Formation of "Semi"-Covalent Bonds Studied by IR Spectroscopy

Yoshiya INOKUCHI *Hiroshima University*

Why Ion-Molecule Complexes?

Basis of Chemistry!

Nucleophilic Additional Reactions of C=O

Primary process of nucleophilic reactions

Resonance interactions between MOs are important

Formation of Covalent Bonds (1)

Formation of Covalent Bonds (2)

Why IR Spectroscopy?

Electronic Spectra

Resonance interaction occurs in $(CO_2)_2^+$. No structural information.

IR Photodissociation (IRPD) Spectroscopy

With a mass spectrometer, in the gas phase.

This Study

Experimental

Anti-symmetric CO stretch (v_3)

What is lon Core of $(CO_2)_n^+$?

$CO_2^+ \text{ or } C_2O_4^+ ?$

 $(CO_2)_n^+$ have $C_2O_4^+$ ion core.

Structure of C₂O₄⁺

B3LYP/6-311+G*

HOMO of CO₂

Structure of $C_2O_4^+$ is controlled by overlap between HOMOs.

In-Phase and Out-of-Phase Combinations

The number of IR bands indicates the planarity.

Bare $C_2O_4^+$ ion has planar (C_{2h}) structure. Structure of $C_2O_4^+$ depends on cluster size.

Structure of $(CO_2)_2^+$ and $(CO_2)_3^+$

Change of $C_2O_4^+$ band number for $(CO_2)_n^+$ \rightarrow Structural change of $C_2O_4^+$ ion core

IRPD Spectra of (OCS)_n^+ and (CS_2)_n^+

 $(OCS)_n^+$

IRPD Spectra of (OCS)_n^+ and (CS_2)_n^+

 $(OCS)_n^+$ and $(CS_2)_n^+ \longrightarrow \text{dimer ion core}$. Core structure not so change, different from $(CO_2)_n^+$.

Structure of Dimer Ion Core

Is C₂O₄⁺ So Floppy?

PES along out-of-plane torsional motion @B3LYP/6-311+G* Α.

- Rather C₂O₄⁺ has hardest structure.
- Structural change of C₂O₄⁺ in (CO₂)_n⁺

structural weakness of $C_2O_4^+$

characteristics
of interaction
between solvent
molecules

Proposed Structural Change

Intermol.bonds formed between solvent mols. Solvent complex bonded asymmetrically to ion core.

Why C₂O₂S₂⁺ bent?

Contains 2p component of C atom

A. Bent structure originates from broad nature of HOMO.

$(CO_2)_n^+$ $(OCS)_n^+$ $(CS_2)_n^+$

Dimer ion core structure.

The semi-covalent bond formed in dimer ion core.

Cluster Size	$C_{2}O_{4}^{+}$	$C_2 O_2 S_2^+$	$C_2 S_4^+$
<i>n</i> = 2	C _{2h}		C _{2h}
3	<i>C</i> ₂		
4	C _{2h}		
5	<i>C</i> ₂	<i>C</i> ₂	0
6	C _{2h}		U_2
7	C _{2h}		
8	C _{2h}		
calculation	C _{2h}	C ₂	<i>C</i> ₂

Kobayashi et al., J Chem. Phys., **2008**, *128*, 164319. Inokuchi et al., J. Chem. Phys., **2008**, *129*, 044308.

Structure of $(N_2O)_2^+$

Inokuchi et al., J. Chem. Phys., 2009, 131, 044325.

Introduction of H_2O to $(CO_2)_n^+$

Inokuchi et al., J. Chem. Phys., 2009, 130, 154304.

 $[H_2O(CO_2)_n]^+$ clusters have an H_2O^+ ion core.

Introduction of H_2O to $(N_2O)_n^+$

 $[H_2O(N_2O)_n]^+$ clusters have an $[H_2O-ON_2]^+$ ion core.

Introduction of H_2O to $(CO_2)_n^+$ and $(N_2O)_n^+$

	Ionization Potential (eV)	Ion Core of [H ₂ O•M _n]+ Clusters
CO_2	13.78	H_2O^+
N ₂ O	12.89	[H ₂ O–ON ₂] ⁺
H ₂ O	12.62	_

IPs of components control the charge distribution and the formation of semi-covalent bonds.

Summary

Ion core species and their structure
The formation of intermolecular covalent bonds

highly depend on

the shape of MO

the ionization potential

What about anions ?

Muraoka et al., J. Chem. Phys., **2005**, *122*, 094303. Muraoka et al., J. Phys. Chem. A, **2008**, *112*, 4906. Kobayashi et al., J. Chem. Phys. **2008**, *128*, 164319. Muraoka et al., J. Phys. Chem. A, **2009**, *113*, 8942.

LIF spectrum of jet-cooled tyrosine

How many isomers ?

Experiment

UV-UV Hole-Burning (HB) Spectra

Comparison of S₁ vibronic structure in HB spectra

Rotational isomers of tyrosine

S₀ IR-UV spectra

Inokuchi et al., J Phys. Chem. A, 2007, 111, 3209.

$[Mg \cdot (H_2O)_{1-4} \cdot Ar]^+$ IRPD Spectra

Inokuchi et al., J Phys. Chem. A, **2004**, *108*, 5034.

 $[A] \cdot (H_2O)_{1,2} \cdot Ar]^+$ IRPD Spectra

$[H-Al-O-H]^+$ ion core!

Inokuchi et al., Chem Phys. Lett., **2004**, *390*, 140.