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Chapter 1 

Introduction 
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1.1. Background 

1.1.1. Three dimensional integration 

Silicon complementary metal-oxide semiconductor (CMOS) technology 

has been developed by scaling down as shown in Fig. 1.1. However, the 

scaling limitation is approaching. In addition, the fabrication cost is 

increased by scaling down as shown in Fig. 1.2. A novel independent 

technology from scaling is introduced. 

 

 

Fig. 1.1. Gate length and equivalent oxide thickness aimed in each year [1]. 
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Fig. 1.2. Cost per bit plotted against capacity of memory [2]. 

 

In particular, Three-dimensional (3D) integration [3-5], which is the 

technology stacking transistors in a vertical direction, is investigated. In this 

technology, through silicon via (TSV) is one of the most important process. 

Figure 1.3 shows a process flow of 3D integration with TSV. The TSV is 

divided into four parts (via first, via middle, via last, and via after stack). 

Table 1.1 shows materials used as wirings of the TSV. In order to make 

wiring delay low, the material having low resistivity is used as a wiring 

material in the TSV. Although a wiring material with heat-resisting property 

is chosen as the material corresponding a maximum process temperature 

after formation of TSVs. For that reason, the timing to form TSVs is 

important. 
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Fig. 1.3. Process flow of 3D integration with TSV. 

 

Table 1.1. Materials used as wirings of TSV. 

 Poly-Si Tungsten(W) Copper(Cu) 

Main via Via first Via middle Via last and after stack 

Resistibility[cm] > 10-5 5.3×10-6 1.7×10-6 
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1.1.2. Large area electronics 

The large area electronics are classified into thin-film solar cells, imaging 

sensors, flat panel displays (FPDs), etc. In particular, as for FPDs, cathode 

ray tube (CRT) was the main display until about 2000. By the starting of the 

mass-production of thin-film transistor liquid crystal display (TFT-LCD) in 

1991, the TFT-LCD spread to home. By means of enlargement, higher 

pixilation, and lower price of LCDs, the market grew in 2000, and the market 

was further expanded in the late 2000s. However, after that, the market of 

LCD has become stagnant. On the other hand, the smart device, such as smart 

phone and tablet personal computer (PC), has spread due to release of 

Apple’s iPhone in 2007. 

 The development of display market is related to improvement of TFTs. The 

TFTs are fabricated on a substrate with low heat resistance, such as glass and 

quartz. Table 1.2 shows channel materials of TFTs in a field of display. 

Organic TFTs [6-10] have the advantages of flexibility, low production costs, 

while, the reliability is a serious problem. Oxide TFTs [11-15] have 

transparency and the possibility of formation on flexible substrate at a low 

temperature. Nevertheless, it is difficult that complementary metal-oxide 

semiconductor (CMOS) circuits are fabricated owing to lack of CMOS 

capability. On the other hand, low-temperature poly-Silicon (LTPS) TFTs 

[16-18] have higher reliability and mobility in both conduction types. 
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Table 1.2. Channel materials of TFTs. 

 a-Si:H Organic 

semiconductor 

Oxide 

semiconductor 

Low 

temperature 

poly-Si(LTPS) 

Conduction type n-ch p-ch n-ch CMOS 

Field effect mobility 

[cm2/(Vs)] 
0.5 ~ 1.5 < 5 10 ~ 80 > 100 

Cost Good Excellent Good Fair 

Process temperature 

[°C] 
< 350 < 100 < 300 < 600 
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1.2. Motivation and purpose 

 In fields of both 3D integration and large-area electronics, fabrication 

technique of high-performance transistors on an insulator at low 

temperature is required. In our previous work, we have proposed layer 

transfer of Si films with a midair cavity to a foreign substrate using 

meniscus force at low temperature [19]. 

 In this paper, I proposed a novel TFT fabrication process using meniscus 

force-mediated local layer transfer. Figure 1.4 shows the schematic diagram 

of the proposed process flow of a Si TFT fabrication on an insulator by 

meniscus force. By adopting parts of the conventional Si CMOS fabrication 

technique, high-performance TFTs are fabricated. The most important 

feature of the process is to complete high-temperature treatment methods of 

silicon on insulator (SOI) layers with the Si substrate before transfer of the 

layers to a foreign substrate with low-heat resistance. In order to 

demonstrate Si TFT fabrication on an insulator, it is necessary to 

investigate each treatment method of the sample. In particular, I focused on 

two processes (ion implantation and thermal oxidation) before transfer. 
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Fig. 1.4. Schematic diagram of proposed process flow of Si TFT fabrication on insulator by 

meniscus force. 
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Chapter2 

Fundamental technologies 
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2.1. Meniscus force 

2.1.1. Surface tension 

 Capillary action is a phenomenon at an interface between non-mixed liquids 

or an interface between a liquid and an air. The interface moves to minimize 

the energy at the interface. Figure 2.1 shows a schematic diagram of 

molecules at the surface and the inside of a liquid. The molecules in a liquid 

pull against each other because the molecules condense. When the effect of 

intermolecular force is greater than thermal fluctuation, molecules change 

from gas to liquid. The molecules in the inside of liquid are stable by 

intermolecular forces with the surrounding molecules. On the other hand, the 

molecules at the surface of liquid lose the intermolecular forces on the side 

of gas. Because of these reasons, the liquid changes the shape to minimize 

the surface area of the liquid. When the aggregation energy per molecule is 

defined as U in Fig. 2.1, the molecules at the surface of liquid lose half of U. 

Surface tension () is obtained by measuring the quantity of the energy loss. 

Table. 2.1 shows the surface tension of familiar liquids at a room 

temperature. For oil, the interaction is related to van der Waals. The 

aggregation energy is equal to thermal fluctuation. When kT is 0.025 eV at 

25 °C,  is 20 mN/m. The  of water is larger than that of oil owing to 

hydrogen bond. Mercury is a liquid and a metal. The  is ~ 500 mN/m 

because the cohesive force is strong.  

 



- 13 - 

 

 

Fig. 2.1. Schematic diagram of molecules at surface and inside of liquid. 

 

Table. 2.1. Surface tension of familiar liquids at room temperature. 

Liquid Ethanol Acetone Cyclohexane Glycerol Water Mercury 

 [mN/m] 23 24 25 63 72 485 

 

2.1.2. Capillary adhesion 

 The meniscus force generates by pressure difference between internal and 

external of the meniscus curved surface. The formula consists of two terms 

about Laplace pressure (∆p) and the surface tension formed among liquid 

and gas and solid of a liquid bridge. 

