DEGENERATION OF FERMAT HYPERSURFACES IN POSITIVE CHARACTERISTIC

THANH HOAI HOANG

Abstract

We work over an algebraically closed field k of positive characteristic p. Let q be a power of p. Let A be an $(n+1) \times(n+1)$ matrix with coefficients $a_{i j}$ in k, and let X_{A} be a hypersurface of degree $q+1$ in the projective space \mathbb{P}^{n} defined by $\sum a_{i j} x_{i} x_{j}^{q}=0$. It is well-known that if the rank of A is $n+1$, the hypersurface X_{A} is projectively isomorphic to the Fermat hypersuface of degree $q+1$. We investigate the hypersurfaces X_{A} when the rank of A is n, and determine their projective isomorphism classes.

1. Introduction

We work over an algebraically closed field k of positive characteristic p. Let q be a power of p. Let n be a positive integer. We denote by $M_{n+1}(k)$ the set of square matrices of size $n+1$ with coefficients in k. For a nonzero matrix $A=\left(a_{i j}\right)_{0 \leq i, j \leq n} \in M_{n+1}(k)$, we denote by X_{A} the hypersurface of degree $q+1$ defined by the equation

$$
\sum a_{i j} x_{i} x_{j}^{q}=0
$$

in the projective space \mathbb{P}^{n} with homogeneous coordinates $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. The following is well-known ([2], [10], [14], see also $\S 4$ of this paper).

Proposition 1.1. Let $A=\left(a_{i j}\right)_{0 \leq i, j \leq n} \in M_{n+1}(k)$ and $X_{A} \subset \mathbb{P}^{n}$ be as above. Then the following conditions are equivalent:
(i) $\operatorname{rank}(A)=n+1$,
(ii) X_{A} is smooth,
(iii) X_{A} is isomorphic to the Fermat hypersurface of degree $q+1$, and
(iv) there exists a linear transformation of coordinates $T \in G L_{n+1}(k)$ such that ${ }^{t} T A T^{(q)}=I_{n+1}$, where ${ }^{t} T$ is the transpose of $T, T^{(q)}$ is the matrix obtained from T by raising each coefficient to its q-th power, and I_{n+1} is the identity matrix.

The Fermat hypersurface of degree $q+1$ defined over an algebraically closed field of positive characteristic p has been a subject of numerous papers. It has many interesting properties, such as supersingularity ([15], [16], [17]), or unirationality ([13], [15], [16]). Moreover, the hypersurface X_{A} associated with the matrix A with coefficients $a_{i j}$ in the

[^0]finite field $\mathbb{F}_{q^{2}}$, which is called a Hermitian variety, has also been studied for many applications, such as coding theory ([8]). (The general results on Hermitian varieties are due to Segre [11]; see also [6]). Therefore it is important to extend these studies to degenerate cases.

In the case where characteristic $p \neq 2$, the following is well-known and can be found in any standard textbook on quadratic forms: the hypersurface defined by the quadratic form $\sum a_{i j} x_{i} x_{j}=0$ is projectively isomorphic to the hypersurface defined by

$$
x_{0}^{2}+\cdots+x_{r-1}^{2}=0
$$

where r is the rank of $A=\left(a_{i j}\right)$. This result has been extended the case of characteristic 2 (see [3]). Therefore we have a question what is the normal form of the hypersurfaces defined by a form $\sum a_{i j} x_{i} x_{j}^{q}=0$. When A satisfies ${ }^{t} A=A^{(q)}$ and hence this form is the Hermitian form over \mathbb{F}_{q}, the hypersurface X_{A} is projectively isomorphic over $\mathbb{F}_{q^{2}}$ to

$$
x_{0}^{q+1}+\cdots+x_{r-1}^{q+1}=0
$$

where r is the rank of A ([5]).
In this paper, we classify the hypersurfaces X_{A} associated with the matrices A of rank n over an algebraically closed field. Note that two hypersurfaces $X_{A}, X_{A^{\prime}}$ associated with the matrices A, A^{\prime} are projectively isomorphic if and only if there exists a linear transformation $T \in G L_{n+1}(k)$ such that $A^{\prime}={ }^{t} T A T^{(q)}$. In this case, we denote $A \sim A^{\prime}$.

We define I_{s} to be the $s \times s$ identity matrix, and E_{r} to be the $r \times r$ matrix

$$
\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right)
$$

In particular, $E_{1}=(0)$ and E_{0} is the 0×0 matrix. Throughout this paper, a blank in a block decomposition of a matrix means that all the components of the block are 0 . Our main result is as follow.

Theorem 1.2. Let $A=\left(a_{i j}\right)_{0 \leq i, j \leq n}$ be a nonzero matrix in $M_{n+1}(k)$, and let X_{A} be the hypersurface of degree $q+1$ defined by $\sum a_{i j} x_{i} x_{j}^{q}=0$ in the projective space \mathbb{P}^{n} with homogeneous coordinates $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. Suppose that the rank of A is n. Then the hypersurface X_{A} is projectively isomorphic to one of the hypersurfaces X_{s} associated with the matrices

$$
W_{s}=\left(\begin{array}{c|c}
I_{s} & \\
\hline & E_{n-s+1}
\end{array}\right)
$$

where $0 \leq s \leq n$. Moreover, if $s \neq s^{\prime}$, then X_{s} and $X_{s^{\prime}}$ are not projectively isomorphic.
Corollary 1.3. If A is a general point of $\left\{A \in M_{n+1}(k) \mid \operatorname{rank}(A)=n\right\}$, then $A \sim W_{n-1}$.
Corollary 1.4. Suppose that $n \geq 2, s<n$ and $(n, s) \neq(2,0)$. Then X_{s} is rational.

We also determine the automorphism group

$$
\operatorname{Aut}\left(X_{s}\right)=\left\{g \in P G L_{n+1}(k) \mid g\left(X_{s}\right)=X_{s}\right\}
$$

of the hypersurface X_{s} for each s. For $M \in G L_{n+1}(k)$, we denote by $[M] \in P G L_{n+1}(k)$ the image of M by the natural projection.

