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Chapter 1

Introduction

1.1 From Graphene to Graphene Nanoribbon

From the discovery of fullerene (1985),1 carbon nanotube (1991),2 and graphene (2004),3

many researchers have extensively studied the physical properties of such nanocarbon mate-
rials and revealed their interesting characters. Fullerenes are a large class of carbon molecules
having a hollow closed structure. A well-known example is Buckminsterfulerene C60, named
after Richard Buckminster Fuller. Its structure resembles a soccer ball consisting of twenty
hexagons and twelve pentagons. Cylindrical fullerenes are called carbon nanotubes (CNTs).
A single-walled CNT is equivalent to a honeycomb lattice of carbon atoms rolled up into a
cylinder. Carbon atoms arranged into a planar honeycomb lattice is called graphene, which
is just equivalent to a monolayer of graphite with only one atom thick. It had been believed
that the structure of this ultrathin material is unstable in a free standing state because of
its ideal thickness. In 2004, Novoselov and Geim, however, succeeded to separate monolayer
graphene in an ideal manner from highly-oriented pyrolytic graphite (HOPG). Their achieve-
ment leads to rapid advances in fundamental physics and practical applications of graphene
with a dramatic impact on nanomaterials research. They were awarded Nobel prize in physics
in 2010. This marvelous achievement was performed in an astonishingly simple way.3,4 They
separated graphite flakes from HOPG using a scotch tape, and put them onto the surface
of a SiO2 wafer. They carefully observed the wafer using an atomic force microscope, and
found a monolayer graphene among a variety of multilayer graphenes. That is, graphene can
be exfoliated from graphite. No one notices this simple fact before the pioneering work of
Novoselov and Geim. It is just equivalent to what happens when we draw with a pencil on
paper.

The discovery of monolayer graphene stimulated extensive studies on its unusual electronic
properties arising from the two-dimensional honeycomb structure of carbon atoms.5 A typical
example is the half-integer quantum Hall effect.3,6 Since the unit cell of the honeycomb lattice
contains two nonequivalent sites, A and B, forming A and B sublattices (see Fig. 1.1), an
effective mass equation for electrons in graphene becomes a 2 × 2 matrix form, which is
equivalent to the massless Dirac equation.5 Thus, electrons in graphene are called massless
Dirac fermions. The band structure of massless Dirac fermions has a unique character since
they have linear energy dispersion in the vicinity of two nonequivalent symmetry points,
called K+ and K− points, in the Brillouin zone, where the conduction and valence bands
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conically touch. This structure is called Dirac cone (see Fig. 1.1). We hereafter set the
electron energy at the band touching point as E = 0. Because the density of states vanishes
at E = 0, graphene is often called a zero-gap semiconductor although it is metallic even near
the band touching point.
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Figure 1.1: (a)The structure of graphene, where a rhombus indicates the unit cell containing
nonequivalent A and B sites. (b)The first Brillouin zone (left figure) and the band structure
(right figure) of graphene. K− and K+ indicate the symmetry points, at which the conduction
and valence bands conically touch.

The presence of edges gives an strong impact on Dirac fermions in graphene near the Fermi
energy. As stressed by Fujita and co-workers,7 the electronic states in graphene strongly
depends on its edge structure. Typical straight edges of graphene are classified into two
structures: one is zigzag edge and the other is armchair edge (see Fig. 1.2). Fujita and
co-workers analyzed electronic states in graphene with an infinitely long straight edge using
a nearest-neighbor tight-binding model, and showed that highly degenerate edge localized
states appear at E = 0 along a zigzag edge. These states at E = 0 result in a sharp zero-
energy peak structure in the local density of states near a straight zigzag edge. No such
localized states appear along an armchair edge. The presence of edge localized states along
a zigzag edge has been confirmed by scanning tunneling microscopy and scanning tunneling
spectroscopy observations.8,9

Edge localized states should affect various physical properties of a monolayer graphene
with zigzag edges owing to a sharp zero-energy peak structure. We naturally expect that
such an effect becomes notable with decreasing the system size. A prototypical system to
observe the effect of edge localized states is a ribbon shaped nano wire of graphene with
zigzag edges (see Fig. 1.3), which is referred to as a zigzag nanoribbon hereafter. It has been
demonstrated that the orbital diamagnetism in a zigzag nanoribbon shows an anomalous
behavior reflecting a zero-energy peak structure.10 Electron transport in a zigzag nanoribbon
also shows an anomalous behavior owing to the presence of edge localized states.11,12
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(a) (b)

Figure 1.2: Typical straight edges of graphene: (a) zigzag edge and (b) armchair edge.

Figure 1.3: Illustration of a zigzag nanoribbon.

1.2 Perfectly Conducting Channel

As is mentioned below, disordered zigzag nanoribbons accommodate a perfectly conducting
channel (PCC) reflecting the unique band structure with partially flat subbands related to
the edge localized states. This thesis focuses on a PCC in zigzag nanoribbons. The PCC
designates a conducting channel that perfectly transmits an electron from one end to the other
in spite of the presence of disorder, and crucially affects electron transport in the system. The
most well-known example is a one-dimensional (1D) chiral edge channel of two-dimensional
(2D) quantum Hall insulators.13 This 1D edge channel needs a strong magnetic field for its
stabilization. So far, PCCs have been shown to appear in various carbon nanostructures and
topological insulators under no external field.

Ando and co-workers14–18 showed that a PCC appears in disordered CNTs with a gapless
spectrum in the absence of intervalley scattering. The requirement of no intervalley scattering
is explained as follows. A CNT possesses two energy valleys in the reciprocal space, and the
effective Hamiltonian describing each valley is invariant under a time-reversal operation T
that satisfies T 2 = −1; the subsystems corresponding to each valley have the symplectic
symmetry. Furthermore, the number of conducting channels in each valley is always odd
regardless of the Fermi level. The existence of a PCC is guaranteed by the symplectic
symmetry combined with an odd number of conducting channels. If intervalley scattering
occurs and the two valleys are coupled as its consequence, these two conditions break down
and hence the PCC destabilized. In CNTs, an impurity potential with a range larger than
the lattice constant induces only very weak intervalley scattering since the two energy valleys
are well separated in the reciprocal space. Thus, we expect that the above two conditions are
approximately satisfied if a CNT contains only such long-range impurities (LRIs), leading to
the appearance of a PCC. Clearly, there is no PCC in the presence of short-range impurities
(SRIs). In actual situations, charged impurities are regarded as the LRI, while lattice defects

4



play the role of the SRI.
A 1D helical edge channel of 2D quantum spin-Hall insulators19–24 can be regarded as a

typical example of a PCC in topological insulators. Its protection mechanism against disorder
is essentially equivalent to that of a PCC in CNTs. However, as quantum spin-Hall insulators
typically possess only a single valley, the disturbance due to intervalley scattering is irrelevant
in this case. A similar PCC is stabilized in three-dimensional (3D) weak topological insulators
in various situations.25–29 In 3D strong topological insulators, a PCC can appear only when
a π magnetic flux penetrates the bulk of a sample without touching surface states.30–32

Wakabayashi and co-workers33–35 showed that disordered graphene nanoribbons with
zigzag edges accommodate a PCC, on which our interest is focused in this thesis. As in
the case of CNTs, zigzag nanoribbons possess two energy valleys in the reciprocal space. The
important feature of zigzag nanoribbons is that conducting channels are imbalanced between
the two propagating directions in each valley. That is, the number of conducting channels
going in one direction is one greater or smaller than that going in the other direction, regard-
less of the Fermi level. This directly results in the stabilization of a PCC36–38 if intervalley
scattering is ignorable. Thus, we expect the appearance of a PCC in zigzag nanoribbons
containing only LRIs. In contrast to the case of CNTs, the symmetry of the system plays
no role in this case. It has been shown that disordered graphene nanoribbons with armchair
edges also accommodate a similar PCC.39,40

If a PCC stably exists, the dimensionless conductance g of the system decreases to the
quantized value of g = 1 with increasing system length L. In CNTs and graphene nanorib-
bons, we expect the appearance of a PCC only when the disorder of the system is long-range,
as noted above. Indeed, if the spatial range of disorder is sufficiently large, the strength of
intervalley scattering becomes very weak. However, in actual situations, it is impossible to
completely suppress intervalley scattering. The effect of residual intervalley scattering grad-
ually manifests itself with increasing L and eventually destabilizes a PCC. In this case, the
behavior of g may not be distinguishable from that in an ordinary system with no PCC.

The effect of inelastic scattering may be another important obstacle for the observation
of a PCC. Inelastic scattering caused by electron–electron and/or electron–phonon interac-
tions affects low-energy electrons mainly through energy relaxation and dephasing. At low
temperatures, pure dephasing most significantly influences the transport properties. Indeed,
dephasing directly destabilizes a PCC in CNTs as well as topological insulators since it weak-
ens the underlying symplectic symmetry of the system, except for the case with only a single
channel, where it becomes a PCC and is relatively robust against dephasing.17,18 Contrast-
ingly, a PCC in zigzag nanoribbons relies on no symmetry of the system, so dephasing does
not necessarily disturb it. Previous studies41,42 based on the Boltzmann transport equation
indicate that a PCC remains even in the incoherent limit. However, it is not clear how the
behavior of a PCC changes with the reduction of phase coherence.

1.3 The Orgnization of This Thesis

The purpose of this thesis is to clarify how dephasing affects a PCC in zigzag nanoribbons.
In order to do this, we numerically calculate the average dimensionless conductance at zero
temperature taking the dephasing effect into account. We show that dephasing does not
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disturb a PCC in zigzag nanoribbons but rather relaxes its destabilization due to weak
intervalley scattering.43 This result should encourage experimental attempt to detect a PCC
in zigzag nanoribbons.44 The organization of the thesis is presented here.

In chapter 2, we present the tight-binding model for a zigzag nanoribbon. We assume
that every impurity potential distributed over the system is described by a Gaussian form of
spatial range d. This corresponds to an LRI (SRI) when d is larger (smaller) than the lattice
constant a. We present a formulation to compute the scattering matrix for this system.
Once the scattering matrix is given, the dimensionless conductance is determined by using
the Landauer formula. The model for describing the pure dephasing is also introduced. In
chapter 3, the numerical results of the average dimensionless conductance are presented for
the case with LRIs and that with SRIs. We observe that the destabilization of the PCC
can be relaxed by the dephasing in the former case. The numerical results are compared
with an analytical expression for the dimensionless conductance derived from the Boltzmann
transport equation.41 We see that the numerical result in the case with strong dephasing is
accurately fitted by the analytical result, implying that our model appropriately describes
the effect of dephasing. The last chapter is devoted to conclusion of this thesis.
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Chapter 2

Model and Formulation

2.1 Model for a Zigzag Nanoribbon

We consider a zigzag nanoribbon consisting of M zigzag lines placed along the x-axis (see
Fig. 2.1). Its band structure is shown in Fig. 2.2 in the case of M = 30. One can see that
in the left (right) valley, the number of right-going (left-going) channels is one greater than
that of left-going (right-going) channels regardless of the location of the Fermi level. This
indicates that a right-going PCC appears in the left valley while a left-going PCC appears
in the right valley.33 The details of the stabilization mechanism of a PCC is described in
Appendix A.

L

disordered region

......

Figure 2.1: Illustration of a zigzag nanoribbon. The gray area of length L represents the
disordered region with randomly distributed impurities. The left and right regions without
disorder are regarded as perfect leads.

We describe π electrons in zigzag nanoribbons by using the nearest-neighbor tight-binding
model

H = −t
∑

n.n.

|i〉〈j| +
∑

i

V (ri)|i〉〈i|, (2.1)

where t is the hopping integral between neighboring sites, |i〉 is the π orbital on site i, and
V (ri) is the impurity potential with ri being the position of site i. We randomly distribute
impurities in a region of length L (see Fig. 2.1). We assume that each site is occupied by an
impurity with probability P and the potential of each impurity is characterized by a Gaussian
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Figure 2.2: Band structure of a zigzag nanoribbon with M = 30. The inset represents the
magnification of subbands in the left valley.

form of spatial range d. Hence, V (ri) is represented as

V (ri) =
∑

j

u(rj)exp

(
− |ri − rj|2

d2

)
, (2.2)

where u(rj) is the strength of an impurity at site j. We assume that u(rj) is uniformly
distributed within |u| < umax/2. Note that the degree of disorder is determined by d, P , and
umax.

The electron transport property of a zigzag nanoribbon is determined by the scattering
matrix consisting of transmission matrices t and t′ and reflection matrices r and r′, where
t and r (t′ and r′) describe the scattering of an electron incoming from the left (right) as
shown in Fig. 2.3. Let Nc be the number of conducting channels for a given value of the
Fermi energy E. The dimensions of the transmission and reflection matrices are Nc × Nc.
In calculating the scattering matrix, we consider that the left and right of the disordered
region serve as perfect leads of semi-infinite length without disorder. The transmission and
reflection matrices can be obtained by using a recursive Green’s function method. In terms
of t at the Fermi level, the conductance of the system at zero temperature is given by the
Landauer formula,45

G =
e2

π!Tr(t†t). (2.3)

We mainly consider the dimensionless conductance defined by

g = Tr(t†t), (2.4)

instead of G. Since our attention is focused on the behavior of g at zero temperature, we
hereafter treat only the scattering matrix for an electron at the Fermi level.
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Figure 2.3: Schematic representation of the transmission and reflection matrices, where IL

(IR) denotes the amplitude of an electron incoming from the left (right) lead, and OL (OR)
denotes the amplitude of an electron outgoing to the left (right) lead.

2.2 Formulation to Compute the Scattering Matrix

In this section, we describe a formulation to compute t, t′, r, and r′ by using a recursive
Green’s function method.11,12

2.2.1 Derivation of basis functions

Let us consider a zigzag nanoribbon of width M. We take the unit cell of the zigzag nanoribbon
as shown in Fig. 2.4. Each unit cell has 2M sites. The jth unit cell contains two sites of each
zigzag line. We refer to a set of the left (right) sites as α (β) column. We define

Cα
j ≡





Cα
j,1

Cα
j,2

Cα
j,3
...

Cα
j,M




(2.5)

and

Cβ
j ≡





Cβ
j,1

Cβ
j,2

Cβ
j,3
...

Cβ
j,M




(2.6)

as the column vectors, where Cα
j,1, Cα

j,2, . . . and Cβ
j,1, Cβ

j,2, . . . are the amplitudes of a wave
function at the corresponding sites in the jth unit cell. These column vectors obey the
equations of motion:

(EI − Hα)Cα
j − VCβ

j−1 − VCβ
j = 0,

(EI − Hβ)Cβ
j − VCα

j − VCα
j+1 = 0,

(2.7)
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where Hα and Hβ respectively represent the Hamiltonians for the α and β columns, and
V represents the Hamiltonian of inter-column transfer between nearest neighbor α and β
columns. Eliminating the column vectors for β sites (i.e., Cβ

j and Cβ
j−1) from (2.7), we

obtain

Cα
j+1 + vCα

j + Cα
j−1 = 0, (2.8)

where

v ≡ {(2I − V−1(EI − Hβ)V−1(EI − Hα)}. (2.9)

Substituting Bloch’s theorem

Cα
j+1 = λCα

j (2.10)

to (2.8), we obtain

λCα
j + vCα

j + Cα
j−1 = 0. (2.11)

From (2.10) and (2.11), the following eigenvalue equation

λ

(
Cα

j

Cα
j−1

)
=

(
−v −I
I 0

) (
Cα

j

Cα
j−1

)
(2.12)

is derived. This equation has 2M eigenvalues and 2M eigenvectors, which can be classified
into M right-going solutions and M left-going solutions. They consist of traveling modes
and evanescent modes. We represent the eigenvalues and eigenvectors corresponding to the
right-going modes as λ1(+), . . . , λM(+) and u1(+), . . . , uM(+), and those corresponding to
the left-going modes as λ1(−), . . . , λM(−) and u1(−), . . . , uM(−). We then define M × M
matrices Λ(±) and U(±) as

Λ(±) ≡




λ1(±)

. . .
λM(±)



 (2.13)

and

U(±) ≡ (u1(±), . . . ,uM(±)). (2.14)

At j = 0, any right-going and left-going waves are expressed by a superposition of the
corresponding eigenmodes as

Cα
0 (±) = U(±)Cα(±), (2.15)

where Cα(±) is an appropriate vector consisting of expansion coefficients. At arbitrary j,
they are expressed as

Cα
j (±) = U(±)Λ(±)jCα(±)

= U(±)Λ(±)U(±)−1U(±)Λ(±)U(±)−1 · · ·Λ(±)Cα(±)

= (U(±)Λ(±)U(±)−1)j−j′U(±)Λ(±)j′Cα(±)

= F(±)j−j′Cα
j′(±), (2.16)

where

F(±) ≡ U(±)Λ(±)U(±)−1. (2.17)
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Figure 2.4: The illustration of a zigzag nanoribbon of width M. Rectangles with dashed line
indicate unit cells. Black and gray circles in the jth unit cell indicate sites belong to the α
and β columns, respectively.

2.2.2 Scattering problem

Let us consider the scattering problem in a disordered zigzag nanoribbon to obtain the
transmission and reflection matrices, from which we can determine the conductance of the
system. We assume that the scatterers are distributed over sites in unit cells of j = 1, 2, . . . ,
N− 1, N. The length L of the disordered region is simply given by L = Na with a being the
lattice constant. The 0th cell corresponds to the end of the left lead, and the N + 1th cell
corresponds to the end of the right lead. In the 0th unit cell, the column vectors satisfy

(EI − Hα)Cα
0 − VCβ

−1 − VCβ
0 = 0, (2.18)

(EI − Hβ)Cβ
−1 − VCα

−1 − VCα
0 = 0. (2.19)

Eliminating Cβ
−1, we obtain

[
EI −

{
Hα + V(EI − Hβ)−1V

}]
Cα

0 − VCβ
0 − V(EI − Hβ)−1VCα

−1 = 0. (2.20)

In terms of HL, UL, and VL defined by

HL ≡ Hα + V(EI − Hβ)−1V, (2.21)

UL ≡ V(EI − Hβ)−1V, (2.22)

VL ≡ V, (2.23)

we rewrite (2.20) as

[EI − HL]Cα
0 − VLC

β
0 − ULC

α
−1 = 0. (2.24)

The column vectors can be expressed by a superposition of right-going and left-going waves.
For example, the column vector at j = 0 is given by

Cα
0 = Cα

0 (+) + Cα
0 (−). (2.25)
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The column vector at j = −1 is also given by

Cα
−1 = Cα

−1(+) + Cα
−1(−)

= F(+)−1Cα
0 (+)F(−)−1Cα

0 (−)

= F(−)−1Cα
0 + {F(+)−1 − F(−)−1}Cα

0 (+), (2.26)

where (2.16) is used. Substituting (2.26) to (2.24), we obtain
[
EI − H̃L

]
Cα

0 − VLC
β
0 = UL(F(+)−1 − F(−)−1)Cα

0 (+), (2.27)

where

H̃L ≡ HL + ULF(−)−1. (2.28)

In the N + 1th unit cell, the column vectors satisfy the following equations:

(EI − Hα)Cα
N+1 − VCβ

N+1 − VCβ
N = 0, (2.29)

(EI − Hβ)Cβ
N+1 − VCα

N+2 − VCα
N+1 = 0. (2.30)

Eliminating Cβ
N+1 from (2.29) and (2.30), we obtain

[
EI −

{
Hα + V(EI − Hβ)−1V

}]
Cα

N+1 − VCβ
N − V(EI − Hβ)−1VCα

N+2 = 0. (2.31)

In terms of HR, VR, and UR defined by

HR ≡ Hα + V(EI − Hβ)−1V, (2.32)

VR ≡ V(EI − Hβ)−1V, (2.33)

UR ≡ V, (2.34)

we rewrite (2.31) as

[EI − HR]Cα
N+1 − URCβ

N − VRCα
N+2 = 0. (2.35)

In the N + 1th unit cell, only the right-going wave is present as

Cα
N+2 = F(+)Cα

N+1. (2.36)

Thus, we can modify (2.35) as
[
EI − H̃R

]
Cα

N+1 − URCβ
N = 0, (2.37)

where

H̃R ≡ HR + VRF(+). (2.38)

The above argument allows us to express the Schrödinger equation in the following form:

(EI − H̃)C = D, (2.39)
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where

C =





Cα
0

Cα
1

Cβ
1

Cα
2

Cβ
2
...

Cα
N

Cβ
N

Cα
N+1





, (2.40)

D =





V†
L(F(+)−1 − F(−)−1)Cα

0 (+)
...
...
0




, (2.41)

and

H̃ =





H̃L VL

V H̃1 V
V H̃2 V

. . . . . . . . .

V H̃N V
VR H̃L





. (2.42)

We define the Green’s function as

G ≡ (EI − H̃)−1. (2.43)

With (2.39), C is expressed as

C = (EI − H̃)−1D = GD. (2.44)

We immediately find

Cα
N+1(+) = 〈N + 1|G|0〉UL(F(+)−1 − F(−)−1)Cα

0 (+) (2.45)

and

Cα
0 (−) = [〈0|G|0〉UL(F(+)−1 − F(−)−1) − 1]Cα

0 (+). (2.46)

From these equations, the transmission and reflection coefficients for an electron incoming
from the left lead are expressed as

tµν =

√
vµ

vν
{U(+)−1〈N + 1|G|0〉UL(F(+)−1 − F(−)−1)U(+)}µν , (2.47)

rµν =

√
vµ

vν
{U(−)−1[〈0|G|0〉UL(F(+)−1 − F(−)−1) − 1]U(+)}µν , (2.48)
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where µ and ν respectively represent incoming and outgoing channels, and vµ is the velocity of
the µth channel. The details of the derivation of (2.47) and (2.48) is described in Appendix B.
An expression of vµ is given in Appendix C. In a manner similar to this, the transmission
and reflection coefficients for an electron incoming from the right lead are expressed as

t′µν =

√
vµ

vν
{U(−)−1〈0|G|N + 1〉VR(F(−) − F(+))U(−)}µν , (2.49)

r′µν =

√
vµ

vν
{U(+)−1[〈N + 1|G|N + 1〉VL(F(−) − F(+)) − 1]U(−)}µν . (2.50)

2.2.3 Recursive Green’s function method

We use a recursive Green’s function method to calculate the Green’s functions in (2.47),
(2.48), (2.49), and (2.50).46 Let us define the following functions,

〈j|G|j〉 = 〈j|(EI − H(j))−1|j〉, (2.51)

〈j|G|0〉 = 〈j|(EI − H(j))−1|0〉, (2.52)

〈0|G|j〉 = 〈0|(EI − H(j))−1|j〉, (2.53)

〈0|G|0〉 = 〈0|(EI − H(j))−1|0〉. (2.54)

Here, H(j) is the total Hamiltonian for the strip comprising the 0th to jth cells excluding
the inter-cell Hamiltonians H̃j,j+1 and H̃j+1,j. Accordingly, the matrix form of H(j+1) is
represented as

H(j+1) =





0
...

H(j) ...
0

H̃j,j+1

0 · · · · · · 0 H̃j+1,j H̃j+1





. (2.55)

Then, the Green’s function for a strip of any length can be obtained by using a set of recursive
formulas,

〈j + 1|G(j+1)|j + 1〉−1 =EI − H̃j+1 − H̃j+1,j〈j|G(j)|j〉H̃j,j+1, (2.56)

〈j + 1|G(j+1)|0〉 =〈j + 1|G(j+1)|j + 1〉H̃j+1,j〈j|G(j)|0〉, (2.57)

〈0|G(j+1)|j + 1〉 =〈0|G(j)|j〉H̃j,j+1〈j + 1|G(j+1)|j + 1〉, (2.58)

〈0|G(j+1)|0〉 =〈0|G(j)|0〉 + 〈0|G(j)|j〉H̃j,j+1〈j + 1|G(j+1)|0〉. (2.59)

In our case, these formulas are rewritten as

〈j + 1|G(j+1)|j + 1〉−1 =EI − H̃j+1 − V〈j|G(j)|j〉V, (2.60)

〈j + 1|G(j+1)|0〉 =〈j + 1|G(j+1)|j + 1〉V〈j|G(j)|0〉, (2.61)

〈0|G(j+1)|j + 1〉 =〈0|G(j)|j〉V〈j + 1|G(j+1)|j + 1〉, (2.62)

〈0|G(j+1)|0〉 =〈0|G(j)|0〉 + 〈0|G(j)|j〉V〈j + 1|G(j+1)|0〉. (2.63)
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In actual application of this recursive method, we use the Green’s function defined by

〈0|G(0)|0〉 = (EI − H̃L)−1 (2.64)

as an initial condition.

2.3 Model of Dephasing

Generally speaking, dephasing suppresses quantum effects, particularly quantum interference
effects, and tends to reveal classical behaviors of electrons in some cases. In order to incor-
porate this effect into our model, we hypothetically decompose the disordered region into
Ns segments of equal length Lφ, as shown in Fig. 2.5, and assume that the phase coherence
of electrons is lost across adjacent segments while in each segment the phase coherence is
completely preserved.17 Hence, Lφ can be regarded as the phase coherence length. We re-
quire the continuity of charge current, instead of the continuity of a wave function, in each
channel between adjacent segments. With this procedure, the phase coherence of electrons
completely breaks across adjacent segments.

Let us express the transmission and reflection matrices for the nth segment as tn, rn, t′n,
and r′

n. In terms of them, the transmission probability matrix Tn (Tn) and the reflection
probability matrix Rn (Rn) for an electron incoming from the left (right) are defined as

[Tn]αβ = |[tn]αβ|2,
[Rn]αβ = |[rn]αβ|2,
[Tn]αβ = |[t′n]αβ|2,
[Rn]αβ = |[r′

n]αβ|2.

