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Introduction

¥ Why lon-Molecule Complexes?

* Why IR Photodissociation Spectroscopy?
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Why lon-Molecule Complexes?

lon-Molecule
Complexes

Basis of Chemistry!
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Nucleophilic Additional Reactions of C=0
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\\ Formation of covalent bond /

Primary process of nucleophilic reactions

Resonance interactions between MOs are important
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Formation of Covalent Bonds (1)

Radical + Radical Molecule + Proton

: "

oo 0 oo @
(M—H)*
Bond order = 1 Bond order = 1
Covalent Covalent

H,, H,0, NH, H,0*, NH,*




7/34

Formation of Covalent Bonds (2)

‘e " Found for

M -O—O-.. C02+ ........ C02
oo Q o
C6 6 C6H6
(M-H)* o
Bond order = 0.5 Py
®

“Semi” -Covalent Bond

“Two-Center Three-
Electron” Bond
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Semi-Covalent Bonds

500
> 400( - :
o /| Electronic and geometric
£ 2 300 / characteristics

S~
22 200 not well understood.
O
@ 100

Covalent Semi- Non-
Covalent Covalent

I Involve in chemical reactions whose mechanism not clear?
I Discover new chemical reactions?
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Why IR Photodissociation Spectroscopy?
Electronic Spectra Thermochem. Measurements

High-pressure mass spectrometry
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Hiraoka et al., Chem. Phys. Lett. 146, 535 (1988).

Smith and Lee, J. Chem. Phys. 69, 5393 (1978). (CO ) + has hlgher blndlng E
2)2 .

Resonance interaction occurs in (CO,),*.
No structural information.

IR Photodissociation (IRPD) Spectroscopy

With a mass spectrometer, in the gas phase.
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This Study

IR
Photodissociation
Spectroscopy

Quantum
Chemical
Calculations

GAUSSIANO3
B3LYP/6-311+G*

fElectronlc and Geometric Structures\
(COZ)n+ (OCS)n+ (cs2)n+

Formation of semi-covalent bonds
\ between unsaturated C=0 and C=S groups /
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Experimental
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lon Cores and Solvent Molecules

in cluster ions

Solvent N
Molecules @ o

Bonded to ion
core with lessor| (@
no charge O lon Cores
distributed. The part in which
positive charge is
localized.
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IRPD Spectra of (CO,),*
Anti-symmetric CO stretch (v;)

Fragment Ion Intensity

2000 2100 2200 2300 2400 2500

Wavenumber (cm™)
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IRPD Spectra of (CO,),*

Intensity
decreases with
Increasing n.

o

lon core

\

Fragment Ion Intensity

ul
IIIIIIIIIIII

2000

2100 2200 2300 2400 2500

Wavenumber (cm™)

Band position
almost the same
as that of CO.,.

o

Solvent CO,
molecules
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What is lon Core of (CO,),*?

CO,"or C,0,*

IRPD spec. of (CO,),*

i lon core of (CO,),*

4 I

B > 0=0=0

V232
(180.0) %

_ L1 10 oo
C,0; C,0,*
0=0=0 \ /

(180.0) 232 ]
O0=0=@
><
I CO,* ion core
| 1 | l |
1200 1600 2000 2400 J

Wavenumber (cm™!)

B3LYP/6-311+G*

(CO,)," have C,0O, " ion core.
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Structure of C,0,"

(180.0) *

C2h

2.32

HOMO of CO,

B3LYP/6-311+G*

Structure of C,0," is controlled by
overlap between HOMOs.
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IRPD Spectra of (CO,),*

Band number
alternately changes.

o

Structural change of
C.0, part X!

or 2000 2100 2200 2300 2400 _ 2500

whole cluster ? Wavenumber (cm™')

Fragment Ion Intensity \
%‘“ |
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Structure of (CO,),* and (CO,),

U { solvent
CZh H“ ¢ :°~. ~~~~~~~ ion core
T - G,
(CO,)," (CO,)5"

Change of C,0,* band number for (CO,) "
—  Structural change of C,0," ion core
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In-Phase and Out-of-Phase Combinations

123 IR activity of dimer ions
<O -0

e _

| 4 5 6 . . active

(a) in-phase combination I n-phase |naCt|Ve (Weak)

Ot Out-of- . active

< active
phase (strong)
“C}‘_O' """ G'> °=.=° %‘ 0‘

(b) out-of-phase combination H=° )

The number of IR bands indicates the planarity.
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IRPD Spectra of (CO,),*

Number of C,0O,* core band
changes alternately.

1

Structure of C,0,* core changes
alternately.

Fragment Ion Intensity \
“

2000 2100 2200 2300 _ 2400 _ 2500
Wavenumber (cm™!)

