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ABSTRACT. We work over an algebraically closed field & of positive characteristic p.
Let ¢ be a power of p. Let A be an (n + 1) x (n + 1) matrix with coefficients a;; in
k, and let X 4 be a hypersurface of degree ¢ + 1 in the projective space P defined by
> aij xixg = 0. It is well-known that if the rank of A is n + 1, the hypersurface X 4
is projectively isomorphic to the Fermat hypersuface of degree ¢ + 1. We investigate the
hypersurfaces X 4 when the rank of A is n, and determine their projective isomorphism

classes.

1. INTRODUCTION

We work over an algebraically closed field k of positive characteristic p. Let q be a
power of p. Let n be a positive integer. We denote by M,, 11 (k) the set of square matrices
of size n + 1 with coefficients in k. For a nonzero matrix A = (a;;)o<i,j<n € Myy1(k),
we denote by X 4 the hypersurface of degree ¢ + 1 defined by the equation

E aijxix? =0

in the projective space P™ with homogeneous coordinates (g, 1, . . . , 5 ). The following
is well-known ( [2], [10], [14], see also §4 of this paper).

Proposition 1.1. Let A = (a;j)o<i,j<n € Mpt1(k) and X4 C P" be as above. Then the
following conditions are equivalent:
(i) rank(A) =n+1,
(i1) X 4 is smooth,
(iii) X a is isomorphic to the Fermat hypersurface of degree q + 1, and
(iv) there exists a linear transformation of coordinates T € GLy41(k) such that
tTAT@ = 1,1, where 'T is the transpose of T, T\? is the matrix obtained
from T by raising each coefficient to its q-th power, and I, 1, is the identity ma-

trix.

The Fermat hypersurface of degree ¢ + 1 defined over an algebraically closed field of
positive characteristic p has been a subject of numerous papers. It has many interesting
properties, such as supersingularity ( [15], [16], [17]), or unirationality ( [13], [15], [16]).
Moreover, the hypersurface X 4 associated with the matrix A with coefficients a;; in the
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finite field F 2, which is called a Hermitian variety, has also been studied for many appli-
cations, such as coding theory ( [8]). (The general results on Hermitian varieties are due
to Segre [11]; see also [6]). Therefore it is important to extend these studies to degenerate
cases.

In the case where characteristic p # 2, the following is well-known and can be found in
any standard textbook on quadratic forms: the hypersurface defined by the quadratic form

> a;jzix; = 01is projectively isomorphic to the hypersurface defined by
gy + -+ ary =0,

where 7 is the rank of A = (a;;). This result has been extended the case of characteristic
2 (see [3]). Therefore we have a question what is the normal form of the hypersurfaces
defined by a form > aija:ix;’. = 0. When A satisfies A = A(@ and hence this form is the
Hermitian form over I, the hypersurface X 4 is projectively isomorphic over I to

1 1
xf’f +"'+$zt1:0,

where r is the rank of A ( [5]).

In this paper, we classify the hypersurfaces X 4 associated with the matrices A of rank
n over an algebraically closed field. Note that two hypersurfaces X 4, X 4+ associated
with the matrices A, A’ are projectively isomorphic if and only if there exists a linear
transformation 7' € G L,,, 1 (k) such that A’ = *T'AT®. In this case, we denote A ~ A’.

We define I, to be the s x s identity matrix, and E,. to be the r X r matrix

1 0 - 0

In particular, E; = (0) and Ej is the 0 x 0 matrix. Throughout this paper, a blank in a
block decomposition of a matrix means that all the components of the block are 0. Our

main result is as follow.

Theorem 1.2. Let A = (a;j)o<i,j<n be a nonzero matrix in M, 1(k), and let X 5 be
the hypersurface of degree q + 1 defined by aijxix? = 0 in the projective space P"
with homogeneous coordinates (xg,x1,...,%,). Suppose that the rank of A is n. Then

the hypersurface X 4 is projectively isomorphic to one of the hypersurfaces X associated

1,
Ws = ;
Enferl

where 0 < s < n. Moreover, if s # s', then X, and X are not projectively isomorphic.

with the matrices

Corollary 1.3. If A is a general point of { A € M,,1(k)| rank(A) = n}, then A ~ W, _;.

