IR Photodissociation Spectroscopy for Cluster Ions of Triatomic Molecules

Yoshiya INOKUCHI *Hiroshima University*

Acknowledgment

Prof. Takayuki EBATA (Hiroshima U.)
Prof. Takashi NAGATA (U. of Tokyo)
Prof. Nobuyuki NISHI (IMS)
Dr. Azusa MURAOKA (U. of Tokyo)
Mr. Yusuke KOBAYASHI (Hiroshima U.)
Ms. Ryoko MATSUSHIMA (Hiroshima U.)

Grant-in-Aid for Scientific Research from MEXT Mitsubishi Chemical Corporation Fund

Introduction

Why Ion-Molecule Complexes?

Why IR Photodissociation Spectroscopy?

Why Ion-Molecule Complexes?

Basis of Chemistry!

Nucleophilic Additional Reactions of C=O

Primary process of nucleophilic reactions

Resonance interactions between MOs are important

Formation of Covalent Bonds (1)

Formation of Covalent Bonds (2)

Semi-Covalent Bonds

Involve in chemical reactions whose mechanism not clear?Discover new chemical reactions?

Why IR Photodissociation Spectroscopy?

Experimental

Ion Cores and Solvent Molecules

in cluster ions

Solvent Molecules Bonded to ion core with less or no charge distributed.

localized.

IRPD Spectra of $(CO_2)_n^+$

Anti-symmetric CO stretch (v_3)

IRPD Spectra of $(CO_2)_n^+$

What is lon Core of $(CO_2)_n^+$?

$CO_2^+ \text{ or } C_2O_4^+ ?$

 $(CO_2)_n^+$ have $C_2O_4^+$ ion core.

Structure of C₂O₄⁺

B3LYP/6-311+G*

Structure of $C_2O_4^+$ is controlled by overlap between HOMOs.

16/34

IRPD Spectra of $(CO_2)_n^+$

17/34

Structure of $(CO_2)_2^+$ and $(CO_2)_3^+$

Change of $C_2O_4^+$ band number for $(CO_2)_n^+$ \rightarrow Structural change of $C_2O_4^+$ ion core

In-Phase and Out-of-Phase Combinations

The number of IR bands indicates the planarity.

IRPD Spectra of $(CO_2)_n^+$

Bare $C_2O_4^+$ ion has planar (C_{2h}) structure. Structure of $C_2O_4^+$ depends on cluster size.

20/34

IRPD Spectra of (OCS)_n^+ and (CS_2)_n^+

 $(OCS)_n^+$

IRPD Spectra of (OCS)_n^+ and (CS_2)_n^+

 $(OCS)_n^+$ and $(CS_2)_n^+ \longrightarrow \text{dimer ion core}$. Core structure not so change, different from $(CO_2)_n^+$.

1000 H

Q1. Is $C_2O_4^+$ So Floppy?

PES along out-of-plane torsional motion @B3LYP/6-311+G* Α.

Rather C₂O₄⁺ has hardest structure.

Structural change of C₂O₄⁺ in (CO₂)_n⁺

structural weakness of $C_2O_4^+$

characteristics of solvent molecules

Proposed Structural Change

Intermol.bonds formed between solvent mols. Solvent complex bonded asymmetrically to ion core.

Q2. Why C_2O_2S_2^+ bent?

PES along out-of-plane torsional motion

Q2. Why $C_2O_2S_2^+$ bent?

Contains 2p component of C atom

Q2. Why C_2O_2S_2^+ bent?

Q2. Why C_2O_2S_2^+ bent?

A. Bent structure originates from broad nature of HOMO.

$^{33/34}$ Q3. Why Structure in Experiment and Calculation Different for C₂S₄+?

@B3LYP/6-311+G*

Α.

Intermol. interaction weaker for C₂S₄⁺. Higher-level calculations needed.

Summary

