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Nucleophilic Additional Reactions of C=O 

Resonance interactions between MOs are important 

Primary process of nucleophilic reactions 

Formation of covalent bond 



Formation of Covalent Bonds (1) 
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Formation of Covalent Bonds (2) 

M 

Bond order = 0.5 
(M–H)+ 

Molecule + Radical Ion 

M•+ 

“Semi”-Covalent Bond 
“Two-Center Three- 

Electron” Bond 



Why IR Spectroscopy? 

Resonance interaction occurs in (CO2)2
+. 

No structural information. 

Smith and Lee, J. Chem. Phys. 69, 5393 (1978).	


Electronic Spectra 

IR Photodissociation (IRPD) Spectroscopy 
With a mass spectrometer, in the gas phase. 



This Study 

IR 
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Quantum 
Chemical 

Calculations 

Electronic and Geometric Structures 

Formation of semi-covalent bonds  
between unsaturated groups 

Cluster Cations of  
CO2, OCS, CS2, N2O, H2O 
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IRPD Spectra of (CO2)n
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IRPD Spectra of (CO2)n
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Band position 
almost the same 
as that of CO2. 

	

	


Solvent CO2 
molecules 

Intensity 
decreases with 
increasing n. 
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What is Ion Core of (CO2)n
+? 
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CO2
+ ion core 

(CO2)n
+ have C2O4 

+ ion core. 

CO2
+ or C2O4

+  ? 

B3LYP/6-311+G*	




Structure of C2O4
+ 

HOMO of CO2 

C2h 

B3LYP/6-311+G*	


Structure of C2O4
+ is controlled by  

overlap between HOMOs. 
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In-Phase and Out-of-Phase Combinations 

The number of IR bands indicates the planarity. 

Point Group 
C2h 

(planar) 
C2 

(bent) 

In-phase inactive active 
(weak) 

Out-of-
phase active active 

(strong) 

IR activity of dimer ions 



250024002300220021002000

IRPD Spectra of (CO2)n
+ 

B 
n = 3	


n = 4	


n = 5	


n = 6	


n = 7	


n = 8	


n = 2	


Wavenumber (cm–1)	


Fr
ag

m
en

t I
on

 In
te

ns
ity
	


Number of C2O4
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Structure of C2O4
+ core changes 
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Bare C2O4
+ ion has planar (C2h) structure. 

Structure of C2O4
+ depends on cluster size. 
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Structure of (CO2)2
+ and (CO2)3

+ 

(CO2)2
+ (CO2)3
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Change of C2O4
+ band number for (CO2)n
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IRPD Spectra of (OCS)n
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Structure of Dimer Ion Core 
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Is C2O4
+ So Floppy? 

@B3LYP/6-311+G* 

C2O4
+	


C2S4
+	


C2O2S2
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A. 
!  Rather C2O4

+ has 
hardest structure.   

!  Structural change of 
C2O4

+ in (CO2)n
+   

structural 
weakness of 
C2O4

+ 

characteristics 
of interaction 
between solvent 
molecules   PES along out-of-plane torsional motion 



Proposed Structural Change 
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Intermol.bonds formed between solvent mols. 
Solvent complex bonded asymmetrically to ion core. 
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Why C2O2S2
+ bent? 

C2O4
+ C2O2S2
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(top view)	
(side view)	
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Why C2O2S2
+ bent? 

    A.   Bent structure originates from broad nature of HOMO. 

C2O4
+ C2O2S2

+ 

Overlap increases 
with decreasing the angle. 

C O S 

C O S 

Minimizes repulsive force. 



!   The semi-covalent bond 
formed  

in dimer ion core.    

Cluster Size C2O4
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calculation C2h C2 C2 

!   Dimer ion core structure. 

(CO2)n
+ (OCS)n

+ (CS2)n
+ 

Kobayashi et al., J Chem. Phys., 2008, 128, 164319.	

Inokuchi et al., J. Chem. Phys., 2008, 129, 044308.�



IRPD Spectra of (N2O)n
+ 

Solvent 
molecules 
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Structure of (N2O)2
+ 

Inokuchi et al., J. Chem. Phys., 2009, 131, 044325.�



Introduction of H2O to (CO2)n
+ 

[H2O(CO2)n]+ clusters have an H2O+ ion core.   

IRPD spectra of [H2O(CO2)n]+�

Inokuchi et al., J. Chem. Phys., 2009, 130, 154304.�



Introduction of H2O to (N2O)n
+ 

[H2O(N2O)n]+ clusters have an [H2O–ON2]+ ion core.   

IRPD spectra of [H2O(N2O)n]+�

The n = 1 ion not dissociated. � Matsushima et al., J. Phys. Chem. A, in press. �



Introduction of H2O to (CO2)n
+  and (N2O)n

+ 

IPs of components control the charge distribution and 
the formation of semi-covalent bonds.   

M� Ionization 
Potential (eV) �

Ion Core of 
[H2O•Mn]+ 

Clusters �
CO2� 13.78� H2O+�

N2O � 12.89� [H2O–ON2]+�

H2O � 12.62� –�



Summary 

!   The formation of intermolecular covalent bonds  
!   Ion core species and their structure 

highly depend on  

u  the ionization potential  
u  the shape of MO 

What about anions ? �
Muraoka et al., J. Chem. Phys., 2005, 122, 094303.	

Muraoka et al., J. Phys. Chem. A, 2008, 112, 4906.	

Kobayashi et al., J. Chem. Phys.  2008, 128, 164319.	

Muraoka et al., J. Phys. Chem. A, 2009, 113, 8942.    �
�



LIF  spectrum  of    jet-cooled  tyrosine�

How many isomers ？�

Tsample = 90 ℃	
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Comparison  of  S1  vibronic  structure  in  HB  
spectra�
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Different species 	

but 	


similar vibronic structure �

Rotational isomers	

for the phenolic OH group	




Rotational  isomers  of  tyrosine�
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S0  IR-UV  spectra�
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Jet-cooled tyrosine has	

at least 7 (probably 8) isomers.	


Inokuchi et al., J Phys. Chem. A, 2007, 111, 3209.�



[Mg•(H2O)1–4•Ar]
+  IRPD  Spectra�

[Mg•(H2O)n•Ar]+	


Inokuchi et al., J Phys. Chem. A, 2004, 108, 5034.�



[Al•(H2O)1,  2•Ar]
+  IRPD  Spectra�
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[H–Al–O–H]+ ion core! �

Inokuchi et al., 	

Chem Phys. Lett., 2004, 390, 140.�


