newtonian and chameleon cases almost overlap.

3.1.2 MCMC analysis

We perform an MCMC analysis with the 8 model parameters T0, n0, b1, r1, Mvir, c, β2, and
φ∞,2, which completely describe the X-ray temperature and surface brightness profiles, the
SZ effect, and the WL mass profile as well as the chameleon modified gravity model. We
re-normalise the parameters β2 = β/(1 + β) and φ∞,2 = 1 − exp(−φ∞/10−4MPl) (instead
of β and φ∞) as β2 and φ∞,2 span the complete available parameter space of β and φ∞ in
the interval [0, 1]. Note, however, that some of the approximations made in section 2 do not
hold in the extreme limits of φ∞,2 → 1 and β2 → 1. For our analysis, we use the MCMC
module included in the cosmomc [57] package, which employs a Metropolis-Hastings [58, 59]
sampling algorithm. We require a Gelman-Rubin statistic [60] of R − 1 < 0.03 to ensure
convergence of our runs.

In figure 2, we compare the overall best-fit curves for the chameleon gravity model
(dashed) and Newtonian gravity (solid) from the combination of all of the observational data
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parameter Newtonian gravity Modified gravity

Mvir 2.57+0.97
−0.54 1015 M⊙ 2.46+1.33

−0.61 1015 M⊙

c 2.56+0.49
−0.52 2.64+0.72

−0.7

n0 2.33+0.22
−0.17 10−3/cm3 2.34+0.21

−0.19 10−3/cm3

b1 −0.921+0.089
−0.109 −0.915+0.085

−0.107

r1 3.02+0.54
−0.47 102 kpc 2.99+0.56

−0.45 102 kpc

T0 11.2+0.76
−0.84 keV 11.3+0.79

−0.9 keV

Table 1. Best-fit values and 1-dimensional marginalised constraints (95% CL) for the model param-
eters (T0, n0, b1, r1, Mvir, c) characterising the gas and dark matter profiles obtained from an MCMC
analysis of the joint observational data sets.

sets, i.e., minimising χ2 in eq. (3.3). The corresponding best-fit parameter values are listed
in table 1 along with the 1-dimensional marginalised 95% confidence levels (CL). We show
the 2-dimensional marginalised contours of the different combinations between the model
parameters for the Newtonian case, i.e., where we have fixed β = 0 and φ∞ = 0, in figure 3.
The best fit in this case yields a reduced χ2 of χ2/d.o.f. = 32/41. In figure 4, we show the
analogous constraints for the model parameters of the chameleon modified gravity scenario.
The best fit in this case yields a good reduced χ2 of χ2/d.o.f. = 32/39. We refer to section 3.2
for a discussion of possible sources of systematic error that have not been taken into account
in this analysis.

Finally, in figure 5, we show the 2-dimensional marginalised contours of the parameters
β2 and φ∞,2. Note that the lower shaded region is the allowed region. We recall that β
describes the strength of the chameleon fifth force and φ∞ determines the efficiency of the
chameleon screening, and we introduced the parameters β2 = β/(1 + β), which we mapped
into φ∞,2 = 1 − exp(−φ∞/10−4MPl) instead of β and φ∞ to describe the entire parameter
space of the chameleon modification. Newtonian gravity is recovered in both limits of β2 = 0
and φ∞,2 = 0.

The boundaries in figure 5 can be understood by considering the phenomenology of
the chameleon modification. At large β, if the chameleon field is not screened, the extra
chameleon force reduces the hydrostatic mass compared to the Newtonian mass estimate
and it becomes inconsistent with the lensing mass (see section 3.2). This causes a tension in
the desired parameter values when fitting the joint set of observations and places constraints
on the chameleon modification. On the other hand, the chameleon force contributes only
outside of the critical radius rc, which is determined by eq. (2.19) as

1 +
rc

rs
=

βρsr
2
s

MPlφ∞
. (3.8)

Due to the chameleon suppression mechanism, Newtonian gravity is recovered below rc. To
put a useful constraint on the chameleon force, rc must be smaller than the size of the
cluster, which is about 1 Mpc. More precisely, with increasing βMPl/φ∞, the transition
scale rc becomes large and eventually surpasses the size of the cluster, in which case the
chameleon mechanism completely screens the fifth force within the cluster. At this point, no
further constraints on the chameleon model can be obtained. This implies that there is an
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Figure 3. 95% (deep gray region) and 99% CL (pale gray region) 2-dimensional marginalised contours
of the 6 model parameters T0 [keV], n0 [10−2cm−3], b1, r1 [Mpc], Mvir [1014M⊙], and c in the
Newtonian scenario, obtained from the MCMC analysis, using the joint set of X-ray, SZ, and WL
data. The most-right panels of each row show the 1-dimensional marginalised constraints (solid) and
likelihood distributions (dotted).
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Figure 4. Same as figure 3 but when including the chameleon parameters β2 and φ∞,2 in the MCMC
analysis. The 2-dimensional marginalised contours of β2 and φ∞,2 are also shown in figure 5.
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Figure 5. 95% (deep gray region) and 99% CL (pale gray region) contours for the chameleon model
parameters β2 = β/(1 + β) and φ∞,2 = 1 − exp(−φ∞/10−4MPl), obtained from the MCMC analysis
of the 8 model parameters, T0, n0, b1, r1, Mvir, c, β2, and φ∞,2, using the joint set of X-ray, SZ, and
WL data. The shaded region is the allowed region.

upper bound on βMPl/φ∞, which can be constrained. In the opposite limit, when β is small,
the fifth force is weak and the modifications become consistent with the observations within
the given errors. Hence, at low β2 in figure 5 the chameleon scalar field amplitude φ∞,2 is
unconstrained.

With the minimal scalar field in the background, −Λn+4 ≃ n−1β R̄0 φn+1
∞ MPl, the Comp-

ton wavelength of the background scalar field today, assumed to be φ∞ here, becomes [32]

m−1
∞ ≃

[
β R̄0

n + 1

MPl

φ∞

]−1/2

∼
[
10−6 β

n + 1

MPl

φ∞

]−1/2

Mpc. (3.9)

Whereas the chameleon mechanism suppresses the scalar field on scales below rc, on scales
larger than the Compton wavelength m−1

∞ , modifications of gravity are Yukawa suppressed.
With Solar System tests requiring that φ∞ ! 10−6β [20, 32] and with n ∼ O(1), one obtains
m−1

∞ ∼ Mpc. Hence, requiring Solar System tests to be satisfied, standard gravity is recovered
on scales beyond O(1) Mpc (cf. [5]). Since we only use observations on scales smaller than
1 Mpc and constraints are weaker than the local bounds, we can safely ignore the Yukawa
suppression.

3.1.3 Constraint on f(R) gravity

Our constraints have important implications for f(R) gravity [19–21], which corresponds to
a subset of our models with a particular choice of the coupling constant β =

√
1/6. In f(R)

gravity, the Einstein-Hilbert action is supplemented by a free nonlinear function f(R) of the
Ricci scalar R,

S =
1

16πG

∫
d4x

√−g(R + f(R)) +

∫
d4x

√−gLm, (3.10)

where Lm is the matter Lagrangian. Here, we adopt the particular expression f(R) =
−m2c1/c2 + (m2c1/c2

2)(R/m2)−ñ of the Hu-Sawicki model [20], where ñ, m, c1 and c2 are
constant model parameters. Note that m2c1/c2/2 can be chosen such that the modification
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exhibits an effective cosmological constant and mimics the expansion history of the concor-
dance model. Hence, we specify m2 = ΩmH2

0 and c1/c2 = 6ΩΛ/Ωm, where Ωm and H0 are
the matter density parameter and the Hubble parameter at the present epoch, respectively,
and ΩΛ ≡ 1 − Ωm. Furthermore, we have ñc1/c2

2 = −fR0[3(1 + 4ΩΛ/Ωm)]ñ+1, where we
introduced the model parameter fR0, which is the value of df(R)/dR at present time and at
the background. The f(R) modification can be related to the chameleon field φ via

fR = −
√

2

3

φ

MPl
(3.11)

and hence, assuming that the Coma cluster is isolated such that φ∞ corresponds to the
background scalar field value, we have fR0 = −

√
2/3(φ∞/MPl). From the 2-dimensional

contours of (β2, φ∞,2) in figure 5, we therefore estimate an upper bound on f(R) gravity of
φ∞ <∼ 7 × 10−5MPl or equivalently, |fR0| <∼ 6 × 10−5 at 95% CL.

We emphasise that this is a competitive result with the bounds on f(R) gravity obtained
from cosmology such as from the abundance of clusters [6, 36, 64] (see figure 1) and the current
constraints from redshift-space distortions in the large scale structure of galaxies [65]. Note
that in the case of ñ = 1, the value of |fR0| is related to the Compton wavenumber of the
scalar field kC by

kC ≃ 0.04

(
10−4

|fR0|

)1/2

hMpc−1. (3.12)

Then, |fR0| <∼ 6 × 10−5 can be rephrased as kC
<∼ 0.05 hMpc−1.

Note that the assumption that the Coma cluster is an isolated system is nontrivial. It
is well known that on large scales, the cluster is connected to a network of filaments [61, 62].
Hence, φ∞ or fR0 should really be understood as the scalar field value in the mean density
environment within a large radius around the Coma cluster, which we expect to be close
to the background value [63]. This interpretation does not differ from approaches taken to
derive the constraints reported in figure 1. Another possible effect which may be introduced
by the environment could be a large-scale non-spherically symmetric feature as discussed in
section 3.2.2.

3.2 Systematic effects

So far we have assumed hydrostatic equilibrium of the gas and a spherically symmetric matter
distribution. We therefore devote the remainder of this section to discuss the systematic
errors that can be introduced in our analysis due to deviations of the hydrostatic equilibrium
(section 3.2.1) and to adumbrate the systematics caused by the presence of non-spherically
symmetric features (section 3.2.2).

3.2.1 Invalidity of hydrostatic equilibrium

By employing the assumption of hydrostatic equilibrium in our analysis of the model pa-
rameter space, we have supposed that for the Coma cluster, the hydrostatic masses inferred
from temperature and density, and that from pressure and density, are consistent, as well
as that the two hydrostatic masses are also consistent with the lensing mass. Here, we test
the validity of hydrostatic equilibrium within Newtonian gravity by comparing the different
mass estimates, and study the effects of introducing non-thermal pressure.
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Figure 6. Top left panel : Radial gas temperature profile of the Coma cluster. The circles and
boxes represent the the data points and errors from the XMM-Newton measurements by Snow-
den et al. [27] and the Suzaku measurements by Wik et al. [28], respectively. The solid curve
is the projected emission weighted temperature eq. (A.1), using the fitting functions eqs. (A.4)
and (A.5) for the 3-dimensional temperature and electron density profiles with best-fit parameter val-
ues (T0, A, r0, b0) = (8.6 keV, 0.082, 3.9 Mpc, −5.3) and (n0, r1, b1) = (2.3× 10−3cm−3, 0.34 Mpc, −1),
respectively, to the joint X-ray data. Top right panel : radial surface brightness profile of the Coma
cluster. The data points represent the XMM-Newton measurements by Churazov et al. [26]. The
error bars in the original data, which only account for the Poisson noise contribution, are small.
We assign a systematic error of 5% to each data point to take into account clumpiness and other
non-spherically symmetrical features of the cluster. The solid curve is the surface brightness profile
eq. (A.2), using the fitting functions eqs. (A.5) and (A.4) for the 3-dimensional electron density pro-
file temperature profile with best-fit parameter values (T0, A, r0, b0) = (8.6 keV, 0.082, 3.9 Mpc, −5.3)
and (n0, r1, b1) = (2.3 × 10−3cm−3, 0.34 Mpc, −1), respectively, to the joint X-ray data. Bot-
tom panel : radial Sunyaev-Zel’dovich CMB temperature profile. The data points represent the
Planck measurements by Ade et al. [25]. The dashed curve is the SZ effect eq. (A.3), using
the fitting function eq. (A.6) for the 3-dimensional pressure profile with best-fit parameter values
(P0, b3, b4, b5, r4) = (1.1 × 10−2 keV/cm3, 0.14, 2.2, 1.1, 0.53 Mpc). The solid curve is the best fit
model from the joint X-ray observations.

In the top left and top right panel of figure 6, we compare the observed X-ray tempera-
ture and surface brightness, respectively, against the corresponding best fit curves, which are
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Figure 7. Radial mass profile of the Coma cluster. The shaded region is the observationally
allowed 1-σ region from the WL observations of [30]. The blue solid curve is the thermal mass
component Mthermal estimated from the X-ray observations only, and the black solid curve is Mthermal

estimated from the combination of X-ray and SZ observations. The blue dashed and black dashed
curves correspond to the same colour solid lines, however, now including a large non-thermal pressure
contribution.

obtained by fitting the projected profiles of eqs. (A.1) and (A.2) with eqs. (A.4) and (A.5)
to the combined X-ray data. Note that in the top right panel, for each data point, we have
assigned a 5% systematic error on top of the measured errors. The measured errors for the
X-ray surface brightness are extremely small because they only include the Poisson noise con-
tribution. Systematic errors can be introduced from the clumpiness and the non-spherical
symmetry of the gas distribution and should be taken into account (see section 3.2.2).

The bottom panel of figure 6 shows the SZ observations by the Planck satellite reported
in [25], which we compare with the two different best-fit curves. The dashed curve is the best
fit obtained by fitting the SZ profile eq. (A.3) with eq. (A.6) and the solid curve is the best
fit to the joint X-ray temperature and surface brightness data, i.e., with the same parameter
values used in the top left and top right panels of figure 6. Note the deviation between the
two curves.

Recently, Fusco-Femiano, Lapi, and Cavaliere [38] analysed the consistency between
the observations of the X-ray surface brightness, X-ray temperature, and SZ observations,
adopting a “Supermodel”. The Supermodel yields a direct link between the X-ray and the SZ
observations based on the entropy profile. They report a tension between the pressure from
the X-ray observations and that from SZ observation in the Coma cluster. The authors argue
that an additional non-thermal pressure resolves the tension. In this paper, we adopt a similar
observational data set and reconstruct the 3-dimensional gas profiles using the relations
described in appendix A. We find a similar tension in our results and model a non-thermal
pressure component as described in section 2.1, which however, is slightly different from
the non-thermal pressure discussed in [38]. The non-thermal pressure in [38] is a constant,
which is independent of the radius. The non-thermal pressure we introduce in section 2.1 is
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a function of radius, and its fraction in the total pressure becomes large only in the outer
region. Nevertheless, our models fit the data reasonably well and can be used to put a useful
constraint on the chameleon modification. This is because we only use the limited data in
the range of radii of 100 kpc < r⊥ < 1 Mpc, where the shape of the mass profile drives the
constraints.

Figure 7 shows the different radial mass profiles reconstructed from the different gas
observations and the lensing mass in Newtonian gravity, including effects from the non-
thermal pressure introduced in section 2.1. The blue solid curve is the hydrostatic mass from
eq. (2.5) with the reconstructed ne(= ρgas(2+µ)/5µmp) and Tgas from the X-ray observations.
The black solid curve is the hydrostatic mass from eq. (2.3) with the reconstructed ρgas and
Pgas from the X-ray observations and the SZ observations. Finally, the shaded region in
figure 7 shows the allowed 1σ-region of the WL mass profile fitted using a NFW density profile
with Mvir = 8.92+20.05

−5.17 ×1014h−1M⊙ and c = 3.5+2.57
−1.79. At the scales of 100 kpc < r < 1 Mpc,

the blue and black curves are consistent within the shaded region, while for r < 100 kpc,
the curves are out of the shaded region. Thus, for 100 kpc < r < 1 Mpc, although the mass
estimates differ up to the 50% level, within the observational error of the lensing mass, the
mass profiles estimated by the gas observations are consistent with each other and the lensing
mass profile. This suggests that hydrostatic equilibrium is a good approximation for the outer
region of the Coma cluster, given the error of the lensing measurement. The discrepancies
in the inner region r < 100 kpc are a known problem in the mass reconstruction and beyond
the scope of the present paper: the validity of hydrostatic equilibrium in the inner region
has been investigated by many authors (see, e.g., [66–68] and references therein) with no
consensus found. Note, however, that the WL observations are not sensitive to the density
profile in the inner region [30]. We, therefore, base our analysis on a simple extrapolation of
the NFW profile. Recent lensing observations of the Coma cluster [69] support the validity
of this assumption for 100 kpc < r < 1 Mpc as well as indicate its limitation for r < 100 kpc.

In order to estimate the influence of the non-thermal pressure on the mass profile, the
blue and black dashed curves in figure 7 show the sum of the thermal mass profile Mthermal

and the non-thermal mass component Mnon−thermal determined by eq. (2.8). The blue dashed
curve is obtained from the X-ray observations via eq. (2.27), whereas the black dashed curve
is obtained from the combination of the SZ and X-ray observations from eq. (2.28). At
r = 1 Mpc, the non-thermal pressure enhances the total hydrodynamical mass estimation
by a few ×10%. This reflects the limited effect of the non-thermal pressure predicted by
hydrodynamical simulations.

Finally, we include the chameleon field in our mass comparison. In figure 8, we show
the thermal radial mass profile and the combination with the chameleon mass component
Mthermal+Mφ (red curves). The red solid and red dashed curve is obtained for (β, φ∞/MPl) =
(1, 1.5 × 10−4) and for (1.2, 2 × 10−4), respectively. These two sets of parameters of the
chameleon model illustrate typical scenarios where the chameleon force causes a possible
discrepancy between the gas and the lensing masses. Note that these curves are determined
from Mthermal and Mφ in eq. (2.20), where Mthermal is reconstructed from the observational
data and Mφ is given by eq. (2.21), and, therefore, the slightly oscillatory feature of the
β = 1.2 curve does not reflect any physically meaningful effect. The blue curve represents
the case without the chameleon force, which is close to the red solid curve and the red
dashed curve in the inner region, where the chameleon field is suppressed. Further out,
the chameleon force reduces the hydrostatic mass Mthermal + Mφ with respect to the mass
obtained in Newtonian gravity because the chameleon force introduces an extra attractive
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Figure 8. Same as figure 7 but in the presence of the chameleon field. The red solid and red dashed
curves are the combination of the thermal mass and chameleon mass components, Mthermal + Mφ,
when (β, φ∞/MPl) = (1, 1.5 × 10−4) and (1.2, 2 × 10−4), respectively.

force. As is clear from this figure, we can only put a constraint on the chameleon model
that influences the gas distribution in the range r ! 1 Mpc. The critical radius at which the
chameleon force begins to contribute is determined by β/φ∞ [see eq. (3.8)] and the amplitude
of the chameleon force is determined by β (see section 2.2). Thus, these two parameters in
the chameleon models are constrained by comparing the hydrostatic mass and lensing mass
under the assumption of hydrostatic equilibrium.

3.2.2 Non-spherical symmetry

Next, let us consider systematic effects that can be introduced by deviations from spherical
symmetry. Here, we assume that the three dimensional profile of the electron number density,
temperature, and pressure are written as,

ne(r, θ, ϕ) = n̄e(r)[1 + δne(r, θ, ϕ)], (3.13)

Tgas(r, θ, ϕ) = T̄gas(r)[1 + δTgas(r, θ, ϕ)], (3.14)

Pe(r, θ, ϕ) = P̄e(r)[1 + δPe(r, θ, ϕ)], (3.15)

where δne , δTgas and δPe describe deviation from the spherical symmetric profiles, n̄e(r),
T̄gas(r), and P̄e(r), respectively.

The effect of the clumpiness on the electron number density can then be estimated as
follows. Introducing an average over the spherical symmetric profiles, we assume ⟨δne⟩ = 0
and ⟨δ2

ne
⟩ ̸= 0. Assuming that the temperature perturbation is negligible, i.e., δTgas = 0, the

observed X-ray temperature profile is not changed. The SZ profile is not affected by clumping
either because ⟨δPe⟩ = ⟨δne⟩ = 0 from the equation of state. However, the surface brightness
is increased by the clumpiness and can be rewritten as

SX ∝
∫

n2
edz = (1 + ⟨δ2

ne
⟩)
∫

n̄2
edz, (3.16)
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where 1+⟨δ2

ne
⟩ is referred to as the clumping factor. This affects the reconstruction of the elec-

tron number density. When the clumping factor is non-zero, n̄e is replaced by n̄e/
√

1 + ⟨δ2
ne

⟩.
Then, the thermal mass profile reconstructed from observations of the SZ effect and X-ray
surface brightness, eq. (2.25), is enhanced by a factor

√
1 + ⟨δ2

ne
⟩. However, the thermal mass

profile reconstructed from X-ray observations, eq. (2.24), is not affected by the clumpiness.
In the case where 1 + ⟨δ2

ne
⟩ = 1.5, which corresponds to the estimated clumping factor for

the A1835 cluster [70], we have an enhancement of the hydrostatic mass by a factor ∼ 1.2.
Thus, systematics from the clumpiness could be of order a few ×10%.

Besides the clumpiness, large-scale spherical asymmetries of a cluster may cause an
additional systematic bias. Three dimensional ellipticity as well as substructures of the
Coma cluster have been studied in ref. [71]. They have reported an ellipticity of the electron
density in the Coma cluster of ϵ =

√
1 − e2 = 0.84 with eccentricity e such that we can ignore

the effect in our analysis. Nonetheless the assumption of spherical symmetry introduces
systematics errors, which should be investigated in more quantitative detail in a future work.

4 Summary and conclusions

We have proposed a novel method to test gravity in the outskirts of galaxy clusters by
comparing their hydrostatic and lensing mass estimates. The hydrostatic mass profile of a
cluster can be inferred from the 3-dimensional gas temperature, electron number density, and
electron pressure profiles from the projected observations of the X-ray surface brightness, the
X-ray temperature, and the SZ CMB temperature profile, by implementing a parametric
reconstruction method. The dark matter density profile can furthermore be constrained
by WL observations. Here, we adopt the NFW density profile to describe the dark matter
distribution within the cluster. In the case of hydrostatic equilibrium of the gas and standard
gravity, the different mass estimates should agree. In the presence of a chameleon field,
coupling to the matter fields and introducing an attractive fifth force, the relation between
the mass estimated from the gas observations and from lensing changes, and can therefore
be used as a test of gravity.

Combining measurements of the X-ray surface brightness, the X-ray temperature, the
SZ effect, and lensing of the Coma cluster, we performed an MCMC analysis of the model
parameter space, describing the cluster profiles and gravity theory, and have obtained com-
petitive constraints on the chameleon gravity model parameters β and φ∞, the coupling
strength of the chameleon field and the field value in the environment of the cluster, which
we approximate here by the cosmological background. Contrary to a previous study in [14]
that constrains the modified gas distribution in the Hydra A cluster measured through the X-
ray temperature, our new constraint does not rely on the assumption of a polytropic equation
of state of the gas, employs a Bayesian statistical approach for inferring parameter constraints
on the full set of model parameters, and yields a tighter bound on the modified gravity pa-
rameters than these previous results through the combination of the X-ray, SZ, and lensing
observations available for the Coma cluster. We emphasise that our results provide a power-
ful constraint on f(R) gravity models, corresponding to a particular choice of the chameleon
coupling constant β =

√
1/6, for which we obtain an upper bound of |fR0| <∼ 6 × 10−5 at

the 95% CL. This bound is competitive with the current strongest cosmological constraints
inferred on f(R) gravity (see figure 1).

An important systematic that can affect our analysis can be introduced by deviations
from hydrostatic equilibrium of the cluster gas. We have therefore carefully examined the
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validity of hydrostatic equilibrium in the Coma cluster. Assuming Newtonian gravity, we
compare the different mass estimates from the three different gas observations and the WL
mass. We find that the mass profiles from the gas and WL observations can deviate from
each other by up to 50% but that they are consistent within the observational errors of the
lensing measurement. We analyse the effect of including a non-thermal pressure component,
with a radial profile calibrated to hydrodynamic simulations but with extremised amplitude.
This contribution only marginally affects our reconstructed masses, and we conclude that
hydrostatic equilibrium is a good approximation to describe the outer region of the Coma
cluster. Note, however, that the effect from the chameleon force on the hydrostatic mass is
opposite to the effect of the non-thermal pressure. Hence, the chameleon force can compen-
sate for a large contribution from non-thermal pressure and cause a degeneracy between the
two effects. On the other hand, the magnitude of the non-thermal pressure that would be
required to compensate for the effects of the chameleon force tested here is not to be expected
from current hydrodynamical simulations. It is, however, not clear whether the presence of
a chameleon field could significantly enhance the non-thermal pressure contribution in the
Coma cluster such that it could cancel the effects of the chameleon field, and act to alleviate
the constraints on the modification of gravity. In this regard, it will be useful to analyse
the non-thermal pressure of chameleon gravity models using hydrodynamical simulations
along with a more detailed study of the Newtonian case. As for f(R) gravity, such hydrody-
namical simulations have recently been conducted by Arnold et al. [23]. They estimate the
non-thermal pressure from the bulk motion in the intracluster medium and find that it only
leads to substantial contributions in merging clusters, which can be identified and excluded
to obtain statistical quantities like X-ray and SZ scaling relations. Their results suggest that
the effects of non-thermal pressure in a relaxed cluster like Coma are not significant, at least
in the case of the f(R) gravity models.

Further effects which may cause deviations from the hydrostatic equilibrium have been
discussed in [31, 38, 70]. Ref. [31] found that the mass estimated under the hydrostatic
equilibrium assumption deviates from the true mass on average by ∼ (10− 20)% fractionally
in a simulated halo due to gas acceleration. Given the large errors on the measurement of
the lensing mass of the Coma cluster, we can ignore this deviation in our current analysis.
Future measurements such as from the Astro-H X-ray observations will allow more precise
modelling of the Coma cluster.

Our results demonstrate that galaxy clusters are useful probes of gravity. The method
described in this paper may be applied to other clusters. However, one should be cautious
about the individual properties of each cluster; the assumptions adopted in the present paper
might not be guaranteed for other galaxy clusters and need to be considered for each case.
The key is to understand the motion and distribution of the gas component in clusters; the
combination of multi-wavelength observations, as demonstrated by the recent results by the
Planck satellite [72–75], will provide a clue on how to solve this difficult issue. In the near
future, we will have stacked lensing, SZ, and X-ray profiles for hundreds of clusters. The
combination of multi-wavelength observations for many clusters will significantly improve
the tests of gravitational interactions on cluster scales.
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A Reconstruction of the 3-dimensional gas profiles

We summarise the reconstruction method for the 3-dimensional profiles of the gas density,
temperature, and pressure, using observations of the X-ray temperature, surface brightness,
and SZ effect used in section 3.1 to derive constraints on chameleon gravity from the Coma
cluster. We begin with a short discussion on the quantities that are observed in the X-ray
measurements and through the SZ effect.

From X-ray observations, one obtains the projected X-ray temperature profile

TX(r⊥) =

∫
W
(√

r2
⊥ + z2

)
Tgas

(√
r2
⊥ + z2

)
dz

∫
W
(√

r2
⊥ + z2

)
dz

, (A.1)

where r⊥ is the radius perpendicular to the line of sight direction, and W (r) is the weight

factor, which may be written as W (r) = n2
e(r)T

1/2
gas (r) for the emission weighted temperature

and as W (r) = n2
e(r)T

−3/4
gas (r) for the spectroscopic-like temperature [76]. Here, ne(r) denotes

the electron density profile. In this paper, we use the emission weighted temperature, but
we checked that the 3-dimensional temperature and electron number density profiles do not
depend on the choice between the two weightings.

The X-ray surface brightness is given by

SX(r⊥) =

∫
n2

e

(√
r2
⊥ + z2

)
λc (Tgas) dz, (A.2)

where λc(Tgas) is the cooling function. To estimate the cooling function, we used XSPEC [77]
adopting the thermal plasma emission spectra model with the APEC code [78]. The XSPEC
software gives the X-ray flux based on the APEC model corresponding to the observational
band from 0.5keV to 2.5keV [26]. The X-ray flux can be converted to the cooling function by
the flux-luminosity relation. The metal abundance in the innermost region of the cluster is
larger than in the outer region, Z = 0.4Z⊙ [38] and Z = 0.3Z⊙ [79], respectively. However,
as the difference is small and does not affect our constraints, we adopt a metal abundance of
Z = 0.3Z⊙ throughout the cluster.

Photons from the CMB passing through clusters are scattered by the hot gas, and this
distorts the CMB spectrum as a function of frequency. This SZ effect yields a contribution
to the CMB temperature of

∆TSZ(r⊥) = −2TCMB
σT

me

∫
Pe

(√
r2
⊥ + z2

)
dz, (A.3)

where TCMB = 2.725K is the CMB temperature, σT is the Thomson cross section, me is the
electron mass, and Pe(r) is the electron pressure.
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Having summarised the quantities observed in the X-ray and SZ measurements, we now

use them to reconstruct the 3-dimensional gas density, temperature, and pressure profiles.
For this purpose, we adopt the following fitting functions for the 3-dimensional profiles of
Tgas(r), ne(r), and Pe(r). For Tgas(r), we use the fitting formula calibrated to numerical
simulations [80]

Tgas(r) = T0

[
1 + A

(
r

r0

)]b0

, (A.4)

where T0, A, r0, and b0 are free parameters. For the electron number density, we assume a
simple isothermal β model [81]

ne(r) = n0

[
1 +

(
r

r1

)2
]b1

, (A.5)

where the free parameters are n0, r1, and b1. Finally, we adopt the generalised NFW profile
for the pressure proposed by [82],

Pe(r) =
P0

(r/r2)b2(1 + (r/r2)b3)b4
, (A.6)

for the 3-dimensional electron pressure profile with the fitting parameters P0, r2, b3, and b4.
We compute the projected profiles in eqs. (A.1), (A.2), and (A.3) with the fitting func-

tions of eqs. (A.4), (A.5), and (A.6), and determine the best fit parameters T0, A, r0, b0, n0,
r1, b1, P0, r2, b2, b3 and b4 by comparing the profiles with the observations from the X-ray
temperature, X-ray surface brightness, and SZ effect of the Coma cluster in section 3.2.1. In
this way, we obtain the reconstructed 3-dimensional gas density, temperature, and pressure
profiles of the cluster.

Note that since we assume the hydrostatic equilibrium eq. (2.29) in the MCMC analysis
in section 3.1, we only need to define two of these profiles, of which one can also be the matter
density profile and from which the other profiles can be derived, however, not necessarily
reproducing the exact analytic expressions of the fitting functions. In section 3.1, we choose
to work with the electron number density eq. (A.5) and the NFW profile eq. (2.11). The
choice of the NFW profile simplifes the computation of the chameleon force and allows the
use of the analytic approximation derived in section 2.2. Hence, the degrees of freedom
reduce to T0, n0, r1, b1, including the NFW parameters Mvir and c as well as the chameleon
model parameters β and φ∞ (or β2 and φ∞,2), where T0 is required to set the integration
constant in eq. (3.2). This approach yields reasonable reduced χ2 values when fitted to the
observational data in section 3.1.2.
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Abstract. We obtain a constraint on the parameters of a generalized cubic Galileon gravity
model exhibiting the Vainshtein mechanism by using multi-wavelength observations of the
Coma Cluster. The generalized cubic Galileon model is characterized by three parameters of
the turning scale associated with the Vainshtein mechanism, and the amplitude of modifying
a gravitational potential and a lensing potential. X-ray and Sunyaev-Zel’dovich (SZ) observa-
tions of the intra-cluster medium are sensitive to the gravitational potential, while the weak-
lensing (WL) measurement is specified by the lensing potential. A joint fit of a complementary
multi-wavelength dataset of X-ray, SZ and WL measurements enables us to simultaneously
constrain these three parameters of the generalized cubic Galileon model for the first time.
We also find a degeneracy between the cluster mass parameters and the gravitational mod-
ification parameters, which is influential in the limit of the weak screening of the fifth force.
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1 Introduction

Modifications of gravity theory is an interesting approach to explaining the accelerated ex-
pansion of the universe. However, any covariant modification of general relativity introduces
additional degrees of freedom, giving rise to a fifth force. This is strictly constrained by
gravity tests in the solar system. Solar system experiments [1, 2] are in excellent agreement
with general relativity, requiring that this additional degree of freedom be hidden on the
scale of the solar system. Such a process is referred to as a “screening mechanism,” which
is key for a viable modified gravity model. In general, this screening mechanism works in
high-density regions where the matter density contrast is nonlinear. However, this does not
work on large cosmological scales. A screening mechanism that characterizes viable modified
gravity models is an important feature to be tested with observations.

The chameleon mechanism [3, 4] is a screening mechanism that works in an f(R) gravity
model and the chameleon gravity model [5–7]. In these models, a scalar degree of freedom that
gives rise to the fifth force is screened in a high-density region due to coupling with matter.
The chameleon gravity model and an f(R) model can be viable owing to the chameleon
mechanism [8]. The Vainshtein mechanism [9] is another relevant screening mechanism,
which is exhibited in the Dvali-Gabadaze-Porrati (DGP) model [10, 11], the simplest cubic
Galileon model ([12–15], see also the appendix), and its generalized version [16, 17]. The
DGP model is an archetypal modified gravity model developed in the context of the brane-
world scenario. There are two branches of solutions in the DGP model. The self-acceleration
branch DGP (sDGP) model [18–20] includes a mechanism to explain self-acceleration in
the late universe, while the normal branch DGP (nDGP) model [21–23] with a cosmological
constant is a healthy modified gravity model avoiding the ghost problem [24, 25]. The simplest
cubic Galileon model is also a typical modified gravity model that explains self-acceleration
of the universe while avoiding the ghost problem. Our generalized cubic Galileon model is a
generalized version of the simplest cubic Galileon model that retains important features and
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contains the DGP models. In these models, a scalar field giving rise to a fifth force is screened
due to self-interaction on small scales where density perturbations become nonlinear.

