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ABSTRACT
In his previous work, the author proved that the canonical decompositions of hy-

perbolic fibered two-bridge link complements are layered. This implies that they admit
taut structures. In this paper, we completely determine, for each hyperbolic fibered
two-bridge link, whether the canonical decomposition of its complement is veering with
respect to the taut structure.
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1. Introduction

In [1], Agol has shown that every punctured surface bundle over S1 with pseudo-
Anosov monodromy, such that every complementary region of the stable lamination
contains a puncture, admits a unique “veering” and layered ideal triangulation (see
[1, Proposition 4.2]). He posed the following question: Are the veering ideal tri-
angulations geometric, i.e. realized in the complete hyperbolic structure with all
tetrahedra positively oriented? In [10] and [5], it is shown that veering triangu-
lations admit strict angle structures, which is a necessary condition for an ideal
triangulation to be geometric. However, Hodgson, Issa and Segerman [9] found
non-geometric veering ideal triangulations through computer experiments.

In this paper, we consider the following natural problem: Which canonical de-
compositions (in the sense of Epstein-Penner [4] and Weeks [15]) are veering? For
example, it is well-known that the canonical decompositions of once-punctured torus
bundles over S1 are veering and layered (cf. [7] and [2]). In this paper, we focus on
the canonical decompositions of hyperbolic fibered two-bridge link complements.
In the author’s previous work [13], we have shown that these canonical decompo-
sitions are layered by using A’Campo’s idea. The main purpose of this paper is
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to prove the following theorem, which completely determine, for each hyperbolic
fibered two-bridge link, whether the canonical decomposition of its complement is
veering.

Theorem 1.1. The canonical decomposition of a hyperbolic fibered two-bridge link
K(r) (0 < |r| < 1/2) is veering if and only if the slope r has the continued fraction
expansion ±[2, 2, . . . , 2].

For the precise meaning of this theorem, see Theorem 5.7. To prove this theorem,
we give a visual method for checking if a triangulation which satisfies A’Campo’s
criterion (Theorem 2.4) is veering in terms of the induced cusp triangulation (Propo-
sition 2.9). We note that Hodgson, Issa and Segerman [9] have given an effective
computer-based method for detecting if a given triangulation is veering (cf. [9, Ap-
pendix B]).

Both this work and the author’s previous work [13] are part of the author’s
project which aims at extending the result of Dicks and Sakuma [3], on the relation
between the Cannon-Thurston fractal tessellations and the canonical decomposi-
tions of punctured torus bundles, to hyperbolic fibered two-bridge links. In [8],
Guéritaud has established a beautiful relation between Agol’s veering triangula-
tions of hyperbolic punctured surface bundles and the associated Cannon-Thurston
maps. As a consequence of Guéritaud’s result and Theorem 1.1, it follows that the
Cannon-Thurston fractal tessellation and the canonical decomposition of the com-
plement of the two-bridge link K(r) with r = ±[2, 2, . . . , 2] are intimately related.

This paper is organized as follows. In Section 2, we recall the notion of veering
and layered triangulations, and give a method for checking if a triangulation which
satisfies A’Campo’s criterion is veering (Proposition 2.9). In Section 3, we review
some properties of two-bridge links. In Section 4, we describe the canonical decom-
positions and their dual cell complexes of hyperbolic two-bridge link complements.
In Section 5, we recall the result of [13] which describes the layered structures of
the canonical decompositions of hyperbolic fibered two-bridge link complements.
Finally, in Sections 6 and 7, we prove Theorem 1.1.

2. Veering structures of layered triangulations and A’Campo’s
criterion for detecting fiberedness

Let F be an oriented punctured surface, h : F → F an orientation-preserving
homeomorphism, and M := F ×R/(x, t) ∼ (h(x), t+1) the F -bundle over S1 with
monodromy h. A Whitehead move of an ideal triangulation T of F is an operation
which obtains a new ideal triangulation T ′ of F as follows. Take an ideal edge e

which is shared by a pair of two distinct ideal triangles. The union of the ideal
triangles forms a quadrilateral and the ideal edge e is one of the diagonals of the
quadrilateral. We remove the ideal edge e and replace it with the other diagonal.
Then we have a new ideal triangulation T ′ of F . Note that the Whitehead move
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T → T ′ is realized by attaching an ideal tetrahedron along the pair of ideal triangles
of T sharing e.

If we have a sequence of Whitehead moves T = T0 → T1 → · · · → Tn = h(T ),
then, by gluing T0 and Tn together by h, we obtain an ideal triangulation of M

consisting of the ideal tetrahedra corresponding to the Whitehead moves. This
triangulation is called a layered triangulation with respect to the fiber structure.
The layered triangulation is said to have no backtracking if Ti+2 6= Ti for any
0 ≤ i ≤ n− 2 and Tn−1 6= h(T1). We mainly consider layered triangulations which
have no backtracking.

Now we recall Agol’s result on the construction of a unique veering ideal trian-
gulation of M when h is pseudo-Anosov.

Definition 2.1 ([8, Section 1.2 Definition]). Let D be an ideal triangulation of
(the interior of) a compact oriented 3-manifold with non-empty toral boundary
which contains just n ideal tetrahedra. For each ideal tetrahedron, the number of
the dihedral angles of the tetrahedron is equal to 6. Then D has just 6n dihedral
angles. A map ϕ : {6n dihedral angles} → {0, π} is called a taut structure on D if
the following hold:

(1) Each ideal tetrahedron of D has one pair of opposite angles mapped to π and
all other angles mapped to 0 by ϕ.

(2) Each degree-k ideal edge of D is adjacent to precisely two angles mapped to π

and (k − 2) angles mapped to 0 by ϕ.

We call an ideal triangulation with a taut structure a taut triangulation. The value
of ϕ at a dihedral angle of an ideal tetrahedron is also called a “dihedral angle”.

A layered triangulation D admits a natural taut structure as follows. Since the
triangulation D is layered, each ideal tetrahedron has a pair of opposite ideal edges
corresponding to a Whitehead move. We define a map ϕ so that the pair of dihedral
angles at the pair of ideal edges are mapped to π and the other angles are mapped
to 0. Then the map ϕ is a taut structure on the layered triangulation D.

Definition 2.2 (cf. [8, Section 1.2 Definition]). (1) A taut structure on an ideal
triangulation D of a compact oriented 3-manifold with non-empty toral boundary
is said to be veering if there exists an assignment of two colors, red and blue, to
all ideal edges of D so that every ideal tetrahedron can be sent by an orientation-
preserving homeomorphism to the tetrahedron in Fig. 1(a). In this case, we also
say that the ideal triangulation D (with the taut structure) is veering, and we also
call the assignment of two colors the veering structure of D.

(2) An ideal triangulation D with a layered structure is said to be veering if the
taut structure of D induced by the layered structure is veering.

See [1, Definition 4.1] and [10, Proposition 1.4], for the meaning of the termi-
nology “veering”. For an ideal triangulation D of M with a taut structure, let T
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Fig. 1. (a) An ideal tetrahedron with two colors. The diagonal edges (with angle π) might be any
color. (b) A triangle in T with two colors induced by a veering ideal triangulation. Each triangle
in T has a unique edge of the triangle such that its endpoints have angle 0. We call the edge the
base of the triangle. Angles 0 and π are indicated by a graphical, train-track-like convention.

be the “angled triangulation” of ∂M induced by D. (Namely, each corner of each
triangle has either an angle 0 or π such that, for each vertex of T , the sum of all
the angles at the vertex is equal to 2π.) Here we identify ∂M with the link of the
ideal vertices, and we assume that ∂M is oriented so that its normal vector points
outward. An assignment of two colors to the ideal edges of D satisfies the condition
in Definition 2.2 if and only if it satisfies the following condition:

• Each (angled) triangle in T can be sent by an orientation-preserving homeo-
morphism to the (angled) triangle in Fig. 1(b). Here we assume that each vertex
of T inherits the color of the edge of D containing it.

In [1], Agol has shown that every punctured surface bundle over S1 with pseudo-
Anosov monodromy, such that every complementary region of the stable lamination
contains a puncture, admits a unique veering layered (topological) ideal triangula-
tion (see [1, Proposition 4.2]).

We now recall A’Campo’s criterion for detecting fiberedness (see [13, Theo-
rem 2.2]). Let D be an ideal triangulation of a compact oriented 3-manifold M

with non-empty toral boundary, and let F = D∗ be the 2-dimensional cell complex
dual to D. Namely,

(1) Each edge (1-cell) of F is dual to an ideal triangle δ of D. Namely, the edge
joins the pair of (possibly identical) vertices (0-cell) of F dual to the pair of
ideal tetrahedra of D sharing δ.

(2) Each face (2-cell) f of F is dual to an ideal edge e = f∗ of D. Let δ1, δ2, …, δn
be the ideal triangles of D sharing e which are arranged around e in this cyclic
order. Then the boundary of the face f consists of the edges (1-cells) δ∗1 , δ∗2 , …,
δ∗n of F dual to δ1, δ2, …, δn of D.

For an ideal tetrahedron t of D and an element x of F such that x ∩ t 6= ∅, we
call the closure of a component of Int(x) ∩ Int(t) a germ of the element x in t. It
should be noted that each edge of F is shared by the germs of three faces of F and
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that each vertex of F is shared by the germs of four edges and six faces of F .
Let C∗(F , R) = {Ci(F , R)}i∈Z and C∗(F , R) = {Ci(F , R)}i∈Z be the chain

complex and the cochain complex of F , respectively, with coefficients in a commu-
tative ring R. If R is the real number field R, we drop the symbol R.

Definition 2.3. (1) A 1-cochain ω ∈ C1(F) is said to be balanced at a vertex v of
F if the values of ω at precisely two oriented edges with initial point v are positive
and the values of ω at the other oriented edges with initial point v are negative.

(2) A 1-cochain ω ∈ C1(F) is said to be balanced if ω is balanced at every vertex
of F .

Theorem 2.4 (A’Campo’s criterion for detecting fiberedness). Let p : M →
S1 such that p∗(1) ∈ H1(F ;Z) is primitive, where 1 is the generator of H1(S1;Z) ∼=
Z. Suppose that there exists a balanced 1-cocycle ω representing p∗(1). Then the
following hold:

(1) There exists a fibration pω : M → S1 which is homotopic to p.
(2) The ideal triangulation D of M is layered with respect to the fibration pω.

For the proof see [13]. We note that A’Campo’s criterion does not necessar-
ily guarantee that D has no backtracking. A’Campo has also introduced a notion
of harmonic 1-cocycle and proved that each cohomology class of H1(F ;Z) is repre-
sented by a unique harmonic 1-cocycle. We call the harmonic 1-cocycle representing
p∗(1) the canonical 1-cocycle of F . (If M is the exterior E(K) of a hyperbolic link
K, and if D is the canonical decomposition of (the interior of) E(K) in the sense
of Epstein-Penner [4] and Weeks [15], then we call the canonical 1-cocycle of F the
canonical 1-cocycle of K.) In [13], we have shown that the canonical 1-cocycles of
hyperbolic fibered two-bridge links are balanced, and hence the canonical decom-
positions of their complements are layered.

Let D be a layered triangulation of M satisfying A’Campo’s criterion. We give a
condition for D (with the natural taut structure) satisfying A’Campo’s criterion to
be veering. Let ω be the balanced 1-cocycle as in Theorem 2.4, F the 2-dimensional
cell complex dual to D, T the angled triangulation of ∂M induced by the layered
ideal triangulation D, and T ∗ the 2-dimensional cell decomposition of ∂M dual to
T .

Observation 2.5. There is a cellular map γ : T ∗ → F which satisfies the following
conditions:

(1) γ : |T ∗| → |F| extends to a deformation retraction |D| → |F|.
(2) γ maps an i-cell of T ∗ to an i-cell of F , and so it induces a map γ(i) : (T ∗)(i) →

F (i) for i = 0, 1, 2. Moreover γ(2) is 2-1, γ(1) is 3-1, and γ(0) is 4-1. We say that
a face f̃ (resp. an edge ẽ, a vertex ṽ) of T ∗ corresponds to a face f (resp. an
edge e, a vertex v) of F if γ(2)(f̃) = f (resp. γ(1)(ẽ) = e, γ(0)(ṽ) = v).
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Convention 2.6. We orient each edge e of F so that ω(e) > 0, and orient each
edge of T ∗ by that of the corresponding edge of F .

For a face f in F and a vertex v of the boundary ∂f of f , we say that v is
maximal (resp. minimal) in f with respect to ω, if the two edges in ∂f having v

as an endpoint are oriented so that v is the terminal (resp. initial) point. Since ω

is balanced, for each face f of F , there is a unique vertex which is maximal (resp.
minimal) in f with respect to ω (cf. [13, Proof of Theorem 2.2]). Consider a face f̃

of T ∗ corresponding to a face f of F . Then there is a unique vertex ṽM (resp. ṽm)
of T ∗ contained in ∂f̃ such that ṽM (resp. ṽm) corresponds to the maximal (resp.
minimal) vertex in f . We also say that ṽM (resp. ṽm) is maximal (resp. minimal) in
the face f̃ of T ∗ (with respect to ω). Let ∂R(f̃) (resp. ∂L(f̃)) be the edge path in ∂f̃

from ṽm to ṽM , such that ∂R(f̃) (resp. ∂L(f̃)) is coherent (resp. incoherent) with
the orientation of ∂f̃ . (Recall the convention for the orientation of ∂M declared in
the paragraph after Definition 2.2.)

For each vertex t∗ of F , there is a unique face fM (resp. fm) such that t∗ is the
maximal (resp. minimal) vertex in fM (resp. fm) with respect to ω. We call the
edge of D dual to fM (resp. fm) the valley (resp. ridge) in the ideal tetrahedron
t dual to t∗ (see Fig. 2). By the construction of layered structure in Theorem 2.4
(cf. [13, Section 2]), we see that the dihedral angles of t at the valley and the ridge
are π, and the other dihedral angles of t are 0.

0 0

0 0

t

Fig. 2. An ideal tetrahedron t of D, and the four (germs of) edges of F incident on the vertex t∗

of F dual to t.

Let ∆ be a triangle of T , ∆∗ the vertex of T ∗ dual to ∆, and t the ideal
tetrahedron of D containing ∆. Note that precisely three (germs of) edges of T ∗

contain the vertex ∆∗. We can observe that one of the following conditions holds:

(1) The triangle ∆ intersects the ridge of t, and exactly one edge b of T ∗ points
toward ∆∗ (and the remaining two edges point away from ∆∗). The edge b is
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dual to the base of ∆. Moreover, if D is veering, then the right (resp. left) vertex
of the base of ∆ with respect to the orientation of b is assigned red (resp. blue)
color (see Fig. 3(b)).

(2) The triangle ∆ intersects the valley of t, and exactly one edge b of T ∗ points
away from ∆∗ (and the remaining two edges point toward ∆∗). The edge b is
dual to the base of ∆. Moreover, if D is veering, then the right (resp. left) vertex
of the base of ∆ with respect to the orientation of b is assigned blue (resp. red)
color (see Fig. 3(c)).

(a)

b
(b)

b

(c)
Fig. 3. An ideal tetrahedron of D and a part of the 1-skeleton of F . Each of two triangles in T
which intersects the ridge (resp. valley) of the ideal tetrahedron can be sent by an orientation-
preserving homeomorphism to the angled triangle in (b) (resp. (c)).

Definition 2.7. Let f̃ be a face of T ∗, and let ` be either ∂R(f̃) or ∂L(f̃).

(1) Let v be an interior vertex of `, namely a vertex of ` different from the maximal
and minimal vertices of f̃ . Then ` is said to be attractive (resp. repulsive) at v
if the edge of T ∗, which is different from two successive (germs of) edges in `

passing through v, is oriented toward (resp. away from) v.
(2) The path ` is said to be attractive (resp. repulsive) if ` is attractive (resp.

repulsive) at every interior vertex of `
(3) The face f̃ of T ∗ is called a right-to-left face (RL-face or RL in brief) if ∂R(f̃)

is attractive and ∂L(f̃) is repulsive (see Fig. 4(a)). The face f̃ of T ∗ is called
a left-to-right face (LR-face or LR in brief) if ∂R(f̃) is repulsive and ∂L(f̃) is
attractive (see Fig. 4(b)).

(4) The vertex of T dual to a face f̃ of T ∗ is RL (resp. LR) if f̃ is RL (resp. LR).
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Remark 2.8. (1) Note that the above concept is preserved by the operation of
replacing the balanced 1-cocycle ω with the balanced 1-cocycle −ω.

(2) If D has no backtracking, then the following holds. Each face f̃ of T ∗ has at
least 3 edges, and so either ∂R(f̃) or ∂L(f̃) has an interior vertex. Hence f̃ cannot
be both RL and LR.

(a) RL-face (b) LR-face
Fig. 4. The grayed regions denote faces in T ∗, and the symbols vM and vm denote the maximal
and minimal vertices of each face respectively. By Proposition 2.9, D is veering if and only if each
face of T ∗ is either RL or LR. In this case, for each RL-face (resp. LR-face) of T ∗, an ideal edge
which contains the vertex of T dual to the face is assigned red color (resp. blue color).

In the remainder of this section, we give conditions for a layered triangulation to
be veering. The following proposition gives a method for checking whether a layered
triangulation which satisfies A’Campo’s criterion admits a veering structure.

Proposition 2.9. Let D be a layered triangulation of a punctured surface bundle
M over S1 which has no backtracking. Assume that the layered structure comes
from a balanced 1-cocycle ω satisfying A’Campo’s criterion. Then D (with the taut
structure induced by the layered structure) is veering if and only if each face of T ∗

is either RL or LR.

To prove this proposition, we first show the following lemma.

Lemma 2.10. Under the assumption of Proposition 2.9, the following holds. Let
e be an ideal edge of D, let f be the face of F dual to e, and let f̃0 and f̃1 be the
faces of T ∗ corresponding to f . Then f̃0 is RL (resp. LR) if and only if f̃1 is RL
(resp. LR).

Proof. Let D, e, f̃0 and f̃1 be as in the condition in the lemma. Since D has no
backtracking, there is an ideal tetrahedron t of D containing e such that the dihedral
angle of t at the ideal edge e is 0. Let ∆0 and ∆1 be the triangles of T contained in
t intersecting the ideal edge e. We may assume that ∆0 contains a part of the face
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f̃0 of T ∗, i.e. ∆0 contains a connected component of Int(f̃0) ∩ t whose boundary
intersects the ideal edge e. Then ∆1 contains a part of the face f̃1 of T ∗. Since the
dihedral angle of t at e is 0, the ideal edge e is neither the valley nor the ridge of
t. Hence we may assume, without loss of generality, that ∆0 and ∆1 intersect the
valley and the ridge of t, respectively. Thus, by the observation about Fig. 3, the
following hold:

(1) Among the three edges of T ∗ incident on the vertex ∆∗
0 of T ∗, one edge points

away from the vertex ∆∗
0, and two edges point toward the vertex ∆∗

0.
(2) Among the three edges of T ∗ incident on the vertex ∆∗

1 of T ∗, one edge points
toward the vertex ∆∗

1, and two edges point away from the vertex ∆∗
1.

Now assume that f̃0 is RL, i.e. ∂R(f̃0) is attractive and ∂L(f̃0) is repulsive. Then
∂R(f̃0) is attractive at the vertex ∆∗

0 of T ∗. Hence ∂L(f̃1) is repulsive at the vertex
∆∗

1 of T ∗. Since the same result holds for each ideal tetrahedron containing the
ideal edge e such that the dihedral angle of t at the ideal edge e is 0, the face f̃1 is
RL. By parallel argument, we can see that if f̃0 is LR, then f̃1 is also LR.

Proof of Proposition 2.9. Suppose that D is veering, namely there exists an
assignment of two colors to all ideal edges of D which satisfies the condition of
Definition 2.2. This two-coloring induces a two-coloring of the vertices of T , and
hence it induces a two-coloring of the faces of T ∗. Let f̃ be a face of T ∗. Assume
that f̃ is assigned red color (resp. blue color) by the two-coloring of the faces. Then
we can see by the observation given by Fig. 3 that f̃ is RL (resp. LR).

We will prove the converse. Suppose each face of T ∗ is either RL or LR. Pick
an ideal edge e of D. Let f be the face of F dual to e, and let f̃0 and f̃1 be the
faces of T ∗ corresponding to f . Then, by Remark 2.8(2) and Lemma 2.10, exactly
one of the following holds:

(1) Both f̃0 and f̃1 are RL,
(2) Both f̃0 and f̃1 are LR.

We assign two colors, red or blue, to all ideal edges e according to whether (1)
or (2) holds. We show that the assignment of two colors satisfies the condition
presented immediately after Definition 2.2, which guarantees that D is veering.
To this end, pick an arbitrary triangle ∆ of T . Let t be the ideal tetrahedron of
D containing ∆. Then ∆ intersects either the ridge of t or the valley of t. Then,
by the assignment of two colors to the edges of D, we see that ∆ can be sent
by an orientation-preserving homeomorphism to the (angled) triangle in Fig. 3(b)
or Fig. 3(c) according to whether ∆ intersects the ridge of t or the valley of t,
and so ∆ can be also sent by an orientation-preserving homeomorphism to the
(angled) triangle in Fig. 1(b). Hence the desired condition is satisfied, and hence D
is veering.
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Remark 2.11. The assertion of Proposition 2.9 actually holds for any ideal trian-
gulation D which admits a “taut” structure in the sense of [10, Definition 1.2], if
each edge of T ∗ is oriented by using the “taut” structure in this sense.

