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Abstract  

Ascidians are hyperaccumulators that have been studied in detail. Proteins and genes involved in the 

accumulation process have been identified, but regulation of gene expression related to vanadium 

accumulation remains unknown. To gain insights into the regulation of gene expression by vanadium in a 

genome-wide manner, we performed a comprehensive study on the effect of excess vanadium ions on a 

vanadium-rich ascidian, Ciona intestinalis, using a microarray. RT-PCR and enzyme activity assay were 

performed from the perspective of redox and accumulation of metal ions in each tissue. Glutathione 

metabolism-related proteins were significantly up-regulated by VIV treatment. Several genes involved in 

the transport of vanadium and protons, such as Nramp and V-ATPase, were significantly up-regulated by 

VIV treatment. We observed significant up-regulation of glutathione synthesis and degradation pathways 

in the intestine and branchial sac. In blood cells, expression of Ci-Vanabin4, glutathione reductase activity, 

glutathione levels, and vanadium concentration increased after VIV treatment. VIV treatment induced 

significant changes related to vanadium exclusion, seclusion, and redox pathways in the intestine and 

branchial sac. It also induced an enhancement of the vanadium reduction and accumulation cascade in 

blood cells. These differential responses in each tissue in the presence of excess vanadium ions suggest 

that vanadium accumulation and reduction may have regulatory functions. This is the first report on the 

gene regulation by the treatment of vanadium-rich ascidians with excess vanadium ions. It provided much 

information for the mechanism of regulation of gene expression related to vanadium accumulation. 
 

Keywords Ascidian • Vanadium • Microarray • Gene regulation • Glutathione 
 

Introduction 

 

Hyperaccumulation of vanadium in ascidians (sea squirts and tunicates) was first reported in the early 20th 

century (Henze 1911). Since the discovery that vanadate (VV) acts as a specific inhibitor of Na+/K+-

ATPase (Cantley et al. 1977), and because vanadium compounds have insulin-mimicking properties 

(Heyliger et al. 1985; Meyerovitch et al. 1987), interest in vanadium has increased. Recent studies on 

several vanadium haloperoxidases in marine algae and vanadium-containing nitrogenases in Azotobacter 

have increased our understanding of vanadium.  

Studies performed in the 1980s measured vanadium levels in many ascidian species (particularly the 

family Ascididae) and revealed that they accumulate high levels of vanadium in blood cells (Michibata et 
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al. 1991; Michibata et al. 1986). The vanadium concentration in Ascidia gemmata blood cells reaches a 

maximum at 350 mM, corresponding to a 107-fold increase compared to seawater, where vanadium is 

dissolved at a concentration of 35 nM (Michibata et al. 1991). This is thought to be the highest 

accumulation factor of metal ions in any living organism. 

Redox properties of vanadium in ascidians have also been studied under physiological conditions, 

where vanadium ions are limited to the +3 (VIII), +4 (VIV), and +5 (VV) oxidation states (Boas and Pessoa 

1987). In natural seawater environments, vanadium exists in an oxidized state of VV. When VV in 

seawater is assimilated into ascidians, it is first reduced to VIV in vanadocytes (vanadium-accumulating 

blood cells) and then stored in their vacuoles, where VIV is finally reduced to VIII, which exists as 

complex cations such as [VIII(H2O)6]3+ and [VIII(H2O)5(SO4)]+ (Frank et al. 1994; Frank et al. 1999). 

Therefore, reducing agents must participate in the accumulation of vanadium in vanadocytes. Ascidians 

are a model organism for studying the mechanisms of accumulation and redox of metal ions. 

Proteins involved in vanadium-accumulation and redox processes have been isolated from several 

vanadium-rich ascidians (A. gemmata, A. sydneiensis samea, and Ciona intestinalis), such as vacuolar-

type H+-ATPase (Ueki et al. 1998; Ueki et al. 2001; Uyama et al. 1994), chloride channel (Ueki et al. 

2003), enzymes of the pentose phosphate pathway (Ueki et al. 2000; Uyama et al. 1998; Uyama et al. 

1998; Uyama et al. 1998), glutathione transferase (Yoshinaga et al. 2007; Yoshinaga et al. 2006), 

Vanabins (Kanda et al. 1997; Samino et al. 2011; Trivedi et al. 2003; Ueki et al. 2003; Ueki et al. 2008; 

Yamaguchi et al. 2006; Yamaguchi et al. 2004; Yoshihara et al. 2005), and VBP-129 (Michibata et al. 