(2.65)

Let in be the right-going current from the nth segment to the n+1th segment and in be the
left-going current from the n + 1th segment to the nth segment. They satisfy

in = Tnin−1 + Rnin, (2.66)

in = Tn+1in+1 + Rn+1in. (2.67)

At the left end, we have

i0 = iext, (2.68)

i0 = R1i0 + T1i1, (2.69)

where iext denotes the current supplied from the left lead. At the right end, the current
between the Nsth segment and the right lead can be represented as

iNs = TNsiNs−1, (2.70)

iNs
= 0. (2.71)

For the system constituted by combining the first, second, . . . , nth segments in series,
we define T̃n (T̃n) and R̃n (R̃n) as the transmission and reflection probability matrices for
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an electron incoming from the left (right), respectively. Adding the n + 1th segment to
the system consisting of n segments, we consider the combined system to derive a relation
between the probability matrices for the system with n segments and those for the system
with n + 1th segments. For the combined system with n + 1 segments, we have

in = T̃ni0 + R̃nin, (2.72)

in = Tn+1in+1 + Rn+1in, (2.73)

and

i0 = R̃ni0 + T̃nin, (2.74)

in+1 = Tn+1in + Rn+1in+1, (2.75)

which are respectively rewritten in a matrix form as

(
in

in

)
=

(
1 −R̃n

−Rn+1 1

)−1 (
T̃n 0
0 Tn+1

)(
i0

in+1

)
, (2.76)

and
(

i0

in+1

)
=

(
R̃n 0
0 Rn+1

)(
i0

in+1

)
+

(
0 T̃n

Tn+1 0

)(
in

in

)
. (2.77)

Eliminating in and in in (2.77) by using (2.76), we obtain

(
i0

in+1

)
=

[(
R̃n 0
0 Rn+1

)
+

(
0 T̃n

Tn+1 0

)(
1 −R̃n

−Rn+1 1

)−1 (
T̃n 0
0 Tn+1

)](
i0

in+1

)
. (2.78)

Comparing this with the equation that defines T̃n+1, T̃n+1, R̃n+1, and R̃n+1, i.e.,

(
i0

in+1

)
=

(
R̃n+1 T̃n+1

T̃n+1 R̃n+1

)(
i0

in+1

)
, (2.79)

we obtain the following recurrence relation:17

(
R̃n+1 T̃n+1

T̃n+1 R̃n+1

)
=

(
R̃n 0
0 Rn+1

)
+

(
0 T̃n

Tn+1 0

)(
1 −R̃n

−Rn+1 1

)−1 (
T̃n 0
0 Tn+1

)
(2.80)

with T̃1 = T1, R̃1 = R1, T̃1 = T1, and R̃1 = R1. By using this relation recursively, we can
calculate T̃Ns once the transmission and reflection probability matrices for all segments are
given. The dimensionless conductance is expressed as

g =
Nc∑

α,β=1

[
T̃Ns

]

βα
(2.81)

in the presence of dephasing.
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Figure 2.5: Hypothetical decomposition of the disordered region of length L into Ns segments
of equal length Lφ. We assume that the phase coherence of electrons is lost across adjacent
segments.
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Chapter 3

Results and Discussion

3.1 Numerical Results

We present the results of numerical calculations of the dimensionless conductance g. We
separately consider the case with LRIs and that with SRIs. In the former case, we expect that
a PCC appears as intervalley scattering is sufficiently weak, while strong intervalley scattering
forbids its appearance in the latter case. These two cases are realized by appropriately
choosing d. With P = 0.1, we set d/a = 1.5 and umax/t = 0.1 in the LRI case, and
d/a = 0.05 and umax/t = 1.0 in the SRI case. We fix M = 30 and E/t = 0.36 in the following
calculations. The number of conducting channels is equal to Nc = 7 in both the cases.

Let us consider the LRI case. We use 2000 samples with different impurity configurations
to calculate the average dimensionless conductance 〈g〉. Fig. 3.1 shows 〈g〉 as a function of
L/a. We observe that 〈g〉 rapidly decreases to 1 with increasing L/a and then the decrease
becomes very slow once it decays below 1, indicating the presence of a PCC. In the regime
of 〈g〉 ! 1, the decay of 〈g〉 becomes slower as Lφ becomes smaller. This can be explained
by considering that the decay of 〈g〉 below 1 is accelerated by Anderson localization. The
effect of Anderson localization is suppressed by dephasing and hence the decay of 〈g〉 is
also suppressed with decreasing Lφ. This indicates that dephasing indirectly stabilizes a
PCC, although dephasing itself does not weaken intervalley scattering. We observe the
quasi-quantization of 〈g〉 (i.e., 〈g〉 ∼ 1) in a wide region of L/a when Lφ is sufficiently
small. Fig. 3.2 shows a semilog plot of 〈g〉 − 1. Error bars at each data point represent
(var{g}/Nsam)1/2, where var{g} = 〈g2〉 − 〈g〉2 and Nsam is the number of samples used to
calculate the average. We find that 〈g〉 decreases exponentially toward 1 in a certain region
of L/a in all cases. In the case without dephasing, this is in accordance with existing random
matrix theory.47 Fig. 3.3 shows a semilog plot of 〈g〉 in the regime of 〈g〉 < 1. We find that
〈g〉 decays exponentially regardless of Lφ. In the absence of dephasing, it is natural that 〈g〉
decays exponentially, reflecting the onset of Anderson localization. The exponential decay of
〈g〉 even in the presence of dephasing should be regarded as a characteristic feature of the
system in which conducting channels are imbalanced between two propagating directions.41

We turn to the SRI case. We use 10000 samples with different impurity configurations
to calculate the average dimensionless conductance 〈g〉. Fig. 3.4 shows 〈g〉 as a function
of L/a. We observe that 〈g〉 decays to zero with increasing L/a, indicating the absence
of a PCC. Fig. 3.5 shows a log-log plot of 〈g〉 in the presence of dephasing. We find that
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〈g〉 asymptotically becomes inversely proportional to L/a, manifesting that Ohm’s law is
satisfied upon the suppression of Anderson localization due to dephasing. This implies that
the conducting channels are balanced as a consequence of the mixing of two valleys caused
by strong intervalley scattering, in contrast to the LRI case. In the absence of dephasing,
〈g〉 decays exponentially with increasing L/a as shown in Fig. 3.6. We show error bars only
in Fig. 3.6 as they are very small in the case with dephasing.
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Figure 3.1: Average dimensionless conductance 〈g〉 in the LRI case for several values of Lφ/a.

3.2 Comparison with the Boltzmann Transport Theory

In this section, we introduce an analytical expression for the dimensionless conductance
derived from the Boltzmann transport equation41 and compare it with the numerical results
given in the previous section.

The analytical expression of Ref. 41 is derived by applying the Boltzmann transport equa-
tion to a simple model for zigzag nanoribbons and hence is justified in the incoherent limit
where the phase coherence of electrons is completely lost. The model possesses two energy
valleys, and the number of conducting channels for right-going (left-going) electrons is nc +1
(nc) in one valley, while in the other valley, that for right-going (left-going) electrons is nc

(nc +1). The total number of conducting channels is given by Nc = 2nc +1 including contri-
butions from the two valleys. Disorder induces intravalley scattering between two channels
in the same valley and intervalley scattering between two channels belonging to different
valleys. The strength of intravalley scattering is characterized by a single parameter κ as its
detailed dependence on initial and final states is ignored. In the same manner, the strength
of intervalley scattering is characterized by a parameter κ′. Applying a constant electric field
only in the region of length L, the Boltzmann equation is solved under the condition that
incident electrons from the left and right are described by equilibrium distributions. The
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Figure 3.2: Semilog plot of 〈g〉−1 in the case of LRI. In a certain region of L/a, 〈g〉 decreases
exponentially toward 1 as a function of L/a.
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Figure 3.3: Semilog plot of 〈g〉 in the LRI case in the regime of 〈g〉 < 1. 〈g〉 decays exponen-
tially as a function of L/a even in the presence of dephasing.
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Figure 3.4: Average dimensionless conductance 〈g〉 in the SRI case.
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Figure 3.5: Log-log plot of 〈g〉 in the SRI case with dephasing. 〈g〉 asymptotically becomes
inversely proportional to L/a.
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Figure 3.6: Semilog plot of 〈g〉 in the SRI case with no dephasing. 〈g〉 decays exponentially
as a function of L/a.

resulting dimensionless conductance gB is expressed as41

gB =
[κ + (8n2

c + 8nc + 1)κ′] cL

(2nc + 1)κ′ [2 + (2nc + 1)(κ + κ′)L] cL + κ2−κ′2√
α dL

, (3.1)

where α = (κ + κ′)[κ + (8n2
c + 8nc + 1)κ′] and

cL =
(2nc + 1)(κ + κ′)√

α
cosh(

√
αL/2) + sinh(

√
αL/2), (3.2)

dL =
(2nc + 1)(κ + κ′)√

α
sinh(

√
αL/2) + cosh(

√
αL/2). (3.3)

The details of the derivation of (3.1) is described in Appendix D.
We examine whether this expression can fit our numerical results. Equation (3.1) is

justified in the incoherent limit, so we focus on the numerical results in the smallest-Lφ case
with Lφ/a = 100. As Nc = 7 in our setting, nc is fixed at nc = 3. Only κ and κ′ play the role
of fitting parameters. The result of fitting is shown in Fig. 3.7 in the LRI case and Fig. 3.8 in
the SRI case. We observe that the analytical expression accurately reproduces the numerical
results. The best fitting is achieved for κa = 0.00031 and κ′a = 0.00000003 in the former
case, yielding κ′/κ = 0.0000096, and for κa = 0.00094 and κ′a = 0.00021 in the latter case,
yielding κ′/κ = 0.223. This result clearly indicates that intervalley scattering is significantly
weaker than intravalley scattering in the LRI case while their strengths are on the same order
of magnitude in the SRI case.

One may think that the effect of dephasing is oversimplified in the model used in our nu-
merical calculations. However, the above result implies that our model captures the essential
features of dephasing in spite of its simplicity.
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Figure 3.7: Fitting of 〈g〉 at Lφ/a = 100 in the LRI case with the analytical expression gB.
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Figure 3.8: Fitting of 〈g〉 at Lφ/a = 100 in the SRI case with the analytical expression gB.
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Chapter 4

Conclusion

We have studied the effect of dephasing on a perfectly conducting channel (PCC) in disordered
graphene nanoribbons with zigzag edges by numerically calculating the average dimensionless
conductance 〈g〉 as a function of system length L. We separately consider the case with long-
range impurities (LRIs) and that with short-range impurities (SRIs). In the former case,
intervalley scattering is very weak and the appearance of a PCC is expected. Contrastingly,
a PCC cannot appear owing to strong intervalley scattering in the latter case. The result
of the LRI case indicates that 〈g〉 as a function of L shows two-stage behavior; 〈g〉 rapidly
decreases to 1 with increasing L in the first stage and then tends to decay below 1 in the
second stage. The behavior in the first stage implies the presence of a PCC, and the behavior
in the second stage indicates that the PCC is destabilized by weak intervalley scattering. We
have clearly observed that dephasing significantly relaxes the second-stage behavior and hence
effectively stabilizes the PCC. This stabilization should be attributed to the suppression of
Anderson localization due to dephasing. In the SRI case, 〈g〉 decays toward zero, reflecting
the absence of a PCC. We have shown that dephasing suppresses the effect of Anderson
localization, revealing the behavior of 〈g〉 ∝ L−1 in accordance with the ordinary Ohm’s law.

One may think that the experimental detection of a PCC in realistic systems is not easy as
various inelastic processes obstruct it. Among them, dephasing is known as the most notable
factor that suppresses quantum behaviors of electrons at low temperatures. Indeed, it has
been pointed out that a PCC in CNTs, as well as in topological insulators, is fragile against
dephasing.17 Contrastingly, in graphene nanoribbons, dephasing does not negatively influence
a PCC but rather encourages its appearance. We conclude that graphene nanoribbons with
zigzag edges are a promising platform for the experimental detection of a PCC.
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Appendix A

Stabilization Mechanism of a PCC

We explain the stabilization mechanism of a PCC in zigzag nanoribbons. We start our
argument by considering the scattering problem in an arbitrary disordered quantum wire
with left and right leads (see Fig. A.1). Generally speaking, the scattering problem is fully
described by the scattering matrix S consisting of reflection and transmission matrices. In
terms of S, the amplitude O of an electron outgoing from the system is related to the
amplitude I of an electron incoming into the system as

O = SI. (A.1)

Here, O and I consist of the left-going and right-going components as

O =

(
OL

OR

)
, (A.2)

I =

(
IL

IR

)
, (A.3)

and S is expressed as

S =

(
r t′

t r′

)
, (A.4)

where r (r′) and t (t′) are the reflection and transmission matrices for an electron incoming
from the left (right) lead. The inner product of (A.1) with its hermitian conjugate O† = I†S†

is given by

O†O = I†S†SI. (A.5)

The flux conservation relation of

O†O = I†I (A.6)

requires S†S = SS† = 1. This yields

S†S =

(
r† t†

t′† r′†

)(
r t′

t r′

)
=

(
r†r + t†t r†t′ + t†r′

t′†r + r′†t t′†t′ + r′†r′

)
=

(
1 0
0 1

)
, (A.7)
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Figure A.1: Schematic figure of the scattering in a quantum wire. IL (IR) denotes the
amplitude of an electron incoming from the left (right) lead, and OL (OR) denotes the
amplitude of an electron outgoing to the left (right) lead. r (r′) and t (t′) are the reflection
and transmission matrices for an electron incoming from the left (right) lead.

