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Chapter 1

Introduction

1.1 Outline of this thesis

The nonlinear Schrédinger equation

(1.1.1)

iOu+ Au= Al 'u, t30,€), 23R,
u(0,x) = up(x), x>R".

appears as relevant model in great various physical phenomena: for example,
nonlinear waves such as propagation of a laser beam, water wave, plasma wave
(e.g. [22]).

On the other hand, (1.1.1) has been extensively studied in the mathematical
literatures (e.g. [3]). In genaral, since Schrodinger equation is often ill-posed in
other than L? based spaces, in fact, the linear Schrédinger equation is ill-posed
in C€ (see Section 5.2 in [15]), most of the mathematical literatures for (1.1.1)
are investigated under L? based spaces.

The important property of Schrédinger equations is that Schrodinger oper-
ator U(t) = e has a smoothing effect of a solution. The effect is described as
LP-LP” estimate

\U@B\Ls > Ct "5 2N\G\ e

for 1 > p>®> p > €. Hence, from LP-LP” estimate, we obtain so-called
“Strichartz’s estimate” to play an important role to show the existence of the
solution for (1.1.1) (see Section 2.1).

Moreover, (1.1.1) has some of conservation laws. The typical conservation
laws are as follows:

The conservation law of the mass

\u(t)\zz = \uo\r2,
The conservation law of the energy
E(u(t)) ==\ u()\r2 + m\u(t)\Lp+l = E(uo),
The conservation law of the momentum

P(u(t)) := Im rﬂg at) u(t)dz = Plug),



The pseudo conformal conservation law

Mo+ 2it Dt + o5\
= \2uo\%, 4)\(n(}; n 1) 4) Q s\u(s)\gﬂds.

The aim of our study is to investigate how conservaton laws play a role in a
behavior of the solution of various nonlinear Schrédinger equations.

Generally, we take two steps to construct a time global solution for the
Cauchy problem of (1.1.1) (see [3]). The first step is to construct a time local
solution to Duhamel’s integral equation by combining a contraction argument
with Strichartz’s estimate. The next step is to extend the solution to the time
global solution by using conservation laws of the mass and the energy.

Moreover, by applying the conservation law of the momentum, we can get a
observation of a variance \zu\?, (see Section 2.5.4). Also, the pseudo conformal
conservation law is essential for a observation of the asymptotic behavior of the
solution of (1.1.1) (See Section 2.5.3). Hence, to investigate (1.1.1), it is very
important to obtain conservation laws.

For example, we obtain formally the conservation law of energy by multi-
plying the equation (1.1.1) by @, integrating over R", and taking the real part.
There are basically two methods to justify the procedure above. One is that
solutions is approximated by a sequence of regular solutions, using the continu-
ous dependence of solutions on the initial data. The other is to use a sequence
of regularized equations of (1.1.1) whose solutions have enough regularities to
perform the procedure above (see Section 2.4). However, these two methods in-
volve a limiting procedure on approximate solutions. Instead, for (1.1.1), Ozawa
[19] derives conservation laws of the mass and the energy by using additional
properties of solutions provided by Strichartz’s estimates.

Next, we consider defocusing nonlinear Schrodinger equations in dimension
n > 4.

} z@tu—kAu:f(\MF)ua t3[0,€), z >R, (1.1.2)

w(0,z) = up(z), x>3R",
The unknown function u has the following non-vanishing boundary condition:

@)+ po as [elt €,

where py > 0. The nonlinear term f is assumed to be defocusing as follows:

f(po) =0, fXpo) > 0. (Hy)

(1.1.2) describes various physical backgrounds such as Bose-Einstein conden-
sation, superfluidity, and nonlinear topics (dark soliton, optical vortices) (see
[17], [20]). Because of the boundary condition, we can not consider (1.1.2) in
L? based spaces, namely it is difficult to investigate (1.1.2). Two important
model cases for (1.1.2) have been extensively studied both in the physical and
mathematical literatures: the Gross-Pitaevskii equation (where f(r) =r 1,
po = 1) and the so-called “cubic-quintic” Schrodinger equation (where f(r) =
(r po)Br 2a po), 0<a<po).



Here, we focus on Gross-Pitaevskii equation

} i+ Au=(juf 1u, t3[0,€) z3R", (1.1.3)

u(0,2) =uo(x), =>5R".

Since Béthnel-Saut [2] proves that the Caucy problem (1.1.3) is globally well-
posed in 1 4+ H' for n = 2, 3, many mathematican have been studied (1.1.3).
In particular, for n = 2, 3, Gérard [21] proves the global wellposeness of (1.1.3)
for large data in

Bpy = }u > Hypo(R"); u> L*(R"), Julf po > L*(R")(

Furthermore, Gallo [8] proves that for n > 4, (1.1.2) under suitable assump-
tions on f is globally wellposed in E,,.

In this thesis, for the equation (1.1.2) in n = 2, 3, 4, we derive the conserva-
tion law for time local solutions without approximating procedure. Instead of
that, we use Ozawa’s idea [19]. Note that when n = 1, because H* ¢ L€ , Gallo
[8] derived it without approximating procedure, and that for n ~ 2, Gallo [§]
derives it using the approximate argument (see a proof of Threorem 3.1.4). We
follow Ozawa’s idea, however, we can not derive the conservation law only by
Ozawa’s idea, due to the nonlinear term and the space of solutions. We derive
the conservation law to combine Ozawa’s idea with decomposing the nonlinear

term f(|lu|P)u as

n

f(IIu\F)u=X(Dx)(f(IW)U)+/ (1 X(D2))P;j(D2) 0z, (f (ulf)w),

1

where x 3 C§ (R") is a cutoff function and P;(§) = i&;/|¢|F, by applying the
method for the decomposition of Schrédinger operator in Gérard [9] (See Lemma
3.1.3). Moreover, note that we can decompose uy 3 E,, as uy = ¢ + wy such
that ¢ > F satisfying the following condition (1.1.4) and wy > H! (see Lemma
3.1.4):

