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Chapter 1

Introduction

Silicon is the most common semiconductor material, and is known to be the most pure
and ideal crystal that the human being is able to handle. In today’s industry, the silicon
crystal is one of the most momentous materials used as substrates of semiconductor devices.

Recently, the softening in elastic constants of silicon is observed in low temperature
ultrasonic experiments [1]. This phenomenon has attracted much attention because the den-
sity of the vacancies in silicon can be evaluated from the behavior of elastic softening [1].
Several authors have studied this phenomenon theoretically by using a kind of model that
includes the adjustable or phenomenological parameters in the Hamiltonian [2-7]. It is
pointed out that both the Zeeman effect and spin-orbit interaction, which is one of the rela-
tivistic effects, play an important role on the suppression of the elastic softening. The neg-
ative (unusual) value of the coupling constant of the spin-orbit interaction is used in their
works [2,7] in order to explain the above phenomena. However its validity remains to be
proven. If a calculation method of relativistic energy bands for materials immersed in the
uniform magnetic field is developed, then it will become a reliable method not only to check
the validity of the arguments based on the model Hamiltonian [2-6], but also to investigate
the above phenomenon in a first principles way. So, we need a first principle calculation
method that can describe the effects of both relativity and magnetic field, as the first step
toward clarifying the above mentioned phenomenon.

It is generally difficult to incorporate the magnetic field and relativistic effects simul-
taneously into the calculation method of the electronic structure. Insofar, as the non-relativ-
istic method goes, the tight-binding (TB) approximation method has been developed and
applied to some systems [8-10]. In these non-relativistic TB methods, the Peierls substitu-
tion [11,12] or the Peierls phase [9,13] is utilized to construct the effective Hamiltonian for
Bloch electrons in the uniform magnetic field. Calculation methods other than the TB appr-
oximation method have also been presented, though the relativistic effects are not taken into



account in these methods. For example, Zak proposed a method to use the so-called kg func-
tions as basis functions in calculating matrix elements of the Hamiltonian [14-17]. Actual
calculations using kg functions are performed in several papers [18-21]. However, their
applications are limited to simple model systems. Namely, it is not easy to apply the kg
functions method to realistic crystalline materials immersed in the magnetic field.

Of course, there exit a lot of relativistic calculation methods of electronic structures
for the zero magnetic field case. For instance, the relativistic linear augmented-plane-wave
(RLAPW) method [22-24] has been developed and applied successfully to f~electron mate-
rials [25-28]. Thus the electronic structure calculation method that can deal with magnetic
field and relativistic effects simultaneously have not yet been developed so far.

In this study, the relativistic TB approximation method is newly developed. This new
method is applicable to actual materials immersed in the uniform magnetic field. This is
hereafter referred to as the magnetic-field-containing relativistic tight-binding approxima-
tion method (MFRTB method). In the MFRTB method, both magnetic field and relativistic
effects are taken into consideration by treating the Dirac equation for an electron that moves
in both uniform magnetic field and periodic potential of a crystal.

As mentioned above, the development of the MFRTB method is the first thing to be
done for the purpose of revealing the mechanism of the elastic softening and its suppression
observed in the boron-doped silicon. In addition to the above application, the MFRTB
method may have another interesting applications, because this method may become a use-
ful first-principles calculation method that enables us to describe the physical phenomena
observed in a magnetic field. In this study, we use the MFRTB method to describe the de
Haas-van Alphen effect (dHVA effect) [29-31]. In what follows, I explain the reason why
the dHVA effect is an interesting target of the MFRTB method.

The dHVA effect [29-31] is an oscillatory behavior of the magnetization as a function
of magnetic field. Measurement of the dHVA effect are widely used to probe the geometry
of Fermi surface, the cyclotron effective mass and the scattering lifetime of the conduction
electrons [32]. The magnetic oscillation was first discussed by Landau [33] independently
of the experiments by de Haas and van Alphen. In the formulation by Landau, the oscillatory
behavior of the magnetization is described by means of quantized energy levels (Landau
levels) that are obtained by solving the Schrédinger equation for a free electron in the uni-
form magnetic field [33]. However the formula cannot explain the dependence of the mag-
netic oscillation on the direction of magnetic field that is experimentally observed [34]. This
is due to an oversimplified argument such that the characteristics of individual metals are
not taken into consideration [34].

More realistic theory of dHVA effect was developed by Onsagar in 1952 [35] as well
as by Lifshitz and Kosevich in 1956 [36]. The latter is called Lifshitz-Kosevich (LK) for-
mula and is recognized as the standard theory for the dHvVA effect [32, 34]. The LK formula
is based on the assumption that the orbital motion of electron is quantized even when the
magnetic field is applied to the crystalline solids. This quantization is derived by using both
the Bohr-Sommerfeld quantization rule and the semi-classical equation of motion for the
Bloch electron in the presence of uniform magnetic field [32, 34-36]. Corresponding to the
orbital quantization, the energy levels of the electrons are also quantized. In LK formulation,
the dHVA effect is explained from such quantized energy levels. When the quantized energy
levels cross the Fermi surface by increasing the magnetic field, every time one energy level
matches with the Fermi energy, one oscillation of the magnetization is produced [32, 34-
36]. The LK formula is commonly used in estimating the extremal cross-section of the Fermi



surface, cyclotron effective mass and scattering lifetime of electrons from the experimental
data of the dHVA effect [25, 26].

As mentioned above, in the LK formula the Bohr-Sommerfeld quantization rule and
the semi-classical equation of motion of Bloch electron in the presence of magnetic field are
used to achieve the quantized energy levels of the electron [32, 34-36]. On the one hand, of
course, it would be desirable to get the quantized energy levels of the electron by solving
the Schrodinger equation or Dirac equation for an electron in both periodic potential and
uniform magnetic field [34, 37]. However, unfortunately, it has been difficult to solve them
directly [4, 37]. Since the MFRTB method is the first principle calculation method that is
applicable to calculate the electronic structures of various kinds of realistic materials im-
mersed in the uniform magnetic field [38], the MFRTB method is expected to describe the
dHvA effect from the viewpoint of the first-principles calculation. This is the reason why
the alternative expression of the dHvA effect is an interesting application of our MFRTB
method.

In this work, the MFRTB method is applied to the simple cubic lattice immersed in
the uniform magnetic field. It is shown that the dHVA effect can successfully be revisited
by means of MFRTB method. Also, we discuss the validity of LK formula by comparing
the period of the magnetic oscillation obtained by the MFRTB method with that calculated
on the basis of LK formula. Furthermore, it is shown that additional oscillation peaks, which
cannot be predicted by the LK formula, appear in the magnetization.

This thesis is organized as follows. In Chapter 2, the relativistic TB method for zero
magnetic field case is described as the preliminary discussion of the MFRTB method. The
relativistic version of the Slater-Koster table, which is used in calculating the relativistic
hopping integrals for the zero magnetic field case, is presented in this chapter. Next, the
formulation of the MFRTB method is presented in Chapter 3. It is shown that the magnetic
hopping integrals are approximately expressed in terms of both relativistic hopping integrals
for zero magnetic field case and magnetic-field dependent phase factor. The application of
the MFRTB method to the two dimensional square lattice is discussed in Chapter 4. By
comparing the present results with the Hofstadter’s one, the validity and advantages of the
MFRTB method is presented in this chapter. The application of the MFRTB method to a real
material is described in Chapter 5. The electronic structure of the crystalline silicon im-
mersed in a uniform magnetic field is revealed by means of the MFRTB method. Depend-
ences of energy spectra both on the magnitude of the magnetic field and on the wave vector
are discussed in this chapter. In Chapter 6, the MFRTB method is applied to a simple cubic
lattice immersed in a uniform magnetic field, in order to show that the dHvA effect can be
revisited by means of MFRTB method. The validity of the LK formula and additional peaks
that are not predicted by the LK formula are also discussed in this chapter. Finally, the con-
cluding remarks of this thesis are given in Chapter 7.



Chapter 2

Relativistic TB approximation method for zero
magnetic field

2.1 Matrix elements of Hamiltonian

The Dirac equation for an electron in periodic potential is given by [39]

HTa,k (I’) = Ea,kllla,k (I’) (21)

With

H=ca-p+ﬂmc2+ZZVa’(r—Rn—di), (2.2)
R, i

where m and ¢ denote the rest mass of electron and velocity of light respectively. Similarly
a=(a,a,a,) and f stand for the usual 4x4 matrices [39]. In Eq. (2.2) V, (r — R, —d,)
is the scalar potential caused by the nucleus of an atom «a, located at R, +d,, where R, and
d, denote the translation vector of the lattice and the vector specifying position of the an
atom a,, respectively. The subscripts « and k of the four component eigen function

¥« (r) denote the band index and crystal momentum, respectively.



¢:2JA/I (R, +d,)

Vai(r - Rn - di)
(a) H
(b)

Fig. 2.1 (a) Crystal structure and (b) Relativistic atomic orbital @, (R, +d;) of an
atom aq; .

Similarly to the non-relativistic tight-binding (TB) approximation method, ¥, (r) is ex-

panded by using the Bloch sum of the relativistic atomic orbitals as the basis functions. We
have

¥ )= b, Bl (r), (2.3)

nl/M i

where b7}, is the expansion coefficient, and B/, (r) denotes the Bloch sum which

is given by

a; 1 ik- +d; a,
Bnl’lll\‘/[ (l’) = ﬁ Ze i dl)¢nz'JM (I" - R)z - dz) s (24)

a

where ¢, (r) is the relativistic atomic orbital of an atom a,. In Egs. (2.3) and (2.4),
n, {, J and M are the principal, azimuthal, total angular momentum and magnetic quantum
numbers, respectively. The number ¢ is related to parity, which is conserved in the atomic
system [39]. The relativistic atomic orbital obeys the following Dirac equation

[ca-p+pmc” + v (1P (1) = Ens Prins (7)., (2.5



where &;,, denotes the atomic spectrum for zero magnetic field. It should be noted that

@, (r) is generally written by

(2.6)

I (0
P (1) == l:n (r)y 00 :|

iG,;, (r )J’zJ s (0,9)

where F,(r) and G/, (r) denote the large and small components of the radial part of

@ (r) respectively. Similarly, y;’,(8,¢) is the spinor spherical harmonics [39]. From Eqs.
(2.1),(2.3) and (2.4), we have

HZ zzbfﬂjwz(r)elkw ) :fJM(r R —d)=EFE, Zzzb:ﬂ;\{z(")emm ) :Ul/l r—R,—d).

ntJM i R, nlJM i

2.7)

Multiplying on both side of Eq. (2.7), by @/, (r —d i ) and integrating it, we get

Z Zzb%f z(r)eik'(Rﬁdi)_[(p:’lé'J'M'(r _dj)THq):!ﬂJM (r—R, _di)ds" =FE, Z Zzbnaﬂf’\/[ ()

ntJM i R, aldM i R,

x @k Ri+d) I Dm0 =d ) @i (¥ =R, —d)d’r (2.8)

Let us define the relativistic hopping integrals as

aa

Ly lIM (Rn + di o dj) = J‘(DJZ/C’J’]LI’ (r o dj)TH¢naéJM (r o Rn o di)d3r . (2-9)
We assume that ¢, (r — R, —d,) is sufficiently localized around R, +d, so that it satisfies
I(”:?JM (r—R,—d, )T(pij’JM' (r—R,—d, )d'r = O va r, d, Ot e n (2.10)

By using Egs. (2.9) and (2.10), Eq. (2.8), becomes



ik-(R,+d;) ;4 k ik-(R,+d;)
ZZ{Z l " tn// Mn//'M(Rn_'_d d )} n/JlWINE zzb:UMtz : " (5n(JM n/JM(S R,+d;d;*

ntJM i R, wlJM i
(2.11)

Rearranging Eq. (2.11), we have

Z Z{Z R ) :(’aJM ,n/fJM(R +d d ) E 51(/1M n(JM§ }b:u’;ul ~0. (2-12)
ntJM i
Let us define the matrix element of Hamiltonian by

H(n'/.'J'M')j,(n/.’JM)i (k) = Z e )t:]/aJM nlJM (Rn + di - d])' (2'13)

RH
Then finally, Eq. (2.12) becomes
ZZ (n'CJIM")j, (nCJW)z(k)erle ~E, 5}1(JM 11C]\/[51jbna&/k’\/ll‘ (214)

nlJM i

It should be noted that the matrix element of Hamiltonian defined in Eq. (2.13) is hermite.
This fact can be shown in Appendix A by using the property of the relativistic hopping
integral that will be discussed in Sec. 2.2.3.

By solving Eq. (2.14), we can get the eigenvalues E, and eigen functions ¥, (r) via Eq.
(2.3) for each k. In order to solve Eq. (2.14), we need to calculate the hopping integral

t:/(,‘f}M,M,M (R,+d.—d)). In the subsequent sections, I explain how to calculate

s (R, 4, —d).

n't' l’\/[ lIM

2.2 Relativistic hopping integrals

Let us calculate the relativistic hopping integral 75, ..., (R, +d, —d;) in the following

conditions:

1. R, =0 and d, =d,

ii. R,#0 ord #d,



2.2.1 Relativistic hopping integral in the case of R, =0 and d,=d,:

In this case, Eq. (2.9) becomes

t:’j;.}M’,nUM (R, +d, — d»/) = 7[{0:'/2’17\4' (r— dj )T {Ca P+ ﬂmcz + Z z Vaz (r—R, _dj )} Poing (1 — dl.)d3r
R, J

= [ @l (r=d ) {ca- P+ fmc +V, (r=d)} 92y (r—d )d'r +

J.¢:/Z'J%f'(r_d&/)3r{ Z ZVa (F_Rm _di’)}q):;JM (r—dz.)aﬁr.

oy
R, #0 i'#i

Substituting Eq. (2.5) in the first line of above equation, we have

a;4a; —— i il
iy e (R, + 4, _dj) = gnQCJ(Sn’C’JM’,nUMéj,i + j(pjc'J’M (r—d)'{ Z z Vak (r-R,-d,)}
R %

(R, +d, #d,)

x@h  (r—d)d’r (2.15)

This second term of Eq. (2.15) denotes the energy of the crystal field. Since the relativistic

atomic orbitals ¢, ,,,.(r—d,) and ¢, (r—d,) are localized around r =d,, we can reason-
ably approximate V, (r— R, —d,) by the constant value at r =d, in the integral. Due to the
orthogonality of ¢, (r—d) and ¢¥ .  (r—d)) for (n', (', J', M"Y #(n, (, J, M), the

above integral vanishes under this approximation. Therefore, the energy of the crystal field
is reasonably approximated by

I(p:{c'J'M' (r—d)'{ Z Z Vo (r =R, —d )y, (r—d, )d'r e s AE Ly (2.16)
(Rf"idk ¢l:l,)
with
Agna& = J.CD:ZIM (r— di)T{ z Z Vak (r—R,—d, )(05211\4 (r— di)dsr‘ (2.17)
R, k

m
(R,,+d) #d;)

Substituting Eq. (2.17) into Eq. (2.15) leads to



b on (R, +d; = d) = (&, + AZ0)8 0 e 2.13)

n'('JM' nlJM

2.2.2 Relativistic hopping integral in the case of R, #0 or d, =#d,:

In this case, Eq. (2.9) becomes

aa;
tn'/C'J'M’,nCJM (Rn + di - dj)

V,(r=d)+V, (r—R, —d,-)} V,(r=d)+V, (r-R, ~d,)
: _ : Ll _ :

= J(/’SQW(V ~d ) {{ca- P+ Bmc* + 5 :

£ Y 2V, (1= R, =)} @l (r =R, —d)dr

, s
(Ry20) i'#0
(Ry#Ry) j#i'

| « |
= qu)n'jl"JMf(r _'dj )T {Ca P+ ﬂmcz + Vaj ('1/' _dj)} (/0112’.11\1 (,1/' - ‘R‘n _di)d3r + EI?M'%TM'('V _d,/)T

. ,(r—d))
X{Ca ‘I)-{_Igl/nc2 + Vai (r _Rn _dl)} gD:éJ}\l(r - Rn _di)d3r+J‘wn'%'fM'(r_dj)f {%—i_

K;(r_Rn_dl) a; a;
‘ 2 }¢n2ﬁ\l (lﬁ_Rn —d[.)d37"+ Z ZJ.gDn’IC'JM’(r_dj)TVai (r_Rn' _di')
Ry It

(Ry#0) 1'#]
(Ry#Ry) j£i'

x@ ., (r—R, —d)d’r (2.19)
Taking first integral in the right hand side of Eq. (2.19), we have

e .
3 [ @l (r=d ) {ca- P+ pmc® +7, (r=d )} gy, (r— R, —d)d’r

l_. 1 4 4
==&y J-¢11’IC’J’M’(F_dj)T¢r12JM (r_Rn _di)d3r

5 ntJ
= 0,

where we use Eq. (2.10). Similarly second integral in the RHS of Eq. (2.19) is also zero due
to same reason Eq. (2.10). The fourth integral in the RHS of Eq. (2.19) is the three central



integral. Neglecting this integral because of very small numerical value in comparison to
other integrals. Finally the remaining integral is two-center, which is given by

v, (r—d)+V,(r~R,~d)
2

t:;//.['z}'/\f',nﬂ‘]f’\/{ (Rn + di - d/) = J‘q):'fﬂ"]'}\/[’ (r - dj )T { } ¢:2JM (r - Rn - di )d3r'

(2.20)

Changing the variable r —d; =r" then, we have

V,(r)+V, (r—=R,—d; +d))

a;a; _ a; + a; 3
tn'/f"/'/\W,lz/fJ/\/I (Rn + di - d]) - J‘q)n'/:'J'M' (l’) { }q)nl,’JM (r - Rn - di + dj )d r.

2
(2.21)
Substituting Egs. (2.18) and (2.21) into (2.13), we get
H(n'(J'JM’)j,(nMM)i (k)= (‘5_':(,] + Agna/f'}di )(Sn’ﬂ.'.lM’,nU]\I(Sj,i + Z (1- 5Rn ,oé‘j,i)eikA(R” e
R’l
x t:;i’t:QM’,lzLLM (Rn + di - d‘j ) (222)

2.3 Properties of relativistic hopping integral and TB parameters

Similarly to the non-relativistic hopping integrals, the relativistic hopping integrals has same
important properties. In this section, we summarize the properties. The relativistic hopping

integral 2 0 (R, +d; —d ) has the following properties-

Property-l t:’f;M',rrUM Rn + di B d)) = t:?j'i[,n'f']M' {_(Rn + di - dj )}* (223)
Property-ll t:'j;l}M',anl\l (Rn + di - dj) = (_ 1) - t:”?’?M',nCJM (Rn + di - d/ )* (2‘24)

Property-I guarantees the hermicity of the Hamiltonian matrix [see, Appendix A] and the
property-II will be used later. As shown in the next section (Sec. 2.4), the

t g mene (R, +d; —d ) can be expressed in terms of several relativistic tight-binding pa-

rameters, similar to the case of non-relativistic hopping integral [40]. With the reference of

10



non-relativistic case [40,41], the relativistic TB parameter is defined as the relativistic hop-
ping integral between two sites that are placed on the z-axis. If atoms a; and a, are placed

at the origin and the distance| R, +d, —d; | away from the origin, respectively, then the rel-

ativistic TB parameter is written as ... .., (R, +d,—d ;le.), where e denotes the unit

vector in the direction of z-axis. This special type of relativistic hopping integral has the
following properties in addition to properties I and II.

PrOperty-III tlj'/ﬁ.;M’,n[JM (| Rn + di - d_/‘ l ez) = t:’/i;M’,n(JM (| Rn + d[ - dj | ez )5M,M' ’ (225)
Pl‘Opel‘ty-IV t}f’f}'*MﬁllJ*M (| Rn + d[ _dj | ez) = (_1)J+J e t:'/i.}"’l//.nt'./f\/ (‘ Rn + d[ - d/' | ez)'

(2.26)

Due to properties III and IV, the relativistic TB parameters can be classified by
nn', 0,0, J,J and | M |. If we denote the relativistic TB parameters as

K;iai (n%r‘]r’ nﬁJ)lMl = t:’/(’['l.}’M',nCJM (| Rn + di _dj | ez) ?

a.: i Va (r)+Va’(r_|Rn_dl+d]|ez) a 3
= J.(Dn'jfsz'\ (r) - 5 ' Pt (r—| R, —d, + d»/ le)dr, (2.27)

where the subscript d of K, (n'('J',nlJ ) is the parameter that shows the dependence of
the relativistic TB parameter on | R, +d, —d, |. Specially, if | R, +d, —d | is equal to the

distance between the nearest neighboring atoms, second nearest neighboring atoms, and so
on, then d takes 1,2,------ respectively. In the case where ¢ takes the values of 0 and 1, we

have ten kinds of relativistic TB parameters, i.e.,

a.a; a.a ’ a.da; 12 1 3 a.a. ’ 1 l
K, n'Ol,nOlj , Kd“(n 01,nllj , Kd“(n 0—,n1—j , Kd”(nl—,nO—j ,
2 1/2 2 1/2 2 1/2 2 2 1/2

a.a. a.a; ’ a.a ’ 1 a.a , 1
K, n'll,nllJ , Kd“(nll,nlij , Kd"(nlé,nO—) , Kd”(nlé,nl—j ,
2 2 1/2 2 2 1/2 2 2 1/2 2 2 1/2

K" n'13,n1§J . Ky (n’li,nléJ :
2 172 2 3/2

In the case of monoatomic crystals such as crystalline silicon, the relativistic TB parameters

11



are of course, independent of @, and a;. Therefore the relativistic TB parameters can be
denoted by K, (n'C'J',nlJ),,. Due to the property-1I, [Eq. (24)], K,(n'C"J",nl]),, and
K, (nlJ,n'l'J"),, are not independent of each other. Therefore we have seven kinds of rel-

ativistic TB parameters in this case. i.e.

aa; ’ aa. ' a.a ' 1 a.a ' 1 1
Kd-”(n Ol,nOlj , de’(n Ol,nllj , Kd“(n O—,nlgj , Kd“(nl—,nl—j ,
2 2 1/2 2 2 1/2 2 2 1/2 2 2 1/2

Kj"ai(n'll,nlgj , KZ’ai(n’lé,nléj , K:;‘"a'("'lg,nlgj :
2 2 1/2 2 2 1/2 2 2 32

In order to express K, (nlJ,n'l'J"),, by using the large and small components of the rela-

tivistic atomic orbitals, we introduce the following notations:

2.4 Relativistic version of the Slater-koster table

As mentioned before, £,/ o (R, +d, —d ;) can be expressed in terms of several

relativistic TB parameters K, (n'('J',n(J),,. This fact is similar to the case of non-rela-

tivistic hopping integral. In the case of non-relativistic hopping integrals, Slater and Koster
[40] have given a useful table in which the non-relativistic hopping integrals are expressed
in the linear combination of several TB parameters. This table is sometimes called Slater-
Koster table. In this section, we upgrade the Slater-Koster table to the relativistic version.

