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Abstract 22 
 Since the topographical data obtained from LiDAR (Light Detection and Ranging) 23 
measurements is superior in resolution and accuracy as compared to conventional geospatial data, 24 
over the last decade aerial LiDAR (Light Detection and Ranging) has been widely used for obtaining 25 
geospatial information. However, digital terrain models made from LiDAR data retain some degree 26 
of uncertainty as a result of the measurement principles and the operational limitations of LiDAR 27 
surveying. LiDAR cannot precisely measure topographical elements such as ground undulation 28 
covered by vegetation, curbstones, etc. Such instrumental and physical uncertainties may impact an 29 
estimated result in an inundation flow simulation. Meanwhile, how much and how these 30 
topographical uncertainties affect calculated results is not understood. To evaluate the effect of 31 
topographical uncertainty on the calculated inundation flow, three representative terrains were 32 
prepared that included errors in elevation. Here, the topographical uncertainty that was introduced 33 
was generated using a fractal algorithm in order to represent the spatial structure of the elevation 34 
uncertainty. Then, inundation flows over model terrains were calculated with an unstructured finite 35 
volume flow model that solved shallow water equations. The sensitivity of the elevation uncertainty 36 
on the calculated inundated propagation, especially the local flow velocity, was evaluated. The 37 
predictability of inundation flow over complex topography is discussed, as well as its relationship to 38 
topographical features. 39 

 40 
Keywords: inundation simulation, complex topography, LiDAR, shallow water flow model, LIC, 41 
water level profile. 42 
 43 
1. Introduction 44 
 45 



Aerial LiDAR (Light Detection and Ranging) measurements have been widely used for obtaining 46 
topographical data. LiDAR measurements allow one to survey the distribution of ground surface 47 
elevation (e.g. Bates, 2003) and the bathymetry under water surfaces (McKean et al., 2009). Spatial 48 
resolution and elevation accuracy are greatly enhanced as compared to conventional surveying 49 
methods. As compared with aerial LiDAR, terrestrial LiDAR is also a powerful tool for obtaining 50 
complex geometry using a higher density and accuracy. 51 
Numerical flow simulations have achieved great strides in solving flow equations stably and 52 
accurately (Alcrude and Garcia-Navarro, 1993; Anastasiou and Chan, 1997; Caleffi et al., 2003). 53 
The development of computational speed and the popularization of an efficient coding technique 54 
(e.g. OpenMP (Open MultiProcessing) or MPI (Message Passing Interface)) enabled us to conduct 55 
detailed and realistic inundation flow simulations using accurate flow models and high-resolution 56 
calculation grids that were based on detailed topographical data (Cobby et al., 2003; Soares-Frazão 57 
et al., 2008; Schubert et al., 2008; Neal et al., 2010; and Sanders et al., 2010). 58 
LiDAR is a high-resolution and accurate method for obtaining topographical data (Néelz et al., 2006; 59 
Mason et al., 2007), even though the spatial resolution and the elevation accuracy have restrictions 60 
as a result of operational and device limitations. Typically, since aerial LiDAR detects the ground 61 
surface from the sky, elevations of ground surfaces under vegetation cover or buildings cannot be 62 
measured directly (Figure 1). Also difficult is precisely measuring small-scale topographical 63 
elements such as planted vegetation on roadsides, and the distribution of parked cars and curbstones 64 
that have some impact on inundation flows (Bales and Wagner, 2009, Mignot et al., 2006). The 65 
LiDAR survey provides massive numbers of data points (point cloud; Sithole and Vosselman 2004), 66 
then the digital terrain models is generated by the spatial reconstruction of LiDAR point data. In the 67 
area close to buildings or under the elevated road, laser from sky is unable to reach to the ground 68 
surface. In the ground surface covered by vegetation, some laser pulse is able to arrive to the ground 69 
but the point density of true ground returns is drastically reduced due to leaf interference. Due to 70 
these limitations, digital terrain models made from LiDAR data result in non-negligible uncertainty, 71 
and, in turn, impact the predicted behavior of inundation flow (e.g. impact of elevated road is 72 
discussed in Abdullah et al. 2011). The effects of uncertainties for inflow and roughness parameters 73 
were explored in Schumann et al. (2008), Pappenberger et al. (2009), and Bales and Wagner (2009). 74 
The uncertainties for inflow have been estimated and the range has been gradually reduced based on 75 
advancements in hydrological modeling (e.g. Shamseldin, 1997; Chuntian et al., 2002; Wagener et 76 
al., 2003; Wu et al., 2009). The effect and the parameterization of the roughness coefficient within 77 
the flood plain were a classical key point in the inundation flow simulation; and within a number of 78 
references discussed on this point (e.g. Neal et al., 2009; Casas et al., 2010; and Stephens et al., 79 
2012). On the other hand, the effect of elevation uncertainty on the predicted flow is not yet 80 
quantitatively understood (Sanders, 2007). 81 



Another point not sufficiently understood is the uncertainty of predicted velocity. Many have 82 
discussed uncertainty in the predicted inundated area, the water stage, the friction factor, and those 83 
relationships (e.g, Pappenberger et al., 2005; Horritt, 2006; and Schumann et al., 2007). The 84 
inundated area and the inundated water stage are significant indicators for risk estimations; however, 85 
uncertainty in velocity has not been addressed well as a result of a lack of an accurate field record 86 
indicating flow velocity during inundation. Propagation of the inundated area has been observed as a 87 
result of flow motion. Therefore, essentially, the validation of flow motion must be implemented. 88 
Unfortunately, it is likely that the inundated area is accurately predicted without an accurate 89 
prediction of the dynamic process (flow motion) because the maximum inundated area is almost 90 
determined as hydrostatic. 91 
In this work, inundation flow on three representative terrain models, with and without artificial 92 
elevation error, was evaluated in order to systematically and quantitatively evaluate the effect of 93 
elevation uncertainty on the calculated inundation flow. A high-resolution grid (3 m in spacing) 94 
calculation was treated as a benchmark following a sensitivity analysis on grid spacing. The 95 
accuracy of the predicted result was evaluated based not only on the inundated area and the water 96 
depth, but also on the velocity and flow momentum. The predictability of inundation flow over 97 
actual topography is also discussed. 98 
 99 
2. Numerical flow model 100 
 101 
In this work, two-dimensional (2D) shallow-water equations were solved using a shock-capturing, 102 
finite-volume scheme on an unstructured triangulate grid system (Tsubaki et al., 2008; Tsubaki and 103 
Fujita, 2010). The following fundamental equations were used: 104 
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where h is the depth of flow, u and v are the depth-averaged velocity components in the x and y 108 

directions, t is the time, and g is the gravitational acceleration. τbx and τby are related to the bed slopes 109 

in the x and y directions, and τsx and τsy are the bottom shear stresses, which are defined as follows: 110 
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where n is Manning’s roughness coefficient and zb is the local ground elevation. 
112 