When a liquid is contained between two plates, capillary bridge is formed as 

shown in Fig. 2.2 The height between the plates is defined H. When the 

direction of arrows in Fig. 2.2 is a positive direction, the meniscus force (F) 

represents as follow. 

                    F = π𝑅2∆p − 2πRγsinθ.              (2.1.1) 

Where R is the radius of capillary bridge, and θ is the contact angle of a 

liquid. 

When Θ < 90°, Laplace pressure is given by 
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                 ∆p = γ(
1

𝑅
−

2𝛾𝑐𝑜𝑠𝜃

𝐻
),                (2.1.2) 

                      ≈ −
2𝛾𝑐𝑜𝑠𝜃

𝐻
. (R<<H)            (2.1.3) 

From Eq. (2.1.1), the meniscus force (F) represents as follow. 

                   F = −
2π𝑅2𝛾𝑐𝑜𝑠𝜃

𝐻
− 2πRγsinθ,            (2.1.4) 

                    ≈ −
2π𝑅2𝛾𝑐𝑜𝑠𝜃

𝐻
. (R<<H)                (2.1.5) 

The meniscus force generates by decreasing H. 

 

 

Fig. 2.2. Schematic diagram of sandwiched liquid by two plates. 
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2.2. Characteristics of thin-film transistor 

2.2.1. Thin-film transistor 

A thin-film transistor (TFT) is a kind of field effect transistors (FETs). 

Figure 2.3 shows a typical structure of a TFT on an insulator. The TFT is a 

three-terminal device without ground terminal. The structure is similar to 

metal-oxide-semiconductor field effect transistor (MOSFET) built on SOI 

with the exception that the active film is a deposited thin film and that the 

substrate can be of any form.  

 

 

Fig. 2.3. Schematic diagram of cross section of (a) top gate TFT and (b) bottom gate TFT. 

 

Field-effect mobility 

The field-effect mobility (𝜇𝐹𝐸) is determined from the transconductance 

(𝑔𝑚), defined by 

                 𝑔𝑚 =
𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
|𝑉𝐷𝑆 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.              (2.2.1) 

When 𝑉𝐷𝑆 is low, the channel charge is more uniform from source to drain. 

The drain current is 

                       𝐼𝐷 =
𝑊𝜇𝐹𝐸𝑄𝑛𝑉𝐷𝑆

𝐿
,                   (2.2.2) 

where L and W are the gate length and the width of a TFT, and 𝑄𝑛 is the 

mobile channel charge density, respectively. 

The mobile channel charge density is approximated by 

                     𝑄𝑛 = 𝐶𝑜𝑥(𝑉𝐺𝑆 − 𝑉𝑡ℎ),                (2.2.3) 
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where 𝑉𝑡ℎ is the threshold voltage and 𝐶𝑜𝑥 is the oxide capacitance.  

From Eq. 2.2.3, the drain current is 

                 𝐼𝐷 =
𝑊

𝐿
𝜇𝐹𝐸𝐶𝑜𝑥(𝑉𝐺𝑆 − 𝑉𝑡ℎ)𝑉𝐷𝑆.             (2.2.4) 

From Eq. 2.2.4, the transconductance is given by 

𝑔𝑚 =
𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
=

𝑊

𝐿
𝜇𝐹𝐸𝐶𝑜𝑥𝑉𝐷𝑆.              (2.2.5) 

The field-effect mobility becomes 

 𝜇𝐹𝐸 =
𝐿𝑔𝑚

𝑊𝐶𝑜𝑥𝑉𝐷𝑆
.                 (2.2.6) 

 

Threshold Voltage 

 The threshold voltage (Vth) is given by  

𝑉𝑡ℎ = 𝑉𝐹𝐵 + 2Ψ𝐵 +
√2𝜀𝑠𝑞𝑁𝐴(2Ψ𝐵)

𝐶𝑜𝑥
,            (2.2.7) 

where 𝑉𝐹𝐵 is the flat-band voltage, Ψ𝐵 is fermi level from intrinsic fermi 

level, 𝜀𝑠 is permittivity of semiconductor, q is unit electronic charge, 𝑁𝐴 is 

acceptor impurity concentration. 

 The flat-band voltage is related to fixed oxide charges (𝑄𝑓) and the work-

function difference (𝜙𝑚𝑠) between the gate material and the semiconductor, 

Eq. 2.2.7 becomes 

𝑉𝑡ℎ = (𝜙𝑚𝑠 −
𝑄𝑓

𝐶𝑜𝑥
) + 2Ψ𝐵 +

√2𝜀𝑠𝑞𝑁𝐴(2Ψ𝐵)

𝐶𝑜𝑥
.       (2.2.8) 

Subthreshold swing 

 The parameter to quantify how sharply the transistor is turned off by the 

gate voltage is called the subthreshold swing S (inverse of subthreshold 

slope), defined as the gate-voltage change needed to induce a drain-current 

change of one order of magnitude. By definition, the subthreshold swing can 

now be calculated as follow. 

𝑆 ≡ (𝑙𝑛10)
𝑑𝑉𝐺

𝑑(𝑙𝑛𝐼𝐷)
 

= (𝑙𝑛10)(
𝑘𝑇

𝑞
)(
𝐶𝑜𝑥+𝐶𝐷

𝐶𝑜𝑥
).            (2.2.9) 
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Here, k is the Boltzmann constant, 𝐶𝐷 is the depletion-layer capacitance. 

 When the MOS interface-trap density 𝐷𝑖𝑡 is high, the subthreshold swing 

is given by 

𝑆 = (𝑙𝑛10)(
𝑘𝑇

𝑞
)(
𝐶𝑜𝑥+𝐶𝐷+𝐶𝑖𝑡

𝐶𝑜𝑥
).           (2.2.10) 
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Chapter 3 

Measurement of meniscus force 
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3.1. Introduction 

The meniscus force generates between two parallel plates increases by 

decreasing the height between plates as shown in Eq. 2.1.5 [1]. It is 

important to investigate the force actually generates between glass and Si 

substrates. In order to examine relationship between the meniscus force and 

the distance between the substrates (the height of capillary bridge), the 

distance changing by time was measured, and the force was obtained when 

the substrates separated. 
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3.2. Experiments 

Figure 3.1 shows the schematic diagram of a system of measurement. The 

change of distance between an Al mirror and a glass substrate with filling 

water during natural drying was observed by optical interferometer. The 

measurement step is described as follow. 

