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1　Introduction

　The unit root tests proposed by Phillips (1987) and Phillips and Perron (1988) (the pp tests) are widely 
used to cope with data generating processes (DGPs) with serially correlated errors. At the same time, many 
articles including Perron and Ng (1996) and Haldrup and Jansson (2008) have pointed out that their sizes 
are significantly distorted even under a sample size as large as 500. It is clearly recognized that a kernel 
estimator is needed in the test construction and that its slow convergence to the true value is the main cause 
of such distortions. Some modifications using the parametric kernels in Perron and Ng (1996) above are 
restrictive, in the sense that the results were not generally satisfactory.
　The purpose of this paper is to propose testing methods that reduce such size distortions in wide-ranging 
DGPs. The tests proposed are elaborated so that the distributions of the terms that involve slow convergence 
to zero, as in the pp tests, become nuisance parameter free. Adopting the asymptotic distributions evaluated 
by the inclusion of these, instead of the limiting distributions, more accurate approximations to the true 
finite distributions are obtained, resulting in noticeable size improvements. The properties in relation to 
the asymptotic powers are similarly derived. Simulation results indicate that the tests exhibit desirable size 
performances in many DGPs.

2　DGP and test statistics

　Let {ut} be a stochastic process generated by

　　　　  （1）

where {εt} is i.i.n. (0, σ 2) with σ＞0. Following the convention for unit root testing, the DGP is given as

　　　　  （2）
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under the null (H0) and

　　　　  （3）

under the alternative (H1), where μi are constants, and let y1,…, yT be observations with the assumption that 
y0＝Op(1).
　For the construction of the test statistics, put

　　　　

where g't＝ (1, t－1) and GT＝ΣT
t＝2 gt g't /T, and put

　　　　

where ĉ1 ; t＝ c̃1 ; t＝0, ĉ2 ; t＝ µ̂, c̃2 ; t＝ µ̃, ĉ3 ; t＝ µ̂0＋ (t－1)µ̂1 and c̃3 ; t＝ µ̃0＋ (t－1)µ̃1. Also, let ρ̂i, i＝1, 2, 
3, be the OLS coefficients of yt－1 from the three standard regression models for yt in the unit root tests, 
corresponding to the no drift, demeaned, and detrended cases respectively, and put

　　　　

Moreover, we need a type of kernel estimator with a bandwidth parameter as in the pp tests. Let {ST} be a 
sequence of positive integers, such that limT→∞ST/T 1/2＝0 and limT→∞T 1/4/ST＝0, and define P̂i ;T ;ST as

　　　　

　The test statistics proposed are now given as

　　　　

M̂1 ;T ;ST
 is defined only for the case μ1＝0 under H0 and μ0＝μ1＝0 under H1, and M̂2 ;T :ST is not defined unless 

μ1＝0, whereas M̂3 ;T ;ST is defined without assuming such a restriction. Apart from Q̂i ;T, the forms of M̂i ;T ;ST 
are similar to those of the pp test statistics if the residuals are replaced by their corresponding differences 
(including the demeaned and detrended variants) and the truncated kernel is adopted.

3　Asymptotics

　Define the statistics N
_

i ;T ;ST as
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where 

with g2 ; t＝1 and g'3 ; t＝ (1, (t－1)/T ). Also, put ρy＝Cov (yt, yt－1)/V (yt) under H1. We shall now establish 
some asymptotics.

　Theorem 1: Suppose that yt is generated by (2)/(3). Then:
(ⅰ) Under H0,

 i＝1, 2, 3

(ⅱ) Under H1,

 i＝1, 2, 3

　The proof of the theorem is in the Appendix.
　We propose to adopt the lower percentiles of the finite sample distributions of N

_

i ;T ;ST at each T and ST for 
the critical points of the tests by M̂i ;T ;ST, noting that ST is given and that the finite sample distributions are 
nuisance parameter free.1 This provides accurate approximations to those of the true distributions. As seen 
in (ⅱ) of Theorem, the tests are also consistent.
　For the case where εt is not distributed as Gaussian, it is easily shown that the asymptotic distributions 
of ST

