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Abstract

We study the three-flavor Nambu–Jona-Lasinio model with various regularization procedures. We per-
form parameter fitting in each regularization and apply the obtained parameter sets to evaluate various 
physical quantities, several light meson masses, decay constant and the topological susceptibility. The model 
parameters are adopted even at very high cutoff scale compare to the hadronic scale to study the asymp-
totic behavior of the model. It is found that all the regularization methods except for the dimensional one 
actually lead reliable physical predictions for the kaon decay constant, sigma meson mass and topological 
susceptibility without restricting the ultra-violet cutoff below the hadronic scale.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Nonet mesons are interesting composite hadronic objects which have been seriously studied 
in theoretical and experimental particle physics. The elementary objects composing mesons are 
quarks and gluons, and the first principle theory of them is quantum chromodynamics (QCD). 
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Then one of our goals is to explain all the information on hadrons from QCD. The most re-
liable approach is to consider the discretized version of QCD, called the lattice QCD, whose 
technologies are developing day by day. It is, however, still difficult to study hadrons from 
the first principle, so the approaches by using some effective models become one of our op-
tions.

In this paper we employ the Nambu–Jona-Lasinio (NJL) model [1] being one of frequently 
used models for the investigations of hadronic particles. The three-flavor model with UA(1)

anomaly [2] called Kobayashi–Maskawa–’t Hooft (KMT) term [3] successfully describes the 
nonet meson properties (for reviews, see, e.g., [4–9]). The model is not renormalizable, since it 
contains the higher dimensional operators, four- and six-point fermion interactions. Therefore the 
model predictions inescapably depend on the regularization procedures. Also, the model shows 
parameter dependence in each regularization method. Then we have launched a plan to perform 
the systematical analyses on both the regularization and parameter dependence.

Here we are going to study the model with five regularizations: the three-dimensional (3D) 
and four-dimensional (4D) sharp cutoff schemes, Pauli–Villars (PV), the proper-time (PT) and 
the dimensional regularizations (DR), as the straightforward extension of the work with the 
two-flavor model [10]. The 3D cutoff drops the higher momentum contribution in the space 
direction, which is the most frequently used method due to its simple physical interpretation 
and nice numerical behavior. Similarly, the 4D cutoff method kills the amplitudes from higher 
momentum in the four-dimensional Euclidean momentum space. The PV way reduces high mo-
mentum contribution by subtracting the amplitudes from virtual heavy particles [11–13]. The PT 
method introduces the exponentially dumping factor in the integral, then make divergent loop 
integrals finite [12,14]. The DR prescription modifies an integral kernel through changing the 
space–time dimension so as to make divergent integrals finite. The model has been examined 
in detail with various regularizations, see, e.g., for the 4D [5,6,15–19], PV [5,20–23], PT [16,
24–31] and DR [17–19,33–38]. The NJL model is regarded as a low energy effective model of 
QCD; it is the simplest model to induce dynamical chiral symmetry breaking and often applied 
to investigate physics near the QCD phase transition. To apply the model to the nonet mesons η
and η′ mesons may be not easy enough compared with the QCD scale. Since the model loses va-
lidity at higher energy, it should be essential to evaluate the safety and effectiveness of the model 
with the regularization procedures. It is to be noted that the model has non-negligible parame-
ter dependence even within the same regularization procedure [10]. In particular, some physical 
quantities, such as the transition temperature on the chiral symmetry breaking, are crucially af-
fected by the model parameters. Moreover, there exists some room for the choice of parameters 
since input physical quantities for setting the parameters are usually less than the number of the 
parameters, then several parameter sets are employed depending on working groups [6,7,17,22,
31]. Therefore it is also important to test the parameter dependence on the model predictions. 
A lot of works have been devoted to the searches on the model parameters with various regular-
izations [10,16–19,34]. For the sake of seeing the regularization and parameter dependence on 
the physical quantities, in this article, we shall perform the systematical parameter fitting in the 
three flavor model.

The paper is constructed as follows: Section 2 presents the model treatments and the regu-
larization procedures. We will carry on the detailed parameter fitting in Section 3. Section 4 is 
devoted to the investigations on the physical predictions. We give some discussions on the pa-
rameter fitting in Section 5. Some concluding remarks are put in Section 6. Appendix shows the 
explicit equations for the meson properties and topological susceptibility.
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2. Model and regularizations

We start from the model Lagrangian then derive the effective potential and the gap equations 
in the leading order of the 1/Nc expansion. Since the integrals appearing in the gap equations 
involve divergent contributions, regularization procedures should be introduced to define the 
finite integral. Here we consider the three- and four-dimensional momentum cutoff schemes, 
Pauli–Villars, the proper-time and the dimensional regularizations. The explicit forms of the gap 
equations are shown in Section 2.1 and the formula for several regularization methods are derived 
in Section 2.2.

2.1. The NJL model

The Lagrangian of the three-flavor NJL model is given by

LNJL = q
(
iγμ∂μ − m̂

)
q + G

8∑
a=0

[(
qλaq

)2 + (
q iγ5λaq

)2]
− K

[
detqi(1 − γ5)qj + h.c.

]
, (1)

where q represents quark fields for up, down, and strange, m̂ indicates the diagonal mass matrix 
for the current quarks m̂ = {mu, md, ms}, G and K are the four- and six-point couplings, λa are 
the Gell-Mann matrices with λ0 = √

2/31 in the flavor space, and the determinant is taken in the 
flavor space leading so-called Kobayashi–Maskawa–’t Hooft (KMT) term [3]. In QCD the UA(1)

symmetry is broken by the anomaly. The KMT term explicitly breaks the UA(1) symmetry, and 
plays dominant role on the mixture between light and strange quarks which will be discussed in 
detail with the actual numerical analyses.