¢3C5 (R"),  ¢3HER")", [pf po>L*R"). (1.1.4)
Our main result in this thesis is as follows:

Theorem 1.1.1. Letn =2, 3, 4. Let py > 0, and f > C*(Ry.) satisfying (Hy).
Moreover, we assume that there exist ay ~ 1, with a supplementary condition
a1 <afifn=3,4 (ag=3ifn=3, af=2 if n =4) such that

TC, >0, sit. Ir~ 1, [f®()]|> Cor 1 F (k=1,2). ()
Let ¢ be a function satisfying
¢ Ci(R"),  ¢>H*RM", [P po> L*R"). (Hg)

Let w > C([0,T], HY(R™)) be a mild solution of the integral equation

w(t) = U(t)wo iﬂtU(t £FF (w(tF)dt™
0



for some wo > H' and T > 0, where F(w) :== Ag¢+ f(|p +w|F)(¢ + w).
Then Fw(t)) = Hwp) for all t 5 [0,T], where

)=V 1 @+ wbde+ ) vilp+wlfyaa.

Rn

and

Vr):= ﬂr f(s)ds.

Moreover, as a corollary to the main result, we can deduce a globally well-
posedness of (1.1.2). Due to Theorem 1.1.1, we can remove a technical assump-
tion of the nonlinear term. We have the following result:

Corolary 1.1.1. Let n = 2, 3, 4. We assume that f and ¢ satisfy the same
assumptions as in Theorem 1.1.1, with a supplementary assumption as f sat-
isfying (Hg,) for some as > R with oy «ag > 1/2. Then (1.1.2) is globally
well-posed in ¢ + H(R™). That is, for any wo > H'(R™), there exist a unique
w > C(R, HY(R™)) such that ¢+w solves (1.1.2) with the initial data w(0) = wp.
Moreover, for any T > 0, the flow map wo ¥ w (H' 1 C([0,T], HY)) is Lips-
chitz continuous on the bounded sets of H'(R™). The energy Fw) is conserved
by the flow.

This thesis is organized as follows: In Chapter 2, we present previous works of
the nonlinear Schrédinger equation (1.1.1). First, we give the representation of
a solution of the linear Schrodinger equation and Strichartz estimates. Next, we
consider a local wellposedness of (1.1.1) in some of L? based spaces. Moreover,
we derive exactly various conservation laws of (1.1.1). Finally, we state global
behaviors for solutions of (1.1.1), given by applying conservation laws.

Chapter 3 is devoted to present previous works for defocusing nonlinear
Schrodinger equations with non-vanishing boundary conditions (1.1.2). First,
we state that for n = 2, 3, (1.1.3) is globally wellposed in 1 + H' with a large
initial data, proven by [2]. Secondly, we present that [9] proves the existence
of energy solution for (1.1.3) with a large initial data. In particular, we in-
troduce methods to decompose the element of F, , and observe an action of
Schrodinger operator in E, . Finally, we show that for n > 4, (1.1.2) under
suitable assumptions on f is globally wellposed in E,; by [8].

In Chapter 4, we introduce a new method to derive conservation laws of
the mass and the energy for (1.1.1) by using additional properties of solutions
provided by Strichartz’s estimates proven by [19].

Chapter 5 is devoted to introduce the main result of this thesis. First, we
present the main result, and that we can improve the result of [8] by applying
the main result. Next, we give estimates of the nonlinear term and results of
the time-derivative term needed for the proof of the main result, respectively.
Finally, we prove the main result.

In Appendix, we present the notation and some of results, used in this thesis.



Chapter 2

Basic results of nonlinear
Schrodinger equations with
power type nonlinearity

2.1 Fundamental properties of linear Schrodinger
equations

In this section, we consider the Cauchy problem for the linear Schrodinger equa-
tion

(2.1.1)

i0u+ Au=0, t>3][0,€), x>R",
U(O,l‘) = ’U,()(I), r > an

where u(t,z) : [0,€ )+ R™ + C and the initial data ug is a complex valued
function on R™. S(t) denotes the fundamental solution of (2.1.1), that is

1 iz ?
LI 2.1.2
(4mit)yn2© (2.12)

S(t) =
The solution of (2.1.1) is described as
u=S(t) e ug = U(t)ug,

where U(t) is Schrédinger operator . For (2.1.1), we have the following
result:

Theorem 2.1.1 (e.g. [23]). Let s 3 R and ug > H*(R™). Then there exists a
unique solution u = U(t)ug of (2.1.1) with

u3C([0,€ ), H*R") { C*([0,€ ), H* *[R"))

Note that for some f > C(R, H®), a solution of the Cauchy problem

) Au = to>R R™
}z@tu+ u=f, 5 R, x> R", (2.13)

u(0,2) =0, z>R"



is described as

Thus, for the Cauchy problem

} iOu+Au=f, t3[0,€), 3R, (2.1.4)

u(0,2) =ug, x3>R",
we obtain the following result:
Theorem 2.1.2 (e.g. [23]). Let s > R and up > H'(R"). Let f > C(R, H®).
Then there exists a unique solution

= Ut)u ZQ Ut s)f(s)ds

of (2.1.4) with
u3C([0,€), H*(R™)) { C'([0,€ ), H® *(R™)).
We present smoothing properties for the solution of Schrédinger equations.

Proposition 2.1.1 (e.g. [3]). Let p 3 [2,€ ). Then
n(L 1
U@ \Loee) 2 (@l "3\ Loty

for all ¢ 3 LP(R™) and t = 0.

Combining Proposition 2.1.1 with Hardy-Littlewood-Sobolev inequality and
duality argument, we get some of estimates called Strichartz’s estimates. We
need the following definitions to mention them:

Definition 2.1.1. (i) A positive exponent p*is called the dual exponent of p
if p and p™satisfy 1/p + 1/p>= 1.

(ii) A pair of two exponents (p,q) is called an admissible pair if (p.q) satisfies
2/p+n/qg=mn/2, p~2and (p,q) = (2,€ ).

Strichartz’s estimates are described as the following Theorem:

Theorem 2.1.3 (Strichartz’s estimates, e.g. [3]). The following properties
holds:

(i) For every ¢ > L*(R™), the function t{ U(t)e belongs to
C(R,L*(R™)) { LY(R, L"(R"™))

for any admissible pair (q,r). Furthermore, there exists a positive constant

C such that
\U(Jo\Lar,zry = C\p\ 2
for all ¢ > L2(R™).



(i) Let I —R be an interval. (p1,q1) and (pa,q2) denote admissible pairs. Let
to > I. For any f > LPT(I, L), the function

Y O4(2) mU s)f(s)ds

belongs to -
C(I,L*(R™)) { LP2(I, L%(R")).

Furthermore, there exists a positive constant C' not depending on I such
that

\‘I)f\LPQ (I,L92(R™)) = C\f\Lpl u, 1,959 (®R"))
for all f > LPY(I, LIT(R™)).

Corolary 2.1.1 (e.g. [3]). Let s > R and I =R be an interval. (p1,q1) and
(p2, q2) denote admissible pairs. Let to > I. Then

(i) for any ¢ > H*(R™),
\U@®)P\Ll ®, 1z @) = C\O\ms®n),
\U()o\Lr1 .8z, @) = C\P\mo(@n)-

(ii) for any f > L*(I, H*(R™)),

t
ﬂ U(t T)f(T)dT Z C\f\Ll(LHs(Rn)).
Ll (I,H*(R"))

(iii) for all f > LPT(I, By (R™)),

i
Mo nwar > C\P\ i e ooy
LP2(I1,B;, ,(R™)) 72

L (R™) = .7 denotes a Schwartz space on R”. We state a factorization of
U(t) called Dollard decomposition.

Proposition 2.1.2 (e.g. [3]). For any ¢ 3.7,

Ut)p = M(t)D(t)S M(t)¢,
where
Proof. Using
$ el e = e T S W= Gl oo

we calculate

Ut)p =8 ‘exp( itlElF)S

10



— (27) /28 Yexp( itlEP)] o
1 i:£2

= Gm 00
= ””4“¢>< )a
- (4m’t)"/2 ¢ Yy

i(z? 20wty ?)
| - 4@ d
(47mt (4rit)n/? e o (y)dy

1 iz ? dxhy

T @mityn/? g

ix? 1 1 L)y y? d
—e 4t — 2z T
N REICH R ) o) { !
iz ? 1 y? X
=T TSl ¢])2t(
= M(t)D(t)S M(t)o.
This completes the proof. ]

2.2 Local wellposedness of nonlinear Schrodinger
equations with power type nonlinearity

In this section, we consider the Cauchy problem for the nonlinear Schrédinger
equation

(2.2.1)

i0pu + Au = AP 'u, t>1[0,€), 2 >R",
u(0,2) = up(z), x>3R",

where, A 3 R, p > 1, u(t,z) : [0,€ )« R™ + C and the initial data wuy is a
complex valued function in R". In what follows, f(u) denotes AJulP ‘u. We
present some of local wellposeness results of (2.2.1)

Theorem 2.2.1 ([24]). Let 1 <p < 144/n. Let (q,r) be some admissible pair.
For any ug 3 L?, there exists T > 0 such that there exists a unique solution

u> C([0,T); L*) { LL.((0,T); L")

of (2.2.1). Moreover, u depends continously on ug in L?. Namely, there exists
To > 0 depending only on \ug\rz such that if yug,(S_, —L? satisfying uon T
ug in L? asn 1 € , then there exist u, > C([0,Tp], L?) such that corresponding
solutions of (2.2.1) with w(0) = g, for n large enough, satisfying

sup \un(t) u(t)\r2 > C\ugpn  uo\2T 0

tD[0,To]
asn?t €, where C is a positive constant not depending on \ug\ 2.

Proof. We show that the map

B(u) = Ut)uo mﬂU $)(lP Lu)(s)ds

11



is a contraction mapping in
Xr =}v > C([0,T],L%) { L7((0,T), LP*);
\U\LJT L2 + \U\L%L;ﬂrl > 3Co\ugp\ 2 =: M(,
d(vi,v2) = \v1 U2\L;Lv+1

with 0 = 4(p+1)/n(p 1). First, using Strichartz estimate and Hélder inequal-
ity, we estimate that for all u > X,

\@(u)\Ly, 2 + \‘I)(U)\L;Lpﬂ
> VO e+ [ TUC P s

L

Tl/2

AU ()0 g o1 + QU(t (P ) (s)ds

Lg.Lp+1t

> 2Co\uo\ 2 + C (|ulf 1“€L%ﬁxp+n/p
> 26’0\“0\112 + C\ Lo"ﬁLp+1

Z2Co\U0\L2+CT5Mp (5 n>1+n p|:)
> M

if T is sufficiently small depending only on \ug\z2, which ®(v) > Xr holds.
Similarly, we see that for any u, v 2 X,

d(®(u), ®(v)) =\®(u)  P(v)\rgLr+
ﬂ Ut s)}lulP 'u)(s)  (blP v)(s)(ds
Lg.Lp+!
HU‘HU lu ||U|fJ lng%"i(wl)/v
C Pl + olP )l legLamm)/p

(\U\Lo Lo+l T \U\La Lp+1)\u U\L%LPJrl

> CT‘SMP Yd(u,v)

vV

Y

1
> id(ua 'U)

if T is sufficiently small depending only on \ug\ 2, which ® is the contraction
mapping in X7. In conclusion, we get a local L? solution u of (3.1.5).

We show that for all admissible pair (¢,7), v > LLL". Using Strichartz’s
estimate and

w = U)o zAﬂU $)(lP Lu)(s)ds

we can compute

\i\zo ze > \U(E)o\ g 1 + AQ U )P u)(s)ds

Lirr

> Co\vo\ L2 + CT&\U\Q%LM—l

12



> Co\vo\r2 + CT MP "\u\ g 1p+1,
which implies v > LLL".
Next, we show the uniqueness of the solution. We denote a corresponding

solution of (2.2.1) with v(0) = ug by v 3 C([0,T]; L?) { L, ((0,T); LP*1). We
define t1 by

t; =suptt 3 [0, 7], u(s) = v(s) a.e. for all s> [0,t]{.

