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Abstract　　The development of the epiphytic community on the leaves of Zostera marina was 

followed by comparing variations in epiphytic organic carbon, chlorophyll a, cell abundance, and 

species composition between the younger and older leaves. Biomass of epiphytic community on Z. 

marina depended on leaf age; particulate organic carbon and cell abundance on the older leaves were 

21 and 192 times higher than those on the youngest leaves, respectively. The abundant taxa of epiphytic 

community were Leptolyngbia sp. (Cyanobacteria), Cocconeis scutellum, Campylopyxis garkeana, and 

Gomphonemataceae (Bacillariophyceae), and the change of species composition of epiphytic community 

was independent on the leaf age. Significant relation between CHLa and POC showed organic matter on 

the leaves was consisted of algal cells. The amount of epiphytic POC was well correlated with diatom cell 

abundance (P<0.1), but not with total cell abundance. The prevalence of diatoms instead of Cyanobacteria 

on the leaves was shown by both chemical and taxonomic analyses.　Low POC/DW ratios of epiphytic 

community on the older leaves indicated that inorganic suspended particles were more likely to adhere.
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INTRODUCTION

　　While epipelic diatoms on tidal flats have received much research attention (e.g., Hoagland, 1983 

; Stevensen and Glover, 1993 ; Cahoon, 1999 ; Wolfstein et al., 2000), few studies have been made on 

the epiphytic diatoms (e.g. McMillan, 1977 ; Penhale, 1977 ; Tsukidate and Takamori, 1978 ; Tanaka 

et al., 1984 ; Coleman and Burkholder, 1994). Some evidence suggest that epiphytic community are an 

important source of high quality food for grazing invertebrates (Medlin, 1980 ; Mukai, 1993 ; Moncreiff 

and Sullivan, 2001 ; Hoshika et al., 2006), although little has been done on quantitative and taxonomical 

studies of epiphytic diatoms. 
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　　The processes of succession of epiphytic communities is useful for understanding the environmental 

conditions, such as light (Hansson, 1992), water quality (Eminson and Moss, 1980), differences in 

habitat type (e.g. Steinman and McIntire, 1986) and differences in substrate (Eminson and Moss, 1980; 

Hamilton and Duthie, 1984), because the development of the epiphytic community was effected by these 

environmental conditions. We examined the succession of epiphytic community on the different aged 

leaves in Zostera marina by using chemical and taxonomic analyses in this study.

　　The role of epiphytes in coastal ecosystems can be demonstrated by chemical analyses, as some 

researchers have done (Penhale, 1977 ; Mukai et al., 1979 ; Coleman and Burkholder, 1994). Quantitative 

analysis using pigments and organic carbon can describe how epiphytic community develop on leaves, 

which can then be used to evaluate their importance in seaweed ecosystems. The present study was part of 

an interdisciplinary investigation of the dynamics of epiphytic community on the eelgrass Zostera marina. 

MATERIALS AND METHODS

　　Two shoots of Zostera marina, complete with roots (Fig. 1a, b), were obtained by diving on 

September 25, 2002, at 0.6 m depth at Ajina in the northern part of Hiroshima bay in the Seto Inland Sea. 

The microalgal mats of a few millimeters thickness on Z. marina leaves were studied by scraping all 

surfaces of each leaf with a knife and suspending them into filtered sea water. The lengths and widths of 

leaves were measured to estimate the area of the leaf (both sides). We assumed the different aged leaves 

represent epiphytic succession.　 Leaves were labeled in order of age from the growing inside of the shoot 

(youngest leaf) to the outermost shoot (fifth leaf) (Fig. 1c).

　　An aliquot of the above water sample (which contain　epiphytic cells) was filtered through a 

25mm glass fiber filter (Whatman GF/F)  and chlorophyll a (CHLa) and pheopigment concentrations 

were determined by fluorometry (TURNER DESIGN, Model 10-AU) after extraction with N,N-

dimethylfolmamide (Suzuki and Ishimaru, 1990).

　　Other aliquots of the water sample were also filtered through precombusted (500℃ , 2 hr) 25mm 

glass fiber filters (Whatman GF/F) to determine particulate organic carbon (POC), particulate organic 

nitrogen (PON), and dry weight (DW). These filter samples were then dried at 60℃ for 48 hr and DWs 

Fig. 1:  Epiphytic community on Zostera marina in situ at the collection site at Hiroshima bay, Seto Inland Sea (a), after 

collection (b), and on the surface of leaves of different ages from youngest to oldest (5th) leaf (c).
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were measured. Subsamples were then analyzed for POC and PON by an elemental analyzer (ANCA-MS, 

Europe Scientific). 

　　Taxonomic identification and enumeration of algal species were carried out by light microscopy.  

Diatom cells were cleaned by an acid treatment to remove some of the organic material and cleaned 

samples were mounted in Pleurax (Von Stosch, 1974). A total of >400 cells were counted for each sample 

to avoid the influence of sample size on the relative abundances of species, unless it was not enough. 

RESULTS AND DISCUSSION

1. Chemical analyses of epiphytic community on Z. marina leaf

　　The biomass of epiphytic community, as indicated by DW, CHLa, Pheopigments and PON, were 

undetectable on the youngest leaves but increased with leaf age from the second to the fourth leaf followed 

by a subsequent decrease on the fifth leaf (Fig. 2, 3, 4). 