The mean-field approximation, 〈q̄iqi〉 � φi , helps us to have the following linearized La-
grangian,

L̂ = q̄(iγμ∂μ − m̂∗)q − 2G(φ2
u + φ2

d + φ2
s ) + 4Kφuφdφs, (2)

where m̂∗
i indicates the diagonal matrix whose elements are the constituent quark masses

m∗
u = mu − 4Gφu + 2Kφdφs, (3)

m∗
d = md − 4Gφd + 2Kφsφu, (4)

m∗
s = ms − 4Gφs + 2Kφuφd. (5)

One can obtain the effective potential, � = − lnZ/V , where V represents the volume of the 
system, and Z is the partition function,

Z =
∫

D[q] exp

[
i

∫
d4xL̃

]
. (6)

The explicit form of the effective potential becomes

� = �φ + �q, (7)

�φ = 2G(φ2
u + φ2

d + φ2
s ) − 4Kφuφdφs, (8)

�q = −
∑

i

tr
∫

d4q

i(2π)4
ln
(
qμγ μ − m∗

i + iε
)
, (9)

where the trace is taken in the color and spinor indices. (See, for a review [6].)
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The gap equations are derived by differentiating the thermodynamic potential by the order 
parameter, φi ,

∂�

∂φi

= 0, (10)

whose solutions give the extremum points of the potential. Note that one should be careful when 
the equations have several extremum points, in which case the direct search of the global mini-
mum by evaluating the potential itself is necessary. Substituting Eq. (2) with Eq. (7) into Eq. (10), 
we obtain

φi = −itrSi = tr
∫

d4q

i(2π)4

1

qμγ μ − m∗
i + iε

, (11)

where Si represents the propagator for the constituent quarks. As obviously seen from the above 
form, the expression for φi quadratically diverges, so the regularization is needed for the sake 
of obtaining finite physical quantities. The concrete procedures of the regularizations will be 
discussed in the next subsection.

2.2. Regularization procedures

Having presented the model treatment for analyzing the chiral condensate, we may now be 
ready for presenting on the regularization prescription used to obtain the finite physical predic-
tions. As mentioned in the introduction, we shall be studying five regularization procedures: the 
3D cutoff, 4D cutoff, Pauli–Villars, proper-time and dimensional regularizations.

In our present investigations, there are two types of divergent integrals to be made finite by 
some regularizations. The problematic integrals are

itrSi = −tr
∫

d4q

i(2π)4

1

qμγ μ − m∗
i + iε

, (12)

Iij (p
2) = tr

∫
d4q

i(2π)4

1[
(q + p/2)2 − m∗2

i + iε
][

(q − p/2)2 − m∗2
j + iε

] , (13)

where Iij (p
2) appears when one evaluates the meson properties; the derivations of the meson 

properties are presented in Appendix A. These divergent integrals should become finite by the 
regularizations.

2.2.1. Three dimensional-momentum cutoff
The three dimensional-momentum cutoff is the way to introduce the momentum cutoff in the 

three dimensional space momentum direction shown as

∫
d4q

(2π)4
→

∞∫
−∞

dq0

2π


3D∫
0

q2dq

(2π)3

∫
d�3. (14)

This is the most frequently used method in the NJL analyses due to the straightforward physical 
interpretation and its convenience for numerical calculations.

By introducing the cutoff scale, 
3D, we have the following simple expressions for itrS and 
the quark loop amplitude,
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itrS3D
i = −Ncm

∗
i

2π2

⎛
⎜⎝
3D

√

2

3D + m∗2
i − m∗2

i ln

3D +

√

2

3D + m∗2
i

m∗
i

⎞
⎟⎠ , (15)

I 3D
ij = 4Nc


3D∫
d3q

(2π)3

1

2D+
ij

(
1

Ei

+ 1

Ej

)
, (16)

with D+
ij = (Ei + Ej)

2 − p2 and Ei =
√

q2 + m∗2
i . These quantities are to be used for the gap 

equations and the calculations for the meson properties and the topological susceptibility.

2.2.2. Four dimensional-momentum cutoff
There is alternative prescription by employing the sharp momentum cutoff; that is the four 

dimensional-momentum cutoff method. One introduces the covariant cutoff scale, 
4D, after 
going to the Euclidean space by the Wick rotation,

∫
d4qE

(2π)4
→


4D∫
0

q3
EdqE

(2π)4

∫
d�4. (17)

As in the 3D case, the integrals for itrS can be evaluated analytically and reads

itrS4D
i = −Ncm

∗
i

4π2

[

2

4D − m∗2
i ln

(

2

4D + m∗2
i

m∗2
i

)]
. (18)

There arises a complexity for the quark loop integral depending on the value of p2, then we 
separate the integral into three terms,

I 4D
ij (p2) = I

4D(1)
ij (p2) + I

4D(2)
ij (p2) + I

4D(3)
ij (p2), (19)

I
4D(1)
ij (p2) = Nc

4π2

⎡
⎣ 1∫

0

dx ln(
2
4D + �ij )

⎤
⎦ , (20)

I
4D(2)
ij (p2) = − Nc

4π2

⎡
⎣ 1∫

0

dx ln(|�ij |)
⎤
⎦ , (21)

I
4D(3)
ij (p2) = − Nc

4π2

2

4D

⎡
⎣ 1∫

0

dx
1


2
4D + �ij

⎤
⎦ , (22)

where

�ij = p2[(x − Aij )
2 + Bij ], (23)

Aij = 1

2

(
1 + m∗2

j − m∗2
i

p2

)
, (24)

Bij = −1 + m∗2
i + m∗2

j

2
− (m∗2

j − m∗2
i )2

4
. (25)
4 2p 4p
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The integration in the first and third terms, I 4D(1)
ij and I 4D(3)

ij , in Eq. (19) are straightforward 

since 
2
4D + �ij is always positive,

I
4D(1)
ij (p2) = Nc

4π2

[
lnp2 − 2 + (1 − Aij ) ln[(1 − Aij )

2 + c2
ij ] + Aij ln[A2

ij + c2
ij ]

+ 2cij arctan

(
1 − Aij

cij

)
+ 2cij arctan

(
Aij

cij

)]
, (26)

I 4D(3)
us (p2) = − Nc

4π2


2
4D

cijp2

[
arctan

(
1 − Aij

cij

)
+ arctan

(
Aij

cij

)]
, (27)

with

cij =
√


2
4D

p2
+ Bij . (28)

While the second term, I 4D(2)
ij , needs careful evaluation since �ij can be negative if Bij becomes 

negative. We have for Bij > 0,

I
4D(2)
ij (p2) = − Nc

4π2

[
lnp2 − 2 + (1 − Aij ) ln[(1 − Aij )

2 + b2
ij ] + Aij ln[A2

ij + b2
ij ]

+ 2bij arctan

(
1 − Aij

bij

)
+ 2bij arctan

(
Aij

bij

)]
, (29)

with bij ≡√|Bij |, and for Bij < 0,

I
4D(2)
ij (p2) = − Nc

4π2

[
lnp2 − 2 + a−

ij ln(a−
ij ) + (1 − a−

ij ) ln(1 − a−
ij )

+ a+
ij ln(a+

ij ) + (1 − a+
ij ) ln(1 − a+

ij )
]
, (30)

with a±
ij = Aij ± bij .