If t1 =T, then we get the desired cliam. We assume t; < T. From Strichartz’s
estimate and Sobolev embedding, it holds that

\u O\ Lo([tyta], L0t 1)

Aﬂ Ut s tu P to)(s)ds
LG([tlth]va_'J)
Ew b (*[ R

1 ) (\u\ t1,t2 ],Lp+1) +\U\ch(( [t1,t2], Lp+1))\u U\L”([tl,t2],LP+1)

v

Y

el
for all to 3 (t1,T)]. If to satisfies

C(t t2)5(\u\iv(1[t1,t2],m+1) + \U\ia(l([tl,tz],mﬁ)) <1,

then we get
\u  V\Lo(fty b0, 01y = 0,

which yields u = v a.e. on [t1,s]. This contradicts the definition of ¢;.
Finally, we show a continuous dependence. Let }ug,(5_; — L? such that
upn T upin L? asn 1 € . Then, there exists no > N such that if n & ng, then

\UO,n\Lz Z 2\UO\L2 (222)

Hence, from (2.2.2), it follows that there exists Ty > 0 uniformly for n such
that u, > C([0,Tp], L?) of (2.2.1) with u,(0) = ug,,. Note that there exists a
constant C' > 0 such that

\u\Lg Loer + sup \un\rLg rp+1 > C\uo\L2. (2.2.3)

n—mo

Furthermore, using Strichartz’s estimate and (2.2.3), we estimate

\un “\L\f 2+ \un U\L%Lpﬂ
> 2Co\uo,, U0\ L2

+ Cfg(\u”\i;lmﬁ + \“\Iz%lmﬂ )\un U\L%Lp+1
> 2Co\uo o\ s

+ C(\UO\LZ’)fS(\Un U\L‘T L2+ \un U/\L%LP‘Fl)-

If T is sufficiently small depending only on \ug\rz, then it follows that

\tn, u\L\T 2 + \uy u\L%LPH >2Co\uo,n,  uo\L2-

13



Repeating the above procedure, we get
\Un U\L\Tofﬁ > C\ugn,  uo\z2T 0

asn T € . Note that we can recover the interval [0, 7] thanks to (2.2.3). This
completes the proof. ]

Remark 2.2.1. Ezactly, in the above proof, we show that the map ® is the
contraction mapping in

Xp = Yo 3 LE ((0,T), L2) { L7((0,T), LP*1);
\U\L|T 2 + \U\L%Lerl > 3CO\UO\L2 = M<7

d(vi,v2) = \v1 U2\L;Lv+l~

By Theorem 2.1.3, we can prove that the solution u belongs to C([0,T],L?) {
Le((0,T), LP*1).

From now on, we put a(n) =1+ -4 ifn~ 3 and a(n) =€ ifn=1, 2.

Theorem 2.2.2 ([16]). Let 1 < p < a(n). Let (¢,7) be a some admissible pair.
For any ug > H', there exists T > 0 such that there exists a unique solution

u > C([O,T];Hl){ La ((O,T);Wl’p'H)

loc
of (2.2.1). Moreover, u depends continously on ug in H*

Proof. We show that the map
w) = U A 10 90l s

is a contraction mapping in
Xr=}v3C(0,T], HY) { L°((0,T), WhrThy,
\o\zl, £z +\v\ Lz w1 > 4Co\uo\ g1 =1 M,
d(vi,v2) = \v1 2\ pg e

with 0 = 4(p+1)/n(p 1). First, combining Strichartz estimate with Holder
inequality and Sobolev embedding, we deduce that for all u > X,
\@(u)\z), £z + \P(u)\Lg Lr+1

> \U(t)uo\p), 12 + QU@ $)(lP Lu)(s)ds

Ll L2

AU\ g oss + QU(t (P L) (s)ds

Lg.Lp+1t

> 2Co\uo\ 2 + C (|ulf 1“€L%°1<p+1>/p
> 2Co\uo\ 2 + C\u\”

&2
Ly PLrtt

Z 2CO\UO\L2 —+ CTl/Uoﬁ\U\i\T Hl

14



> 2Co\ug\z2 + CTY P MP
> M/2

if T'is sufficiently small depending only \uo\ z1. Hence, it follows from Strichartz
estimate, Holder inequality and Sobolev embedding that

\ @\zp 2 +\ P(u)\pg e

>\U() uo\zy ze + QU@ $) (P 'u)(s)ds

Ll L?

U)o\ g 1o + QU(t $) (llP Lu)(s)ds

>2Co\ wuo\r2+C QIUHD ! “gyfz(pm/p
> 20\ wuo\r2 4+ C\ \}2\ le+1\ U\LG%LPH
Z 200\ UQ\L2 + CT(S\U\ 1\ U\Lo Lp+1

n+2 (n 2)p
2(p+1)

Lg Lr+1

> 200\ wo\zz + CT°MP (§ := )
> M/2

if T is sufficiently small depending only on \up\g1. Thus ®(v) > Xp holds.
Similary, it holds that for all u, v 3 Xy,

AB(w), B(0) = \B(u)  B(0)\ g 1o
ﬂU P tu)(s) (P to)(s)(ds

lp tu ol 1U€LaT°z<p+1>/p

>Cp(llp *+plP Yl U||€Laoi<p+1>/p
(\U\Lg Lot T \U\E Lp+1)\u V\Lg Lo+t

> CT&(\U\% mH\O\L, Lo\ 0\ g Lo

> CTMP d(u,v)

1

> 2d(u v)

Y

Lg.Lr+!

v

if T is sufficiently small depending only \uo\ g1, that is ® is the contraction
mapping in X7. In conclusion, we get a local H! solution u of (3.1.5). remaining
assertions follow easy from way similar to Theorem 2.2.1. ]

Remark 2.2.2. For H' solution u > C([0,T], H') with initial data ugp > H*,
it holds that w > CY([0,T),H 1). Indeed, putting to > [0,T], using Sobolev
embedding and a continous dependence, we obtain that

\(u®)  flulto)\g + 2 \f(ut))  Futo)\ en

= C(\u(t )\Lp+1 + \U(to)\Lp+1)\ u(t)  u(to)\rr+
> COu\L) g +\NL ) \u(®) ulto)\m

15



T 0
astt to, and
\Au(t)  Aulto)\g + > \u(t) u(to)\m: T 0
astt to. Hence, it follows from the equation (2.2.1) that
\dwu(t)  Owulto)\m + 2 \f(u(®) flulto))\m + +\Au(t) Aulto)\n
T 0
ast 1 to, which implies u > C*([0,T], H 1).