SS† =

(
r t′

t r′

)(
r† t†

t′† r′†

)
=

(
rr† + t′t′† rt† + t′r′†

tr† + r′t′† tt† + r′r′†

)
=

(
1 0
0 1

)
, (A.8)

which result in

r†r + t†t = 1, (A.9)

t′†t′ + r′†r′ = 1, (A.10)

rr† + t′t′† = 1, (A.11)

tt† + r′r′† = 1. (A.12)

Now, using the general scattering argument given above, we show why a PCC is stabilized
in zigzag nanoribbons in the absence of intervalley scattering. As shown in Fig. A.2, the band
structure of a zigzag nanoribbon has two valleys, K− and K+, and one excess right-going
(left-going) channel always exists in the K− (K+) valley. That is, although the numbers of
right-going and left-going channels are balanced as a whole system, there is always one excess
channel in one direction if we focus on one of the two valleys. In the absence of intervalley
scattering, each valley independently contributes electron transport, so we can separately
consider the two valleys in considering a PCC. Let us focus on the K− valley, in which an
excess right-going channel is present. In this case, the numbers of right-going and left-going
channels are respectively denoted as nc + 1 and nc. Hence, the dimensions of IL and OR are
nc+1, and those of IR and OL are nc. Therefore, the dimensions of r are nc×(nc+1) and those
of r′ are (nc+1)×nc. Thus, we find that r†r and r′r′† with dimensions (nc+1)×(nc+1) have
a single zero eigenvalue since rank(r) = rank(r′) = nc. Let us express the sets of eigenvalues
of r†r and r′r′† as {R1, R2, . . . , Rnc , Rnc+1} and {R′

1, R
′
2, . . . , R

′
nc

, R′
nc+1}, respectively, and

identify the nc + 1th eigenvalues with zero (i.e., Rnc+1 = R′
nc+1 = 0). The set of eigenvalues

of tt† is also expressed as {T1, T2, . . . , Tnc , Tnc+1}. From (A.9) and (A.12), we obtain the
following relations:

Ra + Ta = 1, (A.13)

R′
a + Ta = 1, (A.14)
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where a = 1, . . . , nc + 1. As Rnc+1 = R′
nc+1 = 0, we conclude that the nc + 1th transmission

eigenvalue is equal to unity:

Tnc+1 = 1. (A.15)

This indicates the presence of a right-going PCC that perfectly transmits an electron from
the left lead to the right lead without backscattering even in the presence of disorder. In a
manner similar to this, we can also show the presence of a left-going PCC in the K+ valley
in the absence of intervalleey scattering.

Since the numbers of right-going and left-going channels are imbalanced, the contribution
to the dimensionless conductance g from the K± valley is anisotropic with respect to the
transport direction. Let g±

R (g±
L ) be the contribution to g for the right-going (left-going)

direction arising from the K± valley. Using the Landauer formula, g−
R and g−

L are expressed
as

g−
R = Tr(tt†), (A.16)

g−
L = Tr(t′t′†). (A.17)

They can be rewritten as the summation over transmission eigenvalues as

g−
R =

nc+1∑

i=1

Ti = 1 +
nc∑

i=1

Ti, (A.18)

g−
L =

nc∑

i=1

Ti. (A.19)

Due to the presence of the time-reversal symmetry, which relates the K− and K+ valleys, we
can also show

g+
R =

nc∑

i=1

Ti, (A.20)

g+
L =

nc+1∑

i=1

Ti = 1 +
nc∑

i=1

Ti. (A.21)

Combining the contributions from the two valleys, we find that the dimensionless conductance
defined by g ≡ g+

R + g−
R = g+

L + g−
L is expressed as

g = 1 + 2
nc∑

i=1

Ti. (A.22)

This clearly indicates that g is always greater than 1.
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Figure A.2: The band structure of zigzag nanoribbon with M=10. There are two energy
valleys at ka = ±2π/3. We refer to the valley at ka = ±2π/3 as K± valley. One excess
right-going (left-going) channel exists in the K− (K+) valley.
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Appendix B

Derivation of (2.47) and (2.48)

In this Appendix, we explain the derivation of (2.47),

tµν =

√
vµ

vν
{U(+)−1〈N + 1|G|0〉UL(F(+)−1 − F(−)−1)U(+)}µν , (B.1)

and that of (2.48),

rµν =

√
vµ

vν
{U(−)−1[〈0|G|0〉UL(F(+)−1 − F(−)−1) − 1]U(+)}µν . (B.2)

First, we derive the transmission coefficient tµν from (2.45),

Cα
N+1(+) = 〈N + 1|G|0〉UL(F(+)−1 − F(−)−1)Cα

0 (+). (B.3)

We expand Cα
N+1(+) and Cα

0 (+) as

Cα
N+1(+) = U(+)C′

α(+), (B.4)

Cα
0 (+) = U(+)Cα(+), (B.5)

where Cα(+) and C′
α(+) are arbitrary coefficients vectors, and substitute them to (B.3).

Multiplying U(+)−1 from the left, we obtain

C′
α(+) = U(+)−1〈N + 1|G|0〉UL(F(+)−1 − F(−)−1)U(+)Cα(+). (B.6)

The µth component of C′
α(+) is written as

[C′
α(+)]µ =

∑

ν

[U(+)−1〈N + 1|G|0〉UL(F(+)−1 − F(−)−1)U(+)]µν · [Cα(+)]ν . (B.7)

Noting that the current carried by [C′
α(+)]µ is proportional to vµ and that by [Cα(+)]ν is

proportional to vν , we can express the transmission coefficient from the incoming channel ν
to the outgoing channel µ as

tµν =

√
vµ

vν
{U(+)−1〈N + 1|G|0〉UL(F(+)−1 − F(−)−1)U(+)}µν . (B.8)

29



Similarly, we derive the reflection coefficient rµν from (2.46),

Cα
0 (−) = [〈0|G|0〉UL(F(+)−1 − F(−)−1) − 1]Cα

0 (+). (B.9)

We expand Cα
0 (−) and Cα

0 (+) as

Cα
0 (−) = U(−)Cα(−), (B.10)

Cα
0 (+) = U(+)Cα(+), (B.11)

where Cα(+) and Cα(−) are arbitrary coefficients vectors, and substitute them to (B.9).
Multiplying U(−)−1 from the left, we obtain

Cα(−) = U(−)−1[〈0|G|0〉UL(F(+)−1 − F(−)−1) − 1]U(+)Cα(+). (B.12)

The µth component of Cα(−) is written as

[Cα(−)]µ =
∑

ν

[U(−)−1{〈0|G|0〉UL(F(+)−1 − F(−)−1) − 1}U(+)]µν · [Cα(+)]ν . (B.13)

The reflection coefficient from the incoming channel ν to the outgoing channel µ can be
expressed as

rµν =

√
vµ

vν
{U(−)−1[〈0|G|0〉UL(F(+)−1 − F(−)−1) − 1]U(+)}µν . (B.14)
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Appendix C

Expression of vµ

We derive an expression of the velocity vµ needed to obtain the scattering matrices (2.47) and
(2.48). We assume that the velocity is proportional to the expectation value of probability
current in the y direction. The current operator for the jth unit cell is

ĵy = it
M∑

l=1

{|j, l; β〉〈j, l; α|−| j, l; α〉〈j, l; β|}. (C.1)

The eigenfuncion of µth channel is represented as

|Ψµ〉 =
∑

j

∑

l

[
λµ(±)jCα

µ,l(±)|j, l; α〉 + λµ(±)jCβ
µ,l(±)|j, l; β〉

]
. (C.2)

The corresponding expectation value of current is

〈Ψµ|ĵy|Ψµ〉 = it
M∑

l=1

[
λ∗

µ(±)jCβ∗
µ,lλµ(±)jCα

µ,l − λ∗
µ(±)jCα∗

µ,lλµ(±)jCβ
µ,l

]
(C.3)

= it|λµ(±)|2j
M∑

l=1

[
Cβ∗

µ,lC
α
µ,l − Cα∗

µ,lC
β
µ,l

]
(C.4)

= 2t|λµ(±)|2j
M∑

l=1

Im
{

Cα∗
µ,lC

β
µ,l

}
. (C.5)

Consequently, the velocity for the µth channel is given by

vµ(±) ∝
M∑

l=1

Im
{

Cα∗
µ,lC

β
µ,l

}
. (C.6)

where

Cβ
µ(±) = (λµ(±) + 1)(EI − Hβ)−1VCα

µ(±). (C.7)
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Appendix D

Boltzmann Transport Theory

In this Appendix, we explain the derivation of (3.1). The analytical expression (3.1) is derived
by applying the Boltzmann transport equation to a simple model for zigzag nanoribbons. We
consider the case where the K− (K+) valley has nc+1 right-going (left-going) channels and nc

left-going (right-going) channels. We symbolically represents the right-going and left-going
channels as R and L, and the K− and K+ valleys as − and +, respectively. Let ε±Rnk (ε±Lnk)
be the energy of an electron state with wave number k in the nth right-going (left-going)
channel. We introduce the distribution function gz

Xnk for electrons, where z = +,−, and
X = R, L. The group velocity vz

Xnk is given by vz
Xnk = ∂εz

Xnk/∂k. For simplicity, we set
vz

Rnk ≡ vR and vz
Lnk ≡ vL with v = vR = −vL. Let us consider a zigzag nanoribbon placed

along x direction in the presence of an electric field E(x) in the negative x direction. The
distribution function obeys the Boltzmann equation for steady states:

vX
∂gz

Xnk

∂x
+ eE(x)

∂gz
Xnk

∂k
=

∑

z′,X′,n′,k′

W z,z′

Xnk,X′n′k′(gz′

X′n′k′ − gz
Xnk), (D.1)

where W z,z′

Xnk,X′n′k′ represents the scattering probability between the state with {X ′n′k′z′}
and that with {Xnkz}. This is expressed as

W z,z′

Xnk,X′n′k′ = 2πM z,z′

Xnk,X′n′k′δ(εz′

X′n′k′ − εz
Xnk) (D.2)

with

M z,z′

Xnk,X′n′k′ = 〈|U z,z′

Xnk,X′n′k′ |2〉, (D.3)

where U z,z′

Xnk,X′n′k′ is the matrix element of impurity potential, and 〈· · · 〉 represents the ensem-
ble average over impurity configurations. We assume that the scattering probability depends
on only the valley indices z and z′, and does not depend on details of initial and final states.
Hence, M±,±

Xnk,X′n′k′ = M and M±,∓
Xnk,X′n′k′ = M ′, where M and M ′ respectively denote the

strength of intravalley scattering and intervalley scattering.
Suppose that electrons are accelerated by an electric field only in the finite region of

L/2 > x > −L/2. Accordingly, we assume that E(x) = E for L/2 > x > −L/2 and
E(x) = 0 otherwise. We express the distribution function as

gz
Xnk = f(εz

Xnk) − sign(vX)eE(x)lzXnk(x)
∂f

∂ε
(εz

Xnk), (D.4)
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where f(ε) is the Fermi–Dirac function and lzXnk(x) is the mean free path. The Boltzmann
conductivity σ is obtained as

σ(x) =
e2

L

∑

zXnk

|vX |lzXnk(x)

[
−∂f

∂ε
(εz

Xnk)

]

=
e2

2π

(
nc+1∑

n=1

l−Rn(x) +
nc∑

n=1

l−Ln(x) +
nc∑

n=1

l+Rn(x) +
nc+1∑

n=1

l+Ln(x)

)
, (D.5)

where k is dropped in lzXnk(x) since we are interested in electron states near the Fermi level.
According to the assumption stated above, lzXn(x) is also independent of n. Thus, (D.5) is
reduced to

σ(x) =
e2

2π

{
(nc + 1)l−R(x) + ncl

−
L (x) + ncl

+
R(x) + (nc + 1)l+L (x)

}
. (D.6)

We assume that electrons incoming from the left (right) lead are described by the equilibrium
distribution. Consequently, the mean free path lzX(x) satisfies the boundary condition of

l−R(−L/2) = l+R(−L/2) = 0, (D.7)

l−L (L/2) = l+L (L/2) = 0. (D.8)

From the symmetry of the band structure, we can safely assume

l(x) ≡ l−R(x) = l+L (−x), (D.9)

l′(x) ≡ l+R(x) = l−L (−x). (D.10)

Substituting (D.4) to (D.1), we obtain a pair of equations for l(x) and l′(x) as

−∂l(x)

∂x
+ 1 =[ncκ + (2nc + 1)κ′]l(x) + ncκl′(−x)

+ (nc + 1)κ′l(−x) − ncκ
′l′(x), (D.11)

−∂l′(x)

∂x
+ 1 =[(nc + 1)κ + (2nc + 1)κ′]l′(x) + (nc + 1)κl(−x)

+ ncκ
′l′(−x) − (nc + 1)κ′l(x), (D.12)

where

κ =
LM

v2
, (D.13)

κ′ =
LM ′

v2
. (D.14)

Solving these equations under the boundary condition of (D.7) and (D.8), we obtain

l(x) =x +
L

2
+

L

Σ

{
−(κ − κ′)[c(x) − cL] +

(κ2 − κ′2)√
α

[d(x) − dL]

−2(2nc + 1)2(κ + κ′)κ′cL

(
x +

L

2

)}
, (D.15)
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and

l′(x) =x +
L

2
+

L

Σ

{
(κ − κ′)[c(x) − cL] +

(κ2 − κ′2)√
α

[d(x) − dL]