The finite volume method was used to discretize the fundamental equations in the same manner as 113 
utilized in Shige-eda et al. (2002) and Shige-eda and Akiyama (2003). The unknown variables were 114 
defined at the center of each cell. In order to ensure numerical stability, a flux difference scheme was 115 
adopted for the advection and source terms in the basic equations. The permeability of the building 116 
was neglected and the slip-wall condition was specified along the boundaries of the buildings. The 117 
treatment corresponds to the building-hole (BH) method as defined in Schubert and Sanders (2012). 118 
The topography of the domain was accounted for in the calculation as (1) the shape of the wall 119 
boundary, (2) the distribution of the cell averaged ground elevation zb, and (3) the cell representative 120 
roughness parameter n. The work presented here focused on the effect of the topographical 121 
representation uncertainty, in particular, the error in the distribution of the ground elevation, zb. 122 
 123 
3. Topographical data processing 124 
3.1 The artificial elevation error model 125 
Topographical uncertainties are caused by various factors including systematic and random errors. In 126 
this study, based on the fact that the uncertainty of local ground elevation is highly affected by the 127 
topography and ground cover (Sithole and Vosselman 2004) as shown in Figure 1, an artificial 128 
elevation error, not just random but having spatial structure, was generated using a fractal algorithm 129 
(e.g. Bates et al., 1998). The fractal algorithm adopts the midpoint displacement algorithm using a 130 
diamond-square algorithm (see Figure 2, Fournier et al., 1982). The basic concept of the algorithm 131 
consists of the following: (1) interpolation of the central points in the square grid (Figure 2a and b), 132 
and (2) the interpolation of the central points in the diamond grid (Figure 2b and c). A pair of the 133 
square grid and the diamond grid interpolations composes one iteration step. The grid point number 134 
increases according to interpolation implementations. The interpolation was conducted ni times to 135 
obtain the required grid point number of the topography. At the first few iteration steps, nf, the 136 
interpolation of the elevation was operated as the mean value of four surrounding points. Following 137 
iteration steps over nf steps, additional elevation error was introduced in the interpolated value. The 138 
magnitude of the elevation error is adjusted depending on the iteration step, namely the error 139 
magnitude Bi is calculated based on the magnitude of the previous step as Bi = b Bi-1, where Bi is the 140 
error magnitude at iteration step i, and b (<1) is the reduction rate of the error magnitude per 141 
iteration step. The initial grid is a square grid that consists of 2×2 points and the elevation of the 142 
four initial points are set as 0 m. In the first nf steps, the elevation noise is not introduced, so the 143 
topography in the first phase is just flat but the grid points are increased exponentially. After nf steps, 144 
elevation error is introduced so that the topography begins to have undulation. The error magnitude 145 
is gradually decreased so that larger scaled undulation has a larger magnitude in the elevation, and 146 
the smaller scaled undulation has a smaller magnitude in elevation. In this work, the parameters were 147 
set as ni = 9, nf = 5, and b = 0.80 by considering the balance between the randomness and the 148 



regularity of the model error. Here, a generated fractal pattern has grid points of 29×29. A factor of 149 
1.953 m was set as the grid spacing for the x and y directions, and a domain of 1000 m×1000 m for 150 
the noise pattern was generated as shown in Figure 3. The generated terrain model shows a structure 151 
whose spatial scale ranges from 1.953 m to 1.953m×24 = 31.248 m. Elevation uncertainty in aerial 152 
LiDAR measurements depends on device performance and measurement conditions. Bales and 153 
Wagner (2009) reported that the uncertainty was less than 30 cm, while Néelz et al. (2006) estimated 154 
that the uncertainty in the root mean square was less than 15 cm. Therefore, the typical magnitude of 155 
LiDAR elevation error could be 0.15 m; so, in this work, 2σ was specified as 0.15 m. The error 156 
distribution e(x, y) is generated based on the random numbers so standard deviation σe of distribution 157 
e(x, y) can not to be determined in advance to generate error distribution. To adjust the error 158 
magnitude as 2σe’ = 0.15 m for the final error pattern e’(x, y), correction  159 

eyxeyxe σ2),(15.0),(' =       (5) 160 

was operated. Manning’s roughness coefficient n was set to 0.01 in all cases. A larger Manning n is 161 

necessary in large grid size calculations and the sensitivity of the roughness coefficient to the 162 

calculated results is reduced in high-resolution calculations. The latter comes from the fact that 163 

detailed topographical features and small-scale flow structures are directly resolved in the flow 164 

simulation within fine grid systems (Casas et al. 2010). The roughness coefficient was treated to a 165 

constant and elevation uncertainty. The uncertainty of the roughness parameter and its effects on the 166 

calculated results are not discussed in this work. 167 

 168 
3.2 The three terrain models 169 
Three terrain models were used to explore the relationship among topographical types, inundation 170 
flow characteristics, and inundation prediction uncertainty. The first terrain model contained a series 171 
of flat terrains with a specific general ground slope. The model elevation uncertainty was overlain 172 
onto the base topography (see Figure 4). In this work, this topography set is called Plain topography. 173 
The second model set, shown in Figure 5, contained a series of topographies representing rice fields, 174 
a typical rural topography in Japan. This topography type was based on the DEM (digital elevation 175 
model) with a spatial resolution of 2 m, measured by an aerial LiDAR survey. In this work, this 176 
topography is called Rural topography. Each rice paddy parcel was separated by ribbing, forming a 177 
rectangular grid in the horizontal plane. As shown in Figure 6, the third model contained an urban 178 
topography that included a complex street network and buildings, and is referred to as Urban 179 
topography. The ground elevation of Urban topography was set as flat, with a specific ground slope 180 
as for Plain topography. The topology of the street and building arrangement was based on 1 m 181 
resolution LiDAR data. The vector data of each building shape was extracted from the DSM (digital 182 
surface model) and the DEM (Tsubaki and Fujita, 2010). The extracted vector data set was used as 183 



the shape of the slip wall boundary in the unstructured grid. However, the detail of the elevation 184 
distribution in actual urban areas is omitted in this work so that we could concentrate on the effect of 185 
elevation uncertainty on the calculated results. The effects of this simplification were evaluated, in 186 
detail, by Mignot et al., 2006. As measured by aerial LiDAR measurements, topography patterns 187 
used in the second and third models were based on actual topography. Additional ground slope and 188 
elevation uncertainties were overlain onto the elevation distribution. Flows calculated with a series 189 
of topographies were compared with one another in order to evaluate the sensitivity of the general 190 
ground slope and the elevation uncertainty on the predicted flow. The three topography sets were 191 
discretized in the triangulate grid, where each grid size was 3, 5, 10, and 20 m. Variation in the grid 192 
size was utilized to evaluate the sensitivity of the grid size on the calculated flow. The fundamental 193 
effects of grid size on calculated results have been reported previously by, for example, Horritt and 194 
Bates, 2001; Horritt et al., 2006; and Tsubaki et al., 2007. For specifying the grid size discussed in 195 
the following text, the values “03 m”, “05 m”, “10 m”, and “20 m” are used in the figures and the 196 
text. The three error patterns are specified as “ErrorA”, “ErrorB”, and “ErrorC”. The algorithm used 197 
to generate three error patterns was identical and overall the error magnitude, σe’, was also identical 198 
but a different table of random numbers was employed.  Therefore, the spatial distribution of the 199 
pattern differed completely for evaluating the universal effect of elevation error, not only error 200 
pattern dependent features. Obviously, the actual spatial pattern of the topographical error is 201 
impossible to identify in practice. Thus, unique effects due to specific error patterns are separated in 202 
this work using three different error patterns, and the typical universal effects caused by elevation 203 
error are discussed. 204 
 For the inflow boundary of each topography case, a steady flow rate, Q, of 50 m3/s (Plain), 30 m3/s 205 
(Rural), and 25 m3/s (Urban) was configured. The lengths of the inflow boundaries were 20 m 206 
(Plain), 20 m (Rural), and 25 m (Urban). Inflow conditions modeled sudden inundation due to rapid 207 
embankment breaching. 208 
 209 
4. Result 210 
In this section, the grid size effect in the expansion of an inundated area was investigated in order to 211 
validate the flow model. Then, the effects of elevation error and grid size on the Plain, Rural, and 212 
Urban topographies are discussed. Finally, the effects of topographical uncertainty on calculated 213 
local flow parameters are explored. 214 
 215 
4.1 Grid size effects 216 
In this subsection, the grid size effect on the propagation of inundation water is explored for 217 
validating the flow model that included both the discretized fundamental equations and the 218 
calculation grid (Bales and Wagner 2009). The topographical data discussed in this subsection 219 