In addition to Proposition 2.9, we also use the following lemma proved by [10,
Lemma 2.3, Corollary 2.4].

Lemma 2.12. Let D be as in Proposition 2.9, and suppose that D is veering. Then,
for each face f of F , no edge of f joins the maximal vertex and the minimal vertex
of f with respect to ω. In particular, f has at least 4 edges.

3. Hyperbolic fibered two-bridge links

In this section, we describe the hyperbolic fibered two-bridge links, following [13,
Section 3]. Let K = K(q/p) be a two-bridge link of slope r = q/p. We may assume
that precisely one of p and q is odd, and 0 < |q| < p. Moreover, by taking the mirror
image and forgetting the orientation if necessary, we may assume 0 < q < p/2. Thus
r = q/p has the following continued fraction expansion:

r = [2b1, 2b2, . . . , 2bm] =
1

2b1 +
1

2b2 + · · ·+
1

2bm

, (3.1)

where bi is a non-zero integer. We denote the oriented link illustrated in Fig. 5
by K[2b1, 2b2, . . . , 2bm]. A two-bridge link K[2b1, 2b2, . . . , 2bm] is the boundary of
the surface obtained by successively plumbing the unknotted bi-full twisted bands
(1 ≤ i ≤ m). Then K(q/p) ∼= K[2b1, 2b2, . . . , 2bm] is fibered if and only if bi is
equal to ±1 for each 1 ≤ i ≤ m. Moreover, K(q/p) is hyperbolic if and only if
(b1, b2, b3 . . . , bm) 6= ±(1,−1, 1, . . . , (−1)m−1) (cf. [12, Corollary 2]).

m: even

m: odd

Fig. 5. The hyperbolic two-bridge link K[2b1, 2b2, . . . , 2bm] with bi = +1 for each 1 ≤ i ≤ m.

We also need to consider the continued fraction expansion

r = [a1, a2, . . . , an], (3.2)
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where, for each 1 ≤ i ≤ n, ai is a positive integer and an ≥ 2. In [13, Section 3],
we gave a recipe transforming a continued fraction expansion (3.1) for fibered links
into a continued fraction expansion (3.2).

Lemma 3.1 ([13, Lemma 3.1]). Given a continued fraction [2b1, 2b2, . . . , 2bm] (b1 =

+1 and bi = ±1 for each 2 ≤ i ≤ m), decompose the sequence (2b1, 2b2, . . . , 2bm)

into subsequences (S1, S2, . . . , Sn) so that

(1) the entries of Si have alternate signs, and
(2) the last entry of Si and the first entry of Si+1 have the same sign.

For each Si, we denote by `(Si) the length of Si. Set

S′
i =

{
(2) if `(Si) = 1,
(1, `(Si)− 1, 1) if `(Si) > 1.

Then we have the following identity of rational numbers

[2b1, 2b2, . . . , 2bm] = [S′
1, S

′
2, . . . , S

′
n].

4. Description of the canonical decompositions of hyperbolic
two-bridge link complements and the 2-cell complexes dual to
the decompositions

In this section, we will describe combinatorial structures of the canonical decompo-
sitions of hyperbolic two-bridge link complements and the 2-cell complexes dual to
the decompositions, following [7,11,14]. Hence we obtain a description of the cusp
triangulations induced by D and its dual decompositions.

First of all, we consider the Farey tessellation of the hyperbolic plane H2. The
vertex set of the Farey tessellation is equal to Q̂ = Q ∪ {∞} ⊂ R̂ ∼= ∂H2. Let
σ = (s1, s2, s3) be a Farey triangle such that, for each 1 ≤ i ≤ 3, si is a vertex of
σ, and let H be the group of transformations on R2 generated by the π-rotations
about the points in Z2. We obtain an H-invariant triangulation, t̃rg(σ), of R2

which is determined by the union of the lines of slopes {s1, s2, s3} in R2 passing
through the integer lattice Z2. Then the Farey triangle σ determines a triangu-
lation, trg(σ), of the sphere with four marked points (S2, P ) = (R2,Z2)/H. The
subset {(0, 0), (1, 0), (0, 1), (1, 1)} of Z2 is a system of representatives of P = Z2/H.
Thus we identify P with this set. Note that each triangulation trg(σ) of (S2, P )

determines an ideal triangulation of the 4-times punctured sphere S = S2 \ P . By
abuse of notation, we also denote the ideal triangulation by trg(σ). The ideal tri-
angulation trg(σ) consists of precisely six ideal edges and four ideal triangles. In
particular, for each vertex si of the Farey triangle σ, there are exactly two ideal
edges of slope si in trg(σ). We denote by e

(0)
si the ideal edge of slope si which has

the vertex (0, 0) of P as endpoint, and denote by e
(1)
si the other ideal edge. Let σ′

be a Farey triangle such that σ and σ′ are adjacent, i.e. σ and σ′ share precisely
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two vertices, and let s (resp. s′) be the vertex of σ (resp. σ′) which is not contained
in σ′ (resp. σ). Then trg(σ′) is obtained from trg(σ) by a pair of Whitehead moves,
i.e. by replacing the edges e

(0)
s and e

(1)
s with the edges e

(1)
s′ and e

(0)
s′ , respectively.

Let K = K(q/p) be a hyperbolic two-bridge link. Then we may assume that
p and q are relatively prime integers such that 1 < q < p/2, and so q/p has
the continued fraction expansion [a1, a2, . . . , an], where (a1, a2, . . . , an) ∈ (Z+)

n,
a1, an ≥ 2 and n ≥ 2. Set r = q/p and c =

∑n
i=1 ai. Let Σ(r) = (σ1, σ2, . . . , σc) be

the sequence of Farey triangles which intersect the hyperbolic geodesic joining ∞
and r in this order. For each 1 ≤ l ≤ c− 1, the triangulation trg(σl+1) is obtained
from the triangulation trg(σl) by a pair of Whitehead moves. We can immerse a pair
of ideal tetrahedra in S×R: the boundary of the immersed tetrahedra is made up of
two pleated surfaces (top and bottom) homotopic to S and triangulated according
to trg(σl+1) and trg(σl), respectively. We denote the image of the immersion by
trg(σl, σl+1). The immersion is an embedding on the interior of the tetrahedra. Let
s (resp. s′) be the vertex of σl (resp. σl+1) which is not contained in σl+1 (resp.
σl). Then the edge e

(1)
s and e

(0)
s′ are contained in the same tetrahedron, t

(0)
l−1, of

trg(σl, σl+1), and the edges e
(0)
s and e

(1)
s′ are contained in the other tetrahedron,

t
(1)
l−1, of trg(σl, σl+1).

For each 1 ≤ l ≤ c − 2, we can glue the top of the immersed pair trg(σl, σl+1)

onto the bottom of trg(σl+1, σl+2) along trg(σl+1) in S×R. Then the immersed pairs
{trg(σl, σl+1)}1≤l≤c−1 can be stacked up to form a topological ideal triangulation,
D̂(r), of S× [−1, 1]. The restriction of D̂(r) to S×{−1} (resp. S×{+1}) is trg(σ1)

(resp. trg(σc)), and each trg(σl) can be regarded as (an ideal triangulation of) a
pleated surface in S × [−1, 1]. For each 0 ≤ l ≤ c− 3 and k, k′ ∈ {0, 1}, there exists
a unique ideal triangle in trg(σl+2) shared by the ideal tetrahedra t

(k)
l and t

(k′)
l+1 . We

denote the ideal triangle by |t(k)l , t
(k′)
l+1 |. D(r) denotes the topological ideal simplicial

complex obtained from D̂(r) by collapsing each ideal edge of slopes ∞ and r into
an ideal vertex. To be precise, D(r) is constructed as follows. Since each of the
ideal edges e

(0)
∞ and e

(1)
∞ is collapsed into an ideal vertex, the subcomplex trg(σ1)

of D̂(r) is collapsed into a single edge, e−, and trg(σ2) is folded along the pair of
ideal edges e

(0)
1/2 and e

(1)
1/2 to a pair of ideal triangles, |t(0)1 , t

(1)
1 |(0) and |t(0)1 , t

(1)
1 |(1),

respectively. (Note that the slope 1/2 is the vertex of σ2 which is not contained
in σ1.) Put r∗ = [a1, a2, . . . , an − 2]. (Note that the slope r∗ is the vertex of σc−1

which is not contained in σc.) Similarly, since each of ideal edges e
(0)
r and e

(1)
r is

collapsed into an ideal vertex, the subcomplex trg(σc) of D̂(r) is collapsed into a
single edge, e+, and trg(σc−1) is folded along the pair of ideal edges e(0)r∗ and e

(1)
r∗ to

a pair of ideal triangles, |t(0)c−3, t
(1)
c−3|(0) and |t(0)c−3, t

(1)
c−3|(1), respectively. In the special

case, when r = 2/5 (i.e. c = 4), we denote the ideal triangle “ |t(0)c−3, t
(1)
c−3|(j) ” by

|t(0)c−3, t
(1)
c−3|

′

(j)
for each j ∈ {0, 1}, in order to distinguish it from |t(0)1 , t

(1)
1 |(j).

It is proved by Guéritaud [6] that D(r) is isotopic to the canonical decomposition
of the complement of K(r) (see also [7] and [2]). We see by the construction of D(r)
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that the 1-skeleton of the 2-dimensional cell complex, F(r), dual to D(r) is as
illustrated in Fig. 6.

Fig. 6. The 1-skeleton of the 2-dimensional cell complex F(r) dual to D(r).

Notation 4.1. Let S = S(r) be the set consisting of all vertices of Farey triangles
in Σ(r), and put S ′ = S ′(r) := S(r) \ (σ

(0)
1 ∪ σ

(0)
c ). For each 0 ≤ l ≤ c − 2, we

denote by sl the vertex of σl+2 which is not contained in σl+1. We denote by T (s)

the subsequence of Σ(r) consisting of the Farey triangles which contain the Farey
vertex s.

