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Abstract. The once-punctured torus and the once-punctured Klein bottle are
topologically commensurable, in the sense that both of them are doubly covered
by the twice-punctured torus. In this paper, we give a condition for a faithful type-

preserving PSL(2,C)-representation of the fundamental group of the once-punctured
Klein bottle to be “commensurable” with that of the once-punctured torus. We also
show that such a pair of PSL(2,C)-representations extend to a representation of the

fundamental group of a common quotient orbifold. Finally, we give an application
to the study of the Ford domains.

1. Introduction

The combinatorial structures of the Ford domains of quasi-fuchsian once-
punctured torus groups are characterized by Jorgensen [6] (cf. [1]). It is natural
to expect that there is an analogue of Jorgensen’s theory for quasi-fuchsian once-
punctured Klein bottle groups, because its deformation space also has complex
dimension 2. In fact, for fuchsian once-punctured Klein bottle groups, we can
completely describe the structures of their Ford domains (see [3, Theorem 5.7]).
However, as shown in [3, Section 6], the Ford domains of general quasi-fuchsian
once-punctured Klein bottle groups seem to have much more complicated struc-
tures than those of quasi-fuchsian once-punctured torus groups.

On the other hand, the once-punctured torus, Σ1,1, and the once-punctured
Klein bottle, N2,1, are topologically commensurable, in the sense that they are
doubly covered by the twice-punctured torus, Σ1,2. Thus we can introduce a
notion of commensurability between type-preserving PSL(2,C)-representations
of π1(Σ1,1) and π1(N2,1) (see Definitions 2.1 and 2.2). Moreover, we can eas-
ily observe that mutually commensurable discrete PSL(2,C)-representations of
π1(Σ1,1) and π1(N2,1) have the same Ford domain (see Proposition 6.3). Hence
a natural problem now arises: which type-preserving PSL(2,C)-representation
of π1(N2,1) is commensurable with a type-preserving PSL(2,C)-representation
of π1(Σ1,1) (see Problem 2.3)?

The main purpose of this paper is to give a partial answer to this prob-
lem (see Theorem 5.1). This enable us to understand the Ford domains of the
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Kleinian groups obtained as the images of discrete faithful type-preserving rep-
resentations of π1(N2,1) which are commensurable with those of π1(Σ1,1) (see
Example 6.4).

The rest of this paper is organized as follows. In Section 2, we recall relation
among the once-punctured torus, the once-punctured Klein bottle, the twice-
punctured torus and their quotient orbifolds OΣ1,1 , ON2,1 , OΣ1,2 . We also recall
type-preserving representations of their fundamental groups (see Definition 2.1).
Then we introduce the concept of commensurability between type-preserving
representations of their fundamental groups (see Definition 2.2). In Section 3,
we recall the definition and basic properties of “geometric” generator systems of
π1(OΣ1,1) which are called elliptic generator triples. We also introduce geometric
generator systems of π1(ON2,1), which are also called elliptic generator triples,
and describe their basic properties. In Section 4, we study type-preserving repre-
sentations. In particular, we recall the definition of the complex probabilities of
type-preserving representations of π1(OΣ1,1) and describe a conceptual geometric
construction of a type-preserving representation from a given complex probabil-
ity (see Proposition 4.8). We also introduce the concept of complex probabilities
of type-preserving representations of π1(ON2,1) and establish a similar geometric
construction of a type-preserving representation from a given complex probabil-
ity (see Proposition 4.11). At the end of Section 4, we study type-preserving
PSL(2,C)-representations of π1(Σ1,2) extending to those of π1(Σ1,1) or π1(N2,1)
(see Lemma 4.15). In Section 5, we give a partial answer to the commensurabil-
ity problem for representations of π1(OΣ1,1) and π1(ON2,1) in terms of complex
probabilities (see Theorem 5.1). We also study what happens if we drop the
assumption in Theorem 5.1. In Section 6, we give an application to the study of
Ford domains.

2. Once-punctured torus, once-punctured Klein bottle and their
friends

Let Σ1,1, N2,1 and Σ1,2, respectively, be the once-punctured torus, the
once-punctured Klein bottle and the twice-punctured torus. Their fundamental
groups have the following presentations:

π1(Σ1,1) = ⟨X1, X2 | −⟩,
π1(N2,1) = ⟨Y1, Y2 | −⟩,
π1(Σ1,2) = ⟨Z1, Z2, Z3 | −⟩.

Here the generators are represented by the based simple loops in Figure 1. It
should be noted that Y2 is represented by the unique non-separating simple
orientable loop in N2,1. Set KΣ1,1 = [X1, X2] = X1X2X

−1
1 X−1

2 , KN2,1 =

(Y1Y2Y
−1
1 Y2)

−1, KΣ1,2 = Z1Z2Z3 and K ′
Σ1,2

= Z2Z1Z3. Then they are rep-

resented by the punctures of the surfaces.
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The once-punctured torus and the once-punctured Klein bottle are topo-
logically commensurable, in the sense that both of them are doubly covered by
the twice-punctured torus. To be precise, the following hold.

(1) There are three double coverings p1 : Σ1,2 → Σ1,1 up to equivalence.
In fact, there are three epimorphisms from π1(Σ1,1) to Z/2Z, and the
double covering corresponding to each of them is homeomorphic to
Σ1,2.

(2) There is a unique orientation double covering p2 : Σ1,2 → N2,1 up
to equivalence. This corresponds to the epimorphism to Z/2Z which
maps the generator Y1 of π1(N2,1) to the generator 1 of Z/2Z and
maps the generator Y2 of π1(N2,1) to the identity element 0 of Z/2Z.

Figure 1. Σ1,1, N2,1 and Σ1,2.

For each F = Σ1,1, N2,1 or Σ1,2, let ιF : F → F be the involution illustrated
in Figure 2. We denote the quotient orbifold F/ιF by the symbol OF and denote
the covering projection from F to OF by the symbol pF . Then we have the
following under the notation of [8] (see Figure 2).

(1) OΣ1,1 = (2, 2, 2,∞) is the orbifold with underlying space a punctured
sphere and with three cone points of cone angle π, and π1(OΣ1,1) has
the following presentation:

π1(OΣ1,1) = ⟨P0, P1, P2 | P 2
0 = P 2

1 = P 2
2 = 1⟩.

(2) ON2,1 = (2, 2;∞] is the orbifold with underlying space a disk and with
two cone points of cone angle π and a corner reflector of order ∞, and
π1(ON2,1) has the following presentation:

π1(ON2,1) = ⟨Q0, Q1, Q2 | Q2
0 = Q2

1 = Q2
2 = 1⟩.

(3) OΣ1,2 = (2, 2, 2, 2,∞) is the orbifold with underlying space a punctured
sphere and with four cone points of cone angle π, and π1(OΣ1,2) has
the following presentation:

π1(OΣ1,2) = ⟨R0, R1, R2, R3 | R2
0 = R2

1 = R2
2 = R2

3 = 1⟩.
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Figure 2. The commutative diagram of the fundamental
groups and coverings.

For each F = Σ1,1, N2,1 or Σ1,2, the orbifold OF admits a complete
hyperbolic structure and hence π1(OF ) is identified with a discrete subgroup
of Isom(H2) (if we fix a hyperbolic structure). Then the generator Q1 is a
reflection and the other generators are order 2 elliptic transformations. Set

K = (P0P1P2)
−1, K0 = QQ0

1 , K2 = QQ2

1 and KOΣ1,2
= R0R1R2R3, where

AB = BAB−1. Then K and KOΣ1,2
, respectively, are represented by the punc-

tures of OΣ1,1 and OΣ1,2 , and K0 and K2 are represented by the reflector lines
which generate the corner reflector of order ∞. We identify π1(F ) with the im-
age of the inclusion π1(F ) → π1(OF ) induced by the projection pF . Then we
have the following relations among the generators of the fundamental groups:

X1 = P2P1, X2 = P0P1, KΣ1,1 = K2,

Y1 = Q0Q1, Y2 = Q0Q2, KN2,1 = K2K0,

Z1 = R0R1, Z2 = R2R1, Z3 = R1R3, KΣ1,2 = KOΣ1,2
, K ′

Σ1,2
= (K−1

OΣ1,2
)R3 .

Note that OΣ1,1
and ON2,1

are also topologically commensurable, namely,
both of them are doubly covered by OΣ1,2 . To be precise, the following hold.

(1) There are three double coverings p1 : OΣ1,2 → OΣ1,1 up to equivalence.
Each of such covering corresponds to an epimorphism from π1(OΣ1,1)
to Z/2Z which maps one of the generators P0, P1, P2 to 1 and maps the
remaining generators to 0. Each double covering p1 : OΣ1,2 → OΣ1,1

uniquely determines a double covering p1 : Σ1,2 → Σ1,1 such that the
diagram in the left hand side of Figure 2 is commutative.
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(2) There is a unique orientation double covering p2 : OΣ1,2 → ON2,1 up
to equivalence. This corresponds to the epimorphism from π1(ON2,1)
to Z/2Z which maps the generators Q0, Q1 and Q2 to 0, 1 and 0,
respectively. For the orientation double coverings p2 : Σ1,2 → N2,1

and p2 : OΣ1,2
→ ON2,1

, the diagram in the right hand side of Figure 2
is commutative.

The assertion (2) is obvious and the assertion (1) is proved as follows. For
a given double covering p1 : OΣ1,2 → OΣ1,1 , we can check, by the relations
among the generators of the fundamental groups, that (p1 ◦ pΣ1,2)∗(π1(Σ1,2)) ⊂
(pΣ1,1)∗(π1(Σ1,1)). Hence, by the unique lifting property, there is a unique dou-
ble covering p̃1 : Σ1,2 → Σ1,1 such that pΣ1,1 ◦ p̃1 = p1 ◦ pΣ1,2 , modulo post
composition of ιΣ1,1 . Since ιΣ1,1 ◦ p̃1 = p̃1 ◦ ιΣ1,2 , the coverings p̃1 and ιΣ1,1 ◦ p̃1
are equivalent. Thus the double covering p1 uniquely determines the double
covering p̃1.

Conversely, for the double covering p1 : Σ1,2 → Σ1,1 associated with an
epimorphism ϕ : π1(Σ1,1) → Z/2Z, we can see, by the relations among the

generators of the fundamental groups, that there is a unique epimorphism ϕ̌ :
π1(OΣ1,1) → Z/2Z such that it maps only one of generators P0, P1 and P2 of

π1(OΣ1,1) to the generator 1 of Z/2Z and satisfies ϕ = ϕ̌ ◦ (pΣ1,1)∗. Hence there
is a unique double covering p̌1 : OΣ1,2 → OΣ1,1 such that pΣ1,1 ◦ p1 = p̌1 ◦ pΣ1,2 .
Thus we obtain the assertion (1).

The orbifolds OΣ1,1 and ON2,1 have two distinct common quotient orbifolds,
Oα and Oβ , as described in the following (see Figure 3).

(1) Oα = (2; 2,∞] is the orbifold with underlying space a disk and with a
cone point of cone angle π and with a corner reflector of order 2 and a
corner reflector of order ∞, and π1(Oα) has the following presentation:

π1(Oα) = ⟨S0, S1, S2 | S2
0 = S2

1 = S2
2 = 1, (S1S2)

2 = 1⟩.
Here S0 is an order 2 elliptic transformation, and S1 and S2 are reflec-
tions.

(1-1) There is a unique double covering p
(α)
Σ1,1

: OΣ1,1 → Oα. This

corresponds to the epimorphism from π1(Oα) to Z/2Z which maps
the generators S1, S2 to 1 and maps S0 to 0. Then we have the
following identities:

P0 = SS2
0 , P1 = S1S2, P2 = S0.

(1-2) There is a unique double covering p
(α)
N2,1

: ON2,1 → Oα. This

corresponds to the epimorphism from π1(Oα) to Z/2Z which maps
the generator S2 to 1 and maps S0, S1 to 0. Then we have the
following identities:

Q0 = SS2
0 , Q1 = S1, Q2 = S0.

(2) Oβ = [2, 2, 2,∞] is the orbifold with underlying space a disk and with
three corner reflectors of order 2 and a corner reflector of order ∞, and
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π1(Oβ) has the following presentation:

π1(Oβ) =

⟨
T0, T1, T2, T3 | T 2

0 = T 2
1 = T 2

2 = T 2
3 = 1,

(T0T1)
2 = (T1T2)

2 = (T2T3)
2 = 1

⟩
.