Galaxy clusters provide a unique laboratory for testing modified gravity models exhibit-
ing screening mechanisms, because they are objects on the borderline between linear and non-
linear scales, that is, between non-screened and screened scales. The authors of [26–28] have
investigated a cosmological constraint on the chameleon gravity model using galaxy clusters.
They put a constraint on the turning scale and the amplitude of the fifth force at large scales.
The authors of [29, 30] have investigated a constraint on a generalized Galileon model exhibit-
ing the Vainshtein mechanism, using an observed weak-lensing profile of clusters. They put
a constraint on the turning scale and the amplitude of modification of the lensing potential.

The purpose of the present paper is twofold. One purpose is a generalization of the
methodology for testing a modified gravity model with a galaxy cluster. In the present paper,
we consider a generalized cubic Galileon model. Within the quasi-static approximation, the
generalized cubic Galileon model is effectively characterized by three parameters, µG, µL

and ǫ. Detailed definitions are given later, but, broadly, µG and µL are parameters that
modify the effective amplitude of the gravitational potential and the lensing potential in the
non-screened region, while ǫ determines the turning scale from the non-screened region to
the screened region due to the Vainshtein mechanism. The parameters µG are constrained
by observations of the gas distribution, in particular an X-ray surface brightness profile and
the SZ effect [31]. However, the parameter µL is only constrained by observations of lensing
measurements. Therefore, a combination of observations of gas distribution and the lensing
signal is essential to put a constraint on the three parameters characterizing the modified
gravity model. We demonstrate how a combination of multi-wavelength observations of a
cluster is useful to put a constraint on a generalized Galileon model.

The other purpose is improvement of the analysis in [27] using new X-ray data [32, 33]
and lensing [34] observations of the Coma Cluster. In our method of testing gravity with
a galaxy cluster, the modeling of the gas distribution is important. A basic assumption of
the model for the gas distribution is hydrostatic equilibrium, that is, a balance between the
gas pressure gradient force and the gravitational force. In the region where the fifth force is
influential, the condition of the hydrostatic equilibrium is changed, and the gas density profile
is modified. However, in general, galaxy clusters are dynamically evolving, and a deviation
from the equilibrium could be influential. Therefore, we first check the consistency of our
model by comparing theoretical predictions with various observations of the Coma Cluster,
including the new X-ray data and lensing measurements.

This paper is organized as follows: in section 2, we first review our model for the dark
matter and gas distribution of a galaxy cluster within Newtonian gravity. We demonstrate
how well our model fits observations of the Coma Cluster in section 3. We also validate our
model against the influence of non-thermal pressure. In section 4, we introduce a generalized
cubic Galileon model, and explain the modification of our model by the fifth force of the scalar
field. In section 5, we discuss degeneracies on parameters and systematic errors focusing on
special circumstance of using the Coma Cluster. Section 6 is devoted to a summary and
conclusions. Throughout this paper, we adopt Ωm0 = 0.3, ΩΛ = 0.7 and H0 = 70km/s/Mpc,
and we follow the convention (−, +, +, +).

2 Modeling of cluster profiles

We review our model for the dark matter and gas density distribution connecting with obser-
vational quantities, X-ray brightness, the SZ effect temperature profile, and the weak-lensing
profile (see also [27, 29]). Our model is based on an assumption of hydrostatic equilibrium,
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but we also take the possible influence of non-thermal pressure into account. In this section,
we first consider the case of Newtonian gravity.

2.1 Mass profile

We employ a universal mass density profile, namely the Navarro-Frenk-White (NFW) pro-
file [35], motivated by predictions of numerical simulations,

ρ(r) =
ρs

r/rs(1 + r/rs)2
, (2.1)

where ρs and rs are the normalization and the scale radius, respectively. The mass within
the radius r is given by M(< r) = 4π

∫ r
0 drr2ρ(r) = 4πρsr

3
s m(r), with m(r) = ln(1 + r/rs) −

r/rs/(1+r/rs). We introduce the concentration parameter c and the virial mass Mvir instead
of ρs and rs,

c =
rvir

rs
, (2.2)

Mvir ≡ M(< rvir) =
4π

3
r3
vir∆cρc(z) (2.3)

with the virial radius rvir. Here, ρc is the critical density at the redshift z, and ∆c = 100 is
the overdensity contrast determined by the spherical collapse model [36].

2.2 Gas profile with hydrostatic equilibrium

We first assume hydrostatic equilibrium between the gas pressure gradient and the gravita-
tional force in galaxy clusters as

1

ρgas

dPtot

dr
= −dΨ

dr
, (2.4)

where ρgas is the gas density, Ptot = Pth + Pnth is the sum of the thermal pressure, Pth and
the non-thermal pressure, Pnth (see below for details), and Ψ is the gravitational potential.
We employ three assumptions to describe the gas physics. First, the equation of state for
the gas components, Pth = ngaskTgas, where ngas and Tgas are the number density and the
temperature of the total gas component, respectively. Second, the temperature of electrons
is the same as that of the gas, Te = Tgas. Third, the electron pressure satisfies Pe = nekTgas

with the electron number density ne = (2 + µ)ngas/5, where µ = 0.59 is the mean molecular
weight. In the present paper, for the electron temperature we assume the functional form

Te(r) = T0

[
1 +

(
r

r1

)b1
]−b2/b1

, (2.5)

where T0, b1, b2 and r1 are parameters. Integrating (2.4) with (2.5), we obtain the electron
pressure profile

Pe(r) = n0T0 exp

(∫ r

0
dr

µmp

kTe(r)

[
−GM(< r)

r2

])
, (2.6)

and the electron number density ne(r) = Pe(r)/kTe(r), where n0 is the normalization pa-
rameter of the electron number density, ne. In deriving equation (2.6), we use the relation,
ρgas = µmpngas, where mp is the proton mass. Equation (2.6) is the case of the absence of
non-thermal pressure; the case including non-thermal pressure is described below.

– 3 –



J
C
A
P
1
0
(
2
0
1
5
)
0
6
4

Thus our gas distribution model includes 7 parameters (Mvir,c,n0,T0,b1,b2,r1). Using our
model of the three-dimensional profiles, we construct the observables for the observations of
X-ray and the cosmic microwave background (CMB) temperature distortion. The X-ray
emission from clusters are dominated by the bremsstrahlung and line emission caused by the
ionized gas. For the X-ray observable, we define the X-ray brightness as BX ≡ norm/area,
where norm is the spectrum normalization obtained from XSPEC software [37, 38] adopting
the APEC emission spectrum [39], and area is the area of the spectrum. The spectrum
normalization is given by norm ∝

∫
nenHdV , where nH = 0.86ne is the hydrogen number

density and V is the volume of the spectrum. Then, we write the X-ray brightness as

BX(r⊥) =
10−14

4π(1 + z)2

∫
ne(r)nH(r)dz [cm−5/arcmin2], (2.7)

where r⊥ is the radius perpendicular to the line-of-sight direction, which is related with

r and z as r =
√

r2
⊥ + z2. The CMB temperature distortion is caused by CMB photons

passsing through clusters and being scttered by electrons in clusters, can be expressed as
the difference between the averaged CMB temperature and the observed CMB temperature,
∆TSZ, or y-parameter,

y(r⊥) = − ∆TSZ

2TCMB
=

σT

me

∫
Pe(r)dz, (2.8)

where TCMB = 2.725 K is the CMB temperature, σT is the Thomson cross section, me is the
electron mass.

2.3 Shear profile by gravitational weak-lensing

We consider a spatially flat cosmological background, and work with the cosmological New-
tonian gauge, whose line element is written as

ds2 = −(1 + 2Ψ)dt2 + a(t)2(1 + 2Φ)dx2, (2.9)

where a(t) is the scale factor, and Ψ and Φ are the gravitational and curvature potentials,
respectively. The propagation of light is determined by the lensing potential (Φ − Ψ)/2,
which means that the weak-lensing signal is determined by (Φ − Ψ)/2. For example, the
convergence is given by

κ = −1

2

∫ χ

0
dχ′ (χ − χ′)χ′

χ
△(2D)(Φ − Ψ), (2.10)

where χ is the comoving distance and △(2D) is the comoving two-dimensional Laplacian. For
the case of general relativity, we may set △Ψ = −△Φ = 4πGa2ρ. Then, using the thin lens
approximation, (2.10) reduces to

κ =
(χS − χL)χL

χS

∫ χS

0
dχ′ [4πGρ(r′)

]
a2

L, (2.11)

where χL and χS denote the comoving distance between the observer and lens and that
between the observer and the source, respectively, and aL = 1/(1 + zL) is the scale factor
specified by the redshift of the lens object zL. For a spherically symmetric cluster, (2.11) is
represented as

κ(r⊥) =
2

Σc

∫ ∞

0
dzρ(r) (2.12)
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with the physical coordinate r =
√

r2
⊥ + z2. We define Σc = χS/[4πG(χS − χL)χLaL]. We

then define the reduced shear

g+(r⊥) ≡ γ+(r⊥)

1 − κ(r⊥)
, (2.13)

where γ+(r⊥) is the tangential shear, which is related with the convergence as

γ+(r⊥) = κ̄(< r⊥) − κ(r⊥), (2.14)

with

κ̄(< r⊥) ≡ 2

r2
⊥

∫ r⊥

0
dr′

⊥r′
⊥κ(r′

⊥). (2.15)

For the NFW profile, the convergence is given by [40] as

κnfw(x) =





2rsρs

Σc(x2 − 1)

[
1 − 2√

1 − x2
arctanh

√
1 − x

1 + x

]
, (x < 1)

2rsρs

3Σc
, (x = 1)

2rsρs

Σc(x2 − 1)

[
1 − 2√

x2 − 1
arctan

√
x − 1

1 + x

]
, (x > 1)

(2.16)

κ̄nfw(< x) =





4rsρs

Σcx2

[
2√

1 − x2
arctanh

√
1 − x

1 + x
+ ln

(x

2

)]
, (x < 1)

4rsρs

Σc

[
1 + ln

(
1

2

)]
, (x = 1)

4rsρs

Σcx2

[
2√

x2 − 1
arctan

√
x − 1

1 + x
+ ln

(x

2

)]
, (x > 1)

(2.17)

with x = r/rs.

Here, we assume that the source galaxies have random orientation of ellipticity ǫS, the
average of which is 〈ǫS〉 = 0. When we observe the tangential ellipticity of the source galaxies
ǫobs., the average is given by 〈ǫobs.〉 = g+. Hereafter, we assume that the redshift of the source
galaxies is 〈zS〉 = 0.6, but the results are not influenced by the redshift of the source galaxies
for nearby clusters.

3 Consistency test with Newtonian gravity

In the present paper, we use Coma Cluster observations. The Coma Cluster is one of the best
observed nearby clusters, and has redshift z = 0.0236. The X-ray distribution [32, 33, 41–
48], the SZ effect [49] and the weak-lensing measurement [34, 50] have been reported. These
observations revealed that the Coma Cluster has substructures and orientation dependence
on the gas temperature profiles. The Coma Cluster is thus an unrelaxed system. However,
we will show that our model based on the hydrostatic equilibrium fits the data of the X-ray
brightness profiles [32, 33], the SZ effect profile from the Planck measurement [49], and the
weak-lensing profile by Subaru observations [34]. In general, the assumption of hydrostatic
equilibrium holds only at the intermediate region of clusters, because of the cooling of the
gas at the innermost region and the environmental effects at the outermost region. Then we
use data points in the range 200 kpc to 1.5 Mpc to get rid of systematic effects from the
innermost and outermost regions of the cluster.
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Parameter Newtonian gravity Modified gravity (full parameters)

Mvir 1.08+0.06
−0.06 × 1015 M⊙ 1.04+0.14

−0.06 × 1015 M⊙
c 3.59+0.23

−0.23 3.64+0.21
−0.30

n0 6.14+0.28
−0.26 × 10−3/cm3 6.17+0.26

−0.31 × 10−3/cm3

T0 6.36+0.11
−0.12 keV 6.35+0.13

−0.11 keV
b1 2.6 (fixed) 2.6 (fixed)
b2 0.5 (fixed) 0.5 (fixed)

r1 0.74+0.06
−0.06 Mpc 0.75+0.06

−0.07 Mpc
ǫ′ - 0.43
µ′

G - 0.24
µ′

L - 0.55

Minimum χ2/d.o.f. 58/44 57/41

Table 1. Best-fitting parameters and 1-dimensional marginalized constraints (68% CL) to charac-
terize the gas and lensing profiles. To avoid degeneracy between parameters, we fix b1 and b2 simply.
Our results do not depend on whether these parameters are fixed or not. This table shows the results
for the Newtonian gravity (second column) and the generalized Galileon model with all modification
parameters (third column). The minimum chi-squared and the number of degrees of freedom, d.o.f.
= (number of data points) − (number of model parameters), are listed at the bottom of each column.

In this work, we use the observational data of the XMM-Newton [32, 33], which are
different from those used in a previous paper [27]. In that paper, the weak-lensing profile is
not used; only the parameters Mvir and c are used as a prior profile from [50]. However, use
of the weak-lensing profile is essential to our analysis of the generalized Galileon model.

To address the theoretical predictions in the previous section with observations of the
Coma Cluster, we introduce the chi-squared by summing the chi-squared for each observation
as

χ2
XB+SZ+WL = χ2

XB + χ2
SZ + χ2

WL, (3.1)

where

χ2
XB =

∑

i

(BX(ri) − Bobs.
X,i )2

(∆Bobs.
X,i )2

, (3.2)

χ2
SZ =

∑

i

(y(r⊥,i) − yobs.
i )2

(∆yobs.
,i )2

, (3.3)

χ2
WL =

∑

i

(g+(r⊥,i) − gobs.
+,i )2

(∆gobs.
+,i )2

, (3.4)

are the chi-square values for the X-ray brightness, the SZ effect and the weak-lensing, respec-
tively. We note that the covariance of errors is not taken into account in our analysis and
leave it for future work to study how the observational systematics affect our analysis.

We perform an MCMC analysis using modified Monte Python code [51] that employs a
Metropolis-Hastings [52, 53] sampling algorithm. This analysis includes 5 parameters with
the chi-squared (3.1), χ2

BX+SZ+WL. We require Gelman-Rubin statistics [54] of R−1 < 0.001
for each parameter to ensure convergence of our runs. The black dashed curve in each panel
of figure 1 shows the best-fit profiles for the Newtonian gravity. The minimum value of the
chi-squared is χ2

XB+SZ+WL/d.o.f. = 58/44, and the 2-dimensional marginalized contours of
the different combinations between the model parameters are shown in figure 4.
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Figure 1. Best-fit profiles in the frameworks of Newtonian gravity (black dashed curve) and the generalized Galileon model (red solid curve),
and the observational results. The best-fit parameters are listed in table 1. Left panel : the X-ray surface brightness from the XMM-Newton
observations [32, 33]. The errors bars are composed of the Poisson noise and systematic errors that we here assume as 5%. Center panel : the SZ
temperature profile from the Planck measurements [49]. Right panel : the weak-lensing profile from the Subaru observations [50].
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Non-thermal pressure possibly caused by turbulent gas and bulk motion causes a sys-
tematic error when comparing observations of clusters. The authors estimated the fraction of
non-thermal pressure in the Coma Cluster [55], which can be larger than that of the thermal
pressure by 10 percent. Here, we estimate how non-thermal pressure affects our fitting based
on an estimation with a numerical simulation. To this end, we estimate the hydrostatic
masses by comparison with the X-ray brightness and SZ effect profiles of the Coma Cluster.
Here we define the non-thermal fraction fnth by fnth ≡ Pnth/(Pnth + Pth), where Pnth and Pth

are the non-thermal pressure and the thermal pressure, respectively. In the case including
non-thermal pressure, the thermal pressure is replaced by Pth = (1 − fnth)Ptot. We consider
the following non-thermal pressure fraction as a function of the radius,

fnth(r) = αnt(1 + z)βnt

(
r

r500

)nnt
(

M200

3 × 1014M⊙

)nM

, (3.5)

which is a theoretical prediction with numerical simulations in ref. [56, 57]. r500 and M200

mean the radius and mass at the radius where the matter density in the galaxy cluster
is 500 and 200 times of the critical density, respectively. In the present paper we adopt
(αnt, βnt, nnt, nM) = (0.18, 0.5, 0.8.0.2), which are the best-fit values in [57] consistent with
those in [55].

The best-fit profile in the presence of non-thermal pressure is not significantly altered,
compared with the best-fit profile in the absence of non-thermal pressure. Figure 2 shows the
enclosed mass profiles as a function of radius. The gray-hatched region is the 1σ uncertainty
interval for the lensing mass. The blue-solid and red-solid regions show the 1σ uncertainty
intervals for hydrostatic masses fitted without and with non-thermal pressure, respectively.
The hydrostatic mass estimates are in good agreement with the lensing mass, regardless of
the inclusion of the non-thermal pressure components. This shows that our fitting method
is not affected by non-thermal pressure, so we do not consider the non-thermal effect when
putting a constraint on the modified gravity in the next section.

4 Testing the generalized Galileon gravity model

We here consider the generalized cubic Galileon model, with action given by [58],

S =

∫
d4x

√−g
[
G4(φ)R + K(φ, X) − G3(φ, X)�φ + Lm

]
, (4.1)

where K(φ, X), G3(φ, X) and G4(φ) are arbitrary functions depending on the scalar field
φ and its kinetic term X ≡ −(∂φ)2/2 and Lm is the matter Lagrangian. This model is
a non-minimal coupling version of the kinetic gravity braiding mode [59], and a subclass
of the most general second-order scalar-tensor theory [60–62] with G4X = G5 = 0, where
G4X ≡ ∂G4/∂X. The simplest cubic Galileon model is the case with K = −X, G3 ∝ X,
and G4 = M2

Pl/2, where M2
Pl = 1/(8πG) is the Planck mass. The DGP model is originally

a 5-dimensional brane-world model, however, it can be effectively described as a Galileon
model. Note that the DGP model has two branches of cosmological solutions, the self-
accelerating branch (sDGP) model [18, 19] and the normal branch DGP (nDGP) model [21].
The relation between the generalized Galileon model and the specific models are summarized
in the appendix.

We consider perturbations of space-time metric and scalar field. We choose the New-
tonian gauge for the space-time metric (2.9). Assuming spherical symmetry of the system,
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Figure 2. Spherical masses enclosed within the radii. The gray-hatched region denotes the 1σ
uncertainty interval for the lensing mass determined solely by weak-lensing analysis [50]. The blue-
solid and red-solid regions denote the 1σ uncertainty intervals for hydrostatic masses without and
with the non-thermal pressure component, respectively, determined by our joint-fit method. The
hydrostatic and lensing masses agree with each other, irrespective of the presence of a non-thermal
pressure component.

within the sub-horizon scale with the quasi-static approximation keeping with the Vainshtein
feature, the equations for the gravity and the scalar field lead to [17]

dΨ

dr
=

GM(< r)

r2
− (α + ξ)

dQ

dr
, (4.2)

dΦ

dr
= −GM(< r)

r2
+ ξ

dQ

dr
, (4.3)

dQ

dr
=

r

4λ2

(
1 −

√
1 +

8Gλ2ζM(< r)

r3

)
, (4.4)

where Q(x) is perturbation of the scalar field defined by φ(t,x) = φ(t)(1 + Q(x)), and
M(< r) ≡ 4π

∫ r
0 dr′r′2ρ(r′) is the enclosed mass of the halo within the physical radius

r. Note that the perturbed values Ψ, Φ and Q in (4.2)∼(4.4) are written in the physical
coordinate. In (4.2)∼(4.4), we introduce free model parameters α, ξ, ζ and λ2, which are
determined by the arbitrary functions K, G3 and G4. The expressions for α, ξ, ζ and λ2 are
given in the appendix A. The explicit expressions for the simplest cubic Galileon, the sDGP
and the nDGP models are also presented there.

Here, we define the Vainshtein radius rV as

rV ≡ [8Gλ2ζMvir]
1/3 =

[
8Gǫ2Mvir

H2
0

]1/3

, (4.5)

where we define ǫ =
√

H2
0λ2ζ using the Hubble constant H0. For r ≪ rV, the scalar field

can be negligible compared with the Newton potential, so Newtonian gravity is recovered.
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For r ≫ rV the scalar field cannot be negligible, and we have

dΨ

dr
≃ (1 + ζ(α + ξ))GM(< r)

r2
, (4.6)

dΦ

dr
≃ −(1 + ζξ)GM(< r)

r2
. (4.7)

Thus the gravitational and curvature potentials are modified at r ≫ rV. These modifications
affect both the gas and weak-lensing profiles.

We next construct observational quantities of the gas and weak-lensing profiles consid-
ering the scalar field. Since gas components feel gravitational force through the gravitational
potential Ψ, the X-ray brightness and the SZ profiles are modified through modification of
Ψ. On the other hand, the gravitational lensing is characterized by the lensing potential
(Φ−Ψ)/2, so the modified lensing potential alters the observed lensing profile. We therefore
introduce the parameters

µG ≡ (α + ξ)ζ, (4.8)

µL ≡ 1

2
(α + 2ξ)ζ, (4.9)

with which we can write dΨ/dr ≃ (1+µG)GM(< r)/r2 and d(Ψ−Φ)/dr/2 ≃ (1+µL)GM(<
r)/r2 at r ≫ rV.

In the generalized Galileon model, with the use of parameters µG, µL and ǫ our model-
ing for the electron pressure profile (2.6) and the weak-lensing profile (2.12) are modified as
follows:

Pe(r) = P0 exp

(∫ r

0
dr

µmp

kTe(r)

[
−GM(< r)

r2
+

µG

4ǫ2
H2

0r

(
1 −

√
1 + 12ǫ2

ρs

ρc0

r3
s

r3
m(r)

)])
,

(4.10)

κ(r⊥) =
2

Σc

∫ ∞

0
dz

[
ρ(r) − µLρc0

2ǫ2

(
1 −

√
1 + 12ǫ2

ρs

ρc0

r3
s

r3
m(r)

)

+
ρ(r) − 3ρsr

3
s m(r)/r3

√
1 + 12ǫ2ρsr3

s m(r)/ρc0r3
µL

]
. (4.11)

Since the gas pressure tracing the matter density deceases with the cluster-centric radius
increasing, the pressure gradient is restricted to dPe/dr < 0. This gives the constraints on µG.

Instead of µG, µL and ǫ, we introduce µ′
G = µG/(1 + |µG|), µ′

L = µL/(1 + |µL|), and
ǫ′ = 1 − exp(−ǫ), which span the complete available parameter space of µ′

G and µ′
L in the

interval [−1, 1] and ǫ′ in the interval [0, 1], respectively. General relativity is recovered when
µ′

G = µ′
L = 0 or ǫ′ → 1. Using the same method adopted for Newtonian case, we perform an

MCMC analysis for the modified gravity model including 8 parameters with the chi-squared
χ2

BX+SZ+WL, defined by (3.1).
Figure 5 shows the 2-dimensional marginalized contours of the different combinations

between the model parameters. The best-fit parameters and their 1-dimensional marginalized
68% errors are listed in the table. 1. The red curve in each panel of figure 1 shows the best-fit
profile for the generalized Galileon model with the minimum value of the chi-squared/d.o.f.,
χ2

XB+SZ+WL/d.o.f. = 57/41. These profiles almost overlap with the profiles for Newtonian
gravity (black dashed curves), which shows that the large deviation from Newtonian gravity
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Figure 3. The 68% (dark gray regions) and the 95% CL (light gray regions) 2-dimensional
marginalized contours for the generalized Galileon model parameters. The red-plus, green-cross
and yellow-triangle points present models for the simplest cubic Galileon, the sDGP and the nDGP
models, respectively.

is rejected. We note that there is no significant difference between the red and black curves
in the best-fit profiles. There is a slight difference in the shear profiles at the large radius
r > 1Mpc, which seems to be originated from the large errorbars of the shear data.

Figure 3 shows 2-dimensional marginalized contours of the confidence levels for the pa-
rameters µ′

G, µ′
L and ǫ′. µ′

G and µ′
L are parameters from the modification of the gravitational

potential and the lensing potential, and ǫ′ is a parameter characterizing the Vainshtein radius.
Large values of µG and µL are rejected at the 68% confidence level, which indicates that the
possibility of a large deviation from the Newtonian gravity is ruled out, depending on the
parameter ǫ. When ǫ is smaller, the Vainshtein radius becomes smaller, we can put a tighter
constraint on µG and µL. However, ǫ is large, the Vainshtein radius becomes large, which
makes difficult to distinguish between the Newtonian gravity model and the modified grav-
ity model due to the Vainshtein mechanism. The red-plus, green-cross and yellow-triangle
points in figure 3 show the representative models, the simplest cubic Galileon model, the
sDGP model and nDGP model, respectively, at the redshift z = 0.0236. The parameter
values for each models are shown in table 2.

In a previous work [29], a constraint only on the parameter space µL and ǫ is obtained,
based on the lensing observations. As a other recent related work, Barreira et al. investigated
cluster masses and the concentration parameters in modified gravity models from shear pro-
files [63]. They focused their investigation on the mass-concentration relation of 19 X-ray
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Models ǫ (ǫ′) µG (µ′
G) µL (µ′

L)

simplest cubic Galileon 0.77 (0.44) 0.77 (0.44) 1.12 (0.67)

sDGP −0.26 (−0.22) 0 (0) 0.53 (0.43)

nDGP 0.20 (0.18) 0 (0) 0.10 (0.09)

Table 2. Values of modified gravity parameters for each model at the redshift z = 0.0236.

Parameter Modified gravity (unscreened) Modified gravity (fifth force)

Mvir 1.26+0.15
−3.85 × 1015 M⊙ 0.86+0.05

−0.05 × 1015 M⊙

c 3.78+0.13
−0.55 3.84+0.24

−0.28

n0 6.15+0.27
−0.29 × 10−3/cm3 6.20+0.27

−0.32 × 10−3/cm3

T0 6.35+0.13
−0.11 keV 6.36+0.12

−0.12 keV

b1 2.6 (fixed) 2.6 (fixed)

b2 0.5 (fixed) 0.5 (fixed)

r1 0.75+0.06
−0.07 Mpc 0.75+0.06

−0.06 Mpc

ǫ′ 0 (fixed) 0.05 (fixed)

µ′
G −0.10 0.2 (fixed)

µ′
L −0.05 0 (fixed)

Minimum χ2/d.o.f. 57/42 60/44

Table 3. Same as table 1 but for the results of the generalized Galileon model in the unscreened limit
with only fixing ǫ = 0 (second column), and the case with fixing all the modified gravity parameters
ǫ′ = 0.05, µ′

G = 0.2, and µ′
L = 0 (third column).

selected clusters from the CLASH survey in the simplest cubic Galileon and Nonlocal gravity
models. They found that the mass-concentration relation obtaining from the shear profiles
for the cubic Galileon model is the same as those for the ΛCDM model, but no stringent
constraint on the modified gravity models is obtained. Unfortunately the constraint obtained
in the present paper is not very stringent too, but one can find the following possibility. We
emphasize that models with µL = 0 like the sDGP and the nDGP models are indistinguish-
able with Newtonian gravity in the method based on the lensing observations. On the other
hand, our method of combining the gas and weak-lensing profiles can solve the problem from
this degeneracy. Future observations would improve the constraint.

5 Discussion

5.1 Degeneracies on parameters

On the MCMC analysis in the previous section, we do not take the range of ǫ, [0, 0.1],
into account because it is hard to converge the MCMC runs because of degeneracy in the
parameter space. Here, we treat this parameter region for complemental discussion.
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First, taking the limit ǫ → 0, which means the fifth force is unscreened everywhere, the
solutions of the gas pressure (4.10) and the convergence (4.11) are reduced to

Pe(r) = P0 exp

(∫ r

0
dr

µmp

kTe(r)

[
−GM(< r)

r2
(1 + µG)

])
, (5.1)

κ(r⊥) = (1 + µL)
2

Σc

∫ ∞

0
dzρ(r). (5.2)

Then, the pressure profile and the convergence profile are simply modified by a factor of
(1+µG) and (1+µL), respectively. In this case, we have Pe ∝ (1+µG)Mvirm(c)/c3 and κ ∝
ρs ∝ (1 + µL)Mvirc

3/m(c), then, there are degeneracies between the parameters, Mvir, c, µG,
and µL. Figure 6 compares the results of the MCMC analysis with fixing ǫ = 0 (dark blue
region (68% CL) and mid blue region (95% CL)) and the results of the Newtonian gravity
(dark gray region and mid gray region), which is the same as those of figure 4. The best-
fit parameters are shown in the table. 3. The CL contours of the blue regions reflect the
degeneracy between the parameters, Mvir, c, µG, and µL.

Next, we show how the presence of the fifth force affects the parameter estimation.
For example, the blue confidence contours in figure 7 shows the 68% and 95% confidence
contours of the case with fixing ǫ = 0.05, µG = 0.2 and µL = 0. Mvir and c are different
from those of the Newtonian gravity (gray regions), but other parameters, n0, T0 and b1, are
not changed. The minimum value of the chi-squared/d.o.f. in the presence of the fifth force
is χ2

XB+SZ+WL/d.o.f. = 60/44, which is almost the same as the Newtonian case, despite the
different cluster parameter, Mvir ∼ 0.9 × 1015M⊙ (see table. 3). This result exemplifies that
the presence of the attractive fifth force affects the estimation of the NFW parameters, Mvir

and c. This is understood as the consequence of the degeneracy between the modification
parameters µG and µL and Mvir and c.

5.2 Systematic errors

We shall discuss possible systematic errors. In our analysis, we have assumed spherical sym-
metry for the matter distribution and an equilibrium state for the gas component of the bal-
ance between the pressure gradient and the gravitational force and the fifth force in the case
of its presence. We have demonstrated that non-thermal pressure at the level suggested by
numerical simulations does not alter our results. A future X-ray satellite, ASTRO-H [64], will
observe turbulent gas motion in the Coma Cluster in more detail, which will be informative
regarding our result. However, observations of the Coma Cluster suggest substructures [34,
50, 65–68] and orientation dependence [41, 42, 48], so the Coma Cluster is not thought to be
a relaxed system. Dynamical states of the Coma Cluster would give a systematic difference
between our results and temperature measurement. Our fitting results show that the tem-
perature of the Coma Cluster is around 6.4 keV (see table. 1), but this result seems lower
than those of X-ray observations [32, 33, 41, 42, 46–48], which estimate that the temperature
of the Coma Cluster is around 8–9 keV. Comparing the mass-temperature scaling relation for
a sample of relaxed clusters [69] with an X-ray temperature observation of the Coma Clus-
ter [32, 33], the observed temperature is higher that the temperature expected by the mass.
The enhancement is at 3σ level of intrinsic scatter [69]. Similar results of high temperatures
have also been reported by a comparison with other clusters [70]. Depending on the orienta-
tion and excluding the central region, the temperature of the Coma Cluster could be around
6–7 keV [32, 41], but it is difficult to take this dependence into account. Therefore, systematic
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error of temperature in the Coma Cluster would cause a substantial influence to the proposed
fitting method. In order to reduce a possible dependence of cluster-dynamical states and halo
triaxiality, it is of vital importance to increase the number of sampling clusters. Ongoing and
future multi-wavelength surveys such as the Hyper Suprime-Cam (HSC) optical survey,1 the
Dark Energy Survey (DES) [71], the eROSITA X-ray survey [72, 73], and the ACT-Pol [74]
and SPT surveys [75, 76] will be powerful aids to better constraining the gravity model.

6 Summary and conclusion

In this paper, we obtained a constraint on the generalized Galileon model through the Coma
Cluster observations of X-ray brightness, the SZ effect and weak lensing. We have constructed
a simple analytic model of the gas distribution profiles and the weak-lensing profile (cf. [27–
29]). The fifth force affects not only the gas distribution but also the weak-lensing profile.
In general, the effects depend on different parameters characterizing the generalized Galileon
model. These features can be investigated by combination of the observations of a galaxy
cluster reflecting the gas density profile and the lensing signals. Their multi-wavelength
observations are complementary to each other, and are useful to put a constraint on the
modified gravity model by breaking the degeneracy between the model parameters. System-
atic study compiling multi-wavelength datasets for a large number of clusters enables us to
well reduce the systematic errors and constraints on the modified gravity models. However,
the degeneracy between the parameters, Mvir, c, µG and µL, persists in the limit of the weak
screening of the fifth force, which affects the estimation of the cluster parameters. Future
and ongoing surveys and their joint analysis would be a powerful aid to obtaining a more
stringent constraint on modified gravity models.
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A Definitions of the coefficients

In this appendix, we summarize the coefficients between the generalized Galileon model and
the specific models used in section 4 (see also [29, 77]). The coefficients in the perturbation
equations (4.2)–(4.4) are defined as

α = α1, (A.1)

ξ = α2, (A.2)

1http://subarutelescope.org/Projects/HSC/surveyplan.html.
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ζ =
4(α1 + α2)

β

G4H

φ̇φ
, (A.3)

λ2 =
2β0G4φH

βXφ̇
, (A.4)

β = −4(α0 + 2α1α2 + α2
2)

G4H
2

φ̇2
, (A.5)

where

α0 =

(
Θ̇

H2
+

Θ

H
− 2G4 − 4

Ġ4

H
− E + P

2H2

)
1

2G4
, (A.6)

α1 =

(
2
φ̇G4φ

H

)
1

2G4
, (A.7)

α2 =

(
φ̇XG3X

H
− φ̇G4φ

H

)
1

2G4
, (A.8)

β0 =

(
φ̇XG3X

H

)
1

2G4
, (A.9)

Θ = −φ̇XG3X + 2HG4 + φ̇G4φ. (A.10)

These coefficients are determined by the background solution, which follows:

2XKX − K + 6Xφ̇HG3X − 2XG3φ − 6H2G4 − 6Hφ̇Gφ = ρm, (A.11)

K − 2X
(
G3φ + φ̈G3X

)
+ 2

(
3H2 + 2Ḣ

)
G4 + 2

(
φ̈ + 2Hφ̇

)
G4φ + 4XG4φφ = 0, (A.12)

where ρm is the non-relativistic matter energy density and H = ȧ/a is the Hubble parameter.
The background equation for the scalar field is written as

J̇ + 3HJ − P = 0, (A.13)

with

J ≡ φ̇KX + 6HXG3X − 2φ̇G3φ, (A.14)

P ≡ Kφ − 2X
(
G3φφ + φ̈G3φX

)
+ 6

(
2H2 + Ḣ

)
G4φ. (A.15)

The simplest cubic Galileon model is defined by G4 = M2
Pl/2, K = −X and G3 =

(r2
c/MPl)X, which corresponds to taking c1 = −1 in ref. [78], and thus the coefficients in the

perturbation equations are

α = 0, (A.16)

ξ = 4πG3G3X φ̇2φ, (A.17)

ζ =
G3X φ̇2

βφ
, (A.18)
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λ2 =
G3Xφ

β
, (A.19)

β = −1 + 2G3X(φ̈ + 2Hφ̇) − 4πG3G
2
3X φ̇4. (A.20)

When we adopt the late time de Sitter attractor solution [79],

(
H(a)

H0

)2

=
1

2


Ωm0

a3
+

√(
Ωm0

a3

)2

+ 4(1 − Ωm0)


 . (A.21)

The combinations ξζ and λ2ζ are given by

ξζ =
(1 − Ωm)(2 − Ωm)

Ωm(5 − Ωm)
, (A.22)

λ2ζ =

(
2 − Ωm

HΩm(5 − Ωm)

)2

, (A.23)

where Ωm(a) = ρm(a)/3M2
PlH

2(a) is the matter density parameter.
Within the sub-horizon approximation, the DGP model [18, 19, 22] can be effectively

described by the coefficients

α = −1, (A.24)

ξ =
1

2
, (A.25)

ζ = − 2

3β
, (A.26)

λ2 = − r2
c

3β
, (A.27)

β = 1 ± 2Hrc

(
1 +

Ḣ

3H2

)
, (A.28)

where the sign “±” in β represents the case of the sDGP model with “−” sign and the nDGP
model with “+” sign. For the sDGP model, we adopt the self-accelerating background
solution, which is specified by the modified Friedmann equation in the sDGP model [21],

H(a)

H0
=

1 − Ωm0

2
+

√
Ωm0

a3
+

(1 − Ωm0)2

4
, (A.29)

and rc = 1/(1 − Ωm0)H0. On the other hand, the nDGP model has no self-accelerating
solution without introducing the cosmological constant [11, 13]. Here we consider the nDGP
model with introducing a dynamical dark energy component on the brane, which is tuned
such that the background evolves as in the lambda cold dark matter model [80].
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Figure 4. The 68% (dark gray region) and the 95% CL (mid gray region) 2-dimensional marginalized contours for the 5 model parameters,
Mvir [1014M⊙], c, n0 [10−3cm−3], T0 [keV] and r1 [Mpc]. The rightmost plots of each row show the 1-dimensional marginalized constraints (solid)
and likelihood distributions (dotted).
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Figure 5. Same as figure 4 but when including the modification parameters ǫ′, µ′
G and µ′

L in the MCMC analysis.
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Figure 6. The dark blue region (68% CL) and the mid blue region (95% CL) are the results of the MCMC analysis for the modified gravity model
with fixing ǫ = 0. The dark gray region (68% CL) and the mid gray region (95% CL) are the results for the Newtonian gravity (same as the figure 4).
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Figure 7. The dark blue region (68% CL) and the mid blue region (95% CL) are the results of the MCMC analysis for the modified gravity model
with fixing ǫ′ = 0.05, µ′

G = 0.2 and µ′
L = 0. The dark gray region (68% CL) and the mid gray region (95% CL) are the results for the Newtonian

gravity (same as the figure 4).
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We study the bispectrum of matter density perturbations induced by the large-scale structure formation
in the most general second-order scalar-tensor theory that may possess the Vainshtein mechanism as a
screening mechanism. On the basis of the standard perturbation theory, we derive the bispectrum being
expressed by a kernel of the second-order density perturbations. We find that the leading-order kernel is
characterized by one parameter, which is determined by the solutions of the linear density perturbations, the
Hubble parameter, and the other function specifying nonlinear interactions. This is because our model,
which may be equipped with the Vainshtein mechanism, includes only one simple function that describes
mode couplings of the nonlinear interactions. This feature does not allow for varied behavior in the
bispectrum of the matter density perturbations in the most general second-order scalar-tensor theory
equipped with the Vainshtein mechanism. We exemplify the typical behavior of the bispectrum in a kinetic
gravity braiding model.

DOI: 10.1103/PhysRevD.89.104007 PACS numbers: 04.50.Kd, 95.36.+x

I. INTRODUCTION

Researchers are interested in modified gravity models as
alternatives for explaining the accelerated expansion of the
universe without introducing the cosmological constant
[1–13]. The most general second-order scalar-tensor theory
was first constructed by Horndeski [14] and was redis-
covered in [15] as a generalization of the Galileon theories
[16–36]. In addition to the possibility of constructing
cosmological models with accelerated expansion, this
theory has the following interesting features. The equation
of motion is a second-order differential equation. Thus,
an additional degree of freedom is not introduced, which
is advantageous to avoid the appearance of ghosts.
Furthermore, the Galileon theory is endowed with the
Vainshtein mechanism [33], which is a screening mecha-
nism useful for evading local gravity constraints. In the
most general second-order scalar-tensor theory, the
Vainshtein mechanism may work depending on the model
parameters (e.g., [37–39]).
The results from the Planck satellite have shown that the

primordial perturbations almost obey Gaussian statistics
[40]. Even if the initial perturbations were completely
Gaussian, the non-Gaussian nature of the density perturba-
tions is induced in the large-scale structure formation through
nonlinear fluid equations under the influence of the gravi-
tational force. The bispectrum is often used to characterize
the nonlinear and non-Gaussian nature of the density
perturbations (e.g., [41–45]). Recently, the bispectrum and
nonlinear features in the structure formation in the Galileon
models have been investigated [46–52]. In the present paper,
we focus on the bispectrum in the most general second-order

scalar-tensor theory, which we regard as an effective theory,
in order to elucidate the characteristic features of awide class
of modified gravity models. An advantage of such a general
theory is that we can discuss general features of a wide class
of modified gravity models, which is useful for forecasting
their detectability in future large surveys.
In the present paper, we consider the bispectrum of the

matter density perturbations induced in the large-scale
structure formation after the matter-dominated era. We
present an expression of the bispectrum in the most general
second-order scalar-tensor theory based on the standard
density perturbation theory, which is written in terms of a
kernel of second-order perturbations.We find that the kernel
is characterized by only one parameter, which is determined
by the solutions of the linear density perturbations, the
Hubble parameter, and the other function that describes the
nonlinear interactions of the background universe. This
paper is organized as follows. In Sec. II, we apply the
standard perturbation theory to the most general second-
order scalar-tensor theory that may possess the Vainshtein
mechanism, and we find the solution of the second-order of
density perturbations. In Sec. III, we present the expression
of the bispectrum of the density perturbations, and we
investigate the influence of the modification of gravity. The
results are applied to a simple kinetic gravity braidingmodel
in Sec. IV. Section V presents a summary and conclusions.

II. FORMULATION

We consider the most general second-order scalar-tensor
theory on the expanding universe background. The action is
given by
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S ¼
Z

d4x
ffiffiffiffiffiffi−gp ðLGG þ LmÞ; (1)

where we define

LGG ¼ Kðϕ; XÞ −G3ðϕ; XÞ□ϕþ G4ðϕ; XÞR
þ G4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2� þG5ðϕ; XÞGμν∇μ∇νϕ

− 1

6
G5X½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�;

(2)

with four arbitrary functions ofϕ andX ≔ −ð∂ϕÞ2=2,K,G3,
G4, and G5. Furthermore, GiX stands for ∂Gi=∂X, R is the
Ricci scalar, Gμν is the Einstein tensor, and Lm is the matter
Lagrangian, which is assumed to be minimally coupled to
gravity. This theory is found in [15] as a generalization of the
Galileon theory, but is shown to be equivalent to Horndeski’s
theory in [16]. We consider a spatially flat expanding
universe and the metric perturbations in the Newtonian
gauge, whose line element is written as

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ð1 − 2ΨÞdx2: (3)

We define the scalar field with perturbations by

ϕ → ϕðtÞ þ δϕðt;xÞ; (4)

with which we introduce Q ≔ Hδϕ= _ϕ.
We consider the case where the Vainshtein mechanism

may work as a screening mechanism. The basic equations
for the cosmological density perturbations are derived in
Ref. [37]. Here we briefly review the method and the
results. The basic equations of the gravitational and scalar
fields are derived on the basis of the quasistatic approxi-
mation of the subhorizon scales. The models for which the
Vainshtein mechanism works can be found as follows. The
equations are derived by keeping the leading terms sche-
matically written as ð∂∂YÞn, with n ≥ 1, where ∂ denotes a
spatial derivative and Y denotes any of Φ, Ψ, or Q. Such
terms make a leading contribution of the order ðL2

H∂∂YÞn,
where LH is a typical horizon length scale. According to
Ref. [37], from the gravitational field equation, we have

∇2ðF TΨ − GTΦ − A1QÞ

¼ B1

2a2H2
Qð2Þ þ B3

a2H2
ð∇2Φ∇2Q − ∂i∂jΦ∂i∂jQÞ; (5)

GT∇2Ψ ¼ a2

2
ρmδ − A2∇2Q − B2

2a2H2
Qð2Þ

− B3

a2H2
ð∇2Ψ∇2Q − ∂i∂jΨ∂i∂jQÞ

− C1

3a4H4
Qð3Þ; (6)

where ρm is the matter density, δ is the matter density
contrast, and we define

Qð2Þ ≔ ð∇2QÞ2 − ð∂i∂jQÞ2; (7)

Qð3Þ ≔ ð∇2QÞ3 − 3∇2Qð∂i∂jQÞ2 þ 2ð∂i∂jQÞ3: (8)

From the equation of motion of the scalar field, we have

A0∇2Q − A1∇2Ψ − A2∇2Φþ B0

a2H2
Qð2Þ

− B1

a2H2
ð∇2Ψ∇2Q − ∂i∂jΨ∂i∂jQÞ

− B2

a2H2
ð∇2Φ∇2Q − ∂i∂jΦ∂i∂jQÞ

− B3

a2H2
ð∇2Φ∇2Ψ − ∂i∂jΦ∂i∂jΨÞ

− C0

a4H4
Qð3Þ − C1

a4H4
Uð3Þ ¼ 0; (9)

where we define

Uð3Þ ≔ Qð2Þ∇2Φ − 2∇2Q∂i∂jQ∂i∂jΦ

þ 2∂i∂jQ∂j∂kQ∂k∂iΦ: (10)

The coefficients (F T , A1, B1, etc.) in the field equations
here and below are defined in Appendix A. Ai, Bi, and Ci
are the coefficients of the linear, quadratic, and cubic terms
of Ψ, Φ, and Q, respectively.
Equations for the matter density contrast δ and the

velocity field ui are given by

∂δðt;xÞ
∂t þ 1

a
∂i½ð1þ δðt;xÞÞuiðt;xÞ� ¼ 0; (11)

∂uiðt;xÞ
∂t þ _a

a
uiðt;xÞ þ 1

a
ujðt;xÞ∂juiðt;xÞ ¼ − 1

a
∂iΦðt;xÞ;

(12)

where the dot denotes differentiation with respect to t.
Gravity exerts an effect via the gravitational potential Φ,
which is determined by (5), (6), and (9). Here, we consider
the scalar mode of the density perturbations, and then we
introduce a scalar function by θ≡∇u=ðaHÞ. Let us define
the Fourier expansion of the quantities δ and θ:

δðt;xÞ ¼ 1

ð2πÞ3
Z

d3pδðt;pÞeip·x; (13)

ujðt;xÞ ¼ 1

ð2πÞ3
Z

d3p
−ipj

p2
aHθðt;pÞeip·x: (14)

The Fourier expansion of Φ, Ψ, and Q is defined as in (13).
Then, (5) and (6) yield
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− p2ðF TΨðt;pÞ − GTΦðt;pÞ − A1Qðt;pÞÞ ¼ B1

2a2H2
Γ½t;p;Q;Q� þ B3

a2H2
Γ½t;p;Q;Φ�; (15)

−p2ðGTΨðt;pÞ þ A2Qðt;pÞÞ − a2

2
ρmδðt;pÞ ¼ − B2

2a2H2
Γ½t;p;Q;Q� − B3

a2H2
Γ½t;p;Q;Ψ�

− C1

3a4H4

1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞ

× ½−k21k22k23 þ 3k21ðk2 · k3Þ2 − 2ðk1 · k2Þðk2 · k3Þðk3 · k1Þ�
×Qðt;k1ÞQðt;k2ÞQðt;k3Þ; (16)

where we define

Γ½t;p;Y; Z� ¼ 1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞðk21k22 − ðk1 · k2Þ2ÞYðt;k1ÞZðt;k2Þ: (17)

Here, Y and Z denote any of Q, Φ, or Ψ. Equation (9) leads to

− p2ðA0Qðt;pÞ − A1Ψðt;pÞ − A2Φðt;pÞÞ

¼ − B0

a2H2
Γ½t;p;Q;Q� þ B1

a2H2
Γ½t;p;Q;Ψ� þ B2

a2H2
Γ½t;p;Q;Φ� þ B3

a2H2
Γ½t;p;Ψ;Φ�

þ C0

a4H4

1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞ½−k21k22k23 þ 3k21ðk2 · k3Þ2 − 2ðk1 · k2Þðk2 · k3Þðk3 · k1Þ�

×Qðt;k1ÞQðt;k2ÞQðt;k3Þ þ
C1

a4H4

1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞ½−k21k22k23 þ ðk1 · k2Þ2k23

þ 2k21ðk2 · k3Þ2 − 2ðk1 · k2Þðk2 · k3Þðk3 · k1Þ�Qðt;k1ÞQðt;k2ÞΦðt;k3Þ: (18)

Equations (11) and (12) are rewritten as

1

H
∂δðt;pÞ

∂t þ θðt;pÞ ¼ − 1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞ

�
1þ k1 · k2

k21

�
θðt;k1Þδðt;k2Þ; (19)

1

H
∂θðt;pÞ

∂t þ
�
2þ

_H
H2

�
θðt;pÞ − p2

a2H2
Φðt;pÞ ¼ − 1

2

1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞ

�ðk1 · k2Þjk1 þ k2j2
k21k

2
2

�

× θðt;k1Þθðt;k2Þ: (20)

We find the solution in terms of a perturbative expansion,
which can be written in the form

Yðt;pÞ ¼
X
n¼1

Ynðt;pÞ; (21)

where Y denotes δ; θ;Ψ;Φ, or Q, and Yn denotes the nth
order solution of the expansion. In the present paper, we
aim to solve the second-order solution. At the first order of
the perturbative expansion, Φ1;Ψ1, and Q1 are expressed
by δ1 as (25), (26), and (27), respectively. The modified
gravity affects the matter density perturbation via Φ in
the Euler equation at any order of perturbation. Using the
continuity equation (33), we find that δ1 obeys (34). At the

second order of the perturbative expansion, Φ2;Ψ2, and Q2

are expressed by the terms in proportion to δ2 andWγ , (46),
(47), and (48), and we find that δ2 obeys (56). Note that the
homogeneous equation of (56) is the same as the equation
for δ1. The source term of (56) is given by (64). From (56)
with (64), we find that the modification due to the nonlinear
interaction enters through only the function of NγðtÞ, while
the other parts have the same structure as those in general
relativity. These facts are important for our conclusion that
the second-order kernel is characterized by only one
parameter.
Now we start from the first-order equations, which can

easily be solved as follows [53]. From (15), (16), and (18),
we have
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F Tp2Ψ1ðt;pÞ − GTp2Φ1ðt;pÞ − A1p2Q1ðt;pÞ ¼ 0; (22)

GTp2Ψ1ðt;pÞ þ A2p2Q1ðt;pÞ ¼ − a2

2
ρmδ1ðt;pÞ; (23)

A0p2Q1ðt;pÞ − A1p2Ψ1ðt;pÞ − A2p2Φ1ðt;pÞ ¼ 0; (24)

which give the solutions

Φ1ðt;pÞ ¼ −a2H2

p2
κΦðtÞδ1ðt;pÞ; (25)

Ψ1ðt;pÞ ¼ − a2H2

p2
κΨðtÞδ1ðt;pÞ; (26)

Q1ðt;pÞ ¼ −a2H2

p2
κQðtÞδ1ðt;pÞ: (27)

Here, we define

κΦðtÞ ¼
ρmRðtÞ
H2ZðtÞ ; κΨðtÞ ¼

ρmSðtÞ
H2ZðtÞ ; κQðtÞ ¼

ρmT ðtÞ
H2ZðtÞ ;

(28)

and

RðtÞ ¼ A0F T − A2
1; (29)

SðtÞ ¼ A0GT þ A1A2; (30)

T ðtÞ ¼ A1GT þ A2F T; (31)

ZðtÞ ¼ 2ðA0G2
T þ 2A1A2GT þ A2

2F TÞ: (32)

The first-order equation of (19) is

θ1ðt;pÞ ¼ − 1

H
∂δ1ðt;pÞ

∂t : (33)

Substituting (33) and (25) into the first-order equation of
(20), we have

∂2δ1ðt;pÞ
∂t2 þ 2H

∂δ1ðt;pÞ
∂t þ LðtÞδ1ðt;pÞ ¼ 0; (34)

where we defined

LðtÞ ¼ −κΦH2 (35)

¼ − ðA0F T − A2
1Þρm

2ðA0G2
T þ 2A1A2GT þ A2

2F TÞ
: (36)

This second-rank differential equation has the growing
mode solution DþðtÞ and the decaying mode solution

D−ðtÞ. Neglecting the decaying mode solution, we write
the first-order solution,

δ1ðt;pÞ ¼ DþðtÞδLðpÞ; (37)

where δLðpÞ is a constant, which is determined by the initial
density fluctuations. We assume that δLðpÞ obeys the
Gaussian random statistics. Here we adopt the normaliza-
tion DþðaÞ ¼ a at a ≪ 1. The first-order solutions for the
other quantities can be expressed in terms of δ1ðt;pÞ.
Then, we consider the second-order equations of the

perturbative expansion. From (15), (16), and (18), the
second-order equations are

− p2ðF TΨ2ðt;pÞ − GTΦ2ðt;pÞ − A1Q2ðt;pÞÞ

¼ B1

2a2H2
Γ½t;p;Q1; Q1� þ

B3

a2H2
Γ½t;p;Q1;Φ1�; (38)

− p2ðGTΨ2ðt;pÞ þ A2Q2ðt;pÞ

¼ a2

2
ρmδ2ðt;pÞ − B2

2a2H2
Γ½t;p;Q1; Q1�

− B3

a2H2
Γ½t;p;Q1;Ψ1�; (39)

− p2ðA0Q2ðt;pÞ − A1Ψ2ðt;pÞ − A2Φ2ðt;pÞÞ

¼ − B0

a2H2
Γ½t;p;Q1; Q1� þ

B1

a2H2
Γ½t;p;Q1;Ψ1�

þ B2

a2H2
Γ½t;p;Q1;Φ1� þ

B3

a2H2
Γ½t;p;Ψ1;Φ1�: (40)

Using the first-order solutions (25), (26), (27), and (37), the
above equations are rewritten as

− p2ðF TΨ2ðt;pÞ − GTΦ2ðt;pÞ − A1Q2ðt;pÞÞ

¼ D2þðtÞa2H2

�
1

2
B1κ

2
Q þ B3κΦκQ

�
WγðpÞ; (41)

−p2ðGTΨ2ðt;pÞþA2Q2ðt;pÞÞ

¼a2

2
ρmδ2ðt;pÞþD2þðtÞa2H2

�
−1

2
B2κ

2
Q−B3κΨκQ

�
WγðpÞ;

(42)

− p2ðA0Q2ðt;pÞ − A1Ψ2ðt;pÞ − A2Φ2ðt;pÞÞ
¼ D2þðtÞa2H2ð−B0κ

2
Q þ B1κΨκQ

þ B2κΦκQ þ B3κΦκΨÞWγðpÞ; (43)

where we defined
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WγðpÞ ¼
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞγðk1;k2Þ

× δLðk1ÞδLðk2Þ; (44)

γðk1;k2Þ ¼ 1 − ðk1 · k2Þ2
k21k

2
2

: (45)

These equations yield

Φ2ðt;pÞ ¼ − a2H2

p2
ðκΦðtÞδ2ðt;pÞ þD2þðtÞτΦðtÞWγðpÞÞ;

(46)

Ψ2ðt;pÞ ¼ − a2H2

p2
ðκΨðtÞδ2ðt;pÞ þD2þðtÞτΨðtÞWγðpÞÞ;

(47)

Q2ðt;pÞ ¼ − a2H2

p2
ðκQðtÞδ2ðt;pÞ þD2þðtÞτQðtÞWγðpÞÞ;

(48)

where we defined

τΦðtÞ ¼
1

Z
ð2B0T κ2Q − 3B1Sκ2Q − 3B2Rκ2Q − 6B3RκΨκQÞ;

(49)

τΨðtÞ ¼
1

Z
ð2B0A2GTκ

2
Q þ B1ðA2

2κ
2
Q − 2A2GTκΨκQÞ

− B2ðSκ2Q þ 2A2GTκΦκQÞ
− 2B3ðSκΨκQ − A2

2κΦκQ þ A2GTκΦκΨÞÞ; (50)

τQðtÞ ¼ − 1

Z
ð2B0G2

Tκ
2
Q þ B1ðA2GTκ

2
Q − 2G2

TκΨκQÞ
þ B2ðT κ2Q − 2G2

TκΦκQÞ
þ 2B3ðT κΨκQ þ A2GTκΦκQ − G2

TκΦκΨÞÞ: (51)

The second-order equations of (19) and (20) are

1

H
∂δ2ðt;pÞ

∂t þ θ2ðt;pÞ

¼ − 1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞαðk1;k2Þ

× θ1ðt;k1Þδ1ðt;k2Þ; (52)

1

H
∂θ2ðt;pÞ

∂t þ
�
2þ

_H
H2

�
θ2ðt;pÞ − p2

a2H2
Φ2ðt;pÞ

¼ − 1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞβðk1;k2Þ

× θ1ðt;k1Þθ1ðt;k2Þ; (53)

where we define

αðk1;k2Þ ¼ 1þ k1 · k2

k21
; (54)

βðk1;k2Þ ¼
ðk1 · k2Þjk1 þ k2j2

2k21k
2
2

: (55)

Combining (52) and (53), and using the first-order solution
and (46), we have

∂2δ2ðt;pÞ
∂t2 þ 2H

∂δ2ðt;pÞ
∂t þ LðtÞδ2ðt;pÞ ¼ Sδðt;pÞ; (56)

where we define

Sδðt;pÞ ¼ ð _D2þðtÞ − LðtÞD2þðtÞÞWαðpÞ þ _D2þðtÞWβðpÞ
þ NγðtÞD2þðtÞWγðpÞ; (57)

WαðpÞ ¼
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞ

× αðk1;k2ÞδLðk1ÞδLðk2Þ; (58)

WβðpÞ ¼
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞ

× βðk1;k2ÞδLðk1ÞδLðk2Þ; (59)

and

NγðtÞ ¼ τΦH2

¼H4

ρm
ð2B0κ

3
Q− 3B1κΨκ

2
Q− 3B2κΦκ

2
Q− 6B3κΦκΨκQÞ:

(60)

In deriving (57), we use (34). Because of the symmetry
with respect to the interchange of k1 and k2, we define
αðsÞðk1;k2Þ as follows:

αðsÞðk1;k2Þ ¼ 1þ k1 · k2ðk21 þ k22Þ
2k21k

2
2

: (61)

Using the symmetry, we redefine WαðpÞ as

WαðpÞ ¼
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞαðsÞðk1;k2Þ

× δLðk1ÞδLðk2Þ: (62)

By the relation

βðk1;k2Þ ¼ αðsÞðk1;k2Þ − γðk1;k2Þ or

WβðpÞ ¼ WαðpÞ −WγðpÞ; (63)
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Eq. (57) reduces to

Sδðt;pÞ ¼ D2þðtÞfð2f2H2 − LðtÞÞWαðpÞ
þ ðNγðtÞ − f2H2ÞWγðpÞg; (64)

where we define the growth rate as f ¼ d lnDþðtÞ=d ln a.
Note that the homogeneous equation of (56) is the same

as that of the first-order equation. Therefore, we have the
second-order solution:

δ2ðt;pÞ ¼ cþðpÞDþðtÞ þ c−ðpÞD−ðtÞ

þ
Z

t

0

dt0
Dþðt0ÞD−ðtÞ −DþðtÞD−ðt0Þ

Wðt0Þ Sδðt0;pÞ;
(65)

where cþðpÞ and c−ðpÞ are constants, and WðtÞ is the
Wronskian WðtÞ ¼ DþðtÞ _D−ðtÞ − _DþðtÞD−ðtÞ. From
equations for DþðtÞ and D−ðtÞ, Eq. (34), the Wronskian
obeys _WðtÞ þ 2HWðtÞ ¼ 0, which yields

WðtÞ ¼ C
a2

; (66)

where C is a constant. In the present paper, we assume the
initial density perturbations obey the Gaussian statistics,
and we set c�ðpÞ ¼ 0. Then, the second-order solution is
written in the form

δ2ðt;pÞ ¼ D2þðtÞ
�
κðtÞWαðpÞ − 2

7
λðtÞWγðpÞ

�
; (67)

with

κðtÞ ¼ 1

D2þðtÞ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ

×D2þðt0Þð2f2H2 − Lðt0ÞÞdt0; (68)

λðtÞ ¼ 7

2D2þðtÞ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ

×D2þðt0Þðf2H2 − Nγðt0ÞÞdt0: (69)

These expressions are a generalization of the results
in Ref. [51]. In Sec. IV, we numerically evaluate the
function λðtÞ without neglecting the decaying model in a
specific model.
In the case of the matter-dominated universe within

general relativity, aðtÞ ∝ t2=3, DþðtÞ ¼ a, D−ðtÞ ¼ a−3=2,
LðtÞ ¼ −3=ð2H2Þ, and NγðtÞ ¼ 0, then the second-order
solution reduces to

δ2ðt;pÞ ¼ D2þðtÞ
�
WαðpÞ − 2

7
WγðpÞ

�
: (70)

That is, one finds κðtÞ ¼ λðtÞ ¼ 1 in the Einstein–de Sitter
universe. Even in the general second-order scalar-tensor
theory, we may consider models where the matter-
dominated era is realized in the early stage of the universe.
In this stage, the effect of the scalar field perturbations
would be negligible, and we may naturally expect that the
matter density perturbations grow in the same way as those
in general relativity. In this case, κðtÞ ¼ 1 and λðtÞ ¼ 1
at a ≪ 1.
Interestingly, we can show that (68) generally reduces to

κðtÞ ¼ 1 for all times. Using the expression for the
Wronskian (66), Eq. (68) is rewritten as

κðtÞ ¼ 1

CD2þðtÞ
Z

t

0

a2ðt0ÞðD−ðtÞDþðt0Þ −DþðtÞD−ðt0ÞÞ

× f2 _D2þðt0Þ þDþðt0ÞðD̈þðt0Þ þ 2H _Dþðt0ÞÞgdt0;
(71)

where we used the fact that Dþðt0Þ satisfies (34) to
eliminate the term Lðt0Þ. Partially integrating the term
D̈þðt0Þ in (71), we have

κðtÞ ¼ 1

CDþðtÞ
Z

t

0

a2ðt0Þf _D−ðt0ÞDþðt0Þ

−D−ðt0Þ _Dþðt0Þg _Dþðt0Þdt0: (72)

Using the Wronskian, we finally obtain

κðtÞ ¼ 1; (73)

for all times. Therefore, the kernel (81) depends on only the
parameter λðtÞ, which is determined by the solution of the
linear density perturbation, HðtÞ and the function NγðtÞ.
This conclusion is a generalization of the results in
Ref. [46]. The authors of Ref. [46] investigated the standard
density perturbation theory in the Dvali, Gabadadze and
Porrati model, and a similar result is obtained at the second
order of perturbation (Appendix B.1 in their paper). The
result is explained by αðsÞðk1;k2Þ and γðk1;k2Þ being
independent of each other and the modification of gravity
coming through only the terms in proportion to γðk1;k2Þ at
the second order of perturbation. Therefore, the term in
proportion to αðsÞðk1;k2Þ is not modified.
Finally, in this section, we present the expression of the

velocity divergence at the second order of perturbation. We
obtain the expression by inserting δ1ðt;pÞ, θ1ðt;pÞ, and
δ2ðt;pÞ into (52),

θ2ðt;pÞ ¼ −D2þðtÞf
�
WαðpÞ − 4

7
λθðtÞWγðpÞ

�
; (74)

where we defined
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λθðtÞ ¼ λðtÞ þ
_λðtÞ
2fH

: (75)

In the Einstein–de Sitter universe, we have λθðtÞ ¼ 1.

III. BISPECTRUM

In this section, we consider the bispectrum of the density
perturbations in the most general second-order scalar-
tensor theory on the cosmological background. The power
spectrum and the bispectrum are defined by

hδðt;k1Þδðt;k2Þi≡ ð2πÞ3δð3Þðk1 þ k2ÞPðt; k1Þ; (76)

hδðt;k1Þδðt;k2Þδðt;k3Þi
≡ ð2πÞ3δð3Þðk1 þ k2 þ k3ÞBðt; k1; k2; k3Þ; (77)

respectively. The three-point function at the lowest order of
the standard perturbation theory is evaluated as

hδðt;k1Þδðt;k2Þδðt;k3Þi
¼ D4þðtÞðhδLðk1ÞδLðk2Þδ2Kðt;k3Þi þ 2 cyclic termsÞ;

(78)

where we define

δ2Kðt;kÞ ¼ WαðkÞ − 2

7
λðtÞWγðkÞ: (79)

The first term in parentheses in the right-hand side of (78) is

hδLðk1ÞδLðk2Þδ2Kðt;k3Þi

¼
Z

d3q1
ð2πÞ3 F2ðt;q1;k3 − q1Þ

× hδLðk1ÞδLðk2ÞδLðq1ÞδLðk3 − q1Þi; (80)

where we define the kernel

F2ðt;k1;k2Þ≡ αðsÞðk1;k2Þ − 2

7
λðtÞγðk1;k2Þ: (81)

Using the definition of the linear matter power spectrum,

hδLðk1ÞδLðk2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞP11ðk1Þ; (82)

and Wick’s theorem, we have

hδLðk1ÞδLðk2Þδ2Kðt;k3Þi
¼ 2ð2πÞ3δð3Þðk1 þ k2 þ k3ÞF2ðt;k1;k2ÞP11ðk1ÞP11ðk2Þ;

(83)

where we use F2ðt;−k1;−k2Þ ¼ F2ðt;k1;k2Þ. Finally, we
have the expression for the bispectrum at the lowest order
of the perturbation theory,

Bðt; k1; k2; k3Þ ¼ D4þðtÞB4ðt; k1; k2; k3Þ (84)

with

B4ðt; k1; k2; k3Þ ¼ 2F2ðt;k1;k2ÞP11ðk1ÞP11ðk2Þ
þ 2 cyclic terms: (85)

The reduced bispectrum is given by

Q123ðt; k1; k2; θ12Þ

¼ B4ðt; k1; k2; k3Þ
P11ðk1ÞP11ðk2Þ þ P11ðk2ÞP11ðk3Þ þ P11ðk3ÞP11ðk1Þ

;

(86)

at the lowest order of perturbations. Note that the (reduced)
bispectrum is described by the kernel (81), which depends
on only the parameter λðtÞ, which is given by (69).
Because k1 þ k2 þ k3 ¼ 0 is satisfied, the reduced

bispectrum is a function of only three parameters, which
we take as k1 ¼ jk1j, k2 ¼ jk2j, and the angle θ12 between
k1 and k2. Explicit expressions for αðsÞðki;kjÞ, and
γðki;kjÞ, where ði; jÞ denotes any of (1,2), (2,3),
or (3,1), are summarized in Appendix B. Each panel of
Fig. 1 shows a typical behavior of Q123 as a function of θ12
with fixed k1 and k2, whose values are described in the
caption. In each panel, we adopt a different value of λðtÞ ¼
1 (blue solid curve), λðtÞ ¼ 1.2 (red dotted curve), and
λðtÞ ¼ 0.8 (yellow dashed curve), assuming a spatially flat
universe with the CDM model and the cosmological
constant Λ, whose density parameters are Ω0 ¼ 0.3 and
ΩΛ ¼ 0.7, for the linear matter power spectrum P11ðkÞ.
Note that the reduced bispectrum depends on time t through
only λðtÞ. One can see the following features. First, the
overall amplitude of Q123 depends on the value of k1 and
k2. However, when the values of k1 and k2 are fixed, the
reduced bispectrum is enhanced for λ < 1 but reduced for
λ > 1. This feature is explained by kernel (81) and the
fact γðki;kjÞ ≥ 0.
With the limit θ12 ¼ 0, we have γðk1;k2Þ ¼

γðk2;k3Þ ¼ γðk3;k1Þ ¼ 0 (see also Appendix B). Then,
Q123 is independent of λ at θ12 ¼ 0. With the limit θ12 ¼ π,
Q123 behave differently depending on the conditions
k1 ¼ k2 and k1 ≠ k2. If k1 ≠ k2, then we have
γðk1;k2Þ ¼ γðk2;k3Þ ¼ γðk3;k1Þ ¼ 0, which is the same
as with the limit θ12 ¼ 0. In the case k1 ¼ k2, however, we
have γðk1;k2Þ ¼ 0, γðk2;k3Þ ¼ γðk3;k1Þ ¼ 1, and
k3 ¼ 0; that is, P11ðk3Þ ¼ 0. Then the bispectrum
approaches zero with this limit, though the rate of con-
vergence depends on λðtÞ, as is discussed in the next
section.
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All the influence of the nonlinear interaction of the
modified gravity arises through only the parameter λðtÞ,
which appears as the term in proportion to γðk1;k2Þ in the
kernel (81). The bispectrum of the matter density pertur-
bations behaves in a restricted way only, which is a feature
of the general second-order scalar-tensor theory equipped
with the Vainshtein mechanism.

IV. KINETIC GRAVITY BRAIDING MODEL

In this section, we consider a simple example to
demonstrate how the modification of gravity influences
the behavior of the bispectrum at a quantitative level. We
consider the kinetic gravity braiding model investigated in
Refs. [31,52], whose action is written as

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

M2
pl

2
Rþ K −G3□ϕþ Lm

�
; (87)

with the Planck mass Mpl, which is related with the
gravitational constant GN by 8πGN ¼ 1=M2

pl. Comparing
this action (87) with that of the most general second-order
scalar-tensor theory, the action of the kinetic gravity
braiding model is produced by setting

G4 ¼
M2

pl

2
; G5 ¼ 0: (88)

In Ref. [52], K and G3 are chosen as

K ¼ −X; G3 ¼ Mpl

�
r2c
M2

pl

X

�
n

; (89)

where n and rc are parameters. In this model, we have

LðtÞ ¼ − A0F Tρm
2ðA0GT þ A2

2F TÞ
; (90)

NγðtÞ ¼
B0A3

2F
3
Tρ

2
m

4ðA0G2
T þ A2

2F TÞ3H2
: (91)

Useful expressions of the kinetic gravity braiding model are
summarized in Appendix A.
When we consider the attractor solution, which satisfies

3 _ϕHG3X ¼ 1; (92)

the Friedmann equation is written in the form

FIG. 1 (color online). Q123 as a function of θ12 with k1 ¼ k2 ¼ 0.01h Mpc−1 (upper left panel), k1 ¼ k2 ¼ 0.1h Mpc−1 (lower left
panel), k1 ¼ 5 × k2 ¼ 0.05h Mpc−1 (upper right panel), and k1 ¼ 5 × k2 ¼ 0.5h Mpc−1 (lower right panel). For the linear matter power
spectrum P11ðkÞ, we adopt the spatially flat universe with the cold dark matter (CDM) model and the cosmological constant Λ, whose
density parameters are Ω0 ¼ 0.3 and ΩΛ ¼ 0.7, respectively. Note that the reduced bispectrum depends on time t through only λðtÞ, for
which we adopt different values of λðtÞ ¼ 1 (blue solid curve), λðtÞ ¼ 1.2 (red dotted curve), and λðtÞ ¼ 0.8 (yellow dashed curve),
irrespective of the ΛCDM model.
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�
H
H0

�
2

¼ Ω0

a3
þ ð1 −Ω0Þ

�
H
H0

�−2=ð2n−1Þ
; (93)

where H0 is the Hubble constant and Ω0 is the density
parameter at the present time, and the model parameters
must satisfy

H0rc ¼
�
2n−1
3n

�
1=2n

�
1

6ð1 −Ω0Þ
�ð2n−1Þ=4n

: (94)

On the attractor solution, LðtÞ and NγðtÞ reduce to

LðtÞ ¼ − 3

2

2nþ ð3n − 1ÞΩmðtÞ
5n −ΩmðtÞ

H2; (95)

NγðtÞ ¼ − 9

4

ð1 −ΩmðtÞÞð2n −ΩmðtÞÞ3
ΩmðtÞð5n −ΩmðtÞÞ3

H2; (96)

where ΩmðaÞ is defined by ΩmðaÞ ¼ Ω0H2
0=HðaÞ2a3.

Note that the quasistatic approximation on the scales of
the large-scale structure holds for n≲ 10 (see [52]).
Figure 2 shows the evolution of λðtÞ as a function of a for

the kinetic gravity braiding model with n ¼ 1, 2, 5 and the
ΛCDM model. For a ≪ 1, we have λðtÞ ¼ 1, which is
the prediction of the Einstein–de Sitter universe. However,
the accelerated expansion arises due to domination of the
Galileon field as a approaches 1, and so the value of λðtÞ
starts to deviate from 1.
The deviation of λðtÞ from 1 is small. The value of λðtÞ at

the present epoch is 0.994 under the ΛCDMmodel with the
density parameterΩ0 ¼ 0.3. The value of λðtÞ at the present
epoch is 1.003, 1.011, and 1.019 under the kinetic gravity
braiding (KGB) model with n ¼ 1, 2, 5, respectively. Our
results demonstrate the validity of the approximation
setting λðtÞ ¼ 1, which is usually adopted in the standard
density perturbations theory.
Figure 3 shows the relative deviation of the bispectrum

at the present epoch under the KGB model from
that under the ΛCDM model, Q123ðt; k1; k2; θ12Þ=
Q123Λðt; k1; k2; θ12Þ − 1, as a function of θ12, where
Q123Λðt; k1; k2; θ12Þ is the reduced bispectrum of the
ΛCDM model. The relative deviation from the ΛCDM
model is less than 2%. For the case k1 ≠ k2, the deviation
between the models does not appear at θ12 ¼ 0, π, which is
simply understood by the fact that γðki;kjÞ ¼ 0 there.
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FIG. 3 (color online). Relative deviation of the reduced bispectrum at the present epoch under the kinetic gravity braiding model with
n ¼ 1 (blue solid curve), n ¼ 2 (red dotted curve), n ¼ 5 (yellow dashed curve) from that under the ΛCDM model Q123Λ, as a function
of θ12, where k1 and k2 are fixed, whose values are noted on each panel. Here the density parameter is fixed as Ω0 ¼ 0.3.
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FIG. 2 (color online). λðtÞ as a function of a in the ΛCDM
model (blue solid curve) and the kinetic gravity braiding model
with n ¼ 1 (red dotted curve), n ¼ 2 (yellow dashed curve), and
5 (green thick curve).
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In the case k1 ¼ k2 with the limit θ12 ¼ π, we have
αðsÞðk1;k2Þ ∼ ðπ − θ12Þ2, αðsÞðk2;k3Þ ¼ αðsÞðk3;k1Þ ¼
3=4, γðk1;k2Þ ∼ ðπ − θ12Þ2, γðk2;k3Þ ¼ γðk3;k1Þ ¼ 1,
and Pðk3Þ ∝ kns3 ∝ ðπ − θ12Þns , where ns is the spectral
index. (See Appendix B for details.)
Then, the bispectrum has the asymptotic form

B4ðt; k1; k1; θ12Þ ∼ 4

�
3

4
− 2

7
λðtÞ

�
P11ðk3ÞP11ðk1Þ (97)

around the limit θ12 ¼ π. This leads to the ratio of the
reduced bispectrum in this limit,

Q123ðt; k1; k1; θ12Þ
Q123Λðt; k1; k1; θ12Þ

¼ 21 − 8λðtÞ
21 − 8λΛðtÞ

; (98)

where λΛðtÞ is the parameter λðtÞ of the ΛCDM model,
which explains the behavior shown in the left panels
of Fig. 3.
The behavior of the reduced bispectrum is almost the

same when the ratio k1=k2 is the same. This is because
the functions αðsÞðki;kjÞ and γðki;kjÞ depend only on the
ratio k1=k2 and θ12 (see also Appendix B). Recently, the
bispectrum in the covariant cubic galileon cosmology is
investigated in Ref. [51]. Our kinetic gravity braiding
model with n ¼ 1 is a cubic Galileon model; however,
there is the difference between our model and the
covariant cubic Galileon cosmology in Ref. [51]. The
cosmic accelerated expansion in the covariant cubic
Galileon model is derived by a potential of the scalar
field. This causes the differences in the evolution of
the background universe and the linear density
perturbations.

V. SUMMARY AND CONCLUSIONS

In the present paper, we investigated the bispectrum of
the matter density perturbations induced by gravitational
instability in the most general second-order scalar-tensor
theory that may possess the Vainshtein mechanism. We
discussed a general feature of this wide class of modified
gravity models in the most general second-order scalar-
tensor theory. We analytically obtained the expression of

the bispectrum of the second-order perturbations on the
basis of the standard density perturbation theory. The
bispectrum is expressed by the kernel (81), depending
on only the parameter λðtÞ, which is determined by the
growing and decaying solutions of the linear density
perturbations D�ðtÞ, the Hubble parameter HðtÞ, and the
other function NγðtÞ for the nonlinear interactions. These
simple results come from the fact that the basic equations
for the gravitational and scalar fields have the same form as
the nonlinear mode couplings, which are derived as the
leading terms under the quasistatic approximation within
the subhorizon scales. Thus, all the effects of the modified
gravity in the bispectrum come via the parameter λðtÞ in the
kernel (81), which has a simple structure. This makes the
behavior of the bispectrum less complex. As an application
of our results, we exemplified the behavior of the bispec-
trum in the kinetic gravity braiding model proposed in
Ref. [52]. We investigated the evolution of λðtÞ in this
model and demonstrated the deviation of the reduced
bispectrum from that of the ΛCDM model is less than
2%. Higher order solutions of the density perturbations can
be obtained in a similar way, which is left as a future
problem.
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APPENDIX A: DEFINITION OF THE
COEFFICIENTS

We first summarize the definitions of the coefficients in
the field equations presented in Sec. II.

A0 ¼
_Θ
H2

þ Θ
H

þ F T − 2GT − 2
_GT

H
− E þ P

2H2
; (A1)

A1 ¼
_GT

H
þ GT − F T; (A2)

A2 ¼ GT − Θ
H
; (A3)
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B0 ¼
X
H
f _ϕG3X þ 3ð _X þ 2HXÞG4XX þ 2X _XG4XXX − 3 _ϕG4ϕX þ 2 _ϕXG4ϕXX þ ð _H þH2Þ _ϕG5X

þ _ϕ½2H _X þ ð _H þH2ÞX�G5XX þH _ϕX _XG5XXX − 2ð _X þ 2HXÞG5ϕX − _ϕXG5ϕϕX − Xð _X − 2HXÞG5ϕXXg; (A4)

B1 ¼ 2X½G4X þ ϕ̈ðG5X þ XG5XXÞ −G5ϕ þ XG5ϕX�; (A5)

B2 ¼ −2XðG4X þ 2XG4XX þH _ϕG5X þH _ϕXG5XX −G5ϕ − XG5ϕXÞ; (A6)

B3 ¼ H _ϕXG5X; (A7)

C0 ¼ 2X2G4XX þ 2X2

3
ð2ϕ̈G5XX þ ϕ̈XG5XXX − 2G5ϕX þ XG5ϕXXÞ; (A8)

C1 ¼ H _ϕXðG5X þ XG5XXÞ; (A9)

where we also defined

F T ¼ 2½G4 − Xðϕ̈G5X þ G5ϕÞ�; (A10)

GT ¼ 2½G4 − 2XG4X − XðH _ϕG5X −G5ϕÞ�; (A11)

Θ ¼ − _ϕXG3X þ 2HG4 − 8HXG4X − 8HX2G4XX þ _ϕG4ϕ þ 2X _ϕG4ϕX

−H2 _ϕð5XG5X þ 2X2G5XXÞ þ 2HXð3G5ϕ þ 2XG5ϕXÞ; (A12)

E ¼ 2XKX − K þ 6X _ϕHG3X − 2XG3ϕ − 6H2G4 þ 24H2XðG4X þ XG4XXÞ − 12HX _ϕG4ϕX

− 6H _ϕG4ϕ þ 2H3X _ϕð5G5X þ 2XG5XXÞ − 6H2Xð3G5ϕ þ 2XG5ϕXÞ; (A13)

P ¼ K − 2XðG3ϕ þ ϕ̈G3XÞ þ 2ð3H2 þ 2 _HÞG4 − 12H2XG4X − 4H _XG4X

− 8 _HXG4X − 8HX _XG4XX þ 2ðϕ̈þ 2H _ϕÞG4ϕ þ 4XG4ϕϕ þ 4Xðϕ̈ − 2H _ϕÞG4ϕX

− 2Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈ÞG5X − 4H2X2ϕ̈G5XX þ 4HXð _X −HXÞG5ϕX

þ 2½2ðHXÞ_þ 3H2X�G5ϕ þ 4HX _ϕG5ϕϕ: (A14)

In the kinetic gravity braiding model considered in Sec. IV,
the coefficients are written as follows:

F T ¼ M2
pl; GT ¼ M2

pl; (A15)

Θ ¼ −nMpl

�
r2c
M2

pl

�
n
_ϕXn þHM2

pl; (A16)

_Θ ¼ −nð2nþ 1ÞMpl

�
r2c
M2

pl

�
n

ϕ̈Xn þ _HM2
pl; (A17)

E ¼ −X þ 6nMpl

�
r2c
M2

pl

�
n
_ϕHXn − 3H2M2

pl; (A18)

P ¼ −X − 2nMpl

�
r2c
M2

pl

�
n

ϕ̈Xn þ ð3H2 þ 2 _HÞM2
pl; (A19)

A0 ¼
X
H2

− 2nMpl

�
r2c
M2

pl

�
n
�
2 _ϕ

H
þ n

ϕ̈

H2

�
Xn; (A20)

A2 ¼ B0 ¼ nMpl

�
r2c
M2

pl

�
n _ϕ

H
Xn; (A21)

A1 ¼ B1 ¼ B2 ¼ B3 ¼ C0 ¼ C1 ¼ 0: (A22)

In the present paper, we consider the attractor solution
satisfying (92), thus obtaining

ϕ̈ ¼ − 1

2n − 1

_ϕ _H
H

; (A23)

_H
H2

¼ − ð2n − 1Þ3ΩmðaÞ
2ð2n −ΩmðaÞÞ

; (A24)
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A0 ¼ −M2
plð1 −ΩmðaÞÞð2nþ ð3n − 1ÞΩmðaÞÞ

2n −ΩmðaÞ
; (A25)

A2 ¼ M2
plð1 −ΩmðaÞÞ; (A26)

B0 ¼ M2
plð1 −ΩmðaÞÞ; (A27)

where we define ΩmðaÞ ¼ ρmðaÞ=3M2
plH

2.

APPENDIX B: EXPLICIT EXPRESSIONS
OF α AND γ

For the bispectrum, we may write the wave number
vector that satisfies k1 þ k2 þ k3 ¼ 0 as follows:

k1 ¼ ð0; 0; k1Þ; (B1)

k2 ¼ ð0; k2 sin θ12; k2 cos θ12Þ; (B2)

k3 ¼ ð0;−k2 sin θ12;−k1 − k2 cos θ12Þ; (B3)

where θ12 is the angle between the vectors k1 and k2. Then,
we have

k1 · k2

k1k2
¼ cos θ12; (B4)

k2 · k3

k2k3
¼ −k2 − k1 cos θ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k22 þ 2k1k2 cos θ12
p ; (B5)

k3 · k1

k3k1
¼ −k1 − k2 cos θ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k22 þ 2k1k2 cos θ12
p ; (B6)

where we use k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ 2k1k2 cos θ12

p
. Introducing

the constant c by k1 ¼ ck2, we have

k3 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 2c cos θ12 þ 1

q
; (B7)

k2 · k3

k2k3
¼ − cþ cos θ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 2c cos θ12 þ 1
p ; (B8)

k3 · k1

k3k1
¼ − c cos θ12 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 2c cos θ12 þ 1
p : (B9)

For convenience, we summarize the explicit expressions of
αðsÞðki;kjÞ and γðki;kjÞ. The above relations yield

αðsÞðk1;k2Þ ¼ 1þ ðc2 þ 1Þ cos θ12
2c

; (B10)

αðsÞðk2;k3Þ ¼ 1 − ð2c2 þ 2c cos θ12 þ 1Þðcþ cos θ12Þ
2cðc2 þ 2c cos θ12 þ 1Þ ;

(B11)

αðsÞðk3;k1Þ ¼ 1 − ðc2 þ 2c cos θ12 þ 2Þðc cos θ12 þ 1Þ
2ðc2 þ 2c cos θ12 þ 1Þ ;

(B12)

γðk1;k2Þ ¼ 1 − cos2θ12; (B13)

γðk2;k3Þ ¼
sin2θ12

c2 þ 2c cos θ12 þ 1
; (B14)

γðk3;k1Þ ¼
c2sin2θ12

c2 þ 2c cos θ12 þ 1
: (B15)

Thus, αðsÞ and γ depend on only c and θ12, which means
that F2ðt;ki;kjÞ depends on only c and θ12, irrespective of
t. It is trivial that αðsÞðk1;k2Þ and γðk1;k2Þ are invariant
under the interchange between k1 and k2, or the replace-
ment of c with 1=c. Note also that αðsÞðk2;k3Þ and
γðk2;k3Þ are transformed into αðsÞðk3;k1Þ and
γðk3;k1Þ, respectively, by the replacement of c with 1=c.
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We investigate the potential of the higher multipole power spectra of the galaxy distribution in redshift
space as a cosmological probe on halo scales. Based on the fact that a halo model explains well the
multipole power spectra of the luminous red galaxy sample in the Sloan Digital Sky Survey, we focus our
investigation on the random motions of the satellite luminous red galaxies that determine the higher
multipole spectra at large wave numbers. We show that our theoretical model fits the higher multipole
spectra at large wave numbers from N-body numerical simulations, and we apply these results for
testing the gravity theory and the velocity structure of galaxies on the halo scales. In this analysis,
we use the multipole spectra P4ðkÞ and P6ðkÞ on the small scales of the range of wave number
0.3 ≤ k=½hMpc−1� ≤ 0.6, which is in contrast to the usual method of testing gravity by targeting the linear
growth rate on very large scales. We demonstrate that our method could be useful for testing gravity on the
halo scales.

DOI: 10.1103/PhysRevD.92.023523 PACS numbers: 98.80.Es, 04.50.Kd, 04.80.Cc, 98.62.Py

I. INTRODUCTION

Redshift surveys of galaxies are a promising way to
explore the nature of dark energy and test gravity on the
cosmological scales. Recent results of the baryon oscil-
lation spectroscopic survey (BOSS) date release (DR) 11 of
the Sloan Digital Sky Survey (SDSS) III have demonstrated
the usefulness of redshift surveys [1,2]. A possible tension
in the cosmological parameters between the results by the
Planck satellite and the BOSS is reported [3–6], which
attracts the interest of researchers. An interesting question
that arises is whether this tension could be resolved in
models where the gravity gets modified from its usual
general relativistic form.
The redshift-space distortion plays an important role in

testing gravity [7,8], which reflects the information on the
velocity of galaxies. One of the targets of the redshift
surveys is a measurement of the redshift-space distortions
in the linear regime of the density perturbations [9], which
provides us with a chance to test gravity through the linear
growth rate. On the other hand, the finger-of-god (FoG)
effect is the redshift-space distortion in the nonlinear
regime of density perturbations reflecting the random
motion of galaxies. The primary purpose of the present
paper is to investigate an effective method to evaluate the
random velocity of galaxies in halos, which might provide
us with a unique chance of testing gravity on halo scales.
This can be achieved by precisely modeling the FoG effect
on the basis of the halo model.

In order to quantify the redshift-space distortions, the
multipole power spectrum, defined as a multipole coef-
ficient of the multipole expansion of the anisotropic power
spectrum (e.g., [6,8,10]), is useful. Recently, the authors of
Ref. [11] found that a halo model describes well the small-
scale behavior of the higher multipole power spectra of the
luminous red galaxy (LRG) sample of SDSS DR7. Based
on this new finding, we consider the potential of measuring
the velocity of satellite galaxies in halos and testing the
gravity theory on the halo scales with the multipole power
spectrum. The key to this method is the random motion of
the satellite galaxies and their one-dimensional velocity
dispersion in a halo with mass M, for which we adopt a
simple formula,

σ2vðMÞ ¼ β
GM
2rvir

; ð1Þ

where β is a constant parameter, G is the Newton’s
universal gravitational constant, and rvir is the virial radius
defined by rvir ¼ ð3M=4πρ̄mðzÞΔvirðzÞÞ1=3, where ρ̄mðzÞ is
the mean matter density and ΔvirðzÞ is the density contrast
of a halo, respectively, at the redshift z. We adopt Δvir ¼
265 at z ¼ 0.3 for the sample corresponding to our LRG
mock samples. We carefully check this velocity dispersion
relation using the numerical simulations, as well as the
validity of the theoretical model for the higher multipole
power spectra. This theoretical model is compared with the
SDSS LRG sample, and we put a useful constraint on the
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velocity dispersion and the gravitational constant on the
halo scales.

II. FORMULATION

Here we briefly review the multipole spectrum in a
halo model according to Ref. [9,11]. Following the general
prescription of the halo approach [12–14], we write the
anisotropic power spectrum in the redshift space consisting
of the one-halo and two-halo terms, PLRGðk; μÞ ¼
P1hðk; μÞ þ P2hðk; μÞ. We consider the model which con-
sists of the central galaxies and the satellite galaxies. We
adopt the following expression (2) for the one-halo term,

P1hðk; μÞ ¼ 1

n̄2

Z
dM

dn
dM

× ½2hNsati ~uNFWðk;MÞe−ðσ2cþσ2sÞk2μ2=2a2H2

þ hNsati2 ~u2NFWðk;MÞe−σ2sk2μ2=a2H2 �; ð2Þ

where we adopt the halo mass function dn=dM given by
[15], n̄ is the mean number density of LRGs given by
n̄¼R

dMðdn=dMÞNHODðMÞ, NHODðMÞ¼hNceniþhNsati
is the halo occupation distribution (HOD), for which we
adopt the following form [16],

hNceni ¼
1

2

�
1þ erf

�
log10ðMÞ − log10ðMminÞ

σlogM

��
; ð3Þ

hNsati ¼ hNceni
�
M −Mcut

M1

�
α

; ð4Þ

with the error function erfðxÞ, and σ2cðMÞ and σ2sðMÞ are the
velocity dispersion of the central LRGs and the satellite
LRGs, respectively. We adopt the mass function proposed
in [15]; however, our results are not significantly altered by
the other choices of the mass functions proposed in [17] or
[18]. Table I lists the HOD parameters matching the SDSS
DR7 LRG catalog in Ref. [19]. We assume that the
distribution of the satellite galaxies follows the Navarro-
Frenk-White (NFW) profile [20] and ~uNFWðkÞ denotes
the Fourier transform of truncated NFW profile [21].
Results of Ref. [22] support this assumption. We may
assume that central LRGs reside near the halo center, thus
their velocity difference relative to the host halo should be
small (cf. [23]). On the other hand, satellite LRGs are

off-centered, and their random velocity should be the main
source of the FoG effect. Here we assume

σ2cðMÞ ¼ α2cσ
2
vðMÞ; ð5Þ

σ2sðMÞ ¼ α2sσ
2
vðMÞ; ð6Þ

where αc and αs are the constant parameters.
In the previous paper [11], the two-halo term was

modeled with an analytic fitting formula from N-body
simulations. However, in the present paper, we adopt a very
simple treatment for the two-halo term of the higher
multipole power spectrum, because it is not trivial to
construct a precise analytic model in redshift space which
is applicable even at large wave numbers. Using the mock
catalogs corresponding to the LRG sample is an alternative
way to incorporate precise theoretical predictions for the
two-halo term. For this modeling, we adopt the results in
the previous paper [9], which has constructed mock
catalogs, corresponding to the SDSS LRG sample, and
has investigated the behavior of the multipole spectra. In
the present paper, we use the following modeling for
P2h
4 ðkÞ and P2h

6 ðkÞ. The results in [9] demonstrate that
the contribution from the two-halo term to P6ðkÞ is
negligible, i.e., P2h

6 ðkÞ≃ 0, and P2h
4 ðkÞ is simply expressed

as kP2h
4 ðkÞ≃ 15½hMpc−1�2, which we also adopt here.

Because the contribution of the two-halo term to P2ðkÞ
is rather large compared to that of P4ðkÞ and P6ðkÞ [11], it
is not included in our analysis.
Even though the relative contribution of the two-halo

term to P4ðkÞ and P6ðkÞ is small, it could still be influential
to our results. Therefore a more detailed modeling of the
two-halo term might be important. The above treatment for
the two-halo term is based on the simulations within the
framework of the general relativity. However, in general the
two-halo term might depend on modified gravity models.
Therefore our modeling might not be universally correct for
the modified gravity models, including the possibility that a
modification of gravity changes the mass function, the
density profile of a halo and the mass-concentration
relation, e.g., [24,25]. Nevertheless, the current treatment
should be enough for the purposes of just demonstrating the
validity of our method as a new test of the general relativity.

III. RESULTS

A. Simulation sample

We first demonstrate the validity of our theoretical model
by comparing with the results of N-body simulations. The
simulations assume the spatially flat cold dark matter
model with a cosmological constant, adopting Ω0 ¼
0.273 and σ8 ¼ 0.82. We run ten realizations of N-body
simulations using GADGET-2 code [26] with Gaussian
initial condition. Each simulation has a side length of
600h−1 Mpc and the particle number of 8003 (each particle

TABLE I. HOD parameters of the LRG sample [19].

Simulation/LRG

Mmin 5.7 × 1013M⊙=h
σlogM 0.7
Mcut 3.5 × 1013M⊙=h
M1 3.5 × 1014M⊙=h
α 1
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mass is 2.8 × 1010h−1M⊙). We use z ¼ 0.3 snapshots and
identify halos by a friends-of-friends algorithm with a
linking length of 0.2. Mock catalogs are constructed so that
the bias and the HODmatch the SDSS DR7 LRG catalog in
Ref. [19]. The position of a central LRG is given by the
potential minimum of the host halo and the velocity is given
as the averaged velocity of all particles within the halos. We
substitute randomly picked up dark matter particles for
satellite LRGs. In this analysis, we constructed mock
samples both with and without including the fiber collision
effect [27]. The mock samples including the effect of fiber
collisions are constructed as follows. We first make
uncollided samples by removing one of the adjacent
subhalos within 55 arcsec at z ¼ 0.3. In this process, we
follow the method of Ref. [27], intending to maximize the
number of galaxies of the uncollided sample. For example,
if one of the galaxies in a triplet system is collided with both
of the other two which are uncollided with each other, we
remove the former galaxy only and leave the uncollided
two galaxies. In the observed survey area where the
spectroscopic tiling is overlapped, both spectra of collided
pairs can be measured. To incorporate this effect, we
randomly reintroduce a fraction of removed subhalos in
the sample at 10% probability regardless of their positions
in the sky. In our simulation, the central LRGs locate near
the halo center, and their velocity is negligible. We assume
no velocity bias for satellites. Thus, our mock catalogs
should be understood as αc ¼ 0 and αs ¼ 1.
Using the mock catalogs, we show the validity of our

expression (1) for the velocity dispersion of satellite
galaxies. The velocity dispersion of satellite galaxies in a
halo has not been well understood, though there are a few
works that investigate the velocity dispersion of LRGs
[28,29]. Recently, Guo et al. have studied the velocity bias
of galaxies in the SDSS III CMASS sample in the context
of a halo model [30]. Their results have implications for our
results, as will be discussed below.
Figure 1 compares the velocity dispersion σ2vðMÞ of

satellites as a function of the host halo’s mass M. Here
the cross symbols show the results of the N-body numerical
simulation, while the curve shows ðGM=2rvirÞ1=2, i.e.,
Eq. (1) with β ¼ 1. This suggests that Eq. (1) with β ¼ 1
reproduces well the relation between the velocity dispersion
of satellite and the halo mass of our N-body simulations.
The effect of the fiber collision, which misses galaxies

located closely to each other, could be crucial in the
analysis of the redshift-space clustering on small scales
[31]. The fiber collision dominantly occurs for pairs in the
same halo. In the previous work [11], the effect of the fiber
collision is included by a multiplying factor reducing the
satellite fraction. In the present paper, we adopt a similar
prescription, for simplicity. Instead of introducing the
satellite fraction, we float the HOD parameter M1, which
changes the satellite fraction, as a fitting parameter in our
Markov chain Monte Carlo (MCMC) analysis.

We compare the results of the averaged power spectra
over 10 mock simulations with the theoretical multipole
power spectra, with floating the two parameters β and M1.
We demonstrate that β andM1 can be measured from P4ðkÞ
and P6ðkÞ. The errors of the simulated power spectra are
obtained from the dispersions of ten mock results multi-
plied by 1=

ffiffiffiffiffi
10

p
, which roughly corresponds to the errors

for their mean. In particular, we fixed αc ¼ 0 and αs ¼ 1,
taking into account the consistency with our numerical
simulations. Note that the HOD parameters other than M1

are fixed. When additional HOD parameter is floated, we
cannot obtain useful constraints due to a problem of
degeneracy between the HOD parameters. This occurs
because we use only P4ðkÞ and P6ðkÞ on small scales. If
we had used the projected angular correlation function
simultaneously in our analysis, we would have been able to
avoid this problem. We leave this as a future work.
In the MCMC analysis we only use P4ðkÞ and P6ðkÞ in

the range of wave numbers 0.3 ≤ k=½hMpc−1� ≤ 0.6 in
order to reduce the influences from the uncertain contri-
bution of the two-halo term. Table II summarizes our
results, where the best-fitting values with one sigma
statistical errors are presented for (A) simulation with
the fiber collision (F.C.), (B) simulation without the fiber
collision, and (C) LRG sample, (D) LRG sample with the
two-halo term modeled with the brightest LRG (BLRG)
sample [11], from the left to the right column, respectively.
The chi-squared and the degrees of freedom are also shown.
In this table, the values within parentheses are the results
for the data in the range of 0.2 ≤ k=½hMpc−1� ≤ 0.6. The
chi-squared values in the parentheses of (A) and
(B) become very large. This comes from the failure of
our analytic model in fitting the N-body simulations at the
wave numbers k≲ 0.3hMpc−1, where the two-halo term
becomes relatively important. The left-hand two columns
of Fig. 2 show the best-fit curves of the HOD and the
multipole power spectra for the simulations (A) and (B).

 0

 500

 1000

 1500

 2000

σ v
 [k

m
/s

]

M [M /h]

Simulation

Equation(1)

FIG. 1 (color online). One-dimensional velocity dispersion
σvðMÞ as a function of halo mass. The crosses are from N-body
simulation, while the curve is Eq. (1) with β ¼ 1.
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These results demonstrate that our theoretical model
reproduces those of the numerical simulations.

B. LRG sample

We next apply our method to the multipole power spectra
measured with the SDSS DR7 [32]. Our DR7 LRG sample
is selected to cover a redshift range, 0.16 < z < 0.36, only

in the northern cap in order to reduce systematic uncer-
tainties and to match the analysis in Ref. [19]. Thus, the sky
coverage is limited to 7189 deg2 and the total number of
LRGs is 61899. We adopt the same method for the
measurement as that in Refs. [11,33,34], but with the
fiducial cosmological background for the distant-redshift
relation of the spatially flat ΛCDM cosmology with

(a) (b) (c) (d)

FIG. 2. Top panels show the HOD NsðMÞ (dotted lines) and NcðMÞ (solid lines), middle panels kP4ðkÞ, and bottom panels kP6ðkÞ. In
each panel, the curves correspond to the best-fitting models, excepting the dash-dotted curve. Each column shows the results of
(A) mock with fiber collision, (B) mock without fiber collision, (C) LRG sample, and (D) LRG sample subtracted the two-halo term
modeled using the BLRG sample, from left to right, respectively.

TABLE II. Results of our MCMC analysis with floating the two parameters β andM1, where we fixed αc ¼ 0 and αs ¼ 1 and the other
cosmological parameters. The best-fitting values with one sigma statistical errors, the satellite fraction

R
dMðdn=dMÞhNsati=n̄, and the

chi-squared along with the number of d.o.f. are presented when fitted with (A) the simulation with the fiber collision (F.C.), (B) the
simulation without the fiber collision, (C) LRG sample and (D) LRG sample with the two-halo term modeled using the BLRG sample,
from the left to the right column, respectively. The results are obtained using the data in the range of the wave numbers
0.3 ≤ k=½hMpc−1� ≤ 0.6, and the values in the parentheses are the same but use the data in the range of the wave numbers
0.2 ≤ k=½hMpc−1� ≤ 0.6.

