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Abstract This paper describes a design methodology
for piezoelectric energy harvesters that thinly encapsu-
late the mechanical devices and exploit resonances from

higher-order vibrational modes. The direction of polar-
ization determines the sign of the piezoelectric tensor to
avoid cancellations of electric fields from opposite po-

larizations in the same circuit. The resultant modified
equations of state are solved by finite element method
(FEM). Combining this method with the solid isotropic

material with penalization (SIMP) method for piezo-
electric material, we have developed an optimization
methodology that optimizes the piezoelectric material

layout and polarization direction. Updating the density
function of the SIMP method is performed based on
sensitivity analysis, the sequential linear programming

on the early stage of the optimization, and the phase
field method on the latter stage of the optimization to
obtain clear optimal shapes without intermediate den-

sity. Numerical examples are provided that illustrate
the validity and utility of the proposed method.
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1 Introduction

Vibration-based energy-harvesting technologies have a
tremendous amount of potential in various engineering

fields. The devices derive electrical energies by scaveng-
ing from waste mechanical vibration energies. Such de-
vices are expected to provide maintenance-free power

sourcing for small electrical devices such as wireless
sensors. This kind of technology can lead to new sys-
tems for monitoring structural health or implementing

electrical medical devices. Vibration-based energy har-
vesting can be achieved by three different mechanisms:
electromagnetic, electrostatic and piezoelectric. Among

these, piezoelectric research is the more active field over
the past decade. Summaries of the related research and
applications can be found in several review articles (So-

dano et al., 2004; Beeby et al., 2006; Priya, 2007; Anton
and Sodano, 2007; Cook-Chennault et al., 2008).

The piezoelectric energy harvester is constructed
usually of a piezoelectric material with additional masses

located on a base structure. If a vibration has the same
frequency as an eigen-frequency of the device, the de-
vice resonates and the piezoelectric material becomes

highly deformed. Dynamic mechanical stress develops
and a polarization occurs in the piezoelectric material.
A dynamic electric field and an accompanying electric

potential produces an output voltage across attached
electrodes of the device. Several types of base struc-
tures have been proposed, such as cantilevers, cylin-

ders, and clamped curved plates. The operation of the
device exploits its fundamental mode because of its me-
chanical simplicity and clarity. In particular, the me-

chanical model for the fundamental vibrational mode of
cantilever-type devices has been well established (Roundy
et al.; duToit et al., 2005; Erturk and Inman, 2008b).

However, to achieve higher energy-harvesting perfor-
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mances, devices exploiting higher vibrational modes were

also researched. Erturk et al. studied theoretical and
experimental aspects in cantilever-type devices (Erturk
and Inman, 2008a; Erturk et al., 2009). Lee, Youn, and

Jung proposed such devices to exploit multi-modal fre-
quencies (Lee et al., 2009). Tadesse, Zhang and Priya
developed a multi-physical multimodal energy harvester

by combining piezoelectric and electromagnetic devices
(Tadesse et al., 2009). Bourisli studied the optimal piezo-
electric material location in higher vibrational modes

in cantilever-type devices (Bourisli and Al-Ajmi, 2010).
Lee and Youn developed a new energy harvesting con-
cept they named “energy harvesting skin”, which uses

the vibrations of the outer shell of vehicles or plants
devices (Lee and Youn, 2011). In a more innovative
manner, Gonnella, To, and Liu used isolated vibrations

resulting from bandgap effects of the base structure to
energy harvesting (Gonella et al., 2009).

Recently, topology optimization (Bendsøe and Kikuchi,
1988; Bendsøe and Sigmund, 2003) has greatly assisted
the development of piezoelectric energy harvesting de-

vices because it enables a fundamental shape optimiza-
tion of piezoelectric material subject to changes in topol-
ogy. Zheng, Chang, and Gea first studied this topic in

finding the optimal shapes of piezoelectric layers under
static loads (Zheng et al., 2009). Rupp et al. developed
an optimization method for not only the piezoelectric

layer but also the electrode layer and mass layer un-
der forced vibrations (Rupp et al., 2009). Chen et al.
used the level-set method (Wang et al., 2003; Allaire

et al., 2004) which is a type of topology optimization
for cylindrical-type energy harvesters subject to axial
forced vibrations (Chen et al., 2010). Nakasone and

Silva used the piezoelectric material with penalization
and polarization (PEMAP-P) method (Kögl and Silva,
2005), which optimizes simultaneously the shape of the

piezoelectric layer and the poling direction to adjust the
resonance mode shape of the device to an ideal setting
(Nakasone and Silva, 2010). Sun and Kim developed

an optimization method for an energy harvester using
a magneto-electro-elastic laminate composed of piezo-
electric and piezomagnetic materials (Sun and Kim,

2010). Kim et al. considered the effects of some of the
parameters of topology optimization in their designs of
energy harvesters (Kim et al., 2010).

Although the research has contributed to the devel-

opment of novel energy harvesting devices, there still
remain some technical challenges to address. The simul-
taneous optimization of the polarization direction and

the layout of the piezoelectric material is one of these.
In designing energy harvesting devices with multi-node
vibration resonances (Lee and Xie, 2009; Tadesse et al.,

2009; Bourisli and Al-Ajmi, 2010; Lee and Youn, 2011),

adjusting the poling direction of piezoelectric materi-

als appropriately is very important in avoiding cancel-
lation of the electric fields from opposite polarization
directions. A few design examples were studied in the

papers (Rupp et al., 2009; Nakasone and Silva, 2010) by
suitably setting the sign of the piezoelectric tensor to
depend on design variables and updating the variables

using gradient-based optimization methods. However, if
the shape of the piezoelectric material and poling direc-
tion are simultaneously optimized, the poling direction

strongly affects the piezoelectric material optimization
in each iteration. Thus, this type of optimization might
encounter local optima; in other words, the problem

might have a strong initial dependency. To avoid such
problems, a double-loop optimization of the material
layout and the poling direction is developed although
the issue of computational overheads strongly persists.