The spinor spherical harmonic y}; (0,4) is

2 ‘

J-M
V5 9]

v (6,¢) =1 " _

J—M+1 (2.28)
R |

for J=0——

J+M
Y L(0.9)
2 for J=0+—

12



where YC y (0,¢) and YC , 1(0,9) are the spherical harmonics. From Egs. (2.6) and (2.28),
M— M

. : | R
the four component relativistic wave function for J =(+ 3 is given by

o [J+M
R e

o [T-M
| B 7,1 09)

q)ZEJM (r)= ; T 11 > (2.29)
. ~a, —M +
~iG Y 10.9)
2(] + 1) 2J-0M—
J+M+1

_lGnéJ 2(.] + 1) )IZJ—/:,M+lZ (99 ¢) |

1
Similarly, for J =(— > we have

E (V)myvewﬁi ©.9) (2.30)

1 (6,9)

2J LM

a 1
gonéjM (l") =
r

iGN, 1 OF)

Substituting Eq. (2.29) or (2.30) into Eq. (2.21), the relativistic hopping integral can be writ-
ten. There are four cases, i.e.

1. J'=ﬂ’+l and J=€+l
2 2

11. J'=ﬁ’+l and J:K—l
2 2

iii. J’zf’—l and J=€+l
2 2

iv. J’zf’—l and J:E—l.
2 2

13



The relativistic hopping integral for the case (i) can be written as

tn]CJM M (Rn +di _dj)

e 1 . V) +V,(r=R,—d;+d)| [T+M ., ;
_'[ 2J' EF"W(I) YﬂﬂM’_;(H,gb){ 2 J 27 ”f'/(’é'/ﬂ)Yﬂ»M_%(Himﬁ¢il’n)d’

V, )4V, (r—R,~d,+d))| [T
2 2J

1 a,» ” * *
2]' Flt’ﬁ’J’ (’) Y/f’,M’+% (0: ¢){

XF:ZJ (7’;]” )Y l ( ijn ¢yn )d3r

oSt i, o) v 0.9) Vo OV, =R, 24+ d)
2(J'+1) pr, UM e 2

ijn
J_M+1 . a; . 3
X{_JWZGMJ(’W:)}Y LM ( z/n’¢z]n)d r

J+M'+1 1 (. < V,()+V, (r-R,—d +d))
e [iGL,f Y(0.9)] d
2(J +1) 7"}’;].” '+, M +5 2

J+M+1 »
X{/m nu(,,n)} 1 O @y)dr (2.31)

Similarly the relativistic hopping integral for the case (ii) can be written as

n(J\/In(JM(R +d d)

JEM 1 . Vo(r)+V, (r=R,—d,+d;)| []_M+1
— —Fu.(1)Y (0,4)]—
2J" o, e 2 2(J +1)

XF;:ZJ (r;jn )Y oM ljn b ¢1jn )d3

VS Vo) +V, (r=R,—d,+d))| [j4+M+1
+j ——FL ('Y (0,9)
2J" o, oM 2 2(J +1)

14



XF;:ZJ (r;jn )Y oM l/}'l H ¢l]}1 )d3

s V:)(r)+l/(,(r_Rn_dl+d)
R it —{iGl, ) Y0 = G )
2, U e ? “

XY ( yn’¢l]n)d r

1=1,M —

N i, ) v @ ¢){ aj(r)%'(r_Rn_dﬁdj)}

2J'+1) i :
M. ., 3
X {\/72—'-]1 Gn[ﬁ] (’;]ll )} Yv//LLMJr% (91/,«, ’ ¢1]n )d r (2.32)

The relativistic hopping integral for the case (iii) can be written as

tnj[JM nliM (Rn +di _dj)

J-M'+1 1 . L, Vo, () +V, (r—=R,—d;+d,)| []+M
=[5 FUL (YY" ,(0.9)
2(JJ°+1D) rr, oM 2 2]

XE:ZJ (r;]n )Y oM ljn b ¢ljl’l )d3

J+M'+1 1 . V,r)+V, (r—-R,—d.+d))| [j—Mm
+j : EL(rY (0,9)] 2 /
2(J'+1) 7, O 2 2J

XE:ZJ (’/Z/n )Y 1 ( yn’¢yn )d3r

J M 1 (. . Va/(r)+Va’(r—Rn—di+dj)
2.], _{lGn'/;'./'(r)} Y’,l 1(05¢){ 2

J-M +1 3
X{/m nu(,ﬁ,)} i 1(,,no¢l,n)dr

T-M 1 ( . < . V, r)+V, (r=R,—d, +d))
2", {ZGMJI(F)} Yﬂ.'l,M'%(e’w{ 2

15



J+M+1 N
X{/m nu(l,n)} . Z(Qf,z,fi%;n)dr

(2.33)

Finally, the relativistic hopping integrals for the case (iv) can be written as

tnj(JM AlIM (Rn +di _dj) =

J‘ J-M+1 1
2(J'+1) r Y,

J+M 1 (. *
+J‘\/ 2+ 7 a{lGn;’w(i’)}

/J -M" 1
+J‘ 2J'

nﬂJ (7')

yn

n‘fzgl(r)*g’iM,l<e,¢>{
2

V,(n)+V, (r—R,—d,+d))| []-M+1
2 2(J +1)

XF;':ZJ(’;]V:)Y M l( yn’¢yn)d3r

\ V,(r)+V, (r—=R,—d,+d))| | [j+Mm .

Y_ M’—;(9’¢){ 2 2J lG J(}:jn)

+,[ J+M'+1 1 Ef,’g/(l’)*Y*
2(J'+1) oy, O

o (a,qﬁ){

C—I,M—f

V,(r)+V, (r—=R,—d,+d;)| []+M+1
2 2J+1)

XF;;ZJ (r;/n )Y M I ( z/n’¢l}n )d3r

V;( )+Va.( _Rn_di+d/) a
,+|(9,¢){ - 'rz ' H./ 57 ZG,,U(I,,,)}

XY ( ijn? ¢lj}’l )d3
2

XY ( ijn? ¢ljl’l )d3
2

(2.34)

(=1 M +—

where the arguments (7;,,6,,,4,,) stand for the polar coordinates (r — R, —d, +d ). By us-

ing Egs. (2.31), (2.32), (2.33) and (2.34), we should show that 7, .., (R, +d, —d;) can

be expressed in terms of K, (n'('J',nLJ),,. Let us derive some relativistic TB parameters:

11 11
(1) Relativistic hopping integral for the combination of (n'OEEj and (nOEEJ

atomic orbitals:

16



Using Eq. (2.31), we have

L (R+d~d)

n
22 22

(+V, (r-R,—d;+d))|
- - : F (r;Jn)Y()O( z]n’¢5ljn)d3r

—f——ﬂ ()%J@@{” :

V,r)+V,(r-R,-d +d)) ,
Yo(0,0)— — —¢" 1(F,,,,)Ylo( B> Py T

+J.—G1

2

(r)+Val(r—Rn—dl.+dj) . X
: 2 . G l(njn)yzl( ljn’¢ljrl)d r. (235)

+I—G1

2

RATCA ¢){ -

Let us consider the case in which the atoms are placed along z-axis. In this case, the relativ-

n'0
22 22

from the definition [Eq. (2.27)]. Then we have

K" (n’Ol,nOlj
2 2 172

—J——F1(>n¢9m{

istic hopping integral ¢ i 11(|R +d,—d,|e.) is just equal to K, (n’O%,nOlj
1/2

Fa (ljn)YOO( zjn’¢)d3r

L ()Y, (r=|R,~d, +d, |e)}
2

( )+V, (r—|R,—d +d,|e
2

2)
T2 I_G 1() 10(9 ¢){ }Ga1(yn)Ylo( yn’¢)d3r

()+V(—R —-d, +d,
+—j——G ()lmew{ - -

}G:;l(rijzn) ! l,n,¢)d3r,
2

1
o 2

= (ssa )"0 +1( ppo) U +3( o) (2.36)

(n'OE,nOE) 3 (n'OE,nOE) 3 (n'OE,nOE)
with
V. (r)+V, (r—|R, —d.+d. |e.)
L d.a;.a; a a; n i - a
(SSG (nO nO )_J-_F 1( ) 0(9’¢){ 2 : F (l/n) 0( 1/n’¢)d3r’

(2.37)
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Sdaa ()+V(_|R d+d| ) 3
(ppo (MO)‘I—G ) loW){ : 5 - }G%(Unmo( 0, P)dr,
(2.38)
Sdaa a‘( )+I/a( _|Rn_di+dj| z) a 3
(pp (n0 nol )_I_G 1( ) 11(0 ¢){ ; - - 9 i }G 1(Un)Y11( yn’¢)d r.

(2.39)

. . Ld.a;.q S.d.a;.a; Sd.a;a . .
The subscript L and S in (ssa) A ( ppa) 7 and ( ppﬂ') " indicate that the
(n'0=,n0=) (n'0=,n0 (n'0=,n0
22 2

integral comes from the large (or small) component of the relativistic atomic orbital. The
superscript d has the same meaning as that mentioned above. By convention, the label ¢
(or () is denoted by s, p,d,--+------for £’ (or() =0,1,2,------------respectively, and the la-

bel M is denoted by o, 7, 5,-++-------for M =0,%+1,£2,---------respectively. It is clear
from Eq. (2.36) that g« (n'ol,nolj contains the contributions that comes from the
2 1/2

large and small components of the relativistic atomic orbitals. By using the cubic harmonics
(real harmonics) [41] instead of spherical harmonics, Eq. (2.35) can be written as

s g (R+d=d)

n
22

Fa (I/;]n )C ( ijn? ¢z/n )d3r

L V. (r)+V. (r—R,—d +d )
=[—F" 0y Clo.p{— ’
I, 10

2

1 1 N . Va,(")"‘Va,("_Rn_di"‘d;) . 3
1 LG ; G 0,)C 0"

v (r)+Va(r—Rn—di+dj)}

+2 j—G 1 ){ jg[cx(a‘z’)”cy(e’@]*}{ N

xG” (r,,n{ 100, +iC, <0,,7,¢,,n>]} r, (240)

where C (0,4), C.(0,¢), C,(0,4) and C_(0,¢) denote the cubic harmonics. The defini-

tion of which are given by Appendix B. Rearranging the above equations, we get

t/oll ]I(Rn+di_dj)
22"

18



—j—F () C0.9)

l]n

Fa (l/;]n)c( l]l’l’¢ljn)d3r

{ L (+V, (r—R,—d, +d )}
2

I—G (Y CO.9)

zjn

“ (}/;jn)c( z]n’¢1/'n)d3r

()+V(r R —d. +d )
2

V(r)+V(r R -d +d))

Ll 0 .
T L) G (). Opo )

V,(r)+V, (r R —d. +d))

a; J

i l a * *
-3 | ——G",()'C,(0.9) G 1(,m)c (O )
ijn 2

v, (r)+V(r R, d+d)

(W) (Un,¢u.n)d3r (2.41)

. 14 v, R —d +d
+§J‘LGa,’1(r)*Cx(9,¢)*{ L (r : j)}G (13,)C, (0, 4,)d’r
0

le 1 o
+—[—G“ (»)C.(0,
] el Gl

Now applying the non-relativistic Slater-Koster table [40] to each term of the RHS of Eq.
(2.41), we have

055 2
Ld,a;,a; 2 S.d,a;,aq 2 S.d,a;,a 2 S.d,a;.a
=(ss o+ +—(1 +—x
( )<n'ol,nol> 32 (PP )<n'olnol) (1-z )(PP )(n'of ol "3 (PP )(n'ol, oy
22 272 2 2
d ; 5a; S.d,a;.aq; l
+=(1-x° o+ —x s i z
(1=x")(ppr) ook 3 J{(pp ) oLt (pp7) Ol,nol)} 3
S,d,aj,ai S,d,aj,a,- 1 2 Sda ,a; S,d,aj,ai
— +_
X[(ppo-)(n'ol,nol) (ppﬂ)(n’ol,nol)} 3y (pp )( 07 07) ( R4 )(pp )( 0l ol
22 272 22
_(SSO_)L,d,aj,al +l( O_)S,d,aj,al 2( )S d,a/,a‘ (2 42)
B (n'O%,nO%) 3 pp (n'O%,nOz) 3 ppr (71'0%,)10%). '

Comparing Eqgs. (2.36) and (2.42), we get
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4 (R, v —d,) = K”('o%,nolj . (2.43)
1/2

0,, -

(2) Relativistic hopping integral for the combination of (n'O%%j and (nl%%j

atomic orbitals:

From Eq. (2.32), we have

22 122 ’ i !
1 e 1 _Vaj(r)+Val_(r—Rn—dl.+dj)_ .
—ffgﬁh;(” Yo,o(ea¢)_ 5 | %(ry,,)YlO( 6,,,¢,,)d’r
Lpd e o V@4V, =R —d +d))]
R R e e LA AL LA A
ijn L _

(2.44)

According to the definition of relativistic TB parameter [Eq. (2.27)], we have

aa( o1 1
Kd”(nO—,nl—)
2 2 1/2
1 1 a; Va_(r)+Va,(r—|Rn—di+dj|eZ)
= [ —F" (") Y, (0,4)| :
ﬁj% R ¢){ :

F (rl,n) 0(0;,.9)d’r

V, ()4, (= |R,~d,+d,|e)]
- ' : G (Un)Yoo( 6. p)d’r

1 1 g
I Gaj *Y* 0’
'\/§ J. r r;‘jn n’O% (7") 1’0( ¢)|: 5

1 L.d.a;,a Sda ,a;
= ——(spo)" 2.45
\/g(sp )('1'0%,"12) \/_(p ) nl— ) ( )

By using the cubic harmonics, Eq. (2.44) can be written as

L (Rd—d)) =

n
22’ 22

20



Fa (l;]n)c( l/n’¢ljn)d3r

v, ()47, (r—R,~d, +dj>}

1 1 a; * *
——|—F" (r)y C (6,
ﬁj% (6 ¢){ .

G\ (13,) C(6;,, 4, )d’r (2:46)

()+V(r R —d +d))
T

~5loc mcww{

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.46),
we have

Z(Sp )Lda .4 Lz(psa)s’d’?/’”fl
\/— Al = \/g (0 1)

=)L (o D ——(pso) e (247)
\/g ) \/g (n02.n)

Comparing Eqgs. (2.45) and (2.47), we get

ta’ail (R +d,—dj)=z aa( '01 llj (2.48)
n'0 2’ 1/2

(3) Relativistic hopping integral for the combination of [n'O%%) and (nl%%)

atomic orbitals:

From Eq. (2.31), we have

tafa; 1 131(Rn +d1 _d])

n'0——

(1)+V, (r—R,—d,+d)) .
\ﬂ—F 1< rY Yoo (6, ¢){ . }F@(U,JYIO( 0,4, )d’r

vV, (r)+V, (r-R,—d +d)) ;
\/7'[_(; l( ) 0(9 ¢)|: - : 2 :|Ga3(’/;1n) 0( z/n’¢1/n)d r

(N+V, (r-R,—d +d) ,
\f I —G e )Y, ¢){ . }G,j;a(n,-,,) (0,,8,)d’r (2.49)
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According to the definition of relativistic TB parameter [Eq. (2.27)], we have

aa ’ 1
K, (n 0—,n1§j
2 2)p

20 1 o, s V, (" +V, (r=|R,+d,—d,|e.)
=\Ef7Fn,;1(r) Y(),0(9>¢){ - d 3(U,,)z0( 6. 9)d’r
ijn 2

2
V,()+V, (r-|R,+d —d,|e.) ,
\FJ—G (0 0<0¢>[ : — }G%(n,n) 0o DAr
V,(r)+V, (r-|R,+d,—d,|e.) X
\H—G (00 <6¢){ : — }G“g(n,n) (6. 9)d’r

\[(p)”” ,/ (pdo) "1, \/7(17 7). (2.50)
272

By using cubic harmonics, Eq. (2.49) can be written as

tdl:i 1 31 (Rn + d d )

o e V, ) +V, (r-R,—d,+d,) | | 3
:\/EJ‘LF,/I(F) Cb(9,¢)|: j | :|F S(Y;IH)C( ’/"’¢l/n)d r
r’:’jn nOE 2 nl
()4, (=R, ~d, +d) 3
\/7.[7% 1( ryCc, ¢){ 2 }G:b(r'fn)cazz 20, 8;,)d°r

\f j—Gn .(){ 2[Cx<9,¢>+icy<0,¢>]}

yn

{Va (r)+V, (r—R, —di+dj)}
2

XG”3( ijn { [Cvz( Un7¢yn)+lc ( Un’¢ljn)]}d3r (251)

Rearranging Eq. (2.51), we have
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. V;_(r)+Va (r—Rn—dl.+d.)
= 2ILI“”I(r)"C;‘(@,qzﬁ) : ' - F“ (r YC.(6, .4 )dr
3 r’/;jn n,OE l]n ljl’l ljl’l

2
(1)+V, (r-R,—d, +d)) .
(I—G [0V C, ¢)[ . } G301 oz p Oy’
V. (r—R —d.+d,
+% LG 1( )C (9 ¢)|: a; (I‘)+ a; (r2 n 1+ _/):|C;GL3(’/21’1)(:322 rz( U,l,¢y,,)d3r

T o e O Rd )] .
+1 EJ‘%G’{O;(”') Cx( ’¢) 5 Gn%(r;/n)cyz(al/n’é/n)d

. 1 1 a; * * _V;/-(r)-i_Val (r_Rn_dt+d/)_ a; 3
_l\/%J‘EG”'O;(r) Cy(€,¢) > G 3(Un)Crz( ljn’¢yn)d 7

()+V (r—-R,—d +d)) \
\/7_[—G 1( ) C:(, ¢){ }GQ(W)CW( 0, 4,)d’r

2

(2.52)

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.52),
we have

2 daa, 2 » B
:\/;Z(Spo-)fn'dO;jlll;) +\/;{Z|:Z __(-x +y )i|(de')Sdl y + 3Z(x +y )(pd;z’)f d()i

Loy
2"

15 (V3P 2(pd) 0, +21-20) (pm) 7, }g W30z (pdo) (17 -2

0zl 04,012 nld)
") (o) 0

x(pdﬁ)?iaf)} '\/;{\/gxyz(pda)“a: 2xyz(pd7z)5daa } \/:{fy z(de')Sda “3
2 2 2

nl>)

+z(1-2y )(pd;z)f“ % }

{\[(p ot \/7(19 S \f(p )f‘f)l)} (2.53)

Comparing Eqgs. (2.50) and (2.53), we get
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n
22 22

(0 (R, +d—d)) =2 ”“('01 13j . (2.54)
0 2 12

11 11
(4) Relativistic TB parameter for the combination of (n'laa) and (nozzj atomic

orbitals:

From Eq. (2.33), we have

talall Il(Rn+di_d_j)
"5,

V. (r)+V, (r—-R,—d. +d)) .
- l ’ F (l’;]n) 0( ljn’¢zjn)d3r

j—F 0, (0,4” :

l]n
1 4 y* V“/ (r)+V:li (r_Rn_di+d./) a, 3
‘EI? Gn,% (r) X,(0, ¢)[ 3 GHO% ) ¥0(6;,5 )7

(2.55)

According to the definition of relativistic TB parameter [Eq. (2.27)], we have

| 1
Kd”(nl—,nO—)
2 2 1/2
1 | B I/av(r)—i_l/av(r_|Rn_di+dj|eZ)
=——|—F" (r'Y (0, - '
ﬁj% piGR ¢){ .

F (r,,n) 00O, D’

1 1 a. R I/af(r)—i_Va,(r_|Rn_di+dj|ez) ; - 3
-5 | ZGn,%(r) Yo,o(¢93¢)|: 5 Gnoé(lgjn) (6. )d’r

J—(p )(1“;’) \/—(p )(1“5) (2.56)

with

F (l/;jl’l) 0( l/n’¢z/'n )dsr‘

2

5 (r)+l/a,- (r_|Rn _dt+dj |ez):|

(pso) —j—F (T30, ¢){ 5

(nl

By using cubic harmonics, Eq. (2.55) can be written as
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:——J.—-F ( ) C ((9 ¢) F (r;jﬂ)c( U"’¢lf”)d3r

n'l=

{ (r>+V;i<r—Rn—d,~+d_,)}
2

Ll e V,n+V,(r—R, —d,+d))| ;
_EIEG’“;(F) CS(9,¢){ 5 }G (1,0 C(6,,,8,)d’r (2.57)

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.57),
we have

)L,d,a/-,a Sa’a ,a;

__L z(pso z(spo)
,\/5 P (n'l%,no1 \/_ Po (n' l nO )

S.d,a;,a

{f(p )“jj‘j) f(p )mo)} (2.58)

Comparing Egs. (2.56) and (2.58), we get

11
t R +d —d)= n'l—,n0—| . 2.59
o D=k (wign03 ] (259

n'
22 22

11 11
(5) Relativistic hopping integral for the combination of (n'lEEJ and (nlag)

atomic orbitals:

From Eq. (2.34), we have

V, ) +V, (r-R,—d +d;)|
’ I - F (’/;/n) 0( l}n’¢l}'n)d3r

I (.
ol e Fan O V@ ¢>{ :

{ ., (N +V, (r—R, _di+dj):|

fj—F (09

yn

. Fo () 7,160y, ) r
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{ " (r)+V (r—-R —d. +dj)}
R G2y () Yoo Gy )’ (260

4——Gl(naw¢> .

ljn

According to the definition of relativistic TB parameter [Eq. (2.27)], we have

K" (n'll,nll)
2 2)p
1 1 a, Vav(l’)-i-Vav(|Rn+di—dj|ez)

= — _F J 7 *Y* 0’ J i
3jmmmf)la @{ :

F (,,n) 0(6;,.)d’r

V. )4V, (R, +d,~d |e.) 3
AL e}F“@» (G Dy

+j——F O w¢{“ :

Ga ( yn)YE)O( tjn9¢)d3r

2

( )+V (| +di_dj| z)
%——Gl(naW¢{ -e}

Lda ,a;

(m9f”%+@8f”a (2.61)

:_(pp) 1) 1) (1*1)

Using cubic harmonics, Eq. (2.60) can be written as

F (’;jn)c ( tjn’¢yn)d3r

L, N+, (r=R,—d +d )}
2

=—L—%’()cw¢{

201 . Vaj (r+V, (r—R,—d +d))
+§j7F;(){ —[c.o.p+ic, (9¢)]}[ . }

ijn

><F ", { —[C.0,,.4,)+iC,( W,(pw)]}d%

G (V )C(0),.,)d’r (2.62)

ijn

U e [V (D47, (r—R,~d,+d)
ﬁ——Gnvﬂua@[f ,
14 7;‘1‘;1 n 1E

2

Rearranging Eq. (2.62), we have
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% (R, +d,~d,)

n'
22 22

:_y_4r<)cwe@{ Fo (1,)C.(0)nh,)r

ijn

y (r)+V, (r—R,—d, +dj)}
2

V. (r)+V, (r-R,—d +d,) .
- : - F (}/;/n)c ( t]n’¢ljn)d3r

| . a
+—|—F7,(r)C.(0,
3j”ﬁng()x(¢{ .