(A) Mock with F.C. (B) Mock without F.C. (C) LRG (D) LRG with BLRG

β 1.17þ0.56
−0.40 ð0.96þ0.43

−0.30 Þ 0.97þ0.30
−0.24 ð0.83þ0.23

−0.20 Þ 1.70þ0.83
−0.55 ð1.79þ0.83

−0.59 Þ 1.35þ0.68
−0.45 ð1.38þ0.65

−0.47 Þ
M1½1014M⊙=h� 6.5þ0.9

−1.0 ð6.1þ1.0
−1.1 Þ 4.1þ0.4

−0.4 ð4.0þ0.6
−0.6 Þ 4.0þ0.4

−0.4 ð4.0þ0.4
−0.4 Þ 4.0þ0.4

−0.5 ð4.0þ0.4
−0.5Þ

Satellite fraction(%) 3.8þ0.7
−0.5 ð4.1þ0.8

−0.5 Þ 5.9þ0.6
−0.5 ð6.2þ0.7

−0.6 Þ 6.3þ0.5
−0.4 ð6.3þ0.5

−0.4 Þ 6.4þ0.5
−0.4 ð6.4þ0.5

−0.4Þ
χ2 16(58) 18(59) 47(56) 6.4(7.3)
d.o.f. 10(12) 10(12) 60(80) 60(80)
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Ωm ¼ 0.3. The statistical errors of the multipole spectra
may be estimated by the formula in Ref. [10], which is
derived on the basis of the so-called FKP method [35]. The
cosmological distortion (Alcock-Paczynski) effect is very
small because we are considering the higher multipole
spectra on small scales, though it has a marginal effect of
changing the overall normalization (e.g., [6]). The right-
hand two columns in Table II list the results of the MCMC
analysis with the LRG multipole spectra, whose difference
comes from the modeling for the two-halo term. The right
two columns of Fig. 2 show the best-fitting curve and
the data.
The results of MCMC analysis with the SDSS LRG

sample can be used for testing the gravitational constant on
the halo scales. This is because the velocity dispersion in a

modified gravity models could be written as σ2vðMÞ ¼
GeffM=2rvir, where Geff is an effective gravitational con-
stant. Regarding Geff ¼ βG, we may put a constraint on the
effective gravitational constant from the SDSS LRG sample
on the halo scales, β ¼ 1.70þ0.83

−0.55 from the column (C) in
Table II, in which we adopted the same modeling for the
two-halo term as that of the mock catalogs. This value is
rather larger than the prediction of the numerical simu-
lations, although the error is not small.
Though the contribution of the two-halo term to P4 and

P6 is rather small compared with the one-halo term, but it
might be influential to our results. As a check of our results,
we model the contribution of the two-halo term using the
BLRG sample [11]. Because the BLRG catalog roughly
corresponds to the central galaxies catalog, then we may

(c) (d)

FIG. 3. Same as (C) and (D) of Fig. 2, except with different binning of k. The dashed curves in the middle panels, kP4ðkÞ, and bottom
panels, kP6ðkÞ, assume β ¼ 1 while keep the other parameters the same.
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model the two-halo term by computing the multipole
spectrum of the BLRG catalog. The column (D) of
Table II represents the results β ¼ 1.35þ0.68

−0.45 . Compared
with the case of the modeling for the two-halo term from
the numerical simulation, the value of β becomes small and
β ¼ 1 is in the one-sigma error of the results.
The reason why the chi-squared of the case (D) is small

is understood as follows. Since BLRG sample is a subset of
LRGs, most of the LRG pairs hosted by different halos are
overlapped. The error for the difference ΔP ¼ PLRG −
PBLRG is, therefore, significantly reduced and thus the
chi-squared values for the error of PLRG become small.
Our results are not altered significantly by the binning

of k. For example, when we adopt the similar binning to
that of (A) and (B), Δk ¼ 0.05hMpc−1, for the observa-
tional data, we obtain the best-fitting value of β,
1.79þ0.96

−0.64ð1.89þ0.94
−0.64Þ and 1.44þ0.74

−0.50ð1.44þ0.64
−0.46Þ for (C) and

(D), respectively. Correspondingly, Fig. 3 shows the
same as (C) and (D) of Fig. 2, but the case with the wider
binning Δk ¼ 0.05hMpc−1. Thus, the effect of the binning
does not alter our conclusions qualitatively.
Our estimation of the chi-squared is not strict but rather

optimistic because we neglected the covariances between
different k bins as well as those between different lth
multipole spectra. Inclusion of the covariance matrix would
weaken the constraint. Some aspects and these covariances
of the multipole power spectra were investigated in [6,36],
but they focused on the lower multipole spectra at smaller
wave numbers. According to the statistical errors of the
multipole spectra on the basis of the FKP method [10,35],
the shot-noise contribution dominates the error at the larger
wave numbers k≳ 0.3hMpc−1. Naively, the constraint will
be improved by increasing the mean number density of a
galaxy sample. The covariances for the higher multipole
spectra need further investigations, which is out of the
scope of the present paper.
Let us discuss the reason why the higher value of β is

obtained from the analysis of the LRG sample. It could be a
smoking gun of a modified gravity. For example, an fðRÞ
gravity model has an effective gravitation constant
Geff ¼ 4G=3, as long as the chameleon mechanism does
not work. However, we should discuss the possible
systematics that may lead to a larger value of β.
Because the satellite fraction is small, being around 6%
of the total LRGs, the first term dominates the right-hand
side of Eq. (2). Then, taking the degeneracy in the central
and the satellite galaxy velocities, we should understand
that the constraint is

σ2c þ σ2s
σ2v

¼ βðα2c þ α2sÞ ¼ 1.35þ0.68
−0.45 ; ð7Þ

in the case (D) when we use the BLRG sample for
modeling the two-halo term. The results might be explained
by a larger velocity dispersion of the central galaxy in the

multiple system. Recently, Guo et al. have reported the
velocity bias of galaxies in the SDSS CMASS samples
[30]. The sample is different from ours, but they report that
αc ∼ 0.3. However, this value αc ∼ 0.3 is rather small to
explain our results, and αc ∼ 0.6 is required within the
general relativity β ¼ 1. Other possible systematics is the
modeling of the two-halo term in PlðkÞ, as we obtained
somewhat different values between (C) and (D) in Table II.
This suggests that there exists a systematic error of the
same order in our modeling of the two-halo term. More
sophisticated simulations based on subhalo catalogs from
N-body simulations could be necessary and useful.
The fiber collision effect influences pairs closer than a

critical separation. We checked that our treatment for the
fiber collisions works within the error. Namely, we have
shown that the effect of the fiber collision can be modeled
as an effective reduction of the satellite fraction, the validity
of which is limited to the range of wave numbers
k < 0.6hMpc−1. However, this effect could be more
complicated and a more careful modeling of the fiber
collision might be necessary. The fiber collision effect will
induce an additional anisotropic signature on very small
scales in redshift space. This could be a systematic for our
method, which needs more careful analysis.

IV. CONCLUSION

In summary, we have investigated the potential of the
higher multipole power spectra of the galaxy distribution in
redshift space. This method is based on the recent finding
that a halo model accounts well for the behavior of the
multipole power spectrum of LRGs on small scales. Our
method uses the data of the spectrum on small scales
0.3 ≤ k=½hMpc−1� ≤ 0.6. This is quite in contrast to the
usual method of testing gravity by measuring the linear
growth rate on very large scales. Our method is based on
the fact that the one-halo term makes a dominant contri-
bution to the higher multipole power spectra at large wave
numbers, which reflects the random motions of the satellite
galaxies. We carefully investigated the relation between the
velocity dispersion of the random motions of satellite
galaxies and the host halo mass on the basis of the mock
catalogs from N-body simulations. The validity of our
theoretical model for the higher multipole power spectrum
is tested using the results of the mock catalogs. By
confronting our theoretical model and the observed multi-
pole spectra of the SDSS LRG samples, we obtained a
value for an effective gravitational constant somewhat
larger than that predicted by the numerical simulations.
This could be a smoking gun of the modified gravity.
However, we might need to check our theoretical model for
the two-halo term and the fiber collision effect more
carefully. Our constraints on the velocity bias are not very
tight. This is mainly due to the degeneracy with the HOD
parameters because P4 and P6 are sensitive to the fraction
of satellite galaxies [9,11]. The degeneracy can be largely
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broken by jointly analyzing the projected correlation
functions [30]. Including the information on the quadrupole
power spectrum will also improve our constraint. We leave
this for future work.
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We study the third order solutions of the cosmological density perturbations in Horndeski’s most general
scalar-tensor theory under the condition that the Vainshtein mechanism is at work. In this work, we
thoroughly investigate the independence property of the functions describing the nonlinear mode
couplings, which is also useful for models within general relativity. Then, we find that the solutions
of the density contrast and the velocity divergence up to third order are characterized by six parameters.
Furthermore, the one-loop order power spectra obtained with third order solutions are described by four
parameters. We exemplify the behavior of the one-loop order power spectra assuming the kinetic gravity
braiding model, which demonstrates that the effect of modified gravity appears more significantly in the
power spectrum of the velocity divergence than the density contrast.
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I. INTRODUCTION

The accelerated expansion of the Universe is one of the
most fundamental problems in modern cosmology. The
standard cosmological model introducing the cosmological
constant is consistent with various observations [1,2].
However, the small value of the cosmological constant
raises the problem of fine-tuning [3–5]. As an alternative to
the cosmological constant, the cosmic accelerated expan-
sion might be explained by modifying gravity theory (see,
e.g., Refs. [6–18]). In the present paper, we focus on the
most general scalar-tensor theory with second order differ-
ential field equations [19,20], which was first discovered
by Horndeski [21]. Horndeski’s most general scalar-tensor
theory, including four arbitrary functions of the scalar
field and kinetic term, reduces to various modified gravity
models by choosing four specific functions. Because
Horndeski’s theory includes a wide class of modified
gravity models, we adopt it as an effective theory of the
generalized theories of gravity.
In the present paper, we investigate the aspects of the

quasinonlinear evolution of the cosmological density
perturbations in Horndeski’s most general scalar-tensor
theory, assuming that the Vainshtein mechanism is at work
[22–25]. The Vainshtein mechanism is the screening
mechanism, which is useful to evade the constraints from
the gravity tests in the solar system. We investigate the
effects of the nonlinear terms in the matter’s fluid
equations as well as the nonlinear derivative interaction
terms in the scalar field equation. In a previous work [26],
the second order solution of the cosmological density
perturbations was obtained. In the present paper, we
extend the analysis to the third order solution, which

enables us to compute the one-loop order matter power
spectrum.
There are many works on the higher order cosmo-

logical density perturbations and the quasinonlinear matter
power spectrum which have been developed from the
standard perturbative approach (see, e.g., Refs. [27–37]).
Improvements to include the nonperturbative effects have
been investigated (see, e.g.,Refs. [38–43]), but herewe adopt
the standard perturbative approach of the cosmological
density perturbations as a starting place for the analysis of
Horndeski’s most general scalar-tensor theory. Related to
the present paper, we refer to the recent work by Lee, Park,
and Biern [44], in which a similar solution was obtained for
the dark energy model within general relativity.
This paper is organized as follows. InSec. II,we review the

basic equations and the secondorder solution [26]. InSec. III,
we construct the third order solutions of the cosmological
density perturbations. Here, we carefully investigate inde-
pendent functions of mode couplings describing nonlinear
interactions. In Sec. IV, we derive the expression of the one-
loop order power spectra of the matter density contrast and
the velocity divergence. In Sec. V, we demonstrate the
behavior of the one-loop order power spectra in the kinetic
gravity braiding (KGB) model. Section VI is devoted to a
summary and conclusions. In Appendix A, definitions of
the coefficients to characterize Horndeski’s theory are
summarized. In Appendix B, definitions of the functions
to describe the nonlinear mode coupling for the third order
solutions are summarized. In Appendix C, a derivation of
the one-loop power spectra is summarized. Expressions in
Appendix D are useful for the deviation of the one-loop
power spectra. Appendix E lists the coefficients to character-
ize the kinetic gravity braiding model.
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II. REVIEW OF THE SECOND ORDER SOLUTION

Let us start by reviewing the basic formulas [23,26]. We
consider Horndeski’s most general scalar-tensor theory,
whose action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLGG þ LmÞ; ð1Þ

where we define

LGG ¼ Kðϕ; XÞ −G3ðϕ; XÞ□ϕþG4ðϕ; XÞR
þ G4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�
þ G5ðϕ; XÞGμν∇μ∇νϕ

−
1

6
G5X½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�;

ð2Þ
where K, G3, G4, and G5 are arbitrary functions of the
scalar field ϕ and the kinetic term X ≔ −ð∂ϕÞ2=2, GiX
denotes ∂Gi=∂X, R is the Ricci scalar, Gμν is the Einstein
tensor, and Lm is the Lagrangian of the matter field, which
is minimally coupled to gravity.
The basic equations for the cosmological density per-

turbations are derived in Ref. [23]. Here, we briefly review
the method and the results (see Ref. [23] for details). This
theory was discovered in Ref. [19] as a generalization of
Galileon theory (see Ref. [45] and also Refs. [20,46–64]),
but the equivalence to Horndeski’s theory [21] is shown in
Ref. [20]. We consider a spatially flat expanding universe
and metric perturbations in Newtonian gauge, whose line
element is written as

ds2 ¼ −ð1þ 2Φðt;xÞÞdt2 þ a2ðtÞð1 − 2Ψðt;xÞÞdx2: ð3Þ
We define the scalar field with perturbations by

ϕ → ϕðtÞ þ δϕðt;xÞ; ð4Þ
and we introduce Q ¼ Hδϕ= _ϕ.
The basic equations of the gravitational and scalar fields

are derived on the basis of the quasistatic approximation
of the subhorizon scales [23]. In the models where the
Vainshtein mechanism may work, the basic equations can
be found by keeping the leading terms schematically
written as ð∂∂YÞn, with n ≥ 1, where ∂ denotes a spatial
derivative and Y denotes Φ, Ψ, or Q. Such terms make a
leading contribution of order ðL2

H∂∂YÞn, where LH is a
typical horizon length scale, and we have

∇2ðF TΨ−GTΦ−A1QÞ¼ B1

2a2H2
Qð2Þ

þ B3

a2H2
ð∇2Φ∇2Q−∂i∂jΦ∂i∂jQÞ

ð5Þ

and

GT∇2Ψ¼ a2

2
ρmδ−A2∇2Q−

B2

2a2H2
Qð2Þ

−
B3

a2H2
ð∇2Ψ∇2Q− ∂i∂jΨ∂i∂jQÞ− C1

3a4H4
Qð3Þ;

ð6Þ

where ρm is the background matter density and δ is the
matter density contrast. We define

Qð2Þ ≔ ð∇2QÞ2 − ð∂i∂jQÞ2; ð7Þ

Qð3Þ ≔ ð∇2QÞ3 − 3∇2Qð∂i∂jQÞ2 þ 2ð∂i∂jQÞ3: ð8Þ

The equation of the scalar field perturbation is

A0∇2Q − A1∇2Ψ − A2∇2Φþ B0

a2H2
Qð2Þ

−
B1

a2H2
ð∇2Ψ∇2Q − ∂i∂jΨ∂i∂jQÞ

−
B2

a2H2
ð∇2Φ∇2Q − ∂i∂jΦ∂i∂jQÞ

−
B3

a2H2
ð∇2Φ∇2Ψ − ∂i∂jΦ∂i∂jΨÞ

−
C0

a4H4
Qð3Þ −

C1

a4H4
Uð3Þ ¼ 0; ð9Þ

where we define

Uð3Þ ≔ Qð2Þ∇2Φ − 2∇2Q∂i∂jQ∂i∂jΦ

þ 2∂i∂jQ∂j∂kQ∂k∂iΦ: ð10Þ

Here the coefficients F T , A1, B1, C1, etc., are defined in
Appendix A. Ai, Bi, andCi are the coefficients of the linear,
quadratic, and cubic terms of Ψ, Φ, and Q, respectively.
From the continuity equation and the Euler equation for

the matter fluid, we have the following equations for the
density contrast δ and the velocity field ui,

∂δðt;xÞ
∂t þ 1

a
∂i½ð1þ δðt;xÞÞuiðt;xÞ� ¼ 0; ð11Þ

∂uiðt;xÞ
∂t þ _a

a
uiðt;xÞ þ 1

a
ujðt;xÞ∂juiðt;xÞ ¼ −

1

a
∂iΦðt;xÞ;

ð12Þ
respectively. The properties of the gravity sector are
influenced through Φ in Eq. (12), where Φ is determined
by Eqs. (5), (6), and (9).
Now, introducing the scalar function θ≡∇u=ðaHÞ,

which we call velocity divergence, we perform the
Fourier expansions for δ and θ,
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δðt;xÞ ¼ 1

ð2πÞ3
Z

d3pδðt;pÞeip·x; ð13Þ

ujðt;xÞ ¼ 1

ð2πÞ3
Z

d3p
−ipj

p2
aHθðt;pÞeip·x: ð14Þ

In a similar way, we perform the Fourier expansions for Φ, Ψ, and Q. Then, the gravity equations (5) and (6) lead to

− p2ðF TΨðt;pÞ − GTΦðt;pÞ − A1Qðt;pÞÞ ¼ B1

2a2H2
Γ½t;p;Q;Q� þ B3

a2H2
Γ½t;p;Q;Φ�; ð15Þ

−p2ðGTΨðt;pÞ þ A2Qðt;pÞÞ − a2

2
ρmδðt;pÞ ¼ −

B2

2a2H2
Γ½t;p;Q;Q� − B3

a2H2
Γ½t;p;Q;Ψ�

−
C1

3a4H4
Ξ1½t;p;Q;Q;Q�; ð16Þ

respectively, where we define

Γ½t;p;Z1; Z2� ¼
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞðk21k22 − ðk1 · k2Þ2ÞZ1ðt;k1ÞZ2ðt;k2Þ; ð17Þ

Ξ1½t;p;Z1; Z2; Z3� ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞ

× ½−k21k22k23 þ 3k21ðk2 · k3Þ2 − 2ðk1 · k2Þðk2 · k3Þðk3 · k1Þ�Z1ðt;k1ÞZ2ðt;k2ÞZ3ðt;k3Þ; ð18Þ

where Z1, Z2, and Z3 denote Q, Φ, or Ψ. The equation for scalar field perturbation (9) leads to

−p2ðA0Qðt;pÞ − A1Ψðt;pÞ − A2Φðt;pÞÞ ¼ −
B0

a2H2
Γ½t;p;Q;Q� þ B1

a2H2
Γ½t;p;Q;Ψ�

þ B2

a2H2
Γ½t;p;Q;Φ� þ B3

a2H2
Γ½t;p;Ψ;Φ� þ C0

a4H4
Ξ1½t;p;Q;Q;Q�

þ C1

a4H4
Ξ2½t;p;Q;Q;Φ�; ð19Þ

where we define

Ξ2½t;p;Z1; Z2; Z3� ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞ½−k21k22k23 þ ðk1 · k2Þ2k23

þ 2k21ðk2 · k3Þ2 − 2ðk1 · k2Þðk2 · k3Þðk3 · k1Þ�Z1ðt;k1ÞZ2ðt;k2ÞZ3ðt;k3Þ: ð20Þ

The fluid equations (11) and (12) lead to

1

H
∂δðt;pÞ

∂t þ θðt;pÞ ¼ −
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞαðk1;k2Þθðt;k1Þδðt;k2Þ; ð21Þ

1

H
∂θðt;pÞ

∂t þ
�
2þ

_H
H2

�
θðt;pÞ − p2

a2H2
Φðt;pÞ ¼ −

1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞβðk1;k2Þθðt;k1Þθðt;k2Þ; ð22Þ

where we define

αðk1;k2Þ ¼ 1þ k1 · k2

k21
; ð23Þ
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βðk1;k2Þ ¼
ðk1 · k2Þjk1 þ k2j2

2k21k
2
2

: ð24Þ

Note that αðk1;k2Þ does not have symmetry with respect
to the exchange between k1 and k2. We find the solution in
terms of a perturbative expansion, which can be written in
the form

Yðt;pÞ ¼
X
n¼1

Ynðt;pÞ; ð25Þ

where Y denotes δ, θ, Ψ, Φ, or Q, and Yn denotes the nth
order solution of the perturbative expansion. Neglecting the
decaying mode solution, the linear order solution is written
as [23,65]

δ1ðt;pÞ ¼ DþðtÞδLðpÞ; ð26Þ

θ1ðt;pÞ ¼ −DþðtÞfðtÞδLðpÞ; ð27Þ

Φ1ðt;pÞ ¼ −
a2H2

p2
DþðtÞκΦðtÞδLðpÞ; ð28Þ

Ψ1ðt;pÞ ¼ −
a2H2

p2
DþðtÞκΨðtÞδLðpÞ; ð29Þ

Q1ðt;pÞ ¼ −
a2H2

p2
DþðtÞκQðtÞδLðpÞ; ð30Þ

where DþðtÞ is the growth factor obeying

d2DþðtÞ
dt2

þ 2H
dDþðtÞ

dt
þ LðtÞDþðtÞ ¼ 0; ð31Þ

with

LðtÞ ¼ −
ðA0F T − A2

1Þρm
2ðA0G2

T þ 2A1A2GT þ A2F TÞ
; ð32Þ

and δLðpÞ describes the linear density perturbations, which
are assumed to obey the Gaussian random distribution.
Here we adopt the normalization for the growth factor
DþðaÞ ¼ a at a ≪ 1, and introduce the linear growth rate
defined by fðtÞ ¼ d lnDþðtÞ= ln a.
The second order solution is written as (see Ref. [26] for

details)

δ2ðt;pÞ ¼ D2þðtÞ
�
WαðpÞ −

2

7
λðtÞWγðpÞ

�
; ð33Þ

θ2ðt;pÞ ¼ −D2þðtÞf
�
WαðpÞ −

4

7
λθðtÞWγðpÞ

�
; ð34Þ

Φ2ðt;pÞ ¼ −
a2H2

p2
D2þðtÞðκΦðtÞWαðpÞ þ λΦðtÞWγðpÞÞ;

ð35Þ

Ψ2ðt;pÞ ¼ −
a2H2

p2
D2þðtÞðκΨðtÞWαðpÞ þ λΨðtÞWγðpÞÞ;

ð36Þ

Q2ðt;pÞ ¼ −
a2H2

p2
D2þðtÞðκQðtÞWαðpÞ þ λQðtÞWγðpÞÞ;

ð37Þ
where the coefficients κΦ, κΨ, κQ, λ, λθ, λΦ, λΨ, and λQ are
determined by the functions in the Lagrangian and the
Hubble parameter, whose definitions are summarized in
Appendix A. Here WαðpÞ and WγðpÞ are defined as

WαðpÞ ¼
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞαðsÞðk1;k2Þ

× δLðk1ÞδLðk2Þ; ð38Þ

WγðpÞ ¼
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞγðk1;k2Þ

× δLðk1ÞδLðk2Þ; ð39Þ
with

αðsÞðk1;k2Þ ¼ 1þ k1 · k2ðk21 þ k22Þ
2k21k

2
2

; ð40Þ

γðk1;k2Þ ¼ 1 −
ðk1 · k2Þ2

k21k
2
2

; ð41Þ

where αðsÞðk1;k2Þ is obtained by symmetrizing αðk1;k2Þ
with respect to k1 and k2, and γðk1;k2Þ is the function that
describes the mode couplings for the nonlinear interaction
in the gravitational field equations and the scalar field
equation. Here, αðsÞðk1;k2Þ, βðk1;k2Þ, and γðk1;k2Þ have
symmetry with respect to the exchange between k1 and k2.
One can easily check that the functions that describe the
nonlinear mode couplings, αðsÞðk1;k2Þ; βðk1;k2Þ, and
γðk1;k2Þ, satisfy

βðk1;k2Þ ¼ αðsÞðk1;k2Þ − γðk1;k2Þ: ð42Þ
We briefly compare our work with Ref. [44], which is

essentially the same as ours, though the authors of Ref. [44]
restrict their investigations to the dark energy model within
general relativity. The difference is that our approach
includes the relations between the functions of mode
couplings, e.g., Eqs. (42), (B19), (B20), and (B21). For
example, the second order solution of the density contrast
(33) agrees with Eq. (12) in Ref. [44] by finding the relations

c21 ¼ 1 −
2

7
λðtÞ; c22 ¼ −

1

7
λðtÞ: ð43Þ

This predicts the relation c21 − 2c22 ¼ 1. Thus, the differ-
ence is the inclusion of the independence property of
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mode-coupling functions, which reduces the number of
parameters to characterize the model, as is also described
in the next sections. However, the consistency is demon-
strated by computing the power spectrum PδδðkÞ for a
ΛCDM model (see Fig. 1).

III. THIRD ORDER EQUATIONS

In this section we consider the third order solutions. The
third order solution of the cosmological density perturbations

has been investigated in various models [27–33,35–37,44].
We present the third order solution for Horndeski’s theory in
the cosmological background. Our results are general and
applicable to various modified gravity models. Plus, our
results are useful for the case of general relativity becausewe
clarify the independence property of the mode-coupling
functions and the relevant parameters to characterize the third
order solution. We start by solving the third order equations
for gravity and the scalar field,

− p2ðF TΨ3ðt;pÞ − GTΦ3ðt;pÞ − A1Q3ðt;pÞÞ ¼
B1

a2H2
Γ½t;p;Q1; Q2� þ

B3

a2H2
ðΓ½t;p;Q1;Φ2� þ Γ½t;p;Q2;Φ1�Þ; ð44Þ

−p2ðGTΨ3ðt;pÞ þ A2Q3ðt;pÞÞ −
a2

2
ρmδ3ðt;pÞ ¼ −

B2

a2H2
Γ½t;p;Q1; Q2� −

B3

a2H2
ðΓ½t;p;Q1;Ψ2� þ Γ½t;p;Q2;Ψ1�Þ

−
C1

3a4H4
Ξ1½t;p;Q1; Q1; Q1�; ð45Þ

−p2ðA0Q3ðt;pÞ − A1Ψ3ðt;pÞ − A2Φ3ðt;pÞÞ ¼ −
2B0

a2H2
Γ½t;p;Q1; Q2� þ

B1

a2H2
ðΓ½t;p;Q1;Ψ2� þ Γ½t;p;Q2;Ψ1�Þ

þ B2

a2H2
ðΓ½t;p;Q1;Φ2� þ Γ½t;p;Q2;Φ1�Þ þ

B3

a2H2
ðΓ½t;p;Ψ1;Φ2�

þ Γ½t;p;Ψ2;Φ1�Þ þ
C0

a4H4
Ξ1½t;p;Q1; Q1; Q1� þ

C1

a4H4
Ξ2½t;p;Q1; Q1;Φ1�:

ð46Þ
Inserting the first and second order solutions into the above equations, we finally have

F TΨ3ðt;pÞ − GTΦ3ðt;pÞ − A1Q3ðt;pÞ ¼ −
a2H2

p2
D3þðtÞððB1κ

2
Q þ 2B3κΦκQÞWγαðpÞ

þ ðB1κQλQ þ B3ðκΦλQ þ κQλΦÞÞWγγðpÞÞ; ð47Þ

GTΨ3ðt;pÞ þ A2Q3ðt;pÞ þ
a2

2p2
ρmδ3ðt;pÞ ¼

a2H2

p2
D3þðtÞððB2κ

2
Q þ 2B3κΨκQÞWγαðpÞ

þ ðB2κQλQ þ B3ðκΨλQ þ κQλΨÞÞWγγðpÞ þ
C1

3
κ3QWξðpÞÞ; ð48Þ

A0Q3ðt;pÞ−A1Ψ3ðt;pÞ−A2Φ3ðt;pÞ¼−
a2H2

p2
D3þðtÞðð−2B0κ

2
Qþ2B1κΨκQþ2B2κΦκQþ2B3κΦκΨÞWγαðpÞ

þðð−2B0κQλQþB1ðκΨλQþκQλΨÞþB2ðκΦλQþκQλΦÞþB3ðκΦλΨþκΨλΦÞÞWγγðpÞ
þðC0κ

3
QþC1κΦκ

2
QÞWξðpÞÞ; ð49Þ

where we define WγαðpÞ, WγγðpÞ, and WξðpÞ using Eqs. (B1), (B2), and (B3), respectively, in Appendix B. Then, the
gravitational and curvature potentials and the scalar field perturbations are written as

Φ3ðt;pÞ ¼ −
a2H2

p2
ðκΦðtÞδ3ðt;pÞ þD3þðtÞðσΦðtÞWγαðpÞ þ μΦðtÞWγγðpÞ þ νΦðtÞWξðpÞÞÞ; ð50Þ

Ψ3ðt;pÞ ¼ −
a2H2

p2
ðκΨðtÞδ3ðt;pÞ þD3þðtÞðσΨðtÞWγαðpÞ þ μΨðtÞWγγðpÞ þ νΨðtÞWξðpÞÞÞ; ð51Þ

Q3ðt;pÞ ¼ −
a2H2

p2
ðκQðtÞδ3ðt;pÞ þD3þðtÞðσQðtÞWγαðpÞ þ μQðtÞWγγðpÞ þ νQðtÞWξðpÞÞÞ; ð52Þ
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where the coefficients σΦðtÞ, μΦðtÞ, νΦðtÞ, etc., are defined
in Appendix A. The third order equations for δ3ðt;pÞ and
θ3ðt;pÞ are

1

H
∂δ3ðt;pÞ

∂t þ θ3ðt;pÞ

¼ −
1

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞαðk1;k2Þ

× ðθ1ðt;k1Þδ2ðt;k2Þ þ θ2ðt;k1Þδ1ðt;k2ÞÞ; ð53Þ

1

H
∂θ3ðt;pÞ

∂t þ
�
2þ

_H
H2

�
θ3ðt;pÞ −

p2

a2H2
Φ3ðt;pÞ

¼ −
2

ð2πÞ3
Z

dk1dk2δ
ð3Þðk1 þ k2 − pÞβðk1;k2Þ

× θ1ðt;k1Þθ2ðt;k2Þ: ð54Þ

Using the first and second order solutions, these equations
are rewritten as

1

H
∂δ3ðt;pÞ

∂t þ θ3ðt;pÞ ¼ D3þðtÞf
�
WααRðpÞ −

2

7
λWαγRðpÞ

þWααLðpÞ −
4

7
λθWαγLðpÞ

�
;

ð55Þ

1

H
∂θ3ðt;pÞ

∂t þ
�
2þ

_H
H2

�
θ3ðt;pÞ −

p2

a2H2
Φ3ðt;pÞ

¼ 2D3þðtÞf2
�
−WααðpÞ þ

4

7
λθWαγðpÞ

þWγαðpÞ −
4

7
λθWγγðpÞ

�
; ð56Þ

where we introduce the functions defined by Eqs. (B7)–
(B12), for which we find that the following relations hold,

2WγαðpÞ ¼ WαγRðpÞ þ 2WγγðpÞ −WξðpÞ; ð57Þ

2WααðpÞ ¼ WααRðpÞ þWααLðpÞ; ð58Þ

2WαγðpÞ ¼ WαγRðpÞ þWαγLðpÞ: ð59Þ

Then, Eqs. (55) and (56) reduce to

1

H
∂δ3ðt;pÞ

∂t þ θ3ðt;pÞ

¼ D3þðtÞf
�
2WααðpÞ −

2

7
λWαγRðpÞ −

4

7
λθWαγLðpÞ

�
;

ð60Þ

1

H
∂θ3ðt;pÞ

∂t þ
�
2þ

_H
H2

�
θ3ðt;pÞ −

p2

a2H2
Φ3ðt;pÞ

¼ 2D3þðtÞf2
�
−WααðpÞ þ

�
2

7
λθ þ

1

2

�
WαγRðpÞ

þ 2

7
λθWαγLðpÞ þ

�
1 −

4

7
λθ

�
WγγðpÞ −

1

2
WξðpÞ

�
:

ð61Þ

Combining these two equations, we have the third order
equation for δ3ðt;pÞ as

∂2δ3ðt;pÞ
∂t2 þ 2H

∂δ3ðt;pÞ
∂t þ LðtÞδ3ðt;pÞ ¼ Sδ3ðt;pÞ; ð62Þ

where we define

Sδ3ðtÞ¼D3þðtÞðNααðtÞWααðpÞþNαγRðtÞWαγRðpÞ
þNαγLðtÞWαγLðpÞþNγγðtÞWγγðpÞþNξðtÞWξðpÞÞ;

ð63Þ

and

NααðtÞ ¼ 6f2H2 − 2L; ð64Þ

NαγRðtÞ ¼ −f2H2 −
8

7
f2H2λþ 2

7
Lλ −

4

7
fH_λþ 1

2
H2σΦ;

ð65Þ

NαγLðtÞ ¼ −f2H2 −
8

7
f2H2λþ 2

7
Lλ −

4

7
fH_λþ Nγ; ð66Þ

NγγðtÞ ¼ −2f2H2 þ 8

7
f2H2λþ 4

7
fH_λþH2ðσΦ þ μΦÞ;

ð67Þ

NξðtÞ ¼ f2H2 þH2

�
−
1

2
σΦ þ νΦ

�
; ð68Þ

where we used Eqs. (A24) and (A28), and

_fðtÞ ¼ 1

H
ð−2fH2 − L − f2H2 − f _HÞ; ð69Þ

which follows from the definition of the growth rate
fðtÞ ¼ d lnDþ=d ln a and Eq. (31). We can prove that
NαγLðtÞ is equivalent to NαγRðtÞ, using Eqs. (66) and (65),
and NγðtÞ ¼ 1

2
H2σΦ, which is demonstrated by Eqs. (A22)

and (A29). Then, we write

NαγðtÞ≡ NαγRðtÞ ¼ NαγLðtÞ: ð70Þ
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The general solution of Eq. (62) with (63) is

δ3ðt;pÞ ¼ cþðpÞDþðtÞ þ c−ðpÞD−ðtÞ

þ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ Sδ3ðt0;pÞdt0;

ð71Þ

where DþðtÞ and D−ðtÞ are the growing mode solution and
the decaying mode solution, satisfying Eq. (31), cþðpÞ and
c−ðpÞ are integral constants, and WðtÞ is the Wronskian
defined by WðtÞ ¼ DþðtÞ _D−ðtÞ − _DþðtÞD−ðtÞ. Since we
assume that the initial density perturbations obey the
Gaussian distribution, we set c�ðpÞ ¼ 0, as is done in
deriving the second order solution. Then, the solution of the
third order density perturbations is given by

δ3ðt;pÞ ¼ D3þðtÞ
�
κδ3ðtÞWααðpÞ −

2

7
λδ3ðtÞWαγRðpÞ

−
2

7
λδ3ðtÞWαγLðpÞ −

2

21
μðtÞWγγðpÞ

þ 1

9
νðtÞWξðpÞ

�
; ð72Þ

where we define

κδ3ðtÞ ¼
1

D3þðtÞ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ

×D3þðt0ÞNααðt0Þdt0; ð73Þ

λδ3ðtÞ ¼ −
7

2D3þðtÞ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ

×D3þðt0ÞNαγðt0Þdt0; ð74Þ

μðtÞ ¼ −
21

2D3þðtÞ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ

×D3þðt0ÞNγγðt0Þdt0; ð75Þ

νðtÞ ¼ 9

D3þðtÞ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ

×D3þðt0ÞNξðt0Þdt0: ð76Þ

Here note that the parameters in front of WαγRðpÞ and
WαγLðpÞ in expression (72) are the same, originating from
the relation (70). In the limit of the Einstein–de Sitter
universe in general relativity, the coefficients κδ3ðtÞ, λδ3ðtÞ,
μðtÞ, and νðtÞ reduce to 1.
We can redefine these coefficients using the differential

equations. Inserting the general form of the solution (72)
into (62), we obtain the following differential equations for
the coefficients:

κ̈δ3ðtÞ þ ð6f þ 2Þ_κδ3ðtÞ þ ð6f2H2 − 2LÞκδ3ðtÞ ¼ NααðtÞ;
ð77Þ

λ̈δ3ðtÞþ ð6fþ 2Þ_λδ3ðtÞþ ð6f2H2 − 2LÞλδ3ðtÞ ¼−
7

2
NαγðtÞ;

ð78Þ

μ̈ðtÞ þ ð6f þ 2Þ_μðtÞ þ ð6f2H2 − 2LÞμðtÞ ¼ −
21

2
NγαðtÞ;

ð79Þ

ν̈ðtÞ þ ð6f þ 2Þ_νðtÞ þ ð6f2H2 − 2LÞνðtÞ ¼ 9NξðtÞ: ð80Þ

The homogeneous solution of all these equations is
1=D2þðtÞ and D−ðtÞ=D3þðtÞ. Therefore, the differential
equations (77)–(80) consistently yield the inhomogeneous
solutions (73)–(76), respectively.
We next show that κδ3ðtÞ ¼ 1 identically. Using the

expression (64), we easily find that κδ3 ¼ 1 is the solution
of (77). This means that the inhomogeneous solution (73)
reduces to κδ3 ¼ 1. We can prove κδ3 ¼ 1 directly from
(73), using a partial integral.
Furthermore, we can show that λδ3ðtÞ ¼ λðtÞ identically.