At first, an Al mirror 10 mm square is fixed, and a glass substrate with a 

fixed amount of pure water (1.5 L) was approached to the mirror from the 

lower side. When the mirror contacted with water, the glass clung to the 

mirror by surface tension of water. After that, the distance between the 

substrates decreased by natural drying. During natural drying, I observed 

the wave signal results from optical interference by using He-Ne laser 

irradiation from back-side of glass. From the signal, the height from Al 

mirror to glass substrate (H) was calculated. The change of the height (H) 

is given by 

                           ∆𝐻 = 𝑁 ∗
𝜆

2𝑛
,                  (3.1) 

where N is the number of the observed wave, and  is the wavelength of 

He-Ne laser, and n is the refractive index of water, respectively. The height 

(H) at an arbitrary time represents as follow. 

                         𝐻 = 𝐻0 − ∆𝐻,                  (3.2) 

Here, H0 is the initial height immediately after formation of capillary bridge. 

Finally, at an arbitrary time, the glass was separated from the Al mirror, and 

the generated force was read by digital force gauge. 
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.  

Fig. 3.1. Schematic diagram of observation of distance between Al mirror and glass substrate by optical 

interference. 
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3.3. Results and discussion 

Figure 3.2 shows an example of observation results. The signal began to be 

observed when the substrates clung to each other by surface tension of water 

(step I in Fig. 3.2). After that, the waves were confirmed by natural drying 

(step II in Fig. 3.2). Finally, the substrates were removed (step III in Fig. 3.2). 

In this case, the number of waves is 19. From Eq. 3.1, the change of the 

height is 4.5 μm. Here, the initial height was calculated as 13 μm from the 

volume of water and the area of the substrate. From these values, the height 

was 8.5 μm when substrates were separated. When removed substrates, the 

separating force was 470 mN. The measurement was made several times. 

The separating force was plotted with respect to the height value as shown 

in Fig. 3.3 by the filled circles. This result indicated that the decrease of the 

height increased the separating force. In addition, the experimental data 

corresponded to the calculated data from meniscus force equation (Eq. 

2.1.5). These results suggest that the stronger meniscus force generates at 

lower height. 
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Fig. 3.2. Wave signal generates by optical interference during evaporating water and schematic diagram 

of the sample in each step during measurement. 

 

 

Fig. 3.3. Separating force plotted with respect to height from Al mirror to glass substrate. Filled circles: 

experimental data. Line: calculated meniscus force. 
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3.4. Conclusion 

 I attempted to measure the attracting force generates between an Al mirror 

and a glass substrate. It was confirmed that the force to separate the glass 

substrate from the Al mirror increased by decreasing the height from the 

glass substrate to the Al mirror, and the separating force corresponded to 

meniscus force. 
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Chapter 4 

Transfer of SOI layers to glass 

substrate 
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4.1. Introduction 

In a field of large-area electronics such as flat panel display (FPD), thin film 

transistors (TFTs) are fabricated on a substrate having low heat resistance 

such as glass substrate. In conventional display, a circuit for switching pixels 

and external circuits fabricated on separate substrates are connected by 

electric wiring. For the realization of system on glass (SOG), fabrication of 

complementary MOS (CMOS) circuits on a glass substrate at low 

temperature is required. For fabrication of CMOS circuits, higher mobility 

in both n- and p- channel TFTs is required. Hydrogenated amorphous silicon 

(a-Si:H) [1, 2], organic [3-5], and oxide [6-8] are investigated as the channel 

material of TFT for low-temperature fabrication technology. However, there 

are serious problems originated from their low electrical performance, poor 

reliability, and lack of CMOS capability. On the other hand, low-temperature 

poly-Si (LTPS) TFT fabricated by rapid thermal annealing and 

crystallization of a-Si using excimer laser has high mobility in both 

conduction types [9]. However, the serious problem of LTPS TFT is 

characteristic variation due to grain boundaries.  

In order to implement silicon technology, transfer of single crystalline 

silicon to foreign substrates has been attempted on basis of conventional 

wafer bonding approaches [10, 11]. However, these techniques require high 

process temperature or bonding pressure. 

 In previous work, we have proposed layer-transfer of Si films with a 

midair cavity to a counter substrate using meniscus force [12]. In Chap. 3, I 

measured the stronger meniscus force generated between parallel plates. In 

this chapter, I attempted transfer of single crystalline silicon films with a 

midair cavity to a glass substrate using meniscus force at low temperature. 
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4.2. Experiments 

Figure 4.1 shows the process flow of transfer. A silicon-on-insulator (SOI) 

wafer with (100)-oriented SOI layer and BOX layer thicknesses of 100 and 

300 nm, respectively was prepared. The SOI layer was patterned to a channel 

shape (channel length of 18 m) by photolithography and chemical dry 

etching as shown in Fig. 4.2, and the BOX layer was etched by HF solution 

until fine SiO2 columns were left underneath the source and drain regions. 

The size of SiO2 columns was controlled to less than 1 m by etching time. 

After that, transfer of the SOI layer with a midair cavity to glass substrate 

(Corning Eagle 2000) was performed. At first, the layer and a glass substrate 

were placed in close face-to-face contact with filling water, and the sample 

was heated at 80 ºC on a hot plate for 15 min. After the water evaporated, the 

wafer was removed. The shape of the SOI layer before and after transfer was 

observed by optical microscope and scanning electron microscope (SEM). 
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Fig. 4.1. Schematic diagram of transfer of SOI layer with midair cavity to glass substrate. 

 

 

Fig. 4.2. Device pattern of SOI layer. 
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4.3. Results and discussion 

The SEM image of the SOI layer with midair cavity was shown in Fig. 4.3 

(a). From that result, it was confirmed that midair cavity was formed 

without shape change of the SOI layer. From the SEM image in Fig. 4.3 

(b), the shape of an SOI layer on glass substrate was completely maintained 

after transfer. Further, from electron back-scattering diffraction (EBSD) 

pattern of the layer on glass, it was confirmed that the transferred layer was 

oriented to (100) direction. From these results, we called this transfer 

technique as ''meniscus force-mediated layer transfer (MLT) technique''. 

 

 

Fig. 4.3. SEM images of SOI layer (a) before and (b) after transfer and (c) EBSD pattern of transferred 

film on glass. 
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4.4. Conclusion 

 I attempted to transfer SOI layers with a midair cavity to a glass substrate. 

The SOI layer was completely transferred to glass without deformation. 