Corollary 1.4. Suppose thatn > 2,s < n and (n, s) # (2,0). Then X is rational.
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We also determine the automorphism group
Aut(X;) ={g € PGLp11(k) | 9(Xs) = X5}

of the hypersurface X for each s. For M € GL,,11(k), we denote by [M] € PGL,,11(k)
the image of M by the natural projection.

Theorem 1.5. Let X be the hypersurface associated with the matrix W in the projective
space P™. The projective automorphism group Aut(Xy) with s < n — 2 is the group
consisting of [M], with

ta |0
M = 0] d]|O0 ,
cl e

where T € GL,_1(k), a,c are row vectors of dimension n — 1, and d,e € k, and they

satisfy the following conditions:
() [T] € Aut(XP=2), 'TTWIT@ = §W!, § = 69 # 0, where X2 is the hypersur-
face defined in P"~? by the matrix

T
° Enfsfl
(i) d =0,

@ii) [aW! +d(0,---,0,1)]-T@ =4(0,---,0,1),
Gv) ‘TW! - tald) 4 teds =0,
) [aW! +d(0,---,0,1)] - tal® 4 eds = 0.

Moreover, we have

T, t (1) _
Aut(X,,) = T Tn M, T, € GL,(k), A #0, 7
u |1 u is a row vector of dimension n
and
Tn—l tT T(q) — I@q[
Aut(Xn_l) _ B n—14p -1 n—1,
1 Th-1€GL,_1(k),0£B €k

We give a brief outline of our paper. In §2, we prove Theorem 1.2 and its corollaries.
In §3, we prove Theorem 1.5. In §4, we recall the proof of Proposition 1.1 because this
proposition plays an important role in the proof of Theorem 1.2. In §5, we investigate the
plane curve X 4 associated with the matrix A of rank < 2 in the projective plane P2, and
recover Homma’s unpublished work [9] (see Remark 5.2).

2. PROOFS OF THEOREM 1.2 AND ITS COROLLARIES

We present several preliminary lemmas. The following remark may be helpful in read-

ing the proof of lemmas.



4 THANH HOAI HOANG

Remark 2.1. Let
tOO e tOn
T =

tnO e tnn

be an invertible matrix. Suppose that aijxix? = 0 is the equation associated to the
matrix A = (aij)o<i,j<n. Then the operation

At TAT@

on the matrix is equivalent to the transformation of the coordinates

n
T; — E tij.lfj,
j=0

where 0 < i < n.

Lemma 2.2. Put

I
E,
a|0---01
Gs,r = 0 0 )
En—s—r—i—l
0 0
and
I
Er+2
a@® o...01
Gs,r+2 = 0 0 5
. . Enfsfrfl
0 0
where s > 1,7 > 0,n—s—r—1 > 0, and a is a nonzero row vector of dimension s. Then
Gs,r ~ Gs,r+2-
Proof. By the transformation
I, —ta
I,
TG = 1 )
a(Q) 1
Infsfrfl

we have

tTGGs,TT((;q) = Gs7r+2 .
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Remark 2.3. Lemma 2.2 holds when r = 0 orn — s —r — 1 = 0. In particular, when
n—s—1r—1=0 wehave G i3 = Wi.