Here the generators T0, T1, T2, T3 are reflections.

(2-1) There is a unique double covering p
(β)
Σ1,1

: OΣ1,1 → Oβ . This

corresponds to the epimorphism from π1(Oβ) to Z/2Z which maps
the generators T0, T1, T2, T3 to 1. Then we have the following
identities:

P0 = T0T1, P1 = T1T2, P2 = T2T3.

(2-2) There is a unique double covering p
(β)
N2,1

: ON2,1 → Oβ . This

corresponds to the epimorphism from π1(Oβ) to Z/2Z which maps
the generators T0, T1, T2 to 1 and maps T3 to 0. Then we have
the following identities:

Q0 = T1T2, Q1 = TT1
3 , Q2 = T0T1.

Figure 3. involutions of OΣ1,1 and ON2,1 .
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In summary, we have the commutative diagram of double coverings as shown
in Figure 4. Every arrow represents a double covering. There are three types
of coverings p1 from Σ1,2 (resp. OΣ1,2) to Σ1,1 (resp. OΣ1,1) up to equivalence,
and the other coverings are unique up to equivalence.

Figure 4

Definition 2.1. (1) For F = Σ1,1, N2,1 Σ1,2, OΣ1,1 , ON2,1 , OΣ1,2 , Oα or
Oβ , a representation ρ : π1(F ) → PSL(2,C) is type-preserving if it is irreducible
(equivalently, it does not have a common fixed point in ∂H3) and sends peripheral
elements to parabolic transformations.

(2) Type-preserving PSL(2,C)-representations ρ and ρ′ are equivalent if
ig ◦ ρ = ρ′, where ig is the inner automorphism, ig(h) = ghg−1, of PSL(2,C)
determined by g.

In the above definition, if F is an orbifold with reflector lines, an element
of π1(F ) is said to be peripheral if it is (the image of) a peripheral element of

π1(F̃ ), where F̃ is the orientation double covering of F .

Definition 2.2. Let ρ1 be a type-preserving PSL(2,C)-representation of
π1(Σ1,1) (resp. π1(OΣ1,1)). Let ρ2 be a type-preserving PSL(2,C)-representation
of π1(N2,1) (resp. π1(ON2,1

)). The representations ρ1 and ρ2 are commensurable
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if there exist a double covering p1 from Σ1,2 (resp. OΣ1,2) to Σ1,1 (resp. OΣ1,1)
and a double covering p2 from Σ1,2 (resp. OΣ1,2) to N2,1 (resp. ON2,1) such that
ρ1 ◦(p1)∗ and ρ2 ◦(p2)∗ are equivalent, namely ig ◦ρ1 ◦(p1)∗ = ρ2 ◦(p2)∗ for some
g ∈ PSL(2,C). After replacing ρ1 with ig ◦ρ1, without changing the equivalence
class, the last identity can be replaced with the identity ρ1 ◦ (p1)∗ = ρ2 ◦ (p2)∗.

In this paper, we study the following problem:

Problem 2.3. For a given type-preserving PSL(2,C)-representation ρ2 of
π1(N2,1) (resp. π1(ON2,1)), when does there exist a type-preserving PSL(2,C)-
representation ρ1 of π1(Σ1,1) (resp. π1(OΣ1,1)) which is commensurable with
ρ2?

We will give a partial answer to this problem for a certain family of type-
preserving PSL(2,C)-representations of π1(N2,1) in terms of “complex probabil-
ities” introduced in Section 4 (see Theorem 5.1).

Remark 2.4. Recall that there are three equivalence classes of double
coverings Σ1,2 → Σ1,1 and there is a unique equivalence class of double cover-
ings Σ1,2 → N2,1. The three classes of double coverings Σ1,2 → Σ1,1 become
equivalent after a post composition of a self-homeomorphism of Σ1,1. Hence,
by considering compositions of ρ1 with the automorphism of π1(Σ1,1) induced
by a self-homeomorphism of Σ1,1, we may arbitrarily fix the equivalence classes
of the coverings Σ1,2 → Σ1,1. However, we must be careful in the choices of
a representative p1 : Σ1,2 → Σ1,1 and a representative p2 : Σ1,2 → N2,1 of
the equivalence classes of the coverings, by the following reason. Assume that
ρ1 : π1(Σ1,1) → PSL(2,C) and ρ2 : π1(N2,1) → PSL(2,C) are commensurable
via coverings p1 : Σ1,2 → Σ1,1 and p2 : Σ1,2 → N2,1, i.e., ρ1 ◦ (p1)∗ and ρ2 ◦ (p2)∗
are equivalent. Pick a self-homeomorphism f of Σ1,2 and replace p1 with an-
other covering p′1 := p1 ◦ f : Σ1,2 → Σ1,1. Then the representation ρ1 ◦ (p′1)∗ is
not necessarily equivalent to the representation ρ1 ◦ (p1)∗, and hence it is not
necessarily equivalent to the representation ρ2 ◦ (p2)∗. In fact, we also need to
replace p2 with another covering p′2 := p2 ◦ f : Σ1,2 → N2,1, which is equivalent
to p2.

3. Elliptic generators

In this section, we first recall the definition and basic properties of elliptic
generators of π1(OΣ1,1) (see [1, Section 2] for details). We also introduce the
concept of elliptic generators of π1(ON2,1), and then we establish similar basic
properties.

Recall that the (orbifold) fundamental group of OΣ1,1 has the following
presentation:

π1(OΣ1,1) = ⟨P0, P1, P2 | P 2
0 = P 2

1 = P 2
2 = 1⟩,

and that K = (P0P1P2)
−1 is represented by the puncture of OΣ1,1

.
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Definition 3.1. An ordered triple (P0, P1, P2) of elements of π1(OΣ1,1) is
called an elliptic generator triple of π1(OΣ1,1) if its members generate π1(OΣ1,1)

and satisfy P 2
0 = P 2

1 = P 2
2 = 1 and (P0P1P2)

−1 = K. A member of an elliptic
generator triple of π1(OΣ1,1) is called an elliptic generator of π1(OΣ1,1).

Remark 3.2. In the above definition, the condition that the members of
the triple generate π1(OΣ1,1) is actually a consequence of the other conditions.
This can be seen from the proof of [1, Lemma 2.1.7].

Proposition 3.3. [1, Proposition 2.1.6] The elliptic generator triples of
π1(OΣ1,1) are characterized as follows.

(1) For any elliptic generator triple (P0, P1, P2) of π1(OΣ1,1), the following
hold:

(1.1) The triple of any three consecutive elements in the following bi-infinite
sequence is also an elliptic generator triple of π1(OΣ1,1).

. . . , P2
K−2

, P0
K−1

, P1
K−1

, P2
K−1

, P0, P1, P2, P0
K , P1

K , P2
K , P0

K2

, . . .

(1.2) (P0, P2, P1
P2) and (P1

P0 , P0, P2) are also elliptic generator triples of
π1(OΣ1,1).

(2) Conversely, any elliptic generator triple of π1(OΣ1,1) is obtained from a
given elliptic generator triple of π1(OΣ1,1) by successively applying the operations
in (1).

Definition 3.4. For an elliptic generator triple (P0, P1, P2) of π1(OΣ1,1),
the bi-infinite sequence {Pj} in Proposition 3.3(1.1) is called the sequence of
elliptic generators of π1(OΣ1,1) (associated with (P0, P1, P2)).

Recall that the (orbifold) fundamental group of ON2,1 has the following
presentation:

π1(ON2,1) = ⟨Q0, Q1, Q2 | Q2
0 = Q2

1 = Q2
2 = 1⟩,

and that K0 = QQ0

1 and K2 = QQ2

1 are represented by the reflections in the lines
which generate the corner reflector of order ∞. It should be noted that Q0 and
Q2 act on the universal cover of ON2,1 orientation preservingly, and Q1 acts on
the universal cover of ON2,1 orientation reversingly.

Definition 3.5. An ordered triple (Q0, Q1, Q2) of elements of π1(ON2,1) is
called an elliptic generator triple of π1(ON2,1) if its members generate π1(ON2,1)

and satisfy Q2
0 = Q2

1 = Q2
2 = 1 and Q1

Q2Q1
Q0 = K2K0. A member of an elliptic

generator triple of π1(ON2,1) is called an elliptic generator of π1(ON2,1).

Remark 3.6. In the above definition, the condition that the members of
the triple generate π1(ON2,1

) is actually a consequence of the other conditions.
This can be seen from the proof of Proposition 3.7 (see [4]).

Proposition 3.7. The elliptic generator triples of π1(ON2,1) are charac-
terized as follows.
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(1) For any elliptic generator triple (Q0, Q1, Q2) of π1(ON2,1), the following
hold:

(1.1) The triples in the following bi-infinite sequence are also elliptic gener-
ator triples of π1(ON2,1).

. . . , (Q0
K0K2 ,Q1

K0K2 , Q2
K0K2), (Q2

K0 , Q1
K0 , Q0

K0), (Q0, Q1, Q2),

(Q2
K2 , Q1

K2 , Q0
K2), (Q0

K2K0 , Q1
K2K0 , Q2

K2K0), . . .

To be precise, the following holds. Let {Qj} be the sequence of elements
of π1(ON2,1) obtained from (Q0, Q1, Q2) by applying the following rule:

QK0
j = Q−j−1, QK2

j = Q−j+5.

Then the triple (Q3k, Q3k+1, Q3k+2) is also an elliptic generator triple
of π1(ON2,1) for any k ∈ Z.

(1.2) (Q2, Q1
Q2Q0 , Q0

Q2) is also an elliptic generator triple of π1(ON2,1
).

(2) Conversely, any elliptic generator triple of π1(ON2,1) is obtained from a
given elliptic generator triple of π1(ON2,1) by successively applying the operations
in (1).

The proof of (1) is obvious, and the proof of (2) is given in [4]. In this paper,
we need only (1).

Definition 3.8. For an elliptic generator triple (Q0, Q1, Q2) of π1(ON2,1
),

the bi-infinite sequence {Qj} in Proposition 3.7(1.1) is called the sequence of
elliptic generators of π1(ON2,1) (associated with (Q0, Q1, Q2)).

It should be noted that Qj is conjugate to the following element (cf. Propo-
sition 4.11(1.1)):

Q0 if j ≡ 0 or 5 (mod 6),

Q1 if j ≡ 1 (mod 3),

Q2 if j ≡ 2 or 4 (mod 6).

In particular, Qj acts on the universal cover of ON2,1
orientation reversingly or

orientation preservingly according to whether j ≡ 1 (mod 3) or not.

4. Type-preserving representations

Let ρ1 be a type-preserving PSL(2,C)-representation of π1(OΣ1,1). Fix a
sequence of elliptic generators {Pj} of π1(OΣ1,1). Set

(x1, x12, x2) = (tr(ρ1(X1)), tr(ρ1(X1X2)), tr(ρ1(X2))),

where X1 = P2P1 and X2 = P0P1. As the trace of an element in PSL(2,C) is
only defined up to sign, we are free to choose the signs of x1 and x2 independently.
Once we have done this though, the sign of x12 is determined. It is well-known
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that the triple (x1, x12, x2) is a Markoff triple, namely, it satisfies the Markoff
identity (see [2], [1]):

x2
1 + x2

12 + x2
2 = x1x12x2

and that the triple (x1, x12, x2) is non-trivial, namely, it is different from (0,0,0).
Moreover, the equivalence class of the triple (x1, x12, x2) is uniquely deter-
mined by the equivalence class of the type-preserving representation ρ1, and
vice versa (see [1, Proposition 2.3.6 and 2.4.2] for details). Here, two triples
(x1, x12, x2) and (x′

1, x
′
12, x

′
2) are said to be equivalent if the latter is equal to

(x1, x12, x2), (x1,−x12,−x2), (−x1, x12,−x2) or (−x1,−x12, x2). We call the
triple (x1, x12, x2) = (tr(ρ1(X1)), tr(ρ1(X1X2)), tr(ρ1(X2))) the Markoff triple
associated with {ρ1(Pj)}.