－1/2T 1/2P
_

T ;ST become N(0, σ 4) since ΣT
t＝ j1+1εt εt－ j1 and ΣT

t＝ j2+1 εt εt－ j2 are independent as j1≠ j2. In many 
cases, from this and the well-known results based on Brownian motions, the distributions of N

_

i ;T ;ST
 from 

Gaussian εt will be expected to be good approximations to those derived from non-Gaussian εt.
　We do not theoretically argue the issue of determining an optimal ST, given that the automatic criteria in 
Andrews (1991) etc. are not applicable to the truncated kernel. However, letting S̃i ;T be ST minimizing

　　　　

over  as a set of one satisfying the condition given above, it may lead to a practical selection. In the simulation 
results in the subsequent section, we will also include the results for such S̃T.
　The asymptotics under local alternatives are also not dealt with since they are not simply formulated and 
should be approached only by altering ρ or by ψj, noting that the behavior of yt is close to that of an I(0) if (2) 
is true but |1＋Σ∞

j =1 ψj| is small.
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4　Simulation

　In this section, we suppose that ut is generated by ARMA(1, 1), i.e., ut＝but－1＋ εt＋cεt－1 with σ＝1 and 
y0＝u0＝0, and we calculate the sizes and powers of the tests proposed in several DGPs. All calculations 
were made in Gauss, and the number of iterations was 70,000.
　Only a part of the results for M̂1 ;T ;ST

 is reported.2  is set to {5,…, 10} when T＝200 and to {9,…, 14} 
when T＝500.
　As observed in Tables 2 and 3, the tests proposed exhibited entirely satisfactory performances, although 
the power performances tend to be worse as ST increases. We also note that the case where b is close to －1 
led to results such as those in a local alternative case.

5　Concluding remarks

　We have been established that the nonparametric tests proposed in this paper achieve noticeable 
size improvements in the unit root tests with serially correlated errors. The test statistics proposed are 
constructed on the basis of the t-statistic, and those on the basis of the normalized OLS statistic will be 
easily constructed as in the pp tests, and will be shown to possess similar asymptotics. We will also leave 
the issue on how kernels other than the truncated one can construct similar tests and achieve similar results 
to future research.

T＝200 T＝500
ST＝ 5 ST＝10 ST＝ 5 ST＝10

-1.801543 -1.695338 -1.874812 -1.818321

TABLE 1
Lower 5 % Points of 

the Finite Sample Distributions of N
_

1 ;T ;ST

TABLE 2
Size of the tests (5% nominal size) as μ1＝0

Test \ DGP
b＝－0.2 b＝－0.2 b＝－0.5 b＝ 0 b＝0.5 b＝0.8

c＝0.8 c＝－0.2 c＝0.2 c＝0.5 c＝0.2 c＝－0.5

T＝200

M̂1 ;T ;ST

ST＝ 5 0.05 0.054 0.048 0.052 0.05 0.026

ST＝10 0.049 0.056 0.051 0.049 0.052 0.047

ST＝ S̃1 ;T 0.049 0.051 0.047 0.05 0.052 0.044

T＝500

M̂1 ;T ;ST
ST＝ 5 0.052 0.049 0.048 0.051 0.05 0.023

ST＝10 0.052 0.05 0.051 0.051 0.053 0.044

ST＝ S̃1 ;T 0.051 0.048 0.05 0.05 0.053 0.049
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FOOTNOTES

1   These depend upon ST only via P
_

T ;ST
 as the term being concerned with the slow convergence to zero (see 

Table 1), and the limiting distributions are the same as those of the Dickey-Fuller test.
2  The full report is also available from the author upon request.