−2(2nc + 1)2(κ + κ′)κ′cL

(
x +

L

2

)}
, (D.16)

where α = (κ + κ′)[κ + (8N2 + 8N + 1)κ′] and

c(x) =
(2nc + 1)(κ + κ′)√

α
cosh(

√
αx) − sinh(

√
αx), (D.17)

d(x) = −(2nc + 1)(κ + κ′)√
α

sinh(
√

αx) + cosh(
√

αx). (D.18)

The constants are defined as cL = c(−L/2), dL = d(L/2), and

Σ =4(2nc + 1)κ′
[
1 +

1

2
(2nc + 1)(κ + κ′)L

]
cL + 2

κ2 − κ′2
√

α
dL. (D.19)

In terms of l(x) and l′(x), the Boltzmann conductivity is expressed as

σ(x) =
e2

2π
{(nc + 1)[l(x) + l(−x)] + nc[l

′(x) + l′(−x)]}. (D.20)

Substituting (D.15) and (D.16) to (D.20), we find that σ(x) is independent of x and is given
by

σ =
e2L

2π

2αcL

(κ + κ′)Σ
. (D.21)

We finally obtain the dimensionless conductance as

gB =
2π

e2

σ

L
=

[κ + (8n2
c + 8nc + 1)κ′] cL

(2nc + 1)κ′ [2 + (2nc + 1)(κ + κ′)L] cL + κ2−κ′2√
α dL

. (D.22)
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Electron transport in a disordered graphene nanoribbon with zigzag edges is crucially affected by a perfectly
conducting channel (PCC), which is stabilized if intervalley scattering is ignorable. In the presence of such a PCC, the
dimensionless conductance g of the system decreases to the quantized value of g = 1 with increasing system length L. In
the realistic case where intervalley scattering is weak but not ignorable, the PCC is gradually destabilized with increasing
L, and g eventually decays to zero owing to the onset of Anderson localization. Here, we show that such destabilization
of the PCC can be relaxed by pure dephasing. We numerically calculate g in the presence of long-range impurities,
which induce weak intervalley scattering, taking the dephasing effect into account. It is demonstrated that, under
sufficient dephasing, the decay of g in the regime of g ≲ 1 is strongly suppressed and the quasi-quantization of g (i.e.,
g ∼ 1) can be observed in a wide region of L.

1. Introduction

A perfectly conducting channel (PCC) designates a
conducting channel that perfectly transmits an electron from
one end to the other in spite of the presence of disorder.
The most well-known example is a one-dimensional (1D)
chiral edge channel of two-dimensional (2D) quantum Hall
insulators.1) This 1D edge channel needs a strong magnetic
field for its stabilization. So far, PCCs have been shown to
appear in various carbon nanostructures and topological
insulators under no external field.

Ando and co-workers2–6) showed that a PCC appears in
disordered carbon nanotubes (CNTs) with a gapless spectrum
in the absence of intervalley scattering. The requirement of
no intervalley scattering is explained as follows. A CNT
possesses two energy valleys in the reciprocal space, and
the effective Hamiltonian describing each valley is invariant
under a time-reversal operation T that satisfies T 2 ¼ "1; the
subsystems corresponding to each valley have the symplectic
symmetry. Furthermore, the number of conducting channels
in each valley is always odd regardless of the Fermi level.
The existence of a PCC is guaranteed by the symplectic
symmetry combined with an odd number of conducting
channels. If intervalley scattering occurs and the two valleys
are coupled as its consequence, these two conditions break
down and hence the PCC disappears. In CNTs, an impurity
potential with a range larger than the lattice constant induces
only very weak intervalley scattering since the two energy
valleys are well separated in the reciprocal space. Thus, we
expect that the above two conditions are approximately
satisfied if a CNT contains only such long-range impurities
(LRIs), leading to the appearance of a PCC. Clearly, there is
no PCC in the presence of short-range impurities (SRIs).

A 1D helical edge channel of 2D quantum spin-Hall
insulators7–12) can be regarded as a typical example of a PCC
in topological insulators. Its protection mechanism against
disorder is essentially equivalent to that of a PCC in CNTs.
However, as quantum spin-Hall insulators typically possess
only a single valley, the disturbance due to intervalley
scattering is irrelevant in this case. A similar PCC is
stabilized in three-dimensional (3D) weak topological

insulators in various situations.13–17) In 3D strong topological
insulators, a PCC can appear only when a π magnetic flux
penetrates the bulk of a sample without touching surface
states.18–20)

Wakabayashi and co-workers21–23) showed that disordered
graphene nanoribbons with zigzag edges accommodate a
PCC, on which our interest is focused in this paper.
Hereafter, a graphene nanoribbon with zigzag edges is
simply referred to as a zigzag nanoribbon. As in the case of
CNTs, zigzag nanoribbons possess two energy valleys in the
reciprocal space. The important feature of zigzag nano-
ribbons is that conducting channels are imbalanced between
the two propagating directions in each valley. That is, the
number of conducting channels going in one direction is one
greater or smaller than that going in the other direction,
regardless of the Fermi level. This directly results in the
stabilization of a PCC24–26) if intervalley scattering is
ignorable. Thus, we expect the appearance of a PCC in
zigzag nanoribbons containing only LRIs. In contrast to the
case of CNTs, the symmetry of the system plays no role in
this case. It has been shown that disordered graphene
nanoribbons with armchair edges also accommodate a similar
PCC.27,28)

If a PCC stably exists, the dimensionless conductance g of
the system decreases to the quantized value of g ¼ 1 with
increasing system length L. In CNTs and graphene nano-
ribbons, we expect the appearance of a PCC only when the
disorder of the system is long-range, as noted above. Indeed,
if the spatial range of disorder is sufficiently large, the
strength of intervalley scattering becomes very weak.
However, in actual situations, it is impossible to completely
suppress intervalley scattering. The effect of residual
intervalley scattering gradually manifests itself with increas-
ing L and eventually destabilizes a PCC. In this case, the
behavior of g may not be distinguishable from that in an
ordinary system with no PCC.

The effect of inelastic scattering may be another important
obstacle to the observation of a PCC. Inelastic scattering
caused by electron–electron and=or electron–phonon inter-
actions affects low-energy electrons mainly through energy
relaxation and dephasing. At low temperatures, pure dephas-
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ing most significantly influences the transport properties.
Indeed, dephasing directly destabilizes a PCC in CNTs as
well as topological insulators since it weakens the underlying
symplectic symmetry of the system, except for the case with
only a single channel, where it becomes a PCC and is
relatively robust against dephasing.5,6) Contrastingly, a PCC
in zigzag nanoribbons relies on no symmetry of the system,
so dephasing does not necessarily disturb it. Previous
studies29,30) based on the Boltzmann transport equation
indicate that a PCC remains even in the incoherent limit.
However, it is not clear how the behavior of a PCC changes
with the reduction of phase coherence.

In this paper, the effect of pure dephasing on a PCC in
zigzag nanoribbons is studied by numerical simulations of
the dimensionless conductance. We show that dephasing
does not disturb a PCC but rather relaxes its destabilization
due to weak intervalley scattering. To clarify the dephasing
effect on the PCC we numerically calculate the average
dimensionless conductance hgi in zigzag nanoribbons with
LRIs at zero temperature, taking account of dephasing within
the model presented in Ref. 5. In the case without dephasing,
we observe that hgi rapidly decreases to the quantized value
of hgi ¼ 1 with increasing L, implying the presence of a
PCC, and then it exponentially decays below the quantized
value, reflecting the destabilization of the PCC. However, in
the presence of sufficiently strong dephasing, we observe that
the exponential decay of hgi in the regime of hgi ≲ 1 is
significantly relaxed owing to the suppression of Anderson
localization. Consequently, the quasi-quantization of hgi
(i.e., hgi " 1) can be observed in a wide region of L. This
result should encourage experimental attempts to detect a
PCC in zigzag nanoribbons.31)

In the next section, we present the tight-binding model for
a zigzag nanoribbon. We assume that every impurity
potential distributed over the system is described by a
Gaussian form of spatial range d. This corresponds to an LRI
(SRI) when d is larger (smaller) than the lattice constant a.
We compute the dimensionless conductance using the
Landauer formula by numerically determining the scattering
matrix for the system. The model for describing the pure
dephasing is also introduced. In Sect. 3, the numerical results
of the average dimensionless conductance are presented for
the case with LRIs and that with SRIs. We observe that the
destabilization of the PCC can be relaxed by the dephasing
in the former case. In Sect. 4, the numerical results of the
previous section are compared with an analytical expression
for the dimensionless conductance derived from the
Boltzmann transport equation.29) We see that the numerical
result in the case with strong dephasing is accurately fitted by
the analytical result, implying that our model appropriately
describes the effect of dephasing. The last section is devoted
to summary and conclusion. Preliminary results of this work
have been briefly reported in Ref. 32.

2. Model and Formulation

We consider a zigzag nanoribbon consisting of M zigzag
lines placed along the x-axis (see Fig. 1). Its band structure is
shown in Fig. 2 in the case of M ¼ 30. One can see that in
the left (right) valley, the number of right-going (left-going)
channels is one greater than that of left-going (right-going)
channels regardless of the location of the Fermi level. This

indicates that a right-going PCC appears in the left valley
while a left-going PCC appears in the right valley.21)

2.1 Hamiltonian
We describe π electrons in zigzag nanoribbons by using

the nearest-neighbor tight-binding model

H ¼ #t
X

n:n:
jiih jj þ

X

i

VðriÞjiihij; ð1Þ

where t is the hopping integral between neighboring sites, jii
is the π orbital on site i, and VðriÞ is the impurity potential
with ri being the position of site i. We randomly distribute
impurities in a region of length L (see Fig. 1). We assume
that each site is occupied by an impurity with probability
P and the potential of each impurity is characterized by a
Gaussian form of spatial range d. Hence, VðriÞ is represented
as

VðriÞ ¼
X

j

uðrjÞ exp # jri # rjj2

d2

! "
; ð2Þ

where uðrjÞ is the strength of an impurity at site j. We assume
that uðrjÞ is uniformly distributed within juj < umax=2. Note
that the degree of disorder is determined by d, P, and umax.

2.2 Scattering matrix
The electron transport property of a zigzag nanoribbon

L

disordered region

......

Fig. 1. Illustration of zigzag nanoribbon. The gray area of length L
represents the disordered region with randomly distributed impurities. The
left and right regions without disorder are regarded as perfect leads.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

E
/t

wave number

E/t=0.36

Fig. 2. (Color online) Band structure of zigzag nanoribbon with M ¼ 30.
The inset represents the magnification of subbands in the left valley.
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is determined by the scattering matrix, which consists of
transmission matrices t and t0 and reflection matrices r and r0,
where t and r (t0 and r0) describe the scattering of an electron
incoming from the left (right). Let Nc be the number of
conducting channels for a given value of the Fermi energy E.
The dimensions of the transmission and reflection matrices
are Nc ! Nc. In calculating the scattering matrix, we consider
that the left and right of the disordered region serve as perfect
leads of semi-infinite length without disorder. The trans-
mission and reflection matrices can be obtained by using
a recursive Green’s function method. The dimensionless
conductance at zero temperature is obtained using the
Landauer formula gðEÞ ¼ trðtytÞ, where ty is the Hermitian
conjugate of t.

2.3 Dephasing
Generally speaking, dephasing suppresses quantum effects,

particularly quantum interference effects, and tends to reveal
classical behaviors of electrons in some cases.

In order to incorporate this effect into our model, we
hypothetically decompose the disordered region into Ns

segments of equal length L!, as shown in Fig. 3, and assume
that the phase coherence of electrons is lost across adjacent
segments while in each segment the phase coherence is
completely preserved.5) Hence, L! can be regarded as the
phase coherence length. We require the continuity of the
charge current, instead of the continuity of a wave function,
in each channel between adjacent segments. With this
procedure, the phase coherence of electrons completely
breaks across adjacent segments. Let us express the trans-
mission and reflection matrices for the nth segment as tn, rn,
t0n, and r0n. In terms of them, the transmission probability
matrix Tn (T !n) and the reflection probability matrix Rn (R !n)
for an electron incoming from the left (right) are defined as

½Tn&"# ¼ j½tn&"#j2;

½Rn&"# ¼ j½rn&"#j2;

½T !n&"# ¼ j½t0n&"#j
2;

½R !n&"# ¼ j½r0n&"#j
2: ð3Þ

For the system constituted by combining the first, second,⋯,
nth segments in series, we define ~Tn ( ~T !n) and ~Rn ( ~R !n) as
the transmission and reflection probability matrices for an
electron incoming from the left (right), respectively. The
continuity of the charge current ensures that they obey the
following recursive relation.5)

~Rnþ1 ~T nþ1
~Tnþ1 ~Rnþ1

 !

¼
~Rn 0

0 Rnþ1

 !

þ 0 ~T !n

Tnþ1 0

 !
1 ( ~R !n

(Rnþ1 1

 !(1 ~Tn 0

0 T nþ1

 !

; ð4Þ

with ~T1 ¼ T1, ~R1 ¼ R1, ~T!1 ¼ T!1, and ~R!1 ¼ R!1. The
dimensionless conductance is given by

g ¼
XNc

";#¼1
½ ~TNs&#" ð5Þ

in the presence of dephasing.