retained no elevation error. 220 
 221 
4.1.1 Plain topography 222 
In Figure 7, hydrographs of water volume in the calculation domain, using different grid sizes, are 223 
depicted. As shown in the figure, the inundation water volume was not sensitive to grid size and was 224 
consistent with the exact value (i.e. V = Qt, where V is the water volume (m3), Q (= 20 m3/s) is the 225 
inflow discharge, and t is the elapsed time (s) after inundation begins. The results indicate that the 226 
numerical model, including the treatment of the wet-dry boundary, was perfectly conservative, at 227 
least in mass. 228 
Time-series changes of the inundated area in the various grid sizes and for the two bed slopes are 229 
compared in Figure 8. As shown in Figure 8a, for the case of a medium slope, a low sensitivity for 230 
the grid size to the expansion of an inundated area was observed (a 5% difference between the 03 m 231 
and 20 m grids). The results of the 03 m and 05 m grids were approximately identical (a 0.5% 232 
difference in the inundated area). The results of the milder slope cases (I = 1/1000 and I = 1/2000) 233 
are not provided here, however, the profile was quite similar to Figure 8a. In the case of a steep slope 234 
(I = 1/50, as shown in Figure 8b), the hydrograph of the inundated area differed along with the grid 235 
size. The graph indicates that the result, calculated using a smaller grid size, displayed a smaller 236 
inundation area. In order to investigate the cause of inadequate behaviour, as observed for the steep 237 
slope case, snap-shots of inundated water depth for the small and large grid cases at the same instant 238 
(t = 200 s) are presented in Figure 9. The result of the small grid (in the upper half of Figure 9) is 239 
longer and thinner in the downslope direction in the shape of the inundated area, as compared to 240 
those of the coarse grid result depicted in the lower half of Figure 9. For the steep slope condition, 241 
flow was determined at the upstream side because the flow was super-critical, and the propagation 242 
pattern of inundation flow is sensitive to the local flow surrounding the inflow boundary. As 243 
indicated in Figure 9, the angle of expansion of the flow surrounding the inflow point in the coarse 244 
grid result was larger than that of the fine grid case. In cases of milder slope, the propagation pattern 245 
is mainly governed by a water surface slope surrounding the propagating edge and is insensitive to 246 
local flow at the inflow point. The difference in the mechanism of expansion of inundation water, 247 
depending on the general ground slope, caused a difference in the sensitivity of the grid size to the 248 
propagation of inundation. 249 
In conclusion, in this subsection, a grid size smaller than 10 m was sufficient for representing the 250 
rapid expansion of inundation water for Plain topography with a 20 m width inflow boundary. On 251 
the other hand, a grid size finer than 10 m was needed in order to resolve the sudden change of flow, 252 
in case local transient flow has a major impact on the expansion of the inundated area. 253 
 254 
4.1.2 Rural topography 255 



 256 
In Figure 10, two time-series for the inundated area, calculated using fine (03 m) and medium (05 m) 257 
grids, are compared. The general trends for the inundated area expansion are identical to one another, 258 
but the result calculated using the 05 m grid was overestimated by a few percent, as compared with 259 
the result of 03 m. The overestimation trend in the larger grid result was similar to the result 260 
observed for Plain topography with a steep slope (see Figure 8b). In Figure 11, the instantaneous 261 
distributions of water depth, as calculated using the 03 m and 05 m grids at t = 1000 s, are depicted. 262 
The general pattern for water depth was quite analogous but a difference was observed surrounding 263 
the wet-dry boundary. In this area, due to a small water depth, the flow was quite sensitive to the 264 
small difference in ground elevation and led to the difference in the time series change in the 265 
inundated area. In Figure 12, histograms of water depth at t = 1000 s for the 03 m and 05 m cases are 266 
provided. Differences were observed in the shallow region (h < 0.1m). However, the profiles, with 267 
the exception of the shallow region, were almost similar. 268 
 In summary, for Rural topography, a difference between the 03 m and 05 m results was observed in 269 
the area surrounding the outline of the inundated area. However, the general propagation pattern of 270 
inundation was insensitive to grid size in the range below 5 m. Rural topography was represented by 271 
the distinguishing ground undulation pattern, which has a spatial scale over a few meters and 272 
regulates the inundation expansion pattern. Thus, the pattern of the calculated inundation expansion 273 
was almost insensitive to the grid size if the discretised grid represented the distinguishing ground 274 
pattern. 275 
 276 
4.1.3 Urban topography 277 
 278 
Urban topography was represented by building arrangement and sloped ground. In Figure 13, the 279 
time-series of the inundated area for the steep sloped case (I = 1/50) and the mild sloped case (I = 280 
1/1000) are depicted. For both steep and mild slope cases, the time-series change of the inundated 281 
area was insensitive to grid size. In Figure 14, the distributions of water depth at t = 400 s, as 282 
calculated by the 03 m and 05 m grids, are compared. The distributions of the two grid sizes are 283 
generally identical. The result supports the idea that the calculated results of urban topography are 284 
insensitive to grid size because the unstructured grid is capable of representing the irregular shape of 285 
a complex building boundary and because the representation of the building boundary is less subject 286 
to the difference in grid size, since an unstructured grid system is used. 287 
 288 
4.2 The impact of elevation error in Plain topography 289 
In Figure 15, water depth distributions of inundation flows on different ground slopes, with and 290 
without artificial elevation errors, are depicted. Even if the error is added, the topography in this 291 



section is almost flat. Therefore, the inundated area expands rapidly with shallow water depth. In 292 
cases where steep slopes exist (the upper contours of Figure 15), the inundated water flows in the 293 
down-slope direction (the right side) rapidly, and the inundated area reaches 2,000 m from the 294 
inflow point in the down-slope direction at t = 300 s. 295 
In cases of a mild slope condition (the bottom contours in Figure 15), the inundated areas expand 296 
concentrically near the inflow area and the inundated water depth is, in general, quite shallow (h < 297 
0.1 m for most areas). The magnitude of the elevation error in the ErrorA case is 0.15 m, so the 298 
magnitude of the water depth is equal in magnitude to the elevation error (Pasternack et al., 2006), 299 
and the water flowing on the Plain topography with the elevation error suffers a major impact due to 300 
elevation error. For the steep slope case, the relative impact due to elevation error impact is limited 301 
as compared with those of milder slope cases. 302 
Figure 16 compares the time-series changes of the inundated area calculated using a 03 m grid but a 303 
different bed slope and error patterns. The results of the steep slope (I = 1/50) with and without 304 
model error were almost identical. The results of the milder slope cases (I = 1/300 and I = 1/1000) 305 
indicated a larger impact on inundation propagation due to elevation error. The effect of error 306 
addition emerged as an underestimation of the inundated area. A small undulation disturbed the 307 
inundation flow propagation. In addition, dents formed by elevation error impounded the water 308 
volume, which spread faster in cases of an original flat topography. In Figure 17, the distributions of 309 
the Froude number in cases of I = 1/300 and I = 1/1000, at t = 300 s, are compared. The inundation 310 
flow in a case of I = 1/300 without error (the upper-left figure in Figure 17) was super-critical in 311 
almost all areas. The area close to the inflow point was also super-critical for the I = 1/1000 case (the 312 
lower-left figure in Figure 17), but the expanding front was sub-critical in this case. The results 313 
calculated using elevation error showed a completely different distribution. The Froude number is 314 
one of the key factors in water propagation for the shallow water condition. In the case of inundated 315 
water spreading broadly in the horizontal and thinly in depth, the flow is quite sensitive to the small 316 
undulation of ground elevation. As shown in Figure 17, inundation flow structure is drastically 317 
changed due to elevation error. The topography data obtained using LiDAR contains elevation error, 318 
and this error causes (i) an underestimation of the expansion of the inundated area, and (ii) a change 319 
in the flow direction of inundation. The undulation, whose spatial scale is smaller than the grid size, 320 
is filtered out during grid generation; however, the undulation, whose spatial scale is larger than the 321 
grid size, is represented by the calculation grid. Undulation is due both to the originated topography 322 
and the measurement error. The effect of small scale topographical features on the flow is modelled 323 
in the roughness parameter within the numerical model. Small scale undulation, due to the error, 324 
causes a limited effect on the flow because small undulation is filtered out during the gridding 325 
process. Large scale elevation uncertainty, caused by structural or systematic error (e.g. the effect of 326 
vegetation cover) leads to a considerable difference in the propagation pattern of inundation. 327 



