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Abstract　　In June 2012, production was measured and compared among Zostera marina stands with 
different shoot sizes and stand structures, at a total of seven stations in three Z. marina beds in the Seto 
Inland Sea, Japan. Production per shoot depended on the shoot size, and was larger (50.9 - 73.2 mg DW 
shoot -1 d-1) at the stands in the bed of Ikuno-shima Is. (Hiroshima Pref.; Aki-Nada Sea), where large 
shoots formed stands with lower densities, than at stands in the bed of Heigun-jima Is. (Yamaguchi Pref.; 
Suo-Nada Sea) (7.7 - 27.4 mg DW shoot -1 d-1) where small shoots exhibited higher densities. Though 
the areal production estimated was compensated by shoot density, it was still larger at the bed of Ikuno-
shima Is. (2.89-5.38 g DW m-2 d-1) than at Heigun-jima Is. (1.63 - 2.56 g DW m-2 d-1). Sediment 
characteristics were quite different between the two Z. marina beds and considered to affect the stand 
structures and productivity, i.e., the sediment at Ikuno-shima Is. was muddy and rich in organic matter 
and the sediment at Heigun-jima Is. was dominated by sand indicating severer physical conditions 
induced by waves. 
　　In Aba-shima Is. (Hiroshima Pref.; Aki-Nada Sea), the third research site, the Z. marina bed was on 
the way of recovery after catastrophic damage due to heavy grazing of rabbitfish (Siganus fuscescens) 
which had occurred in autumn of 2011, and young shoots developed from seeds forming a patchy stand 
with a low shoot density and biomass. Though the production was lowest (0.60 g DW m-2 d-1), the 
turnover of the biomass was higher (6.5 % d-1) at the stand in Aba-shima Is. than values (1.7-3.3% d-1) at 
the other two beds. 
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INTRODUCTION

　　Seagrass Zostera marina forms dense beds and contributes substantially to coastal primary 
production (Sand-Jensen, 1975; Jacobs, 1979), providing variable ecosystem services which benefits 
human welfare (Costanza et al., 1997). Because of its ecological and industrial importance, production 
of this cosmopolitan species has been evaluated worldwide (Duarte and Chiscano, 1999).
　　Though it is a cosmopolitan species, recent studies have shown extensive genetic variations among 
Z. marina populations observed within its regional or, in some cases, local distributions (Rhode and 
Duffy, 2004; Ort et al., 2012; Shimabukuro et al., 2012). In addition, diversities in shoot morphology 
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and structures of stands are often observed even within the same sea area. In previous papers (Yoshida et 
al., 2013ab), we reported both shoot size and stand structures were highly variable among Z. marina 
populations in the western Seto Inland Sea and eastern area of Bungo-Channel. There, shoot size and 
density exhibit a reciprocal pattern among (or often within) local Z. marina populations, where Z. 
marina with smaller shoots tends to have a higher density, and vice versa. Though similar results have 
been obtained in other regions (Aioi, 1980), it has not been examined how the ecological potentials and 
functions of those Z. marina stands differ.
　　In this study, we conducted a preliminary survey in the Seto Inland Sea to compare the primary 
production among Z. marina with different shoot sizes and stand structures. Based on this research, we 
wish to answer: how differences arise under approximately identical climatic conditions due to their 
close proximity? Can smaller Z. marina shoots compensate for their productivity by higher densities or 
higher turnover rates? Production measured in this study is also compared with values obtained in other 
regions worldwide to understand the ecological characteristics of Z. marina in the Seto Inland Sea.
     These results offer better understanding of the ecological diversity of Z. marina populations in the 
relevant sea area, and ideas for the preservation measures of this ecologically important species.  

Materials and methods

　　This study was conducted in June 2012, when Z. marina in the Seto Inland Sea is most luxuriant 
(Fujiwara et al., 2009) and is supposed to show the highest production in a year.