2.2.3. Pauli–Villars regularization
In the Pauli–Villars regularization, one suppresses the divergent integrals through introducing 

the frictional force by

1

q2 − m2
−→ 1

q2 − m2
−
∑

k

ak

q2 − 
2
k

, (31)

where the cutoff scale is determined by the virtual heavy mass, 
k . To obtain the finite functions, 
we subtract the integral of itrS and I with the sum of k = 1, 2. This cutoff scale 
k is replaced by 
the common model cutoff 
PV after some algebras which makes all the contributions finite [10].

The integration in itrS can be performed analytically by using both the 3D and 4D expressions 
shown in Eqs. (15) and (18),

itrSPV
i = −Ncm

∗
i

4π2

(

2

PV − m∗2
i + m∗2

i ln
m∗2

i


2
PV

)
. (32)

It may be worth showing both the ways for the integral in Iij ; one sees in the 3D case,
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I
PV(3D)
ij (p2) = I 3D

ij (p2) − 1

2
I 3D
i
 (p2) − 1

2
I 3D
j
(p2)

= 4Nc

∞∫
d3q

(2π)3

⎡
⎣ 1

2D+
ij

(
1

Ei

+ 1

Ej

)
−
∑
k=i,j

{
1

4D+
k


(
1

Ek

+ 1

E


)}⎤⎦ , (33)

where in I 3D
k
 , the constituent quark masses are replaced by the cutoff 
PV as

D+
k
 = (Ek + E
)2 − p2, E2


 = q2 + 
2
PV. (34)

One also sees in the 4D case,

I
PV(4D)
ij (p2) = I

4D(2)
ij (p2) − 1

2
I

4D(2)
i
 (p2) − 1

2
I

4D(2)
j
 (p2), (35)

where m∗
i and m∗

j are replaced by 
PV as well in I 4D(2)
k
 ,

I
4D(2)
k
 (p2) = − Nc

4π2

[
lnp2 − 2 + (1 − Ak
) ln[(1 − Ak
)2 + b2

k
] + Ak
 ln[A2
k
 + b2

k
]

+ 2bk
 arctan

(
1 − Ak


bk


)
+ 2bk
 arctan

(
Ak


bk


)]
, (36)

with

Ak
 = 1

2

(
1 + 
2

PV − m∗2
k

p2

)
, (37)

Bk
 = −1

4
+ m∗2

k + 
2
PV

2p2
− (
2

PV − m∗2
k )2

4p4
. (38)

We have numerically confirmed that these two expressions give the equal results as they should.

2.2.4. Proper-time regularization
In the proper-time regularization, the divergent integrals are made finite by suppressing the 

high momentum contributions with the insertion of the exponentially dumping factor through the 
following manipulation,

1

An
→ 1

�[n]
∞∫

1/
2
PT

dτ τn−1e−Aτ . (39)

The integration in itrS is easily performed,

itrSPT
i = −Ncm

∗
i

4π2

[

2

PTe−m∗2
i /
2

PT + m∗2
i Ei(−m∗2

i /
2
PT)
]
. (40)

In the similar manner treated above, Iij ,

IPT
ij (p2) = Nc

4π2

1∫
0

dx

∞∫
1/
2

dτ
1

τ
e−�ij τ , (41)
PT
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should be calculated depending on the sign of �ij . It becomes for Bij > 0,

IPT
ij (p2) = − Nc

4π2

1∫
0

dx Ei(−�ij /

2
PT), (42)

and for Bij < 0,

IPT
ij (p2) = I

PT(1)
ij (p2) + I

PT(2)
ij (p2) + I

PT(3)
ij (p2), (43)

I
PT(1)
ij (p2) = − Nc

4π2

α−∫
0

dx Ei(−�ij /

2
PT), (44)

I
PT(2)
ij (p2) = − Nc

4π2

⎡
⎢⎣

α+∫
α−

dx Ei(�ij /

2
PT) + i

π/2∫
−π/2

d θei�ij eiθ /
2
PT

⎤
⎥⎦ , (45)

I
PT(3)
ij (p2) = − Nc

4π2

1∫
α+

dx Ei(−�ij /

2
PT), (46)

with a±
ij = Aij ±√

Bij as already defined.

2.2.5. Dimensional regularization
In the dimensional regularization, the integral kernel is modified by changing the space–time 

dimensions,

∫
d4q

(2π)4
→ M4−D

0

∫
dDq

(2π)D
, (47)

with the mass scaled parameter M0 which plays the role to maintain the mass dimensions of 
physical quantities. Note that D should be restricted to 2 < D < 4 so that one gets finite quanti-
ties.

The Feynman integral prescription enables us to obtain the following results,

itrSDR
i = −NcM

4−D
0 m∗

i

(2π)D/2
�

(
1 − D

2

)
(m∗2

i )D/2−1, (48)

IDR
ij (p2) = NcM

4−D
0

(2π)D/2
�

(
2 − D

2

) 1∫
0

dx�
D/2−2
ij . (49)

In the DR the mass dimensions of G and K are shifted for its consistency. In order to compare 
the couplings with the other regularizations we adjust the mass dimension of the couplings and 
write GM4−D

0 and KM
2(4−D)
0 as G and K , respectively.

We have now aligned all the required integrals for the evaluation of the meson properties in 
the current study. We will then perform the parameter fitting in the next section.
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3. Parameter fitting

The main issue of this paper is to fit the model parameters systematically. The suitable parame-
ters can be obtained to reproduce nonet meson properties in each regularization. After explaining 
fitting conditions, we fixed the parameters as changing mu in each regularization and examine 
the mu dependence on the fitted parameters. Next, we replot the obtained results as the functions 
of 
 and consider the cutoff dependence on the model parameters.