From this result, I succeeded in local transfer of single crystalline silicon 

layer to glass substrate at a low temperature of 80 ºC. 
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Chapter 5 

Thermal oxidation of SOI layers 

with midair cavity 
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5.1. Introduction 

In Chap. 4, local transfer of single crystalline silicon with midair cavity to 

glass substrate was performed at a low temperature. In addition, for 

fabrication of high-performance MOS transistor, it is necessary that high 

quality insulator is formed. Thermal SiO2 with high electrical property has 

been known [1]. In this chapter, I proposed that SOI layers with midair 

cavity were oxidized. Thermal oxidation is a key process for fabrication of 

high-performance TFTs. The SiO2 layer work as the blocking layer of 

contamination from glass. The shape of SOI layers with midair cavity after 

oxidation was observed, and effect of the transfer process of SOI layers 

with midair cavity was investigated. Furthermore, n-channel single 

crystalline silicon TFT fabrication process on glass substrate at a low 

temperature was demonstrated. 
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5.2. Experiments 

The SOI wafer was used with 100-nm-thick SOI layer in this experiment. 

First, the SOI layer was patterned to a channel shape by photolithography 

and chemical dry etching. Channel length (L) is set in the range from 5 to 15 

m as shown in Fig. 5.1. In order to form “midair cavity”, the BOX layer 

was etched by HF solution, and the size of SiO2 columns was controlled to 

less than 1 m by etching time. Next, thermal oxidation of SOI layers with 

midair cavity was performed in dry oxygen at 1000 ºC to form from 13 to 26 

nm conformal SiO2, as shown in Fig. 5.2. Here, the oxide thickness was 

defined as t. After that, the SOI layer with midair cavity was transferred to 

glass substrate (Corning Eagle 2000) by meniscus force. After that, the MLT 

of thermally oxidized SOI is performed. The sample is heated at 80ºC on a 

hot plate for 15 min. Eventually, the SOI layer is transferred when removing 

from the SOI wafer. 

 

 

Fig. 5.1. Photograph of SOI layer pattern. 

 

 

Fig. 5.2. Schematic diagram of thermal oxidation of SOI layer with midair cavity. 
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5.3. Results and discussion 

First, the SOI layers changed the channel length was observed. The 

Optical microscope images of SOI layers with midair cavity before and 

after thermal oxidation are shown in Fig. 5.3. Here, the oxide thickness is 

fixed at 13 nm. I observed that the channel color of the SOI layers with 

midair cavity changed after oxidation. From this result, it appeared that the 

deformation of the SOI layers occurred because of formation of thermal 

SiO2. In addition, from the SEM images of the channel of the SOI layers in 

Fig. 5.3, the bend of the oxidized SOI layers was observed. It was 

confirmed that the displacements from the original position (D) were ~370 

nm (L = 15 m) and ~ 85 nm (L = 5 m), respectively. From the result, the 

shorter channel length decreased the displacement of the layer. Next, the 

SEM images of the SOI layers for various oxide thicknesses were shown in 

Fig. 5.4. Here, the channel length of the samples is 15 m. From these 

results, thicker oxide showed larger deformation due to accumulation of 

oxidation strain. Figure 5.5 summarized the relationship between 

displacement of the SOI layer and thermal SiO2 thickness on each channel 

length of the SOI layer. This result indicated the decrease of the channel 

length and oxide thickness could restrain the deformation of the layer. 

Then, transfer of the oxidized SOI layers with a midair cavity in different 

displacements was performed to glass substrate. In the large displacement, 

the SOI layer at L = 15 m was transferred to glass substrate, however, a 

part of the channel wrinkling was observed, as shown in Fig. 5.6(b). In 

contrast, when the L was as short as 5 m and the oxide thickness (t) was 

13 nm, deformation of SOI layer was less than 100 nm (red area in Fig. 

5.5) and the layer transfer to glass was carried out without any problem as 

shown in Fig. 5.6(a). From these results, we succeeded in local transfer of 

the thermally oxidized SOI layer with short channel using meniscus force 

at a low temperature. 
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Fig. 5.3. Optical microscope images of SOI layers on midair cavity before and after thermal oxidation at 

1000 ºC, and SEM images ( = 70º) of channel of oxidized SOI layer with midair cavity. (a) L = 15 m 

and (b) L = 5 m. 

 

 

Fig. 5.4. Whole and enlarged SEM images of oxidized SOI layers with midair cavity. (a) t = 0 nm and (b) 

t = 13 nm and (c) t = 26 nm. 
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Fig. 5.5. Displacement of SOI layer plotted with respect to thermal SiO2 thickness for various channel 

length of SOI layer.  

 

 

Fig. 5.6. Optical microscope images of the SOI layer transferred to glass substrate after thermal 

oxidation: (a) L = 5 m and (b) L = 15 m. 
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Capacitance versus voltage (C-V) characteristics of MOS capacitors 

fabricated by thermal SiO2 (10 nm) + PECVD SiO2 (196 nm): sample A, 

and PECVD SiO2 (204 nm): sample B, are shown in Fig. 5.7. By the high-
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low-frequency capacitance method [2], the interface state density (Dit) at 

the midgap of sample A is 2.6×1010 cm-2eV-1, which is about two and a half 

times smaller than that of sample B. This result indicated that proposed 

process offers high quality Si/SiO2 interface. 

 

 

Fig. 5.7. High-frequency and quasi-static C-V characteristics of (a) thermal SiO2 (10 nm) + PECVD 

SiO2 (196 nm) and (b) PECVD SiO2 (204 nm) MOS capacitors after PMA. 
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5.4. Conclusion 

 I attempted to transfer thermally oxidized SOI layers with a midair cavity 

to a glass substrate. The SOI layers with the midair cavity bent after thermal 

oxidation. Under the condition of shorter length and thinner oxide, the 

deformation of the SOI layer was less than 100 nm. In case of deformation 

of less than 100 nm, the layer transfer to glass was carried out without any 

problem. From these results, I succeeded in local transfer of the thermally 

oxidized SOI layer with short channel and thin oxide using meniscus force 

at a low temperature. 
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Formation of implanted SOI layers 

with midair cavity
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6.1. Introduction 

Silicon complementary metal-oxide-semiconductor (Si CMOS) 

technology is approaching the end of its scaling owing to unavoidable 

physical limitations. Therefore, three-dimensional (3D) integration 

technology [1–3] is being studied intensively. In 3D integration technology, 

through-silicon via (TSV) is an essential process in the front end of line 

(FEOL) and back end of line (BEOL). In order to perform TSV in FEOL 

above 600 ºC, the poly-Si is used as a wiring material in the via hole. The 

resistivity of poly-Si is two or three orders of magnitude greater than that of 

a metal. In a formation technology where single-crystalline Si layers are 

stacked on a substrate at a low temperature, a metal is used for all electrical 

wiring. 