Study sites
　　Three subtidal Zostera marina beds with different characteristics were chosen. That is, 1): a bed 
occupied by relatively large shoots, 2): by smaller shoots but with a higher density, and 3) by young 
shoots which had just grown up from seedlings germinated during the last winter to spring. The 
topographic characteristics were also quite different among the three beds. 
　　The bed 1) was located at Ikuno-shima Is. in the Aki-Nada Sea, one of the sub-sea areas of the Seto 
Inland Sea (Figs 1, 2). The Z. marina bed was formed within a vast, sheltered inlet with most of the area 
shallower than 1.0 m in depth (below Chart Datum Level; depths are stated based on the same criterion 
in the following description). The Z. marina bed occupied ca. 21 ha in the inlet area. Three stations for 
production measurements were set, two (St. 1 and St. 2, 0.2 and 0.4 m in depth, respectively) at the 
innermost area, and one (St. 3, depth; 0.6 m) near the mouth of the inlet (Fig. 2). 
　　The bed 2) was located at Kona of Heigun-jima Is., in the Iyo-Nada Sea, and formed in a relatively 
open inlet and within a depth range of 0-6 m (Figs 1, 2). The area of the bed was estimated to be ca. 0.6 
ha. Three measurement stations were set along the depth gradient of the bed, which was St. 5 (depth; 0.2 
m), St. 6 (1.2 m) and St. 7 (3.1 m) (Fig. 2). 
　　The bed 3) was located at Aba-shima Is., which is adjacent to Ikuno-shima Is. (Fig. 1). The Z. 
marina bed was formed in front of an open beach on the western coast of the island, exhibiting a belt-
like form with an estimated area of ca. 1.5 ha (Fig. 2). Originally, Z. marina distributed from 0 to, at 
least, 3 m in depth, but the stand had been damaged and disappeared due to grazing by rabbitfish, 
Siganus fuscescens, in the autumn of 2011. When we conducted this study (June 2012), the Z. marina 
stand was composed of numbers of young shoot patches. From the morphology of their rhizomes with 
nodes per shoot in relatively small numbers, we made sure that these shoot patches were originated from 
one or a few seedlings and their subsequent laterally-branching. Production measurements were 
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conducted on these shoots at the point of 0.6 m in depth (Fig. 2, St. 4). 

Shoot size, density and biomass of Zostera marina 
　　Shoot size, density and biomass were surveyed at the 7 stations in early June 2012. At each station, 
three 50×50 cm quadrats were set in the Z. marina stand. All shoots within the quadrat were sampled 
with their rhizomes and roots using a shovel, and put in a mesh bag. Dead rhizomes which were black in 
color and fragmented were discarded. After being brought back to a laboratory, vegetative and flowering 
shoots in each bag were counted respectively. Then each shoot was separated into the above- and under-
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Fig. 1. Three study sites (islands) where the Zostera marina beds examined in 
this study are located. The grids A, B and C indicate the locations of the Z. 
marina beds, which coincide with those shown in Fig. 2.

Fig. 2. Topography of the three Z. marina beds (area shaded light gray) and locations of the seven 
stations where production of the Z. marina stands was measured. A: the Zostera bed in Ikuno-
shima Is., B: in Aba-shima Is., C: in Heigun-jima Is.
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ground parts using a knife, at the root primordium close to the meristematic region assumed to be the 
boundary of the both parts (Yoshida et al., 2013a). The above-ground part (sheath and leaves) of each 
vegetative shoot was measured in total length (as ‘shoot length’) and the maximum width of the leaf just 
above the sheath. The below-ground parts of vegetative and flowering shoots were separated into 
rhizomes and roots. The length and major axis in the section of the second rhizome node of each 
vegetative shoot were measured. The weight of each part was determined after being dried under 85 ℃ 
for a few days.  

Zostera marina production measurement
　　In this study, production of Zostera marina was measured by a leaf-marking technique, a common 
method for seagrass production measurements (Short and Duarte, 2001). For the estimation of the above-
ground part (i.e., leaves) production, we used the ‘conventional’ leaf-marking method (Fig. 3) so-called 
by Gaeckle and Short (2002), and for the below-ground part (rhizomes and roots) production, we took a 
more improved and recommended (Short and Duarte, 2001) method (the plastochrone method) based on 
the plastochrone interval (the time interval between the new initiation of two successive leaves on one 
shoot) determined by the leaf-marking (Fig. 3).
　　On the same day as the quadrat sampling, we pierced pin-holes using a needle in the leaf bundle just 
above the sheath of each vegetative shoot (Fig. 3). This marking method was carried out on 30 vegetative 
shoots at each station and marked shoots were distinguished by being tied with pink-colored tape at their 
base. After 2 weeks, marked shoots were recovered with their rhizomes and roots and brought back to 
the laboratory. Tissues needed for the production measurement were sampled (see below), dried and 
weighed in the same way as the biomass measurement. 
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Fig. 3. Leaf-marking method in Z. marina production measurement (modified figure of Short and Duarte, 2001). 
The ‘conventional method’ (Gaeckle and Short, 2002) of the production measurement and determination 
procedure of plastochrone interval are shown.
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　　For each marked shoot, leaf production was determined from the weight of leaf tissue between the 
reference pin-hole, being marked on the outermost (and the oldest) leaf assumed to have terminated 
growth, and the holes on the younger leaves that has moved up as they grow (Fig. 3). Leaves newly-
formed during the period and distinguished by being without pinholes were counted for each shoot and 
the plastochrone interval was determined (Fig. 3). The weight of new leaves was also added to the leaf 
production. This ‘conventional’ method has been reported to possibly miss the maturation of leaf tissues 
above the holes and growth of newly-formed leaves enclosed in a sheath (therefore, invisible) and cause 
an underestimation of the production (Gaeckle and Short, 2002). However, this underestimation had 
been reported to be negligible when the measurement period is sufficiently longer than the plastochrone 
interval, allowing the new leaf tissue to mature during the period. The period we took for the production 
measurement (2 weeks) was longer than the plastochrone interval of the marked shoots (see the Results), 
so underestimation was supposed to be small. 
　　For the below-ground part production measurement, we took the plastochrone method (Gaeckle and 
Short, 2002). In this method, leaf or under-ground production is simply estimated by weight of a mature 
leaf (usually, the 3 rd leaf) or rhizoid node with its root bundles (g) divided by a plastchrone interval of 
leaves (days), as the plastochrone intervals of leaves and nodes of Z. marina are the same (Short and 
Duarte, 2001). In our study, we used the mean biomass of the 3 rd to 5 th nodes with their root bundles 
as a mature node weight. 
　　The estimated daily production of one shoot (above- + below-ground parts) is multiplied by 
vegetative shoot density within the sampled quadrat and assumed to be the daily areal (m-2) production 
of the Z. marina stand at each station. We ignored the production of the flowering shoots, which 
constitute some parts of the Z. marina stand in its luxuriant season. When we conducted our 
measurements, most of the flowering shoots were observed to be beginning to wither. Therefore, we 
assumed that the production of the flowering shoots was negligible during the period, though the seeds 
in a spathe could be getting matured. 