We can rewrite Eq. (78) as follows,

λ̈δ3ðtÞþð4fþ2ÞH_λδ3ðtÞþð2f2H2−LÞλδ3ðtÞ

þ2fHð_λδ3− _λÞþð4f2H2−LÞðλδ3−λÞ¼ 7

2
ðf2H2−NγÞ;

ð81Þ

where we used (70) and (66). We can easily check that
λδ3ðtÞ and λðtÞ satisfy the same differential equation [see
Eq. (A28)], which leads to λδ3ðtÞ ¼ λðtÞ.
In summary, we have an expression equivalent to (72),

δ3ðt;pÞ¼D3þðtÞ
�
WααðpÞ−

2

7
λðtÞWαγRðpÞ−

2

7
λðtÞWαγLðpÞ

−
2

21
μðtÞWγγðpÞþ

1

9
νðtÞWξðpÞ

�
: ð82Þ

Thus, the third order solution of density contrast is
characterized by λðtÞ, μðtÞ, and νðtÞ. Note that λðtÞ is
defined in order to describe the second order solution; then
μðtÞ and νðtÞ are the new coefficients which appear at the
third order. Table I summarizes the parameters and the
mode-coupling functions necessary to describe the second
order solution and the third order solution.
Recently, the authors of Ref. [44] investigated the third

order solution of the density perturbations, in a similar way,
but within a model of general relativity. In their paper,
six parameters are introduced to describe the third order
density perturbations. Our results suggest that less param-
eters are independent.
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Inserting the solution (82) into Eq. (60), we find the
solution for the velocity divergence,

θ3ðt;pÞ¼−D3þðtÞf
�
WααðpÞ−

4

7
λθðtÞWαγR−

2

7
λðtÞWαγLðpÞ

−
2

7
μθðtÞWγγðpÞþ

1

3
νθðtÞWξðpÞ

�
; ð83Þ

where we define

μθðtÞ ¼ μðtÞ þ _μðtÞ
3fH

; ð84Þ

νθðtÞ ¼ νðtÞ þ _νðtÞ
3fH

: ð85Þ

Here note that λθðtÞ is the parameter that describes the
second order solution, and μθðtÞ and νθðtÞ are the new
parameters that appear at the third order.
In summary, we first introduced nine mode-coupling

functions in the third order equations, Eqs. (55) and (56)
with Eq. (50). We find the three identities (57), (58), and
(59). Then, only six mode-coupling functions are indepen-
dent out of nine. This conclusion, that the number of
linearly independent mode-coupling functions is six, can be
proved by using the generalized Wronskian. The coeffi-
cients in front of WααR and WααL in Eq. (55) are the same,
which leads to the final third order solution, Eqs. (82)

and (83) expressed in terms of the five mode-coupling
functions.

IV. POWER SPECTRUM

The third order solution of the density perturbations
enables one to compute the one-loop (second order) power
spectrum. The second order matter power spectrum has
been computed by many authors [27–33,35–37,44], in
general relativity and modified gravity models. We find
the expression for the one-loop order power spectra of
density contrast and velocity divergence by

hδðt;k1Þδðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPδδðt; kÞ; ð86Þ

hδðt;k1Þθðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2Þð−fÞPδθðt; kÞ;
ð87Þ

hθðt;k1Þθðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2Þf2Pθθðt; kÞ; ð88Þ

where we use the notation k ¼ jk1j. Some details of their
derivations are described in Appendix C; here we show the
results,

Pδδðt;kÞ ¼D2þðtÞPLðkÞþD4þðtÞðPð22Þ
δδ ðt;kÞþ 2Pð13Þ

δδ ðt;kÞÞ;
ð89Þ

Pδθðt;kÞ ¼D2þðtÞPLðkÞþD4þðtÞðPð22Þ
δθ ðt; kÞþ 2Pð13Þ

δθ ðt; kÞÞ;
ð90Þ

Pθθðt; kÞ ¼D2þðtÞPLðkÞþD4þðtÞðPð22Þ
θθ ðt;kÞþ 2Pð13Þ

θθ ðt;kÞÞ;
ð91Þ

whereD2þðtÞPLðkÞ is the linear matter power spectrum, and
we define

Pð22Þ
δδ ðt; kÞ ¼ k3

98ð2πÞ2
Z

drPLðrkÞ
Z

1

−1
dxPLðkð1þ r2 − 2rxÞ1=2Þ ðð7 − 4λÞrþ 7xþ 2ð2λ − 7Þrx2Þ2

ð1þ r2 − 2rxÞ2 ; ð92Þ

Pð22Þ
δθ ðt; kÞ ¼ k3

98ð2πÞ2
Z

drPLðrkÞ
Z

1

−1
dxPLðkð1þ r2 − 2rxÞ1=2Þ

×
ðð7 − 4λÞrþ 7xþ 2ð2λ − 7Þrx2Þðð7 − 8λθÞrþ 7xþ 2ð4λθ − 7Þrx2Þ

ð1þ r2 − 2rxÞ2 ; ð93Þ

Pð22Þ
θθ ðt; kÞ ¼ k3

98ð2πÞ2
Z

drPLðrkÞ
Z

1

−1
dxPLðkð1þ r2 − 2rxÞ1=2Þ ðð7 − 8λθÞrþ 7xþ 2ð4λθ − 7Þrx2Þ2

ð1þ r2 − 2rxÞ2 ; ð94Þ

TABLE I. Functions for the mode couplings and parameters
necessary to describe the second and third order solutions.

Parameters Mode-coupling functions

δ2ðt;pÞ λðtÞ WαðpÞ
θ2ðt;pÞ λθðtÞ WγðpÞ
δ3ðt;pÞ λðtÞ, μðtÞ, νðtÞ WααðpÞ, WαγRðpÞ, WαγLðpÞ
θ3ðt;pÞ λðtÞ, λθðtÞ, μθðtÞ, νθðtÞ WγγðpÞ, WξðpÞ
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and

2Pð13Þ
δδ ðt; kÞ ¼ k3

252ð2πÞ2 PLðkÞ
Z

drPLðrkÞ
�
12μ

1

r2
− 2ð21þ 36λþ 22μÞ þ 4ð84 − 48λ − 11μÞr2

− 6ð21 − 12λ − 2μÞr4 þ 3

r3
ðr2 − 1Þ3ðð21 − 12λ − 2μÞr2 þ 2μÞ ln

�
rþ 1

jr − 1j
��

; ð95Þ

2Pð13Þ
δθ ðt; kÞ ¼ k3

252ð2πÞ2 PLðkÞ
Z

drPLðrkÞ
�
6ðμþ 3μθÞ

1

r2
− 2ð21þ 36λþ 11μþ 33μθÞ

þ 2ð168 − 96λ − 11μ − 33μθÞr2 − 6ð21 − 12λ − μ − 3μθÞr4

þ 3

r3
ðr2 − 1Þ3ðð21 − 12λ − μ − 3μθÞr2 þ ðμþ 3μθÞÞ ln

�
rþ 1

jr − 1j
��

; ð96Þ

2Pð13Þ
θθ ðt; kÞ ¼ k3

84ð2πÞ2 PLðkÞ
Z

drPLðrkÞ
�
12μθ

1

r2
− 2ð7þ 12λþ 22μθÞ þ 4ð28 − 16λ − 11μθÞr2

− 6ð7 − 4λ − 2μθÞr4 þ
3

r3
ðr2 − 1Þ3ðð7 − 4λ − 2μθÞr2 þ 2μθÞ ln

�
rþ 1

jr − 1j
��

: ð97Þ

The third order solutions of the density contrast and the
velocity divergence are described by six parameters in
Table I. The one-loop power spectra are described by four
parameters, and they do not depend on νðtÞ and νθðtÞ (see
Table II). In deriving the one-loop power spectrum, we find
that the relation

ξðk;q1;−q1Þ ¼ 0 ð98Þ

holds, which prevents the one-loop power spectrum from
depending on νðtÞ and νθðtÞ. Details are described in
Appendixes C and D.
Figure 1 shows Pδδðt; kÞ (thick curve) and the corre-

sponding linear power spectrum D2þðtÞPLðkÞ (thin curve),
at the redshift z ¼ 0 (solid curve), z ¼ 1 (dashed curve),
and z ¼ 1.5 (dotted curve), respectively, for the ΛCDM
model, with the cosmological parameters describe in the
caption. A comparison between this figure and Fig. 1 in
Ref. [44] shows the consistency between both results.

V. APPLICATION OF KGB MODEL

In this section, we exemplify the effect of modified
gravity on the one-loop power spectrum. Here we consider
the KGB model [60,66], which is considered in Ref. [26]

to demonstrate the effect of modified gravity on the
bispectrum. We briefly review the model. The action of
the KGB model is written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ Kðϕ; XÞ − G3ðϕ; XÞ□ϕþ Lm

�
;

ð99Þ

where Mpl is the Planck mass, which is related to the
gravitational constant GN by 8πGN ¼ 1=M2

pl. Comparing
action (99) with that of the most general second order

TABLE II. Summary of the parameters that characterize the
one-loop order power spectra Pδδ, Pδθ, and Pθθ, respectively.

Parameters

Pδδ λðtÞ, μðtÞ
Pδθ λðtÞ, μðtÞ, λθðtÞ, μθðtÞ
Pθθ λðtÞ, λθðtÞ, μθðtÞ

FIG. 1. Pδδðt; kÞ (thick curve) and the corresponding linear
power spectrum D2þðtÞPLðkÞ (thin curve) at the redshift z ¼ 0

(solid curve), z ¼ 1 (dashed curve), and z ¼ 1.5 (dotted curve),
respectively, for the ΛCDM model with the cosmological param-
eters Ω0 ¼ 0.26, Ωb ¼ 0.044, h ¼ 0.72, ns ¼ 0.96, σ8 ¼ 0.58.
This figure shows the consistency with Fig. 1 in Ref. [44].
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scalar-tensor theory (1), the action of the kinetic gravity
braiding model is produced by setting

G4 ¼
M2

pl

2
; G5 ¼ 0; ð100Þ

and we choose K and G3 as

K ¼ −X; G3 ¼ Mpl

�
r2c
M2

pl

X

�
n

; ð101Þ

where n and rc are the model parameters. Useful expres-
sions of the kinetic gravity braiding model are summarized
in Appendix E.
When we consider the attractor solution, which satisfies

3 _ϕHG3X ¼ 1, the Friedmann equation is written in the
form

�
H
H0

�
2

¼ Ω0

a3
þ ð1 −Ω0Þ

�
H
H0

�
−2=ð2n−1Þ

; ð102Þ

where H0 is the Hubble constant and Ω0 is the density
parameter at the present time, and the model parameters
must satisfy

H0rc ¼
�
2n−1

3n

�
1=2n

�
1

6ð1 −Ω0Þ
�ð2n−1Þ=4n

: ð103Þ

On the attractor solution, LðtÞ, defined by Eq. (32), reduces
to

LðtÞ ¼ −
3

2

2nþ ð3n − 1ÞΩm

5n − Ωm
H2; ð104Þ

where Ωm is defined by ΩmðaÞ ¼ Ω0H2
0=HðaÞ2a3. The

linear growth factor Dþ is obtained from Eq. (31) with
Eqs. (104) and (102). However, note that the quasistatic
approximation on the scales of the large scale structures
holds for n≲ 10 (see Ref. [66]).
The second and third order solutions are obtained with

NγðtÞ ¼
1

2
H2σΦðtÞ ¼ −

9

4

ð1 −ΩmÞð2n −ΩmÞ3
Ωmð5n − ΩmÞ3

H2; ð105Þ

H2μΦðtÞ ¼
9ð1 −ΩmÞð2n −ΩmÞ3ð4n2ð21þ 25λΩmÞ − 4nΩmð21þ 10λΩmÞ þ Ω2

mð21þ 4λΩmÞÞ
28Ω2

mð5n −ΩmÞ5
H2; ð106Þ

νΦðtÞ ¼ 0: ð107Þ

We have λðtÞ from Eq. (A23) with (105). Using these
results and Eqs. (67) and (68), we have the expressions for
μðtÞ and νðtÞ from Eqs. (75) and (76). Equations (A24),
(84), and (85) give expressions for λθðtÞ, μθðtÞ, and νθðtÞ,
respectively.
Table III lists the numerical values of these variables at

redshifts z ¼ 1, 0.5, and 0, for the KGB model with n ¼ 1,
2, 5, as well as the ΛCDM model with Ω0 ¼ 0.3.

Figure 2 shows λ, μ, ν, λθ, μθ, νθ as functions of the scale
factor a. In each panel, the blue dash-dotted curve is the
ΛCDMmodel, and the red dotted curve, the yellow dashed
curve, and the green thick solid curve show the KGB
model with n ¼ 1, 2, and 5, respectively. All the curves
take the limiting value of unity at a ¼ 0 but deviate from
unity as a evolves. Note that the deviation of λ, μ, ν from
unity is small, of the order of a few percent, but the

TABLE III. Numerical values of the growth factor Dþ, the linear growth rate f, and the coefficients λ, μ, ν, λθ, μθ, νθ at redshifts
z ¼ 1.0, 0.5, and 0, for the ΛCDM model and the KGB model with n ¼ 1, 2, 5. In each cell, set of three numbers means values at
redshifts z ¼ 1.0, 0.5, and 0 from left to right, respectively. Here we adopted Ω0 ¼ 0.3.

ΛCDM KGBðn ¼ 1Þ KGBðn ¼ 2Þ KGBðn ¼ 5Þ
Dþðz ¼ 1=0.5=0Þ 0.477=0.602=0.779 0.496=0.642=0.858 0.489=0.628=0.838 0.484=0.620=0.827
fðz ¼ 1=0.5=0Þ 0.869=0.749=0.513 0.951=0.835=0.593 0.919=0.813=0.605 0.904=0.805=0.612
λðz ¼ 1=0.5=0Þ 0.999=0.997=0.994 1.000=0.999=1.003 1.000=1.000=1.011 1.000=1.002=1.019
μðz ¼ 1=0.5=0Þ 0.999=0.998=0.996 1.000=1.001=1.015 1.001=1.005=1.015 1.003=1.007=1.011
νðz ¼ 1=0.5=0Þ 0.998=0.996=0.991 1.000=0.999=1.014 1.000=1.003=1.034 1.002=1.008=1.049
λθðz ¼ 1=0.5=0Þ 0.994=0.991=0.983 0.998=0.995=1.043 0.999=1.004=1.073 1.003=1.014=1.095
μθðz ¼ 1=0.5=0Þ 0.997=0.995=0.991 1.000=1.006=1.041 1.006=1.018=1.008 1.010=1.021=0.974
νθðz ¼ 1=0.5=0Þ 0.994=0.990=0.980 0.998=0.998=1.089 1.002=1.014=1.136 1.009=1.030=1.169
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deviation of λθ, νθ is rather large, up to 10%. This
is because the parameters associated with the velocity,
λθ and νθ defined by Eqs. (A24) and (85), respectively,
contain the time derivative term, which makes a large
contribution. Plus, some of the difference between the
ΛCDM and KGB models comes from the difference of
the growth rate f. Deviation of μθ in the KGB model
from that in the ΛCDM model is rather small compared
with the deviations of λθ and νθ, which come from the fact
that μ is not a monotonic increasing function but there
exists a maximum value at a≲ 1.
Figure 3 shows the one-loop power spectra Pδδ (thick

solid curve), Pδθ (dashed curve), and Pθθ (dotted curve),
as well as the linear power spectrum (thin solid curve) at
redshift z ¼ 0 for the ΛCDM model (upper left panel)
and the KGB model with n ¼ 1, 2, 5, respectively, as is
noted in each panel. This figure demonstrates how the

nonlinear effect at one-loop order changes the linear
power spectrum. In this figure, we adopted the same
linear matter power spectrum. Therefore, all the models
resemble each other, but there are small differences in
the one-loop power spectra, depending on the cosmo-
logical models, which are compared in detail in Fig. 4.
This smallness of the deviation from the ΛCDM model
could be understood by the Vainshtein effect. The
deviation in the bispectrum from the ΛCDM model is
demonstrated to be small compared with that in the
quantities of the linear theory, e.g., the linear growth
rate [26,67].
Figure 4 shows the one-loop power spectra Pδδ, Pδθ,

Pθθ, from top to bottom, respectively, which are normal-
ized by those of the ΛCDMmodel in Fig. 3. These are the
snapshots at z ¼ 0, and all the models have the same
normalization σ8 ¼ 0.8; it follows that all four models
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FIG. 2 (color online). λ, μ, ν, λθ, μθ, νθ as functions of the scale factor a. In each panel, the blue dash-dotted curve is the ΛCDMmodel,
and the red dotted curve, the yellow dashed curve, and the green thick solid curve show the KGB model with n ¼ 1, 2, and 5,
respectively.
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have the same linear matter power spectrum. In each
panel, the red dotted curve, the yellow dashed curve, and
the green thick curve show the KGB model with n ¼ 1, 2,
and 5, respectively. In the linear regime k≲ 0.1 ½hMpc−1�,
all the models converge because they have the same linear
matter power spectrum. The differences between the
KGB model and the ΛCDM model appear for the
quasinonlinear regime k≳ 0.1 ½hMpc−1� due to the non-
linear effect. Because all the models have the same linear
matter power spectrum, this figure shows that the
enhancement of the power spectrum due to the nonlinear
effect is small in the KGB models compared with that in
the ΛCDM model. Furthermore, the deviation from the
ΛCDM model is more significant in the velocity power
spectrum than that in the density power spectrum. In
general, the amplitudes of the one-loop power spectra
Pδδ, Pδθ, and Pθθ are decreased when λðtÞ, μðtÞ, λθðtÞ, or
μθðtÞ is increased. The behavior of Pδθ and Pθθ in the
quasinonlinear regime is dominantly influenced by λθðtÞ
and μθðtÞ.
The nonlinear effect in Pδδ is substantially influenced

by λðtÞ, while Pδδ also depends partially on μðtÞ. On the
other hand, μθðtÞ substantially influences the nonlinear
effect in Pθθ, while the influence of λθðtÞ is more sub-
dominant than μθðtÞ. The deviation of the KGB models in
Pδδ and Pθθ from the ΛCDM model reflects the behavior
λðtÞ and μθðtÞ, respectively. Namely, the deviation of
the values of λðtÞ and μθðtÞ from the ΛCDM model at
z ¼ 0 determines the behaviors of PδδKGB=PδδΛCDM and
PθθKGB=PθθΛCDM in Fig. 4.

VI. SUMMARY AND CONCLUSIONS

We found the third order solutions of the cosmological
density perturbations in Horndeski’s most general scalar-
tensor theory assuming that the Vainshtein mechanism is at
work. We solved the equations under the quasistatic
approximation, and the solutions describe the quasinon-
linear aspects of the cosmological density contrast and the

FIG. 3. Comparison of PδδðkÞ (thick solid curve), PδθðkÞ
(dashed curve), PθθðkÞ (dotted curve), and the linear power
spectrum Plin ¼ D2þðtÞPLðkÞ (thin solid curve), at the redshift
z ¼ 0. The upper left panel is the ΛCDM model, and the other
panels show the KGB model with n ¼ 1, 2, and 3, as described in
each panel. Here we adopted Ω0 ¼ 0.3, Ωb ¼ 0.044, h ¼ 0.7,
ns ¼ 0.96, and σ8 ¼ 0.8. In this figure, the same linear power
spectrum is adopted for all the models.
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FIG. 4 (color online). Relative deviation of the power spectra
PδδðkÞ (top panel), PδθðkÞ (middle panel), and PθθðkÞ (bottom
panel), under the kinetic gravity braiding model with n ¼ 1 (red
dotted curve), n ¼ 2 (yellow dashed curve), and n ¼ 5 (green
thick curve), which are divided by those under the ΛCDMmodel.
The panels show the snapshot at the redshift z ¼ 0.
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velocity divergence under the Vainshtein mechanism. In
this work, we thoroughly investigated the independence
property of the mode-coupling functions describing the
nonlinear interactions. We found that the third order
solution of the density contrast is characterized by three
parameters for the nonlinear interactions, one of which is
the same as that for the second order solutions. The third
order solution of the velocity divergence is characterized by
four parameters for the nonlinear interactions, two of which
are the same parameters as those of the second order
solutions. The nonlinear features of the perturbative sol-
utions up to third order are characterized by six parameters.
Furthermore, the one-loop order power spectra obtained
with the third order solutions are described by four
parameters. Assuming the KGB model, we demonstrated
the effect of the modified gravity in the one-loop order
power spectra at the quantitative level. We found that the

deviation from the ΛCDM model in the power spectra of
the density contrast and the velocity divergence is small,
which can be understood as the result of the Vainshtein
mechanism in nonlinear quantities [67]. However, the
deviation from the ΛCDM model is more significant in
the velocity divergence than the density contrast, which is
explained by a dominant contribution of the parameters
λθðtÞ and μθðtÞ. It is interesting to investigate whether this is
a general feature of modified gravity with the Vainshtein
mechanism or not.
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APPENDIX A: COEFFICIENTS IN EQUATIONS AND SOLUTIONS

We summarize the definitions of the coefficients in the gravitational and scalar field equations (5), (6), and (9).

A0 ¼
_Θ
H2

þ Θ
H

þ F T − 2GT − 2
_GT

H
−
E þ P
2H2

; ðA1Þ

A1 ¼
_GT

H
þ GT − F T; ðA2Þ

A2 ¼ GT −
Θ
H
; ðA3Þ

B0 ¼
X
H
f _ϕG3X þ 3ð _X þ 2HXÞG4XX þ 2X _XG4XXX − 3 _ϕG4ϕX þ 2 _ϕXG4ϕXX

þ ð _H þH2Þ _ϕG5X þ _ϕ½2H _X þ ð _H þH2ÞX�G5XX þH _ϕX _XG5XXX

− 2ð _X þ 2HXÞG5ϕX − _ϕXG5ϕϕX − Xð _X − 2HXÞG5ϕXXg; ðA4Þ

B1 ¼ 2X½G4X þ ϕ̈ðG5X þ XG5XXÞ −G5ϕ þ XG5ϕX�; ðA5Þ

B2 ¼ −2XðG4X þ 2XG4XX þH _ϕG5X þH _ϕXG5XX − G5ϕ − XG5ϕXÞ ; ðA6Þ

B3 ¼ H _ϕXG5X; ðA7Þ

C0 ¼ 2X2G4XX þ 2X2

3
ð2ϕ̈G5XX þ ϕ̈XG5XXX − 2G5ϕX þ XG5ϕXXÞ; ðA8Þ

C1 ¼ H _ϕXðG5X þ XG5XXÞ; ðA9Þ

where we define

F T ¼ 2½G4 − Xðϕ̈G5X þ G5ϕÞ�; ðA10Þ

GT ¼ 2½G4 − 2XG4X − XðH _ϕG5X −G5ϕÞ�; ðA11Þ
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Θ ¼ − _ϕXG3X þ 2HG4 − 8HXG4X − 8HX2G4XX þ _ϕG4ϕ þ 2X _ϕG4ϕX −H2 _ϕð5XG5X þ 2X2G5XXÞ
þ 2HXð3G5ϕ þ 2XG5ϕXÞ; ðA12Þ

E ¼ 2XKX − K þ 6X _ϕHG3X − 2XG3ϕ − 6H2G4 þ 24H2XðG4X þ XG4XXÞ − 12HX _ϕG4ϕX − 6H _ϕG4ϕ

þ 2H3X _ϕð5G5X þ 2XG5XXÞ − 6H2Xð3G5ϕ þ 2XG5ϕXÞ; ðA13Þ

P ¼ K − 2XðG3ϕ þ ϕ̈G3XÞ þ 2ð3H2 þ 2 _HÞG4 − 12H2XG4X − 4H _XG4X − 8 _HXG4X − 8HX _XG4XX

þ 2ðϕ̈þ 2H _ϕÞG4ϕ þ 4XG4ϕϕ þ 4Xðϕ̈ − 2H _ϕÞG4ϕX − 2Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈ÞG5X − 4H2X2ϕ̈G5XX

þ 4HXð _X −HXÞG5ϕX þ 2½2ðHXÞ· þ 3H2X�G5ϕ þ 4HX _ϕG5ϕϕ: ðA14Þ

The coefficients in the first and second order solutions are defined as follows,

RðtÞ ¼ A0F T − A2
1; ðA15Þ

SðtÞ ¼ A0GT þ A1A2; ðA16Þ

T ðtÞ ¼ A1GT þ A2F T; ðA17Þ

ZðtÞ ¼ 2ðA0G2
T þ 2A1A2GT þ A2

2F TÞ; ðA18Þ

κΦðtÞ ¼
ρmR
H2Z

; ðA19Þ

κΨðtÞ ¼
ρmS
H2Z

; ðA20Þ

κQðtÞ ¼
ρmT
H2Z

; ðA21Þ

NγðtÞ ¼
H4

ρm
ð2B0κ

3
Q− 3B1κΨκ

2
Q− 3B2κΦκ

2
Q− 6B3κΦκΨκQÞ; ðA22Þ

λðtÞ ¼ 7

2D2þðtÞ
Z

t

0

D−ðtÞDþðt0Þ −DþðtÞD−ðt0Þ
Wðt0Þ D2þðt0Þðf2H2 − Nγðt0ÞÞdt0; ðA23Þ

λθðtÞ ¼ λðtÞ þ
_λðtÞ
2fH

; ðA24Þ

λΦðtÞ ¼ −
2

7
κΦλðtÞ þ

1

Z
ð2B0T κ2Q − 3B1Sκ2Q − 3B2Rκ2Q − 6B3RκΨκQÞ; ðA25Þ

λΨðtÞ ¼ −
2

7
κΨλðtÞ þ

1

Z
ð2B0A2GTκ

2
Q þ B1ðA2

2κ
2
Q − 2A2GTκΨκQÞ − B2ðSκ2Q þ 2A2GTκΦκQÞ

−2B3ðSκΨκQ − A2
2κΦκQ þ A2GTκΦκΨÞÞ; ðA26Þ

λQðtÞ ¼ −
2

7
κQλðtÞ −

1

Z
ð2B0G2

Tκ
2
Q þ B1ðA2GTκ

2
Q − 2G2

TκΨκQÞ þ B2ðT κ2Q − 2G2
TκΦκQÞ

þ2B3ðT κΨκQ þ A2GTκΦκQ − G2
TκΦκΨÞÞ: ðA27Þ

Some details are described in the previous paper [26], but one can show that λðtÞ obeys the differential equation,
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̈λðtÞ þ ð4f þ 2ÞH_λðtÞ þ ð2f2H2 − LÞλðtÞ ¼ 7

2
ðf2H2 − NγÞ: ðA28Þ

The coefficients for the third order solutions are defined as

σΦðtÞ ¼
2

Z
ð2B0T κ2Q − 3B1Sκ2Q − 3B2Rκ2Q − 6B3RκΨκQÞ; ðA29Þ

μΦðtÞ ¼
2

Z
ð2B0T κQλQ − B1ð2SκQλQ þ T κQλΨÞ − B2ð2RκQλQ þ T κQλΦÞ−2B3ðRκΨλQ þRκQλΨ þ SκQλΦÞÞ; ðA30Þ

νΦðtÞ ¼
2

3Z
ð−3C0T κ3Q − 4C1Rκ3QÞ; ðA31Þ

σΨðtÞ ¼
2

Z
ð2B0A2GTκ

2
Q − B1ð2A2GTκΨκQ − A2

2κ
2
QÞ − B2ðSκ2Q þ 2A2GTκΦκQÞ

−2B3ðSκΨκQ þ A2GTκΦκΨ − A2
2κΦκQÞÞ; ðA32Þ

μΨðtÞ ¼
2

Z
ð2B0A2GTκQλQ − B1ðA2GTðκΨλQ þ κQλΨÞ − A2

2κQλQÞ − B2ðSκQλQ þ A2GTðκΦλQ þ κQλΦÞÞ
−B3ðSðκΨλQ þ κQλΨÞ þ A2GTðκΦλΨ þ κΨλΦÞ − A2

2ðκΦλQ þ κQλΦÞÞÞ; ðA33Þ

νΨðtÞ ¼
2

3Z
ð−3C0A2GTκ

3
Q − C1ðSκ3Q þ 3A2GTκΦκ

2
QÞÞ; ðA34Þ

σQðtÞ ¼
2

Z
ð−2B0G2

Tκ
2
Q þ B1ð2G2

TκΨκQ − A2GTκ
2
QÞ − B2ðT κ2Q − 2G2

TκΦκQÞ−2B3ðSκ2Q − G2
TκΦκΨ þ A2GTκΦκQÞÞ; ðA35Þ

μQðtÞ ¼
2

Z
ð−2B0G2

TκQλQ þ B1ðG2
TðκΨλQ þ κQλΨÞ − A2GTκQλQÞ

− B2ðT κQλQ − G2
TðκΦλQ þ κQλΦÞÞ

−B3ððSκQλQ þ T κQλΨÞ − G2
TðκΦλΨ þ κΨλΦÞ þ A2GTðκΦλQ þ κQλΦÞÞÞ; ðA36Þ

νQðtÞ ¼
2

3Z
ð3C0G2

Tκ
3
Q þ C1ð−T κ3Q þ 3G2

TκΦκ
2
QÞÞ: ðA37Þ

APPENDIX B: THIRD ORDER MODE-COUPLING FUNCTIONS

In this appendix, we summarize the functions that describe the nonlinear mode couplings of the third order solutions. In
order to derive Eqs. (47), (48), and (49), we define

WγαðpÞ≡ 1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞγαðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB1Þ

WγγðpÞ≡ 1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞγγðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB2Þ

