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ABSTRACT. We work over an algebraically closed field k of positive characteristic p.
Let q be a power of p. Let A be an (n + 1) × (n + 1) matrix with coefficients aij in
k, and let XA be a hypersurface of degree q + 1 in the projective space Pn defined by∑

aijxix
q
j = 0. It is well-known that if the rank of A is n + 1, the hypersurface XA

is projectively isomorphic to the Fermat hypersuface of degree q + 1. We investigate the
hypersurfaces XA when the rank of A is n, and determine their projective isomorphism
classes.

1. INTRODUCTION

We work over an algebraically closed field k of positive characteristic p. Let q be a
power of p. Let n be a positive integer. We denote by Mn+1(k) the set of square matrices
of size n + 1 with coefficients in k. For a nonzero matrix A = (aij)0≤i,j≤n ∈ Mn+1(k),
we denote by XA the hypersurface of degree q + 1 defined by the equation∑

aijxix
q
j = 0

in the projective space Pn with homogeneous coordinates (x0, x1, . . . , xn). The following
is well-known ( [2], [10], [14], see also §4 of this paper).

Proposition 1.1. Let A = (aij)0≤i,j≤n ∈Mn+1(k) and XA ⊂ Pn be as above. Then the
following conditions are equivalent:

(i) rank(A) = n+ 1,

(ii) XA is smooth,
(iii) XA is isomorphic to the Fermat hypersurface of degree q + 1, and
(iv) there exists a linear transformation of coordinates T ∈ GLn+1(k) such that

tTAT (q) = In+1, where tT is the transpose of T , T (q) is the matrix obtained
from T by raising each coefficient to its q-th power, and In+1 is the identity ma-
trix.

The Fermat hypersurface of degree q + 1 defined over an algebraically closed field of
positive characteristic p has been a subject of numerous papers. It has many interesting
properties, such as supersingularity ( [15], [16], [17]), or unirationality ( [13], [15], [16]).
Moreover, the hypersurface XA associated with the matrix A with coefficients aij in the
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finite field Fq2 , which is called a Hermitian variety, has also been studied for many appli-
cations, such as coding theory ( [8]). (The general results on Hermitian varieties are due
to Segre [11]; see also [6]). Therefore it is important to extend these studies to degenerate
cases.

In the case where characteristic p ̸= 2, the following is well-known and can be found in
any standard textbook on quadratic forms: the hypersurface defined by the quadratic form∑
aijxixj = 0 is projectively isomorphic to the hypersurface defined by

x20 + · · ·+ x2r−1 = 0,

where r is the rank of A = (aij). This result has been extended the case of characteristic
2 (see [3]). Therefore we have a question what is the normal form of the hypersurfaces
defined by a form

∑
aijxix

q
j = 0. When A satisfies tA = A(q) and hence this form is the

Hermitian form over Fq , the hypersurface XA is projectively isomorphic over Fq2 to

xq+1
0 + · · ·+ xq+1

r−1 = 0,

where r is the rank of A ( [5]).
In this paper, we classify the hypersurfaces XA associated with the matrices A of rank

n over an algebraically closed field. Note that two hypersurfaces XA, XA′ associated
with the matrices A,A′ are projectively isomorphic if and only if there exists a linear
transformation T ∈ GLn+1(k) such that A′ = tTAT (q). In this case, we denote A ∼ A′.

We define Is to be the s× s identity matrix, and Er to be the r × r matrix
0 0 · · · 0

1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 .

In particular, E1 = (0) and E0 is the 0 × 0 matrix. Throughout this paper, a blank in a
block decomposition of a matrix means that all the components of the block are 0. Our
main result is as follow.

Theorem 1.2. Let A = (aij)0≤i,j≤n be a nonzero matrix in Mn+1(k), and let XA be
the hypersurface of degree q + 1 defined by

∑
aijxix

q
j = 0 in the projective space Pn

with homogeneous coordinates (x0, x1, . . . , xn). Suppose that the rank of A is n. Then
the hypersurface XA is projectively isomorphic to one of the hypersurfaces Xs associated
with the matrices

Ws =

(
Is

En−s+1

)
,

where 0 ≤ s ≤ n. Moreover, if s ̸= s′, then Xs and Xs′ are not projectively isomorphic.