Remark 4.2. The ideal simplices of the ideal triangulation D = D(r) is described
as follows. If r 6= 2/5, i.e. K(r) is not the figure-eight knot, then

D(1) = {e(k)s | s ∈ S ′, k ∈ {0, 1}} ∪ {e−, e+},

D(2) = {|t(0)1 , t
(1)
1 |(j), |t

(0)
c−3, t

(1)
c−3|(j) | j ∈ {0, 1}}

∪ {|t(k)l , t
(k′)
l+1 | | 1 ≤ l ≤ c− 4, k, k′ ∈ {0, 1}},

D(3) = {t(k)l | 1 ≤ l ≤ c− 3, k ∈ {0, 1}},

where D(i) is the set of all i-simplices in D. If r = 2/5 = [2, 2], then the description
of D needs to be replaced with the following:

D(2) = {|t(0)1 , t
(1)
1 |(0), |t

(0)
1 , t

(1)
1 |(1), |t

(0)
1 , t

(1)
1 |

′
(0), |t

(0)
1 , t

(1)
1 |

′
(1)}.

Now we describe the induced cusp triangulation, i.e. the triangulation of the
peripheral torus of S3\K(r) induced by D(r). To this end, we identify the underlying
space of the subcomplex D̂0(r) := {trg(σl, σl+1)}2≤l≤c−2 of D̂(r) with S × [−1, 1].
We first describe the triangulation of the peripheral annuli of S× [−1, 1] induced by
D̂0(r). For each ideal vertex (i, j) ∈ P = {(0, 0), (1, 0), (0, 1), (1, 1)} of S, let Â(i, j)

be the triangulation of the peripheral annulus of S× [−1, 1] corresponding to (i, j).
Since the combinatorics of the four peripheral annuli Â(0, 0), Â(1, 0), Â(0, 1) and
Â(1, 1) are identical, let us focus on the single peripheral annulus Â := Â(0, 0).
Since the ideal triangulation trg(σl) is an ideal triangulation of a level 4-punctured
sphere, it induces a triangulation, C(σl), of a core circle in Â. The triangulation
C(σl) consists of precisely three vertices and three edges. The region in Â bounded
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by C(σl) and C(σl+1) consists of exactly two triangles. The family {C(σl)}2≤l≤c−1

forms the 1-skeleton of the triangulation of Â. Each d-simplex of Â with 0 ≤ d ≤ 2

is contained in a unique ideal (d+ 1)-simplex of D.
Recall that, by folding of trg(σ2) along the ideal edges of slope 1/2, the ideal

edges e
(0)
0/1, e(1)0/1, e(0)1/1, and e

(1)
1/1 in D̂ are identified into a single ideal edge e− in D.

Then the boundary line C(σ2) of a peripheral annulus is deformed into a zigzag
circle which has a “hairpin curve” at the vertices contained in the ideal edges
of slope 1/2, and the vertices contained in the ideal edges of slope 0/1 and 1/1

are identified into a single vertex contained in e−. Furthermore, since the folding
identifies a puncture of S×[−1, 1] with another puncture, the resulting triangulation
of the peripheral annulus is joined to the corresponding triangulation of another
peripheral annulus. In particular, since the ideal edge e

(0)
∞ (resp. e(1)∞ ) of D̂(r) joins

the punctures (0, 0) and (0, 1) (resp. (1, 0) and (1, 1)) of S, the bottom circle of the
underlying space |Â(0, 0)| (resp. |Â(1, 0)|) and that of |Â(0, 1)| (resp. |Â(1, 1)|) are
identified. Similarly, the folding of the pleated surface trg(σc−1) causes a similar
effect on the other side of Â(i, j). For each (i, j) ∈ P , we denote by A(i, j) the
triangulated sub-annulus of the cusp triangulation, obtained in this way from the
peripheral annulus Â(i, j) of S × [−1, 1] corresponding to the puncture (i, j) of S.
Then the cusp triangulation T is obtained from the union of A(0, 0), A(0, 1), A(1, 0)

and A(1, 1). Each d-simplex of A(i, j) with 0 ≤ d ≤ 2 is contained in a unique ideal
(d+ 1)-simplex of D. Thus we have a map λd

{d-simplex of A(i, j)} → {ideal (d+ 1)-simplex of D}.

Definition 4.3. By the label of a d-simplex of A(i, j), we mean its image by λd.

Remark 4.4. The label of a vertex of A(0, 0) is equal to e+, e− or e
(0)
sl (sl ∈ S ′).

The labels of vertices and triangles of A(0, 0) are as depicted in Fig. 7.

The following lemma follows from the descriptions of D and T , and Remark 4.4.

Lemma 4.5. The labels of the edge set of the triangle ∆ ∈ A(0, 0) ⊂ T with label
t
(k)
l is given as follows (see Fig. 7):

{|t(0)l−1, t
(0)
l |, |t(0)l , t

(0)
l+1|, |t

(0)
l , t

(1)
l+1|} if 1 < l < c− 3, k = 0,

{|t(0)l−1, t
(1)
l |, |t(1)l−1, t

(1)
l |, |t(1)l , t

(1)
l+1|} if 1 < l < c− 3, k = 1,

{|t(0)1 , t
(1)
1 |(0), |t

(0)
1 , t

(0)
2 |, |t(0)1 , t

(1)
2 |} if l = 1, k = 0,

{|t(0)1 , t
(1)
1 |(0), |t

(0)
1 , t

(1)
1 |(1), |t

(1)
1 , t

(1)
2 |} if l = 1, k = 1,

{|t(0)c−4, t
(0)
c−3|, |t

(0)
c−3, t

(1)
c−3|(0), |t

(0)
c−3, t

(1)
c−3|(1)} if l = c− 3, k = 0,

{|t(0)c−4, t
(1)
c−3|, |t

(1)
c−4, t

(1)
c−3|, |t

(0)
c−3, t

(1)
c−3|(0)} if l = c− 3, k = 1.
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Fig. 7. A part of the infinite cyclic cover of A(0, 0) with r = [2, 2, 2, 2, 2, 2].

Let Aut(D) be the group of the combinatorial automorphisms of the ideal sim-
plicial complex D, and let Aut+(D) be the subgroup of Aut(D) consisting of the
orientation-preserving automorphisms. Let X̃ and Ỹ be the homeomorphisms of
(R2,Z2)× [−1, 1] defined by, for each (x, y) ∈ R2,

X̃((x, y), t) = ((x+ 1, y), t),

Ỹ ((x, y), t) = ((x, y + 1), t).

Note that X̃ and Ỹ induce the combinatorial isomorphisms between peripheral an-
nuli. Both X̃ and Ỹ are H-equivariant, and they are compatible with the foldings
of trg(σ2) and trg(σc−1). Hence X̃ and Ỹ induce orientation-preserving automor-
phisms of D, which we denote by X and Y respectively. The subgroup 〈X,Y 〉 of
Aut+(D) generated by X and Y is isomorphic to Z/2Z⊕ Z/2Z (cf. [14, p.415]).

Notation 4.6. By Remark 4.4 and Lemma 4.5, we have the description of the
triangulation A(0, 0). The transformation XiY j ∈ 〈X,Y 〉 induces the combinatorial
isomorphism from A(0, 0) to A(i, j). The symbol e(0)s (i, j) (resp. e±(i, j)) denotes
the vertex of A(i, j) obtained as the image, by XiY j , of the vertex of A(0, 0) with
label e(0)s (resp. e±). Similarly, the symbol t(k)l (i, j) denotes the triangle of A(i, j)

obtained as the image, by XiY j , of the triangle of A(0, 0) with label t(k)l .

Observation 4.7. (1) The label of the vertex e
(0)
s (i, j) of A(i, j) is as follows. Let

ps and qs be relatively prime integers such that s = qs/ps, and let (p′s, q
′
s) be the

mod 2 reduction of (ps, qs), i.e. (p′s, q′s) ∈ P . Then the label of e(0)s (i, j) is equal to
e
(0)
s or e

(1)
s according to whether (i, j) ∈ {(0, 0), (p′s, q′s)} or not.

(2) The label of the triangle t
(k)
l (i, j) of A(i, j) is as follows. Let pl and ql be

relatively prime integers such that sl = ql/pl, and let (p′l, q′l) be the mod 2 reduction
of (pl, ql). Recall that an ideal tetrahedron in trg(σl+1, σl+2) is equal to t

(0)
l or t

(1)
l
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according to whether the tetrahedron contains the edge e
(0)
sl or not. Then the label

of t(k)l (i, j) is equal to t
(k)
l or t(k+1)

l according to whether (i, j) ∈ {(0, 0), (p′l, q′l)} or
not.

(3) The description of the vertices and the triangles in A(i, j) automatically
determines the labels of the edges in A(i, j).

By abuse of notation, e(k)s denotes the face of F dual to the ideal edge e
(k)
s of D.

Similarly, t(k)l and |t(k)l , t
(k′)
l+1 | denote the vertex and the edge of F dual to the ideal

tetrahedron t
(k)
l and the ideal triangle |t(k)l , t

(k′)
l+1 | respectively. It should be noted

that the edge |t(k)l , t
(k′)
l+1 | of F connects the vertex t

(k)
l to the vertex t

(k′)
l+1 in F .

Now we describe the boundaries of the faces in F . We denote by ∂2 the boundary
homomorphism C2(F ;Z) → C1(F ;Z). Let f be a face of F , and let f∗ be one of
the two vertices of the cusp torus T contained in the ideal edge of D dual to f .
Consider a small oriented circle c in the cusp torus around the vertex f∗. Let t0, t1,
. . ., tk−1 be the triangles in T which intersects c in this cyclic order. Then we have

∂2(f) =

k−1∑
i=0

〈ti, ti+1〉.

Here, we assume that f is oriented so that it is coherent with c, and the symbol
〈ti, ti+1〉 denotes the oriented edge in F from the vertex ti to the vertex ti+1, where
the indices are considered modulo k. By using this fact, we obtain the following
description of ∂2.

Lemma 4.8 ([13, Lemma 4.3]). Suppose that s ∈ S and that T (s) =

(σd, . . . , σd+(k−1)). Then we have

∂2(e
(0)
s ) = Bup(s) +Bdown(s) +Bcap+(s) +Bcap−(s),

where Bup(s), Bdown(s), Bcap+(s) and Bcap−(s) are given as follows (see Fig. 8):

Bup(s) =

{∑k−2
i=1 〈t(0)d+i−2, t

(0)
d+i−1〉 if k > 2,

0 if k = 2,

Bdown(s) =

{∑k−2
i=1 〈t(1)d+i−1, t

(1)
d+i−2〉 if k > 2,

0 if k = 2,

Bcap+(s) =

{
〈t(0)c−3, t

(1)
c−3〉(0) if s = r∗,

〈t(0)d+k−3, t
(1)
d+k−2〉+ 〈t(1)d+k−2, t

(1)
d+k−3〉 if s 6= r∗,

Bcap−(s) =

{
〈t(1)1 , t

(0)
1 〉(0) if s = 1/2,

〈t(1)d−1, t
(0)
d−2〉+ 〈t(0)d−2, t

(0)
d−1〉 if s 6= 1/2.