Let ρ2 be a type-preserving PSL(2,C)-representation of π1(ON2,1). Fix a
sequence of elliptic generators {Qj} of π1(ON2,1). Set

(y1, y12, y2) = (tr(ρ2(Y1))/i , tr(ρ2(Y1Y2))/i , tr(ρ2(Y2))),

where Y1 = Q0Q1 and Y2 = Q0Q2 and i =
√
−1. Note that ρ2(KN2,1) =

ρ2((Y1Y2Y
−1
1 Y2)

−1) is a parabolic element of PSL(2,C) with a trace that has a
well defined sign (independent of the signs chosen for the traces of ρ(Y1) and
ρ(Y2)), which is equal to y21 + y212 − y1y12y2 + 2. Hence (y1, y12, y2) satisfies one
of the following identities:

y21 + y212 + 4 = y1y12y2 if tr(ρ2(KN2,1)) = −2, (Eq1)

y21 + y212 = y1y12y2 if tr(ρ2(KN2,1)) = +2.

In addition, the triple (y1, y12, y2) is non-trivial, namely, it is different from
(0,0,0) (see [3, Remark 4.3]). It is well-known that any two generator subgroup
⟨A,B⟩ of PSL(2,C) is irreducible if and only if tr([A,B]) ̸= 2 (see, for example
[5, Proposition 2.3.1]). Since ρ2 is irreducible, it satisfies one of the following
identities:

y2 ̸= 0 if tr(ρ2(KN2,1
)) = −2, (Eq2)

y2 ̸= ±2 if tr(ρ2(KN2,1)) = +2.

Moreover, the equivalence class of the triple (y1, y12, y2) is uniquely determined
by the equivalence class of the type-preserving representation ρ2, and vice versa
(see [3, Propositions 4.4 and 4.6] for details). Here, two triples (y1, y12, y2)
and (y′1, y

′
12, y

′
2) are said to be equivalent if the latter is equal to (y1, y12, y2),

(y1,−y12,−y2), (−y1, y12,−y2) or (−y1,−y12, y2). We call the triple (y1, y12, y2)
= (tr(ρ2(Y1))/i , tr(ρ2(Y1Y2))/i , tr(ρ2(Y2))) the pseudo-Markoff triple associated
with {ρ2(Qj)}.

Proposition 4.1. (1) The restriction of any type-preserving PSL(2,C)-
representation of π1(OΣ1,1) (resp. π1(ON2,1)) to π1(Σ1,1) (resp. π1(N2,1)) is
type-preserving.
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(2) Conversely, every type-preserving PSL(2,C)-representation ρ1 (resp.
ρ2) of π1(Σ1,1) (resp. π1(N2,1)) extends to a unique type-preserving PSL(2,C)-
representation ρ̃1 (resp. ρ̃2 of π1(OΣ1,1) (resp. π1(ON2,1)). Moreover, if ρ1
(resp. ρ2) is faithful, then ρ̃1 (resp. ρ̃2) is also faithful.

Proof. The assertion (1) is obvious from the definition. The first assertion
in (2) is well-known (cf. [10, Section 5.4] and [1, Proposition 2.2.2]). The second
assertion in (2) is proved as follows. Suppose to the contrary that ρ1 is faithful
but that ρ̃1 is not faithful. Pick a nontrivial element γ of Kerρ̃1. Since π1(OΣ1,1)
is the free product of three cyclic groups and since π1(Σ1,1) is an index 2 subgroup
of π1(OΣ1,1), we can see that the normal closure of γ in π1(OΣ1,1) has a nontrivial
intersection with π1(Σ1,1). This means that ρ1 is not faithful, a contradiction.
The same argument works for the pair of representations ρ2 and ρ̃2. □

By this proposition, the following are well-defined.

Definition 4.2. (1) For F = Σ1,1 or OΣ1,1 , the symbol Ω(Σ1,1) denotes
the space of all type-preserving PSL(2,C)-representations ρ1 of π1(F ).

(2) For F = N2,1 or ON2,1 , the symbol Ω(N2,1) (resp. Ω′(N2,1)) denotes
the space of all type-preserving PSL(2,C)-representations ρ2 of π1(F ) such that
tr(ρ2(KN2,1

)) = −2 (resp. tr(ρ2(KN2,1
)) = +2).

Remark 4.3. For any ρ2 ∈ Ω′(N2,1), the isometries ρ2(Q0Q2) = ρ2(Y2)
and ρ2(KN2,1) have a common fixed point (see [3, Lemma 4.5(ii)]), and hence ρ2
is indiscrete or non-faithful (see [3, Lemma 4.7]).

The following lemma gives a (local) section of the projection from Ω(Σ1,1)
(resp. Ω(N2,1)) to the space of the equivalence classes of the non-trivial Markoff
triples (resp. pseudo-Markoff triple) (cf. [6, Section 2], [9, Section 3], [1, Lemma
2.3.7] and [3, Lemma 4.5]).

Lemma 4.4. (1) Let (x1, x12, x2) ∈ C3 be a triple satisfying x2
1 + x2

12 +
x2
2 = x1x12x2 and x12 ̸= 0, and let {Pj} be a sequence of elliptic generators of

π1(OΣ1,1).
(1.1) Let ρ1 : π1(Σ1,1) → PSL(2,C) be a representation defined by

ρ1(X1) =

(
x1 − x2/x12 x1/x

2
12

x1 x2/x12

)
, ρ1(X1X2) =

(
x12 −1/x12

x12 0

)
,

ρ1(X2) =

(
x2 − x1/x12 −x2/x

2
12

−x2 x1/x12

)
, ρ1(KΣ1,1) =

(
−1 −2
0 −1

)
,

where X1 = P2P1 and X2 = P0P1. Then ρ1 ∈ Ω(Σ1,1) such that the Markoff
triple associated with {ρ1(Pj)} is equal to (x1, x12, x2) up to equivalence.
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(1.2) The above representation ρ1 extends to a type-preserving representa-
tion of π1(OΣ1,1) satisfying the following identities:

ρ1(P0) =

(
x2/x12 (x12x2 − x1)/x

2
12

−x1 −x2/x12

)
, ρ1(P1) =

(
0 −1/x12

x12 0

)
,

ρ1(P2) =

(
−x1/x12 (x1x12 − x2)/x

2
12

−x2 x1/x12

)
, ρ1(K) =

(
1 1
0 1

)
.

(2) Let (y1, y12, y2) ∈ C3 be a triple satisfying y21 + y212 + 4 = y1y12y2 and
y2 ̸= 0, and let {Qj} be a sequence of elliptic generators of π1(ON2,1).

(2.1) Let ρ2 : π1(N2,1) → PSL(2,C) be a representation defined by

ρ2(Y1) =

(
y1i/2 −y12i/2y2

−(y1y2 − y12)y2i/2 y1i/2

)
,

ρ2(Y1Y2) =

(
y12i/2 −(y12y2 − y1)i/2y2

−y1y2i/2 y12i/2

)
,

ρ2(Y2) =

(
0 1/y2

−y2 y2

)
, ρ2(KN2,1) =

(
−1 −2
0 −1

)
,

where Y1 = Q0Q1 and Y2 = Q0Q2. Then ρ2 ∈ Ω(N2,1) such that the pseudo-
Markoff triple associated with {ρ2(Qj)} is equal to (y1, y12, y2) up to equivalence.

(2.2) The above representation ρ2 extends to a type-preserving representa-
tion of π1(ON2,1) satisfying the following identities:

ρ2(Q0) =

(
y1/2 −y12/2y2

(y1y2 − y12)y2/2 −y1/2

)
,

ρ2(Q1) =

(
−(y21 + 2)i/2 y1y12i/2y2

−y1y2(y1y2 − y12)i/2 (y21 + 2)i/2

)
,

ρ2(Q2) =

(
−y12/2 (y12y2 − y1)/2y2
−y1y2/2 y12/2

)
,

ρ2(K0) =

(
i 0
0 −i

)
, ρ2(K2) =

(
i −2i
0 −i

)
.

Convention 4.5. (1) For any element ρ1 ∈ Ω(Σ1,1), after taking conjugate
of ρ1 by some element of PSL(2,C), we always assume that ρ1 is normalized so
that ρ1(K) is given by the identity in Lemma 4.4(1.2) without changing the
equivalence class.

(2) For any element ρ2 ∈ Ω(N2,1), after taking conjugate of ρ2 by some
element of PSL(2,C), we always assume that ρ2 is normalized so that ρ2(K0)
and ρ2(K2) are given by the identities in Lemma 4.4(2.2) without changing the
equivalence class.

Pick an element ρ1 ∈ Ω(Σ1,1) and a sequence of elliptic generators {Pj} of
π1(OΣ1,1). Let (x1, x12, x2) ∈ C3 be the Markoff triple associated with {ρ1(Pj)}.
Suppose x1x12x2 ̸= 0. Then the identity x2

1 + x2
12 + x2

2 = x1x12x2 implies the



14 Mikio Furokawa

following identity:

a0 + a1 + a2 = 1, where a0 =
x1

x12x2
, a1 =

x12

x2x1
, a2 =

x2

x1x12
.

We call the triple (a0, a1, a2) ∈ (C∗)3 the complex probability associated with
{ρ1(Pj)}, where C∗ = C − {0}. We note that the Markoff triple (x1, x12, x2)
with x1x12x2 ̸= 0 up to sign (that is, up to equivalence) is recovered from the
complex probability by the following identities:

x2
1 =

1

a1a2
, x2

12 =
1

a2a0
, x2

2 =
1

a0a1
.

Moreover, there is a nice geometric construction of a type-preserving represen-
tation from the corresponding complex probability.

To introduce the geometric construction of the representations, we prepare
some notations. Throughout this paper, H3 = C × R+ denotes the upper half
space model of the 3-dimensional hyperbolic space.

Definition 4.6. Let A =

(
a b
c d

)
be an element of PSL(2,C) such that

A(∞) ̸= ∞, namely c ̸= 0. Then the isometric hemisphere I(A) of A is the
hyperplane of the upper half space H3 bounded by

{z ∈ C | |A′(z)| = 1} = {z ∈ C | |cz + d| = 1}.

Thus I(A) is a Euclidean hemisphere orthogonal to C = ∂H3 with center c(A) =
A−1(∞) = −d/c and radius r(A) = 1/|c|. We denote by E(A) the closed half
space of H3 with boundary I(A) which is of infinite diameter with respect to the
Euclidean metric.

Lemma 4.7. [1, Lemma 4.1.1] Let A be an element of PSL(2,C) which does
not fix ∞ and let W be an element of PSL(2,C) which preserves ∞ and acts on
C = ∂H3 as a Euclidean isometry. Then

I(AW ) = W−1(I(A)), I(WA) = I(A).

In particular, I(WAW−1) = WI(A).

Now we introduce a nice geometric construction of a type-preserving repre-
sentation from the corresponding complex probability (cf. [1, Proposition 2.4.4]).

Proposition 4.8. Under Convention 4.5, the following hold:
(1) For any triple (a0, a1, a2) ∈ (C∗)3 such that a0 + a1 + a2 = 1 and

for any sequence of elliptic generators {Pj} of π1(OΣ1,1), there is an element
ρ1 ∈ Ω(Σ1,1) such that the complex probability associated with {ρ1(Pj)} is equal
to (a0, a1, a2). Moreover, ρ1 satisfies the following conditions (see Figure 5).

(1.1) The centers of isometric hemispheres of ρ1(Pj) satisfy the following
conditions.

• c(ρ1(P3k+2))− c(ρ1(P3k+1)) = a0.
• c(ρ1(P3k+3))− c(ρ1(P3k+2)) = a1.
• c(ρ1(P3k+4))− c(ρ1(P3k+3)) = a2.
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(1.2) The isometries ρ1(Pj) satisfy the following conditions.
• The isometry ρ1(P3k+2) is the π-rotation about the geodesic with end-

points c(ρ1(P3k+2))±
√
a0(−a1).

• The isometry ρ1(P3k) is the π-rotation about the geodesic with end-

points c(ρ1(P3k))±
√
a1(−a2).

• The isometry ρ1(P3k+1) is the π-rotation about the geodesic with end-

points c(ρ1(P3k+1))±
√
a2(−a0).

(2) Conversely, under Convention 4.5, any element ρ1 ∈ Ω(Σ1,1) with the
complex probability (a0, a1, a2) associated with {ρ1(Pj)} for some sequence of
elliptic generators {Pj} of π1(OΣ1,1) satisfies the above conditions.

Figure 5. Isometric hemispheres of elliptic generators of π1(Σ1,1)

Notation 4.9. Under Convention 4.5, let ρ1 be an element of Ω(Σ1,1)
and let {Pj} be a sequence of elliptic generators of π1(OΣ1,1). Let ξ be the
automorphism of π1(OΣ1,1) given by the following (cf. Proposition 3.3):

(ξ(P0), ξ(P1), ξ(P2)) = (PP1
2 , P1, P

K
0 ).