In contrast, the methodology to decide poling direction
according to criteria based on the state of the device
has been proposed (Lee and Youn, 2011). Lee and Youn

segmented the piezoelectric plate and found the opti-
mal poling direction through their optimization based
on the phase of the electric voltage. However, because

they had not tried topology optimization of piezoelec-
tric material, the single-loop optimization methodology
for the design problem of a piezoelectric material layout

and its poling direction is an open problem.

In this paper, we focus on optimizing the vibration

energy from energy harvesters and specifically poling.
A d31-mode energy harvester using higher-order vibra-
tion modes is composed of a base-plate and a piezoelec-

tric material sandwiched between a pair of electrodes.
The poling direction for such harvesters is simply deter-
mined by the direction of stress applied to the material.

That is, the sign of the piezoelectric tensor is estab-
lished by the direction of polarization. The modified
equations of state are solved by finite element method

(FEM). Combining this methodology with conventional
topology optimization and a phase field method (PFM)
(Takezawa et al., 2010) for piezoelectric materials, we

can implement design optimizations of piezoelectric ma-
terials and their polarization directions. This paper is
organized as follows: a dynamic piezoelectric problem is

first considered. The direction of poling is then set de-
pending on the direction of the resultant polarization.
The optimization problem is then formulated, viz. max-

imizing the electromechanical coupling factor. The pro-
posed optimization methodology is implemented by the
commonly-used SIMP method of topology optimiza-

tion. The relationship between the physical properties
of the piezoelectric material and the density function
is defined and the sensitivity of the objective function

with respect to the density function is calculated. The
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density function is updated using the sequential linear

programming (SLP) in the early stage of the optimiza-
tion. In the latter stage of the optimization, the PFM
updates the density function to obtain clear optimal

shapes without intermediate densities. We provide nu-
merical examples to illustrate the validity and utility of
the proposed methodology.

2 Formulation

2.1 Modifying equations of state

To begin we consider the equations of state pertaining
to the dynamic piezoelectric effect (Landau et al., 1984)

in the domain Ω composed of piezoelectric and base-
structure domains Ωp and Ωb respectively. In ignor-
ing time-dependent effects, only the equilibrium state

needs consideration in the frequency domain. First, we
assume no body forces in the dynamic problem and
solutions to the forced vibration problem of the form

eiωinputtu representing the periodic displacements. The
balance of forces in the solid and Gauss’s law are ex-
pressed as follows{
−∇ · σ(u) = ωinput

2ρu

u = 0 on Γu
(1){

−∇ ·D(V ) = 0
V = 0 on ΓV

(2)

where σ is the stress tensor, u the displacement vector,
ωinput the driving frequency, D is the electric displace-

ment vector, V the electric potential and Γu and ΓV are
boundaries for u and V respectively on which Dirichlet
boundary conditions are imposed. All eigenfrequencies

of the above equation are assumed non-repeated. σ and
D are formulated as follows:

σ = Cε− eTE (3)

D = eε+ ϵSE (4)

where ε is the strain tensor, E the electric field vector,
C the elastic tensor, e the piezoelectric tensor, and ϵS
the permittivity tensor. Using the displacement vector

u and electric potential V , ε and E are defined as:

ε =
1

2

(
∇u+ (∇u)T

)
(5)

E = −∇V (6)

Equations (1)-(6) represent the mutual dependence of
state variables u and V in the piezoelectric problem.

The above-mentioned energy harvester using the d31
mode becomes the design object under consideration.

The simple models of this type are shown in Figure

1(a). The direction of polarization depends on the di-

rection of in-plane stress applied to the piezoelectric
material. Depending on the base-plate deformation, the
direction of stress can be different in the piezoelectric

material. The polarization directions will also be dif-
ferent in the piezoelectric material as shown in Figure
1(b). Since the piezoelectric material is sandwiched be-

tween electrodes, the electric field established by these
polarizations approximately cancel each other result-
ing in a very small field between these electrodes. To

prevent cancellations, the piezoelectric material needs
to be separated on the nodes of vibration with poling
direction properly constructed at the fabrication stage

to unify the direction of polarization in the circuit, as
shown in Figure 1(c). Another way is that the circuit
should be constructed on each part of the piezoelectric

layer (Kim et al., 2005a,b).

Figure 1 is about here.

Finding the optimal poling directions is the preserve
of piezoelectric actuator design optimization. The ba-

sic method to construct an optimal circuit is to set the
design variable that determines the sign of piezoelec-
tric tensor and optimize it (Kögl and Silva, 2005). In

designing piezoelectric actuators or energy harvesters
with complicated shapes, the optimal circuit construc-
tion is certainly hard to find without solving non-linear

optimization problem. However, in the case of energy
harvesters operating in the d31 mode as shown in Fig-
ure 1(b), the circuit design concept is analytically ex-

plained as shown in Figure 1(c). Since the direction of
polarization depends on the direction of in-plane stress
applied to the piezoelectric material, the poling direc-

tion should be changed according to the direction of the
applied stress. In this research, we implement this pro-
cedure to the equations of state and find optimal poling

direction by solving the modified equations of state as
follows:

σ = Cε− es
TE (7)

D = esε+ ϵSE (8)

where

es = se (9)

s =
eεz
|eεz|

(10)

where s is a variable depending on the polarization di-
rection, e the original piezoelectric tensor and eεz is

z-element of the polarization term eε. These modified
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state equations can be regarded as non-linear equations

now parameterized by the value of the state-dependent
coefficient s. The distribution of s at the converged
state represents the optimal poling directions.

For solving by FEM, the above modified equations
of state are represented in the weak form:

−m(u,v) + a(u,v)− b(v, V ) = Lm(v) (11)

b(u, w) + c(V,w) = Le(w) (12)

with

m(u,v) = ωinput
2

∫
Ω

ρuvdx (13)

a(u,v) =

∫
Ω

ε(u)TCε(v)dx (14)

b(u, w) =

∫
Ω

ε(u)TesE(w)dx (15)

c(V,w) =

∫
Ω

E(V )T ϵE(w)dx (16)

Lm(v) =

∫
Γm

tvds (17)

Le(w) =

∫
Γe

σwds, (18)

where v and w are test functions, t represent the trac-
tions on Γm, and σ the surface charges on Γe. During

optimization, we fix Γm and Γe independently of the
values of the design variables.

2.2 Objective function

The objective function of the optimization problem is

the electromechanical coupling coefficient k defined as
follows (Berlincourt et al., 1964):

k2 =
Eem

2

EeEm
=

b(u, V )2

a(u,u)c(V, V )
(19)

where Eem, Ee, and Em are the electromechanical en-
ergy, the electrical energy and the mechanical (strain)

energy respectively. If no charges lie on the boundary,
substituting Equation (12) into Equation (19), k is sim-
plified as follows:

k =
Ee

Em
(20)

Finally, we define the minimization of the inverse of
k as the objective function in optimizing the piezoelec-

tric domain Ωp,

minimize
Ωp

1

k
=

Em

Ee
. (21)

2.3 Topology optimization

To optimize the geometry of Ωp, we used topology op-

timization method as this can perform more funda-
mental optimizations over arbitrary domains including
shape and topology, as specified by the number of holes.

The fundamental idea is to introduce a fixed, extended
design domain D that includes, a priori, the optimal
shape Ωopt and the utilization of the following charac-

teristic function:

χ(x) =

{
1 if x ∈ Ωopt

−1 if x ∈ D \Ωopt
(22)

Using this function, the original design problem for Ω
is replaced by a material distribution problem incorpo-

rating a physical property, χA, in the extended design
domainD, where A is a physical property of the original
material comprising Ω. Unfortunately, the optimization

problem does not have any optimal solutions (Allaire,
2001). A homogenization method is used to perform the
relaxation of the solution space (Bendsøe and Kikuchi,

1988; Allaire, 2001). In this way, the original material
distribution optimization problem with respect to the
characteristic function is replaced by an optimization

problem of the “composite” consisting of the original
material and a very weak material mimicking voids with
respect to the density function. This density function

represents the volume fraction of the original material
and can be regarded as a weak limit of the characteris-
tic function. In optimization problems, the relationship

between the material properties of the composite and
the density function must be defined. We use here one
of the more popular ways, the “solid isotropic material

with penalization” (SIMP) method, which introduces a
completely artificial material property (Bendsøe, 1989;
Bendsøe and Sigmund, 1999; Zhou and Rozvany, 1991).

In this method, quantities relating the three material
properties of the composite used in thermoelectric anal-
ysis, viz. elastic tensor C, piezoelectricity tensor e, per-

mittivity tensor ϵ, and density ρ, are set as functions
of the density of the penalization material ϕ:

C∗ = ϕpCC0 (23)

e∗ = ϕpee0 (24)

ϵ∗ = ϕpϵϵ0 (25)

ρ∗ = ϕpρρ0 (26)

0 < ϕ ≤ 1, (27)

where the upper suffix ∗ signifies that the material prop-
erty relates to the composite, the lower suffix o to the
original material, and pC , pe, pϵ, and pρ are exponents

introduced as positive penalization parameters. The above
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density function is defined only over domain Ωp which

determines D in Equation (22).
Finally, the optimization problem with the addition

of a volume constraint is formulated as follows:

minimize
ϕ

1

k
=

Em

Ee
(28)

and∫
Ωp

ϕdx ≤ UV (29)

where UV is the upper limit of the volume.

2.4 Sensitivity analysis

To perform optimizations, we used the SLP technique,
which requires first-order sensitivity analysis of the ob-
jective function with respect to the design variable ϕ.

Since the derivation is lengthy, only the results are
shown here and the detailed derivation is outlined in
the Appendix.

The two adjoint variables p and q are introduced to
evaluate the sensitivity of the objective function which
depends on the two state variables u and V . The sensi-

tivity of the objective function with respect to function
ϕ is represented as an independent type of objective
function:

J ′(ϕ) =− ωinput
2ρ′(ϕ)up+ ε(u)TC ′(ϕ)ε(p)

− ε(p)Te′s(ϕ)E(V ) + ε(u)Te′s(ϕ)E(q)

−E(V )T ϵ′(ϕ)E(q).

(30)

where p and q are adjoint variables which depends on

the objective function.
The sensitivity of the electrochemical coupling fac-

tor k is calculated as follows:

k′(ϕ) =

(
Em

Ee

)′

=
E′

m(ϕ)Ee − EmE′
e(ϕ)

Ee
2 (31)

To calculate the sensitivity of the mechanical energy
a(u,u), the adjoint variables p and q must be obtained

by solving the following coupled adjoint equations:{
−m(v,p) + a(v,p) + b(v, q) = −2a(u,v)
p = 0 on Γu

(32){
−b(p, w)− c(q, w) = 0
q = 0 on ΓV

(33)

and similarly for the mechanical energy c(V, V ):{
−m(p,v) + a(p,v) + b(v, q) = 0
p = 0 on Γu

(34){
b(p, w) + c(q, w) = 2c(V,w)
q = 0 on ΓV .

(35)

3 Numerical Implementation

3.1 Algorithm

The optimization procedure is performed using an algo-
rithm incorporating the sensitivity calculation and up-
dating the design variable using SLP and PFM (Takezawa

et al., 2010). SLP is used at the early stage of the opti-
mization with the so-called density filter (Bruns et al.,
2002). PFM is used at the latter stage of the optimiza-

tion to obtain clear optimal shapes without intermedi-
ate densities. The optimization algorithm is shown in
figure 2.

Figure 2 is about here.

3.2 Discretization for FEM

FEM is used in this study to solve the modified equa-
tions of state. The internal approximations of the weak

form of the modified equations of state in Equations
(11)-(18) are first formulated as follows:

−m(uh,vh) + a(uh,vh)− b(vh, Vh) = Lm(vh) (36)

b(uh, wh) + c(Vh, wh) = Le(wh). (37)

The lowered suffix h indicates the discretized values.
For simplicity, the discretized value of the state vari-
ables are approximated using the shape functions Nj of

the first-order Lagrange finite elements corresponding
to j-th nodes in accord with the following:

uh(x) =

Nd∑
j=1

Nj(x)uh(xj) (38)

Vh(x) =
Nd∑
j=1

Nj(x)Vh(xj), (39)

where xj is the position of j-th node. Finally, by com-
bining the state equations into one equation and intro-
ducing the discretized test functions v(x) =

∑Nd
j=1 Nj(x) =∑Nd

j=1 Nj(x){1 1 1}T and w(x) =
∑Nd

j=1 Nj(x), the
weak-form equations of state can be formulated in their
vector and matrix form:

(M +K)U = b (40)
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where

M =

[
−Muu 0

0 0

]
(41)

K =

[
Kuu −KuV

KuV
T KV V

]
(42)

Muu = [m(Nj , Ni)]1≤i,j≤Nd
(43)

Kuu = [a(Nj , Ni)]1≤i,j≤Nd
(44)

KuV = [b(Nj , Ni)]1≤i,j≤Nd
(45)

KV V = [c(Nj , Ni)]1≤i,j≤Nd
(46)

U =

{
Uh

Vh

}
=

{
{uh(xj)}1≤j≤Nd

{Vh(xj)}1≤j≤Nd

}
(47)

b =

{
{Lm(Ni)}1≤i≤Nd

{Le(Ni)}1≤i≤Nd

}
. (48)

Since the discretized equation of state in (40) is non-
linear resulting from the dependency of the coefficients

on the state variables, an iterative approach must be
used to obtain solutions. We have used the residual
minimization approach based on the Newton-Raphson

method (Belytschko et al., 2000) whereby the residual
for Equation (40) is defined as:

R = (Ru,RV ) = (M +K)U − b. (49)

The updating of the discretized state vector at the n-th

iteration Un is is obtained from

Un+1 = Un +∆Un = Un −
(
∂R(Un)

∂U

)−1

R(Un).

(50)

The increment ∆Un is calculated by solving the follow-
ing linear system:

∂R(Un)

∂U
∆Un = −R(Un), (51)

with the tangent matrix ∂R(Un)
∂U evaluated as follows:

∂R(Un)

∂U
=

[
∂Ru

∂Uh

∂Ru

∂Vh
∂RV

∂Uh

∂RV

∂Vh

]
. (52)

Because the derivatives of the variable s in Equa-
tion (10) vanish, the tangent matrix as a result equals
M+K. Note that, the converged non-linear state equa-

tions are slow to converge as the solution oscillates
due to the varying sign of the piezoelectric coefficient.
Thus, the Newton-Raphson calculation is performed

with specified iteration times, but is sufficient to ob-
tain optimal poling direction.

The adjoint equations in Equations (32)-(35) are

also solved by FEM. Note that the modified piezoelec-
tric tensor is independent of adjoint variables p and q.
Thus, these adjoint equations are linear and the solu-

tions can be obtained without any iterations.

3.3 Phase field method for shape optimization

PFM for shape optimization (Takezawa et al., 2010),
which is used in the latter stage of the optimization

procedure, is outlined. The method uses the identical
domain representation and sensitivity analysis as the
density function with the SIMP-based topology opti-

mization. Different from the ordinary SIMP, for which
the design variable is updated by the gradient based op-
timization method, the density function is updated by

solving the following PDE so-called Allen-Cahn equa-
tion in the PFM.

∂ϕ

∂t
= κ∇2ϕ− f ′(ϕ) (53)

with

f(ϕ) =
1

4
w(ϕ) + η

J ′(ϕ)

||J ′(ϕ)||
g(ϕ) (54)

w(ϕ) = ϕ2(1− ϕ2) (55)

g(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10) (56)

where t is the artificial time corresponding to the step
size of the design variable, f is the asymmetric double
well potential sketched in Figure 3, and η is a posi-

tive coefficient. Note f has two minimums on 0 and
1. Because of couplings between diffusion and reaction
terms in Equation (53), the density function ϕ is di-

vided into several domains corresponding to the value
0 or 1. The so-called phase field interface correspond-
ing to the intermediate values 0 < ϕ < 1 exists between

these domains. The interface moves into its normal di-
rection according to the shape of the double well po-
tential. Because the interface evolves in the direction of

the lower minimum of the potential, the density func-
tion is updated based on the sensitivity analysis as in
conventional steepest descent methods. As a result, the

optimal shape has clear 0 or 1 domains and negligible
thin phase field interface. Equation (53) is numerically
solved by the semi-implicit method which is a type of

finite difference method (Warren et al., 2003).

Figure 3 is about here.

4 Numerical Examples

The following numerical examples are provided to con-

firm the validity and the utility of the proposed method-
ology. In all examples, the piezoelectric layers are made
from transversely-isotropic PZT-5H, the material prop-

erties of which are listed in Table 1. For base structures,
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we use isotropic aluminum with Young’s modulus E of

73[Gpa], Poisson’s ratio ν and electric conductivity σ of
3.774×107[S/m]. The aluminum layer also functions as
an electrode. The density function ϕ is only set on the

piezoelectric layer, that is, we only optimize the distri-
bution of the piezoelectric material. The optimization
problem in Equations (28) and (29) is solved according

to the algorithm set out in Figure 2. The penalization
parameters pc, pe, pϵ, and pρ in Equations (23)-(27)
are set to 3, 3, 1, and 1, respectively. The positive co-

efficient η in Equation (55) is set to 10. At each itera-
tion, we perform a finite element analysis of the state
equation and one update of the evolution equation for

the phase field function by solving the finite difference
equation of the semi-implicit scheme. The time step
∆t is set to 0.9 times the limit of the Courant num-

ber. All FEM are performed using the commercial soft-
ware COMSOL Multiphysics for quick implementation
of the proposed methodology, and to effectively solve
the equations of state and adjoint with a multi-core

processor. The frequency response problem is solved by
the direct method.