[V, ()47, (PR, ~d,+d))]
2

RPN
+—[—F", () C.(0.9) Fe (r,,n)C(,,,,,¢,jn)d3r
3%,

7, )4V, (r~R,~d,+d)]
. l 2 : F (l/;]n)c ( l]n’¢lfn)d3r

1 1 a; * *
—i—|—F "7, (r)C. (6,
3L%nmf) 1(6.9)

me+nu—&—¢+4q

Fé (,,l/n)C ( I/n’¢,,»n)d3’”

1 1 a; *® *
+—|—F"7,(r)C (0,
3j”ﬁn@()y<¢{ .

1 . . Vo, ) +V, (r—R,—d +d,) . s
H—— G 0 Cl0.9) . G ()CO BT Q)
ijn 2

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.63),
we have

=—Z (ppa)”“ ”)+ (=2 (ppr)" "’”")+3x (ppo)””f)+ (- x)(ppﬂ)“” )
2
i Ld,a . L.d.a;.a _L Ld.,a _ Ld.aj;.a l 2
+§{xy{(ppﬁ)(n,1 (pp7) IJ 3{96{(1?9190)(”,1 (pp7) 1)} 37
<(ppo) 1")+ (A=) (ppr) i +(sso) 0
2 2
=_(pp )Lda ,a; (pp )Lda/ ai +(SSO_)Sda ,a; (2.64)

l) 2) 1)

Comparing Egs. (2.61) and (2.64), we get
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aa

tblbl 11(R +di_dj):KZf“f(n’ll’nllj . (2.65)
! 2 172

n
22 22

(6) Relativistic hopping integral for the combination of (n'l%%) and (nl%%)

atomic orbitals:

From Eq. (2.33), we have

a;a

(5 (R +d ~d)

22’ 22

\/5 1 . . o V,r)+V, (r-R,—d +d,)
:_TII"V F;'],l(r) }71’0(0’ ¢) : l 2 d 3(r;jil)Y10( yn’¢ljn)d3r
ijn 2

2 Fa (l/;]n)YII( yn’¢1}n)d3r

20 1 o V,)+V, (r—R, —d,+d))| | .
+\/;J.EG"'/1;(F) YO,O(99¢)|: 2 G 3( zm)YO( l/n’¢1/n)d 14

Vel e [V (D47, (r=R,~d,+d)
[ U 'K (0.9)] :
37y, M

(2.66)

According to the definition of relativistic TB parameter [Eq. (2.27)], we have

K:a( 'll nl3j
2 2 172

N
=2 [—F () Y, (0,9)
3 0rn, My

{V(ﬂ+V(| TG DT

L +d,—d,|e.)
e

V2 e [V D4V, (R4 —d )]
[ L 09 f
37 n, 2

3 (l/;jn) Yl 1( ijn° ¢)d3l"

201 . v, (n+V, (|R +d,~d, e, )| .
+\/;J‘ rr. Gn'Jll(r) YO’O(H’ ¢)|: j G 3 (}I;J")Y2 0( yn’¢)d3r
ijn 2

=—£(p )””3+\/_(p ) \f( ) (2.67)

1) (1—]) (1,,
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By using cubic harmonics, Eq. (2.66) can be written as

=——I—F () GO, ¢){ F (5) C. (G, 8 r

L (MN+V, (r-R, —d, +dj)}
2

V, ()47, (r=R,~d, +d))
—I; nl(>{——[c<9¢)+zc<0¢)]}[ — }

XFa (l:jn { I:C ( yn’¢z]n)+lc ( yn’¢1]n):|}d3r

201 a; H— Va_(l')-i-Vai (r-R,—d +d)) .
_\EIFanll(l”) Cs(t9,¢){ J j G 3(W)C e (0,8,
ijn 2

2 3z°—r

(2.68)
Rearranging Eq. (2.68), we have

a; PR VQA(I’)-FVab(I‘—Rn—d[—f-dj) 4
Z—%%ﬁ:m Cog) O 2

2 l/;]n)c ( lj}’l’¢l]n)d3r

:MI_F () CL(0.9)

V. (r)+V (r—-R, —d +d)) .
|: - : d F 3(7/;jl’l)C( yn’¢zjn)d3r

2
ijn
(V. (r)+V, (r—R,—d . +d))] .
i o] S E|F60€, @t i
l]n .
. Fa. *C* 0 Va(r)—i_l/a(r_Rn_dl—i_dj) F C d3
_l o / r 4 - l a }:n ijn? un r
3,\/5-[’,-7;”’ n’]%( ) y( ¢)_ 2 | (/) ( ij ¢/)

1 1 :
+—=|—F",(r)'C.(6, r YC(O. .4 )dr
3 /2 J‘r};’/’n n'%( ) y( ¢)|: l/n) ( ijn ¢1]n)

Vo, @) +V, (r—R,—d +d))
J L 2 J Fa3(

V,(r)+V, (r—R,—d, +d,) X
\ﬂ—G e ¢>{ —— }G“ )C (0, )dF

(2.69)
Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.69),
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we have

ta;fla], s (R,+d,—d))

L.d.a;.q \/_ L.d,a;,a L.d.a;,a;
=——Z( ), l)——(IZ)(pp)(H) 3«/_ (pp)(lil) 3\/—(IX)
x(ppm) \/—{xy{(pp o) ff 5o o 1)} 3\/—xy{(pp o)’ ff 5

(ppm )(Ldl])} 357 (oo )ff“f) 3J‘(l y)(ppr )(Lff 5 \E{zz—%(x%yz)}

S.d.a;.a;
><(Sda)(nl nl )

:_(3 2_1){_g( )Lda 4 £(pp )Lda 4 \/7( Sdu 4 } (2.70)

1) (lnl)

Comparing Eq. (2.67) and (2.70), we get

9, (R, +d, d)——(3z —1)1<“‘( '1l,n1§j . (2.71)
2 2 1/2

" 22 22
ol S s 31 11
(7) Relativistic hopping integral for the combination of nlzz and nOEE
atomic orbitals:

From Eq. (2.31), we have

taja31 Il(Rn +di _d‘,')

n'l
22 22

201 0 Vm(")"'Va,. (r-R —d +d))
:\/;J.rr F;,';z(r) YI’O(H’ ¢)|: : 2 d 1( yn)Y()O( yn’¢tj}1)d3r
ijn 2

T o [V O, (r—R—d4d)]
+\/EIEG’1,;;(’/) ),2,0(09¢)|: 5 G l(r;jn)Ylo( gn9¢,jn)d3r
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2 1 a I Va.(r)"'Vai(”_Rn—di-l-d) .
+ _J'_G;/3(r) },2,1(07¢) J J G (l’;Jn)K]( l]n’¢ljn)d3r (2.72)
ST, M 2

According to the definition of relativistic TB parameter [Eq. (2.27)], we have

K" (n’lé,nolj
2 2 1/2

20 1 o, o V. (r)+V, (r—|R +d.,—d, |e.)
Z\EIWFWF(F) 1’1,0(9,(/5){ - ’ ! F (W)Y 0. 9)d’r
ijn 2

2

V, ()+V, (- |R,+d,~d, |e.) :
fI—G”()Yzo(M){ . }G“ (1) Y06 P r

2
\H—G AORAICED

- By, B sz, B, o)

By using cubic harmonics, Eq. (2.72) can be written as

[ (r)+V, (r=|R,+d,—d, e,
2

}G"g(w)Yn( 0,-Od’r

taa31 Il(Rn +di_d_j)

. . V. (rn)+V, (r—Rn—dl.+dj) . R
=\EJLF/3(r) cz<9,¢>[ — }F (5, C,(6,,.,)d’r
Pl " 2
, V., (r)+V, (r—R,—d;+d;) X
J‘_G 3( ) C3 2_ 2(9 ¢)|: - : 2 . :|Ga (r;jn)c ( yn’¢tjn)d r

NV o(r)+V (r—Rn—dl.+dj)}

—G 3<> [crz(9,¢)+icyz(e,¢)]
2 2

G 5) { Lrco,.4,)+ic. ,jn,¢l,,,>]}d3r 2.74)

Rearranging Eq. (2.74), we have
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22" 22
V,(r)+V, (r-R,—d, +d)) .
j—F 3( ) C(0,p)| - =P (rW)C( 0,.4,)d’r
Ijn
2 1 a; * vk I/Llj(r)+V;i(r_Riz_di+dj) a 3
+\/gJ.EGn,1;(V) C3zz_r2 (05¢)|: 2 Gnol(r’f”)c ( l]ﬂ’¢ljn)d r

V, )4V, (r=R,~d,+d)) :
\FJ—G 3<>C,CZ(6'¢){ s }G“ (3 .0y #,)d

|1 1 . . _Va/ (r)+Va[(r—Rn—dl.+dj)_ B s
+1 EIEGH,I;(’”) Cyz(09¢) 5 _Gnol(r’/”)c( ljn’¢ljn)d r

N T S (V, (N+V, (r—R,—d,+d))] 3
—’\/%IEGJ@(V) C..(6,9) _Gnol(r )C,(6,,.4,)d’r

2 o

()+V(r R,—d +d)) ,
\FJ—G S)CL0.9) . }G" (15 C, (0, 4,)’r

(2.75)

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.75),
we have

aa

r’ 31 ll(R +d d)

22 22

=\/:Z(p )(L‘j“;’)+\/g{z[z ——(x +y )}(dpd)“” o #3320 + ) (dpr) ™ }

(n 1* 0 )
1 2 S,d,aj,a, _ 2 S,d,aj,a,- . 1 Sda &
+,/E{\/§x z(dpa)(nl%noéﬁz(l 2x )(dpﬂ)(nqz,no;)}Jr 1/10 {\/gxyz(a’pa) 2o 2xyz
x(dpﬂ)““ : )}—'1/ {fxyz(dpa)“a A —2xyz(dp7r) Sodaja } 1! {fy z(de')Sda i
2

O) 0)

+z(1-2y )(dpn)“” “ }

02)

{\f(p )Ld“ \/7( i \f( Sdla;z)} (2.76)
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Comparing Eqgs. (2.73) and (2.76), we get

(% (R, +d—d)=z ““( TEnOIJ . (2.77)
2 2

(8) Relativistic hopping integral for the combination of (n'l%%j and (nl%%j

atomic orbitals:

From Eq. (2.32), we have

F“ (}/;/n) ( z/n’¢1/n )d3l"

=——{——Fx> (0@{ .

z]n

()+V(r R —d +d )}

\/5 1 a; sk a;
5 L) 0.9) F5) b Gy )
3 r’;‘jn n 15

2 1 a; *y I/aA(r)+I/a[ (r_Rn_dz+d) 4
+\/;J.7Gn[;3(’”) Yz,o(9a¢){ i J G (’”yn)Yoo( Ijn’%”)dsr
ijn 2

nxw+mu—&—4+4q
2

2

(2.78)
According to the definition of relativistic TB parameter [Eq. (2.27)], we have

K" (n'lé,nll)
2 2)p
Vo, W+V, (IR, +d,—d,|e.)

NCI R g
:_TJ‘EFn'Iz(r) Y, (0,9) 2

j| F;:l (’/;jzn ) Ui’l 2 ¢)d3
2

F () Y, (G )

V20 1 e oy
%?hgﬁé” wm{ :

2e 1w o V, @) +V, (R, +d,~d,|e)]
+\/;J.EGW11§(F) Y2,0(05¢)|: 2 J G ( Un)YOO( Un,¢)d3r

()+V (IR, +d,—d, |e)}
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=—g(pp6)f;if/’fi)+\f(p )Lf“f) \f( B (2.79)
2" 2

(177

By using cubic harmonics, Eq. (2.78) can be written as

taja31 Il(Rn+di_dj)=
"oy

O
~;h7§gmqwm (1) C.(0,0,)dr
ijn

nxﬂ+nv—&—¢+4q
2

* Va( )+Va,( _Rn_di+dj)
——I——473(>{ 2[cxa¢ywcxa¢ﬂ}{ — }

*, { [[C( 0,28,,) +iC,( W,(;gm)]}dzr

) V. (r)+V (r—R,—d, +d))
- EJ'LG/ (r)C,. .(6,9) — : d G (’” )C, (6,,.¢,)d’r
5%rn, o

2 "

(2.80)
Rearranging Eq. (2.80), we have

aa

t’ 31 II(R +d d)

22 22

Fa (,,l/n)C( lm,¢lm)d3r

V, ()47, (r—R,~d,+d)
20y o) O :
3 rh, 2

1 1 a; * *
+—— [—F“, ryCieo,
351”ﬁn§()x(¢{

V, (")+V, (r=R,—d,+d)]
- : : F (’”z,n)c ( 1/n’¢zjn)d3r

2
e e [V )4V, (r =R, —d+d)]
" 3\/5‘[EF;1';3(F) Cx (9,¢) 2 _F (nJ”)C ( ljn’¢ljn)d3r
W, ()4, (r—R,~d,+d)]
ﬂ—+—wawmf — ’memw%wr

1 1 aj * * a 3
+Tﬁiﬁfﬂﬂmqw¢{ F (3, C,(0,,.¢5)dr
yn

V, (n+V, (r-R, —d, +dj)}
2
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V, ) +V, (r—R,—d +d)) ;
\[j—c;”( r) Cl._. (6, ¢)[ / — ' }G" (13,) C (0, 5, r

(2.81)

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.81),
we have

taja31 Il(Rn +di_dj):

n'l
22 22

Ldaa \/_ Ld.a;.a; L.d.a;.aq
)3 ——(lz)(pp) 3f x* (ppo )(11) \/—(lx)

1) 1)

sy

o) f{xy{(pp T } f{xy{@p e

(121 121

Ldaa Ldaa

Ld.a,.q 2., 1 5,
(HJ 3J—y(pp )(H) 3J_( -y (pr7 )(H) \/;{Z—E(x+y)}

S.d.a;.a;
x(dsa)( 2

=§<3z2—1){—%(19196)?7;"”“ f(pp ittt \f (ds )} (2.82)

(115,;11 ) (n'1=,n1=)

(ppr)

Comparing Egs. (2.79) and (2.82), we get

(R —d) =1 G —1)K“( '13,n11j (2.83)
2 2 1/2

22 22
el NI C . 31 31
(9) Relativistic hopping integral for the combination of (nlEEj and (nlgzj
atomic orbitals:

From Eq. (2.31), we have

tal;l 31(R +d d)

22 22
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2ol e [V )4V, R, ~d,+d)]
ZEJ‘;P;'IJE(I/) Yl,0(05¢)|: J 2 J P:ﬂé(’”}jn) ( lm,¢l/”)d3r
ijn 2 >

1e 1 Y o Val_ (I‘)-l—Val_ (r—R, —di+dj) . 3
3 IZFW@('”) Yu(e,@[ > Fos ) VG by ) r

201 . V, (1)+V, (r-R,~d,+d)]
+—J.—G '13(7') Y2,0(05¢) J J G 3(7}1,1)Y20( ljn,¢yn)d3r
5 r’:'jn nlE 2

()+V(r R,—d +d))
2

+%ILG‘%(r)* (O, ¢){ }G0i3(’”z/n) 1Gps )’ (284)
Pl "5 "

According to the definition of relativistic TB parameter [Eq. (2.27)], we have

201 0 V, )+V, (R, +d,—d |e)|
=3[ FL 0 X0.9)| A ACA
3577 2 "

le 1 0 s Vo) +V, (IR, +d,—d [e)]|
= [—F )Y, (0.9)| . Fo () Y,,(6;,,8)dr
3 r]x;jn r/lE 2 nlE

201 o V,()+V, (R, +d,—d,|e) .
+—j—G;3(r) Y, (6,¢)| — / G 3(7’,]”)1/20( 0; . $)d’r
5% rr, 2

()+V (R, +d,—d,|e.)
2

+2 I—G ST ¢){ }Guw)nl( o, )d’r

Ldaa Ldaa 2 S.d,a;.a; 3 S.d,a;.a;
=— +—(ddo)” 7% +=(ddrx)""" 2.85
(P ) (PP ) ) 5( O')(n,%’n%) 5( ”)(n,%’n%) ( )

Applying cubic harmonics, Eq. (2.84) can be written as

z‘”31 31(R +d,—d))

n
22 22

== j —F 0 ) C:(0.9) 1) C.(6,,.8,,)d’r

Vv, n+V, (r2 R, —d +d, )}F%(
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e 1o 1 ' * Vaj(r)+Vai(r—Rn—di+dj)
+§J‘7F:”§(V) {_E[Cx(6’¢)+lcy(9’¢)]} { 2 }

ijn

. 1 _
X Fnl% (%) {_ﬁ[cx (0,59, +iC, (ij%n)]}d3r

V, (+V, (r—R,~d, +d)

2 1 4. . a
+ [ G, () CL . (0.9) G, (1,)C, . 2 (6,,.8,)d’r
57rr, "3

2
3¢ 1 W 1 ' * Vaj (r)+V, (r—R,—d +d))
+g EG’,;%(V) {—ﬁ[cﬂ(‘ga(ﬁ)ﬂcyz(@a(/ﬁ)]} { > }
xG,j;;m,-,,){—%[Cﬂ(aﬂ,m+icyz(9,jn,«z,n>]}d3r (2.86)

Rearranging Eq. (2.86), we have

V, (1)+V, (r—R,~d,+d)
2

2 1 a; * vk a
=§J.;Fn,1§(7’) o (9,¢){ }F;lz(ry,,)Cz(an,qﬁw)d%
ijn

Lo ba e V, )V, (r=R,—d,+d)] 3
+EIZF;1§ (r) Cx (9’ ¢)|: 2 F;l% (r’/n) Cx (aiin’¢iin )d r

1e 1 . 'V, () +V, (r—R,—d +d,)]
47— _F/ r*C* 0’ J i y
61% (1) CL(0.9) 5

2

F(1;,)C, (6.4, )d’r
2

V, (N+V, (r-R,—d,+d))|
2

. 1 1 a; * * a; 3
i | e o (7C09) F i) €6y ) d'r

V,(#)+V, (r—R,—d +d))
2

1 1 « . a
+—j—F"3 (r) Cy(¢9,¢) F, (I;jn)Cy(an,giﬁljn)d3r
6 rr,, m

201 0 V,)+V, (r—R,-d,+d,)| \
+§IEGW1§(F) C3z2—r2(9’¢)|: > Gnl%(l’;jn)c ) ‘z(an,an)d r

3z°—r

V, (r)+V, (r—R,~d,+d,)
2

3 1 a; * 4a; 3
*io) 7y GG, ¢>{ }Gm;(%)cxz(%,%)d r
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3001 V, )+, (r=R,—d,+d)] | X
gl G (0. = > G2 a)Ce Gy )'r
3 1 —I/w(r)_'_l/vai (r_Rn_di—Fd')— a;
_ZE _G 3( )Cyz(95¢) ; 2 : G 3( z/n)sz( t/n’¢li")d3r
o V, ®)+V, (r-R,~d, +d ) . ,
+_of EGng(m C.(0.9) > G2 (in)C Gyl r (2.87)

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.87),
we have

tagl 31(R +d, d)

n
22 22

=—Z *(ppo )Ld“ —(1 ) (ppz )Ld“f) ¥ (ppo )”“ —(1 x*)(ppr )Ld”f)

+ {xy{(pp ) (o) } {y{(pp ) —(ppm) }éyz

12 12 W12 121

Lda ,a;

x(ppo ) (l v (ppr) +2“Z ——(x +y )}(ddg)“a, a;)+32 " +)7)

1) (171)5

x(dd;z)(s‘: aé)+ (x* +y%) (ddé)(s‘f 1“)}%[% (ddo-)sda; PO+ 2 A
2

X(dd) "3+ (2 x02) (ddS) “J+l—[3xz y(arara)““m“3 +xy(1-42") (dd )" fj o
272 2

+xy(z2 =1)(dd ) —i—[3xzzy(dd0')s’d’3a~f’a§ +xy(1—4z°) (dd 7)o +xp(z* =1)
(n’l?nli) 10 (n'lE,nlE) (n’li,nlg)

x(dds)™ " +i[3y (dda)“" “3 +( +2°—4y’z )(dd;z)“" “3 +(x*+ )z

(nl nl ) 10 7, E E’ E

x(ddg)Sda .4

(nl nl= )

_1 2 Ldaa Ldaa 2 S,d,aj,a[ E Sda ,a;
e R R e U N (TN R TR
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{(ppﬂ_)Sda ,a; (d )Sda a3 +- (d )Sda ,a; } (288)

12 12m1) (n 17 13
From Egs. (2.85), (2.91) and (2.88), we get

3 .30 3 oy aa® 3 30
R =—(1 K s 1=~ +=(1- z)K /" —,nl== 2.89
(R d) = (3K gt +20- K gy 289)

227 22 /2 Q/Z

(10) Relativistic hopping integral for the combination of (n'l%%) and (nl%%)

atomic orbitals:

From Eq. (2.31), we have

! i *y* I/a_(l’)-l-l/ai (r_RI1_di+dj) a 3
= [ F () ¥ 0.9)| (1) Y, (0,6, )d°r
Vr;jn " 15 2 nlE

Vel V4, R —d+d)] 3
+gJ‘EGn'1; (l") Yv2,l (05 ¢)|: > Gnl%(}:m) ( 11n’¢zjn)d r

()+V(r R —d +d )
2

+§P¢*ﬂxm*<9@{ }Gﬂ%ﬂ Oty )’ (2:90)
rh, "2

According to the definition of relativistic TB parameter [Eq. (2.27)], we have

K" (n'li,nlé)
2 2
Vo )+V, (R, +d,~d,|e.)

1 . R a 2z a oz
— [P () ¥ 0.9) F i)Y, (0, 9)dr
r 7;]-,, . 15 2 HIE

Vi, (0 +V, (R, +d,~d, |e) :
L PR ww{ e }G%g»nmmwwr

ljn
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Ga 3 (l;]n) )/2 2( yn’¢)d3r

2

4 1 a. R I/vav(’/.)—'_l/ai(|Rn+di_‘l‘|ez)
+ [ G (YL 0.0) ,
5 r}/;'jn nli 2

Ldaa l S.d.a:.a 4 Sda..a
= +— ddz) "7 +—=(ddo) 2.91
=(pp7 )( o 5( ﬂ)(n,%’nl%) 5( )(n,%,n%) (2.91)

Using cubic harmonics, Eq. (2.90) can be written as

7% 53(R,+d,—d))

n'l
22 22

| 1 . * Vaj(r)+Val_(r—Rn—di+dj)
=] e {—E[Cx(e,@ﬂcy(e,m]} { > }

XF 3(ljf’l { I:C( l/ﬂ’¢ljn)+lc ( Un’¢yn):|}d3r

1,
r ’/;Jn "

! ! , [V, )4V, (r—R,~d,+d))
T At ){ 5[cx2(9,¢)+zcyz(9,¢)]}[ : }

XG“(,,,,){ e ,,n,czz]n>+zc<,,,,,¢z,n>]}d3r

: . TV, 4V, (=R, ~d,+d))
+5 EGME( ) {\/5[ x2y2(0’¢)+lcxy(09¢)i|} |: > j|

G ) {%[ o Ge,) +iC,, (,,n,¢,,,,>]}d3r (2.92)

Rearranging Eq. (2.92), we have

7% 53(R,+d,—d))

22 22

_ 1 1 aj * * 3
=l El‘lg(m C; w{ 3(5) €Oy 6y )

V,r)+V, (r—-R —d +d)) .

+z—j—F S0V CLO)

n'l=

V. r—R —d. +d.
|: a, (I‘)+ 4 (I‘ n it j)j|Fa (’,Un)c ( Un’¢ljn)d31’

2
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Fa (r;]n) C ( ijn?2 ¢z/’n )d3l"

le 1 . V,(r)+V, (r-R, —d;+d))
—i— | —F",(r)'C.(0,¢)| ,
2]},% (G ¢){ :

()+V( R —d +d )
2 I—F 3(>C(9¢){ — }F‘g(

}/;m) C ( ijn? ¢zjn )d37"

2
Y V,r)+V, (r—R, —d +d)| :,
+BJ‘EGVI'1§(}’) sz(es ¢)|: 2 Gﬂ]%(}:’jn)cxz(gz]n’ém)d
1 1 av(r)+I/a,v (r_Rn_dl+d) a
ZB G 3( ) sz(a ¢)|: - 2 : G 3( z/n)Cyz( t/n’¢ljn)d3r
1 ( r)+V, (r-R,—-d +d)) . ,
) —G 3( )'C,.(6,9) 2 G 3( ) Coz Oy by )T
4 1 . . Vaj (r)+Val_ (r—Rn—dierj) . ,
+’Ef i, (g G @{ 2 O Uin)Co O )T
4 1 ( )+V (r-R,—d, +d)) .
—I— _G 3( ) C (9 ¢){ G IS(K/”)CZ 2( lm’¢yn)d3r
10 2
4 1 . . Vaj (r)+Va’_ (r-R,—d +d)) .
+EJ.EGHV/1;(”) ny(99¢)|: 2 G 3( ljn)ny( yn’¢yn)d3r (2'93)

Now applying the result of Slater-Koster table [40] to each term of the RHS of Eq. (2.93),
we have

t,,rjaéé 1 (R, +d,—d)
22
Ld.a;.aq Jd.a;.a; ,a; Ld.a;.aq
=—x “(ppo) s o s L= (ppr oo ) 2[xy{(pp o) 2, s, ~(ppm) ls)H
2 2 2

—é[xy{(ppa)fi ~(pp7 )Ld“ i H SV (pro )L“ it —( - ") (ppr )Ld” k

1) 1) 1)

( 17 17) 17 (n 17

+E{3xzzz(a’d0)5d“ (P +z? 4x222)(dd7z)5da aé)+(y +x72°)(dd ) “J}

10{3xz y(dda)“a a3 +xy(1-4z )(a’dzz)Sda a3 +xp(z° —1)(dd5)Sda a)}
wipnt it
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0{3xz y(dda)“" "3 +xy(1—-4z )(ddﬂ')Sda “3 +xp(2° —1)(dd5)““ I")}
i) miyn)

+%{3y222(dd0')(s’i’3“~f’fg)+(y2+22—4y222)(dd7r)s’f1’3””a§ + (74727 (ddS) )}
n E,n E n =

12,01 17
2" 2) (n

413 2 252 S.d.a;.a; 2 2 S.d.a;.aq 2 1 2 252
E[Z(x -y7) (ddo-)(nfli,nli)+{x +y?=(x* =) }(ddﬂ') 2 AT +Z(x -’}

2 2

x(dd§)“”1” '4[ xy(x*—y )(dda)““’ ‘4 2xp(y? —x )(dd;z)““ ° +1xy(x2—y2)
) 10 E 15) (n'1 E) 2

a a; ] 4 a;,a a;,a 1
X(dd5)(si ) _lﬁ[ xy(x’—y )(ddU)Sd:l‘g +2xp(y* —x )(ddﬁ)Sd: ‘3)+2xy(x %)
2 2

x(dda)ff“ 1") +—[3x2y2(dda)““ A (x4 )P 4x2y2)(dd7r)“" “3 +(22+x7)%)
2 2"

X(ddé)Sda ,a;

(nl nl= )

:%(1_22){ (p )Ldaa —(pp )Ldaa L2 (d )Sda a3 42 (dd )Sdaa)}+i(l+322)

(n 1 B

{(ppff)“” ¥ +l(ddﬂ)s’f”f”“" +i(dd5)s’d’a”a" } (2.94)

1 ) 5 (n IE,nI%) 5 (n'l%,nl%)

From Egs. (2.85), (2.91) and (2.94), we get

1, 53 (R, +d, d)——(l— )K;’a’(n'lg,nlg) +l(1+3zz)1<;f"'(n'1§,n1§) .
177 22 2 1/2 2 2 3/2

(2.95)

Similarly we can obtain the remaining relations between relativistic TB parameters and rel-
ativistic hopping integrals. The results are summarized in Table-1. This table is recognized

as the relativistic version of the Slater-koster table, and referred to as the relativistic Slater-
Koster table.
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Table-I. Relativistic Slater-Koster table

Here x, y, and z denote the direction cosines of (R +d - d ).

(n¢LeJEMY | (n,L,J,M) Hopping integrals 7 . (R +d, - d)
o 0 | & 0 va B8 0
(EO 1 1 709 17 l— Kd/ ' (Dlanol—
gﬂ 2’ 2;/) g] 2 29 29,
& 1 10 & 1 190
07 ~ ’Oa_a__—l
gﬂq; 2’ 2;/) gl 2 2g
o 0 | & 0 wa 0
¢0, — 1 n,l,l,l+ zK " n@l,nll+
&2 25 2’25 g 29,
e 110 & 1 10 o 1 10
0,— A, —, - —= (x- )K" cn®—,nl—=
g%, 505 | §h g (T )KGg 27,
& 110 & 3 30| [3 1 36
0 913_7_+ - — i N —_
g9 505 | 87208 5 (x+iv)K; ¢1® ’”125/2
o 0 | & 0 wa B 0
0,110 [@ 3101 Loyl 30
&5 €225 Y
& 0 | e o} va 0
(EO’ l: l— 719 Ez - l— 7('x- ly)de ¢) 1 anlé—
gl 2 29 g] 2 29 24,
& 1 10 & 3 300
O 919_9-_+
gl¢ 2’ 2@ 8n 2 29
aed;o 1 1 880 1 1010
g/’ ’27 26 g/” )2325
& 10 lee 1 10 ,,2@ 1 10
n¢o0, —, - —+ ,0,—, - —o K7 @—,nO—
3 2 | 25 0 €2 24,
e 1 1 11 10
€0, —- — | o1, —, —= | (x+i K’ n¢) ,nl—-
a0 | gy | TR 2%

/2
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2.5 Determination of relativistic TB parameters

In this section, we explain how to determine the values of relativistic TB parameters.
The relativistic TB parameters between the nearest neighbor atoms are determined for the
crystalline silicon, bearing in mind that the MFRTB method will be actually applied to crys-
talline silicon immersed in the uniform magnetic field (Chapter 5). At first, Eq. (2.22) is
applied to a crystalline silicon with talking into consideration the hopping integrals between
the outermost shells of the nearest neighboring atoms. Namely, the following eight kinds of
relativistic atomic orbitals for each silicon atom are taken into consideration.

The Hamiltonian matrix thus obtained has the dimension of 16x16 because there are two
silicon atoms in the unit cell. Next, the relativistic TB parameters are determined by requir-
ing that the eigenvalues of the Hamiltonian matrix coincide with the reference data as well
as possible. As the reference data, we utilize results calculated by fully RLAPW method
[24,27,28]. As for g5, +Ag>:% that is included in Eq. (2.22), since the energy of the crystal

d,

field is much smaller than the atomic spectrum, we neglect Az

- and employ the atomic

spectrum calculated on the basis of density functional theory [42,43] with the local density
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approximation [43]. The numerical values of relativistic TB parameters and £, + AZ
thus determined are listed in Table-II and III, respectively.

With the help of above data listed in Tables-II and III, the actual electronic structure of
silicon E, in the absence of magnetic field (zero magnetic field) is performed which is

shown in Fig. (2.1).

Table-II. Relativistic TB parameters between the nearest neighbor atoms for the crystalline
Silicon.

(n,(,J, M) Numerical values (eV)
11
K| n0—,n0— —1.7391
20 2
11
K|\ n0—,nl— —1.2038
20 2)p
K(n'O l,nléj —1.7048
2 2 1/2
1
K|nl—,nl— 0.26962
20 2
K(n'l l,nléj —1.8830
2 2 1/2
K(n'l é,nllj —1.5978
20 2
K(n’l E,nli) ~1.06233
2 2 3/2

Table-1II. Numerical values of £5, + Az for the Silicon atom.

(n, 0, J, M) Numerical values (eV)
(3,0, %,i%j —12.1538
(3,1, %,i%) —5.6148
(3,1, %i%j (3,1, %i%j ~5.5853
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L A T A X U K X r

Fig. 2.1 Energy dispersion for a crystalline silicon in the absence of magnetic field. The
labels in the horizontal axis denote the special k& points in the first Brillouin zone
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Chapter 3

Magnetic Field Containing Relativistic Tight Bind-
ing (MFRTB) Approximation Method

3.1 Matrix elements of Hamiltonian

Consider the crystalline material immersed in the uniform magnetic field. The elec-
trons in the system feel not only the electric field, which is created by periodically aligned
atoms, but also the magnetic field. Consider the Dirac equation for an electron is [39]

H®,(r)=E,D,(r) (3.1
with

H=ca-{p+eA(r)+}+pBmc’+Y > V. (r—R,—d), (3.2)

where €, A(r), V, (r— R, —d,) denote the elementary charge, vector potential of the uni-
form magnetic field B and the scalar potential caused by the nucleus of an atom a,, the

center of which is located at R, +d,, respectively. The definitions of vectors R and d,

are same as in Eq. (2.2) in Chapter 2. Let us suppose a uniform magnetic field B is applied
along the z-axis, and the Landau gauge is employed for A(r), i.e.,

A(r)=(0, Bx,0), (3.3)

where B is the magnitude of magnetic field. The four-component wave function for an elec-
tron in the uniform magnetic field is denoted by @, (r) in Eq. (3.1), where the subscript &

is the quantum number related to the magnetic Bloch theorem which will be discussed in
Chapters 4, 5 and 6. In order to develop the MFRTB method, @, (r) is expanded by using

as a basis function of the relativistic wave function of atoms immersed in the uniform magn-
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netic field. The Dirac equation for an atom immersed in the uniform magnetic field and
located at R +d., is given by

[ca-{p+eA(r)+}+Bmc* +V, (r—R, —d) |y (r) =2y 5% (1), (3.4)

where ;" Rt (1) and gg"’R““’f denote the relativistic atomic orbital and atomic spectrum in

a;,R,+d,;

the uniform magnetic field. The subscript & in l/lg" “(r) and &; is the quantum

a; ,R,+d;

number in the atomic system. Expanding @, (r) in terms of ™" (r), we have

@) = XX TR, +d Iy ), (3.5)

where C; (R, +d,) is the expansion coefficients that should be determined. Substituting Eq.
(3.5) into Eq. (3.1), we have

ZZZCf(R +d)Hy """ (r)=E ZZZC":(R +d )y (). (3.6)

Multiplying l//,jj "t (1) on both sides of Eq. (3.6) and integrating with respect to r, we
get

ZZZCi(R +d) R, jn,R,i& EkCl?(Rm_'_d])a (37)

with

Hy oywse =Wy () Hy " (0)dr. (3.8)

where, similar to the conventional [41] and relativistic TB methods (Chapter 2), we use the
following approximation concerning the relativistic atomic orbitals:

[y 5y ™ (1) = 8y 45,0, - (3.9)

Equation (3.9) means that the overlap between the relativistic atomic orbitals centered on
different atoms becomes negligible. Let us rewrite Eq. (3.8) by rewriting the Dirac Hamil-
tonian [Eq. (2.3)] in the uniform magnetic field as

H= ;{ca {p+eA(r)+}+pmc +V, (r=R,—d )+ V, (r—R,—d,)

l#j

ZZV (r-R,—d,)+— {ca-{p+eA(r)+}+ﬁm02+Vai(r—Rn—dl.)

k#m
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3, (=R —d)+ TV, (1~ R, dg)} (3.10)

(=i k+n
Substituting Eq. (3.10) into Eq. (3.9), and using Eq. (3.4), we have

lg"f”‘m*"f(s 20,0, +;g“”5 5,0

R, jn.R,i& _5 & J.i%n.¢ 7.i9n.&

4o ZJ' a;,R,+d; (l") V (I" R d‘)l//a R, +d; (I‘)d3r

(iy

y— Zj )V, (= R, —d )y (n)d

£¢\

ZZI @R, +d; (I’)T V (l’ R d[)l//a R, +d; (l’)dzl’

k¢m

+ ZZJ‘ a;,R,+d; (i")T V (I" R dé)l//a R, +d; (r)dB (311)

k¢n (

Let us rewrite Eq. (3.11) one by one

(1) R +d,- =R +d_, then Eq. (3.11) becomes,

H - lf a R+d5 +Zjl//a R, +d; (l") V (l" R d[)wa R, +d; (r)d3

(#i

+ZZI R ()Y, (= R, —d () G.12)

k#n (

The second and third term of RHS of Eq. (3.12) denote the energy of the crystal field. This
fact can be confirmed by rewriting these terms as

fyp iy 2 2V, =R —d )y " (nyd’r.

R, ¢
(R, +d, =R, +d;)

a;,R, +d,;

Since " (r) and yi**%(r) are localized around R, +d, that is different from
R, +d,, we may approximate the above integral by replacing V, (r— R, —d,) with

V, (R, +d,— R, —d,). This approximation immediately leads to

fwprstay e > > V(R +d, =R —d )y (d’r = Agi ™ s,
(Il;:+df ¢R,,€+dl.)

(2.13)

with

Ak —f‘/’a Rord; ()T g Z Z V,(R,+d,— R, —d )y """ (rd’r (2.14)

(Rk+d, #R, +d;)
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Substituting Eq. (3.13) into Eq. (3.12), we have

(ga‘ R, +d; +A8a R, +d; )5,76& (315)

R, jn.R,i&

(i) R +d, LIR +d,, then Eq. (3.11) becomes

HRMM,R”,? ZJ a;,R,+d; (I’)T V (r R d{)l//a R, +d; (r)d3

C#/

- ZJ‘ aR+d(r)TV(r R d)‘//:R+d(r)dr

251

+§IZZII//7‘;/,R”,M, (F)T I/a[ (V—Rk d()l//(? R, +d; (l")d3l”

ZZI Y, (=R —d Yy () dr (3.16)

k;tn 4

The first and second terms correspond to the integrals involving three centers. Since these
integrals are generally smaller than those involving two different centers or one center, we
neglect the first and second term of Eq. (3.16). Let us take the third term of Eq. (3.16), we
have

zzj a; R, +d; (r)TV (r R d()l//f R, +d; (r)d3r

k:tm

j ST (), (= R, —d )y (R d

r— ZZI (Y V, (=R —d (1) d

k¢m n

ZZJ‘ a;,R,+d; (I’)T V (l’ R dc)l//a R, +d; (I’)d3l". (317)

k;tm 0#i

We neglect the integrals involving three different centers (last two integrals) of Eq. (3.17),
since they are generally small compared to integrals involving two centers or the same cen-
ters. This approximation has been usually adopted in the conventional [41] and relativistic
TB methods (Chapter 2). Thus, we have

ZZI SR 1)V, (F= R —d, R () dr

k;tm ¢

—j (Y, (= R —d )y S () d (3.18)
Similarly, let us take fourth term of Eq. (3.16), we have

ZZI e Q) V,(r—R, _dc)‘//?’Rﬁd' (r)d’r

k;tn
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_ J‘ a;, Rm+dj( ) V (I’ R d )l//g JR,+d; (r)dS

+l z J. @Rt (r)TV (r—R, —d )" (r)d’r

2 k#m,n

S [wl )V, (- R —d () (3.19)
2 k#m (+j
Again we neglect the integrals involving three different centers of Eq. (3.19), we get

sz S Y Y, (P R —d )y S () d

k:tn

z—J‘l//: ', (r=R, —d )y () dr (3.20)

Using Egs. (3.18) and (3.20) into Eq. (3.16), we have

I/g.(r_Rm_d')_FVa,(r_Rn_d[)
j J 2 i l/jé:a,-,Rn+di (r)d3l".

(3.21)

a; R, +d; +
HR,,,,iﬂ,R,lié = J.l//nj ’ (r) (

Finally summarizing two cases [Egs. (3.15) and (3.21)], we get the Hamiltonian matrix [Eq.
(3.8)] as

a;,R,+d; a;,R,+d;
Hy iric = (55 +Ag; )5/::’5&,&,577,5 +(1_5RM,R,,5JJ)

a) Rytd, 4 Vaj(r—Rm—dj)+Vai(r—Rn—di)
x|y, r) )

jw?’””“ (nd’r.  (3.22)

a; R, +d; aR+d

In order to simplify Eq. (3.20), let us consider the properties of w7 ™" (r) and &

From Eq. (3.4), the Dirac equation for an atom immersed in the uniform magnetic field and
located at the origin is given by

[ca A p+eA(r)+}+pmc’ + V. (r)] g//g"’o (r) = g?’”t//?"ﬁ (r). (3.23)
By changing the variable 7 to r — R —d., Eq. (3.23) is rewritten as

[ca-{p+eA(r-R,—d)+}+pmc+V, (r-R,—d)|y"(r-R,—d)
=&y (r—R,—d,). (3.24)

It should be noted that A(r — R, —d,) yields the same uniform magnetic field B as A(r).
Therefore, A(r —R, —d,) and A(r) are related by the gauge transformation such that
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A(r-R —d.)=A(r)+Vy(r,R +d,), (3.25)

where y(r,R, +d,) is a function of both ¥ and R, +d,. Substituting Eq. (3.3) into Eq.
(3.25) leads to

x(r,R +d)=—-B(R _ +d.)y, (3.26)
where R, and d _denote the x—components of R and d,,respectively, and similar nota-
tion is used hereafter. Comparing Eq. (3.4) with Eq. (3.24), vector potential in Egs. (3.4)

and (3.24) are different from each other by the choice of the gauge given by Eq. (3.24).
Therefore, the eigen functions and eigenvalues of Egs. (3.4) and (3.24) are related as

*ig}(("aRn +d;)

pi'(r—R,~d)=e "’ 7 ) (3.27)
and
a0 _ _a; R +d;
gl =g, (3.28)

respectively. In addition, by using Eqgs. (3.14) and (3.27), we can immediately get
a.d; _ a;, R, +d;
AE(Jr = Agg +. (3.29)
By using Egs. (3.27), (3.28) and (3.29), the Hamiltonian matrix Eq. (3.22) is rewritten as

.eB
) 717(Rnx +dix 7Rmx 7djx )(Rmy +d»/:v )
e

2

a;,0 a;.d;
Hy, jpie = (887 +862%)8, 6y 2.6, +(1= 8¢ 2.,
T4 (R, ~ R, +d,~d), (3.30)
with
o V,(r)+V, (r—R,—d +d))\ . ., .
T, (R, —Rm+di—dj)=IW,,/’0(r)T( - ' ’ l//(;"R' UM (3.31)

Hereafter, we refer to 7,

(3.27), we can derive the following property for the magnetic hopping integral:

“(R,+d,—d ;) as the “‘magnetic hopping integral’. By using Eq.

.eB
17( Ry +dy—d; (R, +dy—d )

T," (~(R,+d,—d)) =e T"(R,+d.—d)). (3.32)

This property is very important because it guarantees the hermicity of the Hamiltonian ma-
trix Eq. (3.30). In the following section, we will approximate the magnetic hopping integral,
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and then Eq. (3.32) may work as one of the criteria of whether the approximation is physi-
cally sound or not.

3.2 Approximation of the matrix elements

In order to calculate the Hamiltonian matrix Eq. (3.30), we need both 7)2“ (R, +d, —d )

and eg"’o +A8§“’d". For this aim, we employ the perturbation theory, where the effect of the
magnetic field is treated as the perturbation. This treatment enables us to calculate both
T)“(R,+d,—d) and & + AsZ" by utilizing the atomic spectrum and relativistic hop-
ping integrals for zero magnetic field.

3.2.1 Approximation of &/’ + A&l

a; 0
¢

symmetric gauge for simplicity in approximating &£’ + AgZ“. In the symmetric gauge, the

Since 7" and Ag are independent of the choice of the gauge, we may use the

Dirac equation for an atom is obtained by replacing A(r) with 4, (r) in Eq. (3.23), where
A, (r) is the vector potential in the symmetric gauge and is given by Bxr/2. This approx-

sym

imation would be valid because *(r) has alarge value in the vicinity of the origin, where

the magnitude of 4, (r) 1s small. The unperturbed wave function is given by ¢ (r),

sym
which is the eigen function of Eq. (2.6). Note that the unperturbed eigenvalue £, is
(2J +1) fold degenerate. In order to derive the first order perturbation energy, we shall
consider the matrix elements of cea- A, (r) with respect to degenerate states ¢, (r) as

follow:
Let us denote the Hamiltonian of the Dirac equation for an isolated atom at origin in
the uniform magnetic field by following notations

H=H,+H' (3.33)

with
H, =ca-p+,8mcz+Val_ (r), (3.34)

and
H' =eca-Ag,(r), (3.35)

where / is the Dirac Hamiltonian in the absence of magnetic field (zero magnetic field).
Then Dirac Eq. (3.23) becomes

(H,+HW' (1), = "'we' (), (3.36)
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where w2’ (r),,, denotes the eigen function in the case of the symmetric gauge. Since

w’(r),,, may have the large value in the vicinity of the origin while | 4, ()| is small,

sym

we can deal with A'as a perturbation and H , as unperturbed Hamiltonian. The Dirac equa-
tion for unperturbed Hamiltonian is same as the Eq. (2.6) that is given by

H, (0:,’2”, (r)= ‘g_‘nafJ (P;?zxw (r). (3.37)

Note that the unperturbed eigenvalue &,

is (2J +1)—fold degenerate. According to per-
turbation theory, we have to consider the following matrix,

H e ens = [ @i O H @l (1) (3.38)
If we express, 8?’0 =%+ +E Hennn , then the first order correction term &', which
is linear with /', can be obtained as the eigenvalues of H Substituting Eq.
(3.35) into Eq. (3.38), we have

CIM' ' .nlJM*

H;CJ/¥/',11CJN/ = J‘ @:éJ/W' (r)i- {eca - Asym (r)}¢:2J/W (r)d3”' (3'39)

Here, let us denote the large and small component of ¢ . (r) by f7,,(r) and g%  (r),
respectively, i.e., we have

g (F
¢:2ﬂw(r):[f’1ac.ﬁu( )j (3.40)
gnléJM(r)
And we know that
[ L O] ]
o 0
g=0" ""5,5.0° % +,az=[ ‘g] (3:41)
- y -
0t 0§ S0, 00 o,

From Egs. (3.39), (3.40) and (3.41), we have

Hilzﬂ./M',n[’JM = CeJ- {f;lai/M’ (’ﬂ)T {As_vm (l") : G}g:;’.]z\d (") + g;:ZJM’ (’/')T {Asym (I") : O-}f;lafilﬂd (l")d37’
(3.42)

where we used the property A(r)-o = o - A(r).