If the complex probability associated with {ρ1(ξk(Pj))} is well-defined, then we

denote it by (a
(k)
0 , a

(k)
1 , a

(k)
2 ).

The following lemma can be verified by simple calculation (cf. [1, Lemma
2.4.1]).

Lemma 4.10. Under Convention 4.5, let ρ1 be an element of Ω(Σ1,1) and let
{Pj} be a sequence of elliptic generators of π1(OΣ1,1

). Suppose that the complex

probability (a
(k)
0 , a

(k)
1 , a

(k)
2 ) associated with {ρ1(ξk(Pj))} is well-defined for any

k ∈ Z. Then we have the following identities (cf. Figure 6):

a
(k+1)
0 = 1− a

(k)
2 , a

(k+1)
1 =

a
(k)
1 a

(k)
2

1− a
(k)
2

, a
(k+1)
2 =

a
(k)
2 a

(k)
0

1− a
(k)
2

,

a
(k−1)
0 =

a
(k)
2 a

(k)
0

1− a
(k)
0

, a
(k−1)
1 =

a
(k)
0 a

(k)
1

1− a
(k)
0

, a
(k−1)
2 = 1− a

(k)
0 .
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Figure 6. Adjacent complex probabilities of ρ1 ∈ Ω(Σ1,1)

Next we give a geometric description of (normalized) type-preserving repre-
sentations of π1(ON2,1). Pick an element ρ2 ∈ Ω(N2,1) and a sequence of elliptic

generators {Qj} of π1(ON2,1). Let (y1, y12, y2) ∈ C3 be the pseudo-Markoff triple

associated with {ρ2(Qj)}. Suppose y1y2y′12 ̸= 0, where y′12 = tr(ρ2(Y1Y
−1
2 ))/i =

y1y2−y12. Then the identity y21+y212+4 = y1y12y2 implies the following identity:

b0 + b1 + b2 = 1, where b0 =
y1

y2y′12
, b1 =

4

y1y2y′12
, b2 =

y′12
y1y2

.

We call the triple (b0, b1, b2) ∈ (C∗)3 the complex probability associated with
{ρ2(Qj)}. We note that the pseudo-Markoff triple (y1, y12, y2) with y1y2y

′
12 ̸= 0

up to sign (that is, up to equivalence) is recovered from the complex probability
by the following identities:

y21 =
4b0
b1

, (y′12)
2 =

4b2
b1

, y22 =
1

b2b0
.

Moreover, we have the following proposition.

Proposition 4.11. Under Convention 4.5, the following hold:
(1) For any triple (b0, b1, b2) ∈ (C∗)3 such that b0 + b1 + b2 = 1 and for

any sequence of elliptic generators {Qj} of π1(ON2,1), there is an element ρ2 ∈
Ω(N2,1) such that the complex probability associated with {ρ2(Qj)} is equal to
(b0, b1, b2). Moreover, ρ2 satisfies the following conditions (see Figure 7).

(1.1) The centers of isometric hemispheres of ρ2(Qj) satisfy the following
conditions.

• c(ρ2(Q6k))− c(ρ2(Q6k−3Q6k−1)) = b0.
• c(ρ2(Q6k+2))− c(ρ2(Q6k)) = b1.
• c(ρ2(Q6kQ6k+2))− c(ρ2(Q6k+2)) = b2.
• c(ρ2(Q6k+3))− c(ρ2(Q6kQ6k+2)) = b2.
• c(ρ2(Q6k+5))− c(ρ2(Q6k+3)) = b1.
• c(ρ2(Q6k+3Q6k+5))− c(ρ2(Q6k+5)) = b0.
• c(ρ2(Q3k+1)) =

1
2 (c(ρ2(Q3k)) + c(ρ2(Q3k+2))).

(1.2) The isometries ρ2(Qj) satisfy the following conditions.
• For any j with j ≡ 0 or 5 (mod 6), the isometry ρ2(Qj) is the π-

rotation about the geodesic with endpoints c(ρ2(Qj))±
√
b0(−b1).

• For any j with j ≡ 2 or 3 (mod 6), the isometry ρ2(Qj) is the π-

rotation about the geodesic with endpoints c(ρ2(Qj))±
√
b1(−b2).
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• For any k, the isometry ρ2(Q3kQ3k+2) is the composition of the π-

rotation about the geodesic with endpoints c(ρ2(Q3kQ3k+2))±
√
b2(−b0)

and the horizontal translation z 7→ z − 1. In particular, the isometry
ρ2(Q3k+2Q3k) is the composition of the π-rotation about the geodesic

with endpoints c(ρ2(Q3k+2Q3k))±
√
b2(−b0) and the horizontal trans-

lation z 7→ z + 1.
• For any k, the isometry ρ2(Q3k+1) is the π-rotation about the geodesic
with endpoints c(ρ2(Q3k)) and c(ρ2(Q3k+2)).

(2) Conversely, under Convention 4.5, any element ρ2 ∈ Ω(N2,1) with the
complex probability (b0, b1, b2) associated with {ρ2(Qj)} for some sequence of
elliptic generators {Qj} of π1(ON2,1) satisfies the above conditions.

Figure 7. Isometric hemispheres of elliptic generators of π1(N2,1)

Proof. (1) Pick a triple (b0, b1, b2) ∈ (C∗)3 satisfying b0+ b1+ b2 = 1 and
fix a sequence of elliptic generators {Qj} of π1(OΣ1,1). Let (y1, z, y2) ∈ (C∗)3 be
a triple of a root of the following polynomial equation:

y21 =
4b0
b1

, z2 =
4b2
b1

, y22 =
1

b2b0
.

Replacing y2 by −y2 if necessary, the triple (y1, z, y2) ∈ (C∗)3 satisfies

y21 + z2 + 4 = y1zy2

and y2 is not equal to 0. Hence the triple (y1, z, y2) ∈ (C∗)3 is a pseudo-Markoff
triple. Set y12 = y1y2 − z. By direct calculation, we can see that the triple
(y1, y12, y2) ∈ (C∗)3 is also a pseudo-Markoff triple, namely, the triple satisfies
(Eq1) and (Eq2). Hence, for the triple (y1, y12, y2), we have an element ρ2 ∈
Ω(N2,1) which is as in Lemma 4.4(2.2). By the formula in Lemma 4.4(2.2), we
have the following (cf. Figure 7):

• c(ρ2(Q0))− c(ρ2(Q2Q0)) = b0.
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• c(ρ2(Q2))− c(ρ2(Q0)) = b1.
• c(ρ2(Q0Q2))− c(ρ2(Q2)) = b2.
• c(ρ2(Q1)) =

1
2 (c(ρ2(Q2)) + c(ρ2(Q0))).

• ρ2(Q0) is the π-rotation about the geodesic with endpoints c(ρ2(Q0))±√
b0(−b1).

• ρ2(Q2) is the π-rotation about the geodesic with endpoints c(ρ2(Q2))±√
b1(−b2).

• ρ2(Q0Q2) is the composition of the π-rotation about the geodesic with

endpoints c(ρ2(Q0Q2))±
√

b2(−b0) and the translation z 7→ z − 1.
• ρ2(Q1) is the π-rotation about the geodesic with endpoints c(ρ2(Q0))
and c(ρ2(Q2)).

Recall that the sequence of elliptic generators {Qj} satisfies the following:

QK0
j = Q−j−1, QK2

j = Q−j+5, where K0 = QQ0

1 , K2 = QQ2

1 .

Note that the isometry ρ2(K0) (resp. ρ2(K2)) is the π-rotation about the ver-
tical geodesic above 0 (resp. 1). Here a vertical geodesic above a point z ∈ C
means the geodesic {z} × R+ in H3 = C× R+. Hence, by Lemma 4.7, we have
I(γρ2(K0)) = ρ2(K0)(I(γ)) and I(γρ2(K2)) = ρ2(K2)(I(γ)) for any γ ∈ PSL(2,C)
such that γ(∞) ̸= ∞. Thus we obtain the desired result.

(2) Let ρ2 be an element of Ω(N2,1). Since ρ2 is normalized, the repre-
sentation ρ2 is conjugate to a representation as in Lemma 4.4(2.2) by some
Euclidean translation. Since the properties in Proposition 4.11(1) are invariant
by Euclidean translations, we have the desired result by the above proof. □

Notation 4.12. Under Convention 4.5, let ρ2 be an element of Ω(N2,1)
and let {Qj} be a sequence of elliptic generators of π1(ON2,1). Let σ be the
automorphism of π1(ON2,1) given by Proposition 3.7(1.2), namely,

(σ(Q0), σ(Q1), σ(Q2)) = (Q2, Q
Q2Q0

1 , QQ2

0 ).

If the complex probability associated with {ρ2(σk(Qj))} is well-defined, then we

denote it by (b
(k)
0 , b

(k)
1 , b

(k)
2 ).

The following lemma can be verified by simple calculation.

Lemma 4.13. Under Convention 4.5, let ρ2 be an element of Ω(N2,1) and
let {Qj} be a sequence of elliptic generators of π1(ON2,1). Suppose that the

complex probability (b
(k)
0 , b

(k)
1 , b

(k)
2 ) associated with {ρ2(σk(Qj))} is well-defined

for any k ∈ Z. Then we have the following identities (cf. Figure 8):

b
(k+1)
0 = 1− b

(k)
2 , b

(k+1)
1 =

b
(k)
1 b

(k)
2

1− b
(k)
2

, b
(k+1)
2 =

b
(k)
2 b

(k)
0

1− b
(k)
2

,

b
(k−1)
0 =

b
(k)
2 b

(k)
0

1− b
(k)
0

, b
(k−1)
1 =

b
(k)
0 b

(k)
1

1− b
(k)
0

, b
(k−1)
2 = 1− b

(k)
0 .
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Figure 8. Adjacent complex probabilities of ρ2 ∈ Ω(N2,1)

As a consequence of Propositions 4.8, 4.11 and Lemmas 4.10, 4.13, we have
the following corollary.

Corollary 4.14. Under Convention 4.5, let ρ1 and ρ2 be elements of
Ω(Σ1,1) and Ω(N2,1), respectively. Let {Pj} and {Qj} be sequences of elliptic
generators of π1(OΣ1,1) and π1(ON2,1), respectively. Suppose that the complex
probabilities (a0, a1, a2) and (b0, b1, b2) associated with {ρ1(Pj)} and {ρ2(Qj)},
respectively, are well-defined. Then the following hold.

(1) (a0, a1, a2) = (b0, b1, b2) and c(ρ1(P1)) = c(ρ2(Q2Q0)) if and only if
(ρ1(P6j+2), ρ1(P6j+3)) = (ρ2(Q6j), ρ2(Q6j+2)) for some j ∈ Z. More-
over, if these conditions hold, then the following identities hold for any
j, k ∈ Z:

(a
(k)
0 , a

(k)
1 , a

(k)
2 ) = (b

(k)
0 , b

(k)
1 , b

(k)
2 ),

(ρ1(ξ
k(P6j+2)), ρ1(ξ

k(P6j+3))) = (ρ2(σ
k(Q6j)), ρ2(σ

k(Q6j+2))).

(2) (a0, a1, a2) = (b2, b1, b0) and c(ρ1(P1)) = c(ρ2(Q2Q0)) if and only
if (ρ1(P6j+5), ρ1(P6j+6)) = (ρ2(Q6j+3), ρ2(Q6j+5)) for some j ∈ Z.
Moreover, if these conditions hold, then the following identities hold
for any j, k ∈ Z:

(a
(k)
0 , a

(k)
1 , a

(k)
2 ) = (b

(−k)
2 , b

(−k)
1 , b

(−k)
0 ),

(ρ1(ξ
k(P6j+5)), ρ1(ξ

k(P6j+6))) = (ρ2(σ
−k(Q6j+3)), ρ2(σ

−k(Q6j+5))).

At the end of this section, we prove the following lemma.

Lemma 4.15. Let ρ1 and ρ2 be type-preserving PSL(2,C)-representations
of π1(Σ1,1) and π1(N2,1), respectively. Let ρ̃1 and ρ̃2, respectively, be the unique
extensions of ρ1 and ρ2 given by Proposition 4.1. Then ρ1 and ρ2 are commen-
surable if and only if ρ̃1 and ρ̃2 are commensurable.