In order to implement Si CMOS technology on foreign substrates, the 

transfer of single-crystalline silicon to glass has been attempted on the basis 

of conventional wafer-bonding approaches [4, 5]. Wafer bonding requires 

an extremely low surface roughness (less than 1 nm) of the wafers. In 

addition, transfer techniques using a sacrificial layer [6, 7] are known. 

In our previous work, we have proposed layer transfer of Si films with a 

midair cavity to a countersubstrate using meniscus force [8]. Furthermore, 

in Chap. 5, the thermal oxidation of silicon-on-insulator (SOI) for the 

formation of a good MOS interface was performed. However, the critical 

issue in MLT to a glass substrate is the low transfer yield of ~ 20%. It is 

necessary to improve this yield. Figure 1 shows the process steps of MLT 

in TFT fabrication on glass. In Fig. 6.1, I speculated that the process step 

before transfer affects the MLT process. In particular, I considered that it is 

important to control the SiO2 column size and shape. Several groups have 

reported that etch rate of SiO2 is changed by controlling the impurity 

concentration in a SiO2 [9–11].  

In this work, I observed SOI layers with a midair cavity after ion 

implantation and thermal oxidation, and attempted to improve the transfer 

of the SOI layers to the glass substrate. 
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Fig. 6.1. Schematic diagram of process flow of Si TFT fabrication on glass by MLT technique. 
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- 46 - 

 

6.2. Experiments 

An SOI wafer with (100)-oriented SOI layer and buried oxide (BOX) layer 

thicknesses of 80 and 400 nm, respectively, is prepared. An SOI layer is 

patterned to a channel shape by photolithography and chemical dry etching, 

as shown in Fig. 6.2(a). Next, phosphorus ions (P+) were implanted into 

source and drain regions of some of the samples with a 7º tilt angle in the 

dose range from 1 × 1014 to 2 × 1015 cm-2 at 40 keV using an ion implanter 

(Ulvac IM 200-M). The channel region of the samples with a resist was not 

implanted [hatched area in Fig. 6.2(b)]. Here, the ion acceleration voltage 

was determined using the simulator TSUPREM4 [12] to set the projection 

range to a position near the SOI/BOX interface, as shown in Fig. 6.3, because 

a good contact between the SOI layer after transfer and a metal is provided. 

The implanted samples were then annealed at 1000 ºC to active the 

impurities. Next, the BOX layer was etched with 25% HF solution at 30 ºC 

to form the midair cavity. The size of residual SiO2 columns was controlled 

by adjusting the etching time. The thermal oxidation of SOI layers with a 

midair cavity was performed in dry oxygen at 1000 ºC for 4 min. After that, 

the SOI layer was transferred to a glass substrate by MLT technique. At first, 

the wafer and a glass substrate were placed in close face-to-face contact with 

filling water, and the samples were heated to 80 ºC on a hot plate for 15 min. 

As the water evaporated through the midair cavity, capillary bridges were 

formed between the SOI layer and the glass substrate, and meniscus force 

was generated in capillary bridges. The meniscus force [13] rapidly 

increased with the evaporation of water, which decreased the height of the 

capillary bridge. Eventually, the SOI layer was transferred by removing the 

layer from the SOI wafer. Even if a part of the SiO2 columns was transferred 

with SOI layers, the columns could be etched by HF solution or dry etching 

after the area, except for the columns covered with a mask such as a resist. 
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Fig. 6.2. Optical microscope images of (a) top view of channel pattern formed on SOI layer and (b) 

top view of implanted SOI layer. 

“Copyright (2015) The Japan Society of Applied Physics” 

 

 

Fig. 6.3. Simulated profiles of phosphorous concentration in SOI after implantation. 

“Copyright (2015) The Japan Society of Applied Physics”  
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6.3. Results and discussion 

The difference in the etching shape between samples with and without ion 

implantation (I/I) was investigated. As shown in the scanning electron 

microscope (SEM) images in Figs. 6.4(a)–6.4(c), the middle of the BOX 

layer was etched more than the area near the SOI layer and the Si substrate. 

On the other hand, for the implanted sample, the BOX layer near the SOI 

layer was etched more than the area near the Si wafer, as shown in Figs. 

6.4(d)–6.4(f).  

 

 

Fig. 6.4. SEM images of side view of SOI wafer (a)–(c) without implantation and (d)–(f) with 

implantation during midair cavity formation at each etching time. 

“Copyright (2015) The Japan Society of Applied Physics” 

 

Next, the lateral etching distances at the top, middle and bottom of the BOX 

layer, as shown in Fig. 6.4(a), were measured. The dt, dm, and db in the 

samples without I/I and with I/I were plotted with respect to etching time in 

Figs. 6.5(a) and 6.5(b), respectively. The dt increased in proportion to etching 

time irrespective to implantation. From this result, I considered that the 

lateral reaction rate at the top of the BOX layer is constant. 
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Fig. 6.5. Lateral etching distance plotted against etching time: (a) samples without 

implantation and (b) samples with implantation (P+, 1× 1014 cm-2). 

“Copyright (2015) The Japan Society of Applied Physics” 

 

 In addition, in order to analyze the difference in the etching shape of the 

BOX layers, the etching progress of the BOX layer was modeled on the basis 

of the following chemical equation of HF solution and SiO2: 

                  SiO2 + 6HF → H2SiF6 + 2H2O.             (6.1) 

This simulation was performed using quadrilateral meshes, as schematically 

shown in Fig. 6.6. The positive or negative number of c in each cell 

distinguishes HF from SiO2. In this model, the materials are defined as HF < 

0 and SiO2 ≥ 0. The value of the cell is calculated using the reaction equation 

between a solid and a liquid [14]. 
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Fig. 6.6. Mesh structure from t s to t + t s for simulation. 
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The molar concentration of a certain mesh at t + t s is represented using that 

of the meshes at t s as follows. 