Table 1 is about here.

4.1 Polarization optimization of clamped circular plate

As the first benchmark example, a polarization opti-

mization of clamped circular plate is performed, which
has analytical optima discussed in (Kim et al., 2005a,b)
and is used as a benchmark in (Rupp et al., 2009). Fig-

ure 4 shows a schematic diagram of the design object
structure as a 25[mm] radius circular plate clamped
at its edge. The top layer of the plate is composed

of piezoelectric material with a thickness of 0.127[mm]
and the bottom layer of aluminum with a thickness
of 0.508[mm]. The upper surface of the structure is

grounded. The open circuit voltage is measured be-
tween the top and bottom surfaces of the structure un-
der a pressure of 9.65[kPa] applied to the bottom sur-

face. As both compression and stretching stresses are
applied to different parts of the piezoelectric layer, the
circuit should be separated to avoid cancellation of the

electric field. The distance between the circuit border
and the center is represented as r1. The border is de-
cided based on the distribution of s obtained by solving

Equations (11)-(18) by FEM. A color bar is attached
to the figure to provide greater clarity although s is a
discrete variable having only two values −1 and 1. The

domain is represented as being a 2D axi-symmetrical

disk discretized by 200× 4 rectangular mesh with each

element treated as a first-order iso-parametric element.

Figure 4 is about here.

Figure 5 displays the resulting distribution of the
variable s obtained from the Newton-Raphson method
after five iterations. Since s is plotted at the Gauss point

of each element, its value can be different in each ele-
ment and a gray scaling can be observed as seen in
the domain 0.0152 ≤ r1 ≤ 0.0196. We determined the

border on which the polarization direction becomes re-
versed at the center of the gray domain, that is, r1 =
0.0175 and r1/r0 = 0.7. Figure 6 shows the variation of

the output voltage with r1/r0 from 0 to 1. The verti-
cal dotted line represents the resultant position of the
polarization border r1/r0 = 0.7. According to Figure 6,

the global optima occurs at r1/r0 = 0.71. Although our
result has about 1% error, the proposed method can
be considered as having performed well at finding the

optimal polarization direction.

Figures 5 and 6 are about here.

4.2 Polarization and topology optimization for
cantilever energy harvester

A simultaneous optimization of the polarization and the
layout of the piezoelectric material is performed as the
second example. The cantilever-type energy harvester

shown in Figure 7 is used as design object. The de-
vice is composed of a 0.5[mm]-thick top layer of piezo-
electric material and a 1.5[mm]-thick bottom layer of

aluminum. A periodic displacement input is initiated
from the left side (see figure) using the so-called large
mass method; masses 1×107[kg] are placed at the input

nodes and a unit force applied there along z-direction.
The accelerations of the masses are set to 9.8[m/s2].
No displacements are set for the x and y direction. The

1.5×105[kg/m3] distributed mass is placed on the right
hand edge of the structure. Ground is set on the up-
per side of the structure. Neither surface traction nor

surface electric charge are applied to the structure. In
this type of energy harvester, the first vibrational mode,
having only one anti-node domain, is usually used for

power generation, as oscillations at higher frequencies
having two or more anti-node domains are impractical.
However, these vibrational modes are taken into consid-

eration in this example as a numerical benchmark for
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the proposed method. In the higher vibrational modes,

the polarization optimization is required to avoid the
cancellation of electric field, in similar manner to the
first example. The piezoelectric material layer and the

substrate layer are discretized by 100 × 50 × 1 and
100× 50× 2 cuboid meshes respectively. Each element
forms a first-order iso-parametric element. To reduce

computational demands, the variable s in Equation (10)
is fixed to 1 × 10−3 at the position where |εez| is less
than 1% of the average value of |εez|. Three iterations

within the Newton-Raphson method are performed to
solve the state equations in each optimization iteration.
The volume constraint is set to 60% of the total volume

of the piezoelectric layer.

Figure 7 is about here.

Note that the proposed method can not specify the
mode shape and the corresponding harmonic frequency
of the resulting optimal structure because we treated

only the electromechanical coupling factor as the ob-
jective function. However, because the base plate layer
has three times the thickness of the piezoelectric layer,

the harmonic frequency of the whole structure will not
change significantly. Thus, based on the frequency re-
sponse of the initial structure, the preferred modal shapes

for energy harvesting need to be determined, and the
corresponding harmonic frequency estimated. We use
the two types of structures for which the density func-

tions ρ of the piezoelectric material are uniformly set
to 1 or 0.1, and the variable s set to 1 over the whole
domain. The structure shall be referred to as the “fully-

covered structure” hereafter. Figure 8 shows the strain
energy for each structure subjected to an input vibra-
tion in the frequency range 500-2500[Hz]. The deformed

shapes in the x-y plane at the center of piezoelectric
layer associated with the three anti-node domain is also
shown in this graph at the corresponding frequency. Ac-

cording to the results, the resonance frequency of the
optimal structure operating under the target modes can
be estimated to be about 1800-2000[Hz].

Figure 8 is about here.

Input vibrations at frequencies of 1800 and 2000[Hz]
are used in the optimization. Figure 9 shows optimal
distribution of ϕ and s obtained after 50 iterations of

SLP update and 20 iterations of PFM updates. Ac-
cording to the results, the piezoelectric layer should be
divided into three parts in the domain each part cor-

responding to an antinode. Figure 10 shows the total

strain energy for each optimal structure over the 1750-

2250[Hz] input frequency range and the deformations
at the resonance frequencies. The harmonic frequencies
of both structures are about 1900[Hz] and 1980[Hz] and

the deformations at these harmonic frequencies are al-
most identical to those expected. Figure 11 plots the
objective functions of each structure in the frequency

range 1900-2050[Hz]. Both optimal structures display
finer-tuned performances at their harmonic frequencies.
The vibration characteristic of the optimal result ob-

tained under a 2000[Hz] vibrational input is also checked.
(Being similar, the result for a 1800[Hz] input is omit-
ted.) The frequency response strain energies were plot-

ted in Fig. 8 together with the results for the fully cov-
ered structure. The vibration characteristic of the re-
sults was similar with that for the fully covered struc-
ture with ρ = 1.0. Thus, our assumption that the vi-

bration characteristic of the structure is not sensitive
to the piezoelectric layer layout is valid.