Proof. We first show the if part. Suppose that ρ̃1 and ρ̃2 are commen-
surable, i.e., there exist double coverings p1 : OΣ1,2 → OΣ1,1 and p2 : OΣ1,2 →
ON2,1

such that ρ̃1 ◦ (p1)∗ = ρ̃2 ◦ (p2)∗. By the correspondence between dou-
ble coverings described in Section 2 (see Figure 2), there exist double coverings
p̃1 : Σ1,2 → Σ1,1 and p̃2 : Σ1,2 → N2,1 such that pΣ1,1

◦ p̃1 = p1 ◦ pΣ1,2
and
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pN2,1 ◦ p̃2 = p2 ◦ pΣ1,2 . Hence we have the following identity:

ρ1 ◦ (p̃1)∗ = ρ̃1 ◦ (pΣ1,1)∗ ◦ (p̃1)∗
= ρ̃1 ◦ (p1) ◦ (pΣ1,2)∗

= ρ̃2 ◦ (p2) ◦ (pΣ1,2
)∗

= ρ̃2 ◦ (pN2,1)∗ ◦ (p̃2)∗ = ρ2 ◦ (p̃2)∗.
Next we show the only if part. Suppose that ρ1 and ρ2 are commensurable,

namely there exist double coverings p1 : Σ1,2 → Σ1,1 and p2 : Σ1,2 → N2,1 such
that ρ1 ◦ (p1)∗ = ρ2 ◦ (p2)∗. By the correspondence between double coverings
described in Section 2 (see Figure 2), we have double coverings p̌1 : OΣ1,2 →
OΣ1,1 and p̌2 : OΣ1,2 → ON2,1 such that pΣ1,1 ◦ p1 = p̌1 ◦ pΣ1,2 and pN2,1 ◦ p2 =
p̌2 ◦ pΣ1,2 . Hence we have the following identity (see Figure 9):

ρ̃1 ◦ (p̌1)∗ ◦ (pΣ1,2)∗ = ρ1 ◦ (p1)∗ = ρ2 ◦ (p2)∗ = ρ̃2 ◦ (p̌2)∗ ◦ (pΣ1,2)∗.

This means that both ρ̃1 ◦ (p̌1)∗ and ρ̃2 ◦ (p̌2)∗ are extensions of ρ := ρ1 ◦
(p1)∗ = ρ2 ◦ (p2)∗ of π1(Σ1,2) to π1(OΣ1,2). Note that π1(OΣ1,2) is generated by
π1(Σ1,2) = ⟨Z1, Z2, Z3⟩ and the element R1 and that the generators satisfy the
following identities (see Section 2):

R1ZjR
−1
1 = Z−1

j for j = 1, 2, 3.

Hence both ρ̃1◦(p̌1)∗(R1) and ρ̃2◦(p̌2)∗(R1) are solutions of the following system
of equation in PSL(2,C).

gρ(Zj)g
−1 = ρ(Zj)

−1 for j = 1, 2, 3.

On the other hand, since ρ is irreducible, the system of equations have at most
one solution. Hence we have ρ̃1 ◦ (p̌1)∗(R1) = ρ̃2 ◦ (p̌2)∗(R1), and therefore we
have ρ̃1 ◦ (p̌1)∗ = ρ̃2 ◦ (p̌2)∗. □

Figure 9
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Remark 4.16. Let ρ1, ρ2, ρ̃1 and ρ̃2 be as in Lemma 4.15 and assume that
ρ1 and ρ2 (and so ρ̃1 and ρ̃2) are commensurable. Then we can easily see, as in
the proof of Proposition 4.1, that if one of the representations ρ1, ρ2, ρ̃1 and ρ̃2
is faithful, then all of them are faithful.

5. Main Theorem

In this section, we give a partial answer to Problem 2.3. By Lemma 4.15,
we may only consider the problem for the quotient orbifolds. Our partial answer
to the commensurability problem for representations of the fundamental groups
of the orbifolds OΣ1,1 and ON2,1 is given as follows.

Theorem 5.1. Under Convention 4.5, the following hold:
(1) Let ρ2 be an element of Ω(N2,1). Suppose that ρ2 is faithful. Then the

following conditions are equivalent.

(i) There exists a faithful representation ρ1 ∈ Ω(Σ1,1) which is commen-
surable with ρ2.

(ii) There exist a sequence of elliptic generators {Qj} of π1(ON2,1) and
an integer k0 such that the complex probability (b0, b1, b2) associated
with {ρ2(Qj)} satisfies the following identity under Notation 4.12 (cf.
Figure 10):

(b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) = (b2, b1, b0).

(iii) There exists a sequence of elliptic generators {Qj} of π1(ON2,1) such
that the complex probability (b0, b1, b2) associated with {ρ2(Qj)} satis-
fies one of the following identities:

(α) (b
(0)
0 , b

(0)
1 , b

(0)
2 ) = (b2, b1, b0),

(β) (b
(1)
0 , b

(1)
1 , b

(1)
2 ) = (b2, b1, b0).

(2) If the conditions in (1) hold, the representation ρ1 is unique up to pre-
composition by an automorphism of π1(OΣ1,1) preserving K.

(3) Moreover, the following hold:

(α) ρ2 extends to a type-preserving PSL(2,C)-representation of π1(Oα) if
and only if ρ2 satisfies the condition (iii)-(α). Moreover, if these con-
ditions are satisfied, the extension is unique.

(β) ρ2 extends to a type-preserving PSL(2,C)-representation of π1(Oβ) if
and only if ρ2 satisfies the condition (iii)-(β). Moreover, if these con-
ditions are satisfied, the extension is unique.

Remark 5.2. By using this theorem, we can prove the “converse” condi-
tion, namely, we can give a condition for a faithful type-preserving PSL(2,C)-
representation of π1(Σ1,1) to be commensurable with that of π1(N2,1) (see [4]).

Proof. We prove (1) by proving the implications (iii) ⇒ (ii), (ii) ⇒ (iii),
(ii) ⇒ (i) and (i) ⇒ (ii).

(iii) ⇒ (ii). This is obvious.
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Figure 10. (b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) = (b2, b1, b0)

(ii) ⇒ (iii). Suppose that there exist a sequence of elliptic generators {Qj}
of π1(ON2,1) and an integer k0 such that the complex probability (b0, b1, b2)
associated with {ρ2(Qj)} satisfies the following identity:

(b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) = (b2, b1, b0).

Recall that the triple (b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) is the complex probability associated

with {ρ2(σk0(Qj))}, where σ is the automorphism of π1(ON2,1) given as in No-
tation 4.12. Since ρ2 is faithful, we have tr(ρ2(γ)) ̸= 0 for any γ ∈ π1(N2,1).

Hence the complex probability (b
(k)
0 , b

(k)
1 , b

(k)
2 ) associated with {ρ2(σk(Qj))} is

well-defined for any k ∈ Z. By the assumption (b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) = (b2, b1, b0)

and Lemma 4.13, we have

(b
(k0±l)
0 , b

(k0±l)
1 , b

(k0±l)
2 ) = (b

(∓l)
2 , b

(∓l)
1 , b

(∓l)
0 )

for any l ∈ Z. In particular we have

(b
(k0− k0

2 )
0 , b

(k0− k0
2 )

1 , b
(k0− k0

2 )
2 ) = (b

(
k0
2 )

2 , b
(
k0
2 )

1 , b
(
k0
2 )

0 ) if k0 is even,

(b
(k0− k0−1

2 )
0 , b

(k0− k0−1
2 )

1 , b
(k0− k0−1

2 )
2 ) = (b

(
k0−1

2 )
2 , b

(
k0−1

2 )
1 , b

(
k0−1

2 )
0 ) if k0 is odd.

Hence, by replacing {Qj} with {σ
k0
2 (Qj)} or {σ

k0−1
2 (Qj)} according to whether

k0 is even or odd, we obtain the desired result .
(ii) ⇒ (i). Suppose that there exist a sequence of elliptic generators {Qj}

of π1(ON2,1
) and an integer k0 such that the complex probability (b0, b1, b2)

associated with {ρ2(Qj)} satisfies the following identity:

(b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) = (b2, b1, b0).

Pick a sequence of elliptic generators {Pj} of π1(OΣ1,1). Then by Proposi-
tion 4.8(1), there exists a (normalized) type-preserving representation ρ1 of
π1(OΣ1,1) such that the complex probability associated with {ρ1(Pj)} is equal
to (b0, b1, b2). After taking conjugate of ρ1 by a parallel translation, we may
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assume that c(ρ1(P1)) = c(ρ2(Q2Q0)). Then, by Corollary 4.14(1), we see that

(ρ1(P2), ρ1(P3)) = (ρ2(Q0), ρ2(Q2)).

By Lemmas 4.10 and 4.13, we see that the complex probability associated with

{ρ1(ξk0(Pj))} is equal to the complex probability (b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) associated

with {ρ2(σk0(Qj))}, where ξ and σ are, respectively, the automorphisms of
π1(OΣ1,1) and π1(ON2,1) given by Notations 4.9 and 4.12. Hence, by the as-

sumption (b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) = (b2, b1, b0) and Corollary 4.14(2), we have

(ρ1(ξ
k0(P5)), ρ1(ξ

k0(P6))) = (ρ2(Q
K2
2 ), ρ2(Q

K2
0 )).

Hence we have

(ρ1(P2), ρ1(P3), ρ1(ξ
k0(P5)), ρ1(ξ

k0(P6))) = (ρ2(Q0), ρ2(Q2), ρ2(Q
K2
2 ), ρ2(Q

K2
0 )).

Claim 5.3. Let (R0, R1, R2, R3) be the generator system of π1(OΣ1,2) given
in Section 2.

(1) There is a double covering p1 : OΣ1,2 → OΣ1,1 such that

((p1)∗(R0), (p1)∗(R1), (p1)∗(R2), (p1)∗(R3)) = (P2, P3, ξ
k0(P5), ξ

k0(P6)).

(2) There is a double covering p2 : OΣ1,2 → ON2,1 such that

((p2)∗(R0), (p2)∗(R1), (p2)∗(R2), (p2)∗(R3)) = (Q0, Q2, Q
K2
2 , QK2

0 ).

Proof. (2) can be seen by choosing p2 to be the covering corresponding
to the epimorphism ϕ2 : π1(ON2,1) → Z/2Z defined by the following formula
(see Figure 2):

ϕ2(Qj) =

{
0 if j = 0 or 2,
1 if j = 1.

To prove (1), let q1 : OΣ1,2 → OΣ1,1 be the double covering such that the
following holds (see Figure 2):

((q1)∗(R0), (q1)∗(R1), (q1)∗(R2), (q1)∗(R3)) = (P0, P1, P
K
0 , PK

1 ).

Let f be a self-homeomorphism of OΣ1,1 such that f∗ maps (P0, P1, P2) to

(P2, P3, P
K
1 ), and consider the double covering p

(0)
1 := f ◦ q1 : OΣ1,2 → OΣ1,1 .

Then we have

((p
(0)
1 )∗(R0), (p

(0)
1 )∗(R1), (p

(0)
1 )∗(R2), (p

(0)
1 )∗(R3)) = (P2, P3, P5, P6).

Let ξ̃ be the self-homeomorphism of OΣ1,2 such that

((ξ̃)∗(R0), (ξ̃)∗(R1), (ξ̃)∗(R2), (ξ̃)∗(R3)) = (R0, R1, R3, R
R3
2 ).

Then the double covering p1 := p
(0)
1 ◦ ξ̃ : OΣ1,2 → OΣ1,1 satisfies the desired

condition.
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By Claim 5.3, there are double coverings p1 : OΣ1,2 → OΣ1,1 and p2 :
OΣ1,2 → ON2,1 satisfying the following identity:

(ρ1 ◦ (p1)∗(R0), ρ1 ◦ (p1)∗(R1), ρ1 ◦ (p1)∗(R2), ρ1 ◦ (p1)∗(R3))

=(ρ1(P2), ρ1(P3), ρ1(ξ
k0(P5)), ρ1(ξ

k0(P6)))

=(ρ2(Q0), ρ2(Q2), ρ2(Q
K2
2 ), ρ2(Q

K2
0 ))

=(ρ2 ◦ (p2)∗(R0), ρ2 ◦ (p2)∗(R1), ρ2 ◦ (p2)∗(R2), ρ2 ◦ (p2)∗(R3)).

Hence ρ1◦(p1)∗ = ρ2◦(p2)∗, namely, the representation ρ2 is commensurable with
ρ1. By Remark 4.16, ρ1 is faithful. Thus we obtain the desired representation
ρ1.