3.1. Fitting procedure

Since the mass difference between mu and md is negligibly smaller compared with the 
hadronic scale, we equalize these masses, md = mu for simplicity. After the equalization, the 
model has five and six parameters in the 3D, 4D, PV, PT cases, and the DR as aligned below:

3D, 4D, PV, PT : 
, mu, ms, G, K,

DR : M0, D, mu, ms, G, K,

where the scales of the models are determined by the cutoff 
 in the 3D, 4D, PV and PT cases. 
While in the case with the DR, there is no direct counterpart to the cutoff scale, then we choose 
the mass scale with the factor 4π , namely 
DR ≡ 4πM0, to compare with the other regulariza-
tions [17]. We discuss this point in subsection 5.2 in more detail.

The parameters should be set to reproduce physical quantities so that the models effectively 
describe real hadron physics. We tune the model parameters with fitting the following observ-
ables [39],

mπ = 138 MeV, fπ = 92 MeV, mK = 495 MeV, mη′ = 958 MeV,

as the important ingredients from the experimental observations. There exists one additional 
parameter in the DR case, so we select one more observable,

mη = 548 MeV.

Note that the number of observables is still one less than the number of parameters. We use mu

as a input parameter. Then the number of the remaining parameters are four (and five for DR).
The parameter fitting is technically involved, since one has to solve four equations,

Fπ ≡ 1 − 2Kπ�π(m2
π ) = 0, (50)

Ff ≡ fπ − m∗
ugπqqIu(0) = 0, (51)

FK ≡ 1 − 2KK�K(m2
K) = 0, (52)

Fη′ ≡ det
[
1 − 2�̂(m2

η′)K̂
]

= 0, (53)

under the stationary condition where the two gap equations (11) are satisfied. Fπ , Ff , FK and 
Fη give the equations for the pion mass, the pion decay constant, the kaon mass and the η′ mass, 
Eqs. (A.11), (A.14) and (A.23). We need one more condition in the DR method as mentioned 
above, there we use the equation

Fη ≡ det[1 − 2�̂(m2
η)K̂] = 0, (54)

for η meson mass.
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As the main task of this paper, we shall systematically solve these Eqs. (50), (51), (52), (53), 
(and (54)) with two gap equations then obtain the suitable parameters for each model. It maybe 
worth mentioning that, although seven equations are introduced in the DR case with additional 
mass equation for η, the issue is also reduced to the problem with six-coupled equations since 
the condition for determining the mass scale M0 can be treated separately [34].

3.2. Fitted parameters with respect to mu

Since when we perform the parameter fitting, we first fix mu as free parameter then evaluate 
the remaining parameters in our numerical code, we observe the behavior of the other model 
parameters as functions of mu here.

Fig. 1 shows the resulting parameters with respect to mu. One observes that 
 monotonically 
decreases with increasing mu, while ms increases according to mu, from upper left and right 
panels. There are no set of solutions under the conditions discussed in Section 3.1 in each reg-
ularization for small and/or large mu region. Note that there are two sets of solutions in the DR 
case, and we draw the curves for the higher dimension case here. It maybe worth mentioning 
that the current quark masses always hold the relation ms > mu for entire region. This means 
that the situation with the SU(3) symmetric case does not occur, which is natural consequence of 
the parameter fitting since the pion–kaon mass splitting cannot be realized if the current quark 
masses become equal.

Middle two panels display the results of the coupling strengths, G and K , in which we note 
that these quantities stay almost constant for each regularization in 0 � mu � 4 MeV, and the 
curves in the 4D, PV and PT are rather close comparing to the other methods in this region. The 
DR case shows peculiar feature; G is negative for all mu and K is considerably smaller than the 
other four regularizations. We can say these are characteristic aspects within the DR case. The 
DR has two parameters on behalf of the cutoff scale, D and M0, where we observe D increases 
and the mass scale parameter M0 decreases with respect to mu, respectively. We will present 
more detailed discussions on the behaviors of the obtained parameters in the next subsection 
with choosing the cutoff scale 
 as the horizontal axis.

3.3. Fitted parameters with respect to 


It is physically more appealing that we redisplay the parameters as the function of the model 
scale, 
, with obtained parameters, since one can observe how the physical quantities effectively 
flow according to the model scale in the current effective field theory.

Fig. 2 draws four parameters as the functions of the cutoff scale 
 in the 3D, 4D, PV and 
PT. One sees that mu and ms decrease when 
 becomes larger, while two couplings G and K
decrease for small 
 then approach almost constant for large 
. The PV and PT cases show the 
multi-valued functions for small cutoff scale, which is the characteristic feature seen in the PT 
case being also observed in the preceding analyses [29]. Qualitatively, we can say that all the 
regularization procedures show similar curves where each parameter becomes smaller when one 
takes larger cutoff scale. On the other hand quantitatively, the three regularizations, 4D, PV and 
PT lead close curves, whose values are much larger than the case in the 3D. This can easily be 
understood, because the 4D, PV and PT methods have the mathematically similar structure, while 
the 3D cutoff separately perform the time and space integrals and time component is integrated 
for −∞ < q0 < ∞.
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Fig. 1. Parameters as the functions of mu.

We align the resulting parameters for the DR case in Fig. 3 where we chose the horizontal axis 
to be 4πM0 as mentioned above. It should be noted that the DR has two sets of solutions under 
the conditions discussed above. As is seen in the figure, we indicate the solutions with higher 
and the lower dimensions by denoting DRH and DRL, respectively. One sees that the current 
quark masses, mu and ms , decrease according to 
DR in the DR method, whose tendencies 
and the values are similar to the cases with the other regularizations. Note that the increase of 

DR (= 4πM0) means the decrease of D as seen in Fig. 1. While the couplings G and K show 
non-monotonic curves for the higher dimensional case, DRH, which is distinguishing feature 
of the DRH. We will consider the cause on this non-monotonic behavior of the couplings in 
Section 5. It is noted that for each parameter, the existing region of the DRL case is considerably 
narrow compare to the DRH.
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Fig. 2. Parameters in the 3D, 4D, PV, PT.