2007). Structural and biochemical analyses have been conducted on these proteins, mostly on Vanabin2 of 

A. sydneiensis samea, which has a unique bow-shaped structure with nine disulfide bonds (Hamada et al. 

2005) and is a novel vanadium reductase (Kawakami et al. 2009). Despite such extensive analyses on the 

structure and functions of each gene product, the regulation of gene expression related to vanadium 

accumulation is largely unknown. 

Specifically, one model for studying genome-wide transcriptional regulation is a species of ascidian, 

C. intestinalis. The draft genome of C. intestinalis contains approximately 16,000 protein-coding genes, 

and cDNA for transcripts of 13,464 genes have been characterized and compiled as the “Ciona 

intestinalis Gene Collection Release I” (Dehal et al. 2002; Satou et al. 2003; Satou et al. 2002). This 

species is known to accumulate vanadium at 0.6 mM in its blood cells (Michibata et al. 1986) and can be 

a model organism for studying vanadium accumulation. 

This study was designed to identify genes regulated by excess vanadium ions using an 

oligonucleotide-based cDNA microarray (Sasaki and Satoh 2007) in C. intestinalis. Vanadium ions 

generally exist as VV and VIV ions under physiological conditions. Thus, we treated C. intestinalis with 

different valences of vanadium ions (VIV or VV) and compared the expression profile of each gene to 

controlled and untreated specimens. Several genes involved in the transport of vanadium and protons 

were significantly up-regulated by VIV treatment in a whole body assay. It was also found that the 

expression of Ci-Vanabin1, 3, 4, and 5 were affected by both vanadium treatment and glutathione 

metabolism-related proteins, and were significantly up-regulated by VIV treatment. These responses were 
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examined in detail using RT-PCR and measurement of glutathione reductase activity from the perspective 

of redox and accumulation of metal ions in each tissue. We discuss changes in gene expression and 

enzyme activity, as well as vanadium and GSH concentrations, in relation to vanadium exclusion, 

seclusion, and redox pathways. 

 

Materials and methods 

 

Animals and reagents 

 

Adult individuals of Ciona intestinalis were cultivated at the Maizuru Fisheries Research Station, Kyoto 

University, Maizuru Bay, Kyoto, Japan. Individuals at 0.8-cm to 7-cm in length were transported to 

Hiroshima University, and kept in an artificial sea water (ASW; 3.5% Marine Art SF1 in distilled water 

(DW), Tomita Pharmaceutical, Japan) at 18°C until use. They were fed with a micro algae Chaetocerus 

gracilis which was commercially available from Nisshin Marinetech, Japan. 

Vanadyl sulfate (VIV; VOSO4·nH2O, n=3–4), sodium orthovanadate (VIV; Na3VO4) and 

iminodiacetic acid (IDA) were purchased from Wako Pure Chemical Industries Inc., Japan. IDA was 

dissolved in deionized water (DW) at 50 mM. Vanadyl sulfate was dissolved in distilled water containing 

IDA at a ratio of 1:1 because they form a very stable complex around neutral pH. Its pH was adjusted to 

be 7.0 and the volume was set to give the final concentration of 10 mM of each vanadyl and IDA. This 

VIV stock solution was prepared just before use. VV solution was prepared by dissolving orthovanadate in 

DW at slightly more than 10 mM. After adding hydrogen chloride and heating at 65°C repeatedly, pH was 

adjusted to 7.0. DW was added to make 10 mM VV, and finally incubated at 37°C for overnight to let the 

solution colorless. This VV stock solution can be stored at room temperature. 

 

Vanadium treatment and RNA extraction for microarray 

 

VIV or VV stock solution were diluted by ASW to the final concentration of 1 mM, respectively, and put 

into plastic dish with about 20 individuals of C. intestinalis (about 0.8-cm in length). Control individuals 

were put in ASW without the addition of vanadium. After incubating at 18°C for 24 hours, ascidians were 

collected from each dish and frozen at -80°C. 

Each frozen samples were homogenized in 4 ml of guanidium thiocyanate solution (4 M guanidium 

thiocyanate, 50 mM sodium citrate, 0.5% sarcosyl and 1% 2-mercaptoethanol, pH 7.0). Sodium acetate 

(final 0.2 M), citrate buffer-saturated phenol (4 ml) and chloroform-isoamyl alcohol (0.8 ml) were added 
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to the homogenate. After mixing briefly, the mixture was kept on ice for 15 minutes and centrifuged at 

10,000×g for 15 minutes at 4°C. The supernatant was moved into a new tube, and the RNA was 

precipitated by equal volume of 2-propanol. Recovered RNA was once washed with 75% ethanol, dried 

up and dissolved in diethylpyrocarbonate (DEPC)-treated water. RNA was dispensed into small aliquots 

and stored at -80°C until use.  

The concentration of RNA was determined by spectrophotometry, and the quality was checked by 

agarose gel electrophoresis with ethidium bromide staining. The RNA was treated with DNaseI (TaKaRa 

Bio Inc., Japan) to remove contaminating DNA, and recovered by phenol extraction and ethanol 

precipitation. The quality of RNA was checked by RNA 6000 Nano assay and Agilent 2100 bioanalyzer 

(Agilent Technologies). 

 

Microarray analysis 

 

cRNA was synthesized using 300 ng of purified RNA from control or V treated samples of C. intestinalis 

(about 0.8 cm) and using Agilent low RNA input fluorescent linear amplification kit. Efficiency of 

incorporation of Cy3- and Cy5-labeled nucleotides was assessed by a spectrophotometer (Nanodrop ND-

3300, Thermo Fisher Scientific Inc.).  

Oligonucleotide-based microarray version 2 for C. intestinalis was used (Sasaki and Satoh 2007), 

which conveys 44,290 spots including 39,523 gene-specific probes that represent 19,964 genes predicted 

from cDNA and EST sequence information as well as genome information from the U.S. Department of 

Energy Joint Genome Institute (DOE-JGI) version 1 assembly. Up-to-date information is available at 

Kyoto University (http://hoya.zool.kyoto-u.ac.jp/SearchGenomekh.html) and DOE-JGI 

(http://genome.jgi-psf.org/Cioin2/Cioin2.home.html). Two sets of 1-µg cRNA from two samples (i.e., 

control vs. VIV-treated ones or control vs. VV-treated ones) were used for competitive hybridization. 

Hybridization and signal detection were done at 60°C for 17 hours according to the manufacturer’s 

protocol.  

 

Vanadium treatment for RT-PCR, enzyme activity and measurement of vanadium 

 

Three adult individuals (5 to 7 cm in length) of C. intestinalis were kept in 500-ml glass beaker in which 

1 mM VIV and 1 mM VV ASW were filled, respectively, in each set of experiment. As a control, the 

individuals were kept in ASW without adding excess vanadium in the same manner. After the incubating 

at 18°C for 24 hours, each individuals were dissected and their blood cells were extracted, suspended in 

Ca2+, Mg2+-free artificial sea water (CMFASW; 460 mM NaCl, 9 mM KCl, 32 mM Na2SO4, 5 mM 

HEPES, 6 mM NaHCO3, 5 mM EDTA, pH 7.0) and centrifuged at 1,500×g for 10 min at 4 °C. The 
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supernatant fraction including the blood plasma was removed. The pelleted cells at the bottom, which 

contained vanadocytes, were washed with CMFASW and collected by centrifugation at 1,500×g for 10 

min at 4 °C. The other tissues were dissected and washed twice in CMFASW. These materials were 

submitted for RT-PCR analysis, measurement of enzyme activities, and quantification of vanadium and 

glutathione (GSH) contents as follows. 

 

RT-PCR analysis 

 

RNA was extracted from whole body or dissected tissues as described above. RT-PCR analyses were 

performed as follows: 50 ng of total RNA was reverse-transcribed using ReverTra Ace (Toyobo Co., Ltd., 

Japan). The primer pairs used in this study are listed in Table 1. PCR was performed with 5 µM each 

primer and 2.5 U of Taq DNA polymerase (New England BioLabs, UK) according to the manufacturer’s 

instructions. One cycle of PCR was carried out for 60 sec at 94°C, for 30 sec at 60°C, and 60 sec at 72°C 

serially, and this cycle was repeated 35 times. The amplified products were analyzed by electrophoresis in 

a 1.5% agarose gel. The DNA bands were stained with ethidium bromide and visualized under UV light. 

 

Measurement of the glutathione reductase activity in tissues 

 

Dissected tissues were homogenized in five times homogenizing buffer (200 mM Tris-HCl, 150 mM 

NaCl, 10 mM EDTA, pH 7.2) on ice. The homogenate was centrifuged at 20,600 × g for 20 min at 4°C. 

The supernatant was kept at -80°C for the assay. 

The glutathione reductase (GR) enzyme activity was determined by NADPH consumption following 

reduction of GSSG to GSH, according to Racker et al. (Racker 1955). The GR reaction mixture contained 

1 mM EDTA, 0.1 M Na3PO4 (pH 7.6), 1 mM GSSG, and 0.1 mM NADH. The reaction was initiated by 

adding 50 μg protein extract, and the absorbance at 340 nm was monitored at 25°C. The specific activity 

is expressed as ∆Α340/min/mg protein.  