Production of newly-formed lateral shoots 
　　During the period of the production measurement, active formation and branching of new lateral 
shoots was observed. In this study, the whole biomass of new lateral shoots, which had branched out 
from the marked shoots after the pin-hole marking, was assumed to be new production during the period 
of the measurement. This could be a somewhat overestimation because some parts of the new lateral 
shoots could have already been produced and existed but were not visible within the sheath of the 
marked shoots when the marking was performed. 
　　Frequency of new lateral shoot formation in the marked shoots and the mean biomass of the new 
lateral shoot were recorded. The frequency was applied to the vegetative shoot density of quadrat 
sampling, and production of newly-formed lateral shoots was estimated on an areal basis.
     When the marked shoots were recovered, some marked shoots were observed to have new lateral 
shoots before branching in their sheaths. When the leaves of these new shoots were visible above the 
reference pin-hole of the ‘parent’ marked shoots, the weight of visible part of the leaves was measured 
and included in the leaf production of the parent shoot, but not counted as ‘newly-formed’ leaves.     

Environmental characteristics at each station
　　Water temperature was recorded every 60 minutes at Sts 1, 3, 4, 5 and 7 by data-loggers (HOBO 
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Pendant temp/light loggers, Onset Computer Corporation) during the period of the production 
measurement. Decrease of underwater irradiance along the depth was recorded by an underwater 
radiation sensor and a data-logger (LI-193SA spherical quantum sensor and LI-1400 data-logger, LI-
COR) at an offshore site of each Zostera bed and extinction coefficient was calculated. Sediment of 
surface layer up to 10 cm was sampled by sediment cores (4 cm in diameter) at each station. Ignition 
loss and grain-size composition of the sediments was evaluated by ordinary methods (Oceanographic 
Society of Japan, 1986).     

Statistical analysis 
　　Difference in means of all data of Z. marina and its stand structures was tested by non-parametric 
Welch test, because most of the data sets did not show homogeneity of variance. When significant 
differences were detected, Games-Howell test was performed as a post-hoc test. All these analyses were 
conducted by SPSS 20.0 Statistic (IBM). Afterwards, the results of these analyses are mentioned only 
when it is necessary.  