Theorem 1.5. Let X_{s} be the hypersurface associated with the matrix W_{s} in the projective space \mathbb{P}^{n}. The projective automorphism group $\operatorname{Aut}\left(X_{s}\right)$ with $s \leq n-2$ is the group consisting of $[M]$, with

$$
M=\left(\begin{array}{c|c|c}
T & { }^{t} \mathbf{a} & 0 \\
\hline 0 & d & 0 \\
\hline \mathbf{c} & e & 1
\end{array}\right),
$$

where $T \in G L_{n-1}(k)$, a, \mathbf{c} are row vectors of dimension $n-1$, and $d, e \in k$, and they satisfy the following conditions:
(i) $[T] \in \operatorname{Aut}\left(X_{s}^{n-2}\right),{ }^{t} T W_{s}^{\prime} T^{(q)}=\delta W_{s}^{\prime}, \delta=\delta^{q} \neq 0$, where X_{s}^{n-2} is the hypersurface defined in \mathbb{P}^{n-2} by the matrix

$$
W_{s}^{\prime}=\left(\begin{array}{l|l}
I_{s} & \\
\hline & E_{n-s-1}
\end{array}\right)
$$

(ii) $d=\delta$,
(iii) $\left[\mathbf{a} W_{s}^{\prime}+d(0, \cdots, 0,1)\right] \cdot T^{(q)}=\delta(0, \cdots, 0,1)$,
(iv) ${ }^{t} T W_{s}^{\prime} \cdot{ }^{t} \mathbf{a}^{(q)}+{ }^{t} \mathbf{c} d^{q}=0$,
(v) $\left[\mathbf{a} W_{s}^{\prime}+d(0, \cdots, 0,1)\right] \cdot{ }^{t} \mathbf{a}^{(q)}+e d^{q}=0$.

Moreover, we have

$$
\operatorname{Aut}\left(X_{n}\right)=\left\{\left[\begin{array}{l|l}
T_{n} & \\
\hline \mathbf{u} & 1
\end{array}\right] \left\lvert\, \begin{array}{l}
{ }^{t} T_{n} T_{n}^{(q)}=\lambda I_{n}, T_{n} \in G L_{n}(k), \lambda \neq 0 \\
\mathbf{u} \text { is a row vector of dimension } n
\end{array}\right.\right\}
$$

and

$$
\operatorname{Aut}\left(X_{n-1}\right)=\left\{\left[\begin{array}{l|l|l}
T_{n-1} & & \\
\hline & \beta & \\
\hline & & 1
\end{array}\right] \left\lvert\, \begin{array}{l}
{ }^{t} T_{n-1} T_{n-1}^{(q)}=\beta^{q} I_{n-1}, \\
T_{n-1} \in G L_{n-1}(k), 0 \neq \beta \in k
\end{array}\right.\right\}
$$

We give a brief outline of our paper. In $\S 2$, we prove Theorem 1.2 and its corollaries. In $\S 3$, we prove Theorem 1.5. In $\S 4$, we recall the proof of Proposition 1.1 because this proposition plays an important role in the proof of Theorem 1.2. In $\S 5$, we investigate the plane curve X_{A} associated with the matrix A of rank ≤ 2 in the projective plane \mathbb{P}^{2}, and recover Homma's unpublished work [9] (see Remark 5.2).

2. Proofs of Theorem 1.2 and its corollaries

We present several preliminary lemmas. The following remark may be helpful in reading the proof of lemmas.

Remark 2.1. Let

$$
T=\left(\begin{array}{ccc}
t_{00} & \cdots & t_{0 n} \\
\vdots & & \vdots \\
t_{n 0} & \cdots & t_{n n}
\end{array}\right)
$$

be an invertible matrix. Suppose that $\sum a_{i j} x_{i} x_{j}^{q}=0$ is the equation associated to the matrix $A=\left(a_{i j}\right)_{0 \leq i, j \leq n}$. Then the operation

$$
A \mapsto^{t} T A T^{(q)}
$$

on the matrix is equivalent to the transformation of the coordinates

$$
x_{i} \mapsto \sum_{j=0}^{n} t_{i j} x_{j}
$$

where $0 \leq i \leq n$.
Lemma 2.2. Put

$$
G_{s, r}=\left(\begin{array}{c|c|c}
I_{s} & & \\
\hline & E_{r} & \\
\hline \mathbf{a} & 0 \cdots 01 & \\
0 & 0 & \\
\vdots & \vdots & E_{n-s-r+1} \\
0 & 0 &
\end{array}\right)
$$

and

$$
G_{s, r+2}=\left(\begin{array}{c|c|c}
I_{s} & & \\
\hline & E_{r+2} & \\
\hline \mathbf{a}^{\left(q^{2}\right)} & 0 \cdots 01 & \\
0 & 0 & \\
\vdots & \vdots & E_{n-s-r-1} \\
0 & 0 &
\end{array}\right)
$$

where $s \geq 1, r \geq 0, n-s-r-1 \geq 0$, and \mathbf{a} is a nonzero row vector of dimension s. Then

$$
G_{s, r} \sim G_{s, r+2}
$$

Proof. By the transformation

we have

$$
{ }^{t} T_{G} G_{s, r} T_{G}^{(q)}=G_{s, r+2}
$$

Remark 2.3. Lemma 2.2 holds when $r=0$ or $n-s-r-1=0$. In particular, when $n-s-r-1=0$, we have $G_{s, r+2}=W_{s}$.