Moreover, we have

∂2(e
(1)
s ) = B′

up(s) +B′
down(s) +B′

cap+(s) +B′
cap−(s),
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where B′
up(s), B′

down(s), B′
cap+(s) and B′

cap−(s) are given as follows (see Fig. 9):

B′
up(s) =

{∑k−2
i=1 〈t(i)d+i−2, t

(i+1)
d+i−1〉 if k > 2,

0 if k = 2,

B′
down(s) =

{∑k−2
i=1 〈t(i)d+i−1, t

(i+1)
d+i−2〉 if k > 2,

0 if k = 2,

B′
cap+(s) =

{
〈t(k−1)

c−3 , t
(k−2)
c−3 〉

(1)
if s = r∗,

〈t(k−1)
d+k−3, t

(0)
d+k−2〉+ 〈t(0)d+k−2, t

(k−2)
d+k−3〉 if s 6= r∗,

B′
cap−(s) =

{
〈t(0)1 , t

(1)
1 〉(1) if s = 1/2,

〈t(0)d−1, t
(1)
d−2〉+ 〈t(1)d−2, t

(1)
d−1〉 if s 6= 1/2.

Here the upper suffix k at e(k)i is considered modulo 2.

(a)

(b)

Fig. 8. A face e
(0)
s is shown as the grayed region in (a). (For s = 1/2, the term Bcap− (s) is shown

in the left in (b), and for s = r∗, the term Bcap+ (s) is shown in the right in (b).)

Fig. 9. A face e
(1)
s is shown as the grayed region. (The terms in B′

up(s) come from the edges
oriented from left to right, and the terms in B′

down(s) come from the edges oriented from right to
left.)

Remark 4.9. The formula for the cycle ∂2(e
(k)
s ) in the above lemma actually gives
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the geometric boundary of e(k)s , namely the geometric boundary ∂e
(k)
s of e(k)s is the

union of the underlying edges of the terms in the formula. By using Observation 4.7,
we can obtain a formula describing the geometric boundaries of the 2-cells of T ∗.

Set rc = [a1, . . . , an−1]. Note that the vertices in T corresponding to the ideal
edges of slope rc and [a1, . . . , an−1, an − 1] are identified into the single vertex e+.
The meridian of K(r) is described as follows.

Lemma 4.10 ([13, Lemma 4.4]). Suppose that T (0/1) = (σ1, . . . , σk−) and that
T (rc) = (σc−(k+−1), . . . , σc). Then each of the following 1-cycles µ

(0,0)
± in F repre-

sents a meridian of the two-bridge link K(r):

µ
(0,0)
± = M (0,0)

up (±) +M
(0,0)
down(±) +M

(0,0)
cap+(±) +M

(0,0)
cap−(±),

where M
(0,0)
up (±), M (0,0)

down(±), M (0,0)
cap+(±) and M

(0,0)
cap−(±) are given as follows:

M (0,0)
up (−) =

{∑k−−3
i=1 〈t(1)i , t

(1)
i+1〉 if k− > 3,

0 if k− = 3,

M
(0,0)
down(−) =

{∑k−−3
i=1 〈t(0)i+1, t

(0)
i 〉 if k− > 3,

0 if k− = 3,

M
(0,0)
cap+(−) =

〈t(1)k−−2, t
(1)
k−−1〉+ 〈t(1)k−−1, t

(0)
k−−2〉 if r∗ 6= 0,

〈t(1)k−−2, t
(0)
k−−2〉(0) if r∗ = 0,

M
(0,0)
cap−(−) = 〈t(0)1 , t

(1)
1 〉(0),

M (0,0)
up (+) =

{∑k+−3
i=1 〈t(1)c−(i+3), t

(1)
c−(i+2)〉 if k+ > 3,

0 if k+ = 3,

M
(0,0)
down(+) =

{∑k+−3
i=1 〈t(0)c−(i+2), t

(0)
c−(i+3)〉 if k+ > 3,

0 if k+ = 3,

M
(0,0)
cap+(+) = 〈t(1)c−3, t

(0)
c−3〉(0),

M
(0,0)
cap−(+) =

{
〈t(0)c−k+

, t
(0)
c−(k++1)〉+ 〈t(0)c−(k++1), t

(1)
c−k+

〉 if rc 6= 1/2,
〈t(0)1 , t

(1)
1 〉(0) if rc = 1/2.

Furthermore, we have the following.

Lemma 4.11 ([13, Lemma 4.5]). Suppose that T (0/1) = (σ1, . . . , σk−) and that
T (rc) = (σc−(k+−1), . . . , σc). Then each of the following 1-cycles µ

(u,v)
± in F rep-

resents a meridian of the two-bridge link K(r):

(1) For each (u, v) ∈ {(0, 1), (1, 0)},

µ
(u,v)
− = M (u,v)

up (−) +M
(u,v)
down(−) +M

(u,v)
cap+ (−) +M

(u,v)
cap− (−),
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where M
(u,v)
up (−), M (u,v)

down(−), M (u,v)
cap+ (−) and M

(u,v)
cap− (−) are given as follows. If

r∗ 6= 0, then

M (u,v)
up (−) =


∑k−−3

i=1 〈t(i+1)
i , t

(i)
i+1〉 if k− > 3 and (u, v) = (0, 1),∑k−−3

i=1 〈t(0)i , t
(0)
i+1〉 if k− > 3 and (u, v) = (1, 0),

0 if k− = 3,

M
(u,v)
down(−) =


∑k−−3

i=1 〈t(i+1)
i+1 , t

(i)
i 〉 if k− > 3 and (u, v) = (0, 1),∑k−−3

i=1 〈t(1)i+1, t
(1)
i 〉 if k− > 3 and (u, v) = (1, 0),

0 if k− = 3,

M
(u,v)
cap+ (−) =

{
〈t(k−−3)

k−−2 , t
(0)
k−−1〉+ 〈t(0)k−−1, t

(k−−2)
k−−2 〉 if (u, v) = (0, 1),

〈t(0)k−−2, t
(1)
k−−1〉+ 〈t(1)k−−1, t

(1)
k−−2〉 if (u, v) = (1, 0),

M
(u,v)
cap− (−) =

{
〈t(1)1 , t

(0)
1 〉(0) if (u, v) = (0, 1),

〈t(1)1 , t
(0)
1 〉(1) if (u, v) = (1, 0).

If r∗ = 0, then we need to replace the formula for M
(u,v)
cap+ (−) with the following:

M
(u,v)
cap+ (−) =

〈t(k−−3)
k−−2 , t

(k−−2)
k−−2 〉

(1)
if (u, v) = (0, 1),

〈t(0)k−−2, t
(1)
k−−2〉(0) if (u, v) = (1, 0).

(2) Let (u, v) be the mod 2 reduction of (u∗, v∗), i.e. (u, v) ∈ P , where r∗ = v∗/u∗.
Then

µ
(u,v)
+ = M (u,v)

up (+) +M
(u,v)
down(+) +M

(u,v)
cap+ (+) +M

(u,v)
cap− (+),

where M
(u,v)
up (+), M (u,v)

down(+), M (u,v)
cap+ (+) and M

(u,v)
cap− (+) are given as follows:

M (u,v)
up (+) =

{∑k+−3
i=1 〈t(i)c−(i+3), t

(i+1)
c−(i+2)〉 if k+ > 3,

0 if k+ = 3,

M
(u,v)
down(+) =

{∑k+−3
i=1 〈t(i)c−(i+2), t

(i+1)
c−(i+3)〉 if k+ > 3,

0 if k+ = 3,

M
(u,v)
cap+ (+) = 〈t(0)c−3, t

(1)
c−3〉(0),

M
(u,v)
cap− (+) =

{
〈t(k+−2)

c−k+
, t

(1)
c−(k++1)〉+ 〈t(1)c−(k++1), t

(k+−3)
c−k+

〉 if rc 6= 1/2,
〈t(k+−2)

1 , t
(k+−3)
1 〉(1) if rc = 1/2.

Furthermore, we obtain the following description of ∂2(e±) in terms of the merid-
ional 1-cycles.

Lemma 4.12 ([13, Lemma 4.6]). Suppose that (u, v) ∈ P such that (u, v) ≡ (u∗, v∗)
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mod 2, where u∗/v∗ = r∗. Then we have

∂2(e−) = µ
(0,0)
− + µ

(0,1)
− ,

∂2(e+) = µ
(0,0)
+ + µ

(u,v)
+ .

Remark 4.13. The formulas in Lemma 4.12 do not give the geometric boundaries
of e− and e+. In fact, the geometric boundary ∂e− is given by the following formula
which contains a cancelling pair:

∂e− = µ
(0,0)
− + 〈t(1)1 , t

(0)
1 〉(1) + µ

(0,1)
− + 〈t(0)1 , t

(1)
1 〉(1).

Remark 4.14. For each hyperbolic two-bridge link K(r) and for each slope s in
S ′(r), we see by Lemma 3.1 that the length of T (s) is greater than or equal to 2.
Hence, for each ideal edge e of D(r), the degree of e is at least three.

5. Balanced 1-cocycles of the hyperbolic fibered two-bridge link
complements

In this section, we recall a description of the canonical 1-cocycle of a hyperbolic
fibered two-bridge link K(r), given by [13, Section 5].

In the remainder of this paper, we consider only hyperbolic fibered two-bridge
link K(r) = K[2b1, 2b2, . . . , 2bm]. Recall that each bi is either +1 or −1 and
(b1, b2, . . . , bm) 6= ±(1,−1, . . . , (−1)m−1) (cf. Section 3). The canonical 1-cocycle
of K[2b1, 2b2, . . . , 2bm] is denoted by ω[2b1, 2b2, . . . , 2bm].

Recall that the 1-skeleton of F is illustrated as in Fig. 6. By the l-th block of
F (the l-th block, in brief), we mean the set {|t(0)1 , t

(1)
1 |(j) | j = 0, 1}, {|t(k)l , t

(k′)
l+1 | |

k, k′ ∈ {0, 1}} or {|t(0)c−3, t
(1)
c−3|(j) | j = 0, 1} according as l = 0, 1 ≤ l ≤ c − 4 or

l = c − 3, respectively. (Here the symbol c denotes the length of the sequence of
Farey triangles Σ(r).) For each 0 ≤ l ≤ c− 3, the values of the canonical 1-cocycle
ω at the oriented edges contained in the l-th block of F have the same absolute
value (see [13, Section 5]). Thus ω has the following description:

(a) For 1 ≤ l ≤ c − 4, there is a positive real number dl and a quadruple
(ε00, ε01, ε10, ε11) ∈ {+,−}4 such that ω(εkk′〈t(k)l , t

(k′)
l+1 〉) = dl.