𝑐𝑥,𝑦
𝑡+∆𝑡 =

{
 
 

 
 𝑐𝑥,𝑦,

𝑡          (𝑐𝑥,𝑦
𝑡 < 0)

𝑐𝑥,𝑦
𝑡 −

1

6
∙ ∆𝑡 ∙ {kx ∙ |𝑐𝑥−∆𝑥,𝑦

𝑡 | + ky ∙ (|𝑐𝑥,𝑦−∆𝑦
𝑡 | + |𝑐𝑥,𝑦+∆𝑦

𝑡 |)},    

            (𝑐𝑥,𝑦
𝑡 ≥ 0, 𝑐𝑥−∆𝑥,𝑦

𝑡 < 0, 𝑐𝑥,𝑦−∆𝑦
𝑡 < 0, 𝑐𝑥,𝑦+∆𝑦

𝑡 < 0)

 

                                                        (6.2) 

Here, c is the molar concentration of HF or SiO2, and kx in the x-axis 

direction and ky in the y-axis direction are reactive rates per second. In the 

case of the samples without implantation, when the etching distance along 

the x-axis direction is greater than the BOX thickness, a fluid flows between 

the parallel plates. 

 Without implantation, the molar concentration of HF near the edge of the 

BOX layer is changed by the balance of the chemical reaction and the ion 
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diffusion. Therefore, the molar concentration of HF 𝑐′ replaces c. The 𝑐′ is 

given by 

  𝑐′ =  c ∗  (1 −
𝑟

𝑎
)𝑛,                     (6.3) 

where r and a are the distance from the middle of the BOX layer and half the 

BOX layer thickness, respectively. Furthermore, in the case of samples with 

implantation, the reactive rate of the SiO2 changes depending on the P+ 

concentration calculated using simulator and indicated in Fig. 6.3. Figure 6.7 

shows the simulated etching profiles of the BOX layers without I/I (n =1/7) 

and with I/I. The lateral etching distances obtained from the profiles are 

shown by solid lines in Fig. 6.5. The simulation results agree well with the 

experimental data. These results indicate that the tapered shape of the BOX 

layer with I/I was formed because of the difference in the etching rate 

depending on P+ concentration toward the BOX depth direction [15]. 

 

Fig. 6.7. Simulated etching profiles of BOX layer (a) without implantation (n = 1/7) and (b) with 

implantation (P+, 1× 1014 cm-2) for various etching times. 

“Copyright (2015) The Japan Society of Applied Physics” 
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The side view of the SiO2 column in the circle shown in Fig. 6.8 was 

observed. Figures 6.9(a)–6.9(c) show SEM images of the side view of SiO2 

columns of samples without I/I. Here, the column size (S) is defined as the 

narrowest width of the column. The size was decreased by increasing the 

etching time and it was confirmed that the minimum column size was 137 

nm after 390 s of etching. Figures 6.9(d)–6.9(f) show SEM images of the 

side view of SiO2 columns of the implanted samples. In the implanted 

samples, the column shows a tapered side wall. As a result, the SiO2 column 

near the SOI layer was narrow and its size was 104 nm after 315 s of etching. 

This result indicates that by setting the projection range of I/I near the 

SOI/BOX interface, the shape of the SiO2 column can be well controlled. 

 

 

Fig. 6.8. Optical microscope image of top view of SOI layer with midair cavity formed by wet etching 

of BOX layer. 

“Copyright (2015) The Japan Society of Applied Physics” 
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Fig. 6.9. SEM images of side view of SOI layer with midair cavity (a)–(c) without implantation and 

(d)–(f) with implantation for each etching time. 

“Copyright (2015) The Japan Society of Applied Physics” 

 

Figure 6.10 shows column size as a function of etching time. The column 

size monotonically decreased with increasing etching time. This figure 

shows that the slopes of the etching rate were 25–29 nm/s for samples 

without implantation and 29–32 nm/s for samples with implantation. I 

consider that the etching of the sample with implantation was faster than that 

of the sample without implantation because of the higher etching rate of the 

P+-implanted BOX region under the SOI pattern, leading to the etching time 

difference between samples with and without implantation. 
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Fig. 6.10. Column size S as a function of etching time. No. 1: as-delivered SOI. No. 2: oxidized SOI. 

No. 3: oxidized SOI (P+, 1× 1014 cm-2). No. 4: oxidized SOI (P+, 1× 1015 cm-2). No. 5: oxidized SOI 

(P+, 2× 1015 cm-2). 

“Copyright (2015) The Japan Society of Applied Physics” 

 

 

Fig. 6.11. Transfer yield plotted with respect to column size S. 
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Next, the samples were transferred to the glass substrate by the MLT 

technique. Transfer yield is plotted as a function of column size in Fig. 6.11. 

Here, the transfer yield is defined as the number of SOI patterns transferred 

to the glass substrate divided by the total number of initial patterns on the 

SOI wafer. For the SOI layers without I/I, as shown in Fig. 6.11 by the open 

circles, the transfer yield increased upon decreasing the column size. 

However, the maximum transfer yield was 35%, as the photograph example 

shows in Fig. 6.12(a). For oxidized samples without I/I, as shown in Fig. 6.11 

by the open squares, the transfer yield was lower. For the samples implanted 

with doses of 1 × 1014 and 1 × 1015 cm-2, the transfer yield was significantly 

improved, as shown in Figs. 6.11 and 6.12. The maximum transfer yield was 

95%. 

 

 

Fig. 6.12. Optical microscope images of the SOI layers transferred to glass substrate: (a) as-delivered 

SOI layers and (b) oxidized SOI layers implanted with a dose of 1 × 1015 cm-2. 

“Copyright (2015) The Japan Society of Applied Physics” 
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In contrast, in the case of the samples implanted with a dose of 2 × 1015 cm-

2, the SOI layers were not transferred at all. I observed that the bend of the 

oxidized and implanted SOI layer with a midair cavity after transfer was ~ 

300 nm in the position difference between the upper surface of the layer and 

the lower surface, owing to the formation of a thicker oxide layer in the case 

of heavily P+-doped Si [16], as shown in Fig. 6.13. I confirmed that the oxide 

thickness was increased with increasing the dose, as shown in Fig. 6.14. The 

largely bent layers were not transferred to the glass substrate because the 

long distance between the SOI layer and the glass substrate generated less 

meniscus force (see transfer of SOI layer in Fig. 6.1). From these results, I 

concluded that the optimum implantation dose for transferring the SOI layer 

is 1 × 1015 cm-2. 

 

 

Fig. 6.13. SEM images of the oxidized and P+-implanted SOI layers with midair cavity after transfer: 

(a) with a dose of 2× 1015 cm-2 and (b) with a dose of 1× 1015 cm-2. 
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Fig. 6.14. Oxide thickness plotted with respect to ion dose. 