Figures 9, 10 and 11 are about here.

Finally, the performance of the proposed method is
compared with that for conventional topology optimiza-

tions of piezoelectric layers without polarization opti-
mization. The original equations of state in Equations
(1)-(6) are used for FEM in this example. The frequen-

cies chosen for the input vibration were 1800[Hz] re-
spectively. Figure 12 shows the optimal distribution for
ϕ. Blocks of piezoelectric layer are found only in parts

of domain corresponding to antinodes although differ-
ent parts from the previous examples with polarization
optimization.

Table 2 shows the performance comparison among
optimal devices and the fully-covered devices with and
without polarization optimization. The optimal and the

fully-covered devices with optimal polarizations clearly
achieved higher performances than those without opti-
mal polarizations. The reason is clear considering that

all domain parts corresponding to antinodes can be
used in power generation given optimal polarization.
Without polarization optimization, if electrodes con-

nect the top and bottom of the piezoelectric layers and
the vibrational mode has multiple nodes, the piezo-
electric material must be located on only one side of

the antinodes to avoid cancellation of power generating
contributions. In contrast, by comparing optimal and
fully-covered devices, both with optimal polarizations,

the optimal device achieved about 86% performance
with only about 53% of the piezoelectric material in
the fully-covered device. The advantage of integrating

polarization and topology optimizations in terms of the
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effective use of the piezoelectric material has been con-

firmed by these results.

Figure 12 is about here.

Table 2 is about here.

4.3 Polarization and topology optimization for energy
harvesting skin

Our proposed method is finally applied to the design
of energy harvesting skin as a numerical example of
a practical device using higher-order vibration modes

for energy harvesting. This numerical example is based
on that reported in (Lee and Youn, 2011), that has
the appearance of an aircraft skin. In (Lee and Youn,

2011), the energy harvesting skin was designed for mul-
timodal vibrations. However, the optimization was per-
formed for designing devices targeting single-mode vi-
brations in this example. Figure 13 shows the outline of

the design object device. The plate is composited of a
0.5[mm] thick top layer of piezoelectric material and a
2.0[mm] bottom layer of aluminum fixed by rivet joints.

At the rivet joints, z-directional periodic input displace-
ments are actuated using the large mass method sim-
ilar to previous examples. A mass 1 × 107[kg] is fixed

at each of these points and a unit force is applied along
z-direction; there are no x and y directional displace-
ments. The accelerations of the masses are set to 9.8[m/s2].

The upper side of the structure is grounded. Neither
surface traction nor surface electric charge is applied
to the structure. From symmetry considerations, only

half of the design domain is modeled. Both piezoelec-
tric material and substructure layers are discretized by
120×50×1 and 120×50×2 cuboids meshes respectively.

Again each element forms a first-order iso-parametric
element. Again, to reduce computational demands, s
is set to 1 × 10−3 under the same conditions stated

previously. Three iterative calculation of the Newton-
Raphson method are needed performed to solve the
state equations in each optimization iteration. The vol-

ume is restricted to 60% of the total volume of the
piezoelectric layer.

Figure 13 is about here.

The design procedure is as the same with the previ-

ous cantilever example. The target vibration modes are
first determined. Similar to the previous example, be-
cause the base plate layer has four times the thickness

of the piezoelectric layer, the harmonic frequency of
the whole structure will not change significantly. Figure
14 shows the frequency responses over the range 500-

3000[Hz] of the fully-covered devise with the same den-
sity function ϕ for the piezoelectric material set above.
The two target deformations are shown, the arrows

pointing to the respective resonance frequencies; these
modes are referred to as modes A and B. From the
results, the resonance frequency with mode A and B

were estimated to be about 1100-1300[Hz] and 2500-
2700[Hz].

Figure 14 is about here.

For the device operating with a mode A resonance,
an optimization was performed under 1050 and 1200[Hz]
input vibrations; for the mode B, input vibrations were

2600 and 2700[Hz]. Figure 15 shows optimal distribu-
tions of ϕ and s obtained after 50 iterations of SLP
update and 20 iterations of PFM update for each in-

put frequency. The piezoelectric material is located on
antinodes in the domain and s has different sign in
each domain, similar with the cantilever example. The

total strain energies at each frequency and the modal
shapes at the harmonic frequencies are shown in Figure
16(a) and (b). The resonances occurred at a frequency

of about 1140[Hz] with the mode A device in both op-
timal configurations. With the mode B, the resonances
occurred at about 2520[Hz] and 2580[Hz]. Figures 17(a)

and (b) plot the frequency variation for objective func-
tions for each frequency near the harmonic frequencies.
The result for the fully-covered structure is omitted

here as it has quite a large value. All optimal devices
in each frequency range achieved similar performances.
The vibration characteristics of the optimal results ob-

tained under 1050[Hz] and 2700[Hz] input vibrations
are also checked. (Other results are omitted as being
similar.) The frequency response strain energies were

plotted in Fig. 14 together with the results of the fully
covered structure. The vibration characteristics of the
results were similar with those for fully covered struc-

ture. Thus, our assumption that the vibration charac-
teristics of the structure are not sensitive to the piezo-
electric layer layout is valid, the same outcome as for

the cantilever example.