 328 
4.3 The effect of grid size and elevation uncertainty on Rural topography 329 
In Figure 18, inundated flow structures calculated using different grid size and error patterns are 330 
compared. The structure of the flow is depicted using the Line Integral Convolution (LIC) method 331 
(Cabral and Leedom, 1993). LIC is a texture based flow visualization method. The direction of the 332 
texture in Figure 18 corresponds to the local flow direction. The contrast of the texture correlates 333 
with the flow rate per unit width, hU. The results obtained from the four cases, in general, show a 334 
similar structure. Inundated water overflows on the ribbing, and a critical flow and the control 335 
section are formed above the ribbing. The similar flow structure is represented regardless of the 336 
noise addition. However, as shown in Figure 18, the location where inundated water overflows to a 337 
neighboring paddy parcel differs depending upon the difference of grids. 338 
The pattern of the flow route and the circulation observed within each rice field cell is quite complex 339 
and differs when the grid size and the elevation error pattern are changed, indicating that the flow 340 
structure within the rice field cell is quite sensitive to topographical uncertainty and is difficult to 341 
correctly predict. Although flow structure within the rice field cell affects damage to the planted 342 
crop, the global inundation propagation is less subjected to flow circulation within the rice-paddy 343 
cell, so the general pattern of expansion of the inundation is identical regardless of grid size and 344 
error pattern changes, as confirmed in Figure 18. 345 
Figure 19 compares the time series change of the inundation area calculated using a 03 m grid and 346 
different elevation error patterns. The figure shows that the addition of elevation error causes a slight 347 
underestimation in the expansion of the inundation area. A minor difference was observed in the 348 
distribution of the inundated area (as shown in Figure 18). The underestimation trend in the 349 
inundated area following error appending was also observed for Plain topography (Figure 16). An 350 
underestimation in Rural topography was caused by flow disturbance and water storage effects (the 351 
effect of the latter was discussed in Horritt and Bates, 2001). 352 
In conclusion, the general structure of inundation flow regulated by the structure of topography in a 353 
rural area, as shown in Figure 18, consisting of rice paddy cells and ribbings, is represented using 354 
detailed topographical data. However, the circulation of flow within each rice paddy, as well as the 355 
exact location of overflows that arise on ribbings, are quite sensitive to small differences in the 356 
topographical representation. In this sense, local flow parameters, especially the local velocity and 357 
the momentum of inundation flow within complex topographies are quite difficult to estimate. As a 358 
result, one must pay attention to difficulties in the prediction of local flow when implementing risk 359 
estimations based on local flow parameters, e.g. the assessment of risk that is related to the flow 360 
intensity (e.g. Koshimura et al. 2009), the estimation of sediment transport in the flood plain, etc. 361 
 362 
4.4 The effect of grid size and elevation uncertainty on Urban topography 363 



 364 
Urban topography consists of a complex impermeable boundary wall that represents buildings 365 
concentrated in a dense state. The ground is flat but has a constant bed slope (see Table 1). As 366 
described in Section 3.1, cases with error contain a small undulation in the elevation distribution. 367 
Figure 21 shows the time series of the inundated area calculated using grids with and without 368 
elevation error. The steep sloped result (Figure 21a) shows the very slight effect of elevation error on 369 
inundated area expansion. The medium slope result (Figure 21b) shows a greater influence for 370 
elevation error in the expansion of the inundation area as compared to the results from steep slope 371 
cases. The elevation error causes an approximate 25% underestimation in the growth of the 372 
inundation area in the medium slope case. The trend has already been observed for Plain topography 373 
(as discussed in Figure 16), and Rural topography (depicted in Figure 19). Results for the I = 1/1000 374 
case of Urban topography are not depicted in Figure 21. However, the trend is similar to the result of 375 
the I = 1/300 case. Namely, a certain level of under-estimation (35%) of inundation area expansion 376 
was observed for a condition of I = 1/300 with elevation errors. As discussed in Section 4.2, the 377 
underestimation is due to the impact of both flow disturbance and water storage by the undulation 378 
formed due to elevation error. 379 
 380 
In Figure 22, the flow structures of the urban floodplain, calculated using six different calculation 381 
grids, are depicted using the LIC method. The major water volume of inundated flow propagates 382 
throughout a broad street (depicted as a high contrast hair-line pattern in the street shown in Figure 383 
22). Not only the broad street, but small streets connected to the broad street also contributed to 384 
spreading the inundated water, and a complex flow network bounded by urban topography emerged. 385 
As depicted in Figure 22, the structure of the flow is basically identical for the six cases. Differences 386 
in the ground slope impacted the degree of lateral dispersion of inundation flow, but the sensitivity 387 
of the ground slope changed and the difference in the propagation pattern was limited as compared 388 
with the result for Plain topography (see Figure 15). The inundation flow expansion was affected by 389 
grid size and elevation error in a similar manner as observed for the Plain and Rural cases, but 390 
sensitivity to grid size and elevation error was limited as compared to the Urban case. 391 
In Figure 23, close-up images of the flow structure surrounding the inflow area are compared. 392 
Observed again is that the general flow structure is not sensitive to grid size and elevation error. 393 
However, the detail for the flow network in the small street system was impacted by differences of 394 
grid size and elevation. 395 
 396 
4.5 The flow prediction uncertainty 397 
In this section, the uncertainty of flow information, estimated using the flow simulation by 398 
considering the topographical uncertainty, is quantitatively discussed. In order to compare 399 



instantaneous and local flow conditions between calculated results with different grid sizes, the flow 400 
parameters were interpolated on the grid at a 20 m interval in the x and y directions. In order to 401 
obtain the flow data at each grid point, cells whose centers were located within 5 m of the grid point 402 
were selected. Then, the mean of the flow parameters of the selected cell center values were 403 
calculated. For cases in which all cells close to the grid point were dry or quite shallow in water 404 
depth (h < 0.05m), the flow information at this grid point was not used in the following statistical 405 
calculation. The differences of the flow parameters (water depth, h; water level, H; flow rate per unit 406 
width, hU; and the momentum flux per unit width, hUU) between the two calculation cases for the 407 
entire corresponding grid points were calculated; then, the standard deviation of the difference in the 408 

flow parameters were calculated. Here, U is the magnitude of the local velocity ( 22 vuU += ). The 409 