3. Numerical Results

We separately consider the case with LRIs and that with

SRIs. In the former case, we expect that a PCC appears
as intervalley scattering is sufficiently weak, while strong
intervalley scattering forbids its appearance in the latter case.
These two cases are realized by appropriately choosing d.
With P ¼ 0:1, we set d=a ¼ 1:5 and umax=t ¼ 0:1 in the LRI
case, and d=a ¼ 0:05 and umax=t ¼ 1:0 in the SRI case. We
fix M ¼ 30 and E=t ¼ 0:36, resulting in Nc ¼ 7, in the
following calculations.

Let us consider the LRI case. We use 2000 samples with
different impurity configurations to calculate the average
dimensionless conductance hgi. Figure 4 shows that hgi
rapidly decreases to 1 with increasing L=a and then the
decrease becomes very slow once it decays below 1,
indicating the presence of a PCC. In the regime of hgi ≲ 1,
the decay of hgi becomes slower as L! becomes smaller. This
can be explained by considering that the decay of hgi below
1 is accelerated by Anderson localization. The effect of
Anderson localization is suppressed by dephasing and hence
the decay of hgi is also suppressed with decreasing L!. This
indicates that dephasing indirectly stabilizes a PCC, although
dephasing itself does not weaken intervalley scattering. We
observe the quasi-quantization of hgi (i.e., hgi ) 1) in a wide

!"#$%&'()*

+++

+++

'(,%&'()*

Fig. 3. Hypothetical decomposition of the disordered region of length L
into Ns segments of equal length L!. We assume that the phase coherence of
electrons is lost across adjacent segments.
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Fig. 4. (Color online) Average dimensionless conductance hgi in the LRI
case for several values of L!=a.
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region of L=a when L! is sufficiently small. Figure 5 shows
a semilog plot of hgi ! 1. Error bars at each data point
represent ðvarfgg=NsamÞ1=2, where varfgg ¼h g2i ! hgi2 and
Nsam is the number of samples used to calculate the average.
We find that hgi decreases exponentially toward 1 in a certain
region of L=a in all cases. In the case without dephasing, this
is in accordance with existing random matrix theory.33)

Figure 6 shows a semilog plot of hgi in the regime of
hgi < 1. We find that hgi decays exponentially regardless of
L!. In the absence of dephasing, it is natural that hgi decays
exponentially, reflecting the onset of Anderson localization.
The exponential decay of hgi even in the presence of
dephasing should be regarded as a characteristic feature of
the system in which conducting channels are imbalanced
between two propagating directions.29)

We turn to the SRI case. We use 10000 samples with
different impurity configurations to calculate the average
dimensionless conductance. Figure 7 shows that hgi decays
to zero with increasing L=a, indicating the absence of a PCC.

Figure 8 shows a log–log plot of hgi in the presence of
dephasing. We find that hgi asymptotically becomes
inversely proportional to L=a, manifesting that Ohm’s law
is satisfied upon the suppression of Anderson localization due
to dephasing. This implies that the conducting channels are
balanced as a consequence of the mixing of two valleys
caused by strong intervalley scattering, in contrast to the LRI
case. In the absence of dephasing, hgi decays exponentially
with increasing L=a as shown in Fig. 9. We show error bars
only in Fig. 9 as they are very small in the case with
dephasing.

4. Comparison with the Boltzmann Transport Theory

In this section, we introduce an analytical expression for
the dimensionless conductance derived from the Boltzmann
transport equation29) and compare it with the numerical
results given in the previous section.

The analytical expression of Ref. 29 is derived by applying
the Boltzmann transport equation to a simple model for
zigzag nanoribbons and hence is justified in the incoherent
limit where the phase coherence of electrons is completely

L/a
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Fig. 5. (Color online) Semilog plot of hgi ! 1 in the case of LRI. In a
certain region of L=a, hgi decreases exponentially toward 1 as a function of
L=a.
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Fig. 6. (Color online) Semilog plot of hgi in the LRI case in the regime of
hgi < 1. hgi decays exponentially as a function of L=a even in the presence
of dephasing.
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Fig. 7. (Color online) Average dimensionless conductance hgi in the SRI
case.
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lost. The model possesses two energy valleys, and the
number of conducting channels for right-going (left-going)
electrons is N þ 1 (N) in one valley, while in the other valley,
that for right-going (left-going) electrons is N (N þ 1). The
total number of conducting channels is given by Nc ¼
2N þ 1 including contributions from the two valleys.
Disorder induces intravalley scattering between two channels
in the same valley and intervalley scattering between two
channels belonging to different valleys. The strength of
intravalley scattering is characterized by a single parameter
κ as its detailed dependence on initial and final states is
ignored. In the same manner, the strength of intervalley
scattering is characterized by a parameter !0. Applying a
constant electric field only in the region of length L, the
Boltzmann equation is solved under the condition that
incident electrons from the left and right are described by
equilibrium distributions. The resulting dimensionless con-
ductance gB is expressed as29)

gB ¼ ½! þ ð8N2 þ 8N þ 1Þ!0&cL

ð2N þ 1Þ!0½2 þ ð2N þ 1Þð! þ !0ÞL&cL þ
!2 ' !02

ffiffiffi
"

p dL

; ð6Þ

where " ¼ ð! þ !0Þ½! þ ð8N2 þ 8N þ 1Þ!0& and

cL ¼ ð2N þ 1Þð! þ !0Þffiffiffi
"

p coshð
ffiffiffi
"

p
L=2Þ þ sinhð

ffiffiffi
"

p
L=2Þ; ð7Þ

dL ¼ ð2N þ 1Þð! þ !0Þffiffiffi
"

p sinhð
ffiffiffi
"

p
L=2Þ þ coshð

ffiffiffi
"

p
L=2Þ: ð8Þ

We examine whether this expression can fit our numerical
results. Equation (6) is justified in the incoherent limit, so we
focus on the numerical results in the smallest-L# case with
L#=a ¼ 100. As Nc ¼ 7 in our setting, N is fixed at N ¼ 3.
Only κ and !0 play the role of fitting parameters. The result
of fitting is shown in Fig. 10 in the LRI case and Fig. 11 in
the SRI case. We observe that the analytical expression
accurately reproduces the numerical results. The best fitting
is achieved for !a ¼ 0:00031 and !0a ¼ 0:00000003 in the
former case, yielding !0=! ¼ 0:0000096, and for !a ¼
0:00094 and !0a ¼ 0:00021 in the latter case, yielding
!0=! ¼ 0:223. This result clearly indicates that intervalley
scattering is significantly weaker than intravalley scattering in

the LRI case while their strengths are on the same order of
magnitude in the SRI case.

One may think that the effect of dephasing is over-
simplified in the model used in our numerical calcu-
lations. However, the above result implies that our model
captures the essential features of dephasing in spite of its
simplicity.

5. Summary and Conclusion

We have studied the effect of dephasing on a perfectly
conducting channel (PCC) in disordered graphene nano-
ribbons with zigzag edges by numerically calculating the
average dimensionless conductance hgi as a function of
system length L. We separately consider the case with long-
range impurities (LRIs) and that with short-range impurities
(SRIs). In the former case, intervalley scattering is very weak
and the appearance of a PCC is expected. Contrastingly, a
PCC cannot appear owing to strong intervalley scattering in
the latter case. The result of the LRI case indicates that hgi
as a function of L shows two-stage behavior; hgi rapidly
decreases to 1 with increasing L in the first stage and then
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Fig. 9. (Color online) Semilog plot of hgi in the SRI case with no
dephasing. hgi decays exponentially as a function of L=a.
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tends to decay below 1 in the second stage. The behavior in
the first stage implies the presence of a PCC, and the behavior
in the second stage indicates that the PCC is destabilized by
weak intervalley scattering. We have clearly observed that
dephasing significantly relaxes the second-stage behavior and
hence effectively stabilizes the PCC. This stabilization should
be attributed to the suppression of Anderson localization due
to dephasing. In the SRI case, hgi decays toward zero,
reflecting the absence of a PCC. We have shown that
dephasing suppresses the effect of Anderson localization,
revealing the behavior of hgi / L!1 in accordance with the
ordinary Ohm’s law.

One may think that the experimental detection of a PCC in
realistic systems is not easy as various inelastic processes
obstruct it. Among them, dephasing is known as the most
notable factor that suppresses quantum behaviors of electrons
at low temperatures. Indeed, it has been pointed out that a
PCC in CNTs, as well as in topological insulators, is fragile
against dephasing.5) Contrastingly, in graphene nanoribbons,
dephasing does not negatively influence a PCC but rather
encourages its appearance. This implies that graphene
nanoribbons with zigzag edges are a promising platform for
the experimental detection of a PCC.
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We study electronic states of semi-infinite graphene with a corner edge, focusing on the stability of edge localized
states at zero energy. The 60, 90, 120, and 150! corner edges are examined. The 60 and 120! corner edges consist of
two zigzag edges, while 90 and 150! corner edges consist of one zigzag edge and one armchair edge. We numerically
obtain the local density of states (LDOS) on the basis of a nearest-neighbor tight-binding model by using Haydock’s
recursion method. We show that edge localized states appear along a zigzag edge of each corner edge structure except
for the 120! case. To provide insight into this behavior, we analyze electronic states at zero energy within the
framework of an effective mass equation. The result of this analysis is consistent with the behavior of the LDOS.

KEYWORDS: graphene corner edge, localized state, zigzag edge, armchair edge, tunneling spectroscopy

1. Introduction

The realization of a monolayer graphene sheet1,2) has
triggered extensive studies on its unusual electronic proper-
ties arising from the two-dimensional honeycomb structure
of carbon atoms.3) Since the unit cell of the honeycomb
lattice contains two nonequivalent sites which form two
sublattices A and B, the low-energy electronic states of
graphene near the Fermi energy are described by a 2" 2
matrix form which is equivalent to the massless Dirac
equation.4) Thus, electrons in graphene are called massless
Dirac fermions. The band structure of massless Dirac
fermions has a unique character, since they have linear
energy dispersion in the vicinity of two nonequivalent
symmetric points, called Kþ and K$ points, in the Brillouin
zone, where the conduction and valence bands conically
touch.5) This structure is called Dirac cone. We hereafter set
the electron energy at the band touching point as " ¼ 0. The
unique energy band structure provide a number of intriguing
physical properties such as the half-integer quantum Hall
effect,2,6) the absence of backward scattering associated with
the Berry’s phase by !7) and Klein tunneling.8)

The presence of edges makes an strong impact on the
Dirac fermions in graphene near the Fermi energy. As
stressed by Fujita et al., the electronic states near the
graphene edge strongly depends on its edge orientation.9)

Typical straight edges of graphene are classified into two
structures: one is zigzag (zz) edge and the other is armchair
(ac) edge. Fujita et al. analyzed electronic states in graphene
with an infinitely long straight edge on the basis of a nearest-
neighbor tight-binding model, and showed that highly
degenerate edge localized states appear at " ¼ 0 along a zz
edge.9) These states at " ¼ 0 result in a sharp zero-energy
peak structure in the local density of states (LDOS) near a
straight zz edge of graphene. The edge localized states have
a characteristic feature that their probability amplitude is
finite only on one sublattice including edge sites and
completely vanishes on the other sublattice. No such
localized states appear along an ac edge. The presence of

edge localized states along a zz edge has been confirmed by
using scanning tunneling microscopy and scanning tunneling
spectroscopy.10,11)

Theoretically, the presence or absence of zero-energy
localized states has been well understood for infinitely long
straight edges. However, actual edges of graphene samples
are never straight nor infinitely long, and are much more
complex than ideal ones. An actual edge line consists of
several zz and/or ac segments, and a corner edge inevitably
appears at the boundary of two adjacent segments. Typical
corner edge structures are shown in Fig. 1. Hereafter each
corner edge is referred to according to its corner angle. The
30, 90, and 150! corner edges consist of one zz edge and one
ac edge, while the 60 and 120! corner edges consist of two
zz edges. There arises a natural question: Do edge localized
states exist at " ¼ 0 along a bent edge of these corner edge
structures? In this paper we study electronic states in the
corner edge structures to answer this question. We adopt
a nearest-neighbor tight-binding model and numerically
obtain the LDOS by using Haydock’s recursion method. We
find that edge localized states appear along a zz edge of

(d) (e)

(a) (b) (c)

Fig. 1. Typical corner edge structures with corner angles of (a) 30, (b) 60,
(c) 90, (d) 120, and (e) 150!.
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each corner edge structure with an exception of the 120!

corner edge. In the 120! case, edge localized states locally
disappear near the corner but emerge with increasing the
distance from the corner. To provide insight into these
unexpected behaviors, we analyze electronic states at " ¼ 0
within the framework of an effective mass equation. The
result of this analysis is consistent with the behavior of the
LDOS.

2. Formulations for Numerical Analysis

2.1 Model of graphene corner edges
We describe ! electrons in graphene with a corner edge

structure by using a tight-binding model on a honeycomb
lattice. The Hamiltonian of this model is represented as

H ¼ #t
X

hi; ji
jiih jjþ

X

i

wijiihij; ð1Þ

where t is the nearest neighbor hopping integral and wi is
a site-dependent potential. If wi ¼ 0 for any i, this model
corresponds to a bulk graphene sheet. The site-dependent
potential wi is introduced for a technical reason. For practical
application of our numerical approach, it is convenient to
treat a lattice system being infinite in both the longitudinal
and transverse directions. However, such a system contains
lattice sites which are irrelevant for a corner edge structure.
To model a corner edge on this infinite system, we put a large
on-site potential on each irrelevant site to prevent electrons
arriving on it. Therefore, we set wi ¼ w with a sufficiently
large w if the ith site is irrelevent for a corner edge structure
while wi ¼ 0 otherwise. We consider four corner edges
having corner angles differ from each other. The angles are
60, 90, 120, and 150!. We particularly focus on corner edges
including one or two zz edges.