(i) ⇒ (ii). Suppose that there exists a faithful (normalized) type-preserving
PSL(2,C)-representation ρ1 of π1(OΣ1,1) which is commensurable with ρ2, i.e.,
there exist double coverings p1 : OΣ1,2 → OΣ1,1 and p2 : OΣ1,2 → ON2,1 such
that ρ1 ◦ (p1)∗ = ρ2 ◦ (p2)∗. Recall that (p2)∗(π1(OΣ1,2)) is equal to the kernel
of the epimorphism ϕ2 : π1(OΣ1,1) → Z/2Z and that the kernel of ϕ2 is equal

to the subgroup of π1(ON2,1) generated by the quadruple (Q0, Q2, Q
K2
2 , QK2

0 ).

Hence we have Q0, Q2 ∈ (p2)∗(π1(OΣ1,2)). Set P (0) = (p1 ◦ p−1
2 )∗(Q0) and

P (1) = (p1 ◦ p−1
2 )∗(Q2).

Claim 5.4. The ordered triple (K−1P (1)P (0), P (0), P (1)) is an elliptic gen-
erator triple of π1(OΣ1,1).

Proof. Note that P (0) and P (1) have order 2, because
(1) (p1 ◦p−1

2 )∗ : (p2)∗(π1(OΣ1,2)) → (p1)∗(π1(OΣ1,2)) is an isomorphism and
(2) Q0 and Q2 have order 2.

By using the third assertion of Proposition 4.11(1.2) and the fact that ρ1(K) is
the horizontal translation z 7→ z+1, we see that ρ1(K

−1)ρ2(Q2Q0) has order 2.
By the definition of P (0) and P (1) and by the identity ρ1 ◦ (p1)∗ = ρ2 ◦ (p2)∗, we
have ρ1(P

(1)P (0)) = ρ2(Q2Q0). Hence ρ1(K
−1P (1)P (0)) has order 2. Since ρ1 is

faithful, this implies that K−1P (1)P (0) has order 2. Hence, by Remark 3.2, the
triple (K−1P (1)P (0), P (0), P (1)) is an elliptic generator triple of π1(OΣ1,1). □

By Claim 5.4 and Proposition 3.3(1.1), ((P (1))K
−1

,K−1P (1)P (0), P (0)) is
also an elliptic generator triple of π1(OΣ1,1). Let {Pj} be the sequence of elliptic

generators of π1(OΣ1,1
) associated with this triple. Then ρ1(P2) = ρ1(P

(0)) =

ρ2(Q0) and ρ1(P3) = ρ1(P
(1)) = ρ2(Q2). This implies, together with Corol-

lary 4.14(1), that the complex probability associated with {ρ1(Pj)} is equal to

(b0, b1, b2). Set (P (2), P (3)) = ((p1 ◦ p−1
2 )∗(Q

K2
2 ), (p1 ◦ p−1

2 )∗(Q
K2
0 )). Then, by a

parallel argument, the triple ((P (3))K
−2

, (K−1P (3)P (2))K
−1

, (P (2))K
−1

) is an el-
liptic generator triple of π1(OΣ1,1). Let {P ′

j} be a sequence of elliptic generators

of π1(OΣ1,1) associated with this triple. Then ρ1(P
′
5) = ρ1(P

(2)) = ρ2(Q
K2
2 ) and

ρ1(P
′
6) = ρ1(P

(3)) = ρ2(Q
K2
0 ). This implies, together with Corollary 4.14(2),

that the complex probability associated with {ρ1(P ′
j)} is equal to (b2, b1, b0).
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Since ρ1(K)ρ2(Q0Q2) = ρ1(K
−1)ρ2(Q

K2
0 QK2

2 ) by Proposition 4.11(1.2), we have

ρ1(P4) = ρ1(KP2P3) = ρ1(K)ρ2(Q0Q2)

= ρ1(K
−1)ρ2(Q

K2
0 QK2

2 ) = ρ1(K
−1P ′

6P
′
5) = ρ1(P

′
4).

Since ρ1 is faithful, this implies P4 = P ′
4. Hence, by Proposition 3.3, there is

an integer k0 such that P ′
j = ξk0(Pj). By Lemmas 4.10 and 4.13, the complex

probability associated with {ρ1(ξk(Pj))} is equal to the complex probability

(b
(k)
0 , b

(k)
1 , b

(k)
2 ) associated with {ρ2(σk(Qj))} for any k ∈ Z. Hence we have

(b
(k0)
0 , b

(k0)
1 , b

(k0)
2 ) = (b2, b1, b0).

Thus the proof of the assertion (1) is complete.
Next we prove the assertion (2). Let ρ1 and ρ′1 be type-preserving PSL(2,C)-

representations of π1(OΣ1,1) such that they are commensurable with ρ2. Then
there exist coverings p1, p

′
1 : OΣ1,2 → OΣ1,1 and p2 : OΣ1,2 → ON2,1 such that

ρ1 ◦ (p1)∗ = ρ2 ◦ (p2)∗ and ρ′1 ◦ (p′1)∗ = ρ2 ◦ (p2)∗. By Claim 5.4, the following
triples are elliptic generator triples of π1(OΣ1,1):

(P0, P1, P2) := (K−1(p1 ◦ p−1
2 )∗(Q2Q0), (p1 ◦ p−1

2 )∗(Q0), (p1 ◦ p−1
2 )∗(Q2)),

(P ′
0, P

′
1, P

′
2) := (K−1(p′1 ◦ p−1

2 )∗(Q2Q0), (p
′
1 ◦ p−1

2 )∗(Q0), (p
′
1 ◦ p−1

2 )∗(Q2)).

Since ρ1 and ρ′1 are commensurable with ρ2, we have the following identity

(ρ1(P0), ρ1(P1), ρ1(P2)) = (ρ1(K
−1)ρ2(Q2Q0), ρ2(Q0), ρ2(Q2))

= (ρ′1(K
−1)ρ2(Q2Q0), ρ2(Q0), ρ2(Q2))

= (ρ′1(P
′
0), ρ

′
1(P

′
1), ρ

′
1(P

′
2)).

By Proposition 3.3(2), there is an automorphism f of π1(OΣ1,1) preserving K
which maps (P0, P1, P2) to (P ′

0, P
′
1, P

′
2). Hence we have ρ1 = ρ′1 ◦ f .

Finally we prove the assertion (3).
The if part of (α). Suppose that there exists a sequence of elliptic generators

{Qj} of π1(ON2,1) such that the complex probability (b0, b1, b2) associated with
{ρ2(Qj)} satisfies the following identity:

(b
(0)
0 , b

(0)
1 , b

(0)
2 ) = (b2, b1, b0) , namely, b0 = b2.

Let K̃ be the horizontal translation z 7→ z+1. For simplicity of notation, we write
(g0, g1, g2) instead of (ρ2(Q2), ρ2(Q1), K̃ρ2(K0)). We first show that there is a
representation ρ∗2 from π1(Oα) = ⟨S0, S1, S2 | S2

0 = S2
1 = S2

2 = 1, (S1S2)
2 = 1⟩ to

PSL(2,C) sending (S0, S1, S2) to (g0, g1, g2). Since g0 = ρ2(Q2) and g1 = ρ2(Q1),
we have g20 = g21 = 1. Thus the existence of the representation ρ∗2 is guaranteed
by the following claim.

Claim 5.5. (1) g2 is the π-rotation about the axis which is the image of
the vertical geodesic Axis(ρ2(K0)) by the translation z 7→ z + 1

2 , where Axis(A)

denotes the axis of A ∈ PSL(2,C). In particular, g22 = 1.
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(2) The axes of the π-rotations g1 and g2 intersect orthogonally and hence
g1g2 is also a π-rotation. In particular, (g1g2)

2 = 1.

Proof. (1) Since K̃(z) = z + 1 and since ρ2(K0) is the π-rotation about

the vertical geodesic Axis(ρ2(K0)), the isometry g2 = K̃ρ2(K0) is also the π-
rotation about the vertical geodesic, which is the image of Axis(ρ2(K0)) by the
translation z 7→ z + 1

2 .
(2) Note that ρ2(K0) is the π-rotation about the vertical geodesic above

c(ρ2(Q2Q0)), because we have the following identity by Lemma 4.7:

ρ2(K0)I(ρ2(Q2Q0)) = I(ρ2(Q2Q0K0)) = I(ρ2(K2Q2Q0)) = I(ρ2(Q2Q0)).

Thus the axis of g2 is the vertical geodesic above c(ρ2(Q2Q0))+
1
2 by Claim 5.5(1).

Moreover, we have the following identity:

c(ρ2(Q2Q0)) +
1

2

=c(ρ2(Q2Q0)) +
1

2
(c(ρ2(Q0Q2))− c(ρ2(Q2Q0))) by Proposition 4.11(1.1)

=
1

2
(c(ρ2(Q2Q0)) + c(ρ2(Q0Q2)))

=
1

2
(c(ρ2(Q2Q0)) + b0 − b2 + c(ρ2(Q0Q2))) by the assumption b0 = b2

=
1

2
(c(ρ2(Q0)) + c(ρ2(Q2))) by Proposition 4.11(1.1)

=c(ρ2(Q1)) by Proposition 4.11(1.1).

Hence g2 is the π-rotation about the vertical geodesic above c(ρ2(Q1)) = c(g1)
and hence the axes of g1 and g2 intersect orthogonally. □

Recall that π1(ON2,1) is identified with a subgroup of π1(Oα) and their
generators satisfy the following identities:

Q0 = SS2
0 , Q1 = S1, Q2 = S0.

Since g2 is the π-rotation about the vertical geodesic above c(ρ2(Q1)), we have

c(ρ2(Q0)) = c(ρ2(Q2)
g2) = c(ρ∗2(S

S2
0 )). This together with the assumption b0 =

b2 implies that ρ2(Q0) = ρ2(Q2)
g2 = ρ∗2(S

S2
0 ) by Proposition 4.11. Hence the

restriction of ρ∗2 to π1(ON2,1) is equal to the original representation ρ2.
The only if part of (α). Suppose that ρ2 extends to a type-preserving

representation ρ̃2 of π1(Oα). Pick a sequence of elliptic generators {Qj} of

π1(ON2,1). Since ρ2 is faithful, we have tr(ρ2(Y1))tr(ρ2(Y2))tr(ρ2(Y1Y
−1
2 )) ̸= 0,

where Y1 = Q0Q1 and Y2 = Q0Q2. Thus the complex probability (b0, b1, b2)
associated with {ρ2(Qj)} is well-defined. Since π1(ON2,1) is identified with a
subgroup of π1(Oα), the isometry ρ̃2(S2) satisfies the following identities:

(ρ̃2(S2))
2 = 1, ρ̃2(Q

S2
0 ) = ρ2(Q2), (ρ̃2(Q1S2))

2 = 1.
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Claim 5.6. The isometry ρ̃2(S2) is the π-rotation about the vertical geo-
desic above 1

2 (c(ρ2(Q2Q0)) + c(ρ2(Q0Q2))) = c(ρ2(Q1)).

Proof. Since (ρ̃2(S2))
2 = 1, ρ̃2(S2) is either the identity or a π-rotation.

If ρ̃2(S2) = 1, then ρ2(KN2,1) = ρ̃2((S
S0
1 S2)

2) = ρ̃2((S
S0
1 )2) = 1, a contradiction.

Hence ρ̃2(S2) is a π-rotation. By ρ̃2(Q
S2
0 ) = ρ2(Q2) and (ρ̃2(Q1S2))

2 = 1, we

have ρ̃2(K
S2
0 ) = ρ2(K2). Hence ρ̃2(S2) maps Fix(ρ2(K0)) = {c(ρ2(Q2Q0)),∞}

to Fix(ρ2(K2)) = {c(ρ2(Q0Q2)),∞}. Since ρ̃2(S2) has order 2, the isometry
ρ̃2(S2) must fix ∞. (Otherwise c(ρ2(Y

−1
2 )) = c(ρ2(Q2Q0)) = c(ρ2(Q0Q2)) =

c(ρ2(Y2)) and hence tr(ρ2(Y
−1
2 )) = 0, a contradiction to (Eq2).) Hence we

have Fix(ρ̃2(S2)) = { 1
2 (c(ρ2(Q2Q0)) + c(ρ2(Q0Q2))),∞}. By the faithfulness

of ρ2, the isometry ρ2(Q1) does not fix ∞. In fact, if ρ2(Q1) fixes ∞, then
tr(ρ2(Y1))tr(ρ2(Y2))tr(ρ2(Y1Y

−1
2 )) = 0 by Lemma 4.4(2.2). Since ρ̃2(S2) fixes

∞, the axes of ρ2(Q1) and ρ̃2(S2) intersect orthogonally by (ρ̃2(Q1S2))
2 = 1.

