

A Cold Spectroscopic Study on Metal Ion–Benzo-Crown Ether Complexes in the Gas Phase

Yoshiya INOKUCHI

Hiroshima University

PACIFICHEM 2015, "Dissociation of Biomolecules in the Gas Phase for Structural Characterization" (#352) 20/12/2015

Ion Selectivity of CE

DB18C6 captures K⁺ selectively in water.

Our Final Goal

Our final goal is to reveal the origin of ion selectivity spectroscopically.

Dibenzo-18-crown-6 (DB18C6)

$\Delta \boldsymbol{H}$ for Complex Formation

Bare complexes cannot explain the ion selectivity in solution.

Properties of complexes reflect selectivity?

Our Studies on Host-Guest Complexes

"Solvated" Host-Guest Complexes

"Cold" Spectroscopy in the Gas Phase IR Spectroscopy on Gold Surface

Cold Spectroscopy in the Gas Phase

J. Phys. Chem. A, 2015, *119*, 8097.
J. Am. Chem. Soc., 2014, 136, 1815.
ChemPhysChem, 2013, *14*, 649.
Phys. Chem. Chem. Phys., 2012, *14*, 4457.
J. Phys. Chem. A, 2012, *116*, 4057.
J. Am. Chem. Soc., 2011, *133*, 12256.

This Study

- M⁺•DB18C6•(H₂O)_n
- M^{2+} •B15C5•L, M^{2+} •B18C6•L (L = H_2O , CH_3OH)

- UV and IR spectroscopy in a cold, 22-pole ion trap
- Relation between ion selectivity and properties of ion complexes.

Experimental

UV and IR spectra of ions are measured under cold (~10 K) conditions in the gas phase.

UV Spectra of M⁺•DB18C6

All the complexes show sharp UV bands. Conformer-specific IR spectra can be measured.

Inokuchi et al., *JACS*, **2011**, *133*, 12256.

IR-UV Double-Resonance

Conformer-specific IR spectra can be measured by IR-UV double-resonance.

IR Spectra of M⁺•DB18C6

Different IR features originate from different conformers.

Inokuchi et al., JACS, 2011, 133, 12256.

Structure of M⁺•DB18C6 (M⁺ = Li⁺, Na⁺)

M05-2X/6-31+G(d) with Stuttgart RLC ECP A scaling factor of 0.8340 is used.

Structure of M⁺•DB18C6 (M⁺ = K⁺, Rb⁺, Cs⁺)

M05-2X/6-31+G(d) with Stuttgart RLC ECP A scaling factor of 0.8340 is used.

Ether rings largely open K⁺ in the ring Rb⁺, Cs⁺ on the ring

Structure of M⁺•DB18C6 (M⁺ = K⁺, Rb⁺, Cs⁺)

Distance between M⁺ and DB18C6 becomes longer with increasing ion size.

UV Spectra of K⁺•DB18C6• $(H_2O)_n$

UV spectra also show sharp bands.

Conformer-specific IR spectra can be measured.

Conformers of K⁺•DB18C6•(H_2O)₃

Inokuchi et al., JACS, 2014, 136, 1815.

Conformers of $M^+ \cdot DB18C6 \cdot (H_2O)_3$

Inokuchi et al., JACS, 2014, 136, 1815.

The Number of Conformers

If the metal ion is completely surrounded by CE, multiple conformers can exist for solvated complexes.

UV Spectra of Ca²⁺•CE•L

Inokuchi et al., J. Phys. Chem. A, 2015, 119, 8097.

The Number of Conformers for M²⁺•CE•L

L	H ₂ O		CH ₃ OH		lon radii (Å)
CE	B15C5	B18C6	B15C5	B18C6	
Ca ²⁺	1	3	1	3	1.14
Sr ²⁺	2	3	2	5	1.32
Ba ²⁺	2	1	1	2	1.49
Mn ²⁺	1	2	1	3	0.97

 $n_{B15C5} < n_{B18C6}$, but $n_{B15C5} \approx n_{B18C6}$ for Ba²⁺

The Number of Conformers of M²⁺•CE•L

If the metal ion is completely surrounded by CE, multiple conformers can exist for solvated complexes.

Summary

We are still on a way to revealing the whole picture of the ion selectivity at a molecular level, but...

- M⁺•DB18C6
- M⁺•DB18C6•(H₂O)_n
- M²⁺•B15C5•L and M²⁺•B18C6•L
- UV and IR spectroscopy in a cold, 22-pole ion trap
- The structure and number of conformers are determined.
- Host-guest complexes with an optimum matching in size tend to give multiple conformers with solvent molecules, resulting in entopic advantages.

Acknowledgment

École Polytechnique Fédérale de Lausanne (EPFL)

Prof. Thomas R. Rizzo Dr. Oleg V. Boyarkin

LCPM members

Hiroshima University

Prof. Takayuki Ebata Dr. Ryoji Kusaka

Acknowledgment

¥¥¥ The Japan Society for the Promotion of Science (JSPS)
The Mitsubishi Chemical Foundation
The Sumitomo Foundation
The Kurata Memorial Hitachi Science and Technology
Foundation