Corollary 1.3. IfA is a general point of {A ∈Mn+1(k)| rank(A) = n}, thenA ∼Wn−1.

Corollary 1.4. Suppose that n ≥ 2, s < n and (n, s) ̸= (2, 0). Then Xs is rational.
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We also determine the automorphism group

Aut(Xs) = {g ∈ PGLn+1(k) | g(Xs) = Xs},

of the hypersurfaceXs for each s. ForM ∈ GLn+1(k), we denote by [M ] ∈ PGLn+1(k)

the image of M by the natural projection.

Theorem 1.5. Let Xs be the hypersurface associated with the matrix Ws in the projective
space Pn. The projective automorphism group Aut(Xs) with s ≤ n − 2 is the group
consisting of [M ], with

M =

 T ta 0

0 d 0

c e 1

 ,

where T ∈ GLn−1(k), a, c are row vectors of dimension n − 1, and d, e ∈ k, and they
satisfy the following conditions:

(i) [T ] ∈ Aut(Xn−2
s ), tTW ′

sT
(q) = δW ′

s, δ = δq ̸= 0, where Xn−2
s is the hypersur-

face defined in Pn−2 by the matrix

W ′
s =

(
Is

En−s−1

)
(ii) d = δ,

(iii) [aW ′
s + d(0, · · · , 0, 1)] · T (q) = δ(0, · · · , 0, 1),

(iv) tTW ′
s · ta(q) + tcdq = 0,

(v) [aW ′
s + d(0, · · · , 0, 1)] · ta(q) + edq = 0.

Moreover, we have

Aut(Xn) =

{[
Tn

u 1

] ∣∣∣∣∣ tTnT
(q)
n = λIn, Tn ∈ GLn(k), λ ̸= 0,

u is a row vector of dimension n

}
,

and

Aut(Xn−1) =


 Tn−1

β

1

 ∣∣∣∣∣ tTn−1T
(q)
n−1 = βqIn−1,

Tn−1 ∈ GLn−1(k), 0 ̸= β ∈ k


We give a brief outline of our paper. In §2, we prove Theorem 1.2 and its corollaries.

In §3, we prove Theorem 1.5. In §4, we recall the proof of Proposition 1.1 because this
proposition plays an important role in the proof of Theorem 1.2. In §5, we investigate the
plane curve XA associated with the matrix A of rank ≤ 2 in the projective plane P2, and
recover Homma’s unpublished work [9] (see Remark 5.2).

2. PROOFS OF THEOREM 1.2 AND ITS COROLLARIES

We present several preliminary lemmas. The following remark may be helpful in read-
ing the proof of lemmas.
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Remark 2.1. Let

T =


t00 · · · t0n
...

...
tn0 · · · tnn


be an invertible matrix. Suppose that

∑
aijxix

q
j = 0 is the equation associated to the

matrix A = (aij)0≤i,j≤n. Then the operation

A 7→t TAT (q)

on the matrix is equivalent to the transformation of the coordinates

xi 7→
n∑

j=0

tijxj ,

where 0 ≤ i ≤ n.

Lemma 2.2. Put

Gs,r =



Is

Er

a 0 · · · 0 1

0 0
...

... En−s−r+1

0 0


,

and

Gs,r+2 =



Is

Er+2

a(q
2) 0 · · · 0 1

0 0
...

... En−s−r−1

0 0


,

where s ≥ 1, r ≥ 0, n−s−r−1 ≥ 0, and a is a nonzero row vector of dimension s. Then

Gs,r ∼ Gs,r+2.

Proof. By the transformation

TG =


Is −ta

Ir

1

a(q) 1

In−s−r−1

 ,

we have
tTGGs,rT

(q)
G = Gs,r+2.

□



DEGENERATION OF FERMAT HYPERSURFACES IN POSITIVE CHARACTERISTIC 5

Remark 2.3. Lemma 2.2 holds when r = 0 or n − s − r − 1 = 0. In particular, when
n− s− r − 1 = 0, we have Gs,r+2 =Ws.

Lemma 2.4. Put

Hs,r =



Ds−1 −ta′′ 0 · · · 0
−a′

0
... Er

0

0 · · · 0 1 1

1

0
... En−s−r+1

0



,

where s ≥ 1, r ≥ 2, n − s − r − 1 ≥ 1, Ds−1 ∈ Ms−1(k), a′ and a′′ are row vectors of
dimension s− 1. Then

Hs,r ∼ Hs,r+2.

Proof. By the transformation

TH =


Is+r−1

1

−1 1 1

1

In−s−r−1

 ,

we have

tTHHs,rT
(q)
H = Hs,r+2.

□
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Lemma 2.5. Put

H ′
s,r =



Ds−1

−a′ 0

1

0
... Er

0

0 · · · 0 1 0 1

1 0

1

0
... En−s−r−1

0



,

where s ≥ 1, r ≥ 2, n − s − r − 3 ≥ 1, Ds−1 ∈ Ms−1(k), and a′ is a row vector of
dimension s− 1. Then

H ′
s,r ∼ H ′

s,r+2.

Proof. By the transformation

TH′ =



Is+r

1

1 1

−1 1

1

In−s−r−3


,

we have
tTH′H ′

s,rT
(q)
H′ = H ′

s,r+2.

□

Remark 2.6. Lemma 2.4 and 2.5 will be used only in the case where n−s+1 is odd. Hence
we do not need to prove the case n− s− 1 = 0 in Lemma 2.4 nor the case n− s− 3 = 0

in Lemma 2.5.

Lemma 2.7. Put

Ps =



Is

a

0
... En−s+1

0


,

where s ≥ 1, n− s+ 1 ≥ 1, and a is a nonzero row vector of dimension s. Then

(1) If n− s+ 1 is even, then Ps ∼Ws.
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(2) If n− s+ 1 is odd, then

Ps ∼ Bs−1 =



Ds−1

bs−1

0
... En−s+2

0


,

where Ds−1 ∈Ms−1(k), bs−1 is the row vector of dimension s−1. In particular, if s = 1

and n is odd, then P1 ∼W0.

Proof. (1) Suppose that n− s+ 1 is even. Using Lemma 2.2 and Remark 2.3, we have

Ps = Gs,0 ∼ Gs,n−s+1 =Ws.

(2) Next suppose that n− s+1 is odd. By interchanging the coordinates x0, · · · , xs−1,
and scalar multiplication of the coordinates xs, · · · , xn if nessesary, we can show that

Ps ∼ P ′
s =



Is−1

1

a′ 1 0

1

0
... En−s

0


,

with a′ being a row vector of dimension s− 1. By the transformation

T1 =


Is−1

−a′′ 1

1

In−s

 ,

with a′′(q) = a′, we have

Qs =
tT1P

′
sT

(q)
1 =



Ds−1 −ta′′

−a′ 1

1 0

1

0
... En−s

0


,

where Ds−1 = Is−1 +
ta′′ · a′. If n− s+ 1 = 1, by the transformation

T2 =

 In−1

1

a′′ −1 1

 ,
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we have
tT2QnT

(q)
2 = Bn−1.

Suppose that n − s + 1 > 1. Note that, since we are in the case where n − s + 1 is odd,
we have n− s+ 1 ≥ 3. By the transformation

T3 =


Is−1

1

−1 1 1

1

In−s−1

 ,

we have

Q′
s =

tT3QsT
(q)
3 =



Ds−1 −ta′′

−a′ 0

1 0

1 1

1

0
... En−s−1

0


= Hs,2.

Using Lemma 2.4, we have

Q′
s = Hs,2 ∼ Hs,n−s = Q′′

s =



Ds−1 −ta′′ 0 · · · 0
−a′

0
... En−s

0

0 · · · 0 1 1

1 0


.

Then by the transformation

T4 =

 In−1

1

−1 1

 ,

we have

Rs =
tT4Q

′′
sT

(q)
4 =



Ds−1 −ta′′ 0 · · · 0
−a′

0
... En−s+2

0


.
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If s = 1, R1 ∼W0. Suppose that s > 1. By the transformation

T5 =


Is−1

1 1

a′′ 1

1

In−s−1

 ,

we obtain

R′
s =

tT5RsT
(q)
5 =



Ds−1

−a′ 0

1 0 1

1 0

1

0
... En−s−1

0


.

If n− s− 1 = 1, by the tranformation

T6 =


In−2

1

1

−1 1

 ,

we have

tT6R
′
n−2T

(q)
6 = Bn−3.

Suppose that n− s− 1 > 1. Then by the transformation

T7 =



Is

1

1 1

−1 1

1

In−s−3


,
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we have

R′′
s = tT7R

′
sT

(q)
7 =



Ds−1

−a′ 0

1

0 E2

0 1 0 1

1 0

1

0
... En−s−3

0



= H ′
s,2.

Using Lemma 2.5, we have

R′′
s = H ′

s,2 ∼ H ′
s,n−s−2 = R′′′

s =



Ds−1

−a′ 0

1

0
... En−s−2

0

0 · · · 0 1 0 1

1 0

1 0


.

It is easy to see that

tT6R
′′′
s T

(q)
6 = Bs−1.

□

Lemma 2.8. Put

Bs =



Ds

bs

0
... En−s+1

0


,

where s ≥ 1, n−s+1 ≥ 1, Ds ∈Ms(k), and bs is a row vector of dimension s. Suppose
that the rank of Bs is n. Then

Bs ∼Ws =

(
Is

En−s+1

)
,
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or

Bs ∼ Bs−1 =



Ds−1

bs−1

0
... En−s+2

0


,

where Ds−1 ∈Ms−1(k), and bs−1 is a row vector of dimension s− 1.

Proof. Suppose that detDs ̸= 0. By Proposition 1.1, there exists a linear transformation
of coordinates TD ∈ GLs(k) such that tTDDsT

(q)
D = Is. By the transformation

T =

(
TD

In−s+1

)
,

we have

tTBsT
(q) =



Is

b′
s

0
... En−s+1

0


,

where b′
s = bsT

(q)
D . If b′

s = 0, then Bs ∼ Ws. Suppose that b′
s ̸= 0. By Lemma 2.7, we

have Bs ∼Ws, or Bs ∼ Bs−1.
Suppose that detDs = 0. Then one row of the matrix Ds is a linear combination of the

other rows. By interchanging coordinates x0, · · · , xs−1 if nessesary, we can assume that
the s-th row is a linear combination of the other rows. We write the matrix Ds as

Ds =

(
P tg

h d

)
,

where P ∈ Ms−1(k), g,h are row vectors of dimension s − 1, d ∈ k , and that satisfy
h = wP, d = wtg with w being a row vector of dimension s− 1. Then

Bs ∼ B′
s =



P tg

h d

f e

0 0
...

... En−s+1

0 0


,

where f is a row vector of dimension s− 1, and e ∈ k. By the tranformation

T ′ =

 Is−1 −tw

1

In−s+1

 ,
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we obtain

B′′
s = tT ′B′

sT
′(q) =



P −P · tw(q) + tg

f −f · tw(q) + e

0 0
...

... En−s+1

0 0


.

Put

Q =

(
P −P · tw(q) + tg

f −f · tw(q) + e

)
.

Because the rank ofB′
s is n, we have detQ ̸= 0. LetQ′ ∈ GLs(k) such thatQQ′(q) = Is,

Q′ =

(
P ′ tg′

f ′ e′

)
,

where P ′ ∈ Ms−1(k), g′, f ′ are row vectors of dimension s − 1, e′ ∈ k. By the transfor-
mation

T ′′ =

 P ′ tg′

f ′ e′

In−s+1

 ,

we obtain

tT ′′B′′
s T

′′(q) =



tP ′

g′ 0

1

0
... En−s+1

0


.