standard deviation of the elevation, σz, was also calculated. The parameter σz indicates the magnitude 410 
of the elevation error (2σ = 0.15 m), but is not completely identical to the magnitude of the model 411 
elevation error since σz is impacted by the grid size and the spatial filtering effect due to gridding. 412 
The results are listed in Tables 2, 3, and 4 for the Plain, Rural, and Urban cases, respectively. 413 
For a case of Plain topography (Table 2), the elevation of NoError cases has no undulation and is 414 
completely plain. Therefore, the standard deviation of the 05m-NoError and 10m-NoError cases 415 
indicates that the error due to discretization and the magnitude of the standard deviations are 416 
sufficiently small. The deviations in water depth and water level are comparable to one another and 417 
are increasingly proportional to the increment of the grid size. As shown in Figure 15, the water 418 
depth range spanned 0.0 to 0.3 m, and the standard deviations for water depth, σh, and water level, 419 
σH, were small relative to the water depth magnitude. With the exception of the area close to the 420 
inflow boundary, the flow rate per unit width, hU, was found to be in the range from 0.0 to 0.3 m2/s. 421 
The relative magnitude of σhU in NoError cases was sufficiently small. The standard deviation of the 422 
momentum flux per unit width, σhUU, was one order larger than those of σhU for the 05m-NoError 423 
and 10m-NoError cases. The results shown in Table 2 imply that the flow parameters were quite 424 
sensitive to elevation uncertainty and that local flow parameters related to flow motion were almost 425 
unreliable under the presence of the elevation uncertainty. 426 
The result of the Rural case, as indicated in Table 3, showed similar trends as for the Plain case. 427 
However, the σhU and σhUU for 05m-NoError in the Rural case were comparably larger than those for 428 
the 05m-NoError in the Plain case. Inundated water overflowed at the ribbing and was locally 429 
accelerated around the critical-section at the overflow point. The flow condition of the overflow was 430 
determined by the local topography surrounding the ribbing. Therefore, the small difference of the 431 
ribbing representation made a large difference on the overflow condition. Circulation in the rice field 432 
cell following overflow at the ribbing was quite sensitive to the overflow condition and led to a 433 
larger σhU and σhUU. Inundated water is stored in the rice field cell before overflow to the next paddy 434 



begins, such that the range of water depth in rural cases reaches 0.5 m. The relative magnitude of the 435 
standard deviation of the water depth is small. In this context, if the ground elevation distribution has 436 
a distinct structure, such as rice field cells separated by ribbing in the Rural topography, the 437 
inundated water will be stored in the areas surrounded by the ribbing (structured dents). The 438 
location, area, and water storage capacity of the structured dents are almost conserved under the 439 
influence of small elevation uncertainty. Therefore, the water level of the inundation water stored in 440 
the structured dents is also not very sensitive to small grid errors. On the other hand, the unit width 441 
discharge and momentum flux are sensitive to elevation uncertainty because the flow is accelerated 442 
mainly at the boundary between consecutive structured dents (see Figure 20). The flow acceleration 443 
is regulated by local ground elevation surrounding the ribbing. Thus, small elevation error at the 444 
overflow points causes major changes in the direction and magnitude of local inundation flow. 445 
The error magnitude of the calculated water depth, due to elevation error, can be estimated as 446 
proportional to the magnitude of the elevation uncertainty. The error in water stage (σH) is 447 
comparable to water depth uncertainty (σh), and, thus, the uncertainty in elevation (σz). Obviously, 448 
there are close relationships among water stages, water depth, and elevation, namely, H = z + h. 449 
Similar magnitudes for σh, σH, and σz imply that there are correlations amongst h’, H’, and z’. 450 
To confirm the flow structure and its relationship to prediction error, the relationship between flow 451 
parameters at t = 1000 s and a distance from the inflow point l are depicted in Figure 24. In Figure 452 
24a, the water stage profile of the 03m-No error case is plotted. A systematic trend can be observed 453 
in the profile of the water stage. Each cluster of the plot corresponds to the water stored in each 454 
paddy cell. Figure 24b shows the distribution of the root mean square (RMS) of the water stage 455 
errors, defined as follows: 456 
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H’RMS is the average error of the three elevation errors. The H’RMS plot shows a weak relationship for 458 
the systematic bias observed in Figure 24a, and the water stage error is kept at a constant level using 459 
increments of distance from the inflow. The unit width discharge distribution is shown in Figure 24c. 460 
In the area close to inflow (l < 200 m), a large unit width discharge shatter was observed and 461 
corresponds to jet flow surrounding the inflow point. The plot of the RMS error of the unit width 462 
discharge (Figure 24d) shows a similar profile and magnitude for the original unit width discharge 463 
plot (Figure 24c). In the area far from inflow (l > 300 m), the RMS error of unit width discharge 464 
keeps an almost constant level such as the error of the water stage. One should note that in the area 465 
away from the flow inflow point (l > 300 m), the order of the original unit width discharge, hU, and 466 
the magnitude of the error, hU’RMS, are almost identical - indicating that local flow is quite uncertain 467 
in cases where the elevation contains uncertainty. 468 



The standard deviations of hU for Urban topography (as shown in Table 4) are small as compared to 469 
the Rural case. In the case of Urban topography, the arrangement of the buildings and road networks 470 
were kept almost constant among the different grid sizes and elevation error patterns. Inundation 471 
flow was regulated by the arrangement and the buildings, and the elevation distribution and 472 
horizontal topographical features had a smaller impact on the inundation. Therefore, there was a 473 
relatively smaller error for the unit width flow rate and momentum flux predictions for the Urban 474 
case. However, the magnitudes of the unit width flow rate and the momentum flux were around hU 475 
= 0.3 m2/s and hUU = 0.3 m3/s2. Therefore, the standard deviations of hU and hUU in cases that 476 

contained elevation errors were relatively large ( 4.0,2.0 ≈≈
hUUhU

hUUhU σσ ). Standard deviations for 477 

water depth were comparable to elevation uncertainty in cases with elevation errors. A similar trend 478 
was observed for the Plain and Rural cases. 479 
In order to investigate the spatial bias of the flow and the prediction uncertainty in the Urban case, 480 
the relationship between distance from the inflow and the flow parameters are depicted in Figure 25. 481 
The structure of the water stage profile shown in Figure 25a illustrates that a continuous but 482 
fluctuating downward trended water profile was observed along the street network. The water-stage 483 
error shown in Figure 25b shows a slight increasing trend with the increment of distance. In Figure 484 
25c, the profile of the unit width discharge indicates that certain measurements of inundated water 485 
have a small unit width discharge, but that a larger unit width discharge is concentrated on the 486 
specific street. As depicted in the bright texture in Figure 23, the profile also indicates that most of 487 
the water mass is transferred to the specific flow network. The unit width discharge error shown in 488 
Figure 25d shows a similar pattern to the distribution shown in Figure 25c. The unit width discharge 489 
error at the propagating edge (l > 400 m) is raised and indicates that local flow at the propagating 490 
front has a comparatively large uncertainty. 491 
Differences in topographical structure have a great impact on inundation flow propagation and the 492 
characteristics of prediction uncertainty, as shown in the differences in the profiles between Figure 493 
24 and Figure 25, indicating that inundation flow has a structure and that inundation flow structure 494 
has a close relationship to topographical structure. A further important point is that the magnitude of 495 
the prediction uncertainty is also strongly regulated by topographical structure. 496 
 497 
5. Conclusion 498 
In this work, the effect of elevation uncertainty on predicted inundation flow was evaluated. Three 499 
representative topographies were designed. The sensitivities of grid size and elevation error to the 500 
calculated flow were investigated from the view point of the inundated area increment, the water 501 
depth distribution, the flow structure, and the quantitative evaluation of local flow parameters. The 502 
results suggest the following: 503 