Lemma 2.4. Put

$$
H_{s, r}=\left(\begin{array}{c|c|c|c}
D_{s-1} & -{ }^{t} \mathbf{a}^{\prime \prime} 0 \cdots 0 & & \\
\hline-\mathbf{a}^{\prime} & & & \\
0 & & & \\
\vdots & E_{r} & & \\
0 & & & \\
\hline & 0 \cdots 01 & 1 & \\
\hline & & 1 & \\
& & 0 & \\
& & \vdots & E_{n-s-r+1}
\end{array}\right),
$$

where $s \geq 1, r \geq 2, n-s-r-1 \geq 1, D_{s-1} \in M_{s-1}(k), \mathbf{a}^{\prime}$ and $\mathbf{a}^{\prime \prime}$ are row vectors of dimension $s-1$. Then

$$
H_{s, r} \sim H_{s, r+2}
$$

Proof. By the transformation
$T_{H}=\left(\begin{array}{c|c|c|c|c}I_{s+r-1} & & & & \\ \hline & 1 & & & \\ \hline & -1 & 1 & 1 & \\ \hline & & & 1 & \\ \hline & & & & I_{n-s-r-1}\end{array}\right)$,
we have

$$
{ }^{t} T_{H} H_{s, r} T_{H}^{(q)}=H_{s, r+2} .
$$

Lemma 2.5. Put

where $s \geq 1, r \geq 2, n-s-r-3 \geq 1, D_{s-1} \in M_{s-1}(k)$, and \mathbf{a}^{\prime} is a row vector of dimension $s-1$. Then

$$
H_{s, r}^{\prime} \sim H_{s, r+2}^{\prime}
$$

Proof. By the transformation
$T_{H^{\prime}}=\left(\begin{array}{l|l|l|l|l|l}I_{s+r} & & & & & \\ \hline & 1 & & & & \\ \hline & & 1 & & 1 & \\ \hline & -1 & & 1 & & \\ \hline & & & & 1 & \\ \hline & & & & & I_{n-s-r-3}\end{array}\right)$,
we have

$$
{ }^{t} T_{H^{\prime}} H_{s, r}^{\prime} T_{H^{\prime}}^{(q)}=H_{s, r+2}^{\prime}
$$

Remark 2.6. Lemma 2.4 and 2.5 will be used only in the case where $n-s+1$ is odd. Hence we do not need to prove the case $n-s-1=0$ in Lemma 2.4 nor the case $n-s-3=0$ in Lemma 2.5.

Lemma 2.7. Put

$$
P_{s}=\left(\begin{array}{c|c}
I_{s} & \\
\hline \mathbf{a} & \\
0 & \\
\vdots & E_{n-s+1} \\
0 &
\end{array}\right),
$$

where $s \geq 1, n-s+1 \geq 1$, and \mathbf{a} is a nonzero row vector of dimension s. Then
(1) If $n-s+1$ is even, then $P_{s} \sim W_{s}$.
(2) If $n-s+1$ is odd, then

$$
P_{s} \sim B_{s-1}=\left(\begin{array}{c|c}
D_{s-1} & \\
\hline \mathbf{b}_{s-1} & \\
0 & \\
\vdots & E_{n-s+2} \\
0 &
\end{array}\right)
$$

where $D_{s-1} \in M_{s-1}(k), \mathbf{b}_{s-1}$ is the row vector of dimension $s-1$. In particular, if $s=1$ and n is odd, then $P_{1} \sim W_{0}$.

Proof. (1) Suppose that $n-s+1$ is even. Using Lemma 2.2 and Remark 2.3, we have

$$
P_{s}=G_{s, 0} \sim G_{s, n-s+1}=W_{s} .
$$

(2) Next suppose that $n-s+1$ is odd. By interchanging the coordinates x_{0}, \cdots, x_{s-1}, and scalar multiplication of the coordinates x_{s}, \cdots, x_{n} if nessesary, we can show that

$$
P_{s} \sim P_{s}^{\prime}=\left(\begin{array}{c|c|c|c}
I_{s-1} & & & \\
\hline & 1 & & \\
\hline \mathbf{a}^{\prime} & 1 & 0 & \\
\hline & & 1 & \\
& & 0 & \\
& & \vdots & E_{n-s} \\
& & 0 &
\end{array}\right),
$$

with \mathbf{a}^{\prime} being a row vector of dimension $s-1$. By the transformation
$T_{1}=\left(\begin{array}{l|l|l|l}I_{s-1} & & & \\ \hline-\mathbf{a}^{\prime \prime} & 1 & & \\ \hline & & 1 & \\ \hline & & & I_{n-s}\end{array}\right)$,
with $\mathbf{a}^{\prime \prime(q)}=\mathbf{a}^{\prime}$, we have

$$
Q_{s}={ }^{t} T_{1} P_{s}^{\prime} T_{1}^{(q)}=\left(\begin{array}{c|c|c|c}
D_{s-1} & -{ }^{t} \mathbf{a}^{\prime \prime} & & \\
\hline-\mathbf{a}^{\prime} & 1 & & \\
\hline & 1 & 0 & \\
\hline & & 1 & \\
& & 0 & \\
& & \vdots & E_{n-s}
\end{array}\right),
$$

where $D_{s-1}=I_{s-1}+{ }^{t} \mathbf{a}^{\prime \prime} \cdot \mathbf{a}^{\prime}$. If $n-s+1=1$, by the transformation

$$
T_{2}=\left(\begin{array}{c|c|c}
I_{n-1} & & \\
\hline & 1 & \\
\hline \mathbf{a}^{\prime \prime} & -1 & 1
\end{array}\right),
$$

we have

$$
{ }^{t} T_{2} Q_{n} T_{2}^{(q)}=B_{n-1} .
$$

Suppose that $n-s+1>1$. Note that, since we are in the case where $n-s+1$ is odd, we have $n-s+1 \geq 3$. By the transformation

we have

$$
Q_{s}^{\prime}={ }^{t} T_{3} Q_{s} T_{3}^{(q)}=\left(\begin{array}{c|c|c|c|c}
D_{s-1} & -{ }^{t} \mathbf{a}^{\prime \prime} & & & \\
\hline-\mathbf{a}^{\prime} & 0 & & & \\
\hline & 1 & 0 & & \\
\hline & & 1 & 1 & \\
\hline & & & 1 & \\
& & & 0 & \\
& & & \vdots & E_{n-s-1}
\end{array}\right)=H_{s, 2} .
$$