It is also interesting to mention that the parameters exist for considerably higher scale up to 
several GeV; where we do not show upper limit since the models are no longer reliable for such 
high scale. While the lower limits are important because they are comparable to hadronic scale in 
which the parameters have strong regularization dependence as is seen in Fig. 2. We numerically 
find the following values for lower limits:

3D : 580.5 MeV, 4D : 719.3 MeV, PV : 717.7 MeV, PT : 629.0 MeV. (55)

Below these limits, the parameter fitting is no longer possible where the equations of meson 
properties cannot have required solutions.

On the other hand, there does not appear the lower limit in the DR case; the curves can be 
drawn in the M0 → 0 limit. It may also be interesting to note that we have the upper limit in the 
DR. As is seen in the lower panel of Fig. 3, the value is around 1.7 GeV. This limit stems from 
the restriction on the dimension, 2 < D < 4.

3.4. Table of parameters

We have drawn the tendency of the parameters according to 
 in Section 3.3. We now align 
the values of parameters in the table form. It will be useful for the study of the meson properties 
and the various physical phenomena such as chiral phase transition based on the NJL model. 
We also align the parameter sets obtained in the preceding analyses for various regularization 
methods, then make the numerical comparison among them.
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Fig. 3. Parameters in the DR.

In Table 1, our result is almost coincident with the one in Ref. [6]. The slight difference 
comes from the input parameter. The difference of K
5 between our result and Ref. [7] is 
caused by the definition of the η′ mass, the former only considers the real part of the propa-
gator, while the latter includes the imaginary part. In the 4D and PT cases, our results are close 
to the previous ones which obtained by two-flavor NJL model (see Tables 2 and 4). Ref. [17]
uses the decay width of π0 → γ γ as the input parameter. In Table 3, our result is close to the 
previous one [22] except for the value of K
5. To obtain the meson mass spectra, the gen-
eralized heat kernel expansion are used in Ref. [22]. Although there exists one set of solution 
in the two-flavor model, two sets of solutions appear in the three-flavor case. As decreasing 
the cutoff scale 
DR, m∗

u and m∗
s increase in the DRH and decrease in the DRL (see Tables 5

and 6).
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Table 1
Parameters and m∗ in the 3D cutoff.


3D (MeV) mu (MeV) ms (MeV) G
2 K
5 m∗
u (MeV) m∗

s (MeV) Ref.

960.4 3.00 89.45 1.552 8.339 212 417
681.6 5.00 128.3 1.706 8.772 286 487
630.9 5.50 135.9 1.814 9.165 324 519
625.4 5.55 136.6 1.830 9.246 330 524
580.5 5.87 139.1 2.087 10.08 414 592

631.4 5.5 135.7 1.835 9.29 335 527 [6]
602.3 5.5 140.7 1.835 12.36 367.7 549.5 [7]

Table 2
Parameters and m∗ in the 4D cutoff.


4D (MeV) mu (MeV) ms (MeV) G
2 K
5 m∗
u (MeV) m∗

s (MeV) Ref.

1421 3.00 94.41 3.026 55.02 191 400
1046 5.00 139.1 3.156 57.80 228 445
850.2 7.00 176.5 3.526 64.30 280 499
772.4 8.14 194.8 3.990 72.60 330 545
719.3 8.99 205.5 5.341 91.99 453 648

1049 5.0 – 3.741 – 222.3 – [17] (2f.)
854 7.0 – 4.230 – 270.9 – [17] (2f.)

Table 3
Parameters and m∗ in the PV.


PV (MeV) mu (MeV) ms (MeV) G
2 K
5 m∗
u (MeV) m∗

s (MeV) Ref.

1443 3.00 102.7 3.094 59.83 188 385
1085 5.00 158.0 3.305 68.29 218 420
910.9 7.00 210.5 3.705 85.61 248 454
743.3 11.8 327.8 5.885 175.5 330 534
717.7 15.6 396.6 9.282 310.3 404 585

1400 2.7 92 3.038 473.3 214 397 [22]
980 4.7 155 3.457 431.2 286 485 [22]

Table 4
Parameters and m∗ in the PT.


PT (MeV) mu (MeV) ms (MeV) G
2 K
5 m∗
u (MeV) m∗

s (MeV) Ref.

1489 3.00 100.2 2.926 68.03 172 383
1115 5.00 150.4 2.941 74.97 194 418
924.1 7.00 195.6 3.059 85.50 216 451
650.9 14.5 338.6 5.169 159.9 330 593
629.0 17.2 380.9 7.493 222.4 415 665

1080 5.0 – 3.802 – 216 – [31] (2f.)
907 7.0 – 4.138 – 240 – [31] (2f.)
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Table 5
Parameters and m∗ in the DRH.


DR (MeV) D mu (MeV) ms (MeV) G
D−2 K
2D−3 m∗
u (MeV) m∗

s (MeV) Ref.

1353 2.368 3.00 79.23 −0.1880 0.06658 −591 −680
1170 2.515 4.00 106.6 −0.2977 0.1604 −621 −706
935.5 2.677 5.00 134.3 −0.3930 0.2371 −653 −734
667.8 2.853 6.00 162.3 −0.4203 0.1814 −685 −763
380.1 3.044 7.00 190.6 −0.2659 0.04530 −719 −793

1382 2.37 3.0 – −0.1647 – −570 – [10] (2f.)
1219 2.56 5.0 – −0.3144 – −519 – [10] (2f.)

Table 6
Parameters and m∗ in the DRL.


DR (MeV) D mu (MeV) ms (MeV) G
D−2 K
2D−3 m∗
u (MeV) m∗

s (MeV) Ref.

1489 2.289 3.00 85.26 −0.1627 0.09688 −467 −546
1421 2.379 4.00 118.6 −0.2792 0.3459 −461 −529
1351 2.463 4.94 157.1 −0.5289 1.433 −456 −500

1382 2.37 3.0 – −0.1647 – −570 – [10] (2f.)
1219 2.56 5.0 – −0.3144 – −519 – [10] (2f.)

4. Model predictions

The model parameters have been carefully fitted in the previous section. We are now ready 
for investigating various predicted quantities; in this section we are going to analyze the chiral 
condensates and constituent quark masses, the meson properties and the topological susceptibil-
ity. As is well known, the model predictions depend on the regularization methods and the model 
parameters, whose test is the focus we will study here.