(b) For l = 0, there is a positive real number d0 and a couple (ε0, ε1) ∈ {+,−}2
such that ω(εj〈t(0)1 , t

(1)
1 〉(j)) = d0. For l = c− 3, there is a positive real number

dc−3 and a couple (ε0, ε1) ∈ {+,−}2 such that ω(εj〈t(0)c−3, t
(1)
c−3〉(j)) = dc−3.

In the remainder of this paper, we employ the following convention.

Convention 5.1. (1) Under the above assumption, if for each l-th block and for
each k, k′, j ∈ {0, 1}, εkk′ = + and εj = +, then ω is depicted as in Fig. 10, where
each arrow in an edge represents the oriented edge 〈t(0)1 , t

(1)
1 〉(j), 〈t

(0)
c−3, t

(1)
c−3〉(j) or

〈t(k)l , t
(k′)
l+1 〉 for each 1 ≤ l ≤ c− 4. We say that the values of ω at the l-th block are
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given by (dl; ε00, ε01, ε10, ε11) or (dl; ε0, ε1). We also call dl the weight of ω at the
l-th block.

(2) In Figs. 11–15, 16(a), 18 and 19, each edge of F is oriented so that ω(e) > 0

(cf. Convention 2.6). In Figs. 16(b), 20, 21 and 22, inherits the orientation of the
corresponding edge in F .

Fig. 10. 1-cochain ω, where εkk′ = + and εj = + for every k, k′ and j. The vertices t
(0)
l are on

the lower horizontal level, and the vertices t
(1)
l are on the upper horizontal level.

In [13, Section 5], we proved that the canonical 1-cocycle of a hyperbolic fibered
two-bridge link is obtained inductively from the following Propositions 5.2, 5.3
and 5.4.

Proposition 5.2 ([13, Proposition 5.6]). The canonical 1-cocycle ω[2b1, 2b1, 2b3]

of K[2b1, 2b2, 2b3] is given by Fig. 11 under Convention 5.1.

(a) ω[2, 2, 2]

(b) ω[2, 2,−2] (c) ω[2,−2,−2]

Fig. 11. The canonical 1-cocycles of K[2b1, 2b2, 2b3].
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Proposition 5.3 ([13, Proposition 5.7]). Suppose that m ≥ 4, and that
K[2b1, . . . , 2bm] is a hyperbolic fibered two-bridge link such that K[2b1, . . . , 2bm−1]

is a torus link, namely (b1, . . . , bm−1) is alternating. Then the canonical 1-cocycle
ω[2b1, . . . , 2bm] is given by Fig. 12 under Convention 5.1, where the number of
blocks with weight 1/2 is equal to m− 3.

Proposition 5.4 ([13, Proposition 5.8]). Suppose that m ≥ 4, and that
K[2b1, . . . , 2bm] is a hyperbolic fibered two-bridge link such that K[2b1, . . . , 2bm−1]

is not a torus link. Let N be the number of blocks of F [2b1, . . . , 2bm−1]. Then the
following hold:

(1) If bm−1 = bm, then the number of blocks of F [2b1, . . . , 2bm−1, 2bm] is equal to
N + 2.

(a) If bm−2 = bm−1, then the values of ωm−1 = ω[2b1, . . . , 2bm−1] at the last two
blocks are given by (1/3;α,−α, α,−α) and (1/3;α, α) for some α ∈ {+,−}
(see Fig. 13(a)). The values of ωm = ω[2b1, . . . , 2bm−1, 2bm] at the l-th block
are equal to those of ωm−1 at the l-th block for any 1 ≤ l ≤ N−2. Moreover,
the values of ωm at the last four blocks are given by (1/4;α,−α, α,−α),
(1/4;α, α,−α,−α), (1/3;−α, α,−α, α) and (1/3;−α,−α) (see Fig. 14(a)).

(b) If bm−2 6= bm−1, then the values of ωm−1 at the last block are given by
(1;α,−α) for some α ∈ {+,−} (see Fig. 13(b)). The values of ωm at the
l-th block are equal to those of ωm−1 at the l-th block for any 1 ≤ l ≤
N − 1. Moreover, the values of ωm at the last three blocks are given by
(1/2;−α, α, α,−α), (1/3;α,−α, α,−α) and (1/3;α, α) (see Fig. 14(b)).

(2) If bm−1 6= bm, then the number of blocks of F [2b1, . . . , 2bm−1, 2bm] is equal to
N + 1.

(a) If bm−2 = bm−1, then the values of ωm−1 at the last two blocks are given by
(1/3;α,−α, α,−α) and (1/3;α, α) for some α ∈ {+,−} (see Fig. 13(a)).
The values of ωm at the l-th block are equal to those of ωm−1 at the l-th
block for any 1 ≤ l ≤ N − 2. Moreover, the values of ωm at the last three
blocks are given by (1/4;α,−α, α,−α), (1/4;α, α,−α,−α) and (1;−α, α)

(see Fig. 14(c)).
(b) If bm−2 6= bm−1, then the values of ωm−1 at the last block are given by

(1;α,−α) for some α ∈ {+,−} (see Fig. 13(b)). The values of ωm at the
l-th block are equal to those of ωm−1 at the l-th block for any 1 ≤ l ≤
N − 1. Moreover, the values of ωm at the last two blocks are given by
(1/2;−α, α, α,−α) and (1;α,−α) (see Fig. 14(d)).

By using Propositions 5.2 and 5.4, we obtain the following corollary, which plays
an important role in the proof of the main result.

Corollary 5.5. The canonical 1-cocycle ω = ω[2, . . . , 2] has the following prop-
erty. For each 1 ≤ l ≤ c − 6 and k, k′ ∈ {0, 1}, the signs of ω(〈t(k)l , t

(k′)
l+1 〉) and
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Fig. 12. The canonical 1-cocycle of K[2,−2, 2,−2, . . . ,±2,±2].

(a) bm−2 = bm−1
(b) bm−2 6= bm−1

Fig. 13. The values of ωm−1 at the last block(s) for α = +.

(a) bm−2 = bm−1 = bm (b) bm−2 6= bm−1 = bm

(c) bm−2 = bm−1 6= bm (d) bm−2 6= bm−1 6= bm

Fig. 14. Replacing the values of ωm at the last block(s) in ωm−1 with one of these values for
α = +.

ω(〈t(k)l+2, t
(k′)
l+3 〉) are different (see Fig. 15).

Lemma 5.6. For K[2, . . . , 2], the following holds. For X,Y ∈ 〈X,Y 〉 < Aut(D),
we have X∗(ω) = Y ∗(ω) = −ω, where X∗ and Y ∗ are the induced automorphisms
of H1(D).

Proof. Note that if q/p = [2, . . . , 2], then (p, q) ≡ (1, 0) or (0, 1) mod 2. By using
this fact, the automorphisms X∗ and Y ∗ of H1(D) have the following description:

(1) If p is odd, the X∗ = Y ∗ = −idH1(D).
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Fig. 15. The canonical 1-cocycle ω[2, 2, 2, 2, 2, 2].

(2) If p is even, then

X∗(µ∗
1, µ

∗
2) = (−µ∗

2,−µ∗
1),

Y ∗(µ∗
1, µ

∗
2) = (−µ∗

1,−µ∗
2),

where {µ∗
1, µ

∗
2} is the dual basis of the meridian pair {µ1, µ2} of the 2-component

oriented link K(r).
Since ω is the unique harmonic representative of p∗(1), we have X∗(ω) =

Y ∗(ω) = −ω.

At the end of this section, we give the precise meaning of Theorem 1.1.

Theorem 5.7. Let K(r) = K[2b1, . . . , 2bm] be a hyperbolic fibered two-bridge link,
where bi ∈ {±1} and (b1, b2, . . . , bm) 6= ±(1,−1, . . . , (−1)m−1). Then the canon-
ical decomposition of the complement of K(r) is veering with respect to the lay-
ered structure given by the canonical 1-cocycle ω, if and only if (b1, b2, . . . , bm) =

±(1, 1, . . . , 1).

6. Proof of the “only if” part of Theorem 5.7

In this section, we prove the “only if” part of Theorem 5.7. Let K(r) =

K[2b1, . . . , 2bm] and D = D[2b1, . . . , 2bm] be as in Theorem 5.7, and let ω =

ω[2b1, . . . , 2bm] be the canonical 1-cocycle of K[2b1, . . . , 2bm].
The “only if” part of Theorem 5.7 follows from the following Lemmas 6.1 and 6.2.

Lemma 6.1. D[2, 2,−2] and D[2,−2,−2] are not veering.

Proof. Since K[2, 2,−2] is equivalent to K[2,−2,−2], we treat only D[2, 2,−2]. Set
r = [2, 2,−2]. Note that the sequence of Farey triangles Σ(r) = (σ1, σ2, σ3, σ4, σ5)

by Lemma 3.1, where σ1 = (∞, 1/1, 0/1), σ2 = (1/1, 1/2, 0/1), σ3 = (1/2, 1/3, 0/1),
σ4 = (1/2, 2/5, 1/3), and σ5 = (2/5, 3/8, 1/3). Recall the symbols S(r) and T (s)

(s ∈ S(r)) introduced in Notation 4.1. Then we have T (1/2) = (σ2, σ3, σ4), and
therefore, by Lemma 4.8 and Remark 4.9, the geometric boundary of e(0)1/2 is given
by the following formula (see Fig. 16):

∂2(〈e(0)1/2〉) = 〈t(0)1 , t
(0)
2 〉+ 〈t(1)2 , t

(1)
1 〉+ 〈t(0)2 , t

(1)
2 〉(0) + 〈t(1)1 , t

(0)
1 〉(0).
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Moreover, by Proposition 5.2, we have

ω(〈t(0)1 , t
(0)
2 〉) = −1/3 < 0,

ω(〈t(1)2 , t
(1)
1 〉) = −1/3 < 0,

ω(〈t(0)2 , t
(1)
2 〉(0)) = +1 > 0 and

ω(〈t(1)1 , t
(0)
1 〉(0)) = −1/3 < 0.

Hence, t(1)2 and t
(0)
2 , respectively, are the maximal vertex and minimal vertex of the

face e
(0)
1/2 of F with respect to ω (see Fig. 16). Thus the edge |t(0)2 , t

(1)
2 |(0) of e(0)1/2 in

F connects the maximal vertex and the minimal vertex. Hence, D[2, 2,−2] is not
veering by Lemma 2.12.

(a) (b)

Fig. 16. (a) The face e
(0)
1/2

of F [2, 2,−2]. (b) A part of the infinite cyclic cover of the annulus
A(0, 0) for D[2, 2,−2].

Lemma 6.2. If m ≥ 4 and bi 6= bj for some i, j, then D[2b1, . . . , 2bm] is not
veering.