 

Quantification of vanadium and glutathione in tissues 

 

For vanadium measurement, dissected tissues were homogenized in 10 times the volume of 0.1 N nitric 

acid and centrifuged at 10,000 × g for 10 min. Vanadium concentration in the supernatant was determined 

by atomic absorption spectrometry (AA-220Z, Agilent Technologies).  

The quantity of GSH in blood cells was determined according to BIOXYTECH GSH-400™ 

(Percipio Biosciences, Inc.). The GSH quantification method in blood cells that were extracted using the 
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above method was performed following the product protocol. Blood cells were collected and 

homogenized in four times the volume of ice-cold 5% metaphosphoric acid (MPA) working solution and 

centrifuged at 3,000 × g for 10 min at 4°C. The upper clear aqueous layer was kept at 0–4°C for 

approximately 1 h. 

 

Results 

 

Microarray analysis of gene expression profiles in C. intestinalis treated with excess 
vanadium 

 

To examine changes in the gene expression profile after treatment with excess vanadium ions, 

approximately 20 individuals of C. intestinalis (about 0.8 cm in length) were incubated in artificial 

seawater containing either 1 mM VOSO4 (VIV) or 1 mM Na3VO4 (VV) for 24 h at 18°C. Controlled 

specimens were incubated in artificial seawater without vanadium ions at the same time and temperature. 

Total RNA was extracted from vanadium-treated and control specimens, labeled with Cy3 or Cy5, and 

hybridized to oligonucleotide-based microarray slides (ver. 2) (Sasaki and Satoh 2007).  

The ratio of fluorescence intensities was calculated using the VIV treated and control probes (VIV:C), 

as well as the VV treated and control probes (VV:C). Reproducibility was confirmed by two hybridization 

experiments with swapped dyes. The spots showing reproducible results were chosen for further analysis. 

Spots that had contradictory results between dye-swap experiments were omitted. 

Figure 1 shows a scatter plot of the relationship between VIV:C and VV:C for each spot. The R2 value 

for all the spots was -1.1. Among the 39,523 gene-specific probes on the microarray slide, we calculated 

the number of spots showing a VIV:C or VV:C ratio greater than 1.5 or smaller than 0.66 in a reproducible 

manner (Table 2). These threshold values were determined according to the detection limit of the 

microarray hybridization and scanning system. The number of spots where intensity increased in both VIV 

and VV treated individuals was 550, and the number with decreased intensities in both treated individuals 

was 820. In contrast, reverse effects were observed for only 29 and 50 spots. This suggests that the overall 

changes in gene expression were similar between VIV and VV treated individuals. 

Significantly increased or decreased genes are listed in Table 3. Each microarray spot is mapped to 

genome and EST databases, and linked to a cluster of EST clones derived from the same genes. Therefore, 

we used the cluster ID (CLSTR) to specify each gene. In some cases, cluster ID was not assigned to the 

spot and the ID was given as an EST clone number (e.g., ciem849o16). The most significantly up-

regulated genes were CLSTR02666 (no hits) and CLSTR35308 (molecule against microbe) for the VIV 

and VV treatments, respectively. Heat-shock protein 70 (CLSTR33198) and molecule against microbes A 
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(CLSTR33501 and 31913) were up-regulated by VV, but not significantly by VIV, which suggests that VV 

induced some stress response. 

 

Expression profile of genes related to accumulation and reduction of vanadium 

 

The effects of VIV or VV treatment on several gene categories, which are known to or expected to play a 

role in vanadium accumulation and reduction, are summarized in Table 4.  

The genome of C. intestinalis contains five genes for vanadium-binding proteins (Vanabins), which 

are unique to vanadium-rich ascidians (Trivedi et al. 2003). In the microarray analysis, the expression of 

Ci-Vanabin1, 3, and 5 increased after treatment with VIV and VV. VV treatment decreased the expression 

of Ci-Vanabin4, while VIV treatment did not affect it significantly. Ci-Vanabin2 signals were not sufficient 

for analysis.  