RESULTS

Shoot size, density and biomass
　　Mean length of vegetative shoots (above-ground part) was significantly different among the seven 
stations (p<0.001 in Welch test). Shoots in Ikuno-jima Is. were longer than those in the other islands 
(Fig. 4, Table 1 ① ). Within the stations of Ikuno-shima Is., shoots in the inner area of the bed (Sts 1 and 
2) were longer than shoots growing near the edge of the bed (St. 3; p< 0.05 in Games-Howell test). In 
Heigun-jima Is. (Sts 5-7), the length of shoots significantly increased in the deeper stations (p< 0.05 in 
Games-Howell test). In general, longer shoots had wider leaves and larger rhizomes (Table 1 ② -④ ).
　　Total shoot density (vegetative + flowering shoots) was also significantly different (p<0.001 in 
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Welch test) and exhibited a reciprocal pattern with the shoot size among the stations except for St. 4 (Fig. 
4, Table 1 ⑤ ). The largest shoots at Sts 1 and 2 exhibited a relatively low density (76 and 55 shoots 
m-2). The highest density (291 shoots m-2) was observed at St. 5, the shallowest station in Heigun-jima Is, 
and the densities decreased as the constituent shoots became larger in the deeper stations. An exceptional 
case was shown in Aba-shima Is. (St. 4), where short young shoots exhibited a relatively low density (36 
shoots m-2). This was because the Z. marina bed at St. 4 was composed of small patches with a scattered 
distribution pattern, and the quadrat sampling could only cover a patch per a quadrat.
　　Proportion of flowering shoots in total shoots was quite different among stations, and even among 
quadrats at a station. Mean proportion of all stations ranged from 0 to 14.6 %. Young shoots at St. 4 did 
not contain any flowering shoots (Table 1 ⑥ ).

Table 1.  Shoot size, stand structures and production of Z. marina measured in this study. All data are shown in 
means with SE

St.1 St.2 St.3 St.4 St.5 St.6 St.7
Size of vegetative shoots
　　① Vegetative shoot length (cm) 79.8 ±3.3 85.2 ±4.8 63.5 ±3.3 28.8 ±1.8 26.5 ±0.7 36.4 ±1.1 61.5 ±2.8
　　② Max. leaf width (mm) 10.6 ±0.3 10.1 ±0.3 8.0 ±0.2 4.9 ±0.2 4.2 ±0.1 5.1 ±0.1 5.9 ±0.2
　　③ Length of 2nd internode (mm) 16.7 ±0.7 18.7 ±1.1 18.0 ±0.8 14.0 ±1.2 10.3 ±0.4 11.4 ±0.5 14.0 ±0.7
　　④ Diameter of 2nd internode (mm) 5.7 ±0.2 5.3 ±0.2 4.4 ±0.1 2.7 ±0.1 2.4 ±0.1 3.1 ±0.1 3.3 ±0.1

Density  (n=3)
　　⑤ Total density of shoots (m-2) 76.0 ±2.3 54.7 ±5.8 98.7 ±16.7 36.0 ±10.6 290.7 ±21.3 130.7 ±13.3 102.7 ±10.9
　　⑥ %  of flowering shoots 3.7 14.6 4.0 0 6.5 1.9 9.3

Biomass  (n=3)
　　⑦ Total biomass ; TB  (g DW m-2) 259.8±43.6 174.8±38.2 167.0±53.2 9.3±2.0 83.4±3.4 55.1±9.4 78.4±9.3
　　⑧ Above-ground ; AGB  (g DW m-2) 211.4±33.5 148.6±34.2 136.8±43.6 6.1±1.4 53.1±2.8 39.7±7.1 65.4±7.9
　　⑨  % of flowering shoots in AGB 9.5 33.2 10.0 0 13.4 3.4 16.8
　　⑩ Below-ground ; BGB  (g DW m-2) 48.3 ±10.2 26.2 ±4.8 30.3 ±10.2 3.2 ±0.6 30.4 ±1.9 15.4 ±2.3 13.0 ±2.1
　　⑪ Proportion of BGB in TB  (%) 18.3 15.3 17.6 34.4 36.4 28.1 16.6

Data of marked shoots (Initial n= 30)
　　⑫ Number of recovered shoots 29 29 28 28 22 24 27
　　⑬ Plastochrone interval (days) 9.9 8.7 9.3 11.2 12.6 13.8 10.8
　　⑭ Leaf number of recovered shoots 7.4 ±0.1 7.3 ±0.2 7.4 ±0.2 6.2 ±0.1 5.1 ±0.1 5.8 ±0.1 6.2 ±0.2
　　⑮ Daily turn-over of leaves (% d-1) 1.3 1.6 1.5 1.4 1.6 1.3 1.5

Production of marked shoots
　　⑯ Total (mg DW shoot -1 d-1) 73.2 ±2.9 62.0 ±3.4 50.9 ±2.0 16.7 ±0.7 7.7 ±0.4 12.7 ±0.6 27.4 ±1.3
　　⑰ Above-ground (mg DW shoot -1 d-1) 53.9 ±2.7 44.5 ±3.0 35.1 ±1.6 12.7 ±0.6 5.1 ±0.3 10.2 ±0.5 19.3 ±1.3
　　⑱ Below-ground (mg DW shoot -1 d-1) 19.3 ±1.1 17.4 ±1.0 15.8 ±0.8 3.9 ±0.3 2.6 ±0.2 2.4 ±0.2 7.6 ±0.5

