Photodissociation of (CS₂)₂⁻: CS₂⁻•CS₂ process vs. C₂S₄⁻ process

Yoshiya Inokuchi^{1,2}, Yasushi Matsuyama¹, Ryuzo Nakanishi¹, and Takashi Nagata¹ Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan

The structure and photodynamics of $(CS_2)_2^-$ isomers, $CS_2^- \cdot CS_2$ and $C_2S_4^-$, have been the subject of extensive investigations both theoretically and experimentally; however, discussion is still controversial regarding the isomeric forms responsible for the observed photodetachment and photodissociation processes. We have studied photodissociation process of (CS₂)₂ by photofragment mass spectrometry combined with a photodepletion method. The photofragment yield (PFY) spectrum of $(CS_2)_2^{-1}$ displays three prominent bands at 1.53, 3.33, and 4.25 eV. The photodepletionphotodissociation measurements, where one of the $(CS_2)_2^-$ isomers is selectively photodepleted prior to photodissociation, have revealed that (1) the 1.53 eV band arises from $CS_2^{-\bullet}CS_2$, and that (2) both $C_2S_4^{-}$ and $CS_2^{-\bullet}CS_2$ contribute to the 3.33 and 4.25 eV bands. It is also revealed that CS_2^- and S^- fragments are formed primarily from $CS_2^{-\bullet}CS_2$ in the energy range of 1.0–5.0 eV whereas $C_2S_2^{-}$ is produced only from $C_2S_4^{-}$ in the region > 2.5 eV. The fragment $C_2S_2^-$ is further identified by photoelectron spectroscopy as a linear SCCS⁻ formed in its electronic ground state (${}^{2}\Pi_{_{11}}$). With the aid of the orbital correlation diagram based on MP2/6-31+G* calculations, we conclude that (i) the isomeric forms existing in our $(CS_2)_2^-$ beam are $CS_2^- \cdot CS_2$ (²A', C_s) and $C_2S_4^ (^{2}B_{1}, C_{2v})$, and that (ii) the $(CS_{2})_{2}^{-}$ photodissociation proceeds primarily as $CS_{2}^{-} \cdot CS_{2}(^{2}A')$ $+ hv \rightarrow CS_2^-(X^2A_1) + CS_2(X^1\Sigma_g^+) \text{ or } C_2S_4^-(^2B_1) + hv \rightarrow SCCS^-(^2\Pi_u) + S_2(X).$

²Present Address: Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (y-inokuchi@hiroshima-u.ac.jp)