Hence the isometry ρ̃2(S2) is the π-rotation about the vertical geodesic above
1
2 (c(ρ2(Q2Q0)) + c(ρ2(Q0Q2))) = c(ρ2(Q1)). □

Hence we have

b0 = c(ρ2(Q0))− c(ρ2(Q2Q0)) by Proposition 4.11(1.1)

= −c(ρ2(Q2)) + 2c(ρ2(Q1))− c(ρ2(Q2Q0)) by Proposition 4.11(1.1)

= −c(ρ2(Q2)) + c(ρ2(Q0Q2)) by Claim 5.6

= b2 by Proposition 4.11(1.1).

To show the uniqueness of the extensions of ρ2, let ρ̃2 and ρ̃′2 be extensions
of ρ2 to π1(Oα). Then we have the following identity:

(ρ̃2(S
S2
0 ), ρ̃2(S1), ρ̃2(S0)) = (ρ̃2(Q0), ρ̃2(Q1), ρ̃2(Q2))

= (ρ2(Q0), ρ2(Q1), ρ2(Q2))

= (ρ̃′2(Q0), ρ̃
′
2(Q1), ρ̃

′
2(Q2))

= (ρ̃′2(S
S2
0 ), ρ̃′2(S1), ρ̃

′
2(S0)).

By Claim 5.6, we have ρ̃2(S2) = ρ̃′2(S2). Hence we have ρ̃2 = ρ̃′2.
The if part of (β). Suppose that there exists a sequence of elliptic generators

{Qj} of π1(ON2,1) such that the complex probability (b0, b1, b2) associated with
{ρ2(Qj)} satisfies the following identity:

(b
(1)
0 , b

(1)
1 , b

(1)
2 ) = (b2, b1, b0).

Let K̃ be the horizontal translation z 7→ z + 1. For simplicity of notation, we
write (g0, g1, g2, g3) instead of (K̃ρ2(K0), g

−1
0 ρ2(Q2), g

−1
1 ρ2(Q0), ρ2(K0)). We

first show that there is a representation ρ∗2 from π1(Oβ) = ⟨T0, T1, T2, T3 | T 2
0 =

T 2
1 = T 2

2 = T 2
3 = 1, (T0T1)

2 = (T1T2)
2 = (T2T3)

2 = 1⟩ to PSL(2,C) sending
(T0, T1, T2, T3) to (g0, g1, g2, g3). Since g3 = ρ2(K0), g0g1 = ρ2(Q2) and g1g2 =

ρ2(Q0), we have g23 = (g0g1)
2 = (g1g2)

2 = 1. By Convention 4.5, g0 = K̃ρ2(K0)
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are π-rotations and hence g20 = 1. Thus the existence of the representation ρ∗2 is
guaranteed by the following claim.

Claim 5.7. (1) g0 is a π-rotation satisfying ρ2(Q2Q0)
g0 = ρ2(Q0Q2). In

particular, g2 = g0ρ2(Q2Q0) has order 2, and hence g22 = 1.
(2) The axes of g0 and ρ2(Q2) intersect orthogonally and hence g−1

0 ρ2(Q2) =
g1 is also a π-rotation. In particular, g21 = 1.

(3) g2g3 is a π-rotation and hence (g2g3)
2 = 1.

Proof. (1) By the proof of Claim 5.5(1), the isometry g0 = ρ2(K2)K̃ is
the π-rotation about the vertical geodesic above 1

2 (c(ρ2(Q0Q2))+ c(ρ2(Q2Q0))).
This together with Proposition 4.11 implies that ρ2(Q2Q0)

g0 = ρ2(Q0Q2).
(2) By Lemma 4.13, we have

b
(1)
0 = 1− b2, b

(1)
1 =

b1b2
1− b2

, b
(1)
2 =

b2b0
1− b2

.

This together with the assumption (b
(1)
0 , b

(1)
1 , b

(1)
2 ) = (b2, b1, b0) implies that

b2 = b
(1)
0 = 1/2. In particular, 1

2 (c(ρ2(Q0Q2)) + c(ρ2(Q2Q0))) = c(ρ2(Q2))
by Proposition 4.11(1.1). Hence g0 is the π-rotation about the vertical geodesic
above c(ρ2(Q2)) and hence g0 and ρ2(Q2) intersect orthogonally.

(3) Since g0g3 = K̃, we have g0g3(z) = z+1. By Proposition 4.11(1.2), the
isometry g3g2 = g3g0ρ2(Q2Q0) is a π-rotation. □

Recall that π1(ON2,1) is identified with a subgroup of π1(Oβ) and their
generators satisfy the following identities:

Q0 = T1T2, Q1 = TT1
3 , Q2 = T0T1.

Since

(ρ∗2(T0), ρ
∗
2(T1), ρ

∗
2(T2), ρ

∗
2(T3)) = (g0, g1, g2, g3)

= (K̃ρ2(K0), g
−1
0 ρ2(Q2), g

−1
1 ρ2(Q0), ρ2(K0)),

we have

(ρ2(Q0), ρ2(Q1), ρ2(Q2)) = (ρ∗2(T1T2), ρ
∗
2(T

T1T2
3 ), ρ∗2(T0T1))

= (ρ∗2(T1T2), ρ
∗
2(T

T1
3 ), ρ∗2(T0T1)).

Thus the restriction of ρ∗2 to π1(ON2,1) is equal to the original representation ρ2.
The only if part of (β). Suppose that ρ2 extends to a type-preserving

representation ρ̃2 of π1(Oβ). Pick a sequence of elliptic generators {Qj} of

π1(ON2,1). Since ρ2 is faithful, we have tr(ρ2(Y1))tr(ρ2(Y2))tr(ρ2(Y1Y
−1
2 )) ̸= 0

and tr(ρ2(Y1))tr(ρ2(Y2))tr(ρ2(Y1Y2)) ̸= 0, where Y1 = Q0Q1 and Y2 = Q0Q2.
Thus the complex probability (b0, b1, b2) associated with {ρ2(Qj)} and the com-

plex probability (b
(1)
0 , b

(1)
1 , b

(1)
2 ) associated with {ρ2(σ(Qj))} are well-defined.

Since π1(ON2,1) is identified with a subgroup of π1(Oβ), the isometry ρ̃2(T0)
satisfies the following identities:

(ρ̃2(T0))
2 = 1, (ρ̃2(T0Q2))

2 = 1, (ρ̃2(T0Q2Q0))
2 = 1, (ρ̃2(T0Q2Q0K0))

2 = 1.
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Claim 5.8. The isometry ρ̃2(T0) is the π-rotation about the vertical ge-
odesic above 1

2 (c(ρ2(Q2Q0)) + c(ρ2(Q0Q2))) = c(ρ2(Q2)). Moreover, we have

ρ̃2(T0)(c(ρ2(Q0))) = c(ρ2(Q
Q2

0 )).

Proof. Since (ρ̃2(T0))
2 = 1, ρ̃2(T0) is either the identity or a π-rotation. If

ρ̃2(T0) = 1, then ρ2(KN2,1) = ρ̃2((T0T3)
2) = ρ̃2(T

2
3 ) = 1, a contradiction. Hence

ρ̃2(T0) is a π-rotation. By (ρ̃2(T0Q2Q0))
2 = 1 and (ρ̃2(T0Q2Q0K0))

2 = 1, we

have ρ̃2(K
T0
2 ) = ρ2(K0). Hence ρ̃2(T0) maps Fix(ρ2(K2)) = {c(ρ2(Q0Q2)),∞}

to Fix(ρ2(K0)) = {c(ρ2(Q2Q0)),∞}. Since ρ̃2(T0) has order 2, the isometry
ρ̃2(T0) must fix ∞. (Otherwise c(ρ2(Y

−1
2 )) = c(ρ2(Q2Q0)) = c(ρ2(Q0Q2)) =

c(ρ2(Y2)) and hence tr(ρ2(Y
−1
2 )) = 0, a contradiction to (Eq2).) Hence we

have Fix(ρ̃2(T0)) = {1
2 (c(ρ2(Q2Q0)) + c(ρ2(Q0Q2))),∞}. By Lemma 4.4(2.2),

if ρ2(Q2) fixes ∞, then tr(ρ2(Y1))tr(ρ2(Y2)) = 0. This contradicts the identities
tr(ρ2(Y1))tr(ρ2(Y2))tr(ρ2(Y1Y

−1
2 )) ̸= 0 and tr(ρ2(Y1))tr(ρ2(Y2))tr(ρ2(Y1Y2)) ̸=

0. Hence ρ2(Q2) does not fix ∞. Since ρ̃2(T0) fixes ∞, the axes of ρ̃2(T0) and
ρ2(Q2) intersect orthogonally by (ρ̃2(T0Q2))

2 = 1. Hence ρ̃2(T0) is the π-rotation
about the vertical geodesic above 1

2 (c(ρ2(Q2Q0)) + c(ρ2(Q0Q2))) = c(ρ2(Q2)).

By (ρ̃2(T0Q2))
2 = 1 and (ρ̃2(T0Q2Q0))

2 = 1, we have ρ̃2(Q
T0
0 ) = ρ2(Q

Q2

0 ).
By the above argument, the isometry ρ̃2(T0) is a Euclidean isometry preserving

∞. Hence, by Lemma 4.7, we have ρ̃2(T0)(c(ρ2(Q0))) = c(ρ2(Q
Q2

0 )). □

Then we have

b0 = c(ρ2(Q0))− c(ρ2(Q2Q0)) by Proposition 4.11(1.1)

= c(ρ2(Q0Q2))− c(ρ2(Q
Q2

0 )) by Claim 5.8

= b
(1)
2 by Proposition 4.11(1.1) and Notation 4.12,

b1 = c(ρ2(Q2))− c(ρ2(Q0)) by Proposition 4.11(1.1)

= c(ρ2(Q
Q2

0 ))− c(ρ2(Q2)) by Claim 5.8

= b
(1)
1 by Proposition 4.11(1.1) and Notation 4.12,

b2 = c(ρ2(Q0Q2))− c(ρ2(Q2)) by Proposition 4.11(1.1)

= c(ρ2(Q2))− c(ρ2(Q2Q0)) by Claim 5.8

= b
(1)
0 by Proposition 4.11(1.1) and Notation 4.12.

To show the uniqueness of the extension of ρ2, let ρ̃2 and ρ̃′2 be extensions
of ρ2 to π1(Oβ). Then we have the following identity:

(ρ̃2(T1T2), ρ̃2(T
T1
3 ), ρ̃2(T0T1)) = (ρ̃2(Q0), ρ̃2(Q1), ρ̃2(Q2))

= (ρ̃′2(Q0), ρ̃
′
2(Q1), ρ̃

′
2(Q2))

= (ρ̃′2(T1T2), ρ̃
′
2(T

T1
3 ), ρ̃′2(T0T1)).

By Claim 5.8, we have ρ̃2(T0) = ρ̃′2(T0). Hence we have ρ̃2 = ρ̃′2. □
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In the remainder of this section, we study what happens if we drop the
faithfulness condition in Theorem 5.1.

Proposition 5.9. Under Convention 4.5, the following hold for every ρ2 ∈
Ω(N2,1).

(1) For the conditions (ii) and (iii) in Theorem 5.1(1) and the condition
(i)′ defined below, the implication (iii) ⇒ (ii) ⇒ (i)′ holds.
(i)′ There exists a (possibly non-faithful) representation ρ1 ∈ Ω(Σ1,1)

which is commensurable with ρ2.
(2) The assertion (α) in Theorem 5.1(3) holds.
(3) The if part of (β) in Theorem 5.1(3) holds.

Proof. (1) In the proof of the implication (iii) ⇒ (ii) in Theorem 5.1(1),
we do not use the faithfulness of ρ2. In the proof of the implication (ii) ⇒ (i)
in Theorem 5.1(1), we do not use the faithfulness of ρ2 to show the existence
of the representation ρ1 ∈ Ω(Σ1,1) which is commensurable with ρ2. Hence we
have the desired results.