Using Lemma 2.4, we have

$$
Q_{s}^{\prime}=H_{s, 2} \sim H_{s, n-s}=Q_{s}^{\prime \prime}=\left(\begin{array}{c|c|c|c}
\vdots & E_{n-s} & & \\
0 & & & \\
\hline & 0 \cdots 01 & 1 & \\
\hline & & 1 & 0
\end{array}\right) .
$$

Then by the transformation

$$
T_{4}=\left(\begin{array}{c|c|c}
I_{n-1} & & \\
\hline & 1 & \\
\hline & -1 & 1
\end{array}\right)
$$

we have

$$
R_{s}={ }^{t} T_{4} Q_{s}^{\prime \prime} T_{4}^{(q)}=\left(\begin{array}{c|c}
D_{s-1} & -{ }^{t} \mathbf{a}^{\prime \prime} 0 \cdots 0 \\
\hline-\mathbf{a}^{\prime} & \\
0 & \\
\vdots & E_{n-s+2} \\
0 &
\end{array}\right)
$$

If $s=1, R_{1} \sim W_{0}$. Suppose that $s>1$. By the transformation

we obtain

$$
R_{s}^{\prime}={ }^{t} T_{5} R_{s} T_{5}^{(q)}=\left(\begin{array}{c|c|c|c|c}
D_{s-1} & & & & \\
\hline-\mathbf{a}^{\prime} & 0 & & & \\
\hline & 1 & 0 & 1 & \\
\hline & & 1 & 0 & \\
\hline & & & 1 & \\
& & & 0 & \\
& & & \vdots & E_{n-s-1}
\end{array}\right) .
$$

If $n-s-1=1$, by the tranformation

$$
T_{6}=\left(\begin{array}{c|c|c|c}
I_{n-2} & & & \\
\hline & 1 & & \\
\hline & & 1 & \\
\hline & -1 & & 1
\end{array}\right)
$$

we have

$$
{ }^{t} T_{6} R_{n-2}^{\prime} T_{6}^{(q)}=B_{n-3} .
$$

Suppose that $n-s-1>1$. Then by the transformation

we have

$$
R_{s}^{\prime \prime}={ }^{t} T_{7} R_{s}^{\prime} T_{7}^{(q)}=\left(\begin{array}{c|c|c|c|c|c}
D_{s-1} & & & & & \\
\hline-\mathbf{a}^{\prime} & 0 & & & & \\
\hline & 1 & & & & \\
& 0 & E_{2} & & & \\
\hline & & 0 & 1 & 0 & 1 \\
\\
\hline & & & 1 & 0 & \\
\hline & & & & 1 & \\
& & & & 0 & \\
& & & & \vdots & E_{n-s-3} \\
& & & & 0 &
\end{array}\right)=H_{s, 2}^{\prime} .
$$

Using Lemma 2.5, we have

$$
R_{s}^{\prime \prime}=H_{s, 2}^{\prime} \sim H_{s, n-s-2}^{\prime}=R_{s}^{\prime \prime \prime}=\left(\begin{array}{c|c|c|c|c|c}
D_{s-1} & & & & & \\
\hline-\mathbf{a}^{\prime} & 0 & & & & \\
\hline & 1 & & & & \\
& 0 & & & & \\
& \vdots & E_{n-s-2} & & & \\
& 0 & & & & \\
\hline & & 0 \cdots 01 & 0 & 1 & \\
\hline & & & 1 & 0 & \\
\hline & & & & 1 & 0
\end{array}\right) .
$$

It is easy to see that

$$
{ }^{t} T_{6} R_{s}^{\prime \prime \prime} T_{6}^{(q)}=B_{s-1}
$$

Lemma 2.8. Put

$$
B_{s}=\left(\begin{array}{c|c}
D_{s} & \\
\hline \mathbf{b}_{s} & \\
0 & \\
\vdots & E_{n-s+1} \\
0 &
\end{array}\right)
$$

where $s \geq 1, n-s+1 \geq 1, D_{s} \in M_{s}(k)$, and \mathbf{b}_{s} is a row vector of dimension s. Suppose that the rank of B_{s} is n. Then

$$
B_{s} \sim W_{s}=\left(\begin{array}{l|l}
I_{s} & \\
\hline & E_{n-s+1}
\end{array}\right)
$$

or

$$
B_{s} \sim B_{s-1}=\left(\begin{array}{c|c}
D_{s-1} & \\
\hline \mathbf{b}_{s-1} & \\
0 & \\
\vdots & E_{n-s+2} \\
0 &
\end{array}\right)
$$

where $D_{s-1} \in M_{s-1}(k)$, and \mathbf{b}_{s-1} is a row vector of dimension $s-1$.
Proof. Suppose that det $D_{s} \neq 0$. By Proposition 1.1, there exists a linear transformation of coordinates $T_{D} \in G L_{s}(k)$ such that ${ }^{t} T_{D} D_{s} T_{D}^{(q)}=I_{s}$. By the transformation

$$
T=\left(\begin{array}{c|c}
T_{D} & \\
\hline & I_{n-s+1}
\end{array}\right)
$$

we have

$$
{ }^{t} T B_{s} T^{(q)}=\left(\begin{array}{c|c}
I_{s} & \\
\hline \mathbf{b}_{s}^{\prime} & \\
0 & \\
\vdots & E_{n-s+1} \\
0 &
\end{array}\right)
$$

where $\mathbf{b}_{s}^{\prime}=\mathbf{b}_{s} T_{D}^{(q)}$. If $\mathbf{b}_{s}^{\prime}=0$, then $B_{s} \sim W_{s}$. Suppose that $\mathbf{b}_{s}^{\prime} \neq 0$. By Lemma 2.7, we have $B_{s} \sim W_{s}$, or $B_{s} \sim B_{s-1}$.