 

In order to investigate other causes of the improvement of transfer yield, 

the hydrophilicity of the surface SOI layer was evaluated by measuring the 

contact angle between a water droplet and the surface of the sample (half-

angle method [17]). The optical microscope images of the interface between 

the water droplet and the sample are shown in Fig. 6.15. The contact angle 

after oxidation decreased from 68º to 42º. Moreover, the contact angle of the 

implanted samples was decreased to 35º. The meniscus force (F) can be 

described as 

               𝐹 =
2𝜋𝑅2𝛾𝑐𝑜𝑠𝜃𝐸

𝐻
 (𝐻 ≪ 𝑅),              (6.4) 

where R is the radius of the capillary bridge, H is the height of the 

capillary bridge, is the surface tension of water, and E is the contact 

angle (see transfer of SOI layer in Fig. 6.1) [13]. As a result, I considered 

that meniscus force was increased by decreasing the contact angle, which 

improved the transfer yield. 
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Fig. 6.15. Optical microscope images of interface between the SOI wafer and water droplet: (a) SOI 

wafer after HF solution and (b) oxidized SOI wafer and (c) P+-implanted SOI wafer with a dose of 1 

× 1015 cm-2 after oxidation. 
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6.4. Conclusion 

I attempted to transfer a phosphorus ion (P+)-implanted oxidized silicon-

on-insulator (SOI) layer with a midair cavity to a glass substrate using 

meniscus force at a low temperature. The SiO2 column size was controlled 

by etching time and the minimum column size was 104 nm. The transfer 

yield was improved by controlling the column size, and shape, and the 

maximum transfer yield was 95% under the condition of an implantation 

dose of 1 × 1015 cm-2. 
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Chapter 7 

Fabrication of n-channel Si TFTs 

on glass substrate by using 

meniscus force-mediated layer 

transfer 
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7.1. Introduction 

In Chaps. 5 and 6, I introduced into the TFT fabrication process using the 

MLT technique from Si MOSFET fabrication process, and succeeded in 

transferring thermally oxidized SOI layers using meniscus force at low 

temperature. 

In this chapter, n-channel TFT fabrication on glass substrate was 

demonstrated using what I have learned from the results in Chaps. 5 and 6. 

Further, the low-temperature fabrication process after transfer was 

introduced. 
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7.2. Experiments 

Table 7.1 shows the TFT fabrication processing condition on each 

manufacture lot number. An SOI wafer with the SOI layer [p-Si (100)] was 

used. First, the SOI layer was patterned to a channel shape by 

photolithography and chemical dry etching. The channel width was 3 m. 

Next, the P+ ions for source and drain regions were implanted. The channel 

region of the samples with a resist was not implanted. The mask channel 

length was 4 m. The channel doping was performed (see the channel doping 

conditions in Table 7.1). The sample was annealed at 1000 ºC for 10 min to 

activate impurities. Next, a midair cavity was formed using HF solution. 

Then, thermal oxidation of the SOI layer on the midair cavity was performed 

in dry oxygen at 1000 ºC (see the thermal oxide thicknesses in Table 7.1) and 

forming gas annealing (FGA) was performed. After that, the layers were 

transferred to the glass substrate by the MLT technique. The sample was 

heated at 80 ºC on a hot plate for 15 min. Next, an additional gate SiO2 was 

deposited by plasma-enhanced chemical vapor deposition (PECVD). Then 

contact holes were opened. Finally, Al electrodes were formed and post-

metallization annealing (PMA) was performed at 300 ºC. The transistors 

were fabricated at a maximum temperature of 300 ºC after transfer. 
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Table 7.1. TFT fabrication conditions on each manufacture lot number. 

 Lot. 1 Lot. 2 

SOI layer thickness[nm] 80 100 

of SOI [cm] 8.5 ~ 11.5 10 ~ 30 

BOX layer thickness[nm] 400 300 

Ion species  

for source and drain 
P+ P+ 

Implant dose 

 for source and drain [cm-2] 
1×1015 1×1015 

Implant acceleration energy 

for source and drain [keV] 
40 60 

Ion species for channel BF2
+ B+ (1st), BF2

+ (2nd) 

Implant dose for channel 

[cm-2] 
2×1011 1×1011(1st), 1×1011(2nd) 

Implant acceleration energy 

for channel [keV] 
30 25(1st), 12.5(2nd) 

Mole-concentration of HF 

[%] 
25 33 

Thermal oxide thickness 

[nm] 
6 11 

Deposited oxide thickness 

[nm] 
193 196 
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7.3. Results and discussion 

First, I show that the results of the fabricated TFTs under the conditions of 

the manufacture lot. 1 in Table 7.1. Figure 7.1 shows IDS-VGS characteristics 

of n-channel TFTs fabricated on glass. The average values and standard 

deviations (± ) for ten transistors were a field-effect mobility FE
 of 505 ± 

76 cm2V-1s-1, threshold voltage of 2.47 ± 0.67 V, and S factor of 324 ± 54 

mV/dec, respectively. We succeeded in the fabrication of n-channel TFTs 

with uniform characteristics on a glass substrate by the MLT technique.  

 

 
Fig. 7.1. IDS – VGS characteristics of n-channel Si TFTs on glass substrate. 

“Copyright (2015) The Japan Society of Applied Physics” 

 

From capacitance versus voltage (C-V) characteristics of a MOS capacitor 

fabricated with thermal SiO2 (10 nm) + PECVD SiO2 (196 nm), the interface 

state density (Dit) at the midgap, calculated by the high-low-frequency 

capacitance method [1], is 2.0×1010 cm-2eV-1. This result indicates that a 

good MOS interface of the capacitor is formed. At a high SiO2/Si interface-

trap density Dit, the S factor can be given by  
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                𝑆 =
𝑘𝑇

𝑞
ln(10) (1 +

𝐶𝑑+𝐶𝑖𝑡

𝐶𝑜𝑥
),             (5) 

where k, q, Cd, Cit ( = qDit), and Cox are the Boltzmann constant, the unit 

electronic charge, the depletion-layer capacitance, the interface-trap 

capacitance, and the gate oxide capacitance, respectively [2]. For an ideal 

thermal SiO2 (206 nm)/Si interface, the S factor is 174 mV/dec. However, 

the S factor of the fabricated TFTs is high. Because of the formation of a 

good MOS interface in the capacitor, we consider that the cause of a poor 

MOS interface is the formation of too thin an oxide layer on the back 

surface of the SOI layer with a midair cavity before transfer, owing to a 

short oxidation time. We surmise that controlling the oxidation time and 

oxygen flow rate will lead to an improvement in the formation of oxide. 