In order to evaluate the above matrix element Eq. (3.42), we introduce an approximation
[391,

a 1 a
o (F)=——0 P foin (r). (3.43)
2mc

Taking the first term of Eq. (3.42) and substituting Eq. (3.43), we have
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a a ce a @
cef [ (1) {4, ()03l (P)r [ 15, (1) LA(r) -0} {p-03 15 (1)

Using the property A, (r)-c=0-A, (r) and p-c=0"p, then we have

a; a; e a; 3 a.
ce[ fitn (N 1A, (1) - o} gl (dr ~ o [ fine o A, (Mo - P} fin, (N

Again using the property, o-C +oc - D =C - D+ioc - C x D, then the above equation be-
comes

a; a; e a; . a;
ceJ.f;l{’lLM' (F)T {Asym (r) : O-}gnZJAI (V)d3l‘ ~ % J.ﬁz[/fIM’(r)T[{Asym (}’) ’ p +io- As.vm (V) x p}f;;[i]j\l (”')d3r.
(3.44)
Taking second term of Eq. (3.42), we have

a a a T e
CeI gnIKJM' (F)Jr {Axym (l") ) G}f;lﬂlJM (r)d3l‘ - CGIE{G ’ Asym (r)}gnIEJM' (l"):l ‘f;zélJM (l")d37/'.
(3.45)
Substituting Eq. (3.43) into Eq. (3.45), we have

ce[ g (N {A, (1)} [, (Nd°r
= J[io 4, p-ob i ()] Fi ()
= [ L ) [{o ph {0 A (1] L (1)
Using property o-C+o-D =C - D+io-Cx D again, we have
cef &line (N (A (7)1 i W7 = [ fi () [ A, (1) +i - {px A, ()]

X fotng (1)°F. (3.46)

Now, substituting Egs. (3.44) and (3.46) into Eq. (3.42), we get

’ e a; a:
Hné’JM’,nCJM ~ EJ‘f;MIJM’(r)T[{p ) Asym (l") + Asym (l") ) p}f;‘MiIM (l")d3l/'

+ 2i_’en _[ Ll (W) o {px A, (r)+ A, (r)x p} | [4n (r)dr (3.47)

Let us first calculate the first term of Eq. (3.47). Since, V- 4, (r) =0, then we get
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(A )+ A (F)- P} S () = @ A (7) -V () (3.48)

Similarly, the second term of Eq. (3.47), is written as

{pxA,, 1)+ A, ()% pfn ()= ﬁ.[V )AL (1) Fins (1)} + A (1) X Vi (1) ]

i
n
i

. ?[V ) (A, ()L (P + Ay, (X% ()]

[V {A,, (V) fin P+ A, (F) XV, (r )J

h
= [ A XV () + L (V< A, (1)
+Asym (M)XVfin, (")]
ho.,
=7-f;1€iﬂ\/[ (r)B. (" B=VxA(r)) (3.49)

Hence, Eq. (3.47) becomes

' e a a eh a
H, o = ; J'f;zélJM’ (V)T {Asym )P} Sin (r)aﬂ’” + E J‘ Jina (")T 1o - B}

<o (DAr. (3.50)
Taking the first part of Eq. (3.50), we have
[ 00 14, 0 P i 00 = € [ 100 (S er ) i 1
= £ [ fa 0 | S Bxr )l s s
= S [ it () B {r < P (D))

e o i .
:E.‘.ﬂ“’f’”'("y (B'l)ﬁzc'm(r)d3” (3.51)
Substituting Eq. (3.51) into Eq. (3.50), we finally get

’ e a; a;
an.Lw',nc.lM = EJ‘.]{;AIM’ (")Jr \B-(1+ 2S)}.f;wflM (r)d3r, (3.52)

where s = Ea.
2

Next, we shall calculate the RHS of Eq. (3.52) by substituting the specific form of £, ()
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that is given by F%,, (r)y,,(0.¢)/ r (see, Eq. (2.6) in Chapter 2). Recalling that v, (0. 9)
is given by

J+M
2J

Ty g

Y (0.9)
tM— 1
- (for J=(+ 5)

2J M

[J+1-M ’
==Y 6,9
2(J +1) = (for J=(— l)
J+1+M 2
—Y (6,9)
2(J+1) st

178 eB 2J +1

M eI MM
! 2m 20 +1

GO (.33)

then we get

(3.54)
for both cases J =/ +% and J =1/ —% . In this derivation, we used the approximation

1
I

From Eq. (3.54), we can say that V2 [ is the diagonal matrix and energy eigenvalue

14| dPr=1. (3.55)

is given by
g B2, (3.56)
2m 20+1
Thus, we finally get
a; 0 —a, eB 2J —+ 1)
e B R M 3.57
Ce T 2m(2€+1 (5-37)

Next, let us consider the approximation of AgZ“. As mentioned before, w2’ (r) would be
well localized in the vicinity of the origin, and the magnitude of 4, (r) is small around

there. Therefore, it would be reasonable that the relativistic atomic orbital in the uniform
magnetic field, w2 ’(r),,, is approximated as the unperturbed wave function that fits onto

the perturbation (zeroth order wave function). From Eq. (3.54), we have
W () g = Grin (7). (3.58)

By using Egs. (3.14) and (3.58), it is also found that Aeg"’d” is approximated by
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Aez = [ @l r=d)' {3 3V, (=R, —d gy (r—d )d'r. (3.59)
k

Rm
(R, "dy d)
Equation (3.59) is the energy of the crystal field, which is identical with AZ%“ from Eq.

(2.17). Using Egs. (2.17), (3.57) and (3.59), €%’ + Ag%*“ is thus approximated by
£ £

a;,0 a; .d; —a, —a. .d eB (2J +1)
e+ A mET +ANET 4+ —— AM . 3.60
& I3 ntJ nlJM Zm ( 2E 41 ( )

3.2.2 Approximation of 7" (R, +d.—d )

In order to evaluate 7,/" (R, +d,—d,) given by Eq. (3.31), we approximate both

w."(r) and """ (r) by means of the lowest order perturbation theory for degenerate

a; Ry +d,—~d,

states. Note that both 1//;’”0 (r) and y;

Landau gauge. In general, the wave function of the Landau gauge can be obtained from that
of the symmetric gauge through the following transformation:

(r) in Eq. (3.31) are the wave functions of the

a;.0 . —izithy a;,0
l//q (r) =e V/q (r)symﬂ (361)
a;,R,+d,~d, ~io By ;. Ry +d;~d;
l//§ (r) =e 2 l//§ (r)sym’ (362)

where Bxy/2 denotes the gauge transformation function from the symmetric gauge to the
Landau gauge. Using Egs. (3.58) and (3.61), 1//;”0 (r) ofthe Landau gauge is approximately
given by

a.,0 —iiny a;
v, () =e 2@, (F), (3.63)

a; . . .
where @, (r) is the zeroth order wave function for v’ (r), . Furthermore, since

@70, (1) s localized around the origin, the phase factor exp(—ieBxy /2h) would be ap-
proximated by 1, near the origin where the magnitude of ¢, (r) is not negligibly small.
Thus, we shall approximate Eq. (3.63) as

W (1) % @l (1), (3.64)

Similar to Eq. (3.27), in the case of symmetric gauge, 1,//;"’1{”‘1"_”/'

‘/’2f~”(r —R,—d;+d)),, by

(), is related to
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eB
’ﬁ{( Ry, +dy—d )x—(Ry+di=d ) v} 4 Ryvdd,

l//?"” (r-R,—d +d)),, =e Ve (") (3.65)

where we use y(r,R,+d,—d)=B{(R,+d, —d,)x—~(R, +d, —d )y}/2 for the sym-
metric gauge. Using Egs. (3.62) and (3.65), we gave

i€ py
a.R+d,—d, T B 4 Rvd—d,

lr//f (r) =€ o l/jgf (r)sym

4%{(1@,} il —d ;)3 —(Ry,+d ~d ) vy

wi'(r—R,—d +d)) (3.66)

sym*®

Since l,//g""' (r—R,—d;+d))
exp[—ieB{(R,, +d,, —d , )x— (R, +d, —d,)y+xy}/2h] would be approximated by the

is localized around r=R,+d,—d,, the phase factor

sym
phase factor at r = R, +d, —d . Furthermore using Eq. (3.58), we finally get

.eB
a,Ry+d;—d, i——(Ry+d;, ~d V(R +dy—d )

78 (Fyme Prin (=R, —d; +d)). (3.67)

Substituting Egs. (3.64) and (3.67) into Eq. (3.31), we obtain the approximate form of
TR, +d,—d,):

.eB
—i—(Rp+dy—d Ryt —d )

Zlé i(Rf +di _dj) ~e 2 | tn’%’}M’,n(JM (R( +di _dj)’ (3-68)
where 7,5, .0 (R, +d,—d ) is the relativistic hopping integral for zero magnetic field,

and is defined by Eq. (2.21). In this approximation, the effect of the magnetic field is stuffed
into the phase factor exp{-ieB(R, +d, —d )R, +d, —d, )/2h}. Equation (3.68) is just

identical with the approximation using Peierls phase [9,13]. That is to say, the Peierls phase
is revisited by the lowest order approximation of the perturbation theory. This means that
not only the validity of using the Peierls phase is confirmed [9,13], but also symmetrical
improvements beyond Eq. (3.68) would also be possible by incorporating the higher order
corrections of the perturbation theory into Eq. (3.58).

Concerning Eq. (3.68), we also emphasize that the Hamiltonian matrix with the use of
Eq. (3.68) remains to be a Hermitian matrix as it should be. This is easily confirmed by the
fact that Eq. (3.68) satisfies Eq. (3.32). Substituting Egs. (3.60) and (3.68) into Eq. (3.30),
leads to

—a —ad eB(2J+1 .
HRmj(n’l"]M’),R”i(nUM) =&, (B=0)+ Agrz(fﬁ‘till (B=0)+ E( 20+ th} éRm,ze,, 5,‘,;’

eB
i—(Ry, +dy =R, —d; )R, +d,+ R, +d )

_ Y
X§n'r;v'M',inUM + (1 5]’,1‘511,,, R, )e

X t:;j;'z}']\/[',IMJM (Rn - Rm + dl' - d/ ) (369)
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The effects of the magnetic field are included both in the diagonal elements [the first term
of Eq. (3.69)] as the Zeeman term and in the off-diagonal elements as the phase factor
exp{—ieB(R, +d, —d )R, +d, —d,)/2h}. It is also found from Eq. (3.69) that relativ-

istic effects are included both in DH‘Z'J+DU}:$ and in the relativistic hopping integral
tyivmg wone (R, — R, +d; —d ). Substituting Eq. (3.69) into Eq. (3.7), and rewrite //and //

by (', ¢',J',M"yand (n,(,J,M) respectively, the simultaneous equations for the expan-
sion coefficients are given by

z (J +A5,,[Czjj4 +§(2J’+1th’}CZT”W(Rm +dj)+ Z 22(1_5f’i5Rm’Rn)

2m\ 20 +1 Wl R, 7

.eB
—z—(R,,ﬁd‘.Y—Rm—djx)(Rm,+d +R, +dﬂ)

xe ' tacaJM n[JM(R1 _Rm +di _dj)CI’:UM(Rn +dz')
=EC;"™(R,+d)). (3.70)

Finally, we rewrite Eq. (3.70) in a convenient form. Equation (3.70) can be rewritten by
replacing the sums with respect to R and i by the sum with respect to the vectors conect-

ing the atom located at R +d 10 its neighboring atoms. Since such vectors are independent
of R, but depend on d, they are denoted as T,(d) (W=1273:"- ). Here, W is num-
bered in the following order: W =1,2,3,....... ,W, for the nearest neighbor atoms,
W=W+1, W +2,... , W,+W, for the second nearest neighbor atoms, W =W, +1,
W, +2,....... , W,+W,+W, for the third nearest neighbor atoms, and so on. Note that, since

T,d) also denotes the vector connecting a, atom to g, atom, a, varies with W. If we de-

note the dependence of a, on W by A(W), then Eq. (3.70) is rewritten as

eB(2J" +1 g m(d )Ty, (d,)+2R,, +2d,}
+As S+ WMV CTYM (R +d )+ !
nCJ n(JM 2m(2£r+1j } k ( m ‘/) n[;/[;
<t ine (T @ NCE (T, (d )+ R, +d )= ECT™ (R, +d). (3.71)

Equation (3.71) is the resultant simultaneous equation to be solved. Although we can obtain
the coefficients C/*" (R +d.) and E, by solving the simultaneous equation [Eq. (3.71)],

there are two problems in performing actual calculations. One is that we need the numerical

values of ¢/, J(AVZ)” o (T (d ). In Chapter 2, we have already presented the relativistic Slater-

Koster table that enables us to calculate 7/ CA,(Z)M (T (d))). As in Chapter 2, using the rela-

tivistic Slater-Koster table, the relativistic hopping integral .. f,(g)n[ (T (d))) 1s expressed

in terms of several TB parameters. TB parameters can be determined by requiring them to
reproduce the electronic structure for zero magnetic field (as already mentioned in Chapter
2). Another problem is that we have to solve the simultaneous equation with an infinite
number of expansion coefficients. In order to overcome this problem, we employ the
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knowledge obtained from the transitional symmetry, i.e., magnetic Bloch theorem. In Chap-
ters 4 and 5, we have shown the specific examples that Eq. (3.71) is reduced to the simulta-
neous equation with a finite number of coefficients with the aid of the magnetic Bloch the-
orem.
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Chapter 4

Application to two-dimensional square lattice im-
mersed in the uniform magnetic field

In this chapter, we apply the MFRTB method to the two-dimensional square lattice
[Fig. 4.1] immersed in the uniform magnetic field. It is shown that Eq. (3.71) is reduced to
the simultaneous equation with a finite number of expansion coefficients via the magnetic
Bloch theorem.

The purpose of dealing with this system is to check the validity of the MFRTB method,
and to confirm the benefits of treating the relativistic effects, because this system was pre-
viously calculated with the non-relativistic TB method by Hofstadter [8] and the result is
well known [8].

g-atoms

qa,

Y

a,

Fig. 4.1 Two-dimensional square lattice immersed in the uniform magnetic field.
4.1 Magnetic Bloch theorem
Let us consider the two-dimensional square lattice with lattice constant a. We suppose that

atoms have only s-electrons (¢ =0) and are located at each lattice points. The lattice vectors
of the two-dimensional square lattice are given by
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R ==na, +n,a,, 4.1)

where n, and n, are integers, and a, =ae, and a, =ae,. The magnetic field is directed

along the z-axis, and its magnitude B is supposed to be expressed by

B:27rh£

— =, (4.2)
ea” q

where p and ¢ are relatively prime integers [8,41,42].

In order to derive the magnetic Bloch theorem, let us consider the set of magnetic translation
operators that commute with each other. The magnetic translation operator U(R)) is de-

fined as

x(r

UR)=e""""T(R), (4.3)

where 7 (R,) denotes the usual translation operator given by exp(—iR, - p/h) [44], and

where y(r, R) is defined as the gauge transformation function, i.e.,
A(r—R)=A(r)+Vy(r,R)). (4.4)
In the case of Landau gauge [Eq. (3.3)], y(r, R) is given by
7(r,R)=—-BR,_y. (4.5)

The detailed derivation of U(R,) is given in Appendix C. As shown in Appendix C,
U(R,) commutes with the Hamiltonian [Eq. (3.2)], i.e.,

[H,U(R,)]=0. (4.6)
The multiplication of U(R,) and U(R,) leads to

e
l%l{(r"Rn y+x(r=R, R, )-x(r,R,+R,)

UR)U(R )=e UR +R ) 4.7)
Using Eq. (4.4)
URIR)=¢ " ""UR +R,) (4.8)
In the same way we can show that
~27i2 nm,
UR)UR)=e * UR +R)). (4.9)

From Egs. (4.8) and (4.9), we have
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—27ri£(mln2 —mmy )

UR)UR,)=e 1 UR,U(R)). (4.10)
From this relation, if we take the set of the magnetic translation operators such as
{Uu@)|t, =na, +n,qa,}, (4.11)
then this set is shown to form an Abelian group [45]. Namely, we have

ue)Uu,)=U(,)U(t)). (4.12)

Note that the set of translation vector ¢, represents a two-dimensional rectangular lattice
with a unit cell of sides a and agq (see, Fig. 4.1). In general, the eigen functions of the Ham-

iltonian, which belongs to a degenerate level, form basis functions of the irreducible repre-
sentations (IRs) of the symmetry group of the Hamiltonian [46, 47]. In addition, all IRs of
an Abelian group are necessarily one-dimensional [47]. Therefore, eigen functions @, (r)

are basis functions of IRs of the Abelian group Eq. (4.11), we have
Ut,),(r)=C(t,)P,(r), (4.13)

where C(¢,) is the IR of the Abelian group. The normalization condition on C(¢,)®, (r)
and Eq. (4.12) lead to

C(t)=e"", (4.14)
with a wave vector k that is given by
k =kb, +k,b,. (4.15)

In Eq. (4.15), k, and k, are the real numbers that satisfy—0.5<k,,k, <0.5, and b, and b,
are ‘“‘magnetic reciprocal lattice vectors” defined as
2r 2

b=—e; b=—ce
a qa

(4.16)

y

From Egs. (4.15) and (4.16), the “magnetic first Brillion zone” is denoted by a rectangle
with length 27/ga and width 27 /a (see, Fig. 4.2). Using Egs. (4.3), (4.13) and (4.14),

we have
®,(r—t)=e*"e""D, (r). 4.17)
Equation (4.17) is regarded as the extension of the Bloch theorem for electron that move in

a periodic potential of the crystal and uniform magnetic field. Namely, Eq. (4.17) may be
referred to as the ‘Magnetic Bloch theorem’. Compared to the conventional Bloch theorem,
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the phase factor exp(ieBt, y/h) is additionally multiplied to the right hand side. Of course,
Eq. (4.17) is reduced to the conventional Bloch theorem when B =0.

k

y A
n/qa M(mt/a, ©/qa)
(0, 0) X(/a,0) ke

Fig. 4.2 Magnetic first Brillouin zone for a two-dimensional square lattice immersed in the
uniform magnetic field [38].

4.2 Reduction of simultaneous equations via the magnetic Bloch theo-
rem

All lattice vector R, can be expressed in terms of ¢, as
R, =t +lae, (4.18)

where /=0,1,2------ g —1, integer. By using Eq. (4.18), Eq. (3.5) can be written as

g-1
D, ()= ; > Ci(t, +Iae) )y (r). (4.19)
t, 1=0

Similarly, we have

g—1

O, (r—t,)=> >3 Ci(t,+1Iae )y " (r—t,). (4.20)

t, & I=

Substituting Egs. (4.19) and (4.20) into Eq. (4.17), we have

q-1 .e q-1
a; t,+lae, — ) gy - a1, +lae,
DD Cit, +ae )" (r—t,)=e " YD Ch (8, +lae )y (r).
t, & I=0 r, & I=0
(4.21)

In order to get the relationship between coefficients C; (¢, + lae ,) by means of Eq. (4.21),
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t +Iae), a;,t,+1e ae,

let us consider the relation between l//g (r-t,) and y, ’(r) that appear in

at+ae

Eq. (4.21). Let . " (r) obey the following Dirac equation

[ca {P+eA(r)} + fmc* +V, (r—t, - lae ):ll//a B (1) = E;"”ae“' l//g"t”+]ae" (r).

Changing the variable from r’ to r+t¢,, we have

[ca-{ "+eA(r' —t,)} + Bmc’ +V, (¥ —t, - lae, —t )]t//a e (= t)
_Et +lae, l//a b, +lae, ( —tm)

According to gauge transformation, A(r")and A(r'—¢,) are related as
A(r'—t )=Ar)+Vy(r',t)).
Using gauge transformation and changing the variable from »’ to r and p' to p, we have

[ca AP+eA(r)+eVy(r,t,)}+Bmc’ +V, (r—t,—lae, —t )] 75 W (p—t )
= E; 7yt (-, (4.22)

a;,t,+lae +t

On the other hand, ™" " ™ (r) also obey Dirac equation

[ca {P+eA(r)}+pmc’ +V, (r—t,—lae, —t )] atrle () = E””aey””'t//g”t”ﬂae}’ﬂ”’ (r).
(4.23)

a; t,+lae, a;t,+lae +t

Comparing Egs. (4.22) and (4.23), v "(r—t,) and w.”" " "(r) are related with
each other by gauge transformation of wave function as

a;.t, +lae, ¥ {(rt) 4t tlge, +
P g = B ), (4.24)

Substituting Eq. (4.24) into Eq. (4.21), we have

q-1

1
SE 3Gl ey )= TSl lae i )
1=0 :

t 1=0

n

By changing the variable ¢, +¢, to ¢, in LHS, we have

-1
c (t,—t,+lae """ (r)="" q Ci (t, +1ae """ (r).
7 § ] : t, & I=0 :
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Again changing the variable #,to ¢, in LHS, we have

v i +1ae
Y ACi@, 1, +Iae )~ C; (t, + Iae, )e" " Ly 2™ (r) =0. (4.25)

t, & I=0

a; t+1ae,

Multiplying v . "(r) on the both side of Eq. (4.25) and integrating, we get

Ci(t,~t, + lae,) = C{ (¢, + lae, )" .
Replacing ¢, —¢, by ¢,,
Ci(t, + lae,) = Mt + lae ).

If £, =0, then
Ci(t,+1lae))=e """ C; (lae,).

Finally by changing the variable ¢, to ¢,, we get

Ci(t,+1ae,) =" C; (lae))
C:(t,+1a,)=e ™" C; (la,). (4.26)

It should be noted that all lattice vectors R are expressed as ¢, + la, = (n,q + [ )ae_+n,ae,.
Equation (4.26) means that all coefficients C, (¢, +a,) can be obtained by using Eq. (4.26)
if we get ¢ coefficients {Cf (la,)|1=0,1,2-+--- q- 1}.

Byreplacing R with ¢ +/a, (I'=0,1,2------ g-1), and using Eqgs. (4.26) and (3.74),

we have

z I}, (d; )Ty, +21'a}

B (2J' +1
Eypr T AE, iy +§—m( - j }CMJMUaz)"'ZZ

20" +1 niid 7
nlJM ' n'l'IM' o
Xy o ot ineons (T,)C, " (T, +1a,)= E,C; (I’az )- (4.27)

In deriving Eq. (4.27), we use the relation exp(—ieB7T,, ¢

\'mV

/ hy =1, which is easily shown by
considering the positions of the neighboring atoms. In this case, it should be noted that the
same atoms are located on the lattice points and therefore dependencies on g, and d, are

omitted in Eq. (4.27). Since the vector [ld, +T,, is generally rewritten in the form of

t, +11a,, the coefficient ;""" (I'a, +T,,) of the left-hand side of Eq. (4.27) can be rewrit-
ten as

C'*™(la,+T,)=e "“C/*"(ITd,) (4.28)
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Therefore Eq. (4.27) represents the simultaneous equations with a finite number of coeffi-
cients (C;*™ (la,)|1=0,1,2-+---- g —1), namely, the simultaneous equations with an infinite

number of coefficients [Eq. (3.71)] are simplified to those with a finite number of coeffi-
cients owing the magnetic Bloch theorem.