Suppose that $\operatorname{det} D_{s}=0$. Then one row of the matrix D_{s} is a linear combination of the other rows. By interchanging coordinates x_{0}, \cdots, x_{s-1} if nessesary, we can assume that the s-th row is a linear combination of the other rows. We write the matrix D_{s} as

$$
D_{s}=\left(\begin{array}{c|c}
P & { }^{t} \mathbf{g} \\
\hline \mathbf{h} & d
\end{array}\right),
$$

where $P \in M_{s-1}(k), \mathbf{g}, \mathbf{h}$ are row vectors of dimension $s-1, d \in k$, and that satisfy $\mathbf{h}=\mathbf{w} P, d=\mathbf{w}^{t} \mathbf{g}$ with \mathbf{w} being a row vector of dimension $s-1$. Then

$$
B_{s} \sim B_{s}^{\prime}=\left(\begin{array}{c|c|l}
P & { }^{t} \mathbf{g} & \\
\hline \mathbf{h} & d & \\
\hline \mathbf{f} & e & \\
0 & 0 & \\
\vdots & \vdots & E_{n-s+1} \\
0 & 0 &
\end{array}\right),
$$

where \mathbf{f} is a row vector of dimension $s-1$, and $e \in k$. By the tranformation

$$
T^{\prime}=\left(\begin{array}{c|c|c}
I_{s-1} & -{ }^{t} \mathbf{w} & \\
\hline & 1 & \\
\hline & & I_{n-s+1}
\end{array}\right)
$$

we obtain

$$
B_{s}^{\prime \prime}={ }^{t} T^{\prime} B_{s}^{\prime} T^{\prime(q)}=\left(\begin{array}{c|c|c}
P & -P \cdot{ }^{t} \mathbf{w}^{(q)}+{ }^{t} \mathbf{g} & \\
\hline & & \\
\hline \mathbf{f} & -\mathbf{f} \cdot{ }^{t} \mathbf{w}^{(q)}+e & \\
0 & 0 & \\
\vdots & \vdots & E_{n-s+1} \\
0 & 0 &
\end{array}\right)
$$

Put

$$
Q=\left(\begin{array}{c|c}
P & -P \cdot{ }^{t} \mathbf{w}^{(q)}+{ }^{t} \mathbf{g} \\
\hline \mathbf{f} & -\mathbf{f} \cdot{ }^{t} \mathbf{w}^{(q)}+e
\end{array}\right)
$$

Because the rank of B_{s}^{\prime} is n, we have $\operatorname{det} Q \neq 0$. Let $Q^{\prime} \in G L_{s}(k)$ such that $Q Q^{\prime(q)}=I_{s}$,

$$
Q^{\prime}=\left(\begin{array}{c|c}
P^{\prime} & { }^{t} \mathbf{g}^{\prime} \\
\hline \mathbf{f}^{\prime} & e^{\prime}
\end{array}\right)
$$

where $P^{\prime} \in M_{s-1}(k), \mathbf{g}^{\prime}, \mathbf{f}^{\prime}$ are row vectors of dimension $s-1, e^{\prime} \in k$. By the transformation

$$
T^{\prime \prime}=\left(\begin{array}{c|c|c}
P^{\prime} & { }^{t} \mathbf{g}^{\prime} & \\
\hline \mathbf{f}^{\prime} & e^{\prime} & \\
\hline & & I_{n-s+1}
\end{array}\right)
$$

we obtain

$$
{ }^{t} T^{\prime \prime} B_{s}^{\prime \prime} T^{\prime \prime(q)}=\left(\begin{array}{c|c|c}
{ }^{t} P^{\prime} & & \\
\hline \mathrm{g}^{\prime} & 0 & \\
\hline & 1 & \\
& 0 & \\
& \vdots & E_{n-s+1} \\
& 0 &
\end{array}\right)
$$

Putting $D_{s-1}={ }^{t} P^{\prime}$ and $\mathbf{b}_{s-1}=\mathbf{g}^{\prime}$, we have $B_{s}^{\prime \prime} \sim B_{s-1}$.
Remark 2.9. When $s=1$, we have

$$
B_{s-1}=B_{0}=E_{n+1}=W_{0}
$$

Now we prove Theorem 1.2 and Corollary 1.3.
Proof. Because the rank of the matrix A is n, Proposition 1.1 implies that the hypersurface X_{A} is singular. By using a linear transformation of coordinates if nessesary, we can assume that X_{A} has a singular point $(0, \cdots, 0,1)$. Then we have $a_{i n}=0$ for any $0 \leq i \leq n$. The matrix A is now of the form

$$
A=\left(\begin{array}{l|l}
D_{n} & \\
\hline \mathbf{b}_{n} &)=B_{n}, ~
\end{array}\right.
$$

where $D_{n} \in M_{n}(k)$, and \mathbf{b}_{n} is a row vector of dimension n. Using Lemma 2.8 repeatedly and Remark 2.9, we have that the hypersurface X_{A} is isomorphic to one of the hypersurfaces defined by the matrixes W_{s} with $0 \leq s \leq n$.

If A is general, then $\operatorname{det}\left(D_{n}\right) \neq 0$, and hence by the first paragraph of the proof of Lemma 2.8 and Lemma 2.7, we have $A \sim W_{n-1}$.

Next we prove that $s \neq s^{\prime}$ implies $W_{s} \nsim W_{s^{\prime}}$. For this, we introduce some notions. Let X_{s}^{n} be the hypersurface defined by the matrix W_{s} in the projective space \mathbb{P}^{n}. The defining equation of X_{s}^{n} can be written as

$$
F_{q} x_{n}+F_{q+1}=0
$$

where

$$
F_{q}= \begin{cases}0 & \text { if } s=n \\ x_{n-1}^{q} & \text { if } s<n\end{cases}
$$

and

$$
F_{q+1}= \begin{cases}x_{0}^{q+1}+\cdots+x_{n-1}^{q+1} & \text { if } s=n \\ x_{0}^{q+1}+\cdots+x_{s-1}^{q+1}+x_{s}^{q} x_{s+1}+\cdots+x_{n-2}^{q} x_{n-1} & \text { if } s<n\end{cases}
$$