(2) The proof of the if part of (α) in Theorem 5.1(3) does not use the
faithfulness. In the proof of the only if part of (α) in Theorem 5.1(3), we use
the faithfulness of ρ2 only to guarantee the existence of a sequence of elliptic
generators {Qj} of π1(ON2,1) such that

• tr(ρ2(Y1))tr(ρ2(Y2))tr(ρ2(Y1Y
−1
2 )) ̸= 0 with Y1 = Q0Q1 and Y2 =

Q0Q2 and
• ρ2(Q1) does not fix ∞.

On the other hand, Lemma 4.4(2.2) implies that the above two conditions are
equivalent. Hence, we have only to show that ρ2(Q1) does not fix ∞ without
the faithfulness of ρ2.

Let ρ̃2 be the extension of ρ2 to π1(Oα). Since π1(ON2,1) = ⟨Q0, Q1, Q2 |
Q2

0 = Q2
1 = Q2

2 = 1⟩ is identified with a subgroup of π1(Oα) = ⟨S0, S1, S2 | S2
0 =

S2
1 = S2

2 = 1, (S1S2)
2 = 1⟩, we have (ρ̃2(Q1S2))

2 = (ρ̃2(S1S2))
2 = 1. By the

proof of Claim 5.6, we have Fix(ρ̃2(S2)) = { 1
2 (c(ρ2(Q2Q0))+ c(ρ2(Q0Q2))),∞}.

Suppose to the contrary that ρ2(Q1) fixes ∞. Then ρ2(Q1) is equal to ρ2(K0)
or ρ2(K2) by Lemma 4.4(2.2). Hence Fix(ρ2(Q1)) = {c(ρ2(Q2Q0)),∞} or
{c(ρ2(Q0Q2)),∞}. Since (ρ̃2(Q1S2))

2 = 1, we have ρ2(Q1) = ρ̃2(S2). Hence
c(ρ2(Q2Q0)) = c(ρ2(Q0Q2)), and therefore tr(ρ2(Q0Q2)) = tr(ρ2(Y2)) = 0. This
contradicts (Eq2). Hence ρ2(Q1) does not fix ∞.

(3) The proof of the if part of (β) in Theorem 5.1(3) does not use the
faithfulness. □

Definition 5.10. An element ρ2 of Ω(N2,1) is strongly non-faithful if there
exists an elliptic generator Qj of π1(ON2,1) with j ̸≡ 1 (mod 3) such that
tr(ρ2(K0Qj)) = 0.

Proposition 5.11. Under Convention 4.5, let ρ2 be an element of Ω(N2,1).
Then the following conditions are equivalent.
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(1) ρ2 is strongly non-faithful.
(2) The conditions (i)′ in Proposition 5.9(1) and (ii) in Theorem 5.1(1)

hold, but the condition (iii) in Theorem 5.1(1) does not hold.
(3) ρ2 extends to a type-preserving representation ρ̃2 of π1(Oβ) such that

ρ̃2(T1) = 1, where T1 is the generator of π1(Oβ) as in Figure 3.

Proof. We prove this proposition by proving the implications (1) ⇒ (2),
(2) ⇒ (1), (1) ⇒ (3) and (3) ⇒ (1).

(1) ⇒ (2). Suppose that ρ2 is strongly non-faithful, i.e., there is an elliptic
generator Qj of π1(ON2,1

) with j ̸≡ 1 (mod 3) such that tr(ρ2(K0Qj)) = 0. We
may assume without losing generality that j = 0. Then the pseudo-Markoff triple
associated with {ρ2(Qj)} is equal to (0, 2i , r) for some r ∈ C∗. In particular, the
complex probability associated with {ρ2(Qj)} is not defined. Hence ρ2 does not
satisfy the condition (iii) in Theorem 5.1(1). However, the complex probability

(b
(2)
0 , b

(2)
1 , b

(2)
2 ) associated with {ρ2(σ2(Qj))} is equal to (1,−1/r2, 1/r2), and

the complex probability (b
(−1)
0 , b

(−1)
1 , b

(−1)
2 ) associated with {ρ2(σ−1(Qj))} is

equal to (1/r2,−1/r2, 1). Thus we have (b
(2)
0 , b

(2)
1 , b

(2)
2 ) = (b

(−1)
2 , b

(−1)
1 , b

(−1)
0 ).

By replacing {Qj} with {σ−1(Qj)}, the representation ρ2 (together with {Qj})
satisfies the condition (ii) in Theorem 5.1(1), and hence ρ2 satisfies the condition
(i)′ in Proposition 5.9(1) by Proposition 5.9(1).

(2) ⇒ (1) Suppose that the conditions (i)′ in Proposition 5.9(1) and (ii)
in Theorem 5.1(1) hold, but the condition (iii) in Theorem 5.1(1) does not
hold. Then, by the proof of (ii) ⇒ (iii) in Theorem 5.1(1), for some sequence
of elliptic generators {Qj} and some integer k, the complex probability associ-

ated with {ρ2(σk(Qj))} is not defined. This implies y
(k)
1 y

(k)
2 (y

(k)
1 y

(k)
2 − y

(k)
12 ) =

0 for the pseudo-Markoff triple (y
(k)
1 , y

(k)
12 , y

(k)
2 ) associated with {ρ2(σk(Qj))}.

Hence tr(ρ2(K0σ
k(Q0))) or tr(ρ2(K0σ

k−1(Q0))) is equal to 0, and therefore ρ2
is strongly non-faithful.

(1) ⇒ (3) Suppose that ρ2 is strongly non-faithful, namely, there is an ellip-
tic generator Qj of π1(ON2,1) with j ̸≡ 1 (mod 3) such that tr(ρ2(K0Qj)) = 0.
We may assume j = 0 without losing generality. Then there is a representa-
tion ρ∗2 from π1(Oβ) = ⟨T0, T1, T2, T3 | T 2

0 = T 2
1 = T 2

2 = T 2
3 = 1, (T0T1)

2 =
(T1T2)

2 = (T2T3)
2 = 1⟩ to PSL(2,C) sending (T0, T1, T2, T3) to (g0, g1, g2, g3) :=

(K̃ρ2(K0), g
−1
0 ρ2(Q2), g

−1
1 ρ2(Q0), ρ2(K0)), where K̃ is the horizontal transla-

tion z 7→ z + 1 and ρ∗2 is an extension of ρ2 to π1(Oβ). This can be seen
as follows. By the proof of the if part of (β) in Theorem 5.1(3), we have
g23 = (g0g1)

2 = (g1g2)
2 = g20 = 1. Hence we have only to show that g21 = 1,

g22 = 1 and (g2g3)
2 = 1. Since y1 = tr(ρ2(Y1)) = tr(ρ2(K0Q0)) = 0, we have

c(ρ2(Q0)) = 0 ∈ Fix(ρ2(K0)) and ρ2(Q2) = K̃ρ2(K0) by Lemma 4.4(2.2). By

ρ2(Q2) = K̃ρ2(K0), we have g1 = g−1
0 ρ2(Q2) = 1, and hence g21 = 1. Since g2 =

g−1
1 ρ2(Q0) = ρ2(Q0), we have g22 = 1. By c(ρ2(Q0)) ∈ Fix(ρ2(K0)), the axes of
ρ2(Q0) and ρ2(K0) intersect orthogonally, and hence g2g3 = g−1

1 ρ2(Q0)ρ2(K0) =



32 Mikio Furokawa

ρ2(Q0)ρ2(K0) is a π-rotation. In particular, (g2g3)
2 = 1. Moreover, we have

ρ∗2(T1) = g1 = 1. Thus we obtain the desired representation ρ∗2.
(3) ⇒ (1) Suppose that the representation ρ2 extends to a type-preserving

PSL(2,C)-representation ρ̃2 of π1(Oβ) such that ρ̃2(T1) = 1. Note that π1(ON2,1)
is identified with a subgroup of π1(Oβ) and T1 = T0Q2. By the proof of
Claim 5.8, the isometry ρ̃2(T0) fixes ∞. Since ρ̃2(T1) = ρ̃2(T0Q2) = 1, the
isometry ρ2(Q2) fixes ∞. By Lemma 4.4(2.2), we have tr(ρ2(Y1))tr(ρ2(Y2)) = 0.
By (Eq2), we have tr(ρ2(Y1)) = tr(ρ2(K0Q0)) = 0. Hence ρ2 is strongly non-
faithful. □

6. Application to Ford domains

In this section, we give an application to the study of the Ford domains.

Definition 6.1. Let Γ be a non-elementary Kleinian group such that the
stabilizer Γ∞ of ∞ contains parabolic transformations. Then the Ford domain
P (Γ) of Γ is the polyhedron in H3 defined below:

P (Γ) :=
∩

{E(γ) | γ ∈ Γ− Γ∞}.

Lemma 6.2. Under Convention 4.5, the following hold:
(1) Let ρ1 be an element of Ω(Σ1,1). Suppose that ρ1 is discrete. Then

P (ρ1(π1(OΣ1,1))) = P (ρ1(π1(Σ1,1))).
(2) Let ρ2 be an element of Ω(N2,1). Suppose that ρ2 is discrete. Then

P (ρ2(π1(ON2,1))) = P (ρ2(π1(N2,1))).

Proof. The assertion (1) is well-known (see [1, Proposition 2.2.8]). The
assertion (2) follows from the fact that π1(ON2,1) = ⟨π1(N2,1),K2⟩ and that
ρ2(K2) is a Euclidean transformation preserving ∞ by Convention 4.5. □

Proposition 6.3. Under Convention 4.5, let ρ1 and ρ2 be elements of
Ω(Σ1,1) and Ω(N2,1), respectively. Suppose that they are discrete and com-
mensurable. Then P (ρ1(π1(Σ1,1))) = P (ρ1(π1(OΣ1,1))) = P (ρ2(π1(ON2,1))) =
P (ρ2(π1(N2,1))).

Proof. We prove only the second equality, because the remaining equali-
ties can be proved by Lemma 6.2.

Since ρ1 and ρ2 are commensurable, there exist a double covering p1 :
OΣ1,2 → OΣ1,1 and a double covering p2 : OΣ1,2 → ON2,1 such that ρ1 ◦ (p1)∗ =
ρ2 ◦ (p2)∗. Then we can easily observe that

π1(OΣ1,1) = ⟨(p1)∗(π1(OΣ1,2)),K⟩,
π1(ON2,1) = ⟨(p2)∗(π1(OΣ1,2)),K2⟩.

Since ρ1(K) and ρ2(K2) are Euclidean transformations preserving ∞, we see

P (ρ1(π1(OΣ1,1))) = P (ρ1((p1)∗(π1(OΣ1,2)))

= P (ρ2((p2)∗(π1(OΣ1,2))) = P (ρ2(π1(ON2,1))).

□
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Example 6.4. Jorgensen and Marden [7] constructed complete hyperbolic
structures of the punctured torus bundles over the circle with monodromy matri-

ces

(
2 1
1 1

)
and

(
3 2
1 1

)
by explicitly constructing the fiber groups G1 and G2

and their Ford domains. The groups G1 and G2, respectively, are the images of
(faithful) representations ρ1 and ρ′1 in Ω(Σ1,1) constructed by Proposition 4.8(1)
from the following triples:

(a0, a1, a2) =

(
1√
3
e

π
6 i ,

1√
3
e−

π
2 i ,

1√
3
e

π
6 i

)
,

(a′0, a
′
1, a

′
2) =

(
−1

2
,
1√
2
e

π
4 i ,

1

2

)
.

Let ρ2 and ρ′2, respectively, be elements of Ω(N2,1) constructed by Proposi-
tion 4.11(1) from the above triples. Then ρ2 and ρ′2, respectively, satisfy the con-
ditions (iii)-(α) and (iii)-(β) in Theorem 5.1(1). Hence, by Proposition 5.9(1),
for each of ρ2 and ρ′2, there is an element of Ω(Σ1,1) which is commensurable
with it. In fact, we can easily check that ρ1 (resp. ρ′1) is commensurable with ρ2
(resp. ρ′2). Hence ρ2 and ρ′2 are faithful by Remark 4.16, and P (ρ1(π1(OΣ1,1))) =
P (ρ2(π1(ON2,1))) and P (ρ′1(π1(OΣ1,1))) = P (ρ′2(π1(ON2,1))) by Proposition 6.3.
The Ford domain P (ρ2(π1(ON2,1))) (resp. P (ρ′2(π1(ON2,1)))) is illustrated in
the left (resp. right) of Figure 11 (compare with [7, FIG. 1 and 2]).

Figure 11. Left: The Ford domain of ρ2(π1(N2,1)). Right:
The Ford domain of ρ′2(π1(N2,1)).
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