Lemma 2.4. Put

Dy | —ta”0---0

—a
0
: E,
0
Hs r = ’
' 0---01 1
1
0
Enfsfr%»l
0

where s > 1,r >2n—s—r—12>1, Ds_1 € M,_1(k), a’ and a" are row vectors of
dimension s — 1. Then

Hs,r ~ Hs,r+2~
Proof. By the transformation
Is+r—1
1
Ty = -1]1]1 )
1
Infsfrfl

we have

"TyH,, Ty = H o
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Lemma 2.5. Put
Dsf 1

S =[O

Enfsf'r‘fl

0

where s > 1,7 > 2n—s—r—32>1 Ds_1 € M,_1(k), and a’ is a row vector of
dimension s — 1. Then
! !
Hs,r ~ Hs,r+2'

Proof. By the transformation

Is+r

Ins—r—3
we have
Ty H., Tf) = H, .
O

Remark 2.6. Lemma 2.4 and 2.5 will be used only in the case where n—s+1 is odd. Hence
we do not need to prove the case n — s — 1 = 0 in Lemma 2.4 nor the casen —s —3 =0

in Lemma 2.5.

Lemma 2.7. Put

En—s-&-l

where s > 1,n — s+ 1 > 1, and a is a nonzero row vector of dimension s. Then

(1) If n — s+ 1is even, then P; ~ W.
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2) If n — s+ 1is odd, then
Ds—l
b3,1
Pe ~ Bs—l = 0 )

. Enfs+2
0

where Ds_1 € Ms_1(k), bs_1 is the row vector of dimension s — 1. In particular, if s = 1
and n is odd, then Py ~ W,

Proof. (1) Suppose that n — s + 1 is even. Using Lemma 2.2 and Remark 2.3, we have

Ps = GS,O ~ Gs,nfs+1 = Ws-

(2) Next suppose that n — s+ 1 is odd. By interchanging the coordinates xg, - - - , £s_1,
and scalar multiplication of the coordinates s, - - - , ,, if nessesary, we can show that
15,1
1
a |1
P5 ~ PS/ == 1 )
. ETL—S
0

with a’ being a row vector of dimension s — 1. By the transformation

Is—l

—-a”’ |1

Tl = )

with a”(9) = a’, we have

Ds—l 7ta//

—a’ 1
1 0
Qs =" PT" = 1 :
0
. En—s
0

where D,_1 = I,_ +ta” -a’. If n — s + 1 = 1, by the transformation

Infl
T2 = 1 )
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we have
t () _
T2Q7LT2 - Bn—1~

Suppose that n — s + 1 > 1. Note that, since we are in the case where n — s + 1 is odd,
we have n — s + 1 > 3. By the transformation

15,1
1
T3 = —1 1 1 [}
1
In7571
we have
Ds—l 7ta//
a’ 0
0
e 1)1 _y
Qs - 3Qs 3 - 1 — 1152.
0
Enfsfl
0

Using Lemma 2.4, we have

D, 1| —ta”0---0
0
Q; = Hs,2 ~ Hs,nfs = Q/s/ = Enfs
0
0---01 1
110
Then by the transformation
In—l
T4 = 1 )
-1]1

we have
D, 1| -ta"0---0

En—s+2
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If s=1, R; ~ Wjy. Suppose that s > 1. By the transformation

Isfl
1 1
T5 = a” 1 3
1
Infsfl
we obtain
Dsfl
a/
01
10
R, ='TsR, IV = .
0
En—s—l
0
If n — s — 1 = 1, by the tranformation
I’n—2
T — 1
6 — 1 )
-1 1

we have

"TyR!, T\ = B, _s.
Suppose that n — s — 1 > 1. Then by the transformation

I

17

In7573
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we have
Dsfl
a |0
0| Es
"ot 1 (q) 0101 /
R! ='"T4yR.T;Y = 110 =H;,
1
0
En—s—3
0
Using Lemma 2.5, we have
Ds—l
—a" |0
1
0
R/s/ = H;,Q ~ H;,n—s—Z = R;// = Enfsf2
0
0---0110
0
It is easy to see that
"TeR!TY = B,_,.
(]
Lemma 2.8. Put
D
by
B, = 0 ,
En—s+1
0

where s > 1, n—s+1 > 1, Dy € M(k), and by is a row vector of dimension s. Suppose
that the rank of B is n. Then

I
Bs ~ Ws = )
Enferl



DEGENERATION OF FERMAT HYPERSURFACES IN POSITIVE CHARACTERISTIC 11

or
Dsfl
bs—l

Bs ~ Bsfl = 0 ’

. En—s+2
0

where Ds_1 € Ms_1(k), and bs_1 is a row vector of dimension s — 1.