WξðpÞ≡ 1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞξðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB3Þ

with

γαðk1;k2;k3Þ ¼
1

3
ðγðk1;k2 þ k3ÞαðsÞðk2;k3Þ þ 2 cyclic termsÞ; ðB4Þ

γγðk1;k2;k3Þ ¼
1

3
ðγðk1;k2 þ k3Þγðk2;k3Þ þ 2 cyclic termsÞ; ðB5Þ
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ξðk1;k2;k3Þ ¼ 1 −
k21ðk2 · k3Þ2 þ k22ðk3 · k1Þ2 þ k23ðk1 · k2Þ2 − 2ðk1 · k2Þðk2 · k3Þðk3 · k1Þ

k21k
2
2k

2
3

: ðB6Þ

In deriving Eqs. (55) and (56), we define

WααRðpÞ ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞααRðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB7Þ

WαγRðpÞ ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞαγRðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB8Þ

WααLðpÞ ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞααLðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB9Þ

WαγLðpÞ ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞαγLðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB10Þ

WααðpÞ ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞααðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB11Þ

WαγðpÞ ¼
1

ð2πÞ6
Z

dk1dk2dk3δ
ð3Þðk1 þ k2 þ k3 − pÞαγðk1;k2;k3ÞδLðk1ÞδLðk2ÞδLðk3Þ; ðB12Þ

with

ααRðk1;k2;k3Þ ¼
1

3
ðαðk1;k2 þ k3ÞαðsÞðk2;k3Þ þ 2 cyclic termsÞ; ðB13Þ

αγRðk1;k2;k3Þ ¼
1

3
ðαðk1;k2 þ k3Þγðk2;k3Þ þ 2 cyclic termsÞ; ðB14Þ

ααLðk1;k2;k3Þ ¼
1

3
ðαðk1 þ k2;k3ÞαðsÞðk2;k3Þ þ 2 cyclic termsÞ; ðB15Þ

αγLðk1;k2;k3Þ ¼
1

3
ðαðk1 þ k2;k3Þγðk2;k3Þ þ 2 cyclic termsÞ; ðB16Þ

ααðk1;k2;k3Þ ¼
1

3
ðαðsÞðk1;k2 þ k3ÞαðsÞðk2;k3Þ þ 2 cyclic termsÞ; ðB17Þ

αγðk1;k2;k3Þ ¼
1

3
ðαðsÞðk1;k2 þ k3Þγðk2;k3Þ þ 2 cyclic termsÞ: ðB18Þ

For the functions describing the mode couplings defined above, we find the following relations,

2γαðk1;k2;k3Þ ¼ αγRðk1;k2;k3Þ þ 2γγðk1;k2;k3Þ − ξðk1;k2;k3Þ; ðB19Þ

2ααðk1;k2;k3Þ ¼ ααRðk1;k2;k3Þ þ ααLðk1;k2;k3Þ; ðB20Þ

2αγðk1;k2;k3Þ ¼ αγRðk1;k2;k3Þ þ αγLðk1;k2;k3Þ: ðB21Þ

There is no additional relation between the functions of the third order perturbations, which can be proved by using the
generalized Wronskian. These relations yield Eqs. (57)–(59).
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APPENDIX C: DERIVATION OF THE ONE-LOOP POWER SPECTRA

The cosmological density contrast δðt;kÞ and the velocity divergence θðt;kÞ up to third order of the perturbative
expansion are expressed as

δðt;kÞ ¼ DþðtÞδLðkÞ þD2þðtÞδ2Kðt;kÞ þD3þðtÞδ3Kðt;kÞ; ðC1Þ

θðt;kÞ ¼ −fðDþðtÞδLðkÞ þD2þðtÞθ2Kðt;kÞ þD3þðtÞθ3Kðt;kÞÞ; ðC2Þ

where we define

δ2Kðt;kÞ ¼ WαðkÞ −
2

7
λðtÞWγðkÞ; ðC3Þ

δ3Kðt;kÞ ¼ WααðkÞ −
2

7
λðtÞWαγRðkÞ −

2

7
λðtÞWαγLðkÞ −

2

21
μðtÞWγγðkÞ þ

1

9
νðtÞWξðkÞ; ðC4Þ

θ2Kðt;kÞ ¼ WαðkÞ −
4

7
λθðtÞWγðkÞ; ðC5Þ

θ3Kðt;kÞ ¼ WααðkÞ −
4

7
λθðtÞWαγRðkÞ −

2

7
λðtÞWαγLðkÞ −

2

7
μθðtÞWγγðkÞ þ

1

3
νθðtÞWξðkÞ; ðC6Þ

and the kernels for the density contrast F2 and F3, and those for the velocity divergence G2 and G3 are as follows,

F2ðt;k1;k2Þ ¼ αðk1;k2Þ −
2

7
λðtÞγðk1;k2Þ; ðC7Þ

G2ðt;k1;k2Þ ¼ αðk1;k2Þ −
4

7
λθðtÞγðk1;k2Þ; ðC8Þ

F3ðt;k1;k2;k3Þ ¼ ααðk1;k2;k3Þ −
2

7
λðtÞαγRðk1;k2;k3Þ −

2

7
λðtÞαγLðk1;k2;k3Þ

−
2

21
μðtÞγγðk1;k2;k3Þ þ

1

9
νðtÞξðk1;k2;k3Þ; ðC9Þ

G3ðt;k1;k2;k3Þ ¼ ααðk1;k2;k3Þ −
4

7
λθðtÞαγRðk1;k2;k3Þ −

2

7
λðtÞαγLðk1;k2;k3Þ

−
2

7
μθðtÞγγðk1;k2;k3Þ þ

1

3
νθðtÞξðk1;k2;k3Þ: ðC10Þ

These kernels have two types of symmetries. One type is the symmetry in the replacement of the wave numbers,

F2ðt;k1;k2Þ ¼ F2ðt;k2;k1Þ; ðC11Þ

F3ðt;k1;k2;k3Þ ¼ F3ðt;k2;k3;k1Þ ¼ F3ðt;k3;k1;k2Þ
¼ F3ðt;k1;k3;k2Þ ¼ F3ðt;k2;k1;k3Þ ¼ F3ðt;k3;k2;k1Þ: ðC12Þ

The second is the symmetry in the conversion of the sign of the wave numbers,

F2ðt;k1;k2Þ ¼ F2ðt;−k1;−k2Þ; ðC13Þ

F3ðt;k1;k2;k3Þ ¼ F3ðt;−k1;−k2;−k3Þ: ðC14Þ

The same relations hold for G2ðt;k1;k2Þ and G3ðt;k1;k2;k3Þ.
The above properties are useful in deriving the expressions of the power spectra, Pδδðt; kÞ, Pδθðt; kÞ, Pθθðt; kÞ, defined by

Eqs. (86), (87), and (88). Using the expressions (C1) and (C2), we find

THIRD ORDER SOLUTIONS OF THE COSMOLOGICAL … PHYSICAL REVIEW D 92, 104033 (2015)

104033-17



Pδδðt; kÞ ¼ D2þðtÞPLðkÞ þD4þðtÞðPð22Þ
δδ ðt; kÞ þ 2Pð13Þ

δδ ðt; kÞÞ; ðC15Þ

Pδθðt; kÞ ¼ D2þðtÞPLðkÞ þD4þðtÞðPð22Þ
δθ ðt; kÞ þ 2Pð13Þ

δθ ðt; kÞÞ; ðC16Þ

Pθθðt; kÞ ¼ D2þðtÞPLðkÞ þD4þðtÞðPð22Þ
θθ ðt; kÞ þ 2Pð13Þ

θθ ðt; kÞÞ; ðC17Þ

where D2þðtÞPLðkÞ is the linear matter power spectrum,

hδLðk1ÞδLðk2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPLðkÞ; ðC18Þ
and we define

hδ2Kðt;k1Þδ2Kðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPð22Þ
δδ ðt; kÞ; ðC19Þ

hδLðk1Þδ3Kðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPð13Þ
δδ ðt; kÞ; ðC20Þ

hδ2Kðt;k1Þθ2Kðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPð22Þ
δθ ðt; kÞ; ðC21Þ

hθ2Kðt;k1Þθ2Kðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPð22Þ
θθ ðt; kÞ; ðC22Þ

hδLðk1Þθ3Kðt;k2Þi ¼ ð2πÞ3δð3Þðk1 þ k2ÞPð13Þ
θθ ðt; kÞ; ðC23Þ

and

1

2
ðhδLðk1Þθ3Kðt;k2Þi þ hδ3Kðt;k1ÞδLðk2ÞiÞ ¼ ð2πÞ3δð3Þðk1 þ k2ÞPð13Þ

δθ ðt; kÞ: ðC24Þ

As an example, let us explain the derivation of Pð22Þ
δδ ðt; kÞ. Inserting Eq. (C3) into (C19), we have

hδ2Kðt;k1Þδ2Kðt;k2Þi ¼
	

1

ð2πÞ3
Z

d3q1d3q2δð3Þðk1 − q1 − q2ÞF2ðt;q1;q2ÞδLðq1ÞδLðq2Þ

×
1

ð2πÞ3
Z

d3q3d3q4δð3Þðk2 − q3 − q4ÞF2ðt;q3;q4ÞδLðq3ÞδLðq4Þ



¼ 1

ð2πÞ6
Z

d3q1d3q3F2ðt;q1;k1 − q1ÞF2ðt;q3;k2 − q3Þ

× hδLðq1ÞδLðk1 − q1ÞδLðq3ÞδLðk2 − q3Þi: ðC25Þ
Using the relation that holds for the Gaussian variables, we have

hδLðq1ÞδLðk1 − q1ÞδLðq3ÞδLðk2 − q3Þi ¼ hδLðq1ÞδLðk1 − q1ÞihδLðq3ÞδLðk2 − q3Þi
þ hδLðq1ÞδLðq3ÞihδLðk2 − q3ÞδLðk1 − q1Þi
þ hδLðq1ÞδLðk2 − q3ÞihδLðk1 − q1ÞδLðq3Þi; ðC26Þ

which yields

hδLðk11ÞδLðk1 − k11ÞδLðk21ÞδLðk2 − k21Þi ¼ ð2πÞ6δð3Þðq1 þ q3Þδð3Þðk1 þ k2 − q1 − q3ÞPLðq1ÞPLðjk1 − q1jÞ
þ ð2πÞ6δð3Þðq1 þ k2 − q3Þδð3Þðk1 − q1 þ q3ÞPLðq1ÞPLðq3Þ; ðC27Þ

with Eq. (C18). Then, Eq. (C25) yields

hδ2Kðt;k1Þδ2Kðt;k2Þi ¼ δð3Þðk1 þ k2Þ
Z

d3q1ðF2ðt;q1;k1 − q1ÞF2ðt;−q1;k2 þ q1Þ

þ F2ðt;q1;k1 − q1ÞF2ðt;k2 þ q1;−q1ÞÞPLðq1ÞPLðjk1 − q1jÞ: ðC28Þ
Using the relation (C13), we have
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Pð22Þ
δδ ðt; kÞ ¼ 2

ð2πÞ3
Z

d3q1F2
2ðt;q1;k − q1ÞPLðq1ÞPLðjk − q1jÞ; ðC29Þ

which reduces to Eq. (92). In the derivation, we define x ¼ cos θ, where θ is the angle between k1 and q1. Similarly, the

expressions (93) and (94) are obtained for Pð22Þ
δθ ðt; kÞ and Pð22Þ

θθ ðt; kÞ. In the limit of the Einstein–de Sitter universe within
general relativity, λðtÞ ¼ λθðtÞ ¼ μðtÞ ¼ μθðtÞ ¼ 1, which gives the well-known expressions

Pð22Þ
δδ ðkÞ ¼ k3

98ð2πÞ2
Z

drPLðrkÞ
Z

1

−1
dxPLðð1þ r2 − 2rxÞ1=2Þ ð3rþ 7x − 10rx2Þ2

ð1þ r2 − 2rxÞ2 ; ðC30Þ

Pð22Þ
δθ ðkÞ ¼ k3

98ð2πÞ2
Z

drPLðrkÞ
Z

1

−1
dxPLðð1þ r2 − 2rxÞ1=2Þ ð3rþ 7x − 10rx2Þð−rþ 7x − 6rx2Þ

ð1þ r2 − 2rxÞ2 ; ðC31Þ

Pð22Þ
θθ ðkÞ ¼ k3

98ð2πÞ2
Z

drPLðrkÞ
Z

1

−1
dxPLðð1þ r2 − 2rxÞ1=2Þ ð−rþ 7x − 6rx2Þ2

ð1þ r2 − 2rxÞ2 ; ðC32Þ

which are constants as a function of time.
Next, let us explain the derivation of Pð13Þ

δδ ðt; kÞ. Inserting Eq. (C4) into (C20), we have

2hδLðk1Þδ3Kðt;k2Þi ¼
2

ð2πÞ6
Z

d3q1d3q2F3ðt;q1;q2;k2 − q1 − q2ÞhδLðk1ÞδLðq1ÞδLðq2ÞδLðk2 − q1 − q2Þi: ðC33Þ

Using the relations

hδLðk1ÞδLðq1ÞδLðq2ÞδLðk2−q1−q2Þi
¼ð2πÞ6δð3Þðk1þq1ÞPLðk1Þδð3Þðk2−q1ÞPLðq2Þ
þð2πÞ6δð3Þðk1þq2ÞPLðk1Þδð3Þðk2−q2ÞPLðq1Þ
þð2πÞ6δð3Þðk1þk2−q1−q2ÞPLðk1Þδð3Þðq1þq2ÞPLðq1Þ;

ðC34Þ
and the symmetries, Eq. (C12), we have

2Pð13Þ
δδ ðt; kÞ ¼ 6

ð2πÞ3
Z

d3q1F3ðt;k;q1;−q1ÞPLðkÞPLðq1Þ:

ðC35Þ
After performing the angular integration with respect to the
spherical coordinate of q1, we finally have Eq. (95). Note
that Eq. (95) does not depend on νðtÞ, which occurs

because of the identity ξðk;q1;−q1Þ ¼ 0. Pð13Þ
δδ ðt; kÞ is

characterized by λðtÞ and μðtÞ. Similarly, we have the

expressions (96) and (97) for Pð13Þ
δθ ðt; kÞ and Pð13Þ

θθ ðt; kÞ,
respectively. For the same reason as Pð13Þ

δδ ðt; kÞ, Pð13Þ
δθ ðt; kÞ

and Pð13Þ
θθ ðt; kÞ do not depend on νðtÞ and νθðtÞ.

Furthermore, Pð13Þ
δθ ðt; kÞ and Pð13Þ

θθ ðt; kÞ do not depend on
λθðtÞ. This is because of the nature of the integrationZ

dxαγRðk;q1;−q1Þ ¼ 0: ðC36Þ

Finally, Pð13Þ
δθ ðt; kÞ depends on λðtÞ, μðtÞ, and μθðtÞ, and

Pð13Þ
θθ ðt; kÞ depends on λðtÞ and μθðtÞ. We find the following

relation holds, in general: Pð13Þ
δθ ðt; kÞ ¼ ½Pð13Þ

δδ ðt; kÞ þ
Pð13Þ
θθ ðt; kÞ�=2, from Eq. (C24).
In the limit of the Einstein–de Sitter universe within

general relativity, all the coefficients λðtÞ, μðtÞ, μθðtÞ reduce
to 1, which reproduces the well-known expressions

2Pð13Þ
δδ ðkÞ ¼ k3

252ð2πÞ2 PLðkÞ
Z

drPLðrkÞ

×

�
12

1

r2
− 158þ 100r2 − 42r4

þ 3

r3
ðr2 − 1Þ3ð7r2 þ 2Þ ln

�
rþ 1

jr − 1j
��

; ðC37Þ

2Pð13Þ
δθ ðkÞ ¼ k3

252ð2πÞ2 PLðkÞ
Z

drPLðrkÞ

×

�
24

1

r2
− 202þ 56r2 − 30r4

þ 3

r3
ðr2 − 1Þ3ð5r2 þ 4Þ ln

�
rþ 1

jr − 1j
��

; ðC38Þ

2Pð13Þ
θθ ðkÞ ¼ k3

84ð2πÞ2 PLðkÞ
Z

drPLðrkÞ

×

�
12

1

r2
− 82þ 4r2 − 6r4

þ 3

r3
ðr2 − 1Þ3ðr2 þ 2Þ ln

�
rþ 1

jr − 1j
��

: ðC39Þ
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APPENDIX D: INTEGRATIONS OF MODE-COUPLING FUNCTIONS

Here we summarize the expressions that are useful in deriving the one-loop order power spectra,

α2ðq1;k1 − q1Þ ¼
ðrþ x − 2rx2Þ2

4r2ð1þ r2 − 2rxÞ2 ; ðD1Þ

αðq1;k1 − q1Þγðq1;k1 − q1Þ ¼
ðrþ x − 2rx2Þð−1þ x2Þ

2rð1þ r2 − 2rxÞ2 ; ðD2Þ

γ2ðq1;k1 − q1Þ ¼
ð−1þ x2Þ2

ð1þ r2 − 2rxÞ2 ; ðD3Þ

and
Z

d3q1PLðrkÞααðk;q1;−q1Þ ¼
2πk3

72

Z
drPLðrkÞ

�
−2þ 16r2 − 6r4 þ 3

r3
ðr2 − 1Þ3 ln

�
rþ 1

jr − 1j
��

; ðD4Þ
Z

d3q1PLðrkÞαγRðk;q1;−q1Þ ¼ 0; ðD5Þ

Z
d3q1PLðrkÞαγLðk;q1;−q1Þ ¼

2πk31
36

Z
drPLðrkÞ½6þ 16r2 − 6r4 þ 3

r3
ðr2 − 1Þ3 ln

�
rþ 1

jr − 1j
��

; ðD6Þ

Z
d3q1PLðrkÞγγðk1;q1;−q1Þ ¼

2πk31
72

Z
drPLðrkÞ

�
−6

1

r2
þ 22þ 22r2 − 6r4 þ 3

r3
ðr2 − 1Þ4 ln

�
rþ 1

jr − 1j
��

; ðD7Þ

Z
d3q1PLðrkÞξðk1;q1;−q1Þ ¼ 0: ðD8Þ

APPENDIX E: COEFFICIENTS
IN THE KGB MODEL

In the KGB model, we find the coefficients in basic
equations,

F T ¼ M2
pl; GT ¼ M2

pl; ðE1Þ

Θ ¼ −nMpl

�
r2c
M2

pl

�
n
_ϕXn þHM2

pl; ðE2Þ

_Θ ¼ −nð2nþ 1ÞMpl

�
r2c
M2

pl

�
n

ϕ̈Xn þ _HM2
pl; ðE3Þ

E ¼ −X þ 6nMpl

�
r2c
M2

pl

�
n
_ϕHXn − 3H2M2

pl; ðE4Þ

P¼−X−2nMpl

�
r2c
M2

pl

�
n

ϕ̈Xnþð3H2þ2 _HÞM2
pl; ðE5Þ

A0 ¼
X
H2

− 2nMpl

�
r2c
M2

pl

�
n
�
2 _ϕ

H
þ n

ϕ̈

H2

�
Xn; ðE6Þ

A2 ¼ B0 ¼ n
_ϕ

H
Mpl

�
r2c
M2

pl

�
n

Xn; ðE7Þ

A1 ¼ B1 ¼ B2 ¼ B3 ¼ C0 ¼ C1 ¼ 0; ðE8Þ
and the nontrivial expressions

LðtÞ ¼ −
A0F Tρm

2ðA0GT þ A2
2F TÞ

; ðE9Þ

NγðtÞ ¼
B0A3

2F
3
Tρ

2
m

4ðA0G2
T þ A2

2F TÞ3H2
; ðE10Þ

H2μΦ ¼ −
8B0T 3ρ2m
7H2Z3

λ −
8B2

0G
2
TT

4ρ3m
H4Z5

: ðE11Þ

We use the attractor solution, which satisfies 3 _ϕHG3X ¼ 1.
Then we have

ϕ̈ ¼ −
1

2n − 1

_ϕ _H
H

; ðE12Þ

_H
H2

¼ −
ð2n − 1Þ3Ωm

2ð2n −ΩmÞ
; ðE13Þ
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A0 ¼ −
M2

plð1 −ΩmÞð2nþ ð3n − 1ÞΩmÞ
2n −Ωm

; ðE14Þ

A2 ¼ M2
plð1 −ΩmÞ; ðE15Þ

B0 ¼ M2
plð1 −ΩmÞ; ðE16Þ

where we define Ωm ¼ ρmðaÞ=3M2
plH

2. We also have

R ¼ −
M4

plð1 − ΩmÞð2nþ ð3n − 1ÞΩmÞ
2n − Ωm

; ðE17Þ

S ¼ −
M4

plð1 −ΩmÞð2nþ ð3n − 1ÞΩmÞ
2n −Ωm

; ðE18Þ

T ¼ M4
plð1 −ΩmÞ; ðE19Þ

Z ¼ 2
M6

plΩmð5n − ΩmÞð1 −ΩmÞ
2n −Ωm

: ðE20Þ
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ABSTRACT
The chameleon gravity model postulates the existence of a scalar field that couples with
matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray
emitting gas filling the potential wells of galaxy clusters. However, it would not influence
the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles,
one can place upper limits on the strength of a fifth force. This technique has been attempted
before using a single, nearby cluster (Coma, z = 0.02). Here we apply the technique to the
stacked profiles of 58 clusters at higher redshifts (0.1 < z < 1.2), including 12 new to the
literature, using X-ray data from the XMM Cluster Survey and weak lensing data from
the Canada–France–Hawaii–Telescope Lensing Survey. Using a multiparameter Markov chain
Monte Carlo analysis, we constrain the two chameleon gravity parameters (β and φ∞). Our
fits are consistent with general relativity, not requiring a fifth force. In the special case of f(R)
gravity (where β = √

1/6), we set an upper limit on the background field amplitude today of
|fR0| < 6 × 10−5 (95 per cent CL). This is one of the strongest constraints to date on |fR0| on
cosmological scales. We hope to improve this constraint in future by extending the study to
hundreds of clusters using data from the Dark Energy Survey.

Key words: gravitation – gravitational lensing: weak – X-rays: galaxies: clusters.
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1 IN T RO D U C T I O N

An accepted explanation for the accelerated expansion of the late-
time Universe (Riess et al. 1998; Perlmutter et al. 1999) is to modify
the Einstein equation, either by adding a component to the energy–
momentum tensor via dark energy or to the Einstein tensor via a

C© 2015 The Authors
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modification to gravity (Milgrom 1983; Clifton et al. 2012). The
latter often involves the introduction of a scalar field coupled to the
matter components of the Universe, giving rise to a fifth force of the
same order of magnitude as gravity (Jain, Vikram & Sakstein 2013).
Through a variety of experiments and astronomical observations,
this fifth force has been demonstrated to be negligible at terrestrial
and Solar system densities (Wagner et al. 2012). Therefore, if a fifth
force does exist it must be it must be suppressed, or ‘screened’,
in high-density regions and only take effect in low-density
regions.

One model with such a screening is the chameleon mechanism
(Khoury & Weltman 2004). In this approach, the scalar field cou-
pling strength is sensitive to the depth of the local gravitational
potential. In regions with a large potential well, this screening sup-
presses the fifth force and gravity behaves as predicted by general
relativity (GR). However when the potential becomes small, the fifth
force is unsuppressed and gravity becomes ‘modified’ compared to
GR (Lombriser 2014).

By definition, the chameleon field satisfies

∇2φ = V,φ + β

MPl
ρ (1)

(Khoury & Weltman 2004), where V is the potential of the scalar
field, β is the coupling between matter and the scalar field, φ gives
the position-dependent screening efficiency, MPl is the Planck mass
and ρ is the matter density. This leads to the chameleon fifth force
of

Fφ = − β

MPl
∇φ. (2)

There is a particular set of gravity models, known as f(R) models
(Buchdahl 1970) which exhibit a chameleon, where the strength of
the fifth force (parametrized by β in equation 1) has a fixed value
β = √

1/6. This force arises from adding a scalar function f(R) to
the Ricci scalar in the Einstein–Hilbert action (Capozziello 2002;
Nojiri & Odintsov 2003). These models can reproduce observed
late time acceleration of the Universe whilst still suppressing the
fifth force in high-density environments, such as the Solar system
(Chiba, Smith & Erickcek 2007). These f(R) models possess an
extra scalar degree of freedom, fR = df/dR, where the value at the
current epoch is |fR0| (Sotiriou & Faraoni 2010). Then f(R) gravity
can be related to φ∞, (φ in equation 2 at infinity) via the relation
(Joyce et al. 2015)

fR(z) = −
√

2

3

φ∞
MPl

. (3)

Hu & Sawicki (2007) provide theoretical arguments showing
that for GR to be preserved at parsec scales within the Solar sys-
tem, then |fR0| < 10−6. At kiloparsec scales, Jain et al. (2013)
constrained |fR0| < 5 × 10−7 in dwarf galaxies. On megaparsec
and larger scales, Raveri et al. (2014) used the cosmic microwave
background (CMB) to measure |fR0| < 10−3. Also on large scales,
Rapetti et al. (2011), Ferraro, Schmidt & Hu (2011) and Cataneo
et al. (2014) used the abundance of galaxy clusters to constrain
|fR0|, e.g. Cataneo et al. (2014) measured (under the assumption of
n = 1), |fR0| < 2.6 × 10−5.

In this paper, we also use clusters of galaxies to constrain |fR0| on
megaparsec scales. However, unlike Rapetti et al. (2011), Ferraro
et al. (2011) and Cataneo et al. (2014), we use cluster profiles, rather
than abundances to do so. The hypothesis is that a fifth force would
be screened in the dense cluster cores, but not in the rarefied cluster
outskirts (Burikham & Panpanich 2012; Lombriser et al. 2012). The

majority of baryonic matter in a cluster is ionized gas that has been
pressure-heated to temperatures in excess of 107 K (Gursky et al.
1971; Loewenstein 2004), leading to the emission of X-rays via
thermal bremsstrahlung radiation (Jones & Forman 1978; Sarazin
2009). The gas can also be observed indirectly through its influence
on the cosmic background radiation, via the so-called Sunyaev–
Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1980).

By measuring the properties of this X-ray gas, we are able to
infer, under the assumption of hydrostatic equilibrium, the cluster
mass and density from its X-ray surface brightness or SZ effect
profiles (Reiprich & Böhringer 2002; Kettula et al. 2014). In a
chameleon gravity model, the intracluster gas would feel the fifth
force in addition to gravity in the cluster outskirts, i.e. the gas will
be slightly more compact and the temperature boosted (Arnold,
Puchwein & Springel 2014), compared to the influence of GR
alone.

By contrast, weak gravitational lensing is dependent only upon
the gravitational deflection of light by matter along the line of sight,
therefore providing a technique to measure the underlying mass
distribution without assuming hydrostatic equilibrium. Crucially for
this study, the fifth force would not modify the deflection of light
through the cluster (compared to GR) because the scalar chameleon
field is coupled to the trace of the energy–momentum tensor (Hui,
Nicolis & Stubbs 2009). Therefore, we can search for evidence
of a fifth force by comparing the X-ray surface brightness, and/or
SZ effect, profiles of clusters with their gravitational lensing shear
profiles (Ostriker & Vishniac 1986; Terukina & Yamamoto 2012).

Terukina et al. (2014) used this approach to constrain f(R) grav-
ity models using a combination of lensing shear, X-ray surface
brightness, X-ray temperature, and SZ profiles for the Coma cluster
(a massive cluster at z = 0.02). Combining these measurements,
they performed a Markov chain Monte Carlo (MCMC) analysis of
the parameter space describing the cluster profiles in the modified
gravity regime. Under the assumption of hydrostatic equilibrium,
they obtained constraints of |fR0| < 6 × 10−5. They also examined
the assumption of hydrostatic equilibrium, and concluded that any
contribution of non-thermal pressure was small compared to the
reconstructed mass.

The Coma cluster is at low redshift meaning its weak lensing
shear signal is low. Moreover, it is known to have non-spherical
geometry (Fitchett & Webster 1987; Briel, Henry & Boehringer
1992; Colless & Dunn 1996). These factors motivate us to apply
the Terukina et al. (2014) method to many more clusters at higher
redshifts, allowing for a higher signal-to-noise weak lensing shear
profile and an averaging out of non-spherical cluster shapes. We
do this by comparing stacked X-ray surface brightness and shear
profiles of 58 X-ray-selected clusters. We utilize high-quality weak
lensing data from the Canada–France–Hawaii Telescope Lensing
Survey (CFHTLenS; Heymans et al. 2012; Erben et al. 2013), and
X-ray observations from the XMM Cluster Survey (XCS; Romer
et al. 2001; Lloyd-Davies et al. 2011; Mehrtens et al. 2012). We also
investigate the Terukina et al. (2014) conclusion that deviations from
hydrostatic equilibrium do not invalidate the chameleon gravity test.

In Section 2, we review the underlying theoretical background.
In Section 3, we describe the development of the cluster sample
used in the analysis, and the MCMC methods used to simultane-
ously fit the X-ray surface brightness and weak lensing profiles.
In Section 4, we discuss our results and the implications of our
results in the framework of f(R) gravity models. In Section 5, we
discuss the influence of cluster environment and of our assumption
of hydrostatic equilibrium. In Section 6, we present our conclu-
sions. Throughout this paper, we use a 95 per cent confidence level

MNRAS 452, 1171–1183 (2015)

 at H
iroshim

a U
niversity on D

ecem
ber 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



Chameleon gravity with clusters 1173

when quoting upper limits, adopt a cosmology with �m = 0.27,
�� = 0.73, and H0 = 70 km s−1 Mpc−1.

2 TH E O R E T I C A L BAC K G RO U N D

In this study, we adopt the Navarro–Frenk–White (NFW; Navarro,
Frenk & White 1996) model for the dark matter halo mass distribu-
tion:

ρ(r) = ρcδc
r
rs

(1 + r
rs

)2
, (4)

where r here and throughout is the radial distance from the halo
centre, ρc = 3H 2(z)/8πG is the critical density at a given redshift,
H(z) is the Hubble parameter at a given redshift, G is Newton’s
gravitational constant, δc is the characteristic overdensity, given
by

δc = 200

3

c3

ln(1 + c) − c/(1 + c)
, (5)

where c is a dimensionless concentration parameter and rs is the
scale radius given by

rs = 1

c

(
3M200

4πρcδc

)1/3

, (6)

where M200 is the mass enclosed by r200, the radius at which the
dark matter haloes average density is 200 times the critical density,

M(< r200) = 4πδcρcr
3
s

(
ln(1 + c) − c

1 + c

)
. (7)

The NFW profile described in equation (7) is well supported by
N-body simulations of � cold dark matter, but it is not immediately
obvious that this profile would pertain to cluster profiles in the f(R)
regime. However, it has been shown (Lombriser et al. 2012; Moran,
Teyssier & Li 2015) that the NFW profile is able to provide fits to
both modified gravity and concordance cosmology that are equally
good, sharing the same χ2. It should be noted that the simulations
in Lombriser et al. (2012) were generated using a fixed β = √

1/6,
as opposed to the general chameleon gravity model investigated
here. However, as we are probing a β range around this value, we
expect any modifications to the profiles to be similar, suggesting the
suitability of the NFW profile. Further checks using hydrodynamical
simulations of modified gravity models would allow this assumption
to be verified.

We adopt the Terukina et al. (2014) approach describing the
chameleon mechanism using three parameters. The first of these, β,
is the coupling between matter and the scalar field (see equation 1).
The second, φ∞, describes the position-dependent screening effi-
ciency. The third, rcrit, is a critical radius, i.e. the distance from the
dark matter halo centre at which the screening mechanism takes
effect (Terukina & Yamamoto 2012),

rcrit = βρsr
3
s

MPlφ∞
− rs, (8)

where ρs is the density at this radius.
Terukina & Yamamoto (2012) showed the hydrostatic equilib-

rium equation in the presence of a fifth force (equation 2) is

1

ρgas(r)

dPgas(r)

dr
= −GM(< r)

r2
− β

MPl
∇φ, (9)

where ρgas is the gas density, M the total mass within a radius r and
Pgas is the electron pressure.

In an ideal cluster, i.e. one that is isolated, isothermal, and spheri-
cal, this total pressure is felt by the electrons and ions in the ionized
intracluster plasma, so that Pgas = nekT, where ne is the electron
number density and T is the electron temperature. By adopting
the standard beta-model1 electron density profile (e.g. Cavaliere &
Fusco-Femiano 1978), we can integrate equation (9) to give

Pe(r) = Pe,0 + μmp

∫ r

0
ne(r)

(
−GM(< r)

r2
− β

MPl

dφ(r)

dr

)
dr,

(10)

where Pe, 0 is the electron gas pressure at r = 0, given by
Pe, 0 = ne, 0kT and ne, 0 = 5n0/(2 + μ) and M( < r), the halo
mass. The integral of equation (10) can be re-expressed in terms of
a projected X-ray surface brightness SB(r) using the temperature-
and electron-density-dependent cooling function (see Section 3.2),

SB(r⊥) = 1

4π(1 + z)4

∫
n2

e

(√
r2
⊥ + z2

)
λc(Tgas) dz, (11)

where r⊥ is the projected distance from the cluster centre and z

the cluster redshift. This is the expression we fit to when comparing
stacked X-ray cluster profiles to the chameleon model (Section 3.5).

The expression used to fit the weak lensing shear profiles (under
the assumption of an underlying NFW profile) for comparison is
given in Wright & Brainerd (2000).

To recap, our method makes the following assumptions: that
modifications to GR include a chameleon screening mechanism and
can be described by equation (1); that dark matter haloes follow an
NFW profile (equation 4); that a fifth force can be included in the
hydrostatic equilibrium expression according to equation (9); that
clusters of galaxies are isolated, isothermal and spherical (which in
turn implies that the clusters are in hydrostatic equilibrium, have
an electron number density that follows a beta-model and their X-
ray emission can be predicted from a thermal cooling function);
and that the weak lensing shear profiles of clusters are given in
Wright & Brainerd (2000). We discuss the impact of some of these
assumptions in Section 5.