4.3 Concrete expression for the simultaneous equations

We shall examine the electronic states near the Fermi level, and take into account only
the relativistic hopping integral between the nearest-neighbor atoms. Since atoms have only
the s-electrons (£ =0), as mentioned above, we consider the cases for (=/("=0,

J=J'=1/2, n=n", and M (or M")==%1/2, in Eq. (4.27). The coordinates of the near-
est neighbor atoms in two-dimensional square lattice are 7, =(0,a), (0,—a), (a,0) and
(—a,0) , for W =1,2,3, and 4 respectively. Let us take first nearest-neighbor atom
T, =(0,a), then we have

!
R, +T =t +1lae, +1
_ !
=t,+1ae +ae,

=t +(I'+Da,.
This equation leads to

n'OlM'

n'OlM'
C,? (R+T)=C, ? {t,+(I'+Da,}
it n'OlM'
=e""C, * {(I'+1a,}. (4.29)
Similarly, by taking second (7)), third (7;) and fourth (7)) nearest neighbor atoms, we have

ol

n n'OiM'
C,? (R+T)=C, > {t,+('-Da,}
—ikt WOM’ '
—e " (=D, (4.30)

il

n'0-M' n'OlM' ,
G, * (R+T)=C, * {tn+al+1a2}

—ik-t, —ik-ae nlolM’ '
=e""e"C, * (la)) (4.31)

ol

n n'OlM' '
C, 2 (R+T)=C, > {t +a+1a,)
. . n'OlM'
_ e—zk.tn ezkuex Ck 2 ([’az ) (432)

Substituting Egs. (4.29), (4.30), (4.31) and (4.32) into Eq. (4.27), we get
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+Ag |

e
n'0— n'0—
2 2

eB , n'O%M' , n'O%M' ,
,+_hM }Ck - (Ia2)+Ck {(I +1)a2}t, 1, 1 (T;)
M m n OEM N OEM

! lM' 271

0 ’ —ik-ae ,,'olM' ’
+C, 2 {(I'-Da,jt |, | (L)+e™™ e 1C, 2 (lay)t |,
M’ n'0—

n'0-—M',n'0— M’
2 2 2

n’OlM’ (7;)
)

NN

- n

kge. > M w0l ,
+et e G (a) o (T) =EC,? () (4.33)
2"

According to relativistic Slater-Koster table that is derived in Chapter 2 (see, Table-I), the
relativistic TB parameters for nearest neighbor atoms 7,, T,, T;,and T, are equally given

by K, (n'Ol,n’O lj . Therefore, Eq. (4.33) becomes
2

1/2

ol
{E  HAE | +§hM'+2K1(lfl'0%,n'Olj COS{Z%(/{,+£I'J}}C,‘02M (['az)
12 q

"0— "0—M'
n > n > m

, 1 , 1 w0l n , w0l , w0l ,
+Kl(n05,n05j C, 2 {I'+Da,}+C, 2 {(I'-Da,}| =EC, > (Ia,).
172
(4.34)

ML)

1 1
It should be noted that due to Eq. (4.26), C. e ‘{( I'+1)a,} and ol "2 {(I[T1D)a,} in Eq.
(4.34) are equal to

e (0) for =g
k 9 (4.35)

Cn\ O%M\ \{ I+ 1)a2 }

k

=[]
] nﬂ)%M\
C, {(1[4%1)(12} for ITg1

U 02
nJJ)lMU VZCk 2
C, 2 {(TDa,)

k

Yama,)  for 1=0 (4.36)

=0
N n\(l)%M
C, {(ITDa,} for 1110,a

respectively. It is found from Eqgs. (4.35) and (4.36) that Eq. (4.34) represents the simulta-

nOlM
neous equations for 2¢ coefficients {C, * (la,)|/=0,1,2---- qg-1,M =%1/2}.
This means that the MFRTB method is a generalized method that includes the Hofstadter
method [8]. The matrix form of above Eq. (4.34) is
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= o
G 20 C, 2(0)
[ s 0t 0 e 0 &M 0 il Wl
) ‘ ik C 20 G20
0 S, 0 t 0 ceeee 0 &y
0 oLl oLl (4 37)
t 0 S, 0 0 e 0 C, (a,) "2 (a,) .
0 t 0 SI’ 0 e 0 ot L
S0t 08 0 e Giiw) | = E | GPi(ay)
0 : : 0
oy 0 e 0 t 0 Sq*‘ 0 y )
| 0 efzm'/fzt (| Q t 0 quf] | C:OE(((]—I)az) C:OH((q—l)az)
wol L wol L
LG 2 2((g-Day) | 1C, 2 2((g-D)a,) |
where

_ _ Bh
Sp=¢€ ,+Ag || —e—+21<:os(27rk1),
l’l,OE n'OE—E 2m

n'0— n'0——
2 22

S, =¢ ,+Ag |, +62£h+2tcos{27r(kl+p/q)}
m

Si=¢ | +Ag || —ezb;h+2tcos{27r(kl+p/q)}

n'0— n'0———
2 2 m

S =¢ | +A¢g 11+@+2tcos{27r(kl+£(q—1))}
’ 2m q

£ n'0— n'0——

S =€ | +A¢g 1—@+2tCOS{27T(k1+£(q—1)}
q

g1 n'0— n’07_§ 2m

If we neglect the Zeeman term, then Eq. (4.29) is reduced to an equivalent form to that of
Hofstadter [8].

4.4 Results and discussions

The energy eigenvalues for the two-dimensional square lattice are calculated on the basis of
Eq. (4.34). Since the qualitative shape of the energy dispersion and diagram are not depend

on the choice of the values K, (nO% ,n0 l) and € X +Ag oy they are taken from those
2 n 5 n 5

for the crystalline silicon, which are already listed in Tables-II and III in Chapter 2. Figure
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4.3(1) shows the energy dispersion E, for the two-dimensional square lattice in the presence
of the uniform magnetic field, where p and g are fixed at 40 and 401, respectively. The

inset of Fig. 4.3(i) is the magnified view. The labels indicated in the horizontal axis of Fig.
4.3(1) denote the special k -points in the magnetic first Brillouin zone, which is shown in
Fig. 4.2. It is found from Fig. 4.3(1) that E, depends little on k, while the band dispersion

for the zero magnetic field case ordinarily depends on k& because it is written as the cosine

curve with an amplitude of 2| K, (30%,30 lj |=3.4782¢eV.
1/2

4 T 112 112 112
-11.83
114 A ] <114 /”\ {F\l ‘ﬂ. rf\\ }ﬁ |
M= ||
NH\‘];W,'WW\\J;
1.6 1.6 1.6 l‘lu‘-\”/v
MWW | 'j U { \‘J
= MAAANY
Z-118 >-118 >-118 L
- y = = I
E Q S ,H um N \/\ (\L ;ﬂ‘\ M VWI
- 12, -120 i -12.0 IO
: =
|4
WIS ol LJ L‘Jl \Ur \H
-16 : AV
124 124 vﬁ%ﬁ% 124
S
126 [QRRET vicdsicdeia LT |
r X r X r X
-201_ = : (@) plg = 1101 (b)pg=131 (c)plg =111
() W

Fig. 4.3 (1) Energy dispersion for a two-dimensional square lattice immersed in a uni-
form magnetic field in the case of p and ¢ are 40 and 401 respectively. The inset is the
magnified view. The labels in the horizontal axis denote the Special k points that are
indicated in Fig. 4 2.

(i) Magnified field dependence energy dispersion in the different cases of p/g [38].

By applying the magnetic field, the orbital motion of electrons in the plane perpendicular to
the magnetic field is essentially changed corresponding to the quantization of the orbital
motion of electrons in the magnetic field. As a result, £, curve becomes nearly flat as

shown in Fig. 4.3(i). The bandwidth of these flat bands is obviously dependent on the mag-
nitude of the magnetic field. The width increases as the magnetic field becomes large, as
shown in fig. 4.3(ii) ((a) - (c)). This behavior can be observed also in the crystalline silicon,
which will be discussed in Chapter 5. The magnetic field dependent energy diagrams are
calculated without and with Zeeman term by using Eq. (4.34). Results are shown in Figs.
4.4 (1) and 4.4 (i1) respectively, where all values of E, for k ’s that correspond to the path
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I' > X —>M —T of Fig. 4.2 are plotted in the each magnetic field. In these calculations, p
changes from 1 to 401 with fixing g at 401. Due to the Zeeman term of Eq. (4.34), the energy
diagram shown in Fig. 4.4(ii) splits into two parts. It is also confirmed that the magnitude
of the band splitting becomes larger as the magnetic field increases. As can be shown in Fig.
4.4(1), Hofstadter’s butterfly diagram [8] is reproduced in the case of no Zeeman term as is
expected from Eq. (4.34). Namely, Fig. 4.4(i) has the properties of the butterfly diagram,

which are shown by D. Hofstadter [8].

Fig. 4.4 (1) Dependence of energy diagram on the magnetic field in the absence of Zeeman term
(Hofstadter’s Butterfly diagram) on the basis of MFRTB method. (i1) Magnetic field dependence

energy diagram with Zeeman splitting [38].

For example, the spectrum for p/g is identical with the spectra for (p/g)+n (n:integer)
and—p/¢q . Thus the present MFRTB method is recognized as a generalized method that

includes the Hofstadter’s method.

76



Chapter 5

Application to crystalline Silicon immersed in the
uniform magnetic field

In this chapter, we shall apply the MFRTB method to a crystalline silicon immersed
in the uniform magnetic field. Similar to the case of a two-dimensional square lattice (Chap-
ter 4), nearly flat E, curves and the magnetic field dependence of their bandwidths are ob-

served also for this system. In addition, the present MFRTB method suggests a way to de-
termine a formula of the magnetic field that is consistent with the magnetic Bloch theorem.
With emphasis on these points, we present the electronic structure of a crystalline silicon
immersed in the uniform magnetic field.

5.1 Magnetic Bloch theorem for a crystalline silicon

Crystalline silicon has the diamond structure, the lattice of which is the face centered
cubic (FCC). The translation vectors of the diamond structure with the lattice constant a
are given by

R, =na, +n,a, +na,, (5.1

where

a a a
al - E(ey +ez); a2 - E(ex +ez); a3 - E(ex +e)’) (52)

are the primitive translation vectors, and n,, n, and n, are integers. Two silicon atoms are
located at d, =0 and d, =a(e, +e, +e.)/4 for each lattice point, respectively. Suppose
that the magnetic field is directed along z-axis having magnitude B is given by [48]

B 16h7r£

2 q ?

B

(5.3)
eda
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where p and ¢ are relatively prime integers, and g is supposed to be a primitive number

that is larger than 2. This form is introduced so that the solution of Eq. (3.71) is consistent
with the magnetic Bloch theorem. This point will be discussed later.

Fig. 5.1 (a) Schematic view of the lattice defined by the translation vector t,(=nga, +n,a,+na;),
and (b) schematic view of reciprocal lattice spanned by Eq. (5.9) [38].

Similar to the case of the two-dimensional square lattice (Chapter 4), let us consider a
set of magnetic translation operators that commute with each other. By using Egs. (4.3),
(4.5), (6.1), (6.2) and (6.3), the multiplication of the two magnetic translation operators is
given by

—2m’2—p(m1 +my )(ny+n3)

UR)UR )=e UR,+R)). (5.4)

Reversing the order of R, and R in the both side of Eq. (5.4), and cancelling U(R, + R ))
of Eq. (5.4) by using thus obtained equation, we get

—271'[2—p(m1 +my )(my+ny )—(my+my )(ny+ny )

UR)U(R,)=e * U(R,)U(R,). (5.5)

Using Eq. (5.5), we can easily find what set of translation operators forms the Abelian group.
Specially, the following set forms the Abelian group,

{U@,)|t, =ngqa, +na,+na,}, (5.6)

where a; =a(e, —e_)/2. It is also shown that Eq. (5.6) has the smallest period of the trans-

lation among the operator sets that form an Abelian group. Note that the set of three vectors
a,, a, and a; is one of the choices of the primitive translation vectors of the FCC lattice as
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well as the set of a,, a, and a,. The set of lattice points {#,} forms the body centered te-

tragonal lattice, which is extended along the y-axis as shown in Fig. 5.1(a).

According to the general discussion on the relation between the eigen functions of the
Hamiltonian and the basis functions of IRs of the symmetry group [47], we can say that the
eigen function of the Hamiltonian, which are denoted by @, (r), can be the basis functions

of IRs of Eq. (5.6). In the similar way to the case of two-dimensional square lattice (Chapter
4), we have

Ut,)D,(r) = "D, (r), (5.7)
with the wave vector k that is given by

k = kb, +k,b, +k;b,, (5.8)

where k,,k,and k, are the real numbers that varies —0.5<k,,k,,k; <0.5, and b,, b, and

b, are ““magnetic reciprocal lattice vectors™ for the crystalline silicon, which are defined as

4 2 2
b :_ﬂey; b, :_ﬁ(ex_ey_’_ez); b, :_ﬂ(_ex+ey+e2)' (-9)
aq a a

Fig. 5.2 Schematic view of the magnetic first Brillouin zone for the crystalline silicon
immersed in the uniform magnetic field [38].

The reciprocal lattice spanned by Eq. (5.9) and corresponding first magnetic Brillouin zone
are given in Fig. 5.1(b) and Fig. 5.2, respectively.

Equations (4.3), (4.5), and (5.7) lead to the magnetic Bloch theorem for the crystalline
silicon:

@, (r—t)=e""e" "D (r). (5.10)

This theorem is used in the next section to reduce the order of the simultaneous Eq. (3.71).
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5.2 Reduction of simultaneous equations via the Magnetic Bloch theo-
rem

The lattice vectors R, is expressed by

R =t +1a,
=(nq+1a, +n,a, +na;, (5.11)
where 7 =0,1,2,......... ,qg—1. Similar to the case of two-dimensional square lattice, substi-

tuting Eq. (3.5) into Eq. (5.10), and using Eqgs. (3.27) and (5.11), we have
g Eq. ( q g Eq

g-1

Z;ZZ{CE (t,+1a,+d, —t,)—e"“"C;(t, +a, +d ) """ (r)=0. (5.12)
tn

1=0 i

Utilizing the orthonormality of the basis functions, a relation between the expansion coeffi-
cients is obtained as

Ci(t,+1a,+d)=e ™" Ci(la,+d). (5.13)

Equation (5.15) is an alternative expression of the magnetic Bloch theorem. Rewriting Eq.
(3.71) by using ¢, + ['a, instead of R , and substituting Eq. (5.13) into this, we have

m?2

B

—a, —a,a, €B(2J'+1 o i T (d )Ty (d )28, +2 00y, 42, |

g:’é’]’ + Agn'?{]’j\j" + ( ’ M’ C]’: i (11‘11 +d1) + E E e " e ’ v !
2m\ 20" +1 17 e L

Xty nint (T (@ NCEM (T, (d)+ T'ay+d ) = E,.C; Y (I'a, +d), (5.14)

where we remove the superscripts of the hopping integral since all sites are, of course, oc-
cupied by the silicon atoms. It should be noticed that since T;,(d,)+ I'a, +d; denotes the

position of Si atom, this vector is rewritten in the form of ¢, +/"a, +d,. Therefore
C;"M (T, (d,)+I'a, +d) in the left hand side of Eq. (5.14) is rewritten as

CI:;CJM (TW (dj)_|_1'al +dj) = e—ik.tnr C;:UM (I”al +di’)’ (5.15)

where Eq. (5.13) is used. Equations (5.14) and (5.15) mean the reduction of the simultaneous
equation (3.71). That is to say, they are regarded as the simultaneous equations for the finite
number of coefficients {C,’:UM (la,+d)|1=0,1,2----- g-1; i=12; anM}.

Equation (5.14) includes an important suggestion for a way to determine the formula
of the magnetic field. Here, we shall give an important comment on the formula of the mag-
netic field that is consistent with magnetic Bloch theorem. If the magnetic field were given
by

B=8xh/ea’(p/q) (5.16)
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/ h) that appears in Eq. (5.14)

my

instead of Eq. (5.3), then the phase factor exp(-ieBT,, . (d,)t

would not be equal to 1 and would depend on ¢, . In this case, the simultaneous equations
for the set of coefficients {C,’:W (la,+d)|1=0,1,2--g=1; i=12 nfJM} vary with

t,, although the set of coefficients, of course intrinsically, does not depend on ¢, . This
means that the original simultaneous equations [Eq. (3.71)] for the magnetic field Eq. (5.16)
lead to solutions that are not consistent with the magnetic Bloch theorem [Eq. (5.13)]. This
difficulty seems to come from the incompleteness of the set of basis functions wi;”;‘ 4 (r). In
order to avoid this difficulty, the magnitude of magnetic field is chosen in the form of Eq.
(5.3) [49]. Namely, if the form of the magnetic field is chosen like Eq. (5.3), then the phase
factor exp(—ieBT,, .(d)t,, /h) is shown to be equal to 1, which makes the solution of Eq.
(5.14) consistent with the magnetic Bloch theorem. Considering this fact, i.e.,
exp(—ieBT,, (d))t,, / h)=1, Eq. (6.14) is finally rewritten as

o8

—a. —a. B 2.]""1 ' w0 TM' ’ =1
By + AE ot + —;m ( o th }Ck Y (Tay+d)+ Y D e
ntJM W

X Lyppn s (T (d,- ))CI?UM (T, (dj) + ]"’1 + d,-) = EkCJZWM’(llal + dj)' (5.17)

Ty (d )Ty, (d )+ 200 +2d ), }

Table-1V. Phase factors exp[—ieBT,, (d){T, (d,)+2I'a,,+2d, |/ 2] and the coefficients
C/"™ (T, (d,)+1'a, +d,) that appear on the LHS of Eq. (5.17).

eB ,
_lEhT}ik (d\ ((Tyy;, (dy)+21'a)  +2d, )

W T,(d) C!"™ (T, (d,)+1'a, +d,)
a 72m‘£(1'+%) UM o
1 Z(l,l,l) e 1 C; (]a1+d2)
a 2l 27tiky nlIM ¢y 71
2 Z(l,—l,—l) e 7 1 e CT (I —l)al +d2)
a 221 '*%) 2miky nlIM | 71
3 Z(_LL_I) e ! e C (I'a, +d,)
a 22il1 "i) nlIM ;1
4 Z(—l,—l,l) e ! G ((I'-Da, +d,)

5.3 Concrete expressions for the simultaneous equations

Let us give the concrete expressions for the simultaneous equations used in the actual
calculations. In order to consider the electronic states in the vicinity of the Fermi level, we
shall take s and p electrons of the outer shells of the Si atom in calculating the hopping
integrals. Namely, we consider the hopping integrals between the following eight shells:
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(n,E,J,M):(&O,l,ilj, (3,1,l,il), (3,1,§,i1), (3,1,§,i§j. (5.18)
2°72 2772 2772 2772

Furthermore, we consider only the electron hopping between the nearest neighbor atoms.
Specifically four kinds of vectors 7;,(d,) (W =1 to 4) are considered in the calculations.

Table-V. Phase factors exp[—ieBT,,,(d,){T,,,(d,)+21'a,, +2d, }/2h] and the coefficients
C;"M(T,,(d,)+ I'a, +d,) that appear on the LHS of Eq. (5.17).

,,'ﬁ W) Ty, (dy)+21 ', +2d,, !
" L) o an s o)l 2Ty 1245, CM (T, (d,) + 1'a, +d.,)
2021+l
1 0L e ! G ()
a sz(l’%) ik ~ntIM gy 71
2 Z(l,—l,—l) € ¢ G (U Day)
a —27ri£(1'+%) —27iky nlIM ;1
3 S (L1 e ! e G (Tay)
2P (143 :
4 S e 0 ° G+ Day)

In the following, we show the concrete expression for Eq. (5.17) in the case for (1)
d;=d, and (i))d, =d,, individually. The phase factors exp[—ieBTWx(d‘/.){TW ,d;)+2la,,

+2djy} /2h] and the coefficients C;*" (T, (d;)+1'a, +d;) in the left hand side of Eq. (5.17)
are given in Tables IV and V for both cases [(i) and (i1)]. Using these, we have

(1) Ford, =d,,

i Csia, B (2T +1Y. N 221+
83SC,J, +Ag3fjﬁl‘, +E( Y| th }CENM (I'a)+ Z|:e ¢ L s (1))
M
2’”5(1'%) 27k, M [ ‘2’”‘5("‘%) 27k,
+e e by o (1(d, )):’ G a +d,))+ Z € e g (15(d)))
M
il 1

ve 1 Yy (T,(d) | ;™ ((I'-Va, +d,) = E,C;""™ (I'a))

€ 30 30 4\ PR a,~4d, K&k a, (5.19)
with

™G (g-Va, +d,) for I'=0,

5.20
CM((I'=1)a, +d,) for I'#0. (520

CM((I'-Da, +d,) = {
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(i1) Ford, =d,,

21+l

s _si B (2J +1 g
‘93541'1' + Agsc%”ff' + 6_( ' )hM’}Cin (1,”1 +dz) + Z e ? t3[’J’M’,3(JM (11 (dz))
2m\ 20 +1 M

27k 30 2k
te T e ™ by (Ta(d2)):| C (]’al)_'_z e e s (T,(d)))

2l (b 27143
(M

P, 3
2xi—1"+=
i—( 4)

te 1 b T |G (' + D) = E,C™ (e, + ) (5.21)

with
—27iky ~3CIM ’
C 0 for I'=qg-1,
CECJM ((1!+1)a1) — e s k ( ) q (6.22)
C."((I'+Da,) for I'#qg-l.
In Egs. (5.19) and (5.21), the summation on ¢, J and M is over eight states given in

Eq. (5.18). The hopping integrals can be transcribed by the TB parameters with the aid of
the relativistic Slater-Koster table shown in Table 1. Equations (5.19) and (5.21) form sim-

ultaneous equations with a finite number of coefficients {C,f”“ (la,+d))|1=0,1,2,------
g-1; (3,0,J,M)=Eq.(5.18)}.

5.4 Energy bands for a crystalline silicon immersed in the uniform mag-
netic field

5.4.1 Energy dispersion

Figure 5.3(1) shows the energy bands for crystalline silicon immersed in the uniform
magnetic field, where p and ¢ are fixed at 1 and 101, respectively. We have 16q (=1616)
energy bands in the energy dispersion because 16g eigenvalues of E, are obtained for each

k . The labels indicated in the horizontal axis of Fig. 5.3(i) denote the points in the magnetic
first Brillouin zone [Fig. 5.2]. Points p, R, and A, are quite close to each other owing to

the present magnetic field. Their coordinates are explicitly given in Fig. 5.2. It is found from
Fig. 5.3(1) that values of E, obviously change depending on k_ (I'— X — P—R_ line). This

corresponds to the fact that the electron is not subjected to the Lorentz force in the z-direc-
tion, and makes the relatively large hopping along the z-direction. On the other hand, E,

depends little on &, and &, and gap structures are observed in the R, — 4, —T" line, similar

to the case of two-dimensional square lattice. Zooming in these flat bands for the several
cases [Fig. 5.3(i1) {(a) - (e)}], we can find following five properties in the E, curves.