Remark 2.2.3 (see [3] and [16]). For H' solution u > C([0,T], H) with initial
data ug > H', the following results hold:

(i) if ug > H?, then u > C([0,T], H?),
(i1) if up 2 X, then u> C([0,T],%),
where ¥ = }f 3 HY; of > L*(.
Next, we present a locall wellposedness result for H* solutions of (2.2.1).

Theorem 2.2.3 ([4]). Let 0 < s < min}l,n/2( and 1 <p < 1+4/(n 2s).
Let (v, p) be a admissible pair defined by

_ n(p+1) B 4(p+1)
“arser D % O %) 224

For any ug > H?®, there exists T > 0 such that there exists a unique solution

u > C([O,T]; Hs) { L?oc((O,T); B;Q)

of (2.2.1). Moreover, u depends continously on ug in H®.

Proof. First, note that the following Lemmas holds:

Lemma 2.2.1 ([4]). Let 0 < s < 1. Let p > 1 satisfying (2.2.4). f(u) denotes
AplP tu. Then

\f@\s:, > C\u\G: | (2.2.5)
V@) FO\pez COnG, o\ e e (226)
for allu, v> B} 5(R").

Proof. Noting that c = (p 1)pB/(p pF=n(p+1)/(n 2s), Holder inequality
implies

Al Mo\ g N\ o \0\ Lo (2.2.7)

From (2.2.7), it follows that for any y > R,

V@(x y) f@)R\ == COulx y\Ga" +\e\L Nu(x y) u(H o
> O\ \u(x ) (R Lo
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Therefore, using Lemma 6.2.5 (ii), we get
g > OV (225)
Thus, Combining (2.2.7) with Lemma 6.2.5 (i), (2.2.8), we compute

Vs, 2 COS U\ Lot \F (g2 )
> C(\u\po"\u\ro + \u\ial\u\fag,z)
> C\u\,"\u\s: - (2.2.9)

Here, s < n/2 implies p ~ 2. Thus, Lemma 6.2.4 yields Bj ,(R") ¢ H**(R").
Since s < n/2 implies sp < n, by using Gagliardo-Nirenbreg inequality, we
obtain H**(R™) ¢ LP(R™) for all p > [p,n(a+2)/(n  2s)]. These imply

S
B/>72

(R") ¢ Lrp+/(n 29) (g, (2.2.10)

Combining (2.2.9) with (2.2.10), we get (2.2.5). Similarly, it follows from Holder
inequality, (2.2.10) and (2.2.7) that

\f(u)  f0)\pr=> C(\“\in}wl)/(n 2 T \U\in}wl)/(n o) \U V\Le
> O\, o\ e v\,
This complete the proof of (2.2.6). O

We back to the proof of Theorem 2.2.3. We show that the map
¢
Su) = Uty M1 UE s)(lp "u)(s)ds
0

is a contraction mapping in
Xr=}usC(0,T],H*){ L"((0,7), B} 5)
\u\Ly e > M, \u\pyps, > M(,
d(u,v) :==\u  v\gj 2 +\u  V\py e,

where, M = 2C1\uo\gs. First, combining Strichartz estimate with Holder
inequality, Sobolev embedding, we deduce that for all u > X,

\CI)(U)\L}B;2

> \U(t)uo\ s, + AQ Ut s)(llP u)(s)ds

> Ci\uo\ms + C\|ulf 1u\L}°735002
> Cy\ug\ s + CTH @ D0 2D/4\)\P
> M

vy s
B2

17



if T is sufficiently small depending only on \ug\ gs. Similary, since
\@(u)\ryp:, = M,
®(v) 3 X7 holds. Moreover, it follows that for all u, v 3 Xr,
d(®(u), (v))
=\®(u) )\, 2 +\2(u) P(v)\L21
2 Am Ut s)}lulf tu)(s)  (blP v)(s)(ds

Ll

+ AmU Y(IP tu)(s)  (IP To)(s)(ds

L).Le
=>C HUH" fu b P 1U€Lﬁpw
>Cp(llp *+ P Yl vllgmoipm
(\U\LwBs +\v \L~Bs N \pzp, (0=(4 a(n  2s))/4)
20T5M” Yd(u,v)

L2

—_

> §d(u, v)

if T is sufficiently small depending only on \ug\ g+, which ® is the contrac-
tion mapping in X7. In conclusion, we get a local H® solution u of (3.1.5).

Remaining assertions follow easy from way similar to Theorem 2.2.1.
O

2.3 The derivation of various conservation laws
for nonlinear Schrodinger equations with power
type nonlinearity

We present a method to derive formally the various conservation laws for (2.2.1).

We can obtain formally the conservation law of the mass \u\z2 by multi-
plying the equation (2.2.1) by @, integrating over R™, and taking the imaginary
part as follows:

0=2Im(i0;u+ Au  Ap|P 'u,u)pe
= 2Im(idu, u) >
= 2Re(Osu, u) 2

d
= Z\u()\3s.
Next, We can obtain formally the conservation law of the energy F(u) by mul-

tiplying the equation (2.2.1) by dsu, integrating over R™, and taking the real
part as follows:

o
|

2Re(idpu + Au AulP tu, Opu) e
= 2Re(Au, 0u)r> + 2Re(AMulf *u, Ou) -

18



=2Re( u,0; u)r2 +2Re(A|ulP 'u,dpu)e

d

= S E(ult),

where
2
E(u) =\ u\i»+ m\u\iﬂl-

Also, we can obtain formally the conservation law of the moumentum P(u) by
multiplying the equation (2.2.1) by 4, integrating over R™, and taking the real
part as follows:

0=2Re i0u+Au Al *u, u<L2
=2Re(iOu, u)rz 2Re(Mulf 'u, wu)p: = —P(u(t)),
where

P(u) = Imm u udz.
RTL

Finally, we present a method to obtain formally the conservation law of the
pseudo conformal conservation law

2 QA P
Va2t Ju(h\Es + = (V]
= \zuo\2s “("(i +1) 4)Qs\u(s)\gﬁds. (2.3.1)

First, by multiplying the equation (2.2.1) by |l|f%, integrating over R”, and
taking the imaginary part, we deduce that
0=2Im(i0su + Au  Au|P ‘u, ||Pu)L:
= 2Im(idu, |[r|Pu) 2 + 2Im(Aw, f|Pu) 2

_ %\xu(t)\%z otml ) wx (pfa)dz
RTL
= %\xu(t) 2 QImﬂ u X227 + || w)dx
Rn
= i\xu(t)\zﬂ 4Imm u xrudx. (2.3.2)
dt R7L

Combining
ouxeu = X(Ou)zm) n(Ow)u (Ow)r X T

with divergence Theorem, we compute
d
o Im ﬂ u xeudx

=1Im ﬂ u xedyudr + Im ﬂ Oyu xxudx
R R"

19



Imm u xxdyudz + Im ﬂ X((Opu)zw)dx

Rn

nImﬂ (Oru)udx Imn (Opu)x X udz

= 2Imﬂ u xroyudz nlmm (Opu)udzx. (2.3.3)
RTL

Note that combining
2Reﬂ ( uxx)x udx

R

(

—2Rem / 8k)/ xjaju< Opudx

n

n {7
:2Rem / aku—i—/ x;0j ku , Opudx
:2Rem / |Bku\Fdx+J 7;0; pu xOpudx
=1

R!L
=2\ u\L2—|—2Reﬂ J 2,0 pu xOpudx
with

A::2RemJ 2;0; ku XOpudz
Ry fizy
= 2Reﬂ K/ Oku X0, xjaku<dx
R™ [
=1

2Re/ ﬂ J P u|Pdz 2Reﬂ J Opu x ;0; ju( dx
=1 R" 4=y R™ o Ji=1

= 20\ u\i. A,
we deduce that

2Reﬂ (uxer)x udr=(2 n)\ u\is.
be

Hence, using (2.3.3) together with

2Im ﬂ u xedyudz

R’!L
—orel | welBu AR Tu)de
R’!L
:2Reﬂ u xeAudx 2Reﬂ A uxelulf tude
]Rn ]R"L
:2Rem ( uxr) x udw Lﬂ zx (|ulPt™)de
R™ p+1 R

20



2nA

=(2 n)\ u\l 1\ \Prh
and
niml | @uyade = niml ) i(Au AP “w)adz
Rn Rn
aneﬂ (Au AplP ‘uw)udz
Rn
= nRem u x udz nReﬂ Mulp tunds
Rn R"
= n\ u\l: X\u\Pi,
we obtain

d
— Im ﬂ u xrudr
dt R™

—2 w\ ade S (el ade aaagt)

p+1

=2\ wu\%: + An}fill)\u\gi} (2.3.4)

2\ g+ 2t 2ot e

p+1 p+1

= 2B (ug) + W\ \ptl. (2.3.5)

Concatenating (2.3.5) and

BE) =\ 20t a0\ + 87

T\

=\zu(t)\72 + 42\ u(t)\72 + 2Reﬂ 2it u(t) xeu(t)d + Ajtji \u(t)\P1]

=\zu(t)\1: +4t*FE(ug) 4t Imm u(t) xeu(t)dz,

we get
ho%et) = %\xu( t\2, + 8tE(ug) 4Imm u(t) >xau(t)dx
4& Imﬂ u(t) xeul)de
= 8tE(ug) Imﬂ u(t) xwcu(t)da

An(p 1) 4
8tE (ug) 4t)2E(u0) + ((er))\u(t)\gﬁ
dA(n(p 1) 4
- ((p+1)) \u(t)\P11. (2.3.6)
In conclusion, we see that
82\

\(+2it Ju(t)\I> + ﬁ\U(t)\Zﬁ
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A 1) 4
p+1

= \7uo\ 72 ﬂt s\u(s)\gﬁds.

0

2.4 Justification of the derivation of conserva-
tion laws

In this section, we justify the method to derive conservation laws of the mass
and the energy for H' solutions of nonlinear Schrodinger equation (2.2.1) as in
Section 2.3. To Justify the method, we present two approximating arguments.

2.4.1 Justification of the derivation of conservation laws
by Sequence of regularized equations whose solu-
tions have enough regularities

In what follows, let p 5 Co(R™) with 0 > p > 1, p(z) = 0if |||~ 1, E p(x)dr =

1. We denote p.(z) = ﬁp Z( by pe.

g
We consider the Cauchy problem for the nonlinear Schrodinger equation

} i0pue + Aue = pe o f(peoue), t>[tg T,to+T], ©>R", (2.4.1)

ue(to, x) = (pe ®up)(x), = >R™
For (2.4.1), we have the following result:

Theorem 2.4.1 (e.g. [23]). Let 1 <p < a(n) and 0 <e < 1. For all ug > H',
there exists T' > 0 such that there exists unique solution

u.>  CY[to T,to+T), H?) (2.4.2)

of (2.4.1) with
\U\LI (it Tto+T),HY) = 2\Uo\ 1+ (2.4.3)

Moreover, denoting a solution of (2.2.1) replacing ug to u(ty) by
udC([to T,to+T),H), for2>q> a(n) +1,

sup \ue(t)  uw(t)\p« T 0 (2.4.4)
DIy

ase T 0.