Putting Ds−1 = tP ′ and bs−1 = g′, we have B′′
s ∼ Bs−1. □

Remark 2.9. When s = 1, we have

Bs−1 = B0 = En+1 =W0.

Now we prove Theorem 1.2 and Corollary 1.3.

Proof. Because the rank of the matrixA is n, Proposition 1.1 implies that the hypersurface
XA is singular. By using a linear transformation of coordinates if nessesary, we can assume
that XA has a singular point (0, · · · , 0, 1). Then we have ain = 0 for any 0 ≤ i ≤ n. The
matrix A is now of the form

A =

(
Dn

bn

)
= Bn,
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where Dn ∈Mn(k), and bn is a row vector of dimension n. Using Lemma 2.8 repeatedly
and Remark 2.9, we have that the hypersurface XA is isomorphic to one of the hypersur-
faces defined by the matrixes Ws with 0 ≤ s ≤ n.

If A is general, then det(Dn) ̸= 0, and hence by the first paragraph of the proof of
Lemma 2.8 and Lemma 2.7, we have A ∼Wn−1.

Next we prove that s ̸= s′ implies Ws ̸∼Ws′ . For this, we introduce some notions. Let
Xn

s be the hypersurface defined by the matrix Ws in the projective space Pn. The defining
equation of Xn

s can be written as

Fqxn + Fq+1 = 0,

where

Fq =

0 if s = n

xqn−1 if s < n,

and

Fq+1 =

x
q+1
0 + · · ·+ xq+1

n−1 if s = n

xq+1
0 + · · ·+ xq+1

s−1 + xqsxs+1 + · · ·+ xqn−2xn−1 if s < n.

It is easy to see that Xn
s has only one singular point P0 = (0, · · · , 0, 1). The variety of

lines in Pn passing through P0 can be naturally identified with the hypersurface H∞ =

{xn = 0} in Pn by the correspondence Q ∈ H∞ to the line QP0. Let φ be the map
defined by

φ : Pn \ {P0} −→ Pn−1

P 7−→ PP0.

Let Xn
s = φ(Xn

s \ {P0}). For Q = (y0, · · · , yn−1, 0) ∈ H∞, we consider the line

l = QP0 = {(λy0, · · · , λyn−1, µ) | (λ, µ) ∈ P1}.

We have l ∈ Xn
s if and only if there exists P = (p0, · · · , pn−1, pn) ∈ Xn

s \{P0} satisfying
P ∈ l, i.e. there exists an element µ ∈ k such that

(p0, · · · , pn−1, pn) = (y0, · · · , yn−1, µ),

for some P ∈ Xn
s \ {P0}, or equivalently there exists an element µ ∈ k such that

Fq(y0, · · · , yn−1)µ+ Fq+1(y0, · · · , yn−1) = 0.

Then

φ−1(l) ∩ (Xn
s \ {P0}) =



∅ if Fq(y0, . . . , yn−1) = 0 and
Fq+1(y0, . . . , yn−1) ̸= 0,

{a single point} if Fq(y0, . . . , yn−1) ̸= 0,

l \ {P0} if Fq(y0, . . . , yn−1) = 0 and
Fq+1(y0, . . . , yn−1) = 0.
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Putting Vs = {Fq = 0, Fq+1 = 0} ⊂ Pn−1, and Hs = {Fq = 0} ⊂ Pn−1, we have

Vs =


Xn−2

s if s ≤ n− 2,

nonsingular Fermat hypersurface in Pn−1 if s = n,

nonsingular Fermat hypersurface in Pn−2 if s = n− 1,

where Xn−2
s is the hypersurface in Pn−2 associated with the matrix(

Is

En−s−1

)
.