It is easy to see that X_{s}^{n} has only one singular point $P_{0}=(0, \cdots, 0,1)$. The variety of lines in \mathbb{P}^{n} passing through P_{0} can be naturally identified with the hypersurface $\mathcal{H}_{\infty}=$ $\left\{x_{n}=0\right\}$ in \mathbb{P}^{n} by the correspondence $Q \in \mathcal{H}_{\infty}$ to the line $\overline{Q P_{0}}$. Let φ be the map defined by

$$
\begin{aligned}
\varphi: \mathbb{P}^{n} \backslash\left\{P_{0}\right\} & \longrightarrow \mathbb{P}^{n-1} \\
P & \longmapsto \overline{P P_{0}}
\end{aligned}
$$

Let $\overline{X_{s}^{n}}=\varphi\left(X_{s}^{n} \backslash\left\{P_{0}\right\}\right)$. For $Q=\left(y_{0}, \cdots, y_{n-1}, 0\right) \in \mathcal{H}_{\infty}$, we consider the line

$$
l=\overline{Q P_{0}}=\left\{\left(\lambda y_{0}, \cdots, \lambda y_{n-1}, \mu\right) \mid(\lambda, \mu) \in \mathbb{P}^{1}\right\} .
$$

We have $l \in \overline{X_{s}^{n}}$ if and only if there exists $P=\left(p_{0}, \cdots, p_{n-1}, p_{n}\right) \in X_{s}^{n} \backslash\left\{P_{0}\right\}$ satisfying $P \in l$, i.e. there exists an element $\mu \in k$ such that

$$
\left(p_{0}, \cdots, p_{n-1}, p_{n}\right)=\left(y_{0}, \cdots, y_{n-1}, \mu\right)
$$

for some $P \in X_{s}^{n} \backslash\left\{P_{0}\right\}$, or equivalently there exists an element $\mu \in k$ such that

$$
F_{q}\left(y_{0}, \cdots, y_{n-1}\right) \mu+F_{q+1}\left(y_{0}, \cdots, y_{n-1}\right)=0
$$

Then

$$
\varphi^{-1}(l) \cap\left(X_{s}^{n} \backslash\left\{P_{0}\right\}\right)= \begin{cases}\emptyset & \text { if } F_{q}\left(y_{0}, \ldots, y_{n-1}\right)=0 \text { and } \\ & F_{q+1}\left(y_{0}, \ldots, y_{n-1}\right) \neq 0 \\ \{\text { a single point }\} & \text { if } F_{q}\left(y_{0}, \ldots, y_{n-1}\right) \neq 0, \\ l \backslash\left\{P_{0}\right\} & \text { if } F_{q}\left(y_{0}, \ldots, y_{n-1}\right)=0 \text { and } \\ & F_{q+1}\left(y_{0}, \ldots, y_{n-1}\right)=0\end{cases}
$$

Putting $V_{s}=\left\{F_{q}=0, F_{q+1}=0\right\} \subset \mathbb{P}^{n-1}$, and $H_{s}=\left\{F_{q}=0\right\} \subset \mathbb{P}^{n-1}$, we have

$$
V_{s}= \begin{cases}X_{s}^{n-2} & \text { if } s \leq n-2 \\ \text { nonsingular Fermat hypersurface in } \mathbb{P}^{n-1} & \text { if } s=n \\ \text { nonsingular Fermat hypersurface in } \mathbb{P}^{n-2} & \text { if } s=n-1\end{cases}
$$

where X_{s}^{n-2} is the hypersurface in \mathbb{P}^{n-2} associated with the matrix

$$
\left(\begin{array}{l|l}
I_{s} & \\
\hline & E_{n-s-1}
\end{array}\right)
$$

For any $s \neq s^{\prime}$, suppose that X_{s}^{n} and $X_{s^{\prime}}^{n}$ are isomorphic and let $\psi: X_{s}^{n} \longrightarrow X_{s^{\prime}}^{n}$ be an isomorphism. Because each of X_{s}^{n} and $X_{s^{\prime}}^{n}$ has only one singular point P_{0}, we have $\psi\left(P_{0}\right)=P_{0}$, and hence ψ induces an isomorphism $\bar{\psi}$ from $\overline{X_{s}^{n}}$ to $\overline{X_{s^{\prime}}^{n}}$. For any line $l \in \overline{X_{s}^{n}}$ and $l^{\prime} \in \overline{X_{s^{\prime}}^{n}}$ such that $\bar{\psi}(l)=l^{\prime}$, we have

$$
\sharp\left(\varphi^{-1}(l) \cap\left(X_{s}^{n} \backslash\left\{P_{0}\right\}\right)\right)=\sharp\left(\varphi^{-1}\left(l^{\prime}\right) \cap\left(X_{s^{\prime}}^{n} \backslash\left\{P_{0}\right\}\right)\right) .
$$

Thus $V_{s} \cong V_{s^{\prime}}$ and $H_{s} \cong H_{s^{\prime}}$. Hence for any $s \neq s^{\prime}$, if $V_{s} \not \not V_{s^{\prime}}$ or $H_{s} \nsubseteq H_{s^{\prime}}$ then $X_{s}^{n} \not \approx X_{s^{\prime}}^{n}$.

In the case $n=1$, we have that X_{0}^{1} consists of two points, and X_{1}^{1} consists of a single point. In the case $n=2$, we have that X_{0}^{2} consists of two irreducible components, X_{1}^{2} is irreducible, and X_{2}^{2} consists of $(q+1)$ lines. Hence, in the case $n=1$ and $n=2$, we see that $s \neq s^{\prime}$ implies $W_{s} \nsim W_{s^{\prime}}$. By induction on n, we have the proof.

