## Gas-Phase Spectroscopy of Metai Ion–Crown Ether Complexes

Yoshiya INOKUCHI

## **Crown Ether**

- Benzo-18-crown-6 was first discovered by Pedersen in 1967.
- Used for many applications.
- Mass spectrometric studies of metal ion-CE complexes
  - Dearden (1991), Brodbelt (1992), Armentrout (1996), Brutschy (1997),
- IR spectroscopy of metal ion-CE complexes
  - Lisy (2009), Martinez-Haya (2009)
- UV spectroscopy of metal ion-CE complexes
  Kim (2009)
- UV and IR spectroscopy of jet-cooled CE
  - Ebata (2007), Zwier (2009)

#### Gas-Phase Spectroscopy of Metai Ion–Crown Ether Complexes

• Crown Ethers and DMB



- Metal Ions (ionic radii in Å)\*
  - $-Li^{+}(0.59), Na^{+}(0.99), K^{+}(1.37), Rb^{+}(1.52), Cs^{+}(1.67)$

-  $Mg^{2+}$  (0.57),  $Ca^{2+}$  (1.06),  $Sr^{2+}$  (1.18),  $Ba^{2+}$  (1.35)

- $-Ni^{2+}, Mn^{2+}, Cu^{+}$  \*R. D. Shannon, Acta Cryst. A32, 751 (1976).
- 1:1 and 1:2 complexes at ~4 K  $\rightarrow$  70 complexes

## Outline

- Experimental
- $M^+$ –DMB (M = Li, Na, K, Rb, and Cs)
- $M^+$ -Crown Ether (M = Li, Na, K, Rb, and Cs)
- $M^+$ -(Crown Ether)<sub>2</sub> (M = Li, Na, K, Rb, and Cs)
- $M^{2+}$ -Crown Ether (M = Mg, Ca, Sr, and Ba)
- $M^{2+}$ -(Crown Ether)<sub>2</sub> (M = Mg, Ca, Sr, and Ba)
- Transition Metal Ion–Crown Ether complexes

## **Experimental**



B15C5, B18C6, DB18C6 1,2-Dimethoxybenzene

LiCl, NaCl, KCl, RbCl, CsCl MgCl<sub>2</sub>, CaCl<sub>2</sub>, SrCl<sub>2</sub>, BaCl<sub>2</sub>

NiCl<sub>2</sub>•6H<sub>2</sub>O MnCl<sub>2</sub> CuSO<sub>4</sub> (dissolved in H<sub>2</sub>O)

> in Methanol 20–200 µM

UV power 1–1.5 mJ/pulse IR power 4–5 mJ/pulse

Svendsen, Lorenz, Boyarkin, and Rizzo, Rev. Sci. Instrum., **81**, 073107 (2010).

## **UV Spectra of M<sup>+</sup>**•**DMB**





gradually shift to the red from Na<sup>+</sup> to Cs<sup>+</sup>

Platt and co-workers, JPCA, 109, 9456 (2005)

#### General trend:

Stronger interaction  $\rightarrow$  higher transition energy

## UV Spectra of M<sup>+</sup>•B15C5



Large structural change between Na<sup>+</sup> and K<sup>+</sup>?

#### UV Spectrum of Na<sup>+</sup>•B15C5



## **UV Spectrum of Benzene**





Suzuki and Ito, J. Chem. Phys., **91**, 4564 (1989).





| 1  | 993 | 923 |
|----|-----|-----|
| 6  | 606 | 522 |
| 16 | 404 | 244 |

#### UV Spectrum of Na<sup>+</sup>•B15C5



### UV Spectrum of Li<sup>+</sup>•B15C5



UV Wavenumber (cm<sup>-1</sup>)

## **UV Spectrum of Rb<sup>+</sup>**•**B15C5**



#### UV Spectrum of Rb<sup>+</sup>•B15C5



## UV Spectra of M<sup>+</sup>•B15C5



# Na<sup>+</sup>•B15C5 IR-UV



## Rb<sup>+</sup>•B15C5 IR-UV



## Rb<sup>+</sup>•B15C5 IR-UV





#### UV Spectra of M<sup>+</sup>•B18C6





## UV Spectrum of Na<sup>+</sup>•B18C6



## UV Spectrum of K<sup>+</sup>•B18C6



2 isomers?

## **UV Spectra of M<sup>+</sup>•DB18C6**



## UV Spectra of M<sup>+</sup>•DB18C6





More "buckled" structure gives more active low-frequency vibronic structure. (Zwier, 2010)

Kim et al., JPCA, 2009, 113, 8343.

## UV Spectra of M<sup>+</sup>•B15C5



## **Future Work**

- Quantum chemical calculations
  - Geometric structures, vibrational analysis, calculation of electronic transitions
- IR-UV and UV-UV double resonance spectroscopy
- Transition metal ions
  - anisotropic electronic structures
- Recognition of chiral molecules with crown ethers