 Next, I present the results of the TFTs under the conditions of the 

manufacture lot. 2 in Table 7.1. Figure 7.2 shows IDS-VGS and IDS-VDS 

characteristics of the n-channel TFT fabricated on glass. 
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Fig. 7.2. (a) IDS–VGS and (b) IDS–VDS characteristics and field-effect mobility of TFT and optical 

microscope image of the TFTs. 

“Copyright (2014) The Japan Society of Applied Physics” 

 

The transistor showed very high field-effect mobility of 1097 cm2V-1s-1, 

which is ~ 53% higher than universal electron effective mobility eff [3], 

and low threshold voltage of 1.1 V, and S factor of 78 mV/dec. In order to 

evaluate the strain in the transferred Si layer, Raman scattering spectra was 

measured. Figure 5.9 shows Raman scattering spectra of SOI layers in each 

process.  
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Fig. 7.3. Raman scattering spectra of SOI layers in each process. 

 

Until thermal oxidation of SOI layer, strain of SOI layer was not observed. 

While, I found that the peak position decreased after transfer and additional 

SiO2 deposition, and the TO phonon peak positions after additional SiO2 

deposition and FGA were shifted ~ 4.8 cm-1 to lower wave number 

compared to unstrained Si (520 cm-1). This result indicates tensile strain is 

introduced in the transferred channel layer after gate SiO2 deposition and 

the amount corresponds to eff enhancement of ~ 53% [4]. As for the tensile 

strain after transfer, it is presumed that the transferred SOI layer is 

expanded in order to buffer the bend of thermally oxidized SOI layer, and 

the channel region is strained. I consider that the tensile strain of SOI layer 

after deposition is introduced due to coefficient of thermal expansion 

mismatch between Si and additional deposited SiO2. In order to verify the 

correlation between mobility enhancement and channel strain, gate 
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electrodes of the TFTs were removed after electrical measurements, and the 

Raman peak shifts of the channel regions were directly measured. Laser 

beam of 514.5 nm wavelength was used. Laser beam diameter was 1m. 

Figure 7.4 shows the mobility enhancement ratio and the Raman peak shift 

 of each TFT channel. The error bars indicate  variation depending 

on the measurement position inside the channel. Mobility enhancements 

observed in strained Si on Si1-xGex buffer [4] and the predicted bulk, 

phonon-limited mobility ratios [5] are also shown by square and solid line 

for comparison, respectively. The mobility enhancements observed in our 

TFTs show good agreement with the reference data except for data points 

in low enhancements. This indicates the high mobility TFTs fabricated by 

the proposed method is due to the tensile strain. As a conclusion, the 

proposed fabrication process realizes significantly higher performance 

TFTs compared to the transistors fabricated by conventional materials (see 

Table 7.2). These results suggest that the proposed MLT technique and TFT 

fabrication process opens up a new field of silicon applications that is 

independent of scaling. 

 

 
Fig. 7.4. Mobility enhancement ratios of the fabricated TFTs plotted with respect to Raman peak 

shift  of channel region. 

“Copyright (2014) The Japan Society of Applied Physics” 
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Table. 7.2. Comparison of TFT performances based on different channel materials. 

“Copyright (2014) The Japan Society of Applied Physics” 

 FE 

(cm2V-1s-1) 

Vth 

(V) 

S factor 

(mV/dec.) 

Process 

temperature 

(ºC) 

  Pentacene[6] 2.0 4.0 - 80 

C8-BTBT[7] 16.4 -10 - 27 

  a-IZO[8] 15.3 -4.5 1200 280 

  a-InGaZnO[9] 12.4 -0.8 120 400 

  a-Si:H[10] 0.6 2.0 500 280 

  LTPS[11] 640 0.8 220 270 

MLT silicon 1097 1.1 78 300 
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7.4. Conclusion 

Under the optimum conditions in Chaps. 5 and 6, I demonstrated that n-

channel thin-film transistors (TFTs) fabrication on glass at 300 ºC. The TFTs 

showed a field-effect mobility of 505 cm2V-1s-1, a threshold voltage of 2.47 

V and a subthreshold swing of 324 mV/dec. on average. 

In addition, n-channel thin-film transistor (TFT) fabricated on glass at 300 

ºC under the different conditions showed a field-effect mobility of 1097 

cm2V-1s-1, a threshold voltage of 1.1 V and a subthreshold swing value of 78 

mV/dec. Raman scattering analysis suggests the mobility enhancement of 

the TFTs is related to tensile strain. 
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Conclusions 
I proposed Si thin-film transistor (TFT) fabrication on glass substrate for 

meniscus force-mediated layer transfer (MLT) technique. 

One of the key process is the thermal oxidation of SOI layer on midair 

cavity. The SOI layers were bent after oxidation, and longer lines and 

thicker oxide showed larger deformation (> 300 nm) due to accumulation 

of oxidation strain. In contrast, under the condition of shorter length and 

thinner oxide, deformation was less than 100 nm. The SOI layer was 

completely transferred to glass without any problem. 

Next, I observed SOI layers with a midair cavity after ion implantation 

and thermal oxidation, and attempted to improve the transfer of the SOI 

layers to the glass substrate. The SiO2 column size was controlled by 

etching time and the minimum column size was 104 nm. The transfer yield 

of the implanted sample was significantly improved by decreasing the 

column size, and the maximum transfer yield was 95% when the 

implantation dose was 1 × 1015 cm-2. The causes of increasing transfer yield 

are considered to be the tapered SiO2 column shape and the hydrophilicity 

of the surface of oxidized samples with implantation. 

Finally, I attempted to fabricate Si TFTs on glass substrate by using MLT 

technique. N-channel TFTs fabricated using the films on glass at 300 ºC 

showed a field-effect mobility of 505 cm2V-1s-1, a threshold voltage of 2.47 

V and a subthreshold swing of 324 mV/dec. on average. In addition, under 

different manufacturing conditions, strained-Si TFT showed very high 

field-effect mobility of 1097 cm2V-1s-1, which is ~ 53% higher than 

universal electron effective mobility. From the Raman spectra of each TFT 

channel, the mobility enhancement of TFTs is related to tensile strain. 

These results suggest that the MLT technique is highly promising for 

application to high-performance TFT fabrication on an insulator with low-

heat resistance at a low temperature. 
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