For any s ̸= s′, suppose that Xn
s and Xn

s′ are isomorphic and let ψ : Xn
s −→ Xn

s′ be
an isomorphism. Because each of Xn

s and Xn
s′ has only one singular point P0, we have

ψ(P0) = P0, and hence ψ induces an isomorphism ψ fromXn
s toXn

s′ . For any line l ∈ Xn
s

and l′ ∈ Xn
s′ such that ψ(l) = l′, we have

♯(φ−1(l) ∩ (Xn
s \ {P0})) = ♯(φ−1(l′) ∩ (Xn

s′ \ {P0})).

Thus Vs ∼= Vs′ and Hs
∼= Hs′ . Hence for any s ̸= s′, if Vs ̸∼= Vs′ or Hs ̸∼= Hs′ then

Xn
s ̸∼= Xn

s′ .
In the case n = 1, we have that X1

0 consists of two points, and X1
1 consists of a single

point. In the case n = 2, we have that X2
0 consists of two irreducible components, X2

1 is
irreducible, and X2

2 consists of (q + 1) lines. Hence, in the case n = 1 and n = 2, we see
that s ̸= s′ implies Ws ̸∼Ws′ . By induction on n, we have the proof. □

Next we prove Corollary 1.4.

Proof. Under the condition n ≥ 2, s < n and (n, s) ̸= (2, 0), we have xn−1 does not
divide Fq+1, and hence Vs is of codimension 2 in Pn−1. By induction on n, Xn

s is irre-
ducible. The morphism

φ|Xn
s \{P0} : Xn

s \ {P0} −→ H∞ ∼= Pn−1

is birational with the inverse rational map

Q = (y0, · · · , yn−1, 0) 7−→
(
y0, · · · , yn−1,−

Fq+1(y0, · · · , yn−1)

yqn−1

)
.

□

3. PROOF OF THEOREM 1.5

For any s ≤ n− 2, the matrix Ws can be written

Ws =

 W ′
s

0 · · · 0 1 0

1 0

 .
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For any g ∈ Aut(Xs), we have g(P0) = P0 because Xs has only one singular point
P0 = (0, · · · , 0, 1). The automorphism g is defined by a matrix of the form

M =

 T ta 0

b d 0

c e 1

 ,

where T ∈ Mn−1(k), a,b, c are row vectors of dimension n − 1, d, e ∈ k. We have
tMWsM

(q) = δWs for some 0 ̸= δ ∈ k implies

tTW ′
sT

(q) = δW ′
s(1)

[aW ′
s + d(0, · · · , 0, 1)] · T (q) = δ(0, · · · , 0, 1)(2)

tTW ′
s · ta(q) + tcdq = 0(3)

[aW ′
s + d(0, · · · , 0, 1)] · ta(a) + edq = 0(4)

b = 0(5)

dq = δ(6)

By (1), we see that T is a matrix defining an automorphism of Xn−2
s in Pn−2. Because

s ≤ n− 2, by (2) we have d = δ. Hence we can calculate T by induction on n. The vector
a, c and d, e can be find by using the equations (2)-(6). Conversely, it is easy to show that
if the matrix M satifies the conditions (i)-(v) then it define a projective automorphism of
Xs. The projective automorphism group of Xn and Xn−1 is easy to calculate. □

4. PROOF OF PROPOSTION 1.1

For the reader’s convenience, we give a proof of Proposition 1.1, which is based on
the argument of [12], chapter VI. The implications (iv)⇒(iii)⇒(ii)⇒(i) are clear. We will
prove (i)⇒(iv). For B ∈ GLn+1(k), consider the map fB defined by

fB : GLn+1(k) −→ GLn+1(k)

T 7−→ tTBT (q).

Because the differential of the Frobenius map F : T 7−→ T (q) is identically zero, we can
deduce that

d(fB) = d(tT )BT (q).