2.2 Haydock’s recursion method
The LDOS can be calculated with Haydock’s recursion

method12–15) which is applicable to systems having no
translational symmetry such as graphene with a corner edge.
By applying this method, we can obtain the LDOS at an
arbitrary site.

We outline the method to obtain the LDOS at an ith site.
To start with, we transform our model to a one-dimensional
chain model. We first introduce the coefficient a0 given by

a0 ¼ hl0jHjl0i ð2Þ

with jl0i 'j ii, and define jl1i and b1 in terms of

b1jl1i ¼ð H # a0Þjl0i ð3Þ

with hl1jl1i ' 1. The coefficient b1 is obtained as

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hl0jðH # a0ÞðH # a0Þjl0i

p
: ð4Þ

We next introduce a1 given by

a1 ¼ hl1jHjl1i; ð5Þ

and define jl2i and b2 in terms of

b2jl2i ¼ð H # a1Þjl1i# b1jl0i ð6Þ

with hl2jl2i ' 1. The coefficient b2 is obtained as

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fhl1jðH # a1Þ # hl0jb1gfðH # a1Þjl1i# b1jl0ig

p
: ð7Þ

Repeating this n times, we obtain

bnþ1jlnþ1i ¼ð H # anÞjlni# bnjln#1i; ð8Þ

with

an ¼ hlnjHjlni; ð9Þ
bnþ1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fhlnjðH # anÞ # hln#1jbngfðH # anÞjlni# bnjln#1ig

p
:

ð10Þ
This manipulation with the reccurence equation, eq. (8), is

equivalent to a transformation of the original electron system
to a one-dimensional chain model. fjl0i; jl1i; jl2i; . . .g stands
for the orthonormal basis set of the chain model. Here,
jlni involves neighboring sites of jii up to the nth nearest
neighbors. On this basis, H can be rewritten with real
coefficients fa0; a1; . . .g and fb1; b2; . . .g as a tridiagonal
matrix

H ¼

a0 b1

b1 a1 b2

b2 a2 b3

b3 a3

. .
.

0

BBBBBBB@

1

CCCCCCCA

: ð11Þ

With the coefficients fa0; a1; . . .g and fb1; b2; . . .g, the
Green’s function GiðEÞ for the ith site can be represented as
a continued fraction,

GiðEÞ ¼
1

E# a0 #
b21

E# a1 #
b22
. . .

: ð12Þ

Practically, we need to terminate this continued fraction at a
sufficiently large n. If it is terminated at n ¼ N, we obtain
the approximate expression of GiðEÞ as

GiðEÞ ¼
1

E# a0 #
b21

E# a1 #
b22
. . .

E# aN # tðEÞ

; ð13Þ

where

tðEÞ ¼ E# aN
2b2N

1# 1# 4b2N
ðE# aNÞ2

" #1=2( )

: ð14Þ

GiðEÞ gives the LDOS at the ith site in terms of the relation

NiðEÞ ¼
1

!
ImGiðE# i"Þ; ð15Þ

where " is a positive infinitesimal. In actual numerical
calculations, we treat " as a sufficiently small but finite
constant.

3. The LDOS

3.1 The LDOS in the presence of a single edge
To confirm the validity of our approach using the

recursion method, we calculate the LDOS in the presence
of an ideal single zz or ac edge. We set N ¼ 1000, w=t ¼
300, and "=t ¼ 0:01 throughout this paper. We first consider
the case with a single zz edge. The site indices in the unit
cell are given in Fig. 2(a). We display the LDOS at the sites
1, 2, 3, and 4 in Figs. 2(b)–2(e). A peak at " ¼ 0 exists at the
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site 1 on the zz edge. The LDOS also possesses a zero-
energy peak at sites on the sublattice which includes the
site 1. We see that the peak decays with increasing the
distance from the edge. At the sites belonging to the other
sublattice, such as the site 2, a peak does not appear at
" ¼ 0. These results are consistent with the presence of edge
states at " ¼ 0. The decay of the zero-energy peak reflects
the fact that an edge state has a finite penetration depth.

We next consider the case with a single ac edge. Figure 3
shows the LDOS in the presence of a single ac edge. We do
not observe a peak of the LDOS at " ¼ 0. This is consistent
with the absence of edge states in the single ac edge case.

3.2 The LDOS in the presence of a corner edge
3.2.1 60" corner edge

Figure 4 shows the LDOS at several sites in the presence
of the 60" corner edge consisting of two zz edges. From this
figure, we can see the appearance of edge states at " ¼ 0. As
shown in Figs. 4(b) and 4(e), a zero-energy peak exists at the
sites 7 and 10 belonging to a same sublattice. Let us compare
the LDOS at the site 10 [Fig. 4(e)] with that at the site 4 in
the single zz edge case [Fig. 2(e)]. Note that the distance

from the zz edge to the site of our interest is equivalent in
both the cases. We observe that the peak of the LDOS at the
site 10 is higher than that at the site 4 in the single zz edge
case. We consider that this enhancement of the zero-energy
peak at the site 10 is caused by a superposition of edge states
at one zz edge and those at the other edge, i.e., constructive
interference between two edge states.

3.2.2 90" corner edge
Figure 5 shows the LDOS at several sites in the presence

of the 90" corner edge. From this figure, we see that edge
states appear at " ¼ 0. As shown in Figs. 5(b), 5(d), and
5(e), a zero-energy peak exists at the sites 11, 13, and 14
belonging to a same sublattice. Thus, the LDOS near the
corner possesses both the character of the LDOS in the
single zz edge case and that in the single ac edge case. Let us
focus on the LDOS at the site 13 for example. The site 13
corresponds to the site 3 in the zz edge case [Fig. 2(d)] and
the site 5 in the single ac edge case [Fig. 3(b)]. Roughly
speaking, we can regard that the LDOS at the site 13
[Fig. 5(d)] is a mixture of the LDOS at the site 3 [Fig. 2(d)]
and the site 5 [Fig. 3(b)]. The nature similar to this is also
observed at other sites. There is no enhancement of the zero-
energy peak of LDOS in contrast to the 60" case.

3.2.3 120" corner edge
Figure 6 shows the LDOS at several sites in the presence

of the 120" corner consisting of two zz edges. In this case,
peculiar features arise. The LDOS at the site 15 [Fig. 6(b)]
is quite different from that of the site 1 in the single zz edge

(a)

(b)

1

(c)

2

(d)

3

(e)

4

 4

 2
 1

 3

Fig. 2. (Color online) (a) The strcture of a single zz edge. A broken line
represents a unit cell. (b), (c), (d), and (e) display the LDOS at the site 1,
site 2, site 3, and site 4, respectively. The number indicated above each
graph represents the site number defined in (a).

 5

 6

 6

 5

(b)

5

(c)

6

(a)

Fig. 3. (Color online) (a) The strcture of a single ac edge. A broken line
represents a unit cell. (b) and (c) display the LDOS at the site 5 and site 6,
respectively. The number indicated above each graph represents the site
number defined in (a).
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case [Fig. 2(b)]. As seen from Figs. 6(b), 6(c), and 6(g),
there is no zero-energy peak at the sites near the corner and
hence edge states locally disappear. However, edge states
appear at the sites away from the corner. Indeed we observe
a broad peak at the site 17 [Fig. 6(d)], and the LDOS at the
site 18 [Fig. 6(e)] shows a sharp peak.

3.2.4 150! corner edge
Figure 7 shows the LDOS at several sites in the presence

of the 150! corner edge. As shown in Figs. 7(b), 7(d), and
7(e), a zero-energy peak exists at the sites 21, 23, and 24
belonging to a same sublattice. This indicates the existence
of edge states. As in the 90! case, the LDOS near the corner
possesses both the character of the LDOS in the single zz
edge case and that in the single ac edge case. For example,
we can regard that the LDOS at the site 24 [Fig. 7(e)] is a
mixture of the LDOS at the site 4 on the single zz edge
[Fig. 2(e)] and that at the site 6 on the single ac edge
[Fig. 3(c)]. The peculiarity of the 150! case is that the zero-
energy peak of the site 21 is quite smaller than that at the
site 1 on the single zz edge [Fig. 2(b)].

Figure 8 represents the spatial dependance of the LDOS
at " ¼ 0 in the presence of the (a) 60, (b) 90, and (c) 150!

corner edges. A radius of each open circle indicates the
magnitude of the LDOS. In these figures, the LDOS has a

finite value only on the sublattice involving zz edge sites but
vanishes on the other sublattice. We observe that the LDOS
localizes near zz edges, indicating the presence of edge
localized states. However, special emphasis is placed on the
case of the 60! corner edge, where the magnitude of the
LDOS at inner sites is larger than that in the other two cases.
This reflects the fact that edge localized states are present at
both the two zz edges. The overlap of these edge localized
states enhances the magnitude of the LDOS, i.e., construc-
tive interference. The other corner edge structures with the
angle 90 or 150! consist of one zz edge and one ac edge.
Note the LDOS in the single ac edge system vanishes at
" ¼ 0 on any sites. In these corner edge structures, the
LDOS becomes finite even at " ¼ 0 due to the presence of a
zz edge. Even at sites on the ac edge, the LDOS can have a
finite value.

Figure 9 represents the spatial dependance of the LDOS at
" ¼ 0 in the presence of the 120! corner edge. In this figure,
we observe that the LDOS vanishes at the sites near the
corner, indicating local disappearance of edge states, i.e.
destructive interference. In spite of the fact that the 120!

 10

 9
 7

 7
 9

 8

(b)

7

(c)

8

(d)

9

(e)

10

(a)

Fig. 4. (Color online) (a) The strcture of the 60! corner edge. (b), (c),
(d), and (e) display the LDOS at the site 7, site 8, site 9, and site 10,
respectively. The number indicated above each graph represents the site
number defined in (a).

 14

 12
 11

 13

(b)

11

(c)

12

(d)

13

(e)

14

(a)

Fig. 5. (Color online) (a) The strcture of the 90! corner edge. (b), (c),
(d), and (e) display the LDOS at the site 11, site 12, site 13, and site 14,
respectively. The number indicated above each graph represents the site
number defined in (a).
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corner edge consists of two zz edges, the edge states are not
fully stabilized in contrast to the case of the 60! corner edge.
Note that in the 120! case, edge sites on one zz edge and
those on the other zz edge belong to different sublattices,
while all edge sites in the 60! case belong to a same
sublattice. As we discuss in the next section, this is the
reason for the qualitative difference between the two cases.

4. Analytical Treatment

Our study on the LDOS reveals that edge localized states
are stabilized in corner edge structures except for the 120!

case. To provide insight into this behavior, we analyze edge
localized states in corner edge structures by using an effective
mass description, which is applicable to low-energy states in

the vicinity of the K" point. The Kþ and K$ points are
characterized by Kþ ¼ ð$4!=3a; 0Þ and K$ ¼ ð4!=3a; 0Þ,
respectively. Here, a is lattice constant. As shown in
Fig. 10(a), the unit cell of graphene has two non-equivalent
carbon atoms A and B which form A sublattice and B
sublattice, respectively. We represent the wave function¼AðrÞ
for A sublattice and the wave function¼BðrÞ for B sublattice as

¼AðrÞ ¼ eiK
þ(rFþ

A ðrÞ þ eiK
$(rF$

A ðrÞ; ð16Þ
¼BðrÞ ¼ eiK

þ(rFþ
B ðrÞ $ eiK

$(rF$
B ðrÞ; ð17Þ

where F" are envelope functions near the K" point. The
envelope functions at energy " satisfy

"

0 k̂x $ ik̂y 0 0

k̂x þ ik̂y 0 0 0

0 0 0 k̂x þ ik̂y

0 0 k̂x $ ik̂y 0

0

BBBB@

1

CCCCA

Fþ
A ðrÞ

Fþ
B ðrÞ

F$
A ðrÞ

F$
B ðrÞ

0

BBB@

1

CCCA

¼ "

Fþ
A ðrÞ

Fþ
B ðrÞ

F$
A ðrÞ

F$
B ðrÞ

0

BBB@

1

CCCA; ð18Þ

21
22

23

24

(b)

21

(c)

22

(d)

23

(e)

24

(a)

Fig. 7. (Color online) (a) The strcture of the 150! corner edge. (b), (c),
(d), and (e) display the LDOS at the site 21, site 22, site 23, and site 24,
respectively. The number indicated above each graph represents the site
number defined in (a).

(a)

15

20
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15
16

19
18

16

17

17

20
19

(b)

15

(c)

16

(d)

17

(e)

18

(f)

19

(g)

20

Fig. 6. (Color online) (a) The strcture of the 120! corner edge. (b), (c),
(d), (e), (f), and (g) display the LDOS at the site 15, site 16, site 17, site 18,
site 19, and site 20, respectively. The number indicated above each graph
represents the site number defined in (a).
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where ! is a band parameter, k̂x ¼ "i@=@x, and k̂y ¼ "i@=@y.
This is called k # p equation,4,16) which is an effective mass
equation for graphene systems.

For later convenience, we present the envelope functions
for edge states at " ¼ 0.17) Let us consider a semi-infinite
graphene which occupies the region of y > 0, and has a
zigzag edge at y ¼ 0. Assumng that edge sites belong
to A sublattice, we adopt the boundary condition of
F$
B ðrÞjy¼0 ¼ 0. The envelope functions for edge states are

given as

F$
A ðrÞ

F$
B ðrÞ

 !

¼ C
e$ikxxe"kxy

0

! "
; ð19Þ

where C is a normalization constant. The absolute value
of F$

A in eq. (19) has a maximum value at y ¼ 0 and
exponentially decays with increasing y. This represents edge
states localized along the zz edge. We construct zero-energy
wave functions which satisfy the boundary condition of
corner edges by using eq. (19).

4.1 60' corner edge
We first consider wave functions in the presence of

the 60' corner edge as shown in Fig. 11. We attempt to
construct wave functions near the Kþ point in terms of two
edge localized wave functions. One is the wave function for
the 0' zz edge

(a)

(b)

(c)

Fig. 8. The LDOS in the presence of the (a) 60, (b) 90, and (c) 150'

corner edges at " ¼ 0. The radius of open circles indicates the magnitude of
the LDOS.

Fig. 9. The LDOS in the presence of the 120' corner edge at " ¼ 0. The
radius of open circles indicates the magnitude of the LDOS.

(a)

A
B

x
a

y

K

+
K

−
K

+
K

+
K

k y

k x

−
K

Γ

(b)

−

Fig. 10. (a) Honeycomb structure of graphene. The region enclosed in a
broken line is a unit cell. A and B are non-equivalent sites which form
sublattices. (b) The first Brillouin zone of graphene, where Kþ, K", and
! are symmetric points. The Kþ point is located at ("4"=3a; 0) and
(2"=3a;$2"=

ffiffiffi
3

p
a) while the K" point is located at (4"=3a; 0) and

("2"=3a;$2"=
ffiffiffi
3

p
a).
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C
e!iKxeikxðxþiyÞ

0

! "
; ð20Þ

and the other is the wave function for the 60% zz edge

C
e!iKxeikxðxþiyÞeið2=3Þ!

0

 !

; ð21Þ

where K & 4!=3a. Here and hereafter we refer to zz edge
intersecting the x axis with angle " degree as "% zz edge. We
adopt their linear combination

¼AðrÞ
¼BðrÞ

! "
¼ e!iKxðC1e

ikxðxþiyÞ þ C2e
ikxðxþiyÞeið2=3Þ! Þ

0

 !

ð22Þ

as a trial wave function in the presence of the 60% cor-
ner edge. The boundary condition requires that the wave
function vanishes at sites marked with triangles in Fig. 11.
Because ¼BðrÞ ¼ 0, we need to consider only the boundary
condition for ¼AðrÞ. Only the site at the corner with an open
triangle belongs to A sulattice. We define this site as the
origin of the coordinate. Hence, the boundary condition for
¼AðrÞ is simply given by

¼Að0; 0Þ ¼ 0; ð23Þ

yielding C2 ¼ !C1. We obtain the wave function in the
presence of the 60% corner edge as

¼AðrÞ
¼BðrÞ

! "
¼ C

e!iKxðeikxðxþiyÞ ! eikxðxþiyÞeið2=3Þ! Þ
0

 !

: ð24Þ

This indicates the existence of edge states in the 60% corner
edge.18)

4.2 90% corner edge
Secondly we consider the 90% corner edge as shown in

Fig. 12. In this case, states near Kþ and K! points are mixed
due to the presence of an ac edge. We construct zero-energy
wave functions by using edge localized wave function near
the Kþ point,

C
e!iKxeikxðxþiyÞ

0

! "
; ð25Þ

and that near the K! point,

C
eiKxe!ikxðx!iyÞ

0

! "
: ð26Þ

We adopt their linear combination

¼AðrÞ
¼BðrÞ

! "
¼

C3e
!iKxeikxðxþiyÞ þ C4e

iKxe!ikxðx!iyÞ

0

! "
ð27Þ

as a trial wave function. This must vanishes at sites marked
with triangles in Fig. 12. Because ¼BðrÞ ¼ 0, we need to
consider only the boundary condition for ¼AðrÞ. The sites
marked with open triangles belong to A sulattice. We define
the site at the corner with an open triangle as the origin. The
coordinates of the open triangles are ðx; yÞ ¼ ð0;

ffiffiffi
3

p
a( mÞ

with m ¼ 0; 1; 2; . . . . Hence, the boundary condition for
¼AðrÞ reads

¼Að0;
ffiffiffi
3

p
a( mÞ ¼ 0 ðm ¼ 0; 1; 2; . . .Þ: ð28Þ

Imposing this condition to ¼A in eq. (27), we obtain
C4 ¼ !C3. We obtain the wave function for the 90% corner
edge as

¼AðrÞ
¼BðrÞ

! "
¼ C

e!iKxeikxðxþiyÞ ! eiKxe!ikxðx!iyÞ

0

! "
: ð29Þ

This indicates the existence of edge states in the 90% corner
edge.

4.3 150% corner edge
Thirdly we consider the 150% corner edge as shown in

Fig. 13. We obtain zero-energy wave functions using a
conformal mapping technique.19) In terms of the complex
variable z & xþ iy, eq. (19) is rewritten as

Fig. 11. The boundary condition for the 60% corner edge requires that
wave functions vanish at sites marked with a triangle. A site marked with an
open triangle belongs to A sublattice, and sites marked with a filled triangle
belong to B sublattice.

Fig. 12. The boundary condition for 90% corner edge requires that wave
functions vanish at sites marked with a triangle. Sites marked with an open
triangle belong to A sublattice, and sites marked with a filled triangle belong
to B sublattice.

Fig. 13. The boundary condition for the 150% corner edge requires that
wave functions vanish at sites marked with a triangle. Sites marked with an
open triangle belong to A sublattice, and sites marked with a filled triangle
belong to B sublattice.
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Fþ
A ðzÞ

Fþ
B ðzÞ

F$
A ðzÞ

F$
B ðzÞ

0

BBB@

1

CCCA ¼

Ceikxz

0

C0e$ikxz&

0

0

BBB@

1

CCCA; ð30Þ

where z& is the complex conjugate of z. Here we introduce the
transformation of w ¼ z3=5. This transformation maps a 150'

corner on z plane to a 90' corner on w plane and vice versa.
Thus, the wave function for the 90' corner edge on w plane

¼AðwÞ
¼BðwÞ

! "
¼ C

e$iKxeikxw $ eiKxe$ikw&

0

 !

ð31Þ

is mapped to

¼AðrÞ
¼BðrÞ

! "
¼ C

e$iKxeikxz
3=5 $ eiKxe$ikxz&3=5

0

 !

ð32Þ

¼ C
e$iKxeikxðxþiyÞ3=5 $ eiKxe$ikxðx$iyÞ3=5

0

 !

ð33Þ

on z plane. The boundary condition requires that the wave
function vanishes at sites marked with triangles in Fig. 13.
Again, we need to consider only the boundary condition for
¼AðrÞ. The sites marked with open triangles belong to A
sulattice. We define the site at the corner with an open trian-
gle as the origin. The coordinates of the open triangles are
ðx; yÞ ¼ ð$ð3=2Þa( m; ð

ffiffiffi
3

p
=2Þa( mÞ with m ¼ 0; 1; 2; . . . .

Hence, the boundary condition for ¼AðrÞ is given by

¼A $ 3

2
a( m;

ffiffiffi
3

p

2
a( m

! "
¼ 0 ðm ¼ 0; 1; 2; . . .Þ: ð34Þ

The wave function ¼A in eq. (33) satisfies this condition.
Therefore eq. (33) can be considered as a wave function in
the presence of the 150' corner edge. This indicates the
existence of edge states. The envelope functions eikxðxþiyÞ3=5

and e$ikxðx$iyÞ3=5 are different from ordinary envelope functions
given in eq. (19), but both satisfy the k ) p equation given in
eq. (18).

4.4 120' corner edge
Lastly we consider the 120' corner edge as shown in

Fig. 14. The boundary condition requires that ¼BðrÞ vanishes
at sites marked with a filled triangle and ¼AðrÞ vanishes at
sites marked with an open triangle. Therefore, both ¼AðrÞ
and ¼BðrÞ are subjected to the boundary condition, in

contrast to the 60' case where one component is free
from the boundary condition. This crucially affects zero-
energy states in the 120' case as we see below. Similar
to the treatment for the 60' case, we first adopt a linear
combination of the wave function for the 0' zz edge and
that for the 120' zz edge as a trial wave function. The wave
function for the 0' zz edge near the Kþ point is

C
e$iKxeikxðxþiyÞ

0

! "
ð35Þ

and the wave function for the 120' zz edge near the Kþ

point is

C
0

e$iKxe$ikxðx$iyÞe$ið!=3Þ

 !

: ð36Þ

The former has only the A-sublattice component, while the
latter has only the B-sublattice component. Obviously, their
linear combination does not satisfy the boundary condition
for both the A- and B-sulattice components. We next
consider a linear combination of the 0' edge wave functions
near the Kþ and K$ points,

¼AðrÞ
¼BðrÞ

! "
¼

C5e
$iKxeikxðxþiyÞ þ C6e

iKxe$ikxðx$iyÞ

0

! "
: ð37Þ

This is equivalent to eq. (27). Though ¼B of eq. (37)
satisfies the boundary condition, ¼A cannot satisfy the
boundary condition for arbitrary C5 and C6. Finally, we
consider a linear combination of the 0' zz edge wave
function and an arbitrary evanescent wave function near the
K* point given by

C
e+iKxe*ipðx*iyÞe*i"

0

 !

: ð38Þ

This wave function, reducing to the 0' zz edge wave
function when " ! 0, satisfies eq. (18) and is bounded for
0 , " , !

3 in the 120' case. Their linear combination

¼AðrÞ
¼BðrÞ

! "
¼ C7e

$iKxeikxðxþiyÞ þ C8e
+iKxe*ipðx*iyÞe*i"

0

 !

:

ð39Þ
does not satisfy the A-sublattice boundary condition for
arbitrary C7, C8, p, and " as long as p is sufficiently small.

We failed to construct zero-energy wave functions in the
120' case in the form of a linear combination of the edge
states, in striking contrast to the 60' case. It is considered
that this corresponds to the disappearance of the LDOS peak
at " ¼ 0 near the corner observed in the numerical result. We
suppose that correct zero-energy states consist of zz edge
states and complex scattered waves. We point out that the
sublattice configuration of two zz edges plays a crucial role
in the qualitative difference between the 60 and 120' cases.

In the remaining of this section we briefly consider the
behavior of the LDOS shown in Fig. 8, on the basis of the
wave functions obtained above. Figure 8 shows the spatial
dependence of the LDOS at " ¼ 0 in the 60, 90, and 150'

cases. We observe that the LDOS on a zz edge is slightly
suppressed in the close vicinity of a corner. This should be
distinguished from the strong suppression of the LDOS
observed near a 120' corner, and is simply accounted for
on the basis of the wave functions for zero-energy edge
localized states presented in eqs. (24), (29), and (33). We see

Fig. 14. The boundary condition for the 120' corner edge requires that
wave functions vanish at sites marked with a triangle. Sites marked with an
open triangle belong to A sublattice, and sites marked with a filled triangle
belong to B sublattice.
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that due to destructive interference, the amplitude of these
wave functions is suppressed in the close vicinity of a corner
located at ðx; yÞ ¼ ð0; 0Þ for a sufficiently small kx. This
accounts for the slight suppression of the LDOS.

5. Summary

We have studied electronic states in semi-infinite
graphene with a corner edge, focusing on the stability of
edge localized states. The 60, 90, 120, and 150$ corner edges
are examined. The 90 and 150$ corner edges consist of one
zz edge and one ac edge, while the 60 and 120$ corner edges
consist of two zz edges. We have numerically obtained the
local density of states on the basis of a nearest-neighbor
tight-binding model by using Haydock’s recursion method.
We have shown that edge localized states appear along a zz
edge of each corner edge structure except for the 120$ case.
In the 120$ case, we have also shown that edge localized
states locally disappear near the corner but emerge with
increasing the distance from the corner along each zz edge.
To provide insight into these behaviors, we have analyzed
electronic states at " ¼ 0 within the framework of an
effective mass equation. Except for the 120$ case, we have
succeeded to obtain eigenstates of the effective mass
equation by forming a superposition of pair of edge localized
wave functions for an infinitely long straight zz edge. This
indicates the existence of edge localized states, and is
consistent with the behavior of the local density of states.
Contrastingly, no eigenstate has been obtained in such a
simple form in the 120$ case. This suggests a possibility that
the local disappearance of edge localized states in the 120$

case is beyond the effective mass description. Note that
although both the 60 and 120$ corner edges consist of two zz
edges, zero-energy eigenstates of the effective mass equation
are obtained only in the former case. We have pointed out
that this reflects the fact that two zz edges belong to a same
sublattice in the former case while they belong to different
sublattices in the latter case.
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