Proof. From now on, L} X denotes the Banach space LP([to T,to+T], X) for
p > [1,€ | and a Banach space X.
We show that the map

B) = U)o ou0) il VU@ 5)o0 e f(pr o))

is a contraction mapping in

Xto = }U > C([to T> tO +T]7H1) { LU((tO Ta tO + T)v Wl’p+1);
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\U\LLOHl + \’U\L%W1,p+1 > 4Co\vo\ g1 =: M,

d(vl, ’1)2) = \’1)1 UQ\LgOLp+1
with 0 =4(p+1)/n(p 1). By Housdorff Young’s inequality, since we have

\po ® uo\ g1 > \uo\ g1,
\pe @ v\ s > \v\Ls

for all v 5 LY with ¢ = 1, we can show that ® is the contraction map in the way
similar to Theorem 2.2.1. Indeed, combining Strichartz’s estimate with Holder’s

inequality and Sobolev embedding, we deduce that for all u. > X,
\(I)(utS)\LLUL? + \(I)(ua)\L;’OLPH

AU s uo\ey o+ J 1 U )o@ Flpe 0 u))(s)ds
0 L}, L2

{
U0 0 wo\rg, oo + [ 10 902 0 70z 0 u)) ()5
0 Ly Lrtl
> 200\,05 i UO\L2 + C\Ps ° (Ps i UE)\LgOOi<p+1>/p
> 2Co\uo\r2 + C\f(p o Us)\LgU"i<p+1>/p

> 2Co\uo\r2 + C\pe o UE\ZU%LPH
to

> 2CO\UO\L2 + C’\ug\p

L;’;fBLP+1
> 2Co\uo\ 12 + CTl/UOﬁ\“S\ﬂoHl

Z 2CO\UJO\L2 + CTl/aoﬁMp
> M/2

if T' satisfies CTY?PMP > 2C)\ wu\r2. Hence, it follows from Strichartz’s

estimate, Holder’s inequality and Sobolev embedding that
\ Q(u)\zj £z +\ P(uc)\rg Lo+

S\UW) (o ouo)\ag o+ [ VU ) (oo o f(pe 0 u))(s)ds
0 L}, L2

VO (e ow\ugire+ [ U0 ) (ce Flpeou)(s)as

Lg Lr+1
>2Co\ (peoup)\rz +C\ (pc® f(p-® Us))\q(ji@ﬂ)/p
>2Co\p-® uo\rz+C\p-o f(p-e Ue)\Lg;i(pH)/p
>2Co\ uo\r2+C\ f(pco ue)\LgO"i(p+1)/p

>2Co\ uo\r2 +C @05 eulf t (p-ouc) LgPL@n/p
>2Co\ ug\r2 +C\p: o Us\ﬂoleH\Pe . Us\Lg(stpﬂ

>2Co\ wo\r2 + C\UE\IELJL T\ UE\Lfof’?Lpﬁ—l
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> 200\ UO\L2 + C’Té\us\p 1\ ug\La Lp+1

n+2 (n 2)p

> 20, 2+ CTOMP (§ =
>2Co\ wuo\r> + ( 2(p+ 1)

)
> M/2

if T satisfies CT° MP > 2Co\u\ 2. Thus ®(u.) > X7 holds. Similary, it holds
that for all u., v. > X7,

A(P(ue), ®(v2))
= \‘P(Ue) q)(’ljg)\LgOL;ﬂrl

ﬂU s)p- @ }f(pe o) flpe o v)(ds

>
Lg Lrtt
> ﬂU Hlpoe o uclP pe ous)(s)  (Joe o velP Lo o 0:)(s)(ds
Ly Lo+
> “%’UEHD peous |pcovf 1,05'115 LEL+1) /P

C ((lloc ® uclf '+ e ® ve|P 1)”05 eu.  pe e LEL@+1)/p
>C 6(\[’8 d ua\i 1Lp+1 +\p- o UE\IE\ le+1)\p€ o (uc Ua)\L;’O Lp+1
> CT(S(\“&\ J, L+t + \”s\ Lp+1)\us UE\L;’OLPH

> CT‘S(\ug\ L+ \UE\ Hl)\uE UE\L;,OLPH
> CT° MP 1d(u€,v5)

1
Z id(uaa vE)

if T satisfies CT°MP ' > 1/2, that is ® is the contraction mapping in Xr.
In conclusion, we get a local solution u of (2.4.1). Uniqueness of the solution
follows easy from way similar to Theorem 2.2.1.

Next, by Duhamel principle, we can transform the equation (2.4.1) to a
integral equation

e = U()(p- » wo) zﬂ Ut $)pe s f(pe o ue)(s)ds. (245)
Multiplying (2.4.5) by 9% for all multi-index «, we get
0. = U (£)(9 pe @ uo) zﬂ Ut 5)(@%pe o f(pe 0 u2))(s)ds,
which impies

u.> C(to T,to+T],H). (2.4.6)

By the equation (2.4.1), this yields (2.4.2) (see Remark 2.2.2).
Next, we show (2.4.3). Using (2.4.5), we obtain

Vu\y 2 \UO e sun)\or e+ [ 1 U $)pe o Fpe o) (s)ds
0 L‘ H1
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p+1

> \p= @ u(to)\mr + Co\p= ® f(pe o us)\LGDWLPTf
> \u(tO)\Hl + CO\f(pa L4 UE)\LUOWL :

> \u(to)\ g1 + CTY P MP + CTO MP
= 2\u(to)\m1,

if T satisfies CTY P MP 4 CTOMP < \u(to)\ -
Finally, we show (2.4.4). we estimate that

\u Ue \Lgo Lp+1

> \U(t)(uo Pe ® UO)\L;’OLpH

+ QU(t (F(u) e Flpe o ue))(s)ds

LgOLPJrl
> \U Pe ® UO\L2 + \f(u) Pe ® f(pe L4 us)\L“ﬁ,%
>\u  pceug\r:
S g FN s Ao e S0 g f(prou)\ e