(1) The result calculated by the larger grid size displayed a shallower and faster water propagation of 504 
inundation as compared to the result calculated using a finer grid with the same roughness 505 
parameter, because rapidly-varied 2D flow is inadequately resolved using a coarse grid calculation. 506 
The smoothing effect of the elevation distribution also caused shallow and rapid inundation 507 
propagation in cases where a coarse grid size was utilized. Calibration of the roughness parameter is 508 
essential for adjusting the effect of grid size on the inundation propagation in cases where a large 509 
grid size is utilized. 510 
(2) When the elevation distribution has a large scale structure (e.g. the structured dents in Rural 511 
topography, and the street network in Urban topography), inundation flow is regulated by the 512 
structure of the topography. The large-scale topographical structure is well kept within spatial 513 
features and is insensitive under the influence of elevation uncertainty. Therefore, water depth and 514 
water level can be predicted using a comparatively high accuracy in cases of inundation on 515 
structured topography, as compared with flow estimations in Plain topography. Since the 516 
acceleration of flow occurs in specific areas and since small differences in topography in specific 517 
areas cause a major change in inundation flow structure, local flow and flow related parameters 518 
suffer a great impact due to elevation error. 519 
(3) The predicted local water depth, h, contains an uncertainty whose magnitude is almost identical 520 
to the magnitude of the elevation uncertainty. The standard deviation of hU is impacted both by 521 
elevation error and topographical structures. The magnitude of the standard deviation of hU is 522 
comparable to the magnitude of hU in cases where the topography has an elevation uncertainty. The 523 
σhUU is almost two-times larger than σhU in cases where the elevation has uncertainty. The relative 524 
error of the momentum flux is large as compared to that in the unit width discharge. 525 
 526 
The work presented here implies that some part of the calculated flow parameters contain significant 527 
uncertainty. Therefore, the results obtained from this work should be kept in mind when flow 528 
parameters calculated using a detailed inundation simulation are used for risk estimations related to 529 
the flow velocity (e.g. the difficulty evacuation (Koshimura et al., 2006) or the risk failure for 530 
structures (Koshimura et al., 2009)). On the contrary, the reason inundated water was mainly utilized 531 
in the risk estimation may be related to the poor accuracy of the magnitude of predicted inundation 532 
flow. Research on inundation flow structure (Tsubaki et al., 2007) may be useful for determining key 533 
factors of topography that determine inundation expansion. By considering the dominant factor of 534 
topography, it may be possible to improve both the calculation efficiency and the accuracy, not only 535 
for detailed inundation flow type simulations but also for integrated type simulations in inundation 536 
prediction methods (e.g. Yu and Lane, 2005). The effect of topographical uncertainty in adverse 537 
sloped ground is not discussed in this paper but important area to be analysed to advance our 538 
knowledge of structural damage risk estimation in tsunami disaster. 539 



Discussion in this work is limited to a comparison of the calculated results. A comparison with the 540 
field record or experimental data is not included mainly because the discussion presented in this 541 
work is quite sensitive to boundary condition uncertainty, and because it is quite difficult to 542 
determine sufficient accuracy and resolution for boundary conditions of actual inundation cases or 543 
physical models for complex topography inundation. The inadequacy of the calculation model itself 544 
is also outside the scope of this work. Here, the discussion has limitations for some of the conditions 545 
described above. However, the findings obtained in this study contribute to our understanding of the 546 
characteristics of the uncertainty involved in the predicted flow parameters under the effect of 547 
topographical data uncertainty. The predictability of local flow parameters on inundation flow within 548 
complex topography has not, thus far, been seriously addressed. The results obtained from this study 549 
indicate that more careful considerations should be made regarding the uncertainty of calculated 550 
results since calculated flow parameters, especially those related to water velocity, contain large 551 
uncertainty. 552 
Elevation accuracy can be improved in regards to instrument improvement, operational control (e.g. 553 
lower and slower flight in aerial LiDAR measurements), and refined post-process of the measured 554 
data. Such improvements may, in some respects, reduce the error of the calculated result. On the 555 
other hand, physical uncertainty, for example, terrain alternation after the topography survey such as 556 
for vegetation growth or decay and for changes in the arrangements of parked cars and temporal 557 
structures, still remains after the improvement of accuracy in topography measurements. Again, we 558 
must acknowledge that calculated flow dynamics contain considerable uncertainty for cases where 559 
the predicted flow dynamics are utilized to predict risks related to water flow. 560 
 561 
 562 
REFERENCES 563 
Abdullah, A.F., Vojinovic, Z. and Price, R.K., 2011, Improved Methodology for Processing Raw 564 

LIDAR Data to Support Urban Flood Modelling - Accounting for Elevated Roads and Bridges, 565 
Journal of Hydroinformatics, doi:10.2166/hydro.2011.009. 566 

Alcrude, F and Garcia-Navarro, P., 1993, A high-resolution Godunov-type scheme in finite volumes 567 
for the 2D shallow-water equations, International Journal for Numerical Methods in Fluids, 16, 568 
489-505. 569 

Anastasiou, K. and Chan, C.T., 1997, Solution of the 2D shallow water equations using the finite 570 
volume method on unstructured triangular meshes, International Journal for Numerical Methods 571 
in Fluids, 24, 1225-1245. 572 

Bales, J.D. and Wagner, C.R. 2009, Sources of uncertainty in flood inundation maps, Journal of 573 
Flood Risk Management, 2, 139-147. 574 



Bates, P.D., Horritt, M. and Hervouet, J.M., 1998, Investigating two-dimensional, finite element 575 
predictions of floodplain inundation using fractal generated topography, Hydrological Processes, 576 
12, 1257-1277. 577 

Bates, P.D., 2003, Remote sensing and flood inundation modeling. Hydrological Processes, 18(13): 578 
2593-2597. 579 

Cabral, B. and Leedom, L., 1993: Imaging vector fields using line integral convolution, Proc. 20th 580 
annual conf. on Computer graphics and interactive techniques SIGGRAPH 93. 581 

Caleffi, V., Valiani, A. and Zanni, A., 2003, Finite volume method for simulating extreme flood 582 
events in natural channels, Journal of Hydraulic Research, 41(2), 167-177. 583 

Casas, A., Lane, S.N., Yu, D. and Benito, G., 2010, A method for parameterizing roughness and 584 
topographic sub-grid scale effects in hydraulic modeling from LiDAR data, Hydrology and Earth 585 
System Science, 14, 1567-1579. 586 

Chuntian, C., Chunping, O. and Chau, K.W., 2002, Combining a fuzzy optimal model with a genetic 587 
algorithm to solve multiobjective rainfall-runoff model calibration, Journal of Hydrology, 588 
268(1-4), 72-86. 589 

Cobby, D.M., Mason, D.C., Horritt, M.S. and Bates, P.D., 2003, Two-dimensional hydraulic flood 590 
modelling using a finite-element mesh decomposed according to vegetation and topographic 591 
features derived from airborne scanning laser altimetry, Hydrological Processes, 17, 1979-2000. 592 

Fournier, A, Fussel, D, and Carpenter, L., 1982, Computer Rendering of Stochastic Models. 593 
Communications of the ACM, 25: 371-384. 594 

Horritt, M.S. and Bates, P.D., 2001, Effects of mesh resolution on a raster based model of flood 595 
flow, Journal of Hydrology, 253, 239-249. 596 

Horritt, M.S., Bates, P.D. and Mattinson, M.J., 2006, Effects of mesh resolution and topographic 597 
representation in 2D finite volume models of shallow water fluvial flow, Journal of Hydrology, 598 
329, 206-314. 599 

Horritt, M.S., 2006, A methodology for the validation of uncertain flood inundation models, Journal 600 
of Hydrology, 326, 153-165. 601 