4.1. Chiral condensates and constituent quark masses

The chiral condensates are the key quantities in this kind of model, since they are intimately 
related to the chiral symmetry breaking of the system and critically determine the model behavior. 
The constituent quark masses are also important physical objects which explicitly appear in the 
equations for the meson properties as shown in Appendix A. Since the mass of the proton and 
neutron are around 1 GeV, then we naively expect that the values of the constituent masses 
for up and down quarks are around 1/3 GeV, i.e., 330 MeV. We will confirm that this value is 
consistently achieved within reliable model scale in the current models.

Fig. 4 displays the results of the chiral condensates φi and the constituent quark masses m∗
i

with the fitted parameters shown in the previous subsection. One notes that the absolute values 
of φi monotonically increase with the cutoff, while m∗

i decrease with respect to 
. Observing 
the obtained values, we see that the regions for 0.6 � 
 � 1 GeV have nice numerical plots, 
φ

1/3
u � −230 MeV and m∗

u � 330 MeV. One also notes that the constituent quark masses m∗
i

become nearly constant for high cutoff scale in all regularization cases. This characteristic may 
show us some universal properties that the constituent quark masses possess, which we will 
discuss in more detail in Section 5.1.
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Fig. 4. φi and m∗
i

in the 3D, 4D, PV, PT.

We exhibit the resulting chiral condensates and constituent masses in the DR method in Fig. 5. 
The qualitative tendency of the chiral condensates are similar to the other regularization ways as 
compared with the upper two panels of Fig. 4 where the absolute values of φi become larger with 
increasing the model scale. On the other hand, for the constituent quark masses, one notices the 
crucial difference between the DR and the other prescriptions; the signs of the constituent quark 
masses are opposite. This comes from the mathematical treatment of the analytic continuation 
when we regularize the loop integrals. The sign of the constituent quark masses can be posi-
tive with the counter terms [36]. The absolute values of the constituent quark masses decrease 
according to the model scale, which is the case for all the regularizations.

4.2. Meson properties and topological susceptibility

In this subsection we calculate the predicted meson properties, the η meson mass mη , the kaon 
decay constant fK, the sigma meson mass mσ and the topological susceptibility χ through using 
the fixed parameters. It is practically interesting, since the numerics are effectively important in 
determining whether the model and the employed methods including the choice of parameters 
are appropriate, eventually to be tested by experiments.

Fig. 6 displays the obtained results for the η mass mη in each regularization. Since the η mass 
is one of the input quantities used for the fitting in the DR, it is fixed at 548 GeV. We see that the 
obtained values are smaller than the experimental data for 
 being the hadronic scale, while the 
experimental line crosses for relatively larger 
. The curves for the 3D and 4D indicate similar 
structures; they decrease upto some 
, then turn to increase for large scale. The curves in the PV 
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Fig. 5. φi and m∗
i

in the DR.

Fig. 6. mη in the 3D, 4D, PV, PT. The gray line indicates the experimental value, 548 MeV.

and PT cases show almost monotonic behavior; they become larger with increasing 
. In any 
regularization, there appears typical cusp around 
 ∼ 1 GeV, which comes from the complex 
property due to the determinantal form of the equation (A.23) for η′ and η masses.

The kaon decay constants are shown in Fig. 7, where the results for the 3D, 4D, PV and PT 
all increase with the cutoff scale (left panel), while it becomes smaller according to 4πM0 in 
the DR. In 0.8 � 
 � 2 GeV the curves for the 3D, PV and PT have similar behavior, while the 
curve for 4D shows a smaller fK than the others. It is interesting that the results for 3D, PT and 
PT have close value to the experimental data at almost same cutoff scale, 
 � 0.9 GeV.
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Fig. 7. fK in the 3D, 4D, PV, PT (left) and the DR (right).

Fig. 8. mσ in the 3D, 4D, PV, PT (left) and the DR (right). The gray regions show the core mass mcore
σ = (1.13 ±

0.1)mρ [40] and the empirical ranges [39].

The sigma meson mass, mσ , is evaluated as a pole of the propagator calculated from the loop 
integral of the scalar channel calculated by Eq. (A.10), whose results are exhibited in Fig. 8. It 
should be noted that the sigma meson is believed to have the complex structure constructed by a 
large quark-core mass and surrounding strongly interacting region called the strong meson cloud. 
Then we put the two bands as shown in Fig. 8; the upper region indicates the quark-core mass 
calculated from the relation mcore

σ = (1.13 ± 0.1)mρ [40] with mρ = 775 MeV, and the lower 
region does the empirical value [39]. Since current model calculation does not include the meson 
cloud effect, it is proper to compare the obtained results with the quark-core mass band. We see 
that the curves for the 3D, 4D, PV and PT enter core mass region for low 
 being comparable 
to the hadronic scale. In the DR case, one observes the DRL result is close to the core mass band 
for relatively high scale around 1.5 GeV, while mσ in the DRH is always larger than 1 GeV and 
never touches the core mass band. In the DR the pole of the sigma meson propagator does not 
exist for 
 � 1.5 GeV, we regard the maximum value as the sigma meson mass in such region 
[33]. Contrary to the case for the η mass, the mass decreases monotonically with respect to the 
model scale, which stems from the monotonic function of the equation for the sigma meson.

Finally in Fig. 9, we show the topological susceptibility calculated through the topological 
charge density presented in Appendix A.4. We note that the result in the 3D case is the closest to 
the one by the lattice QCD simulations, and the curves in the 4D, PV and PT enter the consistent 
region with lattice QCD for high 
, while the DR does not touch the gray region. It is interesting 
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Fig. 9. χ1/4 in the 3D, 4D, PV, PT (left) and the DR (right). The gray areas are the range evaluated by the lattice QCD 
simulations [41].

to see that the obtained curves show a certain similarity with the results of η mass; the 3D and 
4D plots decrease for small 
 then increase for large 
 while the PV and PT cases go up with 
increasing 
. The reason may be originated from the resembling systems of the equations for mη

and χ where the matrix form, in particular the nonzero off diagonal elements due to the UA(1)

anomaly, plays a crucial role. The results in the DR are almost constant around χ1/4 = 225 MeV
which is larger than the other regularization methods. Since one extra parameter is introduced in 
DR, the η meson mass is fixed as an input parameter. If we accept some tolerance for the η meson 
mass which is used as an input parameter, we can find a smaller topological susceptibility [34].