Areal production (n=3)
　　⑲ Total production; TP (g DW m-2 d-1) 5.37±0.35 2.89±0.41 5.38±0.66 0.60±0.18 2.08±0.10 1.63±0.15 2.56±0.31
　　⑳ Above-ground  (g DW m-2 d-1) 3.95±0.26 2.08±0.30 3.91±0.48 0.46±0.14 1.38±0.07 1.31±0.12 1.80±0.22
　　� Below-ground; BGP (g DW m-2 d-1) 1.42±0.09 0.81±0.12 1.48±0.18 0.14±0.04 0.70±0.04 0.31±0.03 0.71±0.09
　　� Proportion of BGP in TP  (%) 26.4 28.0 27.5 23.3 33.7 19.0 27.7 
　　� Daily turn-over of total biomass (% d-1) 2.1 1.7 3.2 6.5 2.5 3.0 3.3 

New lateral shoot formation
　　� New lateral shoot emergence 0.021 0.048 0.030 0.046 0.009 0.007 0.025
　　　　　(New lateral shoot shoot-1 d-1)
　　� Production  of new lateral shoot 0.43±0.03 0.73±0.10 0.46±0.06 0.15±0.04 0.05±0.00 0.04±0.00 0.22±0.03
　　　　　; PNLS   (g DW m-2 d-1) (n=3)
　　� % of PNLS to areal total production 8.1 25.2 8.6 25.1 2.6 2.3 8.8
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　　The largest biomass among the three islands was observed in Ikuno-shima Is, in which mean total 
biomass ranged 167.0 - 259.8 g DW m-2 among Sts 1- 3 (Fig. 5, Table 1 ⑦ ). However, the total biomass 
was not significantly different among Sts 1- 3 (p> 0.05 in Games-Howell test). Total biomass among Sts 
5 - 7 was not also significantly different in Heigun-jima Is. (p> 0.05 in Games-Howell test), despite of 
the significant difference in shoot size and density among them. The biomass was smallest in Aba-shima 
Is. (St. 4) among all seven stations (Fig. 5, Table 1 ⑦ ).
　　Proportion of below-ground biomass to total biomass was also significantly different among 
stations. The proportions at Sts 4 and 5 were high (34.4 and 36.4 %, respectively) than at other stations. 
In Heigun-jima, the proportion became lower in the deeper stations, up to 16.6 % at St. 7 (Table 1 ⑪ ).

Production of the marked shoots
　　Among thirty shoots marked at each station, 22 - 29 shoots were recovered after 2 weeks (Table 1 
⑫ ). Heavy grazing on leaves during the measurement period, as in autumn 2011, was not observed at 
all stations.   
　　Estimated plastochrone intervals ranged between 8.7 - 13.8 days among the seven stations (Table 1 
⑬ ). Generally, the intervals were slightly shorter (< 10 days) at stations in Ikuno-shima Is. than at the 
other stations. In Table 1, the number of leaves per shoot which were marked is also shown (Table 1 ⑭ ). 
Generally, shoots at stations in Ikuno-shima Is. had more leaves on them than shoots at other stations. 
Daily turnover rate of leaves was calculated, as: 
　　Daily turnover rate of leaves = 1 / plastochrone interval / number of leaves×100 
and they ranged 1.3 -1.6 % d-1 which were not largely different among stations (Table 1 ⑮ ).
　　Daily production per shoot is apparently dependent on the shoot size. Generally, larger shoots 
exhibit a larger daily production per shoot (Fig. 6, Table 1 ⑯ ). The largest production per shoot (73.2 
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Fig. 5.  Mean biomass of the seven Z. marina stands in 
the three beds in June 2012. Standard errors are 
shown only in the positive direction and for the 
total (above- + below- ground parts) biomass.

Fig. 6.  Mean daily production per shoot and areal 
production (per m2) of the seven Z. marina 
stands in the three beds in June 2012. Standard 
errors are shown only in the positive direction 
and for the total (above- + below- ground parts) 
production.
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mg DW shoot -1 d-1) was observed at St. 1, which was approximately ten times larger than the smallest 
value (7.7 mg DW shoot -1 d-1) at St. 5.
　　Areal production (Fig. 6, Table 1 ⑲ ) was dependent on the vegetative shoot density, and the 
difference among the stations in the same island was relatively small. In Heigun-jima Is., for example, 
areal production was not significantly different among Sts 5 - 7 (p>0.05 in Games-Howell test), though 
production per shoot was different by approximately 4 times between Sts 5 and 7. At St. 4, daily areal 
production was smallest (0.60 g DW m -2 d-1) among all stations due to the lowest shoot density. 
However, daily turnover of biomass (% d-1), which was calculated as:
　　Daily turnover of biomass (% d-1) = daily areal production / biomass × 100, 　　 
was far larger (6.5 % d-1) at St. 4 than the values (1.7 - 3.3 % d-1) at the other stations (Table 1 � ).  