Koivumäki, L., Alho, P., Lotsari, E., Käyhkö, J., Saari, A. and Hyyppä, H., 2010, Uncertainties in 602 
flood risk mapping: a case study on estimating building damages for a river flood in Finland, 603 
Journal of Flood Risk Management, 3, 166-183. 604 

Koshimura, S., Katada, T., Mofjeld, H.O. and Kawata, Y. 2006, A method for estimating casualities 605 
due to the tsunami inundation flow, Natural Hazards, 39, 265-274. 606 

Koshimura, S., Oie, T., Yanagisawa, H. and Imamura, F., 2009, Developing fragility functions for 607 
tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, 608 
Indonesia, Coastal Engineering Journal, 51(3), 243-273. 609 



Mason, D.C., Horritt, M.S., Hunter, N.M. and Bates, P.D., 2007, Use of fused airborne scanning 610 
laser altimetry and digital map data for urban flood modeling, Hydrological Processes, 21, 611 
1436-1447. 612 

McKean, J., Nagel, D., Tonina, D., Bailey, P., Wright, C.W., Bohn, C. and Nayegandhi, A. 2009, 613 
Remote se sing of channels and riparian zones with a narrow-beam aquatic-terrestrial LiDAR, 614 
Remote Sensing, 1, 1065-1096, doi:10.3390/rs1041065. 615 

Mignot, E., Paquier, A. and Haider, S., 2006, Modeling floods in a dense urban area using 2D 616 
shallow water equations, Journal of Hydrology, 327, 186-199. 617 

Neal. J.C., Bates, P.B., Fewtrell, T.J., Hunter, N.M., Wilson, M.D. and Horritt, M.S., 2009, 618 
Distributed whole city water level measurements from Carlisle 2005 urban flood event and 619 
comparison with hydraulic model simulations, Journal of Hydrology, 368, 42-55. 620 

Neal, J.C, Fewtrell, T.J, Bates, P.B. and Wright, N.G. 2010, A comparison of three parallelization 621 
methods for 2D flood inundation models, Environmental Modelling & Software, 25: 398-411. 622 

Néelz, S., Pender, G., Villanueva, I., Wilson, M., Wright, N.G., Bates, P., Mason, D. and Whitlow, 623 
C., 2006, Using remotely sensed data to support flood modelling, Water Management, 159, Paper 624 
14106. 625 

Pasternack, G.B., Gilbert, A.T., Wheaton, J.M. and Buckland, E.M. 2006, Error propagation for 626 
velocity and shear stress prediction using 2D models for environmental management, Journal of 627 
Hydrology, 328, 227-241. 628 

Pappenberger, F., Beven, K.J., Horritt. M. and Blazkova, S. 2005, Uncertainty in the calibration of 629 
effective roughness parameters in HEC-RAS using inundation and downstream level 630 
observations, Journal of Hydrology, 302, 46-69. 631 

Pappenberger, F., Beven, K.J., Ratto, M. and Matgen, P. 2009, Multi-method global sensitivity 632 
analysis of flood inundation models, Advances in Water Resources, 31, 1-14. 633 

Sanders, B.F, 2007, Evaluation of on-line DEMs for flood inundation modeling, Advances in Water 634 
Resources, 30, 1831-1843. 635 

Sanders, B.F., Schubert, J.E. and Detwiler, R.L. 2010, ParBreZo: A parallel, unstructured grid, 636 
Godunov-type, shallow-water code for high-resolution flood inundation modeling at the regional 637 
scale, Advances in Water Resources, 33, 1456-1467. 638 

Schubert, J., Sanders, B.F., Smith, M.J and Wright, N.G., 2008, Unstructured mesh generation and 639 
landcover-based resistance for hydrodynamic modeling of urban flooding, Advances in Water 640 
Resources, 31, 1603-1621. 641 

Schubert, J. and Sanders, B.F., 2012, Building treatments for urban flood inundation models and 642 
implications for predictive skill and modeling efficiency, Advances in Water Resources, 41, 643 
49-64. 644 



Schumann, G., Matgen, P., Hoffmann, L., Hostache, R., Pappenberger, F. and Pfister, L. 2007, 645 
Deriving distributed roughness values from satellite radar data for flood inundation modelling, 646 
Journal of Hydrology, 344, 96-111. 647 

Schumann, G., Cutler, M., Black, A., Matgen, P., Pfister, L., Hoffmann, L. and Pappenberger, F., 648 
2008, Evaluating uncertain flood inundation predictions with uncertain remotely sensed water 649 
stages, International Journal of River Basin Management, 6(3), 187-199. 650 

Shamseldin, A.Y., 1997, Application of a neural network technique to rainfall-runoff modeling, 651 
Journal of Hydrology, 199(3-4), 272-294. 652 

Shigeda, M, Akiyama, J, Ura, M, Jha, AK, and Arita, Y., 2002, Numerical simulations of flood 653 
propagation in a flood plain with structures, Journal of Hydroscience and Hydraulic Engineering 654 
20(2): 117–129. 655 

Shige-eda, M. and Akiyama, J. 2003, Numerical and experimental study on 2D flood flows with and 656 
without structures, Journal of Hydraulic Engineering, 129(10), 817–821. 657 

Sithole, G. and Vosselman, G. 2004, Experimental comparison of filter alhorithms for bare-Earth 658 
extraction from airborne laser scanning point clouds, ISPRS Journal of Photogrammetry & 659 
Remote Sensing, 59, 85-101. 660 

Soares-Frazão, S, Lhomme, J., Guinot, V. and Zech, Y. 2008, Two-dimensional shallow-water 661 
model with porosity for urban flood modelling, Journal of Hydraulic Research, 46(1), 45-64. 662 

Stephens, E.M., Bates, P.D., Freer, J.E. and Mason, D.C., 2012, The impact of uncertainty in 663 
satellite data on the assessment of flood inundation models, Journal of Hydrology, 414-415, 664 
162-173 665 

Tsubaki, R, Fujita, I, and Okabe, T. 2007, Sensitivity of grid spacing to prediction and coherent flow 666 
structure of inundation on urbanized area, 32rd Congress of IAHR, on CD-ROM, Venice, 2007. 667 

Tsubaki, R., Nakayama, Y. and Fujita, I., 2008, The design secret of kyokusui-no-en's meandering 668 
channel, Journal of Visualization, 11(3), 265-272. 669 

Tsubaki, R, and Fujita, I. 2010. Unstructured grid generation using LiDAR data for urban flood 670 
modelling, Hydrological Processes, 24(11): 1404-1420. 671 

Wagner, T., McIntyre, N., Lees, M.J., Wheater, H.S. and Gupta, H.V., 2003, Towards reduced 672 
uncertainty in conceptual rainfall-runoff modelling: dynamic identifiably analysis, Hydrological 673 
Processes, 17(2), 455-476. 674 

Wu, C.L., Chau, K.W. and Li, Y.S., 2009, Methods to improve neural network performance in daily 675 
flows prediction, Journal of Hydrology, 372(1-4), 80-93. 676 

Yu, D. and Lane, S.N., 2005, Urban fluvial flood modelling using a two-dimensional diffusion-wave 677 
treatment, part 1: mesh resolution effects, Hydrological Processes, 20(7) 1541-1565, 678 
doi:10.1002/hyp.5935. 679 

 680 



Figure captions 681 
 682 

  683 

Figure 1. Schematic diagram of lase pulse interference in LiDAR survey to detect ground 684 
surface.  685 
 686 

 687 
Figure 2. The diamond-square algorithm for fractal topography generation. 688 
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 690 
Figure 3. The generated fractal topography representing LiDAR measurement error. The 691 
magnitude of the elevation fluctuation was set as σ = 0.075 m. 692 
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 694 