Figures 15, 16 and 17 are about here.
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Table 3 shows a performance comparison at 1050[Hz]

and 2700[Hz] input frequencies for the resulting topology-
optimized devices and the fully-covered devices with
and without polarization optimization. The topology-

optimized device clearly achieved higher performances
than the fully-covered device without optimal polariza-
tions. Moreover, this exceeded even the fully-covered

device with optimal polarization, in contrast to the pre-
vious cantilever-type device. As shown in Figure 14, the
deformations covered a wider domain that also included

nodes, compared to the cantilever-type device. This is
due to the rivet joint connection around the structure.
Thus, in the fully-covered structure, the piezoelectric

material can lie redundant even if the polarization is
optimized. Moreover, the excess piezoelectric material
makes the structure stiffer because of an anti-piezoelectric

effect. Thus, this numerical example confirms the effec-
tiveness of the proposed method in designing energy
harvesting skins.

Table 3 is about here.

5 Conclusion

We have proposed a geometrical optimization method
for piezoelectric energy harvesters using higher-order
vibrational modes. Modified equations of state, for which

the sign of the piezoelectric tensor depends on the di-
rection of polarization, were established so that optimal
poling directions can be found while avoiding cancella-

tions of the electric fields due to opposite polarizations
in the same circuit. The modified equations of state are
nonlinear partial differential equations that are solved

by FEM. Combining this methodology with the conven-
tional SIMP method for piezoelectric material, an opti-
mization method has been developed for designing the

piezoelectric material layout and polarization direction.
Updating the density function of the SIMP method was
performed based on sensitivity analysis, the sequential

linear programming (SLP) and the phase field method
(PFM). The numerical examples provided illustrate the
validity and utility of the proposed methodology.

The optimal topology and poling directions obtained

can be implemented by ordinary means. Because the en-
ergy harvesting skin is built by attaching a piezoelectric
plate on the surface of the vibrating device, the optimal

result can be actualized by cutting the plate according
to the optimal shape and attaching it face-up or down
in accordance with the optimal poling direction. Al-

though the generating power is lower, PolyVinylidene

DiFluoride (PVDF) piezoelectric film could make man-

ufacturing easier.
This methodology was considered to be especially

effective designing the device using complicated vibra-

tional modes such as those used in energy harvesting
skins (Lee and Youn, 2011). As shown by this example,
to find the optimal location of piezoelectric material is

important to improve device performance and reduce
the total use and cost of the material. To perform also
topology optimizations under various vibrations with

complicated deformations, the poling direction must be
optimized at each iteration. The proposed method ob-
tained approximated optimal directions using nonlinear

FEM.
Following on from the work described in this paper,

there are some opportunities for further research. First,

we ignored for simplicity sake some important factors of
the vibration-based energy harvesting in the numerical
examples. These factors include adjusting the harmonic
frequency to the specified frequency of the input vibra-

tion, constructing a closed circuit and finding optimal
value of the resister, and a parametrical study of some
geometrical size; these are basic important design con-

siderations for energy harvesting devices. Moreover, the
currently proposed methodology cannot apply if eigen-
frequencies are repeated near the target frequency. To

confirm the utility of the proposed method in the design
of energy harvesters, we require the simultaneous opti-
mization of the poling direction, the layout of the piezo-

electric material, and the above-mentioned factors.
Second, aside from the structural problem, the elec-

tric circuit or its controls affect strongly the perfor-

mance of the energy harvester (Makihara et al., 2006).
Although only the open circuit model has been con-
sidered, the optimization should be performed based

on real circuit settings so that realistically-designed de-
vices can be studied.
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Appendix

In this appendix, the detailed derivation of the sensi-
tivity in Equation (30) and the adjoint equations in

Equations (32)-(35) is outlined. The derivatives of the
objective functions with respect to the density func-
tion are based on the procedure shown in Chapter 5 of

(Allaire, 2007). The general objective function of piezo-
electric problem is defined as J(ϕ) =

∫
j(u, V )dx. The

derivative of this function in the direction θ is then

⟨J ′(ϕ), θ⟩ =
∫

j′(u)⟨u′(ϕ), θ⟩dx+

∫
j′(V )⟨V ′(ϕ), θ⟩dx

=

∫
j′(u)vdx+

∫
j′(V )wdx

(57)

where v = ⟨u′(ϕ), θ⟩, w = ⟨V ′(ϕ), θ⟩. Setting adjoint
states p and q as test functions of the weak-form equa-

tions of state in Equations (11)-(18), the Lagrangian is

formulated as follows:

L(ϕ,u, V,p, q)

=

∫
j(u, V )dx−m(u,p) + a(u,p)− b(p, V )− Lm(p)

+ b(u, q) + c(V, q)− Le(q).

(58)

Using this, the derivative of the objective function can
be expressed as

⟨j′(ϕ), θ⟩

=

⟨
∂L

∂ϕ
(ϕ,u, V,p, q), θ

⟩
+

⟨
∂L

∂u
(ϕ,u, V,p, q), ⟨u′(ϕ), θ⟩

⟩
+

⟨
∂L

∂V
(ϕ,u, V,p, q), ⟨V ′(ϕ), θ⟩

⟩
=

⟨
∂L

∂ϕ
(ϕ,u, V,p, q), θ

⟩
+

⟨
∂L

∂u
(ϕ,u, V,p, q),v

⟩
+

⟨
∂L

∂V
(ϕ,u, V,p, q), w

⟩
.