Production of newly-formed lateral shoots
　　New lateral shoot formation on the marked shoots was observed at all stations, but the frequency 
was different among the stations (Table 1 � ). Most active formation was observed at Sts 2 and 4. On 
the contrary, frequency at Sts 5 and 6 in Heigun-jima Is. was small. At Sts 2 and 4, the daily production 
of new lateral shoots amounted to 25 % of the daily areal production of vegetative shoots (Table 1 � ). 

Environmental characteristics at each station
　　The means (and range) of water temperature during the measurement period at Sts 1, 3, 4, 5 and 7 
were 18.3 (17.1-20.6) ℃ , 18.0 (16.9-19.7) ℃ , 18.0 (16.9-19.9) ℃ , 17.4 (16.2-19.9) ℃ and 17.2 (16.2-
18.8) ℃ , respectively. The mean of the extinction coefficient measured offshore of the three Z. marina 
beds on the days of marking and recovery of the shoots were 0.27 for Ikuno-shima Is., 0.27 for Aba-
shima Is. and 0.19 for Heigun-jima Is.
　　Sediment characteristics were quite different among the three Z. marina beds. Sediment at stations 
of Ikuno-shima Is. was mainly composed of mud (< 63μ m) and the ignition loss was 8-10 % (Fig. 7). 
Sediment at Aba-shima Is. and Heigun-jima Is. was coarser and main components were medium and fine 
sand (125 - 500μ m). Also, less organic matter was contained (Fig. 7).
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Fig. 7.  Grain size composition and ignition loss of the sediments 

at the seven Z. marina stands in the three beds.
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DISCUSSION

Biomass and production characteristics of Z. marina in the Seto Inland Sea
　　Biomass and production of seagrass has been measured worldwide, and data distribution pattern and 
its species-specific or geographic (latitudinal) characteristics were reassessed by Duarte and Chiscano 
(1999). According to their reassessment, mean maximum biomass and production of Z. marina measured 
worldwide were 298.4 (above-ground) and 149.7 (below-ground) g DW m-2 for biomass, and 5.2 (above-
ground) and 1.7 (below-ground) g DW m-2 d-1 for production. As the data distribution was skewed, the 
medians of those data were smaller than the mean values (Duarte and Chiscano, 1999). However, both Z. 
marina biomass and production measured in this study are below the medians in the worldwide data 
distribution.  
　　In Japan, biomass and, in a less frequency, production of Z. marina has also been measured along 
the geographical distribution of Z. marina, from Hokkaido to Kyushu regions. For these values, no clear 
relationship has been found between the maximum biomass and latitude or geographical location of Z. 
marina populations (Nakaoka and Aioi, 2001). Above-ground biomass of 300-600 g DW m-2 was 
reported in many sites, such as Notsuke Bay (Mizushima, 1985) and Akkeshi-ko estuary (Hasegawa et 
al., 2007) in Hokkaido, Ise Bay on the Pacific coast (Abe et al., 2004) and Maizuru Bay (Douke et al., 
2000) on the Japan Sea coast. Above-ground biomass measured in this study was lower than the biomass 
of those sites, and close to the biomass reported in Nabeta Bay (Mukai et al., 1979) and Odawa Bay 
(Aioi, 1980) on the Pacific coast and Iida Bay (Taniguchi and Yamada, 1979) on the Japan Sea coast.
　　Even within the Seto Inland Sea area, biomass measured at our study sites, which are located in the 
western area of the Seto Inland Sea, were lower than the biomass reported in the eastern Seto Inland Sea. 
Z. marina stand at Shodo-shima Is. in Kagawa Prefecture was reported to have a seasonal maximum 
biomass of 355.2 g DW m-2 for the above-ground part and 173.6 g DW m-2 for the below-ground part 
(Fujiwara et al., 2009). Also, at Ushimado in Okayama Prefecture, above-ground biomass of 300-500 g 
DW m-2 was reported (Azuma and Harada, 1969). Contrary to these sites, biomass reported from the 
western Seto Inland Sea and eastern area of Bungo Channel, such as Hiroshima Bay (Terawaki et al., 
2002; Yoshida et al., 2013a), Yanai Bay (Kawabata et al., 1993; Yoshida et al., 2013a) and the coast of 
Ehime Prefecture (Yoshida et al., 2013b), rarely reached > 200 g DW m-2 in total biomass. 
　　Comparing the stand structures between the populations exhibiting high biomass (300-500 g DW 
m-2 in above-ground biomass) and the populations in the western Seto Inland Sea, the former populations 
are composed of larger shoots with higher densities than the latter populations. For example, the modes 
in the shoot length frequency during the luxuriant season are generally 120 cm < and the shoot densities 
are 200 m-2 <, for the Z. marina populations with a large biomass (e.g., Mizushima, 1985; Douke et al., 
2000; Abe et al., 2004; Fujiwara et al., 2009). Contrary to this, Z. marina populations in the western Seto 
Inland Sea are commonly characterized by relatively lower density and smaller shoots. At present, we 
are not sure whether these characteristics are due to environmental aspects or biological traits of Z. 
marina, which are endemic to this region. To clarify if these characteristics are regionally specific or not, 
long-term observations are also needed as Z. marina beds generally exhibit large year-to-year 
fluctuations (Terawaki et al., 2002; Fujiwara et al., 2006). 

Comparisons within the stands in this study   
　　The size and stand structures of Z. marina were diverse among the stations in this study, and larger 
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shoots exhibited higher production per shoot than smaller shoots. Leaf turnover rates of shoots were 
similar among the 7 stands, indicating no relation between leaf turnover and shoot size. Further, 
plastochrone intervals were rather shorter in large shoots of the bed in Ikuno-shima Is. than small shoots 
of the other two beds, indicating that leaf productivity is higher in larger shoots. 
　　Though the productivity of the stands of small shoots was not compensated by leaf turnover, it 
could be compensated by shoot density. For the Z. marina bed in Ikuno-shima Is. and Heigun-jima Is., 
though production per shoot is different, no significant difference in areal production was observed 
among the stations of each bed. This is prominent in Heigun-jima Is., where the shoot size and density 
exhibited a clear reciprocal pattern among the stations along the depth gradient. Within this depth range, 
no light limitation for Z. marina production occurred under the extinction coefficient of seawater (0.19) 
indicating favorable water quality for the growth of Z. marina (Abe et al., 2003).
　　Though significant difference in the areal production was not observed among the stations in each 
bed, a difference in productivity was still observed between the bed in Ikuno-shima Is. and in Heigun-
jima Is. The difference in local environmental conditions between the two beds was prominently shown 
in sediment characteristics. It was reported that seagrass production in temperate regions is often 
nitrogen-limited and shoot size and growth of Z. marina are promoted in muddy sediments which 
contain more interstitial nutrients than sandy sediments (Short, 1987). Experimental addition of fertilizer 
to sediment resulted in an increase in shoot size and biomass of Zostera species (Orth, 1977; Udy and 
Dennison, 1997). It is possible that a difference in nutrient availability, due to the difference in sediment 
characteristics, could affect the productivity of the two Z. marina beds.
　　However, all of the differences in the stand characteristics could not be explained by the nutrient 
availability, especially in case of the difference in shoot density. In previous reports (Orth, 1977; Udy 
and Dennison, 1997), fertilization to the sediment caused shoot density to increase. In general patterns of 
Z. marina beds in the western Seto Inland Sea, stands developed on shallow and sandy beds (as at St. 5 
in this study) have larger shoot densities than the stands developed on muddy beds (Yoshida et al., 
2013ab). Such stands also exhibit larger relative allocation of biomass to the lower-ground part (Yoshida 
et al., 2013ab). Also in our study, more production in a relative abundance was allocated to the below-
ground part at the stand of St. 5 compared to the other stands (Table 1 � ). 
　　Sediment grain size composition generally reflects the hydrodynamic conditions at the habitats. 
Sediment composed mainly of coarser grains indicates more exposure of the site to currents or wave 
actions (Oceanographic Society of Japan, 1986), and sandy sediments of Z. marina beds in Heigun-jima 
Is. and Aba-shima Is. indicated severer physical conditions than that of the bed in Ikuno-shima Is. 
Physical turbulence could also be a limiting factor affecting sustainability and distribution of Z. marina 
beds (Dan et al., 1998; Moriguchi and Takagi, 2005). Shorter shoot size and relatively large below-
ground parts could be adaptive under physically turbulent conditions, to relieve the dragging effect and 
increase an anchoring capacity. It was reported that Z. marina growing in the sediment with a high 
organic content developed long leaves and disproportionately short roots, which easily causes the shoot 
loss by uprooting (Wicks et al., 2009). Effects of environmental conditions on shoot morphology and 
stand structures needs further studies to clarify any relationships between them.
　　Z. marina bed of Aba-shima Is., which is on the way of recovery after the heavy grazing of rabbit 
fish, exhibited the lowest biomass and production due to its small shoots and low densities. However, its 
daily turnover of biomass was larger than other stands. This indicates that more resources for growth, 
such as light and nutrients, are available for each shoot at St. 4 than at other stations, probably due to the 
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low shoot density. Higher new lateral shoot emergence at St. 4 also supports this idea. 
 
Future perspective 
　　In the Seto Inland Sea, a considerable area of Z. marina beds has been lost due to the rapid coastal 
development and serious water pollution during the period of high economic growth in the 1960’s to the 
early 1970’s (Yoshida et al., 2013a). Though recent improvements in water quality have been favorable 
to its gradual recovery, effective restoration of Z. marina beds and their ecological functions is still an 
urgent issue in the Seto Inland Sea (Terawaki et al., 2005). 
　　Among significant ecological functions of seagrass beds, recent social attention has been focusing 
on their potential as a long-term carbon sink. That is, seagrass beds, as well as salt marshes and 
mangroves, accumulate substantial amounts of organic matter of both endogenous and exogenous origins 
within them and sequester them through burial. It was reported that these vegetated coastal habitats 
contribute about 50 % of the total burial of organic carbon in global ocean sediments, though they cover 
only 0.2 % in seafloor (UNEP, 2009).                                                                            
　　Our results indicate that the function as a carbon sink could be different among Z. marina beds with 
their ecological characteristics in two ways, i.e., one is the difference in productivity among Z. marina 
beds, and the other is the accumulation efficiency of organic matter in the sediment. These functions are 
possibly affected by the topographic characteristics of the Z. marina beds, e.g., the Z. marina bed in 
Ikuno-shima Is. formed under sheltered conditions with a vast muddy and high organic sediment area is 
potentially more effective as a carbon sink than the Z. marina beds in Heigun-jima Is. and Aba-shima Is.     
　　However, high contribution of the latter two Z. marina beds could be possibly found in another 
important ecological function of Z. marina beds, i.e., contribution to fisheries production. As the Z. 
marina beds in Heigun-jima Is. and Aba-shima Is. were formed under an open condition, fish 
assemblages can easily access and utilize the beds for various ecological usages. In addition, more 
benthic small animals as preys for fish are available in sandy sediments than in muddy sediments, which 
could heighten the value of the beds in the fisheries production.
　　The ecological characteristics of Z. marina, such as shoot size, stand structures and production are 
variable among its beds or stands even within the same proximate sea area.  These variations arise from 
differences in physical conditions accompanied with topographic characteristics of each bed, and 
diversity in ecological functions of Z. marina beds could also be found with the varieties of their 
ecological and topographic characteristics. Though further studies are needed to prove this idea, it could 
be an important point to be reflected in the measures of conservation and restoration of Z. marina beds.
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瀬戸内海における株サイズと群落構造の異なるアマモの生産量 
－2012年繁茂期の生産量－

吉田吾郎1)*・堀　正和1)・島袋寛盛1)・濵岡秀樹1)・岩崎貞治2)

国立研究開発法人 水産総合研究センター 瀬戸内海区水産研究所，
〒739-0452　広島県廿日市市丸石2-17-5

広島大学大学院生物圏科学研究科附属瀬戸内圏フィールド科学教育研究センター
竹原ステーション，〒725-0024　広島県竹原市港町5-8-1

要　旨　　2012年６月に瀬戸内海の３つのアマモ場の，それぞれ異なる株サイズと群落構造を示す計7地点
のアマモ群落において生産量を測定，比較した。株あたりの生産量は株サイズに依存し，大きい株が相対的
に低い密度で生育する生野島（広島県；安芸灘）のアマモ場で50.0-73.2 mg DW shoot -1 d-1であり，小さい
株が密生する平郡島（山口県；伊予灘）の株あたり生産量（7.7-27.4 mg DW shoot -1 d-1）より大きかった。
面積あたり生産量において，株あたり生産量の差は株密度により相殺される傾向もみられたが，生野島のア
マモ場の生産量（2.89-5.38 g DW m-2 d-1）の方が平郡島のアマモ場の生産量 (1.63-2.56 g DW m-2 d-1)よりも
大きかった。これら２つのアマモ場では底質に大きな相違がみられ，アマモの群落構造や生産量に影響を与
えていると考えられた。すなわち，生野島の底質はほとんど泥により構成され有機物含量も高い一方で，平
郡島の底質は中砂・細砂を中心に構成されより厳しい波浪環境を反映していた。
　2011年秋季のアイゴの食害による消失から回復途上にある阿波島（広島県；安芸灘）のアマモ場では新
たに発芽した実生由来の株がパッチ状の群落を作り，株密度も現存量も低かった。調査した群落の中で生産
量は最も低かったが (0.60 g DW m-2 d-1)，その現存量回転率（6.5％ d-1）は，他群落（1.7-3.3％ d-1）のそれ
よりも大きかった。
キーワード：アマモ，現存量，群落構造，株密度，生産量
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