Proof. Let [a1, . . . , an] be the continued fraction expansion of r = [2b1, . . . , 2bm]

into positive integers with an ≥ 2. Set r∗ = [a1, . . . , an−1, an − 2].
Case 1: bm−1 6= bm.
Subcase 1-a: bm−2 6= bm−1. By Lemma 3.1, we see an−1 = 1 and an ≥ 3 (see

Fig. 17(a)). Thus T (r∗) = (σc−2, σc−1) and therefore we see by Lemma 4.8 that the
following holds (see Fig. 18(a)):

∂2(〈e(0)r∗ 〉) = 〈t(0)c−3, t
(1)
c−3〉(0) + 〈t(1)c−3, t

(0)
c−4〉+ 〈t(0)c−4, t

(0)
c−3〉.

Hence D is not veering by Lemma 2.12 and Remark 4.9.
Subcase 1-b: bm−2 = bm−1. By Lemma 3.1, we see an−1 = 1 and an = 2

(see Fig. 17(b)). Thus r∗ = [a1, . . . , an−2] and T (r∗) = (σc−3, σc−2, σc−1). Hence,
by Lemma 4.8 and Remark 4.9, the geometric boundary of e

(0)
r∗ is given by the

following formula:

∂2(〈e(0)r∗ 〉) = 〈t(0)c−4, t
(0)
c−3〉+ 〈t(1)c−3, t

(1)
c−4〉+ 〈t(0)c−3, t

(1)
c−3〉(0) + 〈t(1)c−4, t

(0)
c−5〉+ 〈t(0)c−5, t

(0)
c−4〉.
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On the other hand, we can see by using Proposition 5.4 that {t(0)c−3, t
(1)
c−3} forms the

minimal and maximal vertices of e(0)r∗ (see Fig. 18(b)). Since the edge |t(0)c−3, t
(1)
c−3|(0)

of e(0)r∗ in F connects these two vertices, D is not veering by Lemma 2.12.
Case 2: bm−1 = bm. Let i0 be the maximum integer i such that bi−1 6= bi and

bi = bi+1. Then, by Lemma 3.1, there exists an integer n′ with 1 < n′ < n such
that [a1, . . . , an′ ] = [2b1, . . . , 2bi0 ]. Set s = [a1, . . . , an′−1]. Note that the number
of triangles in the sequence Σ([2b1, . . . , 2bi0 ]) is equal to c′ =

∑n′

i=1 ai, and that if
i0 = m − 1, then s = r∗ (see Fig. 17(c)). By using Lemma 3.1, we have T (s) =

(σc′−1, σc′ , σc′+1). Thus, by Lemma 4.8 and Remark 4.9, the geometric boundary
of e(0)s is given by the following formula:

∂2(〈e(0)s 〉) =


〈t(0)c′−2, t

(0)
c′−1〉+ 〈t(1)c′−1, t

(1)
c′−2〉

+〈t(0)c′−1, t
(1)
c′−1〉(0) + 〈t(1)c′−2, t

(0)
c′−3〉+ 〈t(0)c′−3, t

(1)
c′−2〉 if i0 = m− 1,

〈t(0)c′−2, t
(0)
c′−1〉+ 〈t(1)c′−1, t

(1)
c′−2〉+ 〈t(0)c′−1, t

(1)
c′ 〉

+〈t(1)c′ , t
(1)
c′−1〉+ 〈t(1)c′−2, t

(0)
c′−3〉+ 〈t(0)c′−3, t

(1)
c′−2〉 if i0 < m− 1.

On the other hand, since bi0−1 6= bi0 and bi0 = bi0+1, the set {t(0)c′−2, t
(1)
c′−2} forms the

minimal and maximal vertices of e(0)s by Proposition 5.4 (see Fig. 19). Let ẽ
(0)
s be

the face of T ∗ contained in |A(0, 0)| corresponding to the face e
(0)
s of F (in the sense

of Observation 2.5). By abuse of notation, we denote the edges of T ∗ contained in
|A(0, 0)| corresponding to the edges |t(0)c′−2, t

(1)
c′−1| and |t(0)c′−4, t

(0)
c′−3| of F by the same

symbols. By Lemma 4.5, the edges |t(0)c′−2, t
(1)
c′−1| and |t(0)c′−4, t

(0)
c′−3| of T ∗ are adjacent

to the boundary ∂ẽ
(0)
s of ẽ(0)s different from the minimal and maximal vertices of

ẽ
(0)
s . Let ` and `′, respectively, be the edge-paths in ∂ẽ

(0)
s connecting the minimal

and maximal vertices of ẽ(0)s . We may assume that |t(0)c′−2, t
(1)
c′−1| is adjacent to ` and

|t(0)c′−4, t
(0)
c′−3| is adjacent to `′. Note that we have {`, `′} = {∂L(ẽ(0)s ), ∂R(ẽ

(0)
s )}. On

the other hand, we can see by using Proposition 5.4 that both |t(0)c′−2, t
(1)
c′−1| and

|t(0)c′−4, t
(0)
c′−3| of F are oriented either toward or away from the boundary of e(0)s (see

Fig. 19), and so precisely one of the following holds:

(1) The edge-paths ` and `′ are attractive at the vertices t
(1)
c′−1 and t

(1)
c′−3 in T ∗,

respectively.
(2) The edge-paths ` and `′ are repulsive at the vertices t

(1)
c′−1 and t

(1)
c′−3 in T ∗,

respectively.

Hence D is not veering by Proposition 2.9.

7. Proof of the “if” part of Theorem 5.7

Throughout this section, we consider the hyperbolic two-bridge links K(r) with
r = [2, . . . , 2]. For each 0 ≤ i, j ≤ 1, T ∗(i, j) denotes the subcomplex of the 1-
skeleton of T ∗ made up of the edges of T ∗ which intersect |A(i, j)|. Put S ′′ =
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(a) bm−2 6= bm−1 6= bm (b) bm−2 = bm−1 6= bm

(c) bm−1 = bm

Fig. 17. The sequence of Farey triangles Σ([2b1, . . . , 2bm]). In (c), if bm−2 6= bm−1, then we have
n′ = n− 1, and so s = r∗.

(a) bm−2 6= bm−1 6= bm (b) bm−2 = bm−1 6= bm

Fig. 18. The face e
(0)
r∗ is shown as the grayed region.

S ′′(r) = S ′(r)\ (σ(0)
2 ∪σ

(0)
c−1). Recall that the cusp cross section is oriented as stated

in the paragraph after Definition 2.2.
By Proposition 2.9, the “if” part of the main theorem follows from the following

Lemmas 7.1 and 7.2.

Lemma 7.1. Suppose m = 2 and b1 = b2 = +1, i.e. K(r) is the figure-eight knot.
Then D is veering by the assignment of two colors to the ideal edges {e−, e+} of D
defined by {

e− : red,
e+ : blue.

Though this lemma is well-known, we give a proof based on Proposition 2.9, so that
the readers become familiar with Proposition 2.9.

Proof. Since there is an orientation-reversing automorphism of D[2, 2] which maps
e+ to e− (cf. [14, Section II.3]), we may only prove that each of the vertices of T
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(a) bi0−2 = bi0−1, i0 = m− 1

(b) bi0−2 6= bi0−1, i0 = m− 1

(c) bi0−2 = bi0−1, i0 < m− 1

(d) bi0−2 6= bi0−1, i0 < m− 1

Fig. 19. The face e
(0)
s is shown as the grayed region.

with label e− is RL in the sense of Definition 2.7(4).
The sequence of Farey triangles Σ([2, 2]) is equal to (σ1, σ2, σ3, σ4), where σ1 =

(1/0, 1/1, 0/1), σ2 = (1/1, 1/2, 0/1), σ3 = (1/2, 1/3, 0/1) and σ4 = (1/2, 2/5, 1/3).
Then we have T (0/1) = (σ1, σ2, σ3). Hence, by Lemmas 4.10 and 4.11, we have

µ
(0,0)
− = 〈t(1)1 , t

(0)
1 〉′(0) + 〈t(0)1 , t

(1)
1 〉(0),

µ
(0,1)
− = 〈t(0)1 , t

(1)
1 〉′(1) + 〈t(1)1 , t

(0)
1 〉(0).

Now, let v = e−(0, 0) be the vertex of A(0, 0) with label e−, and let v∗ be the face
of T ∗ dual to the vertex v. Then, by Lemma 4.12 and Remark 4.13, the geometric
boundary ∂v∗ is given by the following formula (see Fig. 20):

∂2(v
∗) = 〈t(1)1 , t

(0)
1 〉′(0) + 〈t(0)1 , t

(1)
1 〉(0) + 〈t(1)1 , t

(0)
1 〉(1)

+ 〈t(0)1 , t
(1)
1 〉′(1) + 〈t(1)1 , t

(0)
1 〉(0) + 〈t(0)1 , t

(1)
1 〉(1).

By [13, Example 5.5] and Fig. 20(b), the edge-paths ∂R(v
∗) and ∂L(v∗) are given

by the following formulas:

∂R(v
∗) =

(
〈t(0)1 , t

(1)
1 〉(1), 〈t

(1)
1 , t

(0)
1 〉′(0), 〈t

(0)
1 , t

(1)
1 〉(0)

)
,

∂L(v
∗) =

(
〈t(0)1 , t

(1)
1 〉(0), 〈t

(1)
1 , t

(0)
1 〉′(1), 〈t

(0)
1 , t

(1)
1 〉(1)

)
.

By using Lemma 4.5 and Observation 4.7, the edges |t(0)1 , t
(1)
1 |(0) and |t(0)1 , t

(1)
1 |′(1)

(contained in T ∗(0, 0)) are adjacent to ∂R(v
∗) at interior vertices of ∂R(v

∗) (see
Fig. 20(b)). Since the edges are oriented toward ∂R(v

∗), the edge-path ∂R(v
∗) is

attractive. Similarly, the edges |t(0)1 , t
(1)
1 |′(0) and |t(0)1 , t

(1)
1 |(0) (contained in T ∗(0, 1))
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are adjacent to ∂L(v
∗) at interior vertices of ∂L(v∗). Since the edges are oriented

away from ∂L(v
∗), the edge-path ∂L(v

∗) is repulsive. Hence the vertex v of A(0, 0)

is RL, and so the vertices of T with label e− are RL by Lemma 2.10.

(a) (b)
Fig. 20. (a) A part of the universal cover of T [2, 2]. (b) A neighborhood of the vertex of A(0, 0)
with label e−. The symbols vM and vm denote the maximal and minimal vertices of the dual face
e−, respectively.