(a) Itis found that E, is periodic in the k, —k, plane. Similar to the case of two-dimen-

sional square lattice [50], this periodicity comes from the symmetry of the crystalline silicon
immersed in the z-directed magnetic field. Namely, since E; is a periodic function of &,
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Fig. 5.3

with the period of 47/ ag that corresponds to the width of the first magnetic Brillouin zone,
E, also becomes a periodic function of k_ with the same period.

(b)
the case where the rational number p/g in Eq. (5.3)is givenby 1/¢g (p =1). It is expected
that the number of allowed bands is approximately proportional to g, because the number

In order to investigate the gap structures observed in the &k, —k plane, let us consider

of energy bands E, is given by 16¢q. Indeed, we find the relation such that N oc 6g, where

N is the number of allowed bands, which is directly confirmed through numerical calcula-
tions. From this property, the band width is expected to decrease with ¢. The magnetic field
dependence of the band width will be discussed in the property (d).

(c) Next, we consider the case where p/gq isnearly equaltol/q’, i.e.,q ~ pg’, where ¢’
is a prime integer. Figures 5.3(ii) {(a) — (¢)} show the energy bands in the &, —k  plane for

the cases of 1/¢'=1/11, p/q=2/23,3/31,4/41,and 5/53, respectively. It is also found
from these figures that p allowed bands are observed in the case of p /g, while one al-
lowed band is observed in the case of 1/¢’. Therefore N allowed bands for the case of 1/¢’
are respectively divided into p allowed bands for the case of p/ g.
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(a) pig = 1/11 (b) plg=2/23 (c) plg =3/31
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s T
-7.38 737
> ; ;
— — 739 s !
(d) plg = 4/41 (e) pig =5/53
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. 1
(i) (i1)
(1) Energy dispersion for a crystalline silicon immersed in the uniform magnetic field.

The value of p and ¢ are 1 and 101 respectively. The labels in the horizontal axis are denoted
by special k points that are indicated in Fig. 5.2. (ii) Magnified view of energy dispersion (flat
band) in the k, —k, plane for different cases of p/g [38].
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This property is recognized as follows. Because of the relation g = pq’, in the case of
p/q, the period of ¢, along the a, directionis p times longer than that in the case of 1/¢'".
Therefore, due to the folding of the magnetic first Brillouin zone, p energy gaps may be

induced at the boundaries of the magnetic first Brillouin zone by the Bragg reflection. This
is the reason why the number of allowed bands in the case of p/g is p times more than

that in the case of 1/¢" (= p/q).

(d) Inthe case of p/g, the energy width of the cluster consisting of p allowed bands is
referred to as the cluster width. It is found from Figs. 5.3(ii) {(a) — (e)} that the energy width
of the allowed band for case of 1/¢" is nearly equal to the cluster width for the case of p/ g.
(Note that, although the cluster width in Fig. 5.3(ii) (b) is exceptionally a little smaller than
those of the other cases [Figs. 5.3(i1) {(a) — (e)}], this discrepancy is not essential. This
discrepancy comes from the error of the premisel/q" (= p/q), i.e., the accuracy of the

premise is not good in the case of p/g=2/23 as compared with other cases.)
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Fig. 5.4 (i) Whole energy dispersion in the k, —k, plane for different cases of p/g. (i)
Magnetic field energy dispersion for a crystalline silicon immersed in the uniform mag-
netic field in the , —k, plane for different cases of p/q [38].

Due to this property, we can say that the outlines of the gap structures for five cases
with 1/¢" (= p/q) resemble each other if the full energy bands are plotted in the larger

energy scale [Figs. 5.4(i){(a) — 5.4(e)}]. Therefore we may regard the cluster width for the
case of p/q as the bandwidth that is nearly identical with the real bandwidth for the case

of 1/4'".
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(e) As mentioned in the property (d), the gap structure for the case of 1/¢’ is similar to
those for the cases of p/g (=1/¢'). So, we shall discuss the magnetic field dependence of
the bandwidth by using the bandwidth for the case of 1/¢'. Figs. 5.4(i1){(a) — (e)} show the

energy bands in the k, —k, plane for the cases of moderately weak magnetic field

p/q<0.1. Itis found from these figures that there exit bandwidths that depend on the mag-

nitude of the magnetic field. The bandwidth definitely increases as the magnetic field be-
comes large. When the magnetic field is quite weak, then the electronic states are compara-
bly less affected by the magnetic field. At that time, the effective mass approximation seems
to be valid, so that the property of the Landau level still survives in the electronic states. On
the other hands, when the magnetic field increases, the electron hopping between the elec-
tronic states becomes larger, which results in making the bandwidth of the energy dispersion
large.

This is easily comprehended from the following discussion. In the solids with no mag-
netic field, the electron hopping between the atomic orbitals generally takes some nonzero
value, and correspondingly yields the nonzero width of the energy dispersion. As the mag-
netic field increases, the spatial broadening of the electronic state gets close to that of the
usual atomic orbitals, which may facilitate the electron hopping between the two neighbor-
ing states. Therefore we can also say that the magnitude of the bandwidth corresponds to
the degree of the infeasibility of the effective mass approximation in the region of moder-
ately weak magnetic field p/¢g <0.1.

5.4.2 Butterfly diagram for a crystalline silicon immersed in the uniform
magnetic field

The magnetic field dependent energy diagrams are shown in Figs. 5.5(a) and 5.5(b).
These are calculated under two conditions: One is that all values of E, for k ’s that corre-
spond to the horizontal axis of Fig. 5.3(i) are plotted in each magnetic field [Fig. 5.5(a)].
Another is that all values of E, for k ’s thatare in the k_— k}, plane are plotted in each mag-
netic field [Fig. 5.5(b)]. Due to the Zeeman term, the energy diagrams of both figures be-
come wide as the magnetic field increases. Correspondingly, the energy diagrams for the
crystalline silicon are not symmetric, similar to the case of two-dimensional square lattice
[Fig. 4.4(1)]. Comparing Fig. 5.5(a) with Fig. 5.5(b), the characteristic gap structures can be
found in Fig. 5.5(b), while almost all of them disappear in Fig. 5.5(a). Especially, in Fig.
5.5(b), energy diagrams that are similar to the Hofstadter’s butterfly diagrams can be ob-
served. In addition, recursive structures can be confirmed in Fig. 5.5(c). Since ¢ are prime
numbers, and since a quite small range of p/¢g is magnified in Fig. 5.5(c), the nonuni-
formity of plotted p /g, which inevitably emerges, is a little noticeable. However, we can
definitely confirm the recursive patterns of the energy gaps in Fig. 5.5(c).

It is easily understood that the disappearance of gap structures in Fig. 5.5(a) is due to
the fact that values of E, strongly depend on k,. However, the appearance of the butterfly
diagrams in Figs. 5.5(b) and 5.5(c) would indicate the peculiar properties of the electronic
states of crystalline silicon immersed in the magnetic field. The magnetic field dependence
of gap structures of £, bands in the k —k plane is essential for the appearance of the but-

terfly diagrams. This means that the electronic states of the crystalline silicon immersed in
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the uniform magnetic field partially loose the two-dimensional degree of freedom depending
on the magnitude of the magnetic field, though the crystalline silicon itself has three-dimen-
sional structure. That is to say, the motion of electrons in the two-dimensional plane is re-
stricted to a degree depending on the magnitude of magnetic field, so that the energy dia-
gram of the butterfly shape correspondingly emerges.
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. 5.5 Dependence of energy diagram on the magnetic field for a crystalline silicon (a) in the

case of varying wave vectors in the magnetic first Brillouin zone (b) in the case of varying wave

vec

tors in the k, — k, plane of the magnetic first Brillouin zone. The magnified view of the energy

diagram is shown in (c), where the recursive structure can be found [38].

Thus, it is shown by means of the MFRTB method that the butterfly diagram, which
includes the recursive structures, appears in the energy diagrams of the crystalline silicon
immersed in the uniform magnetic field. There is a future possibility that such energy struc-
tures are observed experimentally also in a silicon based system as already observed in the
GaAs/AlGaAs heterostructure system [51,52].

5.4.3 Valance and conduction bands

As can be seen in Figs. 5.5(a), 5.5(b), and 5.3(i), when the magnetic field is weak, an
energy gap appears in the vicinity of —6 eV. We shall focus on this energy gap, and show
that it just corresponds to the energy gap between the valance and conduction bands. Alt-
hough there exist 8¢ energy bands below and above this energy gaps, respectively, in Fig.
5.3(1), we will show that they correspond to the valance and conduction bands, respectively.

First, let us confirm the following two points. (i) As shown in Chapter 2 and Chapter
5 of section 5.2, the magnetic Bloch theorem makes the diagonalization problem of deriving
all the eigenvalues of each k belonging to the magnetic first Brillouin zone. This statement
is straightforwardly expressed by Eqs. (4.22) and (5.15). (ii) All electronic states of the sys-
tem can be indicated by the wave numbers k that lie within the magnetic first Brillouin
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zone. This can be easily shown by using the magnetic Bloch theorem in a similar way to the
case of no magnetic field [53]. Using these two points, it is proved that the number of &
involved in the magnetic first Brillouin zone is equal to that of ¢z , which are distributed in

the whole system. Thus, we get the following theorem: *“The total number of k-points
contained in the magnetic first Brillouin zone coincides with that of the magnetic prim-
itive unit cell in the system”.

Next, we consider the number of electrons in the whole system. One lattice point has
the two silicon atoms and correspondingly eight electrons (two set of four outer-shell elec-
trons) belong to it. As shown in Fig. 5.1(a), the magnetic primitive unit cell of the crystalline
silicon immersed in the uniform magnetic field has ¢ lattice points. Correspondingly, 8¢

clectrons are contained in the magnetic primitive unit cell. If the system has n, points of
t,,, then the number of electrons in the whole system is 8¢, .
As mentioned in the above, the magnetic first Brillouin zone has », allowed points

of k, so that the 8¢ bands below the energy gap that exist around —6 eV are valance bands,

and the higher bands are conduction bands. Using this facts, it is also confirmed in Fig.
5.5(a) that the original energy gap of the crystalline silicon, which ranges from about
—6.5¢V to —53eV at p/g=0, remains up to the magnitude of the magnetic field,

p/q=0.2. This would be due to the both the increase of the top of the valance band and

the decrease of the bottom of the conduction band that are mainly caused by the Zeeman
term.
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Chapter 6

Application to simple cubic lattice immersed in the
uniform magnetic field

In this chapter, the dHVA oscillation is revisited by means of the MFRTB method.
Furthermore, the validity of the LK formula, which is commonly used for investigating the
dHvA oscillation, is also checked. For this aim, the MFRTB method is applied to the simple
cubic lattice immersed in the uniform magnetic field. The reason why a hypothetical simple
cubic lattice is chosen as a test system is that the extremal cross-section of the Fermi surface
can be obtained exactly, which enables us to check the validity of the LK formula.

6.1 Expression for the simultaneous equations

Consider the simple cubic lattice immersed in the uniform magnetic field, the magni-
tude of which is given by Eq. (4.2). In this system, we suppose that each lattice point has
one atom with one s-electron. In simple cubic lattice, the nearest neighbor atoms are six
having coordinates 7, =(0,4,0), (0,—a,0), (a,0,0), (—a00y @©O x and (0,0,—a) re-
spectively, with W =1,2,........ 6. By utilizing the magnetic Bloch theorem that comes from
the translational symmetry in the uniform magnetic field [38], we have the relation between
the expansion coefficients in the similar way to the previous cases (Chapters 4 and 5). The
translational vector #, and wave vector k for the simple cubic lattice immersed in the uni-

form magnetic field are defined by
t, =na, +n,qa, +na,, (6.1)

and
k =kb, + kb, + kb, (6.2)

respectively, where n,, n,,and n, are integers, and k,, k,,and k, are real numbers raning
from —0.5 to 0.5. From Eq. (6.1) the ‘magnetic primitive cell’ is defined by three primitive
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vectors:

a,=ae, a,=qae, and a,=ae,, (6.3)

and the corresponding ‘magnetic reciprocal lattice’ is constructed by the following magnetic
reciprocal lattice vectors [Eq. (6.2)] as

27 27 27

b=—e, bj=—e, and b,=—e, (6.4)
a qa - a
kz A
Zo
RO
T
X ™

8"

Fig. 6.1 Magnetic first Brillouin zone for simple cubic lattice immersed in the uniform mag-

netic field, together with some symmetry points 1“:2_”(0’0,0); zzz_”(o’o,(w);
a a

R =2%(0.5,0,0.5): X =2%(0.5,0,0): and M = 2% (0.5,0.5/ 4,0) [54].
a a a

We consider only the hopping integrals between the nearest neighbor atoms as done
in the usual TB method [55]. Taking into consideration relativistic atomic orbitals with
(n, 0, J,M)=(n,0,1/2,£1/2), we can calculate the matrix elements of Hamiltonian, i.e.,

Eq. (3.71), and get the simultaneous equations for the expansion coefficients as

g (B=0)+As , (B=0) B+ 2K, (n'Ol,n'Ol) [cos(27k,)+cos {27(k, +
n'OE n’OEM' m 2 2

oy ol u wola
Zrye" (@ay)+ &, (nO%nO%j x[Ck @ e+ {(1'_1>a2}}
q 172

n'OlM' ,
=EC 7 (Ia,). (6.5)

The matrix form of Eq. (6.5) is same as Eq. (4.34). Only the difference is that the diagonal
elements S, Sy S, -+ S,., S, are changed by the additional factor cos(27k;). Because

g—1
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of considering the monoatomic crystal, the dependences of ¢ ol (B=0), Ag 'OlM’(B =0),
n E n E

S B | "0 M’ . . . . .
Kl(n OE,n O—j ,and C, * on g, is omitted. By solving the simultaneous equations,
1/2

we have 2¢ eigenvalues for each k, and obtain £ — k curves in the presence of the uniform
magnetic field. Since the magnitude of relativistic TB parameters never affect the discus-
sions on the validity of the LK formula, we here also use the same values as we used in the
previous Chapter 4. i.e.,

_ _ 1 1
g (B=0)+Acg K (B=0)=-12.1538(eV) and K, (n'OE,n'OEJ =-1.7391(eV).
2 no M 12

n'0=
2

(6.6)

6.2 Results and discussions

6.2.1 Electronic structures for the simple cubic lattice immersed in the
uniform magnetic field

Figure 6.2(a) shows E —k curves of the simple cubic lattice immersed in the uniform mag-
netic field where the values of p and ¢ are fixed at 10 and 401, respectively. Symbols in the
horizontal axis corresponds to the special & —points in the magnetic first Brillion zone that
is drawn in Fig. 6.1.

Ex(eV)
|
|
|
|
|
|
|

Ex(eV)

(0,0, w/a) (0.02n/a, 0, n/a) (0.04n/a, 0, n/a)
wave vector k

I Z R M r
wave vector k

Fig. 6.2 (a) E — K curves for the simple cubic lattice immersed in the uniform magnetic
field of (p/q) = (10,401). (b) The magnified view of (a) along the ZR-line [54].
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It is found from Fig. 6.2(a) that the energy little depends on the components of the wave
vector perpendicular to the magnetic field (i.e. &, and k) and varies with the component

parallel to the magnetic field (i.e. k_).This means that the motion of electrons in the plane

perpendicular to the magnetic field is essentially changed due to the Lorentz force. On the
other hand, since the electron is not subjected to the Lorentz force in the z-direction, £ —k
curves remain with relatively large bandwidth. Seeing the £ —k curves macroscopically,
they are positioned in the form of parallel lines with some energy spacing to each other,
which seemingly looks like the Landau levels. However, as shown in Fig. 6.2(b), each en-
ergy band has a small but definite width, which is hear after called the fine structure of the
E —k curves [56]. Macroscopical shapes of the £ —k curves would come from the fact
that the orbital quantization contained in the LK formula inevitably emerges also in the cal-
culation results of the MFRTB method, while the fine structure of the E — k& curves is due to

the periodic potential of the crystal [38].

Figure 6.3(a) shows the dependence of the energy spectrum on the magnitude of the
magnetic field in the case where the wave vector is restricted in the plane perpendicular to
the magnetic field. In this calculation, p changes from 1 to 401 with fixing g at 401. The
characteristic gap structures, which are similar to Hofstadter’s butterfly diagram [8], can be
seen in Fig. 6.3(a). On the other hand, the characteristic gap structures are not found when
the wave vector varies along the axis parallel to the magnetic field [Fig. 6.3(b)]. This is due
to the strong dependence of the electron energy on k_, which is shown in Fig. 6.2(a).

(b
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0 01 02 03 04 05 06 07 08 09 1

rlq plq

Fig. 6.3 Energy spectrum as a function of magnitude of magnetic field (a) in the case of
varying wave vectors in the k, — k,, plane of the magnetic first Brillouin zone and (b)
in the case of varying wave vectors along the k, axis of the magnetic first Brillouin
zone [54].

In addition, the energy diagram shown in Fig. 6.3(a) and 6.3(b) split into two parts,
which is due to the Zeeman term of Eq. (6.5). As can be seen in Fig. 6.3(a), the magnitude
of such splitting becomes large as the magnetic field increases. Thus, the MFRTB method
is regarded as the generalized method that includes Hofstadter’s method [8].
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a’D(g) (1/eV)

6.2.2 Density of states (DOS)

In order to show the oscillation of the total energy of the system immersed in a uniform
magnetic field, we first calculate the DOS of the system. For this purpose, we use the theo-
rem that has been discussed in previous chapter [Chapter 5]. We suppose that the number of
magnetic primitive unit cells contained in the system is denoted by », . Since the volume
of the magnetic primitive cell is given by ga’ from Eq. (6.3), the volume of the system is
equal to N, ga®. According to theorem, there are N, number of k —points in the magnetic
first Brillion zone. This assumption would be reasonable because k —points are distributed
uniformly in the limit of zero magnetic field. Under this assumption, we calculate E, for
each k-point and calculate the total number of energy levels less than the energy ¢, je.,
N(g). We obtain the DOS, D(¢) by differentiating N(€) with respectto €, and by dividing
it by the volume of the system N, ga’.
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Fig. 6.4 Density of states in the case of (a) (p/q) = (1, 53) (B =264.71T); (b) (p/q) = (1,1399)
(B =7.253T) and (c) Magnified view of (b) [54].

The DOSs for the simple cubic lattice immersed in a uniform magnetic field
are shown in Figs. 6.4(a) and 6.4(b) for the cases of (p,q)=(1,53) and

(p,q)=(1,1399) respectively. Figure 6.4(c) is the magnified view of Fig. 6.4(b).
The value of N, , which is used in actual calculations, is determined by requir-
ing that the dependence of the total energy per unit volume on the size of the
system is negligibly small. In these calculations, we take 8¢°x10° [57] as N, . It
is found from Figs. 6.4(a), 6.4(b) and 6.4(c) that the DOS is analogous to that of

the free electron immersed in the uniform magnetic field [58]. Namely, the DOS
consists of two characteristic parts. One comes from E—k curves along the .

axis, the shape of which looks like trapezoid that corresponds to the DOS of the
simple cubic lattice for the zero magnetic field. The other comes from discretized
energy levels, the shape of which looks like the delta function. It is also found
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in Fig. 6.4(c) that there are two types of energy splits. The large energy splitting
corresponds to the orbital quantization, and the small one is due to the spin
Zeeman splitting.

6.2.3 Revisit of the dHVA effect via the MFRTB method

In order to calculate the total energy, the Fermi energy must be estimated. In the pre-
sent model system, one lattice point has one atom with one s-electron, so that there exists
one electron in each lattice points. Since it has ¢ lattice points, the magnetic primitive unit
cell contains g-electrons. Since N, magnetic primitive unit cells are contained in the sys-

tem, we can say that the total number electrons in the model system are given by gn, .

According to the theorem mentioned in the previous subsection, the total number of k —
points is equal to N, . Since 2¢ energy levels are calculated for each k —points, totally

2¢N, energy levels are obtained in the magnetic first Brillion zone. Therefore, the lower

half of the energy levels are occupied by electrons, which corresponds to the valence bands.
Using this fact, the Fermi energy can be estimated.

Figures 6.5(a) and 6.5(b) show the dependence of the total energy (£,,,) on the in-

verse of the magnetic field ranging from 9.78 to 9.90 (T) [Fig. 6.5(a)] and from 43.5 to 45.7
(T) [Fig. 6.5(b)] respectively. Oscillatory behavior of the total energy with respect to the
magnetic field is clearly observed. The magnetization can be calculated by taking the dif-
ferential of the total energy with respect to the magnetic field, where we use the cubic spline
interpolation technique. The magnetic-field-dependences of the magnetization [M (B)] are
shown in Figs. 6.6(a) and 6.6(b). In Fig. 6.6(b), some small peaks of the magnetization can
be found in addition to the global oscillation. Hereafter, we discuss the global oscillation of
the magnetization. Concerning the small peaks, we will discuss in the subsequent subsection.

The period of the global oscillation of the magnetization can be calculated by the Fou-
rier transformation of the waveform of the magnetization. The evaluated values of periods

corresponding to Figs. 6.6(a) and 6.6(b) are 3.87x107*(1/T) and 3.85x107*(1/T) respec-
tively (Table-VI).

Table-VI. Periods of the oscillation of the magnetization.

Period (1/T)
Magnetic field (B) MFRTB Method LK formula
9.78-9.90 (T) 3.87x10™ 3.858x10™"
43.50-45.70 (T) 3.85x107* 3.858x10™"
538.69-3328(T) 3.98x107* 3.858x107"

On the other hand, according to the LK formula, the period of the oscillation of the
magnetization is related to the extremal cross-sectional area of the Fermi surface 4,, for
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zero magnetic field system, which is given by

hA

ext

_2rm|e|

(6.7)

In the case of simple cubic lattice, the extremal cross-sectional area of the Fermi sur-

face exists at the boundary of the Brillion zone [53]. Two kinds of Fermi surface exist; one
is the electron sheet that is centered at X-point of the Brillion zone [59], and the other is the
hole sheet that is centered at the M-point of the Brillion zone [59]. They have the same

cross-sectional areas (A4

ext

=0.248582x107°m™), which results in the degenerate magnetic

oscillations of the dHVA effect. The sizes of the Fermi surface sheets are dependent on the
TB parameters of the zero magnetic field.
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Fig. 6.5 Oscillation of total energy with inverse magnetic field (a) B varies from
9.78T — 9.90T and (b) B varies from 43.5T —45.7T [54].
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Fig. 6.6 Dependence of magnetization on the inverse of the magnitude of the mag-
netic field (a) B varies from 9.78T — 9.90T and (b) B varies from 43.5T —45.7T [54].
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The use of the same values as Eq. (6.6) allows comparison of the results of the LK formula
with those of the MFRTB method. Using Eq. (6.7), the period of the LK formula is estimated
as 3.858x107*(1/T), which is quite close to the periods that are obtained from the MFRTB
method (Table-VI). This means that the LK formula, which is based on the Bohr-Sommer-
feld quantization rule and semi classical equation of motion, is a good approximation in the
magnetic field less than about 46 (T).