TABLE 3
Power of the tests (5% nominal size) as μ0＝μ1＝0

Test \ DGP
b＝－0.2 b＝－0.2 b＝－0.5 b＝ 0 b＝0.5 b＝0.8

c＝0.8 c＝－0.2 c＝0.2 c＝0.5 c＝0.2 c＝－0.5

T＝200 and ρ＝0.95

M̂1 ;T ;ST

ST＝ 5 0.636 0.608 0.587 0.641 0.668 0.475

ST＝10 0.478 0.511 0.482 0.481 0.523 0.543

ST＝ S̃1 ;T 0.524 0.555 0.531 0.526 0.57 0.545

T＝200 and ρ＝0.92

M̂1 ;T ;ST

ST＝ 5 0.845 0.811 0.788 0.852 0.894 0.768

ST＝10 0.572 0.658 0.598 0.576 0.642 0.721

ST＝ S̃1 ;T 0.66 0.751 0.699 0.658 0.71 0.758

T＝500 and ρ＝0.95

M̂1 ;T ;ST

ST＝ 5 0.997 0.984 0.989 0.997 0.998 0.987

ST＝10 0.959 0.921 0.94 0.961 0.98 0.987

ST＝ S̃1 ;T 0.902 0.914 0.914 0.903 0.926 0.973

T＝500 and ρ＝0.92

M̂1 ;T ;ST

ST＝ 5 1.0 0.996 0.998 1.0 1.0 1.0

ST＝10 0.962 0.949 0.951 0.966 0.988 0.998

ST＝ S̃1 ;T 0.877 0.947 0.919 0.877 0.906 0.981
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Appendix

　Proof of Theorem 1: First, for i＝1, 2, 3, put

　　　　

Also, note that

　　　　

since

　　　　

by the definitions of Δỹt ; i and ỹt－1 ; i. Based on this, we can rewrite M̂i ;T ;ST
 as

　　　　

under both H0 and H1. Moreover, put

　　　　

with respect to ψj in (1). (1) can be then converted to

　　　　  （A.1）

which in turn leads to

　　　　
 

（A.2）

　(ⅰ) It follows immediately from (2) that

　　　　  （A.3）

It is now obvious from the ergodicity property of ut and the assumption y0＝Op(1) or O(1)(i.e., the initial 
condition) that

　　　　

For the case μ1＝0, it is easily seen that

　　　　  （A.4）
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noting that

　　　　

We also have

　　　　
 

（A.5）

　　　　
 

（A.6）

where

　　　　

　　　　

These are derived from (2), (A.3) and the facts that Δỹt ;2 and ỹt－1 ;2 are residuals from the regression models

　　　　

respectively and similarly Δỹt ;3 and ỹt－1 ;3 are residuals from the regression models

　　　　

respectively. Recall again that Δỹt ;0 ; i and ỹt ;1 ; i, i＝1, 2, are not defined unless μ1＝0. Also, for i＝2, 3, we 
regard Σt－1

h＝1 uh in (A.5) or (A.6) as one satisfying

　　　　
 

（A.2）'

since any regression above vsnishes v0.
　Next, turn to the derivation of some asymptotics. It can be easily checked that
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　　　　  （A.7）

　　　　

i.e.,

　　　　
 

（A.8）

with the notice that Evt εt＝ψ 0(1)σ 2 (and therefore ΣT－1
t＝1vtεt /T＝ψ0(1)σ 2＋Op(T－1/2),

　　　　

i.e.,

　　　　
 

（A.9）

Note that some asymptotics for overdifferenced series are different from those for I(0) series. It is also 
trivial that

　　　　
 

（A.10）

Moreover, we have

　　　　  （A.11）
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（A.12）

　　　　  （A.13）

noting that these are the well-known asymptotics for I(0) and I(1) series and the results derived in 
connection with the pp tests (see Hamilton (1994, p. 486 and pp. 504-512) e.g.).
　From (A.1) and (A.2)', (A.7) and (A.12), it is led to that

　　　　

i.e.,

　　　　  （A.14）

and it follows immediately from (A.1), (A.2), (A.8) and (A.10) that
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i.e.,

　　　　  （A.15）

　　　　
 

（A.16）

with the notice that Σt－1
h＝1 uh following from ỹt－1 ;2 or ỹt－1 ;3 in (A.5) or (A.6) satisfies

　　　　

which follows from the cancellation of v0 mentioned in connection with (A.2)'.
　Note that (A.14) to (A.16) are also the standard results derived from the asymptotics for I(0) and I(1) 
above. Similarly,