Figure 4. A schematic of the topographical data set generation. Topographical data consists of 695 
a gridded flow domain and an elevation distribution. For urban topography, an arrangement 696 
of buildings is represented in the grid. The elevation distribution, consisting of the base 697 
distribution, differs with each topographical case, the general ground slope, and the artificial 698 
elevation error. 699 
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 701 

Figure 5. The base distribution used for the rural topography. The elevation distribution was 702 
obtained from an actual LiDAR survey while measuring a rice field in Niigata, Japan. 703 
 704 

 705 
Figure 6. The flow domain boundary utilized for urban topography. The topography was 706 
obtained from an actual LiDAR survey of the city of Hyogo, Japan. In this work, a building 707 
area was treated as an impermeable wall during inundation simulations. 708 
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 710 
Figure 7. The time-series of water volume in the calculation domain for the Plain case with I = 711 
1/2000. The calculated results of the four grid sizes and the exact value are compared. 712 
 713 

 714 
Figure 8. Hydrographs of the inundated area. The left figure and the right figure compare the 715 
results of the four grid sizes in a medium bed slope (I = 1/300) and a steep bed slope (I = 1/50), 716 
respectively.  717 
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 719 
Figure 9. A snap shot of the inundated water depth, h, at t = 200 s for a steep bed slope (I = 720 
1/50) case. The upper half represents a small grid (the grid size is 3 m) result and the lower 721 
half provides a coarse grid (the 20 m in the grid size) result. The hatched areas indicate a dry 722 
region. 723 
 724 

 725 
Figure 10. The time series of the inundated area calculated using the two grid sizes.  726 
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 728 
Figure 11. A snap shot of water depth at t = 1000 s, calculated using two grid sizes.  729 
 730 

 731 
Figure 12. A percentile distribution of the water depth distribution at t = 1000 s.  732 
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 734 
Figure 13. A time series of the inundated area for steep (left side sub-figure) and mild sloped 735 
(right side sub-figure) urban topographies, calculated using two grid sizes.  736 
 737 

 738 
Figure 14. A snap shot of the inundated water depth at t = 400 s, for the mild bed slope (I = 739 
1/1000) case.  740 
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 742 
Figure 15. A comparison of the general bed slope effect and the elevation noise; the left-hand 743 
side indicates no-additional-noise result; the right-hand side provides an additional noise A 744 
pattern. A snap shot is depicted at t = 300 s. 745 
 746 

 747 

Figure 16. The time series of the inundated area for Plain topographies with and without 748 
elevation error and for different ground slopes. 749 
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 750 

 751 
Figure 17. A comparison of the Froude number distributions of the results calculated with and 752 
without elevation error. A snap shot at t = 300 s is shown. 753 
 754 

 755 
Figure 18. A comparison of the flow structure at t = 1000 s, calculated using different grid sizes 756 
and different error patterns. Images were generated using the LIC (Line Integral Convolution) 757 
method. The direction of texture indicates the local flow direction. The density of the texture 758 
corresponds to the local discharge per unit width. 759 
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 760 

 761 
Figure 19. A time series of the inundated area for Rural topographies with and without 762 
elevation error. The grid size is 03 m. 763 
 764 

 765 
Figure 20. A schematic diagram, vertical section, of the structure of inundation flow and its 766 
relationship to topography in Rural areas. 767 
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769 

Figure 21. A time series of the inundated area of Urban topographies for a steep slope (I = 770 
1/50) and a medium slope (I = 1/300) with and without elevation error. The grid size is 03 m. 771 
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773 
Figure 22. LIC images of urban topography cases calculated using different conditions at t = 774 
800 s. The upper row provides the results calculated using a 03 m grid size without elevation 775 
error. The medium row provides results obtained using a 05 m grid without error. The lower 776 
row depicts results with a 03 m grid that contained elevation error. The left column provides 777 
the results of a steep slope (I = 1/50), and the right column provides the results of a medium 778 
slope (I = 1/300). 779 
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 780 

 781 
Figure 23. A close up of the inflow area of LIC images. The calculated conditions and the 782 
arrangement of the sub-figures are identical to those provided in Figure 21. 783 
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785 
Figure 24. The relationship between distance from the inflow point and the flow parameters, 786 
and errors at t = 1000 s for the Rural case. Sub-figures (a) and (c) display the distributions of 787 
the water stage and the unit width discharge of the base calculation (03 m-NoError). 788 
Sub-figures (b) and (d) depict the water stage and the unit width discharge errors calculated 789 
using the standard deviation error for the three elevation noise cases.  790 
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792 
Figure 25. The relationship between distance from the inflow point and flow parameters, and 793 
those errors at t = 800 s for the Urban case of I = 1/1000. Sub-figures (a) and (b) provide the 794 
distributions of the water stage and the discharge par unit width of the base calculation 795 
(03m-NoError). Sub-figures (c) and (d) depict the water stage and the unit discharge errors 796 
calculated using the standard deviation error for the three elevation noise cases.  797 
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Table captions 805 
 806 
Table 1. The calculation case list 807 

 808 
 809 
 810 
Table 2. The standard deviations between local flow parameters at t = 300 s for the Plain case, 811 
I = 1/300. The result of the 03 m, NoError case is assumed to be a benchmark; and the 812 
difference between the 03m, No error case, and each case is indicated as a standard deviation.  813 

 814 
 815 

 816 
Table 3. The standard deviations between local flow parameters at t = 1000 s for the Rural 817 
case. The data was processed using the method in Table 2. 818 

 819 

 820 
 821 

No A B C
1/2000 3, 5, 10, 20 3
1/1000 3, 5, 10, 20 3
1/300 3, 5, 10, 20 3, 5, 10, 20 3 3
1/50 3, 5, 10, 20 3, 5, 10, 20

0 3, 5 3, 5 3, 5 3, 5
1/1000 3, 5 3, 5
1/300 3, 5 3, 5
1/50 3, 5 3, 5

1/1000 3, 5 3, 5 3, 5 3, 5
1/300 3, 5 3, 5 3, 5 3, 5
1/50 3, 5 3, 5 3, 5 3, 5

Number in thick box
indicates the grid size of
calculated case

Plain

Rural

Urban

Error pattern
Additional slope ITopographical type

σ z (m) σ h (m) σH ( m) σ hU ( m2/s) σ hUU ( m3/s2)
05m NoError 0.0012 0.0054 0.0081 0.018 0.133
10m NoError 0.0022 0.0134 0.0124 0.041 0.356
03m ErrorA 0.0648 0.0619 0.0736 0.101 0.403
03m ErrorB 0.0595 0.0589 0.0796 0.081 0.322
03m ErrorC 0.0628 0.0607 0.0813 0.104 0.418

n ≧ 282

σ z (m) σ h (m) σH ( m) σ hU ( m2/s) σ hUU ( m3/s2)
05m NoError 0.0333 0.0429 0.0589 0.112 0.241
03m ErrorA 0.0659 0.0735 0.0552 0.104 0.190
03m ErrorB 0.0638 0.0696 0.0538 0.087 0.159
03m ErrorC 0.0675 0.0674 0.0543 0.114 0.272

n ≧ 283



Table 4. Standard deviations between local flow parameters at t = 500 s for the Urban case, I = 822 
1/1000. The data was processed using methods from Table 2. 823 

 824 

 825 
 826 

σ z (m) σ h (m) σH ( m) σ hU ( m2/s) σ hUU ( m3/s2)
05m NoError 0.0013 0.0141 0.0407 0.029 0.027
03m ErrorA 0.0678 0.0661 0.0663 0.056 0.103
03m ErrorB 0.0665 0.0636 0.0702 0.070 0.146
03m ErrorC 0.0641 0.0636 0.0741 0.051 0.131

n ≧ 228