5. Discussions

The paper has been devoted to the systematic analyses on the parameter fitting and resulting 
predictions within various regularization procedures. We think now it may be intriguing that we 
give the detailed speculation on the tendency of the obtained parameters and the model predic-
tions.

5.1. High scale behavior

Although the model is no longer effective for very high energy scale above 
QCD ∼ 1 GeV, 
we think that it is still worth studying how the model behaves at high energy. Here we are go-
ing to present the analysis on the asymptotic behavior of the current model. From the resulting 
parameters evaluated in Fig. 2, we note the interesting feature that the dimensionless coupling 
strengths G
2 and K
5 seem to approach some constant values at large 
 limit. This can be 
understood by the discussions along Ref. [37]. For example, in the 3D case we read the dominant 
contribution of φ3D

i (= −itrS3D
i ),

φ3D
u � − Nc

2π2
m∗

u

2
3D, (56)

in the gap equation (3). Then we have

1 � Nc

2

(
4G
2

3D + Nc

2
Km∗

s 

4
3D

)
. (57)
2π π
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From Figs. 2 and 4, the relations, G ∼ 
−2, K ∼ 
−5, and O(m∗
s /
) < 1, can be read for 

high 
, then we see

G3D
2
3D � π2

2Nc

. (58)

In the same way, we have

G4D
2
4D � π2

Nc

, (59)

in the 4D case. By noting that the PV and PT cases have the same asymptotic behavior with the 
4D methods, then we expect that the G
2 approaches to 1.64 in the 3D case, and 3.29 in the 4D, 
PV, and PT methods. Our numerical results are G
2 = 1.63 for 
 = 8.1 GeV in the 3D, 3.24
for 
 = 8.3 GeV in the 4D, 3.16 for 
 = 8.3 GeV and 2.98 for 
 = 2.0 GeV in the PT. These 
results seem to support the above discussion. By following the similar analyses on the equation 
for the η masses, we can also confirm the asymptotic behavior of K . This is the numerical reason 
why the two coupling strengths approach to some constant values at high energy limit.

5.2. Remarks on the dimensional regularization

We have used the quantity 4πM0 as the counterpart of the cutoff scale in the DR with fixed mη. 
It may be worth reconsidering on whether the current treatment is appropriate for the model anal-
yses here. Since the DR makes integrals finite by changing the integral kernel, not by restricting 
the integration interval, the relation between these two scales are actually not quite clear in this 
effective model approach. The typical integrals go to infinity in the D → 4 limit, so one might 
think it is nice to treat D → 4 limit as the counterpart of the 
 → ∞ limit. However, the integral 
in the D → 4 limit can be finite thanks to the conditions in subsection 3.1. The key point is the 
relationship between the mass scale parameter, M0, and D which works so as to suppress the in-
tegral for higher dimensions (M0 → 0 for D → 4) as studied in [37,38]. Due to this suppression, 
the resulting integrals, meaning the integrals with factor M4−D

0 , do not necessarily increase with 
respect to D. Other correspondences between the cutoff and the dimensional regularizations are 
discussed in Refs. [17] and [32]. Based on the above discussion and the observation of the ten-
dencies on the obtained model parameters and the predicted quantities, we think that our present 
treatment is effectively acceptable and the mass scale 4πM0 parameter can be considered as the 
quantity which closely relates to a cutoff scale.

5.3. System of parameter fitting

As the final discussion on the parameter fitting, we present the fact that the fitting, in particular, 
the existence of the parameters is sensitively determined by the property of the η′ mass equation.

Fig. 10 displays the typical results on the functions for the pion and η masses; where the 
intersection points between each curve and dashed line indicate the values of the meson masses, 
|p| = mπ(138 MeV) and m′

η(958 MeV). Since the qualitative feature of the functions is similar 
in the other regularization cases, we show the results of the 3D cutoff method as the representative 
figure for the explanation on the parameter fitting. It is also worth mentioning that the curve for 
the kaon equation is similar to the pion case. One notes that the equations for the pion present 
monotonic decrease with respect to |p|, while the result for the η mass function exhibits some 
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Fig. 10. Typical behaviors of the equations for the pion (left) and η′ (right) masses in the 3D.

complex structure. This comes from the determinantal form of the equation, which is due to the 
non-vanishing off-diagonal elements in the η–η′ system as explicitly seen in the Appendix A.3.

The properties with changing 
 on the functions are as follows. Although the slope with 
respect to |p|, namely ∂F/∂|p|, changes according to 
 for Fπ , we can always find the solution. 
On the other hand, the change of the slope of Fη becomes important when we try to find the 
solutions on it; the absolute value of the slope decreases with increasing 
 as seen from Fig. 10, 
then the range of Fη gets smaller for high 
, leading the numerical difficulty of searching the 
solution. For small 
, on the other hand, the absolute value of the slope becomes larger, which 
leads the move of the curve and we eventually reach the point where we can no longer find the 
solution for mη′ = 958 MeV at some low 
. Thus the parameter fitting is sensitively affected by 
the equation for determining the η′ mass.

6. Summary and conclusions

In this paper we have applied various regularization procedures to the NJL model then carried 
out the meticulous parameter fitting. One of the main results of this paper is the parameters 
sets investigated in the same conditions and the input quantities for each regularization. Similar 
behavior is observed for the model parameters in the 4D, PV and PT. The model parameters 
are determined even for extremely high scale beyond the hadronic energy, which, we think, is 
surely interesting since one can consider the ultraviolet region of the model. So we analyzed 
the asymptotic behavior of the model through considering the 
 → ∞ limit. We then analyzed 
the asymptotic behavior of the model through considering the 
 → ∞ limit. Where we saw 
the coupling strengths in the dimensionless form, G
2 and K
5, for the effective four- and 
six-point interactions approach to constant values. This is as well the interesting feature of the 
current model.