Proof. Suppose that det D # 0. By Proposition 1.1, there exists a linear transformation
of coordinates Tp € GLs(k) such that tTDDSTI(DQ) = I,. By the transformation

T
T=(-2 ,
In—s+1

I
b/

S

trB, T = 0 ,

we have

. E7L—s+1
0

where b/, = bSTI(DQ). If b, = 0, then B; ~ W;. Suppose that b/, # 0. By Lemma 2.7, we
have B, ~ W, or By ~ Bs_1.

Suppose that det D; = 0. Then one row of the matrix Dy is a linear combination of the
other rows. By interchanging coordinates xg, - - - , x5 if nessesary, we can assume that

the s-th row is a linear combination of the other rows. We write the matrix D, as

o-(347)

where P € M,_1(k), g, h are row vectors of dimension s — 1, d € k, and that satisfy
h = wP,d = w'g with w being a row vector of dimension s — 1. Then

P t

g
h|d
B, ~ B, = e
it 00 ’
. . En—s—!—l
00

where f is a row vector of dimension s — 1, and e € k. By the tranformation

.[571 —tW
T = 1 ;

Inferl
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we obtain
P| —P twl@ 4 tg
f| —f-twld4e
B! ='"T'BT"" = | 0
; En_s11
0 0
Put

. p‘fp.tw(fI)+tg
B f‘ —ftwl@ 4 |7

Because the rank of B, is n, we have det Q # 0. Let Q' € GL,(k) such that QQ"(? = I,

P/ tg/
o= (FHE).

where P’ € M;_1(k), g, f’ are row vectors of dimension s — 1, ¢’ € k. By the transfor-

mation
P/ tg/
=1 £ | ¢ ,
Inferl
we obtain
tPl
g |0
tT”B;/TH(q) _ (1)
. En—s+1
0
Putting D;_1 = 'P’ and bs_; = g/, we have B! ~ B,_;. ]

Remark 2.9. When s = 1, we have
Bs—1 = By = Ept1 = Wo.
Now we prove Theorem 1.2 and Corollary 1.3.

Proof. Because the rank of the matrix A is n, Proposition 1.1 implies that the hypersurface
X 4 is singular. By using a linear transformation of coordinates if nessesary, we can assume
that X 4 has a singular point (0,--- ,0,1). Then we have a;, = 0 for any 0 < ¢ < n. The
matrix A is now of the form
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where D,, € M,,(k), and b, is a row vector of dimension n. Using Lemma 2.8 repeatedly
and Remark 2.9, we have that the hypersurface X 4 is isomorphic to one of the hypersur-
faces defined by the matrixes W, with 0 < s < n.

If A is general, then det(D,,) # 0, and hence by the first paragraph of the proof of
Lemma 2.8 and Lemma 2.7, we have A ~ W,,_1.

Next we prove that s # s’ implies W, + W For this, we introduce some notions. Let
X7 be the hypersurface defined by the matrix Wj in the projective space P". The defining
equation of X' can be written as

Fq.fL'n + Fq+1 = 07

where
0 ifs=n
F,=
xl | ifs <mn,
and
Py = gt 4ttt ifs=n
q+1 — 1 1 .
e bl g 42 a, o ifs<n
It is easy to see that X7 has only one singular point Py = (0,---,0,1). The variety of

lines in P™ passing through P, can be naturally identified with the hypersurface H., =
{z,, = 0} in P" by the correspondence ) € H to the line QP,y. Let ¢ be the map
defined by

o :P"\{P} — P!
P +— PPF,.
Let X7 = (X" \ {Py}). For @ = (yo, -+ ,Yn—1,0) € Hoo, we consider the line
l= QPO = {()\y(h T a)‘yn—lmu’) | ()\7/’(’) € Pl}

We have [ € X7 if and only if there exists P = (po, - - ,Pn—1,Pn) € X2\ {Fo} satisfying