　　　　

i.e.,

　　　　
 

（A.17）
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In view of the regression models above and (A.7), it is also straightforward to establish that

　　　　  （A.18）

　under the assumption of μ1＝0. Moreover, noting that

　　　　

it is derived similarly that

　　　　  （A.19）

where

　　　　

As another standard asymptotic for I(0) and I(1), we have

　　　　
 

（A.20）

(A.20) will be shown as follows: Recalling (2), (A.3) and the definitions of Δỹt－1 ; i and ỹt－1 ; i, i.e.,
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and using (A.1), (A.2)/(A.2)', (A.7), (A.9), (A.10) to (A.12) and (A.18) to (A.19), it is led to that
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(A.20), together with (A.13), ensures that

　　　　  （A.21）

　On the other hand, it is easily shown that

　　　　

Recalling again that

　　　　

these results lead to
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i.e.,

　　　　
 

（A.22）

Recall that limT→∞ ST /T 1/2＝0, which implies that Op(STT－1) is smaller than Op(T－1/2). We also see from 
(A.1) that

　　　　  （A.23）

It is obvious that
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Recalling that vt＝Σ∞h＝0ψh
(1)εt－h with

　　　　

which implies that ψh
(1)＝o(h2) for sufficiently large h, it is asserted that

　　　　

　　　　

which are in turn followed by
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These results, together with (A.23), lead to
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　　　　  （A.24）

By combining (A.24) with (A.15), we attain to

　　　　

i.e.,

　　　　

 

（A.25）

In view of (A.1) again,

　　　　

Combining this with (A.24) leads to
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i.e.,

　　　　

 

（A.26）

Using (A.4) to (A.6), (A.14), (A.16), (A.17), (A.21), (A.22), (A.25) and (A.26), we can easily derive that

　　　　

Considering the forms of M̂i ;T ;ST
 in the first part of the proof, the proof for (ⅰ) is completed.

　(ⅱ) Put

　　　　

where B stands for the backward operator, i.e., Bvt＝vt－1. Since (1－B) 1＝0, (1－B) t＝1 and
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it follows from (3) and (A.1) that

　　　　

i.e.,

　　　　  （A.27）

therefore，

　　　　  （A.28）

Since wt is mean zero, weakly stationary and ergodic by definition, it follows that for j＝0, 1,…, ST,

　　　　

similarly to (A.12). This ensures that

　　　　
 

（A.29）

　　　　  （A.30）

　　　　
 

（A.31）

in view of (A.27) and (A.28) and recalling that Δỹt ;2 and ỹt－1 ;2 are residuals from the regression models
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respectively and similarly Δỹt ;3 and ỹt－1 ;3 are residuals from the regression models

　　　　

respectively. Recall again that Δỹt ; i and ỹt－1 ; i, i＝1, 2, are not defined unless μ1＝0. Using similar arguments 
to those used for (A.20) and (A.22) in the proof of (ⅰ), we also have

　　　　  （A.32）

　　　　
 

（A.33）

Moreover, put Ry(0)＝V (yt) and Ry(1)＝Cov(yt, yt－1), and it is obvious from (A.27) that Ry(0)＝Ew2t and 
Ry(1)＝Ewtwt－1. By the weak stationarity and ergodicity of wt again,

　　　　
 

（A.34）

　　　　
 

（A.35）

　　　　  （A.36）

Recalling the definitions of Q̃i ;T in the first part of the proof and putting (A.32), (A.34) and (A.36) together, 
it is derived that

　　　　  （A.37）

On the other hand, it is straightforward to check that
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noting again that limT→∞ ST /T 1/2＝0. These lead to

　　　　

　　　　

Consequently，
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i.e.,

　　　　
 

（A.38）

Similarly,
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leading to
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From these results we have

　　　　

i.e.,

　　　　
 

（A.39）

Putting (A.29) to (A.31), (A.33), (A.35) and (A.37) to (A.39) together, it is easily established that
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therefore,

　　　　

In view of the forms of M̂i ;T ;ST and recalling that ρy＝Ry(1)/Ry(0), it is easy to establish the results required 
for (ⅱ).




