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Introduction 

!   Why Ion-Molecule Complexes? 
 
 
!   Why IR Photodissociation Spectroscopy? 
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Why Ion-Molecule Complexes? 

Ion-Molecule 
Complexes 

“Chemical Intermediates”�

organic 

sp
ac

e 

Basis of Chemistry! 
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Nucleophilic Additional Reactions of C=O 

Resonance interactions between MOs are important 

Primary process of nucleophilic reactions 

Formation of covalent bond 
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Formation of Covalent Bonds (1) 

M H+ 

Bond order = 1 

Covalent 

(M–H)+ 

Molecule + Proton 

H3O+, NH4
+ 

M• 

Bond order = 1 

Covalent 

M• 

M–M 

Radical + Radical 

H2, H2O, NH3 
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Formation of Covalent Bonds (2) 

M 

Bond order = 0.5 
(M–H)+ 

Molecule + Radical Ion 

M•+ 

“Semi”-Covalent Bond 
“Two-Center Three- 

Electron” Bond 

CO2
+     CO2 

C6H6
+ C6H6

 

Found for 
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Semi-Covalent Bonds 
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!  Involve in chemical reactions whose mechanism not clear? 
!  Discover new chemical reactions? 

Electronic and geometric 
characteristics  

not well understood. 
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Why IR Photodissociation Spectroscopy? 

Resonance interaction occurs in (CO2)2
+. 

No structural information. 

Smith and Lee, J. Chem. Phys. 69, 5393 (1978).	



Electronic Spectra 
High-pressure mass spectrometry 

Hiraoka et al., Chem. Phys. Lett. 146, 535 (1988).	



(CO2)2
+ has higher binding E. 

Thermochem. Measurements 

IR Photodissociation (IRPD) Spectroscopy 
With a mass spectrometer, in the gas phase. 
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This Study 

IR 
Photodissociation 

Spectroscopy 

Quantum 
Chemical 

Calculations 

Electronic and Geometric Structures 

Formation of semi-covalent bonds  
between unsaturated C=O and C=S groups 

(CO2)n
+ (OCS)n

+ (CS2)n
+ 

GAUSSIAN03 
B3LYP/6-311+G* 
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2000-3800 cm-1 	



(1-5 mJ/pulse)	



親イオンと娘イオンを分離�

1000-2200 cm-1 	



(0.2-1 mJ/pulse)	



EI 

Acceleration 
Grids 

Mass 
Gate 

Reflectron 
Power Meter 

Experimental 

(CO2)3
+ 

(CO2)3
+ * (CO2)2

+ 

+ 
CO2 

Yield of  
(CO2)2

+ 

W
av
en
um
be
r 

hν	


(Dissociation 
Threshold) 

Pex 

Pdiss 

Pex Pdiss 

∝
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Ion Cores and Solvent Molecules 

+	



Ion Cores 
The part in which 
positive charge is 

localized. 

Solvent 
Molecules 

Bonded to ion 
core with less or 

no charge 
distributed. 

in cluster ions 



13/34	



IRPD Spectra of (CO2)n
+ 

Anti-symmetric CO stretch (ν3) 

n = 3	
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ν3	
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IRPD Spectra of (CO2)n
+ 

A 
B 

Band position 
almost the same 
as that of CO2. 

	


	



Solvent CO2 
molecules 

Intensity 
decreases with 
increasing n. 

Ion core 

n = 3	



n = 4	



n = 5	



n = 6	



n = 7	



n = 8	



n = 2	
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What is Ion Core of (CO2)n
+? 

C2O4
+	



CO2
+	



IRPD spec. of (CO2)2
+ 

Wavenumber (cm–1)	



Ion core of (CO2)n
+ 

C2O4
+ 

CO2
+ CO2

 

CO2
+ ion core 

(CO2)n
+ have C2O4 

+ ion core. 

CO2
+ or C2O4

+  ? 