P €[, i.e. there exists an element p € k such that

(pO»"' apnflvpn) = (yOa"' 7ynflvﬂ)a

for some P € X'\ { Py}, or equivalently there exists an element 4 € k such that

Fq(y07 e 7yn71):u + Fq+1(90> e aynfl) =0.
Then

@ iqu(yo,...,yn_l):0and
Fq—‘,—l(yOv e 7yn—1) 7é 07
-1 n _ . . .
e ()N (XS \{Po}) = { {asingle point} if F,(yo,...,Yn-1) # 0,
NP} if Fy(yo, ..., Yn—1) = 0and
Fq+1(y07 e 7yn71) = 0.
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Putting V, = {F, =0, F,11 =0} C P""!,and H, = {F, =0} C P"~!, we have

Xn—2 ifs <n-—2,

S

Vs = { nonsingular Fermat hypersurface in P"~1  if s = n,

nonsingular Fermat hypersurface in P"~2  if s =n — 1,

where X2 is the hypersurface in P"~2 associated with the matrix

I,
En,5,1 .

For any s # ', suppose that X" and X[, are isomorphic and let ¢ : X7 — X7, be
an isomorphism. Because each of X’ and X, has only one singular point F, we have
¥(Py) = Py, and hence 1 induces an isomorphism ¢ from X7 to X7. Forany line [ € X7
and I’ € X7 such that ¢(l) = I, we have

B () N (XI\{P}) = (e () N (XP\ {Po}))-
Thus V, = V,, and Hy = H,. Hence for any s # s, if V; 2 Vs or H; % Hy then
X2 X0,
In the case n = 1, we have that X} consists of two points, and X7 consists of a single
point. In the case n = 2, we have that Xg consists of two irreducible components, X 12 is

irreducible, and X22 consists of (¢ 4 1) lines. Hence, in the case n = 1 and n = 2, we see
that s # s’ implies W, 4 W.,. By induction on n, we have the proof. O

Next we prove Corollary 1.4.

Proof. Under the condition n > 2,5 < n and (n,s) # (2,0), we have x,_; does not
divide F; 11, and hence V is of codimension 2 in P"~!. By induction on n, X7 is irre-

ducible. The morphism
Qlxmqry : XE\{Po} — Hoo =P

is birational with the inverse rational map

Fq+1(y07"' ayn1)>

Q_(y()a"'ayn—lao)'—)<y03"'7yn—17 q
Yn—1

3. PROOF OF THEOREM 1.5
For any s < n — 2, the matrix W can be written

W/
Ws=1| 0---01/|0
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For any g € Aut(X,), we have g(Py) = P, because X, has only one singular point
Py =(0,---,0,1). The automorphism g is defined by a matrix of the form

Tltal0
M = b|d]|O ,
cl e

where T € M,,_1(k), a, b, c are row vectors of dimension n — 1, d,e € k. We have
MW, M@ = §W, for some 0 # & € k implies

(1) LrWwIT@ = sW!

2) [aW! +d(0,---,0,1)] - 7@ = §(0,---,0,1)
(3) fTW! - tal® 4 ted? =0

(4) [aW! +d(0,---,0,1)] - *al® +ed? = 0

(5) b=0

(6) di=§

By (1), we see that T is a matrix defining an automorphism of X"~ 2 in P"~2. Because
s < n—2,by (2) we have d = §. Hence we can calculate 7" by induction on n. The vector
a, c and d, e can be find by using the equations (2)-(6). Conversely, it is easy to show that
if the matrix M satifies the conditions (i)-(v) then it define a projective automorphism of
X . The projective automorphism group of X,, and X,,_; is easy to calculate. U

4. PROOF OF PROPOSTION 1.1

For the reader’s convenience, we give a proof of Proposition 1.1, which is based on
the argument of [12], chapter VI. The implications (iv)=-(iii)=(ii)=(i) are clear. We will
prove (i)=-(iv). For B € GL,,+1(k), consider the map fp defined by

fBIGLn+1(kJ) — GLn_H(k)
T +—s 'TBTW.