After setting the model parameters, we evaluated the predicted values, φi , m∗
i , fK, mσ and 

χ in each regularization. We studied whether the predicted quantities can indicate the values 
close to the experimental observations. We found that the obtained physical predictions show 
satisfactory close values to the empirical ones in the 3D, 4D, PV and PT methods, while some 
quantity has different order in the DR. This may indicate that the higher order corrections may 
be important due to the change of an integral kernel with smaller spacetime dimensions in the 
dimensional regularization. It should be noticed that one extra parameter is necessary in DR case. 
Thus we impose to generate the η meson mass as input. If we relax the condition, we can find a 
parameters set to show more appropriate value for the other physical predictions.
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We believe that the current analyses is useful for the readers who want to investigate the 
properties of mesons and hadrons, the transition phenomena of QCD such as the chiral phase 
transition, and the calculation procedures in various regularizations. Also, we think the obtained 
model parameters are useful since they enable us to study a lot of physical quantities by using 
various regularization methods. We plan to study the phase transition of the chiral symmetry 
breaking by using the obtained parameters in various regularization methods in future.
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Appendix A. Meson properties and topological susceptibility

Here we present the prescriptions on how one studies the physical observables in the current 
model treatment. The masses of mesons are investigated by using the Bethe–Salpeter equations 
which give the green functions for the composite particles. Similarly, the decay constants for 
mesons and the topological susceptibility are evaluated based on the diagrammatic calculations 
incorporating the constituent quark propagator. The detailed derivations of the equations are 
presented in some review papers, see for instance [5].

A.1. Pion, sigma and kaon masses

The masses of the pion, sigma and kaon are evaluated at the pole position of the propagators 
derived from the random phase approximation with the leading order of the 1/Nc expansion. The 
propagators for these mesons are given by

�m(p2) � 2Km

1 − 2Km�m(p2)
� g2

mqq

p2 − m2
m

, (A.1)

with the effective couplings for each channel (m = π, σ and K),

Kπ,σ = G − 1

2
Kφs, (A.2)

KK = G − 1

2
Kφu, (A.3)

and the quark–antiquark loop contributions �m(p2) are given by

�π(p2) = 2�uu
p (p2), (A.4)

�σ (p2) = 2�uu
s (p2), (A.5)

�K(p2) = 2�su
p (p2), (A.6)

for each meson with

�
ij
p (p2) =

∫
d4q

i(2π)4
tr
[
γ5S

i(q + p/2)γ5S
j (q − p/2)

]
, (A.7)

�
ij
s (p2) =

∫
d4q

4
tr
[
Si(q + p/2)Sj (q − p/2)

]
, (A.8)
i(2π)
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where the suffices p and s indicate the pseudo-scalar and scalar channels, respectively. One ob-
tains the following expressions after a bit of algebra

�
ij
p (p2) = itrSi

2m∗
i

+ itrSj

2m∗
j

+ 1

2

[
p2 − (m∗

i − m∗
j )

2
]
Iij (p

2), (A.9)

�
ij
s (p2) = itrSi

2m∗
i

+ itrSj

2m∗
j

+ 1

2

[
p2 − (m∗

i + m∗
j )

2
]
Iij (p

2). (A.10)

Since the following relations should hold

1 − 2Km�m(p2)|p2=m2
m

= 0, (A.11)

at the pole position, then the meson mass mm is given by Eq. (A.11).

A.2. Pion and kaon decay constants

The pion and kaon decay constant are calculated through evaluating the following one-loop 
amplitude,

ipμfmδαβ = 〈0|q̄ T α

2
γ μγ5q|mβ〉

= −
∑
kl

∫
d4q

(2π)4
tr

[
γ μγ5

T α
kl

2
Sl(q + p/2)gmqqγ5T

β†
lk Sk(q − p/2)

]
, (A.12)

with T α = (λ1 ± iλ2)/
√

2 for π± channels and T α = (λ4 ± iλ5)/
√

2 for K± channels, and the 
coupling strengths for the meson–quark–quark interaction, gmqq , evaluated by

g2
mqq(p

2) =
(

∂�m

∂p2

)−1

. (A.13)

After some algebra, we have

fπ = m∗
ugπqq(0)Iuu(0), (A.14)

fK = gKqq(0)

⎡
⎣m∗

uIus(0) + (m∗
s − m∗

u)

1∫
0

dx

∫
d4q

i(2π)4
tr

x

{q2 − �us(0) + iε}2

⎤
⎦ , (A.15)

where equations are evaluated at p2 = 0 and give the pion and kaon decay constants, respec-
tively [5].

A.3. η and η′ masses

Compared with the pion and kaon masses, there appears the complexity for the η–η′ system, 
where the propagator can be written by the matrix form as

�̂η(p
2) = 2K̂

[
1 − 2�̂(p2)K̂

]−1
, (A.16)

where K̂ and �̂ represent 2 × 2 matrices whose elements are given by
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K00 = G + 1

3
K(2φu + φs), (A.17)

K88 = G − 1

6
K(4φu − φs), (A.18)

K08 = K80 = −
√

2

6
K(φu − φs), (A.19)

�00 = 2

3

[
2�uu

p (p2) + �ss
p (p2)

]
, (A.20)

�88 = 2

3

[
�uu

p (p2) + 2�ss
p (p2)

]
, (A.21)

�08 = �80 = 2
√

2

3

[
�uu

p (p2) − �ss
p (p2)

]
. (A.22)

Then the condition which determines the η and η′ masses becomes

det
[
1 − 2�̂(p2)K̂

] ∣∣∣
p2=m2

m

= 0. (A.23)

The explicit expressions for the numerical calculations are shown in [34].

A.4. Topological susceptibility

The topological susceptibility,

χ =
∫

d4x 〈0|T Q(x)Q(0)|0〉connected, (A.24)

is calculated from the following topological charge density [6],

Q(x) ≡ g2

32π2
Fa

μνF̃
aμν = 2K Im

[
det q̄(1 − γ5)q

]
. (A.25)

The explicit formula is evaluated in [42], which reads

χ = −4K2φ2
u

[
φuφs

(
2φs

m∗
u

+ φu

m∗
s

)

+
{

1√
6
(2φs + φu)

(
�00(0),�08(0)

) + 1√
3
(φs − φu)

(
�08(0),�88(0)

)}
�+(0)

×
{

1√
6
(2φs + φu)

(
�00(0)

�08(0)

)
+ 1√

3
(φs − φu)

(
�08(0)

�88(0)

)}]
. (A.26)
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