3 M E T H O D S

3.1 Compiling the X-ray cluster sample

In this paper, we used public weak lensing data (galaxy ellipticities
and photometric redshifts) provided by the CFHTLenS (Heymans
et al. 2012). The CFHTLenS covers 154 deg2 with high-quality
shape measurements. The galaxy ellipticities were generated by the
CFHTLenS team using the THELI (Erben et al. 2013) and LENSFIT

(Miller et al. 2013) routines. Photometric redshifts were produced
using PSF-matched photometry to an accuracy of 0.04(1 + z) with
a 4 per cent catastrophic outlier rate (Hildebrandt et al. 2012).

We also used public X-ray data taken from the XMM–Newton
archive and have collated a sample of X-ray clusters in the
CFHTLenS region using pipelines developed for the XCS (Lloyd-
Davies et al. 2011). First, we determined which of the XMM ob-
servations overlapped with the CFHTLenS fields. We then used the
XCS pipelines to carry out the following tasks in an automated
manner: cleaning the event lists of background flares; creating de-
tector and exposure images; producing duplicate free source lists;
and identifying extended X-ray sources. A total of 348 extended
XMM sources, with more than 100 background-subtracted photon

1 The beta in this model is not the same as the β in equation (1).
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1174 H. Wilcox et al.

counts, were located in the CFHTLenS fields, although 44 were
close to the edge of the XMM field of view and were not considered
further (please see Lloyd-Davies et al. 2011 for the relevant, XCS
specific, definition of source counts).

The majority of these sources were not included in the XCS
first data release (XCS-DR1; Mehrtens et al. 2012). This meant
that candidate identification needed to be carried out before the
sources could be used in our study. This process is non-trivial: as
shown in Mehrtens et al. (2012), a large fraction of XCS extended
sources (especially those with fewer than 300 counts) are either
hard to confirm as clusters – because the available imaging is not
deep enough – or are associated with other types of X-ray source.
Therefore, for this paper, we have taken a conservative approach and
only included XMM extended sources in our study if they correspond
to an overdensity of galaxies in false colour images produced using
the CFHTLenS cutout service.2 186 sources were excluded from the
study as a result. These were excluded for several different reasons:
there were no optical data as the cluster sat in a masked region of
the CFHTLenS footprint; there was a bright star or galaxy lying
close to the cluster centre that was obscuring it; or the optical image
resembled an AGN rather than a cluster. The coordinates of the
remaining 119 can be found in Table B1.

As our analysis required information about the distance to the
cluster, a further 37 sources were excluded from the study because
redshifts were not available at the time of writing. These are flagged
with a 2 in Table B1. The majority (63 of 82) of the redshifts we
used came from the new Gaussian mixture model redshift estima-
tor described in detail in Hood & Mann (2015). We also used 18
redshifts taken from NED3 and 3 from Ford et al. (2014).

We judged these remaining 82 XMM extended sources in the
CFHTLenS region to be confirmed clusters and ran them through
the XSPEC-based XCS spectral pipeline. We determined X-ray tem-
peratures when the signal to noise was sufficient. This produced
X-ray temperatures of 58 of these clusters which form our final
sample, including 12 clusters new to the literature, the other 23
clusters were excluded from the analysis and are flagged with a 3 in
Table B1. The details of this pipeline can be found in Lloyd-Davies
et al. (2011). These 58 clusters with measured temperatures span
the redshift range 0.1 < z < 1.2 (median z = 0.33) and temperature
range 0.2 < Tx < 8 keV (median Tx = 2.3 keV). A selection of
these new to the literature clusters, along with several clusters that
were optically confirmed but excluded due to a lack of redshift, are
shown in Fig. C1.

3.2 Making stacked X-ray surface brightness profiles

Our analysis involves stacking multiple different XMM observations
of our 58 clusters, in order to build up signal to noise in the outer
parts of the ensemble cluster profile. This process needs to account
for the following complexities: most of the 58 clusters were covered
by more than one XMM observation. Each of these observations has
different background properties and flare corrected exposure times.
The X-ray telescope comprises of three cameras that operate simul-
taneously (mos1, mos2, pn), so most XMM observations comprise
of three separate images with different, energy-dependent sensitiv-

2 http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLens/
cutout.html
3 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.

ities. The clusters all have different energy spectra, because, even
if one ignores non thermal processes, they have different X-ray
temperatures, redshifts and line of sight absorbing column densi-
ties. Therefore, for each cluster, we have to calculate, using XSPEC,
camera-specific count rate to luminosity conversion factors for each
XMM observation that it falls in. We then, for a given cluster, take the
photon count images generated by the XCS pipeline, divide these by
the respective exposure map and multiply by the cluster-dependent
conversion factor. This allows us to combine all the images for that
cluster in a self-consistent manner.

To produce a single stack, we first re-scaled the 58 combined im-
ages of individual clusters to a standard projected size. For this we
estimated M500, the mass enclosed within a sphere at which the av-
erage density is 500 times the critical density, using the prescription
described in Sahlén et al. (2009). A conversion between M500 and
M200 was made following the formulae derived in Hu & Kravtsov
(2003), where we assume c = 5. This is an accurate description of
the typical density profiles in clusters (Arnaud 2005) and is con-
sistent with the findings of Kettula et al. (2014) in the CFHTLenS
region. Using the M200 values we calculated the radius at which
the average density is 200 times the critical density, r200, following
the method in Croston et al. (2008). The 58 stacked images could
then be re-scaled using linear interpolation to a common 500 by
500 pixel format, so that they each had an r200 radius of 125 pixels.
Each of these 500 by 500 images was centred on the source centroid
as determined by XCS.

We re-scaled the individual cluster images by the overall am-
plitude of their X-ray surface brightness, as adding clusters over
a range of different masses and luminosities would result in sig-
nificant off-diagonal elements in the covariance matrix of the final
stacked profile. Therefore, we calculate the mean value of the X-ray
surface brightness profile for each cluster, and re-scale individual
cluster surface brightness maps by this value (we found that using
the median value instead of the mean gave similar results). A final
stacked surface brightness map of the 58 individual clusters is then
produced by taking the mean value for each pixel across all these
maps. This re-scaling of the amplitudes is permitted as our con-
straints on modified gravity parameters focus on the shape of the
cluster profiles; we marginalize over the amplitudes of the stacked
X-ray surface brightness profiles in Section 4. The error covariance
matrix of the stacked profile was then measured directly.

3.3 Making stacked weak lensing profiles

We outline here the procedure used to obtain the stacked clus-
ter shear profile, γ t, using source galaxies from CFHTLenS. The
CFHTLenS catalogue provides measurements of both ellipticity
components (e1 and e2), as well as photometric redshifts for each
source galaxy. Before shears can be derived from these quantities,
small multiplicative and additive corrections (m and c2) must be
applied, derived from the data set. We calculate c2 and m for each
galaxy as a function of size and signal to noise (using equations 17
and 19 in Heymans et al. 2012). Each galaxy was weighted with the
CFHTLenS catalogue WEIGHT parameter and calibrated by

eint,i = ei − c2,i

1 + m̄
, (12)

where c2 was applied on a galaxy by galaxy basis and m̄ is a
summation of 1 + m for each galaxy, applied as an ensemble average
to each radial bin (discussed below).

We have an effective galaxy density, neff, (Heymans et al. 2012)
of 12 galaxies per arcmin2. In order to minimize the contamination
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Chameleon gravity with clusters 1175

Figure 1. Tests around the 58 CFHTLenS stacked cluster; details are provided in the text. 1(a) Tangential and cross shear. 1(b) Tangential and cross shear
around 58 stacked random points. 1(c) Tangential shear for three different signal-to-noise bins. 1(d) Tangential shear for three different redshift cuts.

between the lensed galaxies and the cluster members, we only use
source galaxies with a photometric redshift greater than zcluster + 0.2.
Our redshift cut is made so that there is negligible contamination be-
tween cluster and source galaxies. The photo-z cut does not require
a redshift dependence as the photo-z errors of the source galaxies
in CFHTLenS are approximately flat close to the redshift of our
clusters (Hildebrandt et al. 2012).

For each galaxy, we calculate the tangential and cross shears (γ t,
γ x) as a function of their position relative to the cluster position,
via the angle φ between the cluster and galaxy from a baseline
of zero declination. The tangential shear measured around each
XCS-determined cluster centroid was binned into 24 equal spaced
logarithmic annuli out to a distance of 10 × r200 (calculated in
Section 3.2). We then scaled the values in each of these bins in the
same way that we previously scaled the X-ray profiles in Section 3.2
for consistency.

Finally, in order to improve the signal to noise of the tangential
profiles, the 58 individual cluster profiles were stacked. This was
achieved by summing the profiles of each cluster and calculating
an average shear in each bin across all clusters (McKay et al. 2001;
Sheldon et al. 2009). The error covariance matrix was then directly
measured for our stacked profile. Due to the large uncertainty in
the central bin, driven by the low number density of galaxies, we
exclude the central 0.1 × r200.

We perform consistency and null tests upon the CFHTLenS shape
data to ensure our recovered profiles are unbiased and not artefacts
of the data. Fig. 1(a) shows the tangential signal (solid blue) and the
cross shear (dashed red) around the stacked clusters. The tangential
shear signal has a detection significance of >30σ while the cross
shear signal is consistent with zero at all radii.

Fig. 1(b) shows the tangential shear (solid blue) and cross shear
(dashed red) around 58 random stacked positions within the overlap
of the CFHTLenS region and the XCS footprint. The measurements
in both these cases were found to be consistent with zero on all
scales.

For Fig. 1(c), we show the tangential shear around the stacked
clusters after we have split the source galaxies into three bins based
upon their signal-to-noise ratio, S/N < 20, 20 < S/N < 40, and
S/N > 40, with similar redshift distributions (median redshifts of
0.85, 0.82, 0.79, respectively). We find that the three measurements
are consistent with each other as expected.

Finally, Fig. 1(d) shows the tangential shear around the stacked
clusters with the source galaxies cut into three bins based upon their
photometric redshift, z < 0.6, 0.6 < z < 0.8 and z > 0.8. At higher
redshifts there are a smaller fraction of cluster galaxies and galaxies

in front of the clusters, and the weak lensing signal grows with
redshift. We see these effects as our measured signal is strongest in
the high-redshift bin. We therefore conclude that we are detecting
a genuine weak lensing signal.

3.4 Binning in X-ray temperature

To generate tighter constraints upon the modified gravity parame-
ters, we split our data set into two separate mass bins to reduce errors
caused by mixing clusters of varying sizes and masses. We find do-
ing so improves our constraints on the modified gravity parameters
compared to using a single bin. We cut at an X-ray temperature of
T = 2.5 keV, to give two bins of mass with equal errors on their
stacked profiles. We note that this temperature cut approximately
cuts our sample into galaxy clusters and galaxy groups (Stott et al.
2012). Our low-temperature bin (T < 2.5 keV) has a median redshift
of z = 0.32 and is flagged with a 0 in Table B1, while the other
(with T > 2.5 keV) has a median redshift of z = 0.34 and a flag of 1.
We repeated the analyses with three and four temperature bins and
found no improvement in the constraints on the modified gravity
parameters. Therefore, to aid with computation, we complete our
analysis with the simplest two bin case.

3.5 MCMC analysis

We use MCMC (Gilks, Richardson & Spiegelhalter 1996) to fit
models to our stacked profiles. We allow all parameters that depend
upon the cluster properties to vary for each temperature bin. This
leads to a total of 14 free parameters for the four stacked profiles
(our measured weak lensing and X-ray profiles in two tempera-
ture bins) used to constrain modified gravity. Four of these were
used to model the weak lensing mass (defined in equations 4, 5
and 6). We introduce the notation I, II to indicate the temperature
bins T < 2.5, T > 2.5, respectively, so cI, cII, M I

200 and M II
200 are

the concentration and mass parameters for each temperature bin,
respectively.

We modelled the X-ray surface brightness, using the method pre-
scribed in Section 2 by defining, for both temperature bins, the
electron number density (itself dependent upon nI

0, nII
0 , bI

1, bII
1 , r I

1

and r II
1 ), and the normalization of the gas temperature T I

0 and T II
0 .

We reconfigure the parameters as β2 = β/(1 + β) and φ∞,2 =
1 − exp(−φ∞/10−4MPl) to span the parameter range of β and φ∞
in the interval [0,1]. To obtain the cooling function (used in equa-
tion 11), we used the XSPEC software (Arnaud 1996) and utilize the
APEC model (Smith et al. 2001) over a range of 0.5–2 keV, i.e. the
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1176 H. Wilcox et al.

same energy range as our observations from XMM. This model has
as inputs the gas temperature, the cluster redshift, the cluster metal-
licity and a normalization, and provides the X-ray cluster flux. We
adopt a metallicity Z = 0.3 Z� (Sato et al. 2011) throughout. Using
this model we generate fluxes for a range of temperatures which are
interpolated for use in our chameleon gravity model.

The chameleon parameters β2 and φ∞,2 are the same across the
two bins, as the modifications to gravity should be independent of
the cluster’s mass.

We performed an MCMC analysis using the EMCEE code
(Foreman-Mackey et al. 2013), which implements a Metropolis–
Hastings algorithm (MacKay 2003). We minimized the goodness
of fit using a χ2 statistic derived from joint fitting of both models
(see Appendix A).

Our MCMC run was a parallelized implementation using 128
walkers with 10 000 time steps. We removed the first 2000 iterations
as a ‘burn in’ phase.

4 R ESULTS

In Fig. 2, we show our measured X-ray and weak lensing profiles for
both X-ray temperature bins. Our X-ray surface brightness profiles
have been measured out to 1.2 × r200 with high signal to noise.
Likewise for our two weak lensing profiles, we have recovered a
shear signal out to 10 × r200 with high signal to noise. Also shown
in Fig. 2 are our best-fitting models for the each profile using the
parameters outlined in Section 3.5 and minimizing χ2 as described
in equation (A1). We show the 2D contours for constraints on model
parameters in Fig. D1.

In Fig. 3, we show the 2D constraints for β2 and φ∞,2. To generate
our constraints, we have marginalized over the measured likelihoods
of the nuisance parameters (those that are not β2 and φ∞,2). We are
able to do so as we are insensitive to the overall amplitude of
our profiles, only the profiles shape matters for our constraints. In
Fig. 3, we also show the dashed (dash–dotted) line the 95 per cent
(99 per cent) confidence limit excluded region from Terukina et al.

Figure 2. X-ray surface brightness profiles (left) and weak lensing (right) for the two bins of X-ray temperature: T < 2.5 keV (top) and T > 2.5 keV (bottom),
against radial distance normalized by r200, the radius at which the density is 200 times the critical density. We choose to show the modified gravity profiles with
the highest likelihood parameters, T I

0 = 12.6 keV, nI
0 = 2.0 × 10−2 cm−3, bI

1 = −0.42, r I
1 = 0.06 Mpc, M I

200 = 12.2 × 1014 M�, cI = 3.5, T II
0 = 7.8 keV,

nII
0 = 4.9 × 10−2 cm−3, bII

1 = −0.89, r II
1 = 0.05 Mpc, M II

200 = 13.7 × 1014 M�, cII = 3.8, β = 2, φ∞ = 2.1 × 10−4MPl.
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Chameleon gravity with clusters 1177

Figure 3. The 95 per cent (light grey region) and the 99 per cent confidence limit (mid grey region) constraints for the chameleon model parameters renormalized
between [0,1], β2 = β/(1 + β) and φ∞,2 = 1 − exp(−φ∞/10−4MPl) obtained from the MCMC analysis of our combination of weak lensing and X-ray surface
brightness for our two cluster stacks. Above the dashed (dash–dotted) line is the 95 per cent (99 per cent) confidence limit excluded region from Terukina et al.
(2014). The vertical line is at β = √

1/6, showing our constraints for f(R) gravity models.

(2014). The constraints are tighter from this work on larger values
of β than in Terukina et al. (2014), whilst the constraints on smaller
values of β are looser. As the profiles presented in this work extend
further from the cluster than the Coma profile, we probe further
outside the critical radius, rc and are able to better constrain large
values of β. However, as the errors on the X-ray profiles (and
the lack of available SZ data) used in this work are larger than those
measured in Terukina et al. (2014), we are less able to differentiate
a chameleon profile from a GR one at lower values of β, leading to
less constraining power.

The shape of the contours in Fig. 3 can be understood by con-
sidering the meaning of the parameters used in defining chameleon
gravity. Recall that β dictates the strength of the fifth force and φ∞
is the effectiveness of the screening mechanism. Therefore, at low
values of β, the fifth force causes a deviation to the profile which is
too small to be distinguished from GR given the observational er-
rors. Likewise as GR gravity is recovered outside the critical radius
rcrit, this sets an upper limit on β/φ∞. As β increases, a lower value
for φ∞ is required to keep rcrit within the cluster, giving rise to the
triangular shape of the excluded region.

4.1 Implications for f(R) gravity

Our constraints have implications for f(R) gravity models, which
contain a chameleon mechanism for which β = √

1/6 (Starobinsky
2007) (shown as the vertical line in Fig. 3).

From Fig. 3, we estimate an upper bound on f(R) gravity of
φ∞ < 5.8 × 10−5MPl at 95 per cent confidence limit, and there-
fore using equation (3), fR(z = 0.33) < 4.7 × 10−5 at 95 per cent
confidence limit (where z = 0.33 is our cluster samples median red-

shift). The time-evolution of the background fR(z) for a Hu–Sawicki
follows (Li et al. 2013),

fR(z) = |fR0| 1

n
[(1 + 3��)/(�M(1 + z)3 + 4��)]n+1, (13)

where n is a free parameter of the model. At high redshifts, the
background energy density is higher, therefore fR(z) is smaller and
the screening is more efficient. So fR(z) decreases by 22 per cent
from our median redshift (z = 0.33) to z = 0, when n = 1, and our
constraint at z = 0 is |fR0| < 6 × 10−5 at 95 per cent confidence
limit. Considering a Hu–Sawicki model with n = 3, our constraint
becomes |fR0| < 2 × 10−4 at 95 per cent confidence limit. Our
results are comparable to the results for the Coma cluster reported
in Terukina et al. (2014) of |fR0| < 6 × 10−5.

5 D ISCUSSI ON

In this section, we discuss the influence of local overdensities upon
our cluster sample. We also question the validity of the assumptions
we have made while constraining chameleon gravity, primarily the
assumption that our cluster stack is in hydrostatic equilibrium.

5.1 Influence of cluster environment

In addition to self-screening, a cluster may be screened by nearby
clusters and therefore still show no evidence of modified gravity,
even in its outskirts. To check whether this was expected for any of
our clusters, we estimated the D parameter detailed in Zhao, Li &
Koyama (2011), a parametrization of the separation between a given
cluster and the nearest larger cluster, scaled by the given cluster’s
r200. We describe clusters with log10D > 1 as ‘isolated’ and clusters
with log10D < 1 as living in dense environments, and therefore
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1178 H. Wilcox et al.

Figure 4. The minimum D parameter for each cluster against X-ray tem-
perature, where log10D is a measure of the distance between a cluster and the
nearest overdensity in the top 30 per cent (10 per cent) of overdensity values,
shown as a red circle (blue cross). The shaded region contains clusters with
potential screening from neighbouring overdensities. The majority of the
clusters are in an isolated region.

screened. As our X-ray clusters are an incomplete set of all clusters
in our area, we looked at overdensities in the galaxy density field as a
proxy for nearby clusters. We binned the galaxies in the CFHTLenS
catalogue into 3D pixels of volume 1 Mpc2 in area, and 0.01 in
redshift. Fig. 4 shows X-ray temperature against log10D, where we
have calculated log10D values between each cluster and overdensity
and selected the smallest log10D as a measure of environment. It
is seen that only 7 per cent (2 per cent) of our clusters are found to
be near (log10D < 1) the most overdense 30 per cent (10 per cent)
of the 3D pixels. We therefore conclude that our sample appears
to be largely environmentally unscreened by nearby clusters, and
therefore will apply our analysis to the full cluster sample. We note
that it is possible that clusters outside the edge of the CFHTLenS
observations could screen at most 6 per cent of our sample, which
lie within log10D = 1 of the edge.

5.2 Assumption of hydrostatic equilibrium

Even in the absence of a fifth force, the interpretation of apparent
differences in cluster mass profiles derived from X-ray or SZ ob-
servations and lensing measurements is complicated by both astro-
physical processes in clusters, such as gas clumping in the cluster
outskirts, and systematic errors in the measurements themselves.
This has led to uncertainty in mass calibration being the dominant
source of error on cosmological constraints derived from SZ clus-
ter catalogues (e.g. Hasselfield et al. 2013; Reichardt et al. 2013;
Planck Collaboration XX 2014). The absolute cluster mass scale is
affected by uncertainty in the effects of feedback from active galac-
tic nuclei, and non-thermal processes such as bulk motions, on the
cluster gas (e.g. Nagai, Kravtsov & Vikhlinin 2007). Instrumental
calibration uncertainties may also play a role (e.g. Israel et al. 2015;
Schellenberger et al. 2015). Lensing measurements, which are af-
fected by different systematics, are being used to quantify any bias
in the absolute mass scale, but at present, samples are small, and

there is some disagreement (e.g. von der Linden et al. 2014; Hoek-
stra et al. 2015).

In this work, we have investigated one of these issues: the impact
of non-thermal pressure on our conclusions about chameleon grav-
ity (whilst maintaining the simplifying assumptions of spherical
symmetry). We plan to investigate the other issues, using hydro-
dynamic simulations, in future publications. The thermal mass of
a cluster is defined by the gas pressure, density and temperature,
which we infer from the X-ray surface brightness. We follow the
parametric fits described in Terukina et al. (2014) to reconstruct the
stacked cluster temperature profile and electron number densities
from the profile parameters fit for by our MCMC. We infer from
X-ray observations,

Mthermal = −kTgasr

μmpG

(
d ln ne

d ln r
+ d ln Tgas

d ln r

)
, (14)

where k is the Boltzmann constant, mp is the proton mass. According
to the hydrodynamical simulations in Shaw et al. (2010), the non-
thermal pressure can be modelled as a function of the total pressure,
such that Pnon−thermal(r) = g(r)Ptotal(r), where

g(r) = αnt(1 + z)βnt

(
r

r500

)nnt
(

M200

3 × 1014 M�

)nM

, (15)

with αnt, βnt, nnt and nM are constants determined from 16 simulated
clusters, with a mass range between 0.35 and 9.02 × 1014 M� at
z = 0 (Lau, Kravtsov & Nagai 2009). We adopt their best-fitting
values of βnt, nnt, nM = 0.5, 0.8, 0.2, respectively. In order to test
the robustness of our assumptions, we select α = 0.3, which was
the most extreme value found in the 16 clusters in their analysis.
The extra mass component which would be inferred from X-rays
due to such non-thermal pressure would be

Mnon–thermal = −r2

Gρgas

d

dr

(
g(r)

1 − g(r)
ngaskTgas

)
, (16)

where r is the radial distance, g(r) is defined in equation (15) and
ρgas, ngas and Tgas are the gas density, number density and tempera-
ture, respectively.

In Fig. 5, we show our mass profiles for 0.3 Mpc <r⊥ < 2 Mpc
for the lensing mass and X-ray mass reconstruction, including the
effects of non-thermal pressure. The solid lines are the hydrostatic
mass recovered from the X-ray measurements using equation (14),
while the dashed lines are the hydrostatic mass plus a non-thermal
component from equation (16). The shaded area is the 68 per cent
confidence limit allowed region from the weak lensing measure-
ments, fitted with an NFW profile. The vertical dotted line is the
upper bound of our X-ray data; to the right of this line we have ex-
trapolated to illustrate the possible divergence of the mass estimates
with and without significant non-thermal pressure.

At all scales in Fig. 5 the thermal pressure profile (solid line) is
consistent with the shaded region, showing that the mass profiles es-
timated by the X-rays and lensing mass are consistent. This suggests
that hydrostatic equilibrium is an acceptable approximation for our
stacked profiles, given the error in our lensing measurements.

We also see in Fig. 5 that the thermal pressure profile with a
non-thermal component (dashed line) enhances the hydrodynami-
cal mass by 20 per cent (10 per cent) in the T < 2.5 keV (T > 2.5 keV)
cluster bin, but is still seen to be consistent with our lensing mea-
surements. This shows that the non-thermal pressure expected from
simulations falls within our present observed errors’, if present
it acts in the opposite sense to chameleon gravity, reducing the
detectable signal.
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Chameleon gravity with clusters 1179

Figure 5. Mass profile from the T < 2.5 keV (T > 2.5 keV) cluster bin in blue (red). The shaded area is the 1σ allowed region from the weak lensing
measurement and the solid line is the thermal mass reconstructed from the X-rays. The dashed line shows the thermal mass with an additional non-thermal
component as discussed in the text. The vertical line is the upper extent of our X-ray data; to its right we have extrapolated the X-ray data.

With future X-ray measurements we will be able to fit out to a
larger distance, allowing us to better constrain the effect of non-
thermal pressure, which would be most prominent at large radii. We
also note that our weak lensing profiles have lower signal to noise
than the X-ray profiles; however, with future lensing surveys we will
be able to more accurately constrain these profiles also allowing us
to better characterize not only chameleon gravity but non-thermal
pressure too.

6 C O N C L U S I O N S

We have investigated the constraining power of stacked galaxy
cluster profiles for testing chameleon gravity. We have examined
58 X-ray-selected galaxy clusters, which have both good quality
weak lensing data from CFHTlenS and X-ray data from XCS.
After binning our clusters by X-ray temperature, we have gener-
ated weak lensing profiles and X-ray surface brightness profiles.
Chameleon gravity predicts an additional pressure existing within
clusters, which causes their gas component to become more com-
pressed than GR gravity predicts. We have therefore investigated
this phenomena by comparing the X-ray profile with the weak lens-
ing profile, which is unaffected by the fifth force. Using a mul-
tiparameter MCMC analysis we have obtained constraints on the
common chameleon parameters β and φ∞, which in turn lead to
constraints for |fR0|, a parameter charactering f(R) theories.

We find our results are competitive with other cosmological con-
straints on chameleon models. In particular, our constraints are an
order of magnitude stronger than those from the CMB (Raveri et al.
2014). They are comparable to Cataneo et al. (2014) which provides
|fR0| < 2.6 × 10−5 for n = 1, compared with our measurement of
|fR0| < 6 × 10−5, and |fR0| < 3.1 × 10−4 for n = 3 compared with
our measurement of |fR0| < 2 × 10−4, all at the 95 per cent CL. A
comparison of these constraints is shown in Table 1.

We examined the assumption of hydrostatic equilibrium by com-
paring the masses inferred from the X-ray observations with weak
lensing and found them to be consistent. Deviations from hydro-
static equilibrium would cause a disparity between the weak lensing
and X-rays with the opposite sign to that from the chameleon effect.

Table 1. Comparison of the constraints on
log10|fR0|.

Scale Scale log10|fR0|

Solar system pc −6
(Hu & Sawicki 2007)
Dwarf galaxies kpc −6.3
(Jain et al. 2013)
Coma cluster Mpc −4.2
(Terukina et al. 2014)
Cluster abundance Mpc −4.6 (n = 1)
(Cataneo et al. 2014) −3.5 (n = 3)
Cluster stack Mpc −4.2 (n = 1)
(This work) −3.7 (n = 3)
CMB Gpc −3.0
(Raveri et al. 2014)

We modelled a non-thermal pressure X-ray component, and given
current observational errors found this to be a subdominant effect
on our constraints.

As we are interested in the shape of the respective profiles, the ab-
solute mass of the stacked cluster, measured through both weak lens-
ing and X-rays, is a nuisance parameter which we have marginalized
over. We therefore are not sensitive to the relative biases between
these two techniques, such as reported in von der Linden et al.
(2014) and Hoekstra et al. (2015).

For the next generation of constraints via this method, we will
need detailed modified-gravity hydrodynamic simulations. These
will allow us to check a range of assumptions used in this analysis
such as hydrostaticity, non-thermal pressure, gas clumping in the
cluster outskirts, spherical symmetry and the reliability of the NFW
profile.

We find our constraint on |fR0| to be consistent with the literature,
and competitive at these cosmic scales and redshifts. We have there-
fore demonstrated that it is possible to constrain chameleon gravity
using stacked galaxy clusters; with the advent of wide-area lensing
surveys promising a much larger area, such as the Dark Energy Sur-
vey (DES; The Dark Energy Survey Collaboration 2005), the KIlo

MNRAS 452, 1171–1183 (2015)

 at H
iroshim

a U
niversity on D

ecem
ber 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
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Degree Survey (KIDS; de Jong et al. 2013), Euclid (Laureijs et al.
2011) and the Large Synoptic Survey Telescope (LSST; LSST Dark
Energy Science Collaboration 2012), it will become possible to use
stacks containing many more clusters to beat down systematics and
obtain stronger constraints.
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A P P E N D I X A : G O O D N E S S O F F I T

To characterize the goodness of fit of our profiles, we adopt the
following χ2 statistic

χ2(T I
0 , nI

0, b
I
1, r

I
1, M

I
200, c

I, T II
0 , nII

0 , bII
1 , r II

1 , M II
200,

cII, β2, φ∞,2) = χ I 2
WL + χ II 2

WL + χ I 2
SB + χ II 2

SB , (A1)

where we adopt the notation I, II to indicate the temperature bins
T < 2.5, T > 2.5, respectively, and

χ I 2
WL =

∑

i

(γ (r I
⊥,i) − γ obs,I

i )2

(σγ obs,I
i )2

, (A2)

χ II 2
WL =

∑

i

(γ (r II
⊥,i) − γ obs,II

i )2

(σγ obs,II
i )2

, (A3)

χ I 2
SB =

∑

i,j

(SB(r I
⊥,i) − Sobs,I

B,i )C−1
i,j (SB(r I

⊥,j) − Sobs,I
B,j ), (A4)

χ II 2
SB =

∑

i,j

(SB(r II
⊥,i) − Sobs,II

B,i )C−1
i,j (SB(r II

⊥,j) − Sobs,II
B,j ). (A5)

In the weak lensing case, we approximate the covariance matrix
as diagonal; we find strong leading diagonals for the measured
correlation matrices. For the surface brightness fits, we minimize
over the full covariance matrix due to the covariances that exist
between bins; here C is the error covariance matrix. Then γ (r⊥,i)
is the value of the lensing model at a distance r⊥ from the clus-
ters’ centre; likewise SB(r⊥,i) is the value of the surface brightness
model at a distance r⊥ from the clusters centre. γ obs

i , Sobs
B,i are the

observed shear profile and surface brightness profile, respectively,
while σγ obs

i is the observed error on the shear profile.

APPENDI X B: SOURCE LI ST

Table B1. Sample of the extended X-ray sources
in CFHTLenS footprint. The XCS name and po-
sition are listed for all clusters. Redshifts are pro-
vided where available. The clusters forming the
sample used throughout this work have a flag of
0 in the T < 2.5 keV bin and a flag of 1 in the
T > 2.5 keV bin. A flag of 2 denotes the source
was discounted for having no measured redshift.
A flag of 3 denotes the source was discounted for
having no measured X-ray temperature. The full
version of this table is provided via the online
edition of the article. An excerpt is provided to
illustrate form and content.

XCS name z Flag

XMMXCS J020045.8−064229.2 0.36 0
XMMXCS J020119.0−064954.6 0.33 0
XMMXCS J020232.1−073343.8 0.55 1
XMMXCS J020334.3−055049.5 2
XMMXCS J020359.1−055031.6 3
XMMXCS J020405.2−050142.5 2
XMMXCS J020428.5−070221.6 2
XMMXCS J020432.7−064449.4 2
XMMXCS J020514.7−045640.0 0.29 0
XMMXCS J020611.4−061129.2 0.88 1
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A PP EN D IX C : C LUSTER IMAG ES

Figure C1. A selection of optically confirmed clusters as imaged by CFHTLenS. False colour composite images are 3 arcmin × 3 arcmin. From left to
right and top to bottom, the compilation shows the clusters: XMMXCS J020119.0−064954.6 at z = 0.33; XMMXCS J021226.8−053734.6 at z = 0.31;
XMMXCS J021527.9−053319.2 at z = 0.28; XMMXCS J021843.7−053257.7 at z = 0.40; XMMXCS J022433.8−041433.7 at z = 0.39; and XMMXCS
J023142.2−045253.1 at z = 0.21. These clusters are included in our sample, flagged either with a 0 or 1 in Table B1. The remaining clusters in our compilation
have no measured redshift or temperature and are flagged with a 2 or 3 in Table B1. Continuing onwards these clusters are: XMMXCSJ021517.1−0.60432.8,
XMMXCSJ022359.2−083543.4 and XMMXCSJ141446.9+544709.1.
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A P P E N D I X D : 2 D C O N TO U R S

Figure D1. The 95 per cent (dark grey region) and the 99 per cent CL (mid-grey region) 2D marginalized contours for the 14 model parameters T I
0 (keV), nI

0
(10−2cm−3), bI

1, r
I
1 (Mpc), M I

200 (1014 M�), cI, T II
0 (keV), nII

0 (10−2cm−3), bII
1 , r II

1 (Mpc), M II
200 (1014 M�), cII, β2, φ∞,2 used in our MCMC analysis. The

rightmost plots show the 1D likelihood distributions.
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