B3LYP/6-311+G*	
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Structure of C2O4
+ 

HOMO of CO2 

C2h 

B3LYP/6-311+G*	



Structure of C2O4
+ is controlled by  

overlap between HOMOs. 
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IRPD Spectra of (CO2)n
+ 

B 
n = 3	



n = 4	



n = 5	



n = 6	



n = 7	



n = 8	



n = 2	



Wavenumber (cm–1)	



Fr
ag

m
en

t I
on

 In
te

ns
ity
	

Band number 

alternately changes. 

2000 2100 2200 2300 2400 2500 

x 5 

x 5 

x 5 

x 5 

Structural change of 

whole cluster ? 
or 

C2O4
+ part ? 
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Structure of (CO2)2
+ and (CO2)3

+ 

(CO2)2
+ (CO2)3

+ 

Change of C2O4
+ band number for (CO2)n

+  
→　Structural change of C2O4

+ ion core 

C2h 

C2 

solvent	



ion core	
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In-Phase and Out-of-Phase Combinations 

The number of IR bands indicates the planarity. 

Point Group 
C2h 

(planar) 
C2 

(bent) 

In-phase inactive active 
(weak) 

Out-of-
phase active active 

(strong) 

IR activity of dimer ions 
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IRPD Spectra of (CO2)n
+ 

B 
n = 3	



n = 4	



n = 5	



n = 6	



n = 7	



n = 8	



n = 2	



Wavenumber (cm–1)	
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m
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t I
on

 In
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ity
	



Number of C2O4
+ core band 

changes alternately. 

Structure of C2O4
+ core changes 

alternately. 

C2h	



C2	



C2	



C2h	



C2h	



C2h	



Bare C2O4
+ ion has planar (C2h) structure. 

Structure of C2O4
+ depends on cluster size. 

C2h	



2000 2100 2200 2300 2400 2500 
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IRPD Spectra of (OCS)n
+ and (CS2)n

+ 
Fr

ag
m

en
t I
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Wavenumber (cm–1)	



(OCS)n
+ 

n = 3	



n = 4	



n = 5	



n = 6	



n = 7	



n = 8	



n = 2	



Wavenumber (cm–1)	



(CS2)n
+ 

n = 3	



n = 4	



n = 5	



n = 6	



n = 7	



n = 8	



n = 2	
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IRPD Spectra of (OCS)n
+ and (CS2)n

+ 

(OCS)n
+ and (CS2)n

+        dimer ion core. 
Core structure not so change, different from (CO2)n

+. 

B 
A 

Fr
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t I
on
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ity
	



Wavenumber (cm–1)	



C2 

C2 

C2 

C2 

C2 

C2 

C2 

(OCS)n
+ 

n = 3	



n = 4	



n = 5	



n = 6	



n = 7	



n = 8	



n = 2	



B 

A 

Wavenumber (cm–1)	



C2h 

C2 

C2 

C2 

C2 

C2 

C2 

(CS2)n
+ 

n = 3	



n = 4	



n = 5	



n = 6	



n = 7	



n = 8	



n = 2	

 Solvent 
molecules 

A 

Dimer ion core 

B 
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Structure of Dimer Ion Core 

Cluster Size C2O4
+ C2O2S2

+ C2S4
+ 

n = 2 C2h 

C2 

C2h 

3 C2 

C2 

4 C2h 

5 C2 

6 C2h 

7 C2h 

8 C2h 

n = 2 
calculation 

C2h C2 C2 

S S 
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Structure of Dimer Ion Core 

Cluster Size C2O4
+ C2O2S2

+ C2S4
+ 

n = 2 C2h 

C2 

C2h 

3 C2 

C2 

4 C2h 

5 C2 

6 C2h 

7 C2h 

8 C2h 

n = 2 
calculation 

C2h C2 C2 

Q1. 
Why structure of C2O4

+ 
alternately changes? 