　　CHLa concentrations increased from 0.002 mgCHLa cm-2 on the second leaf to 0.011 mgCHLa 

cm-2 on the fourth leaf, followed by subsequent decrease (0.008 mgCHLa cm-2) on the fifth leaf (Fig. 

3). Pheopigments was also not detected on　the 2nd leaf but steadily increased from 0.001mgPheo cm-2 

on the third leaf to 0.003mgPheo cm-2 on the fifth leaf (Fig. 3). POC and PON showed a similar trend to 

the chlorophyll a concentrations (Fig. 4). These results indicate that the increasing biomass of epiphytic 

community depended on the age of Z. marina leaves. 

　　The POC/DW ranged from 0.11 to 0.14, showing that older leaves had less organic material attached 

to their surfaces compared to the second leaf (Fig. 4). Epiphytic algal species may aggregate inorganic 

Fig. 2:  Variance of dry weight (DW) of epiphytic 

community on the different aged leaves of Zostera 

marina. “n.d.” indicates “not detectable”.

Fig. 3:  Va r i a n c e  o f  c h l o r o p h y l l  a  ( C H L a )  a n d 

pheopigments of epiphytic community on the 

different aged leaves of Zostera marina. “n. d.” 
indicates not detectable.

Fig. 4:  Variance of particulate organic carbon (POC), 

particulate organic nitrogen (PON) and POC/DW 

ratio of epiphytic community on the different aged 

leaves of Zostera marina. “n. d.” indicates not 

detectable.
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matters suspending in the water because microalgal and cyanobacterial species release a small amount of 

polysaccharidic material into the surrounding water and form mucilaginous aggregates (Phillippis et al. 

2005).

　　The POC/PON ratios ranged from 5.6 to 6.3, and the POC/CHLa ratios ranged from 5.0 to 6.4. These 

pieces of evidence suggest that organic particles on the leaves are mostly the active growing epiphytic cells 

(Goldman et al., 1979) under high light irradiance / high temperature condition (Geider, 1987).

2. Microscopic analysis of epiphytic community on Z. marina leaves

　　The cell abundance of epiphytic community increased from 37 cells cm-2 on the youngest leaf to 

10752 cells cm-2 on the third leaf　(Fig. 5). The change of cell abundance was dependent on the leaf 

age. Leptolyngbia sp. (Cyanobacteria) and Gomphonemataceae, Cocconeis scutellum and Campylopyxis 

garkeana (Bacillariophyceae) were abundant in all different aged leaves (Table 1).  The increasing POC 

coincides with the increase of diatom cell abundance (P<0.1), but not with total cell abundance (Fig. 6).  

Since cell volume of Cyanobacteria was about 1/100 to 1/700 times smaller, compared to abundant diatom 

taxa (Olenina et al., 2006), the contribution of Cyanobacteria to POC was considered to be small.  The 

prevalence of diatom taxa in organic matter of epiphytic community on Z. marina leaves was shown by 

both chemical and taxonomic analyses.

　　The abundant diatom groups except Cocconeis and Navicula species produced three-dimensional 

communities on the leaves by forming threads and mucilage stalks.  Such communities have been shown 

to develop on rocky substrates under low grazing pressure and favorable light conditions (Kawamura, 

1994).  Assuming the leaves of Z. marina were the same as rocky substratum, environmental conditions 

affecting epiphytes might be similar as Kawamura (1994) described when sampling was conducted.

　　This study has demonstrated that biomass of epiphytic community varies considerably depending on 

leaf age. For a more complete understanding of these processes, accurate knowledge of the seeding and the 

development of epiphytic community in the early stage is required.

Fig. 5:  Variance of diatom and cyanobacteria cell 

abundances on the different aged leaves of 

Zostera marina.

Fig. 6:  Relations between POC and total and diatom 

cell abundances of epiphytic community on the 

different aged leaves of Zostera marina.
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アマモの葉上着生群集の現存量および種組成の葉齢間における変動
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要　約　　沿岸生態系や物質循環において重要な役割を果たしていることが示唆されつつも，葉上
着生群集の種の遷移や現存量の経時的な変化を調べた例は少ない。そこで，アマモ葉上に生育する
着生群集を採取し，その現存量と種組成を葉ごとに調べ，葉齢間で比較した。その結果，現存量
（クロロフィルa，粒状有機炭素・窒素）と細胞数は葉齢が高くなるほどに高密度であり，最も若い
葉を基準にするとその差はPOCで最大21倍，細胞数で最大192倍であった。優占種はシアノバクテ
リアのLeptolyngbya sp.，珪藻類のCocconeis scutellum, Campylopyxis garkeana, Gomphonemataceaeなど
であったが，葉齢と優占種の変化には統計的に有意な差は認められなかった。着生群集中のPOCは
珪藻類の細胞数と有意な相関が認められたが，全細胞数との間では認められなかった。このことは
シアノバクテリアのLeptolyngbya sp. は細胞数で優占したが，細胞体積が珪藻に比べて顕著に小さい
（100～700分の1程度）ためにPOCの増加への寄与が小さいことが原因と考えられた。すなわち，葉
上着生群集の中で，珪藻類が有機炭素で示される現存量の主体であることが示唆された。さらに，
葉齢の高いものはPOC/DWが低く，無機物含量の多い浮泥等がより付着しやすい環境になっていた
と考えられる。
キーワード：葉上着生群集，珪藻類，遷移，炭素量，アマモ