In our previous work on A. sydneiensis samea, vacuolar-type H+-ATPase (V-ATPase) was expressed 

in vanadocytes and was found to play a role in vacuole acidification (Ueki et al. 1998; Ueki et al. 2001; 

Uyama et al. 1994). The electrochemical gradient of protons between the cytoplasm and the vacuole is the 

motive force and is used to accumulate vanadium ions in the vacuole by the heavy metal transporter 

Nramp (Ueki et al. 2011). In this study, we found that 10 out of 12 V-ATPase subunits were significantly 

up-regulated by VIV treatment, while six were up-regulated by VV treatment (Table 4). No subunit was 

down-regulated by either treatment, which suggests that excess vanadium induces V-ATPase expression. 

The expression profiles of five membrane heavy metal transporters, including Nramp and eight 

redox-related proteins, are summarized in Table 4. In most cases, expression of the transporters was 

significantly up-regulated by both VIV and VV treatment. None of the transporters were down-regulated. 

The expression of some redox-related proteins was up-regulated by VIV, such as glutaredoxin 

(CLSTR02251), thioredoxin reductase (CLSTR08610), peroxiredoxin (CLSTR00138), and sulfiredoxin 

(CLSTR12272). Peroxiredoxin and sulfiredoxin were also up-regulated, but glutaredoxin was down-

regulated, by VV. These proteins reduce or oxidize proteins and/or metal ions by competing with specific 

factors. For instance, glutaredoxin reduces arsenate to arsenite conversion by ArsC, GSH, and NADPH 

(Gladysheva et al. 1994), and the ferredoxin/thioredoxin system regulates fundamental processes via 

thiol-disulfide exchange reactions (Balmer et al. 2006).  

On of the enzymes to produce NADPH in the pentose phosphate pathway is 6PGDH (CLSTR32174) 

which is exclusively localized in vanadocytes of Ascidia sydneiensis samea (Uyama et al. 1998). 

Expression of 6PGDH was also up-regulated by VIV treatment. 

In addition, expression of phytochelatin synthase (CLSTR08515), which synthesizes phytochelatin, 

acts as a transporter for glutathione conjugates, and associates with plant heavy-metal-binding peptides 

such as glutathione (Grill et al. 1989), MRP (CLSTR07189), and MDR (CLSTR12664) (Table 4) was 

also up-regulated by VIV treatment. Thus, the expression level of these proteins related to metal ion 

transport or reduction of oxidized proteins and metal ions was affected by vanadium. 
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RT-PCR analysis of glutathione-related proteins in whole animal samples 

 

Genes related to glutathione metabolism involved in vanadium accumulation and reduction were up- or 

down- regulated significantly (Table 4). Therefore, we focused on the changes in expression of 

glutathione-related proteins. RT-PCR was performed to confirm the expression changes in glutathione-

related genes in whole animal samples (Fig. 2). The results were consistent with microarray analysis, and 

are summarized on the pathway scheme (Fig. 3). Overall, VIV treatment was more effective against 

glutathione metabolism than VV treatment, as shown by both the microarray data values and the band 

strength in RT-PCR. VIV treatment increased the expression of six genes out of the seven examined, while 

GPX (CLSTR10702) decreased them. This indicates that VIV treatment accelerated both the synthesis and 

degradation of glutathione in the glutathione metabolic pathway. Inversely, VV treatment down-regulated 

GPX and GST (CLSTR30138) and up-regulated GCLM (CLSTR04033) and GR (CLSTR04792) (Table 

4). GCL is the rate-limiting enzyme in GSH synthesis, and GR reduces GSSG to GSH, which could 

increase the GSH/GSSG ratio.  

 

RT-PCR analysis of glutathione-related proteins and Ci-Vanabins  

 

Our recent work indicated that Vanabin2 acts as a vanadium reductase in a cascade composed of NADPH, 

GR, GSH, Vanabin2, and VV in vitro (Kawakami et al. 2009). As discussed in the previous sections, we 

have evaluated the expression changes of 6PGDH, GR, GCLM, GCLC, and Ci-Vanabins by vanadium 

treatment in whole body samples (Table 4, Figs. 2 and 3). 

To examine the tissue-specific regulation of glutathione-related genes, we treated mature individuals 

of C. intestinalis (ca. 5 to 7 cm in length) using the same conditions as in the microarray analysis. RNA 

was extracted from each tissue and reverse transcribed to perform RT-PCR analysis. The results are 

summarized in Figure 4A. Contrary to our expectations, gene expressions in blood cells, which are the 

final tissue for vanadium accumulation, were not significantly affected. Instead, there were significant 

changes in the gene expression profiles of the intestine and branchial sac, both of which are the first 

tissues to import vanadium ions from the outer environment. After VIV treatment, expression of GCLM, 

GCLC (CLSTR07652), and γ-GT (CLSTR10178) were up-regulated in the branchial sac. This was also 

observed for GCLM and γ-GT in the intestine. This indicates that glutathione turnover was accelerated in 

the branchial sac and intestine. In muscle cells, no significant changes were observed and expression of 

GPX was not significantly affected in any tissue. Expression of GST was also constant among all tissues, 

except for blood cells, which gave highly variable signals in repeated experiments (data not shown).  

In addition, we also performed RT-PCR analysis on Ci-Vanabins in the same manner (Fig. 4B). For 
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blood cells, among the five genes, four Vanabins were detected by RT-PCR. The expression of Ci-

Vanabin4 was enhanced by both VIV and VV treatment. The expression of five Vanabins in other tissues 

was not changed by vanadium treatment (data not shown). Thus, expression of Ci-Vanabin4 in blood cells 

was significantly affected by both VIV and VV treatment. 

 

Analysis of GR activity 

 

To identify biochemical changes in these tissues that may reflect the changes in gene expression for 

glutathione metabolism-related enzymes, we analyzed GR activity, which is involved in the vanadium 

reduction cascade (Kawakami et al. 2009), in muscle, intestine, the branchial sac, and blood cells (Fig. 5). 

Consistent with the RT-PCR analysis, GR activity increased after VIV treatment in the branchial sac. In 

blood cells, GR activity clearly increased after VIV treatment, although the RT-PCR results indicated no 

significant change in GR expression. The increase in GR activity may be related to the vanadium 

reduction cascade, and is discussed below. 

 

Vanadium and glutathione content in each tissue 

 

In normal seawater, vanadium concentration in each tissue is strictly regulated because exposure to excess 

vanadium ions can affect the gene expression profile, and thus result in changes in the vanadium 

concentration and redox state of each tissue. To examine the effect of exposure to excess VIV or VV ions, 

vanadium concentrations were determined (these are summarized in Fig. 6). Vanadium in muscle and 

intestine significantly increased after both VIV and VV treatment. Only VIV treatment significantly 

increased vanadium concentration in the branchial sac and blood cells. Vanadium concentration in blood 

cells significantly increased by approximately 6.8-fold after VIV treatment. 

GSH levels were determined in blood cells (Fig. 6) because GSH plays a role in the vanadium 

reduction cascade. The GSH concentrations in control blood cells were 1.25 mM. The values increased 

approximately 1.2-fold after VIV treatment, but did not change after VV treatment. 

 

Discussion 

 

We performed the first microarray analysis on a vanadium-accumulating ascidian treated with excess 

vanadium to examine changes in the gene expression profile in response to excess vanadium ions. 

Vanadium ions generally exist as VV and VIV ions under physiological conditions. Thus, we evaluated 
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both chemical species and compared the results. The whole body analysis by microarray and RT-PCR 

identified the overall changes in the gene expression profile as well as significant changes in glutathione-

related pathways. Detailed RT-PCR and enzyme assays of each tissue provided evidence for the possible 

regulatory mechanism of vanadium accumulation and reduction. 

Regarding the overall changes in the expression profile determined by microarray on whole body 

specimens, we found that 550 spots were significantly up-regulated and 820 spots were significantly 

down-regulated among the 39,523 gene-specific probes (Table 2). Reverse effects were observed for only 

a small number of spots and the overall changes in gene expression were similar between the VIV and VV 

treatments. The most significantly up-regulated genes were stress-related genes, such as heat-shock 

protein and anti-microbe protein (Table 3). Heat-shock protein 70 (CLSTR33198) is a cytoplasmic 

protein in the DnaK subfamily, and the only heat-inducible protein in C. intestinalis (Fujikawa et al. 

2009). This gene is up-regulated by stress, such as the presence of reactive oxygen species, which can be 

generated by VV and VIV ions in the cytoplasm (Capella et al. 2007). Due to antimicrobial proteins being 

sequestered in the vacuoles of blood cells and induced after immune challenge (Fedders et al. 2008), the 

induction of antimicrobial protein was also inferred to be a stress response. VV may participate in 

NADPH oxidation leading to O2
- and H2O2, whereas VIV may react with H2O2 to generate VV and the OH- 

radical, or directly produce peroxovanadium compounds (Capella et al. 2007). These reactive oxygen 

species could induce the stress-response genes observed in our experiment.  

We predicted that the genes responsible for the import, export, and reduction of vanadium ions must 

be induced or repressed. Therefore, we first examined genes related to vanadium accumulation. As 

summarized in Table 4, VV and VIV treatments had different effects on the gene expression of known 

vanadium-related genes, such as Vanabins, vacuolar-type H+-ATPase, glutathione-related proteins, heavy 

metal transporters, and redox-related proteins in whole body specimens.  

Regarding the vanadium/proton antiport system, we previously reported that a specific inhibitor of 

the V-ATPases, which generate a proton-motive force by hydrolyzing ATP, inhibited the proton pump in 

the vacuoles of the vanadocyte and neutralized the contents of vacuoles (Uyama et al. 1994). Therefore, 

we proposed that the electrochemical gradient generated by V-ATPase is linked to the accumulation of 

vanadium. Furthermore, the Nramp family of divalent cation transporters is a vanadium/proton antiporter 

on the vacuolar membrane of vanadocytes (Ueki et al. 2011). In this study, genes encoding subunits of V-

ATPase were up-regulated by both VV and VIV treatment, and the expression of Nramp was significantly 

up-regulated by VIV in whole body specimens (Table 4). These results suggest that excess VIV ions 

induced the expression of vanadium transport machinery using a proton-motive force to sequester 

vanadium ions in specific C. intestinalis tissue, resulting in increased vanadium levels in each tissue. 

Thus, vanadium may be imported into vacuoles of the blood cells, in which vanadium concentrations are 

increased. 

Another possible vanadium transport system is the GS-X pump system. This system includes at least 

two types of transporters (MRP and MDR) and is linked to glutathione metabolism (Fig. 3). VIV treatment 

induced the expression of GCLC, GCLM, GS, and GR, and suppressed GPX in whole body specimens. 
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VIV treatment also induced γ-GT and GST. This change should result in the rapid synthesis of GSH and 

the acceleration of GS-X conjugation (Figs. 2 and 3). Because two GS-X pumps (MRP and MDR) were 

also up-regulated by VIV treatment in the same specimens (Table 4), this treatment resulted in the export 

of glutathione conjugates by GS-X pumps. Among the tissues examined, VIV treatment-related up-

regulation of GCLM and γ-GT expression was observed in the branchial sac and intestine (Fig. 4A). This 

suggests that the GS-X transport pathway was up-regulated after VIV treatment in these tissues, which 

may interact with the outer environment in the presence of excess vanadium. GS-X pumps may play a 

role in maintaining the homeostasis of the intracellular vanadium concentration through exclusion or 

seclusion. The vanadyl-glutathione conjugate could be a target of the exclusion or seclusion pathway 

(Dessi et al. 1993; Pessoa et al. 2002). In this scheme, the activation of γ-GT by VIV treatment seems 

contradictory. Mehdi et al. reported that γ-GT on the vacuolar membrane stimulates the YCF1 transporter 

in yeast (Mehdi et al. 2001), and that Cd activates γ-GT and glutathione transferase 2 in yeast. This 

activation is necessary for the regulation of cytoplasmic Cd levels and the recycling of glutamate and 

regeneration of GSH (Adamis et al. 2009). Therefore, it is possible that the up-regulation of γ-GT could 

accelerate the GS-X transport pathway.  

In addition to the two transport systems discussed above, several studies have suggested that 

changes in the cellular status may affect vanadium reduction. First, vanadium levels were significantly 

increased by exposure to excess VIV ions (Fig. 6). This change was also observed in blood cells, which are 

the final destination tissue of vanadium accumulation in ascidians. Moreover, RT-PCR analysis and 

enzyme assays on C. intestinalis blood cells indicated that Ci-Vanabin4 was significantly up-regulated 

(Fig. 4B) and that GR activity was induced by VIV treatment (Fig. 5). We also found that GSH levels were 

slightly increased by VIV compared to the control and VV treated specimens (Fig. 6). This indicates that 

VIV treatment enhanced vanadium reduction and the accumulation cascade in C. intestinalis blood cells, 

as suggested in our previous study on A. sydneiensis samea (Kawakami et al. 2009). However, this is 

contradictory to the reduction pathway of VV in the outer environment. We could not determine the 

concentration and valence of vanadium in blood plasma because its concentration was too low. If 

vanadium levels in blood plasma are increased and exist as VV, they should enhance VV uptake and 

reduction in blood cells. Thus, it is necessary to examine whether the vanadium reduction cascade is 

enhanced, repressed, or not affected when isolated blood cells are treated with excess vanadium ions or an 

inhibitor of GSH synthesis. 

C. intestinalis treatment with excess vanadium ions was used to identify genes regulated by 

vanadium ions. We found that the expression of V-ATPase subunits and Nramp were significantly up-

regulated by VIV treatment using a whole body assay. The relationship between the proton motive force 

and vanadium accumulation across the vacuolar membrane was also supported by changes in vanadium 

levels and the gene expression profile. We identified up- and down-regulated genes, among which the 

enzymes in the glutathione metabolic pathway were most significantly affected by vanadium levels. 

These changes were observed in the branchial sac and intestine. Protein expression in the vanadium 

reduction cascade also increased after vanadium treatment in whole body samples. These responses were 
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examined in detail by RT-PCR and measurement of glutathione reductase activity in each tissue. As a 

result, VIV treatment induced GR activity, GSH concentration, the expression of Ci-Vanabin4 and 

vanadium concentration in blood cells. In the future, it will be necessary to perform the inhibition studies 

described above or direct mutagenesis of genes that respond to excess vanadium ions. These studies will 

provide insights into the accumulation and reduction pathway of vanadium in ascidians. The metabolism 

of vanadium ions in biological systems is still not well understood and vanadium-rich ascidians can be 

used as a model to study this system. 
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Figure Legends 
 

 
Fig. 1. Scatter plot of fluorescent signals for all spots (excluding the negative and positive 
controls) from a microarray analysis of C. intestinalis specimens treated with 1 mM VV or VIV for 
24 h. Plots indicate the average value for each spot from dye-swap experiments for VV 
treated:control (vertical axis) and VIV treated:control (horizontal axis), respectively. The spots that 
gave contradictory signals by the same treatment in dye-swap experiments were omitted. The 
oblique line indicates that the signals from the VIV treated:control and the VV treated:control are 
equal. 
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Fig. 2. RT-PCR analysis of genes in the glutathione pathway for whole body samples of C. 
intestinalis. RNA was extracted from specimens treated with VIV at 1 mM for 24 h (VIV) or VV at 1 
mM for 24 h (VV) or untreated controls (C). Reverse-transcribed cDNAs were used for PCR by 
each gene-specific primer set, as listed in Table 1, and the PCR products were separated by agarose 
gel electrophoresis and stained with ethidium bromide. The β-actin expression levels are shown as 
a control. In this analysis, we used the same RNAs as in the microarray analysis. Representative 
data for at least two repetitive assays are shown. 
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Fig. 3. Summary of the changes in gene expression related to glutathione metabolism. A) VIV 
treatment, B) VV treatment. Thick lines indicate up-regulated genes, while dotted lines indicate 
down-regulated genes. VIV treatment was more effective against glutathione metabolism than VV 
treatment. GSH is synthesized from glutamate, cysteine, and glycine by GCL (EC:6.3.2.2) and GS 
(EC:6.3.2.3). γ-GT (EC:2.3.2.2) degrades GSH. GR (EC 1.8.1.7) reduces GSSG to GSH, and GPX 
(EC:1.11.1.9) oxidizes GSH to GSSG. GSH is conjugated to a xenobiotic substance by GST 
(EC:2.5.1.18) to form a complex (GS-X), which is transported by MDR or MRP. 
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Fig. 4. RT-PCR analysis of each C. intestinalis tissue. RNA was extracted from specimens treated 
with VIV at 1 mM for 24 h (VIV), VV at 1 mM for 24 h (VV), or untreated controls (C). Reverse-
transcribed cDNAs were used for PCR by each gene-specific primer set, as listed in Table 1, and 
the PCR products were separated by agarose gel electrophoresis and stained with ethidium 
bromide. A) Expression of glutathione-related proteins in each tissue, B) expression of Ci-
Vanabins in blood cells. The expression levels of β-actin are shown as a control. Representative 
data for at least three repetitive assays are shown. 
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Fig. 5. The GR activity of each C. intestinalis tissue. Total protein was extracted from specimens 
treated with VIV at 1 mM for 24 h (VIV treated), with VV at 1 mM for 24 h (VV treated), or 
untreated controls (Control). GR activity was examined as described in the Experimental 
Procedures. The activity is shown as the change in absorbance due to NADPH consumption per 
total protein. Results are expressed as the mean ± SD from four independent experiments. *, P < 
0.05 compared to controls. 
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Fig. 6. Vanadium and GSH content in tissues from control and vanadium-treated C. intestinalis 
specimens. Each tissue was collected from specimens treated with VIV at 1 mM for 24 h (VIV 
treated), with VV at 1 mM for 24 h (VV treated), or untreated controls (Control). Vanadium and 
GSH concentrations were examined as described in the Experimental Procedures. Results are 
expressed as the mean ± SD from at least four independent experiments. *, P < 0.05; **, P < 0.01; 
***, P < 0.001 compared to controls. 
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