Therefore, the tangent map of fB is surjective for any B ∈ GLn+1(k). Hence, fB is
generically surjective, and the image of fB contains a non-empty open subsetUB . LetA be
any matrix ofMn+1(k) such that the hypersurfaceXA is nonsingular, i.e. A ∈ GLn+1(k).
BecauseGLn+1(k) is irreducible, we have UA∩UI ̸= ∅, where I is identity matrix of size
n+1. There exist T1, T2 ∈ GLm(k) such that fA(T1) = fI(T2). Putting T = T1T

−1
2 , we

have tTAT (q) = I . □



16 THANH HOAI HOANG

5. THE CASE OF PLANE CURVES

Next we will study the plane curves XA associated with matrices A of rank ≤ 2 in the
projective plane P2.

Theorem 5.1. Let A = (aij)0≤i,j≤2 ∈ M3(k) be a nonzero matrix and let XA be the
curve defined by

∑
aijxix

q
j = 0 in P2. Suppose that the rank of A is smaller than 3.

(i) When the rank of A is 1, the curve XA is projectively isomorphic to one of the
following curves

Z0 : xq+1
0 = 0, or Z1 : xq0x1 = 0.

(ii) When the rank of A is 2, the curve XA is projectively isomorphic to one of the
following curves

X0 : xq0x1 + xq1x2 = 0, or X1 : xq+1
0 + xq1x2 = 0, or X2 : xq+1

0 + xq+1
1 = 0.

Proof. In the case the rank of A is 2. By Theorem 1.2, the plane curve XA is projectively
isomorphic to one of the plane curves X0, or X1, or X2.

In the case rank of A is 1. With the same argument of the proof of Theorem 1.2, we can
assume that the matrix A is as following form

A =

 a00 a01 0

a10 a11 0

a20 a21 0

 .

By interchanging with x0 and x1 if nessesary, we can assume that (a01, a11, a21) ̸=
(0, 0, 0). Because rank ofA is 1, there exists λ ∈ k such that (a00, a10, a20) = λ(a01, a11, a21).
The curve XA is defined by the equation

(a00x0 + a10x1 + a20x2)(x
q
0 + λxq1) = 0.

It is easy to show that XA is projectively isomorphic to the curve Z0 or Z1. □

Remark 5.2. In fact, the case when the plane curve XA of degree p+ 1 has been proved
by Homma in [9].

Note that the plane curve X1 has a special property such that the tangent line of X1

at every smooth point passes through the point (0, 1, 0). Therefore the plane curve X1 is
strange. Moreover this curve is irreducible and nonreflexive. In [1], Ballico and Hefez
proved that a reduced irreducible nonreflexive plane curve of degree q+1 is isomorphic to
one of the following curves:

(1) XI : xq+1
0 + xq+1

1 + xq+1
2 = 0,

(2) a nodal curve whose defining equation is given in [4] and [7],
(3) strange curves.

Let L be the space of all reduced irreducible projective plane curves of degree q + 1,
which is open in the space P ∼= P(

q+3
2 ) of all projective plane curves of degree q + 1.
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Let L∗ be the locus of P consisting of curves isomorphic to XI , and let L1 be the lo-
cus of P consisting of strange curves. Let (ξJ) be the homogeneous coordinates of P
where J = (j0, j1, j2) ranges over the set of all ordered triples on non-negative integer
such that j0 + j1 + j2 = q + 1. The point (ξJ ) corresponds to the curve

∑
ξJx

J = 0

where xJ = xj00 x
j1
1 x

j2
2 . Then the locus of all curves defined by the equation of the form∑

aijxix
q
j = 0 is the linear subspace of P defined by ξJ = 0, unless J ∈ {(q +

1, 0, 0), (0, q + 1, 0), (0, 0, q + 1), (q, 1, 0), (q, 0, 1), (1, q, 0), (1, 0, q), (0, q, 1), (0, 1, q)}.
By Theorem 5.1, we have that because Z0, Z1, X0, X2 are reducible, the closure L∗ of
L∗ in L consists of curves isomorphic to XI or to X1, and the intersection of L∗ and L1

consist of curves isomorphic to X1.
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