 
 

C2O4
+ so floppy? 
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Structure of Dimer Ion Core 

Cluster Size C2O4
+ C2O2S2

+ C2S4
+ 

n = 2 C2h 

C2 

C2h 

3 C2 

C2 

4 C2h 

5 C2 

6 C2h 

7 C2h 

8 C2h 

n = 2 
calculation 

C2h C2 C2 
Q2. 

Why bare C2O2S2
+ 

has bent (C2) 
structure? 
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Structure of Dimer Ion Core 

Cluster Size C2O4
+ C2O2S2

+ C2S4
+ 

n = 2 C2h 

C2 

C2h 

3 C2 

C2 

4 C2h 

5 C2 

6 C2h 

7 C2h 

8 C2h 

n = 2 
calculation 

C2h C2 C2 

Q3. 
Why structure 

different between 
experiment and 
calc. for C2S4

+? 
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Q1.  Is C2O4
+ So Floppy? 

@B3LYP/6-311+G* 

C2O4
+	



C2S4
+	



C2O2S2
+	



A. 
!  Rather C2O4

+ has 
hardest structure.   

!  Structural change of 
C2O4

+ in (CO2)n
+   

structural 
weakness of 
C2O4

+ 

characteristics 
of solvent 
molecules   PES along out-of-plane torsional motion 
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Proposed Structural Change 

(CO2)2
+ (CO2)3

+ (CO2)4
+ 

(OCS)2
+ 

(OCS)3
+ (OCS)4

+ 

Intermol.bonds formed between solvent mols. 
Solvent complex bonded asymmetrically to ion core. 

C2h 

C2 

C2h 

C2 
C2 

C2 



29/34	



Q2. Why C2O2S2
+ bent? 

C2O4
+	



C2S4
+	



C2O2S2
+	



C2O2S2
+ has deep 

double-minimum 
potential.  

Calc. results agree with 
experimental result.    

C2O2S2
+ 

experiment C2 

calculation C2 
PES along out-of-plane torsional motion 
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Q2. Why C2O2S2
+ bent? 

C2O4
+ C2O2S2

+ 

HOMO 

CO2 OCS 

(top view)	

(side view)	



Contains 2p component of C atom 

C 
O 

S S 

O 
C S 

S 
C 

C 
O 

O 

C O S 

C2 

C2 
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Q2. Why C2O2S2
+ bent? 

Overlap  
between MOs 

Repulsive force  
between components 

 
Dimer + 

Structure 

Completely stacked? Far apart from each other? 
Step-like 
structure 
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Q2. Why C2O2S2
+ bent? 

    A.   Bent structure originates from broad nature of HOMO. 

C2O4
+ C2O2S2

+ 

Overlap increases 
with decreasing the angle. 

C O S 

C O S 

Minimizes repulsive force. 
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Q3. Why Structure in Experiment and Calculation 
Different for C2S4

+? 

C2O4
+	



C2S4
+	



C2O2S2
+	



C2S4
+ 

experiment C2h 

calculation C2 

C2S4
+ has shallow PES 

 → so floppy 

A.              Intermol. interaction weaker for C2S4
+. 

Higher-level calculations needed. 

@B3LYP/6-311+G* 
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C2O4
+ changes structure 

with cluster size. 
C2O2S2

+ has bent (C2) 
structure. 

Structure in experim. and 
calc. different for C2S4

+. 

Summary 

!   The semi-covalent bond 
formed  

in dimer ion core.    

Cluster Size C2O4
+ C2O2S2

+ C2S4
+ 

n = 2 C2h 

C2 

C2h 

3 C2 

C2 

4 C2h 

5 C2 

6 C2h 

7 C2h 

8 C2h 

calculation C2h C2 C2 

Characteristic of solvent 
molecules. 

Broad nature of HOMO 
of OCS. 

Weaker intermolecular 
interaction. 

!   Dimer ion core structure. 

(CO2)n
+ (OCS)n

+ (CS2)n
+ 