Bare C,0O," ion has planar (C,,) structure.
Structure of C,0," depends on cluster size.
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IRPD Spectra of (OCS),* and (CS,),}

Fragment Ion Intensity
1]
1

1950 2000 2050 2100 2150 1200 1400 1600 1800 2000
Wavenumber (cm™) Wavenumber (cm™!)
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IRPD Spectra of (OCS) * and (CS,),*

A

Solvent
molecules

Dimer ion core

Fragment Ion Intensity

Zry [ T DY PO AP N P [T O rred P AT N

1950 2000 2050 2100 2150 1200 1400 1600 1800 2000
Wavenumber (cm™) Wavenumber (cm™!)

(OCS),"and (CS,)," — dimer ion core.
Core structure not so change, different from (CO,),.*.
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Structure of Dimer lon Core

Cluster Size
n=2 C,, Cop
3 C,
4 Cop
5 C, C, c,
6 Con
/ Cyp
8 Con
0=0=0 = 2%
|7 L]
calculation o=0=0
C, C, C,
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Structure of Dimer lon Core

Cluster Size
n= 2 C2h C2h
Q1. e
Why structure of C,0,* Con
alternately changes? C, C,
C,
| Cop
C,0," so floppy? Con
8 C2h
0=0-0 = O/@ 296
n=2 (180.0) 32 /)(9 88)% (115.N
calculation ¢
C2h C2 C2
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Structure of Dimer lon Core

has bent (C,)
structure?

Cluster Size
n = 2 C2h C2h
3 C,
4 Cop
5 C C
2 2 C2
6 Cop
14 Cop
8 Cop
0=0-0 o O/@ 296
n=2 (180.0) 2 (98'8)<\ (115.N
calculatio 0=0=¢ ]
Q2. C, C,
Why bare C,0,S,*




26/34

Structure of Dimer lon Core

Cluster Size
n=2 Cop Cyp
3 C,
4 C
2 ’ Q3.
5 C, C, Why structure
6 Cop different between
experiment and
, calc. for C,S,*?
8 C,, /
m = /) 2.96
n= 2 . 2.32 /)(98.8)% (115.N
calculation ©=0=0
CZh C2 C2
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Q1. Is C,0,* So Floppy?

A.

I Rather C,0,* has
=0-0 24
oo b 2 hardest structure.

1000

500

I Structural change of
C,0,"in (COy),"

structural

X weakness of
#5, s

0 AT characteristics
0 50 100 150 200 250 300 350
Dihedral Angle (degree) O Of SOIVent

PES along out-of-plane torsional motion molecules
@B3LYP/6-311+G*

Energy (cm™)
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Proposed Structural Change

5
C., 99

(CO,),"

(0CS),* C. i /53
(OCS),* /\ (OCS)4*

Intermol.bonds formed between solvent mols.
Solvent complex bonded asymmetrically to ion core.
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Q2. Why C,0.S,* bent?

1000

C,0,S,* has deep
double-minimum
potential.

500

Calc. results agree with
experimental result.

Energy (cm™)

+
C,0,5,
1 11 ; 1 I L1 .
0 50 100 150 200 250 300 350 experiment C2
Dihedral Angle (degree i
gle (degree) calculation C,

PES along out-of-plane torsional motion
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Q2. Why C,0.S.,* bent?

C,0,*

CO,

HOMO

Contains 2p component of C atom
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Q2. Why C,0,S.,* bent?

Overlap Repulsive force
between MOs Dimer * between components

Structure

Step-like
Completely stacked? \ structure / Far apart from each other?
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Q2. Why C,0,S,* bent?

Cc,0,*
<>

!

Overlap increases

Minimizes repulsive force. with decreasing the angle.

A. Bent structure originates from broad nature of HOMO.



*** Q3. Why Structure in Experiment and Calculation
Different for C,S,*?

Energy (cm™)

1000

500

/

|;||| ria g I

1 1 1
150 200 250 300 350

Dihedral Angle (degree)

@B3LYP/6-311+G*

2.96

S

experiment | C,,

calculation C,

C,S," has shallow PES
— so floppy

Intermol. interaction weaker for C,S,".

Higher-level calculations needed.
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Summary

Cluster Size C,0,* C,0,S,* C,S,*

(CO,),* (0CS)," (CS,),’ n=2 Cor Cor
3 C,
P Dimer ion core structure. 4 Ca

5 C2 C2

® The semi-covalent bond : C o
formed ! Can
. . . 8 Cz;—,

In dimer ion core. e — . Y c

C,0,* changes structure § C,0,S," has bent (C,) Structure in experim. and
with cluster size. structure. calc. different for C,S,*.

Characteristic of solvent Broad nature of HOMO Weaker intermolecular
molecules. of OCS. interaction.