6.2.4 Additional oscillation peaks of the magnetization

As mentioned in the previous subsection, some small peaks of the magnet-
ization can be found in Fig. 6.6(b) in addition to the global oscillation that is
consistent with the conventional LK formula. Taking into consideration the fact
that the LK formula relates the origin of the magnetic oscillation with the ex-
tremal cross-section of the Fermi surface, additional oscillation peaks of the
magnetization cannot be explained by the LK formula. These additional peaks
are thought to be due to the effect of the periodic potential of the crystal. This
is because the Landau levels, which are obtained for the case of zero periodic
potential, do not cause such additional oscillation peaks of the magnetization
[32,34]. The periodic potential of the crystal also results in the fine structure of
E—k curves that is shown in Fig. 6.2(b). Therefore, fine structure would pro-
duce additional oscillation peaks that cannot be related to the Fermi surface via
the LK formula. Furthermore, the effect of the energy band widening in &, - £,

plane, which corresponds to the fine structure of E—k curves, becomes remark-
able in the high magnetic field due to the increase of the electron hopping be-
tween the electronic states with the magnitude of the magnetic field [38]. This
1s the reason why the additional oscillation peaks of the magnetization are
clearly seen in Fig. 6.6(b), while they are not clearly seen in Fig. 6.6(a). Of course,
it is expected that the number of small peaks may appear in the magnetization
curve if the intervals of the magnetic field are narrowed in the calculations

6.3 Extremely high magnetic field

For reference, we shall consider the case of the extremely high magnetic field. In the
extremely high magnetic field ranging from 538.69 (T) to 3328 (T), the magnetic oscilla-
tions of the total energy and magnetization are calculated as shown in Figs. 6.7(a) and 6.7(b),
respectively. The magnified view of Fig. 6.7(b) is shown in Fig. 6.7(c). Additional oscilla-
tion peaks, which are discussed in the previous subsection, are found in Fig. 6.7(b) more
clearly than in Fig. 6.6(b). Another noticeable thing in the extremely high magnetic field is
that the period of the global oscillation increases. Specifically, it is estimated as
3.98x107*(1/T), which deviates from the LK formula by about 3% (Table-VI). This would
possibly be caused by the limit of the validity of the LK formula. We shall discuss the reason
below.

As mentioned in Chapter 1, the LK formula is based on the Bohr-Sommerfeld quanti-
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zation rule that is valid for the energy levels with fairly high quantum number [37]. The
maximum quantum number is roughly estimated by the ratio ¢, /hw_, where /] and [/,
are the Fermi energy and cyclotron frequency, respectively [37]. This ratio becomes the
order of 10? in the case of B ~10(T), in which case the results of the MFRTB method cer-
tainly agree with those calculated from the LK formula, as mentioned in the previous sub-

section. On the other hand, in the case of B ~10°(T), the ratio is about 10, which seems to
be too small for the correctness of the Bohr-Sommerfeld quantization rule, as expected from

the present results (Table-VI).
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Fig. 6.7 Oscillation of the (a) total energy and (b) magnetization on the inverse of the magnitude of the
magnetic field where B varies from 538.69T — 3328T. Magnified view of (b) is shown in (¢) [54].

The ratio €,/ iw, may become a practical and quantitative indication of whether the

LK formula holds well or not. It should be noted that the Fermi energy generally increases
with the electron density. Therefore there is possibility that the incorrectness of the LK for-
mula would become obvious even magnetic field less than 10°(T) for the metallic system
with the low electron density.
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Chapter 7

Conclusions

We develop the MFRTB method, which is the first principles calculation method for
electronic structures of materials immersed in the uniform magnetic field. In this method,
both magnetic field and relativistic effects are taken into consideration by treating the Dirac
equation for an electron that moves in the both magnetic field and periodic potential of a
crystal. The striking features of the MFRTB method are as follows
(1) The MFRTB method is applicable to the electronic structure calculations of actual
crystalline materials immersed in the uniform magnetic field.

(2)  Itis also shown that within the lowest order perturbation theory, the magnetic hopping
integrals are approximated as the relativistic hopping integrals multiplied by the Peierls
phase factor. This approximation for the magnetic hopping integrals can be improved sys-
tematically by incorporating higher order correction terms.

(3) We develop the relativistic version of Slater-Koster table in order to calculate the rel-
ativistic hopping integrals. Specially, the explicit form of 64 kinds of relativistic hopping
integrals are given by the linear combination of relativistic TB parameters. The relativistic
TB parameters can be readily obtained from the electronic structure calculations for the zero
magnetic field case.

In order to check the validity and feasibility of the MFRTB method, we apply this
method to two systems. One is the two-dimensional square lattice immersed in the uniform
magnetic field, and other is the crystalline silicon immersed in the uniform magnetic field.
(4) The application of the MFRTB method to the two-dimensional lattice immersed in the
uniform magnetic field is described in Chapter 4, and it is shown that the MFRTB method
includes the Hofstadter’s method [8]. Namely, if the Zeeman term is neglected, then the
MFRTB method reproduces so-called Hofstadter’s butterfly diagram.

(5) The application of the MFRTB method to the crystalline silicon immersed in the uni-
form magnetic field is described in Chapter 5. We successfully revealed E-k curves of the
crystalline silicon immersed in the uniform magnetic field at the first time. Furthermore,
recursive structures in the magnetic-field-dependent energy diagram, i.e., the butterfly pat-

terns, can be seen in the k. —k, plane of the magnetic first Brillouin zone [Figs. 5.7(b) and

5.7(c)]. Recursive structures are expected to be observed by the experiments in an appropri-
ate system such as the Si/SiC heterostructure.
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(6) 1tis also found in Chapter 5 that the widths of the energy bands in the k, —k, plane

increases with the magnitude of magnetic field [Figs. 5.6(a) — 5.6(e)]. This suggest that the
useful range of the effective mass approximation, which leads to the Landau levels, is lim-
ited to the limit of the low magnetic field.

In order to show the availability of the MFRTB method, in Chapter 6, we apply the
MFRTB method to the simple cubic lattice immersed in the uniform magnetic field in order
to revisit the dHvA effect by means of MFRTB method.

(7) Oscillations of the total energy and magnetization (dHVA effect) are successfully re-
visited by the MFRTB method. Although the conventional LK formula for the dHVA effect
is a good approximation in experimentally available magnetic field (around 9.8T to 46T),
the MFRTB method is capable of becoming a useful method to describe the magnetic oscil-
lations without assumptions contained in the LK formula.

(8) Especially in the high magnetic field, additional oscillation peaks of the magnetization,
which cannot be explained by LK formula, are found by MFRTB method. These additional
magnetic oscillation peaks may come from the fine structure of E —k curves, which is first
revealed through the MFRTB method.

(9) The present work may become an important milestone toward revisiting the dHvVA
oscillations of more realistic lattice structures by means of the MFRTB method. For exam-
ple, when we apply the MFRTB method to more realistic lattice structures, magnetic oscil-
lations will be obtained in a similar way to the present case (a simple cubic lattice). Namely,
by reference to the above-mentioned knowledge obtained from the present work, the LK
formula is expected to give a good approximation for the period of the main oscillation in
the low magnetic field region. Therefore, if there is a discrepancy between the period that
is calculated by the MFRTB method and that of the LK formula, it can be concluded that
this discrepancy comes from the error of the extremal cross-section of the Fermi surface.
Also, if additional fine oscillations besides the main oscillation are observed in experiments,
we can say that such fine oscillations do not always come from the errors of the extremal
cross-section of the calculated Fermi surface but may come from the fine structures of E-k
curves obtained from the MFRTB method.

Thus we successfully obtain the first principle method, i.e., MFRTB method, which is
applicable to actual crystalline materials immersed in the uniform magnetic field. This
method is expected to be useful to describe the phenomena that are related to the magnetic
Bloch electrons.
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Appendix: A

Show that the matrix elements of Hamiltonian is Hermitian

H' =H

Le. LLpppy s oemnyi = L enyi ey
Proof:

The matrix elements of Hamiltonian given in Eq. (2.13), is

_ ik<(Rn+d/—d‘.) a;a;
H(n'/.'JM')j,(nff.LM)i - z € ' tﬂ’ﬂ'JM',nf;JM (Rn + d[ - dj )’ (Al)

R

n

where the relativistic hopping integral is defined as [Eq. (2.21)]

V, () +V, (r—R,~d,+d)
2

t:zl'//f{'l.‘/'/\4"n/i//\// (Rn + di - d]) = I@:’Q’U'M' (’ﬂ)T { }q):;ﬂﬂ// (l’ - Rn - di + dj)d3r'
(A2)
Similarly, the relativistic hopping integral at position {—(Rn +d, —d j)} is

V,()+V, (r+R,+d,~d))
2

t){zl’/fajl/\fl,n'/f'./'/\/l' {_(Rn + di - dj )} = J.q):‘/,JM (r)T { }q):',ﬂ'f/\/l'(r + Rn + di - dj )dzr'
(A3)
Taking the complex conjugate of Eq. (A3), we have

Vo) +V, (r+R, +d,—d)
2

t::fj/\l,n'/:"./'/\l’ {_(Rn + di - dz)} = J.(D:},’JM (r)t { }q):'/ﬁ"l%l'(r + Rn + di - dj)*d3r'

Changing the variable r'=r+ R, +d,—d, then
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w:'jr.i/’M’(r’)*d}’”.

Vai(r’—Rn—d,.erj)JrVal_(r’)}

ZJ.(/JZZ./M('J_R,: _di+dj)l{ )

Again changing the variable r"=r'-R —d,+d,, then

K4f3+nxfw

= J-[@://M ("”)1 Do (r”)z Do (r”)3 i ("”)4 J { >

¢:/.C’./'M’ (r,)*l

; 2
(9:'}'17\4' (r'y
Py ()7

: 4
_QZ'Jf’J’M’ (r'y i

d’r.

i 1 i A i W2 *2 i 3 .4 *3
= I[(@ZM (r" gD:;(’J'M’ )+l (" ¢:’('J’M'(r') + @ (r") (P:'MM’ "
n ’
nxr>+nxrf%fn

: 4 a 4
+@,0 0 (") wn’,ﬂ"/'M’(r,)* il{ >
» | a 1 ; 2 2 : 3 4 3
=] [(p:'/cugu'(”,)* Pt () + D00y () i U + iy (1) 051 (")

V, ")+ V, (r)
i 2 J d37",

4 a 4
+¢:’I/,’J’M’(r')* Poons (1 ") }{

V, ()4, ()
2

a, 1 a 2 a; 3 a; 4
= J.I:(Dn'/ff'J'M'(r')* q’n'/l{'J'M'(r')* ¢11'//,'J'M'(r’)* q’n',l./'JM'(r’)* :|{

P ("”)1

y P (r”)z 3,
Pt (r”)3
P (””)4

0 [V T,
= [l 0 =

}¢5;’JM (r”)d3r'

Again changing the variable r" =r'— R, —d,+d,, then

. . Vaj(r')+Val(r'—Rn—di+dj) . ' ,
= J.(Dn']('./'M'(r ) 7 q))z‘UM (r - Rn - di + dj )d r,

Finally, changing the variable »'=r, then
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V, ()+V,(r—R,~d,+d)

= J.qas'jfztl'M’ (V)T ) Oy (r—R —d + dj)aﬂ’”a
= t:z;iw,n’(’J’M’ (Rn + di _dj) (A4)
Also we have
H! =H’

'CIMYjrlIMYi — S nlIMYi (0 CIM"Y j

_ —ik-(—R,~d;+d;) ,a,a; *
- Z e tn/fJM,n'/z'JM' (_Rn - di + dj)
R

n

ik-(Ry+d,~d ) ,a,a "
e 7t (-R, —d, + dj)

nlIM ' 0T

|
=M

Changing the variable R, = R , then

_ ik-(R,+d;—d ;) aa; *
- Ze Lusia ey (R, —d; +d).
Rﬂ

(A5)
Substituting Eq. (A4) into Eq. (AS5), we have

+ _ ik-(R,+d;—d ) a;a; .
H e imonry = Ze e oy (R, + 4, dj)
R}'I
il _
H v oeneyi = Hiverae joony

Hence the matrix element of Hamiltonian is Hermitian.
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Appendix: B

Definition of spherical harmonics

i Y,(0,9)=C,(0,9)
Yl,o(q’f):CZ(Qaf)

ii.  Y,(q.f)=- %QCX(W)HQ(W)E

—
—

| P ooy
iv. Yl’_l(q,f)=$gwx(q,f)' iC (g, )k
V. YZ,O(q’f):C3zz-rZ (q7f)

. 1 4 . N
V1. Yz,l(LLf):_ _2g'xz(chf)-i_lC'yz(q’f)E
.. 1 4 - )
Vil. E’_l(q,f)=$gxz(qaf)' lcyz(qaf)E

1 & - )
VI11. Y2’2(q,f):$g‘xz_yz (q,f)‘FlCW(q,f)t

iX.

b

1 P . <
Yz’_z(qaf) =$g‘xz_)}z (qaf) - lev(qaf)t
Definition cubic harmonics:
x.  C(ghH=Y,,(q1)

xi.  C.@H=Y,(@F)

xii. cx(q,f)zﬁé&_l(q,f)- Y, (q.F)E

I 4 N
xiii. Cy(q,f):@@q,_l(qaf)—i_yu(q’f)t

103



Xiv.

XV.

XVi.

XVil.

XViil.

C,.. .(@5)=Y,,@r)

C_(q.)=—_&, (q.H+Y, (q.FF
.@.F) 6@6,.](0 )+Y, (g, F)E
cxz<q,f)=%én,_,(q,f)- Y, (@
1. .
Cz 2 7f =—F7al,_, >f Y22 af
0= 8@,

cn,(q,f>=%én,_2(q,f>- Y, (@0
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Appendix: C

Translational operator in the presence of magnetic field

Let us consider the Dirac Hamiltonian in the uniform magnetic field B with periodic poten-
tial V(r) as

H=ca-{P+eA(r)}+ Lmc’>+V(r). (C1)

—iR,-p/h

The usual translation operator is definedas 7(R,) =e . Consider the following relation

T(R)HT(R,)" f(r)=T(R)HT(-R,) [ (r),
where f(r) is a bispinor function.

=T(R)H f(r+R))
=T(R)[ca-{P+eA(r)}+Bmc’ +V(r))f(r+R,)
=[ca-{P+eA(r—R,)} + Bmc’ +V(r—R)]f(r),
=[ca-{P+eA(r—R))}+ Bmc’ +V(r)|f(r).

=H f(r)

Finally, the translated Hamiltonian is given by
T(R)HT(R,)) = H =[ca-{P+eA(r—R)}+Bmc’ +V(r)]. (C2)

Comparing Egs. (C1) and (C2), the difference between them is just the vector potential part.
In the case of uniform magnetic field A(r)=(0,Bx,0)and A(r-R )=[0,B(x-R,),0]
yield the same magnetic field B=(0,0,B)(i.e. B = Be_) because Vx A(r)=VxA(r—R))
=(0,0,B) . This means that A(r)and A(rR )are related with each other by gauge trans-
formation as,
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A(rlIR )=A(r)+V/Ar,R )
Let ¥(r) be the eigen function of H, Then

HY(r)=EY¥(r)
[ca-{P+eA(r)}+pmc* +V(r) |¥(r) = E¥(r)

Acting T(R ) on the both side of Eq. (C4) from LHS, we have

T(R)HY¥(r)=ET(R)¥(r).
T(R,)HT(R,)' T(R,)¥(r) = ET(R,)¥(r)
HT(R )¥(r)=ET(R,)¥(r).

Substituting Eq. (C2) into (C7), we have
[ca-{P+eA(r—R,)}+pmc* +V(r)|T(R)¥(r)= ET(R)¥(r).

Using Eq. (C3), we have

[ca-{P+eA(r)+eVy(r,R,)}+Bmc* +V(r) |T(R)¥(r) = ET(R,)¥(r)

(C3)

(C4)
(C5)

(Co)
(C7)

(C8)

Comparing Egs. (C5) and (C8), we can say that T'(R )¥(r) can be obtained from the gauge

transformation of W(r). Namely

(r.R,)

T(RYP(r)=c " " w(r)
Substituting Eq. (C9) into (C6), we have

( (r.R,)

T—ﬁgnm) ~i$y(r.R,
T(Rn JHT(R))'e h Y(r)=Fe " Y(r)

Multiplying exp{iey(r,R,)/h} on the both side, then

i 7(r.R,) i y(r.R,) !
e’ T(R) Hie" T(R) Y(r)=E¥(r)
Substituting Eq. (C4) into (C10), we have

€ e R i y(r.R '
{e'h”"’ ")T(Rn)} H{e W ”)T(Rn)} Y(r)=HY(r)
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i< r z'E r f
{e’h’“ ’R")T(Rn)}H{e " 'R"’T(Rn)} —H
UR)HUR) =H,

where

igp((r,R,

UR)=¢""""T(R) (C11)

is called the magnetic translation operator, the set of such operators commute with each
other. Here T(R))=exp(—iR, - p/h) denotes the usual translation operator. It is easily

shown that U(R,) commutes with the Hamiltonian [Eq. (3.2)],
[H,UR,)]=0.
The multiplication of U(R,) and U(R,) leads to

(r (r

UR)UR Y=e"""'T(R )™ ™' T(R )

igx(r,Rr
=e h

) Zx(r.R,) f
T(Rn )e h T(Rn) T(R" )T(Rm)
_ ei%x(’»Rn)ei%X(riR”’R'")T(Rn )T(Rm)

.e
. hx(uk,,)gz;x(r—le,,,km)

T(R +R)

e e e
I?X{(r’Rn)+X(r7Rn’Rm)} 7Z%X(r’Rn+Rm) I?X(r’Rn+Rm)
=e" e e’

T(Rn + Rm)
iZx{(r.R )+x(r-R R )-x(r.R +R)
=€ h

}U(Rn +R )

Using the relation y(r,R,)=-BR vy, we have

UR)UR Y=¢" ““UR, +R). (C12)
The lattice vectors of the two dimensional square lattice with lattice constant is given by
R =nae +nae or R =na +n,a, (C13)

n

Where n,and n, are integers, and a, =ae_,a, =ae,. The magnetic field is directed along

the z-axis, and its magnitude B is given by

B=—7"~, (C14)
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where p and g are relatively prime integers. In the same way, we can show that

UR)UR)=¢" "UR +R,). (C15)
From Egs. (C12) and (C15), we have

.e
i—B(R,R,,~R,

U(R)U(R,)=c" “URU(R,)

URIUR) = """ UR,U(R,). (C16)
From this relation, if we take the set of the magnetic translation operators such as
{u)|t, =na, +n,qa,}, (C17)
then this set form an Abelian group [45]. Namely, we have

Ut,)U(t,)=U,)U(,). (C18)

Note that the set of translation vector ¢, represents a two-dimensional rectangular lattice
with a unit cell of sides a and aq (see, Fig. 4.1). In general, the eigen functions of the Ham-
iltonian, which belongs to a degenerate level, form basis functions of the irreducible repre-
sentations (IRs) of the symmetry group of the Hamiltonian [46, 47]. In addition, all IRs of
an Abelian group are necessarily one-dimensional [47]. Therefore, eigen functions @, (r)

are basis functions of IRs of the Abelian group Eq. (4.11), we have
U(t,)®,(r) = C(z,)D,(r), (C19)

where C(¢,) is the IR of the Abelian group.
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Appendix: D

Derivation of magnetic Bloch theorem

e
x(r

. . i—y(r.R))
From the magnetic translational operator U(R )=¢e" T(R ), we can show that
g p n n

UR) HU(R,)=H. (D1)

This means that, this system is invariant under translation i.e. the system has translational
symmetry. Eq. (D1) implies that

[H, U(R,)]=0. (D2)

On the other hand, choose such set of translation vector {¢,} which are the subsets of {R, }
and satisfy the following relations

ue)u,)=U(,)U(,,
[U(,), U(t,)]=0. (D3)

Equations (D2) and (D3) show that H, U(¢,)), U(¢t,), U(¢,.)--- are commute with each
other. Therefore, we can say that H, U(¢,), U(¢,), U(¢t,.)----- have the simultaneous eigen
function. Let us denote the simultaneous eigen function be ®(r) then

H ®(r) = E O(r), (D4)
and

U(t,) @(r)=C(t,) O(r). (D5)
Operating U(¢ )on both side of Eq. (D4), we have

U(t,) H ®(r)=EU(t,) O(r).
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Using the relation U(t,) H = H U(t,), then
H{U(t,) ®(r)} = E{U(t,) ©(r)}. (D6)

Equation (D6) shows that {U(t,)®(r)} is also an eigen function of H. Therefore, we can

say that ®(r)and {U(¢,)P(r)} are related with each other by gauge transformation. Ac-
cording to normalization condition

[lva)ow)ar=1. (D7)
Substituting Eq. (D5) into (D7), we have

[lc@) o a'r=1,

1C@)F [low) dr=1
|C,) =1 (D8)

where j|®(r)|2d3r =1. Thus from Eq. (D8), C(¢,) = >, k is a real number. Therefore,
Eq. (D5) becomes

U(t,)D(r) =™ d(r) (DY)

Let us define translation vector ¢ =nae +naqge +n.ae or t =na +ngqa,+n.a,, where
n | 2 y 377z n 11 21772 373

a,, a,,and a, are the primitive lattice vectors and n,, n,,and n, are integers, then Eq. (D9)
can be written as

U(a,) @(r) =™ @(r), (D10)
U(a,)@(r)=e"™d(r), (D11)
U(a,))D(r) =™ d(r), (D12)

where k;, k,and k, are real numbers. Again we have

Una)=U(a)U(a,)-- Ula,) (DI13)
U(nyga,)=U(qa,)U(qa,)--- U(ga,) (D14)
U(nyay) =U(a;)U(ay): - Ula,) (D15)

then U(t,) ®(r) can be written as

U(t)) O(r)=U(na, +n,qa, +na,) O(r)
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=U(ma)U(n,qa,)U(n,a,)0(r)
=U(ay)---- U(al)jU(qa2) """ U(ga,)U(ay)--+--- U(a,) ©(r)

Substituting Egs. (D10), (D11) and (D12) into (D16), we get
U(t,)D(r) = &>ttt p),
The wave vector k is defined as
k=kb +kb,+kpb,,
where b, b, and b, are the magnetic reciprocal lattice vectors defined as

b =21 9% . p oy WX o X4

al~(qa2><a3)’ 2 al-(qazxa3)’ } a1~(qa2><a3)'
Furthermore,
k-t =2n(kn +qk,n, +k;n,).
Finally, Eq. (D17) becomes
U(t,)D(r) =" d(r).

In addition, we have

U)o =" T(e, )0(r)
=" -t
Comparing Egs. (D18) and (D19), we have

(r.z,

ety
O(r—t)=e W G (1)

(D16)

(D17)

(D18)

(D19)

(D20)

Equation (D20) is regarded as the extention of the Bloch theorem for electrons that are mov-
ing in the uniform magnetic field and a periodic potential of the crystal. Equation (D20) is

called magnetic Bloch theorem and is reduced to usual Bloch theorem when B = 0.
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