Because the differential of the Frobenius map F : T — T is identically zero, we can
deduce that

d(fg) = d(*T)BT?.

Therefore, the tangent map of fp is surjective for any B € GL,1(k). Hence, fp is
generically surjective, and the image of f5 contains a non-empty open subset Up. Let A be
any matrix of M,, 11 (k) such that the hypersurface X 4 is nonsingular, i.e. A € GL, 11 (k).
Because GL,,11 (k) is irreducible, we have U4 NU; # @, where I is identity matrix of size
n—+ 1. There exist 71, T» € GL,, (k) such that f4(T1) = f;(T2). Putting T = T1T2_1, we
have 'TAT@ = T. O
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5. THE CASE OF PLANE CURVES

Next we will study the plane curves X 4 associated with matrices A of rank < 2 in the
projective plane P2,

Theorem 5.1. Let A = (aij)o<ij<2 € M3(k) be a nonzero matrix and let X 5 be the
curve defined by aijxixg = 0 in P2. Suppose that the rank of A is smaller than 3.

(1) When the rank of A is 1, the curve X 4 is projectively isomorphic to one of the

following curves
Zy - xg'H =0, or Zy:afz1 =0.

(i) When the rank of A is 2, the curve X 4 is projectively isomorphic to one of the

following curves
1 1 1
Xo: mgxl + as‘l]xg =0, or X;: asg+ + x‘f:cQ =0, or Xo: xg+ + z‘f"' =0.

Proof. In the case the rank of A is 2. By Theorem 1.2, the plane curve X 4 is projectively
isomorphic to one of the plane curves X, or X1, or Xs.

In the case rank of A is 1. With the same argument of the proof of Theorem 1.2, we can
assume that the matrix A is as following form

agp a1 0
A= aip ail 0

az az O

By interchanging with x and x; if nessesary, we can assume that (ao1,a11,a21) #
(0,0,0). Because rank of A is 1, there exists A € k such that (agg, a10, a20) = A ao1,a11, as1).
The curve X 4 is defined by the equation

(agowo + aromy + azoxs)(xzd + Azf) = 0.
It is easy to show that X 4 is projectively isomorphic to the curve Zj or Z;. O

Remark 5.2. In fact, the case when the plane curve X 4 of degree p + 1 has been proved
by Homma in [9].

Note that the plane curve X; has a special property such that the tangent line of X,
at every smooth point passes through the point (0, 1, 0). Therefore the plane curve X; is
strange. Moreover this curve is irreducible and nonreflexive. In [1], Ballico and Hefez
proved that a reduced irreducible nonreflexive plane curve of degree g + 1 is isomorphic to
one of the following curves:

(1) Xp @ ad™ 429t 424t = o,
(2) anodal curve whose defining equation is given in [4] and [7],

(3) strange curves.

Let £ be the space of all reduced irreducible projective plane curves of degree g + 1,

which is open in the space P = P("2") of all projective plane curves of degree g + 1.
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Let L, be the locus of P consisting of curves isomorphic to X;, and let £, be the lo-
cus of P consisting of strange curves. Let (£;) be the homogeneous coordinates of P
where J = (jo, j1,J2) ranges over the set of all ordered triples on non-negative integer

such that jo + j; + jo = ¢ + 1. The point (£;) corresponds to the curve Y &yz7 = 0
where 77/ = xé" 27" 237 Then the locus of all curves defined by the equation of the form

Y- ajjziz§ = 0 is the linear subspace of P defined by §; = 0, unless J € {(¢ +
1,0,0), (0,9 + 1,0),(0,0,¢ + 1),(g,1,0),(g,0,1),(1,4,0),(1,0,9),(0,4,1),(0,1,9)}.
By Theorem 5.1, we have that because Zy, Z1, Xo, X2 are reducible, the closure L, of
L. in £ consists of curves isomorphic to X; or to X1, and the intersection of £, and £,
consist of curves isomorphic to X;.
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