(59)

Consider the case where the second and third terms are
zero. These terms are calculated as follows:⟨
∂L

∂u
,v

⟩
=

∫
j′(u)vdx−m(v,p)+a(v,p)+b(v, q) = 0,

(60)⟨
∂L

∂V
,w

⟩
=

∫
j′(V )wdx− b(p, w) + c(w, q) = 0. (61)

When the adjoint states p and q satisfy the above ad-
joint equations, the second and third terms of Equation
(59) can be ignored. On the other hand, the derivatives

of Equations (11) - (18) with respect to ϕ in the direc-
tion θ are

−m′(u,p)−m(v,p) + a′(u,p) + a(v,p)

−b′(p, V )− b(p, w) = 0
(62)

b′(u, q) + b(p, q) + c′(V, q) + c(w, q) = 0 (63)

where

m′(u,p) = ωinput
2

∫
Ω

ρ′(ϕ)upθdx (64)

a′(u,p) =

∫
Ω

ε(u)TC ′(ϕ)ε(p)θdx (65)

b′(p, V ) =

∫
Ω

ε(p)Te′s(ϕ)E(V )θdx (66)

c′(V, q) =

∫
Ω

E(V )T ϵ′(ϕ)E(q)θdx. (67)
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Substituting Equations (62) and (63) into Equations

(60) and (61) and combining them into one equation,
the following equation is obtained:∫

j′(u)vdx+

∫
j′(V )wdx

=−m′(u,p) + a′(u,p)− b′(p, V ) + b′(u, q) + c′(V, q)

(68)

Substituting Equation (68) into Equation (57) yields
following equation:

J ′(ϕ) =− ωinput
2ρ′(ϕ)up

+ ε(u)TC ′(ϕ)ε(p)− ε(p)Te′s(ϕ)E(V )

+ ε(u)Te′s(ϕ)E(q)−E(V )T ϵ′(ϕ)E(q).

(69)

Next, the adjoint equations are calculated from Equa-
tions (60) and (61). When the electric energy c(V, V )
is considered as the objective function, it is formulated

as follows:

J(ρ) =

∫
j(u, V )dx

= c(V, V ).

(70)

Thus,∫
j′(u)vdx = 0 (71)∫
j′(V )wdx = 2c(V,w) (72)

Substituting Equations (71) and (72) into Equations

(60) and (61) respectively gives following equation

m(v,p)− a(v,p)− b(v, q) = 0 (73)

b(p, w) + c(w, q) = 2c(V,w) (74)

When the strain energy a(u,u) is considered as the
objective function, it is formulated as follows:

J(ρ) =

∫
j(u, V )dx

= a(u,u)

(75)

Thus,∫
j′(u)vdx = 2a(u,v) (76)∫
j′(V )wdx = 0 (77)

Substituting Equations (76) and (77) into Equations
(60) and (61) respectively gives following equation

2a(u,v)−m(p,v) + a(p,v) + b(v, q) = 0 (78)

−b(p, w) + c(q, w) = 0. (79)
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Fig. 1 Cross-sectional view of the deformed cantilever-type
energy harvester. (a) With uni-directional polarization. (b)
With bi-directional polarization. (c) Reversing poling direc-
tion to avoid cancellation of the electric field

Set an initial value of density function φ

Calculate the state variables and the variable s
by solving Equations (11)-(18) using FEM.

Calculate the objective function
and the constraints.

Calculate the adjoint variables by solving
Equations (31)-(34) using FEM.

Calculate the sensitivities of
the objective function and the constraint.

Update density function φ using SLP or PFM

Converged?

End

Yes
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Fig. 2 Flowchart of the optimization algorithm
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Fig. 3 The outline of the double well potential used in PFM
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Fig. 6 The relationship between the output voltage and the
ratio r1/r0
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Fig. 7 Design object structure of cantilever type energy harvester
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Fig. 8 Total strain energy of the fully covered structures and
an optimal result under 500-2500[Hz] input vibrations. The
optimal result was obtained under 2000[Hz] input vibration.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Optimal distributions of ϕ and e. (a) ϕ of 1800[Hz] input after SLP update. (b) ϕ of 1800[Hz] input after PFM update.
(c) e of 1800[Hz] input after PFM update. (d) ϕ of 2000[Hz] input after SLP update. (e) ϕ of 2000[Hz] input after PFM update.
(f) e of 2000[Hz] input after PFM update.
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Fig. 10 Total strain energy of each optimal structure under 1750-2250[Hz] input vibration.
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Fig. 11 Objective function of each optimal structure and
fully covered structure under 1900-2050[Hz] input vibration.

Fig. 12 2000[Hz] input optimal distributions of ϕ without
polarization optimization.
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Fig. 14 Total strain energy of the fully covered structures and optimal results under 500-3000[Hz] input vibrations. Optimal
results for Mode A and B were obtained under 1050[Hz] and 2700[Hz] inputs respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 15 Optimal distributions of ϕ and s. (a) ϕ of 1050[Hz] input. (b) s of 1050[Hz] input. (c) ϕ of 1200[Hz] input. (d) s of
1200[Hz] input. (e) ϕ of 2600[Hz] input. (f) s of 2600[Hz] input. (g) ϕ of 2700[Hz] input. (h) s of 2700[Hz] input.
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Fig. 16 Total strain energy of each optimal structure. (a) For the mode A under 900-1400[Hz] input vibration. (b) For the
mode B under 2250-2750[Hz] input vibration.
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Fig. 17 Objective function of each optimal structure. (a) For
the mode A under 1050-1250[Hz] input vibration. (b) For the
mode B under 2400-2800[Hz] input vibration.

Table 1 Material properties of transversely-isotropic PZT-
5H
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Table 2 Performance comparison of the topology optimized and the fully covered devices

Harmonic frequency
with the specified mode [Hz]

Electromechanical
coupling coefficient [%]

Volume

[mm3]
Topology optimization
with polarization optimization 1960 4.3 1428
without polarization optimization 1920 3.1 941
Fully covered
with polarization optimization 2040 4.9 2500
without polarization optimization 1960 0.4 2500

Table 3 Performance comparison of the topology optimized and the fully covered devices

Harmonic frequency
with the specified mode [Hz]

Electromechanical
coupling coeeficient[%]

Volume

[mm3]
Topology optimization with
polarization optimization

1140 5.1 1404

Fully covered
with polarization optimization 1240 3.0 3000
without polarization optimization 1220 2.2 3000
Topology optimization with
polarization optimization

2580 3.9 1423

Fully covered
with polarization optimization 2800 3.7 3000
without polarization optimization 2720 0.1 3000

For mode A
(Input frequency 1050[Hz])

For mode B
(Input frequency 2700[Hz])