Next we prove Corollary 1.4.
Proof. Under the condition $n \geq 2, s<n$ and $(n, s) \neq(2,0)$, we have x_{n-1} does not divide F_{q+1}, and hence V_{s} is of codimension 2 in \mathbb{P}^{n-1}. By induction on n, X_{s}^{n} is irreducible. The morphism

$$
\left.\varphi\right|_{X_{s}^{n} \backslash\left\{P_{0}\right\}}: X_{s}^{n} \backslash\left\{P_{0}\right\} \longrightarrow \mathcal{H}_{\infty} \cong \mathbb{P}^{n-1}
$$

is birational with the inverse rational map

$$
Q=\left(y_{0}, \cdots, y_{n-1}, 0\right) \longmapsto\left(y_{0}, \cdots, y_{n-1},-\frac{F_{q+1}\left(y_{0}, \cdots, y_{n-1}\right)}{y_{n-1}^{q}}\right)
$$

3. Proof of Theorem 1.5

For any $s \leq n-2$, the matrix W_{s} can be written

$$
W_{s}=\left(\begin{array}{c|c|c}
W_{s}^{\prime} & & \\
\hline 0 \cdots 01 & 0 & \\
\hline & 1 & 0
\end{array}\right) .
$$

For any $g \in \operatorname{Aut}\left(X_{s}\right)$, we have $g\left(P_{0}\right)=P_{0}$ because X_{s} has only one singular point $P_{0}=(0, \cdots, 0,1)$. The automorphism g is defined by a matrix of the form

$$
M=\left(\begin{array}{c|c|c}
T & { }^{t} \mathbf{a} & 0 \\
\hline \mathbf{b} & d & 0 \\
\hline \mathbf{c} & e & 1
\end{array}\right)
$$

where $T \in M_{n-1}(k)$, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are row vectors of dimension $n-1, d, e \in k$. We have ${ }^{t} M W_{s} M^{(q)}=\delta W_{s}$ for some $0 \neq \delta \in k$ implies

$$
\left\{\begin{array}{l}
{ }^{t} T W_{s}^{\prime} T^{(q)}=\delta W_{s}^{\prime} \tag{1}\\
{\left[\mathbf{a} W_{s}^{\prime}+d(0, \cdots, 0,1)\right] \cdot T^{(q)}=\delta(0, \cdots, 0,1)} \\
{ }^{t} T W_{s}^{\prime} \cdot{ }^{t} \mathbf{a}^{(q)}+{ }^{t} \mathbf{c} d^{q}=0 \\
{\left[\mathbf{a} W_{s}^{\prime}+d(0, \cdots, 0,1)\right] \cdot{ }^{t} \mathbf{a}^{(a)}+e d^{q}=0} \\
\mathbf{b}=0 \\
d^{q}=\delta
\end{array}\right.
$$

By (1), we see that T is a matrix defining an automorphism of X_{s}^{n-2} in \mathbb{P}^{n-2}. Because $s \leq n-2$, by (2) we have $d=\delta$. Hence we can calculate T by induction on n. The vector a, \mathbf{c} and d, e can be find by using the equations (2)-(6). Conversely, it is easy to show that if the matrix M satifies the conditions (i)-(v) then it define a projective automorphism of X_{s}. The projective automorphism group of X_{n} and X_{n-1} is easy to calculate.

4. Proof of Propostion 1.1

For the reader's convenience, we give a proof of Proposition 1.1, which is based on the argument of [12], chapter VI. The implications (iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i) are clear. We will prove (i) \Rightarrow (iv). For $B \in G L_{n+1}(k)$, consider the map f_{B} defined by

$$
\begin{aligned}
f_{B}: G L_{n+1}(k) & \longrightarrow G L_{n+1}(k) \\
T & \longmapsto{ }^{t} T B T^{(q)} .
\end{aligned}
$$

Because the differential of the Frobenius map $F: T \longmapsto T^{(q)}$ is identically zero, we can deduce that

$$
d\left(f_{B}\right)=d\left({ }^{t} T\right) B T^{(q)}
$$

Therefore, the tangent map of f_{B} is surjective for any $B \in G L_{n+1}(k)$. Hence, f_{B} is generically surjective, and the image of f_{B} contains a non-empty open subset U_{B}. Let A be any matrix of $M_{n+1}(k)$ such that the hypersurface X_{A} is nonsingular, i.e. $A \in G L_{n+1}(k)$. Because $G L_{n+1}(k)$ is irreducible, we have $U_{A} \cap U_{I} \neq \emptyset$, where I is identity matrix of size $n+1$. There exist $T_{1}, T_{2} \in G L_{m}(k)$ such that $f_{A}\left(T_{1}\right)=f_{I}\left(T_{2}\right)$. Putting $T=T_{1} T_{2}^{-1}$, we have ${ }^{t} T A T^{(q)}=I$.

5. The CASE OF PLANE CURVES

Next we will study the plane curves X_{A} associated with matrices A of rank ≤ 2 in the projective plane \mathbb{P}^{2}.

Theorem 5.1. Let $A=\left(a_{i j}\right)_{0 \leq i, j \leq 2} \in M_{3}(k)$ be a nonzero matrix and let X_{A} be the curve defined by $\sum a_{i j} x_{i} x_{j}^{q}=0$ in \mathbb{P}^{2}. Suppose that the rank of A is smaller than 3.
(i) When the rank of A is 1 , the curve X_{A} is projectively isomorphic to one of the following curves

$$
Z_{0}: x_{0}^{q+1}=0, \text { or } Z_{1}: x_{0}^{q} x_{1}=0
$$

(ii) When the rank of A is 2, the curve X_{A} is projectively isomorphic to one of the following curves

$$
X_{0}: x_{0}^{q} x_{1}+x_{1}^{q} x_{2}=0, \text { or } X_{1}: x_{0}^{q+1}+x_{1}^{q} x_{2}=0, \text { or } X_{2}: x_{0}^{q+1}+x_{1}^{q+1}=0 .
$$

Proof. In the case the rank of A is 2. By Theorem 1.2, the plane curve X_{A} is projectively isomorphic to one of the plane curves X_{0}, or X_{1}, or X_{2}.

In the case rank of A is 1 . With the same argument of the proof of Theorem 1.2, we can assume that the matrix A is as following form

$$
A=\left(\begin{array}{ccc}
a_{00} & a_{01} & 0 \\
a_{10} & a_{11} & 0 \\
a_{20} & a_{21} & 0
\end{array}\right)
$$

By interchanging with x_{0} and x_{1} if nessesary, we can assume that $\left(a_{01}, a_{11}, a_{21}\right) \neq$ $(0,0,0)$. Because rank of A is 1 , there exists $\lambda \in k$ such that $\left(a_{00}, a_{10}, a_{20}\right)=\lambda\left(a_{01}, a_{11}, a_{21}\right)$. The curve X_{A} is defined by the equation

$$
\left(a_{00} x_{0}+a_{10} x_{1}+a_{20} x_{2}\right)\left(x_{0}^{q}+\lambda x_{1}^{q}\right)=0
$$

It is easy to show that X_{A} is projectively isomorphic to the curve Z_{0} or Z_{1}.
Remark 5.2. In fact, the case when the plane curve X_{A} of degree $p+1$ has been proved by Homma in [9].

Note that the plane curve X_{1} has a special property such that the tangent line of X_{1} at every smooth point passes through the point $(0,1,0)$. Therefore the plane curve X_{1} is strange. Moreover this curve is irreducible and nonreflexive. In [1], Ballico and Hefez proved that a reduced irreducible nonreflexive plane curve of degree $q+1$ is isomorphic to one of the following curves:
(1) $X_{I}: x_{0}^{q+1}+x_{1}^{q+1}+x_{2}^{q+1}=0$,
(2) a nodal curve whose defining equation is given in [4] and [7],
(3) strange curves.

Let \mathcal{L} be the space of all reduced irreducible projective plane curves of degree $q+1$, which is open in the space $\mathcal{P} \cong \mathbb{P}^{\binom{q+3}{2}}$ of all projective plane curves of degree $q+1$.

Let \mathcal{L}_{*} be the locus of \mathcal{P} consisting of curves isomorphic to X_{I}, and let \mathcal{L}_{1} be the locus of \mathcal{P} consisting of strange curves. Let $\left(\xi_{J}\right)$ be the homogeneous coordinates of \mathcal{P} where $J=\left(j_{0}, j_{1}, j_{2}\right)$ ranges over the set of all ordered triples on non-negative integer such that $j_{0}+j_{1}+j_{2}=q+1$. The point $\left(\xi_{J}\right)$ corresponds to the curve $\sum \xi_{J} x^{J}=0$ where $x^{J}=x_{0}^{j_{0}} x_{1}^{j_{1}} x_{2}^{j_{2}}$. Then the locus of all curves defined by the equation of the form $\sum a_{i j} x_{i} x_{j}^{q}=0$ is the linear subspace of \mathcal{P} defined by $\xi_{J}=0$, unless $J \in\{(q+$ $1,0,0),(0, q+1,0),(0,0, q+1),(q, 1,0),(q, 0,1),(1, q, 0),(1,0, q),(0, q, 1),(0,1, q)\}$. By Theorem 5.1, we have that because $Z_{0}, Z_{1}, X_{0}, X_{2}$ are reducible, the closure $\overline{\mathcal{L}_{*}}$ of \mathcal{L}_{*} in \mathcal{L} consists of curves isomorphic to X_{I} or to X_{1}, and the intersection of $\overline{\mathcal{L}_{*}}$ and \mathcal{L}_{1} consist of curves isomorphic to X_{1}.

References

[1] E. Ballico and A. Hefez. Nonreflexive projective curves of low degree. Manuscripta Math., Vol. 70, No. 4, pp. 385-396, 1991.
[2] A. Beauville. Sur les hypersurfaces dont les sections hyperplanes sont à module constant. Progress in Mathematics, Vol. 1, pp. 121-133, 1986.
[3] I. V. Dolgachev. Classical Algebraic Geometry: A Modern View. Cambridge Univ. Press, Cambridge, 2012.
[4] S. Fukasawa. Complete determination of the number of Galois points for a smooth plane curve. Rend. Semin. Math. Univ. Padova, Vol. 129, pp. 93-113, 2013.
[5] J. W. P. Hirschfeld. General Galois geometries. Oxford Univ. Press, 1991.
[6] J. W. P. Hirschfeld. Projective geometries over finite fields. Oxford Univ. Press, 1998.
[7] T. H. Hoang and I. Shimada. On Ballico-Hefez curves and associated supersingular surface. Kodai Math. J., Vol. 38, pp. 23-36, 2015.
[8] T. Høholdt, J. H. van Lint, and R. Pellikaan. Algebraic geometry codes. In V.S. Pless, W.C. Huffman, and R.A. Brualdi, editors, Handbook of Coding Theory, Vol. 1, pp. 871-961. Elsevier, Amsterdam, 1998.
[9] M. Homma. Normal forms of p-linear maps of a vector space into its dual space and degenerations of nonreflexive smooth plane curves of degree $p+1$. Unpublished.
[10] S. Lang. Algebraic groups over finite fields. American J. of Math., Vol. 78, No. 3, pp. 555-563, 1956.
[11] B. Segre. Forme e geometrie Hermitiane con particolare riguardo al caso finito. Ann. Math. Pura. Appl., Vol. 70, No. 4, pp. 1-201, 1965.
[12] J. P. Serre. Algebraic groups and class fields. Springer-Verlag New York Inc., 1988.
[13] I. Shimada. Unirationality of certain complete intersections in positive characteristic. Tohoku Math. J., Vol. 44, pp. 379-393, 1992.
[14] I. Shimada. Lattices of algebraic cycles on Fermat varieties in positive characteristics. Proc. London Math. Soc., Vol. 82, No. 3, pp. 131-172, 2001.
[15] T. Shioda. An example of unirational surfaces in characteristic p. Math. Ann., Vol. 211, pp. 233-236, 1974.
[16] T. Shioda and T. Katsura. On Fermat varieties. Tohoku Math. J., Vol. 31, pp. 97-115, 1979.
[17] J. Tate. Algebraic cycles and poles of zeta functions. In O. F. G. Schilling, editor, Arithmetical Algebraic Geometry, pp. 97-115. Harper and Row, New York, 1965.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN.

E-mail address: hoangthanh2127@yahoo.com

[^0]: 1991 Mathematics Subject Classification. Primary 14J70, secondary 14J50.
 Key words and phrases. Degeneration, Fermat hypersurface, positive characteristic.