Lemma 7.2. Suppose that m ≥ 3 and b1 = · · · = bm = +1. Then D is veering by
the assignment of two colors to the ideal edges of D defined by

e− : red,

e(k)s :

{
red if s ∈ S ′(r) is equal to [2b1, . . . , 2b2m′ ] or [2b1, . . . , 2b2m′ , 1],
blue if s ∈ S ′(r) is equal to [2b1, . . . , 2b2m′−1] or [2b1, . . . , 2b2m′−1, 1],

e+ :

{
red if m is odd, i.e. K(r) is a two component link,
blue if m is even, i.e. K(r) is a knot,

for any k ∈ {0, 1}.

Proof. We begin by proving the following claims.

Claim 1. Let s be an element of S ′(r). Let f (resp. f ′) be the face of T ∗ dual
to one of the two vertices of T with label e

(0)
s (resp. e

(1)
s ). Then f is RL or LR

according to whether f ′ is RL or LR, and vice versa.

Proof of Claim 1. We treat only the case when f is RL. Let (i, j) be a pair
(0, 1) or (1, 0) such that (i, j) 6≡ (ps, qs) mod 2, where s = qs/ps. Then the ideal
edge e

(1)
s intersects A(i, j) by Observation 4.7. By Lemma 2.10, we may assume

f ⊂ |A(0, 0)| and f ′ ⊂ |A(i, j)|. Then the orientation-preserving automorphism



30 Naoki Sakata

XiY j of D maps f to f ′. Note that (XiY j)∗(ω) = −ω by Lemma 5.6. Hence
XiY j induces an orientation-preserving isomorphism form A(0, 0) to A(i, j), which
“reverse” the orientation of the edges of T ∗. To be precise, if e is an edge of A(0, 0),
then the orientation of its copy XiY j(e) in A(i, j) determined by ω is opposite to
the orientation of e determined by ω. Hence, by Remark 2.8(1), the face f is RL if
and only if f ′ is RL.

Claim 2. Let (sl, sl+2) be a pair of elements of S ′′(r). Let f (resp. f ′) be the face
of T ∗ dual to the vertex of A(0, 0) ⊂ T with label e(0)sl (resp. e(0)sl+2). Then f is RL
or LR according to whether f ′ is LR or RL, and vice versa.

Proof of Claim 2. Since b1 = · · · = bm = +1 and since (sl, sl+2) is a pair
of elements of S ′′(r), we see from the construction of D and T that there is an
orientation-reversing (combinatorial) isomorphism τ from the 2-cell f ⊂ |A(0, 0)|
to the 2-cell f ′ ⊂ |A(0, 0)|, which maps an edge 〈t(k)l , t

(k′)
l+1 〉 in the boundary of f to

the edge 〈t(k)l+2, t
(k′)
l+3 〉 in the boundary of f ′. Moreover, we see by using Corollary 5.5

that τ reverses the orientation of the edges (specified by ω) which has a vertex in
the boundary of f . Hence f is RL if and only if f ′ is LR.

By [14, Section II.3], there is an involution ι of D[2b1, . . . , 2bm] which inter-
changes e+ with e− and e

(0)
r∗ with e

(0)
1/2. Moreover, ι is orientation-preserving or

orientation-reversing according to whether m is odd or even. By this fact and
Claims 1 and 2, it is enough to show that each of the vertices of T with label
e− or e(0)2/5 is RL, and each of the vertices of T with label e(0)1/2 or e(0)1/3 is LR. (When
m = 3, e(0)2/5 should be ignored since such an ideal edge does not exist.)

We first prove that the vertices with label e− are RL. Let v = e−(0, 0) be the
vertex of A(0, 0) with label e−, and let v∗ be the face of T ∗ dual to the vertex
v. Since T (0/1) = (σ1, σ2, σ3), we see by Lemma 4.12 and Remark 4.13 that the
geometric boundary of v∗ is given by the following formula:

∂2(v
∗) = 〈t(1)1 , t

(1)
2 〉+ 〈t(1)2 , t

(0)
1 〉+ 〈t(0)1 , t

(1)
1 〉(0) + 〈t(1)1 , t

(0)
1 〉(1)

+ 〈t(0)1 , t
(0)
2 〉+ 〈t(0)2 , t

(1)
1 〉+ 〈t(1)1 , t

(0)
1 〉(0) + 〈t(0)1 , t

(1)
1 〉(1).

By Propositions 5.2 and 5.4 (see Fig. 22(a)), we have

∂R(v
∗) =

(
〈t(0)1 , t

(1)
1 〉(1), 〈t

(1)
1 , t

(1)
2 〉, 〈t(1)2 , t

(0)
1 〉, 〈t(0)1 , t

(1)
1 〉(0)

)
,

∂L(v
∗) =

(
〈t(0)1 , t

(1)
1 〉(0), 〈t

(1)
1 , t

(0)
2 〉, 〈t(0)2 , t

(0)
1 〉, 〈t(0)1 , t

(1)
1 〉(1)

)
.

Note that ∂R(v
∗) and ∂L(v

∗) are edge-paths of T ∗(0, 0) and T ∗(0, 1) respectively.
We see by Propositions 5.2 and 5.4, Lemma 4.5 and Observation 4.7 that ∂R(v

∗)

is attractive and ∂L(v
∗) is repulsive (see Fig. 22(a)). Hence v is RL, and so the

vertices of T with label e− are RL by Lemma 2.10.
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Fig. 21. A part of the infinite cyclic cover of the annulus A(0, 0) for D[2, 2, 2, 2, 2, 2].

(a) e− (b) e
(0)
1/2

(c) e
(0)
1/3 (d) e

(0)
2/5

Fig. 22. Neighborhoods of dual faces e−, e(0)
1/2

, e(0)
1/3

and e
(0)
2/5

.
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Next, we shall prove that the vertices of T with label e
(0)
1/2 are LR. Let v =

e
(0)
1/2(0, 0) be the vertex of A(0, 0) with label e

(0)
1/2, and let v∗ be the face of T ∗

dual to the vertex v. Since T (1/2) = (σ2, σ3, σ4, σ5), we see by Lemma 4.8 and
Remark 4.9 that the geometric boundary of v∗ is given by the following formula
when m ≥ 4:

∂2(v
∗) = 〈t(0)1 , t

(0)
2 〉+ 〈t(0)2 , t

(0)
3 〉+ 〈t(1)3 , t

(1)
2 〉+ 〈t(1)2 , t

(1)
1 〉

+ 〈t(0)3 , t
(1)
4 〉+ 〈t(1)4 , t

(1)
3 〉+ 〈t(1)1 , t

(0)
1 〉(0).

Hence, by Propositions 5.2 and 5.4 (see Figs. 21 and 22(b)), we have the following
when m ≥ 4:

∂R(v
∗) =

(
〈t(0)2 , t

(0)
3 〉, 〈t(0)3 , t

(1)
4 〉, 〈t(1)4 , t

(1)
3 〉, 〈t(1)3 , t

(1)
2 〉

)
,

∂L(v
∗) =

(
〈t(0)2 , t

(0)
1 〉, 〈t(0)1 , t

(1)
1 〉(0), 〈t

(1)
1 , t

(1)
2 〉

)
.

Note that each edge in these edge-paths is an element of T ∗(0, 0). (When m = 3, the
two edges |t(0)3 , t

(1)
4 | and |t(1)3 , t

(1)
4 | become identified.) We see by Propositions 5.2

and 5.4 and Lemma 4.5 that ∂R(v∗) is repulsive and ∂L(v
∗) is attractive (see Figs. 21

and 22(b)). Hence the vertex v is LR, and so the vertices of T with label e(0)1/2 are
LR by Lemma 2.10.

Next, we shall show that the vertices of T ∗ with label e
(0)
1/3 are LR. Let v =

e
(0)
1/3(0, 0) be the vertex of A(0, 0) with label e(0)1/3, and let v∗ be the face of T ∗ dual

to the vertex v. Since T (1/3) = (σ3, σ4), we see by Lemma 4.8 and Remark 4.9 that
the geometric boundary of v∗ is given by the following formula:

∂2(v
∗) = 〈t(0)2 , t

(1)
3 〉+ 〈t(1)3 , t

(1)
2 〉+ 〈t(1)2 , t

(0)
1 〉+ 〈t(0)1 , t

(0)
2 〉.

Hence, by Propositions 5.2 and 5.4 (see Figs. 21 and 22(c)), we have

∂R(v
∗) =

(
〈t(0)2 , t

(0)
1 〉, 〈t(0)1 , t

(1)
2 〉

)
,

∂L(v
∗) =

(
〈t(0)2 , t

(1)
3 〉, 〈t(1)3 , t

(1)
2 〉

)
.

Note that each edge in these edge-paths is an element of T ∗(0, 0). We see by Propo-
sitions 5.2 and 5.4 and Lemma 4.5 that ∂R(v∗) is repulsive and ∂L(v

∗) is attractive
(see Figs. 21 and 22(c)). Hence the vertex v is LR, and so the vertices of T with
label e(0)1/3 are LR by Lemma 2.10.

Finally, we shall show that the vertices of T with label e(0)2/5 are RL. Let v =

e
(0)
2/5(0, 0) be the vertex of A(0, 0) with label e(0)2/5, and let v∗ be the face of T ∗ dual to

the vertex v. Since T (2/5) = (σ4, σ5, σ6, σ7), we see by Lemma 4.8 and Remark 4.9
that the geometric boundary of v∗ is given by the following formula:

∂2(v
∗) = 〈t(0)3 , t

(0)
4 〉+ 〈t(0)4 , t

(0)
5 〉+ 〈t(1)5 , t

(1)
4 〉+ 〈t(1)4 , t

(1)
3 〉

+ 〈t(0)5 , t
(1)
6 〉+ 〈t(1)6 , t

(1)
5 〉+ 〈t(1)3 , t

(0)
2 〉+ 〈t(0)2 , t

(0)
3 〉.
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Hence, by Propositions 5.2 and 5.4 (see Figs. 21 and 22(d)), we have

∂R(v
∗) =

(
〈t(1)4 , t

(1)
5 〉, 〈t(1)5 , t

(1)
6 〉, 〈t(1)6 , t

(0)
5 〉, 〈t(0)5 , t

(0)
4 〉

)
,

∂L(v
∗) =

(
〈t(1)4 , t

(1)
3 〉, 〈t(1)3 , t

(0)
2 〉, 〈t(0)2 , t

(0)
3 〉, 〈t(0)3 , t

(0)
4 〉

)
.

Note that each edge in these edge-paths is an element of T ∗(0, 0). We see by Propo-
sitions 5.2 and 5.4 and Lemma 4.5 that ∂R(v∗) is attractive and ∂L(v

∗) is repulsive
(see Figs. 21 and 22(d)). Hence the vertex v is RL, and so the vertices of T with
label e(0)2/5 are RL by Lemma 2.10.
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