>\u  p-oup\ L2

V@ peo f@\ e N W) flpwu)\ e

>\u  peeup\r2
AT pe 0N,y
+ CT&(\“\?L;IP =+ \UE\iltolHl Nu  pce Ue\L%LPH
>\u  p-oup\L2
PV e S0
+ CT&(\U\i%lHl + \Ue\ﬁolm Nu pe @ u\pz Lo+
+ CTé(\“\iLOIHl + \“E\ﬁolm Nu ue\pg poe
>\u  peoug\r2
PV e SNy
+ CT‘S(\u\i‘tolHl +27 Nu(to)\2N\u pe o u\ g Lo+
+ C’T‘S(\u\i‘tolHl + 27 Nu(ty) le)\u ua\LftToLp+1.
Therefore, if T is small enough depending on \U\L\tOHl and \u(to)\ g1, then we
obtain
\u  ue\pg Lo 2 \u pe @ ug\L2
+ CT‘S(\U\}ELOlHl +27 Nulto)\Fn' \u pe o u\ g poos
T 0
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as ¢ T 0. Applying Strichartz’s estimate and Gagliardo-Nirenberg’s inequality,
this implies (2.4.4). O

Using Theorem 2.4.1, we can prove exactly the following result:

Proposition 2.4.1 (e.g. [23]). Let ug > H'. (g,7) denotes some admissible
pair. Let T > 0. Assume that u is a corresponding solution of (2.2.2) satisfying

w3 C([0,T): HY) { L, ((0,7); WHT).

loc

Then, it holds that
E(u(t)) = E(uo),
\u(t)\z2 = \uo\ >
for all t > [0,T], where

2
E(u)=\ u\}.+ m\u\ﬁil-

Proof. We take ty > [0,T]. By applying Theorem 2.4.1, there exists T> (0,7)
such that there exists a solution

Ue D C'([to ﬁto +ﬁHj)

of (2.4.1) replacing ug to u(to). Namely, u. satisfies (2.4.3) and (2.4.4). In what
follows, we put I = [to T',to + T]. Multiplying the equation (2.4.1) by 7.,
integrating over R”, and taking imaginary part, we caluculate
0= ZIm(iatus +Au. peo f(p-o Us), Ug) 2
=2Im(i0puc,uc)pz  2Im(pe ® f(pe @ ue), ue) 2

_ %\ue(t)\%z 2Im(f(p- ® ue), p- ® ue) g2
d 2
= %\ua(t)\Lz,

which yields
\ue()\£2 = \ue(to)\r2 = \pe ® u(to)\r>

for all t 5 Iz. Combining (2.4.4) with p. e u(to) T u(to) as € o0, when & o0,
we deduce

\u(t)\z2 = \u(to)\r2 (2.4.7)

for all ¢ > 1.
Moreover, multiplying the equation (2.4.1) by O;u., integrating over R™, and
taking the real part, we compute

0= 2Re(i0iuc + Au.  p: o f(pe @ uc), yue)r2
= 2Re( Ug, Oy UE)L2 + 2Re(f(pa ° u6)7 3t(,05 i ua))Lz
d

2\
= dt>\ “6\%2 + m\ﬂs L4 us\ﬁ:l )
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which implies

2\

\ uc‘\%2 + m\pe b Ua\itﬁl—l
~ 2N .
=\ (e ulto)\E o\ e ) (248)

for all ¢ 5 I, where p; = p. @ p.. By (2.4.3), (2.4.4) and Sobolev embedding,
we obtain that

1 1
H\Ps hd UE\Zziﬂ \ U\ijﬂ

- Q lp= o uclf** Jp < o ulf*||dz

] ool o

>C \peou\j,0 +\pe @ u\] 1 < \Pe ®Uc e @ U\Lpi
+C \p-o u\:l[)/p+1 + \“\iwl < \pe®u  u\Lp+1

=C \uE\][),erl + \U\ip+1<\ue u\pr+1
+ C\“\ipﬂ \p-ou  u\pp

ZC)\Us\i\ (If;H1)+\“\]Z\ (Iz:HY) \ue  u\gp+1
+C\u\}, (Ij:;Hl)\pE.u u\pp+1
> C Nulto) g + N0\ (g (e 0z
+ C\u\7, (If;Hl)\Pa eu  u\rr
T 0
as € o). Similarly, we get
oz e ulto\7EL \utta)\ZEL 10

as € od). Furthermore, we deduce from (2.4.3) and (2.4.4) that

u-(t) T u(t) weakly in H' as e o0,
\ w(t)\r2 > lim%nf\ ue(6)\ L2,
el

\ (peeulto))\r2 =\ ulto)\r2

for any ¢t 5 Iz. We show that u.(t) T w(t) weakly in H'. From (2.4.3) and
Theorem 6.2.2, it follows that there exist }e,(5_; — (0,€ ) with &, oc0 and
v > H! such that u., T v weakly in H! asnt €. By (2.4.4), uc T win L?
as € o). Therefore, we deduce that

Du v, 0l l|Z D ue,@lrzw p2ll+ Due,  violmem ol
T 0

as € o), which implies u(z) = v(z) a.e.x 3 R™, where .7°%= .(R") denotes the
space of tempered distributions on R". Hence, we obtain that u., 1 u weakly
in H' asn 1 €. Putting }p, (5, —-7 such that ¢, T ¢ in H !, we have

Due  w, @ g g 1|> e ve,, 0 PmlEem 1l
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+ Due  Ue,s Pml 2w 2|l
+ hue,  w,lgem
> (\ue\mr +\ue, \g1)\¢  @m\n 1
+ (\ue  u\pz +\u ue, \£2) \@m\ 12
+ e, wolmrenm 1l
T 0
as € o) and n, m 1T € . Note that €, n and m is independent of each other.
Thus, this implies u(¢) T u(t) weakly in H' for all ¢ 3 Iz. Furthermore, By

Thereom 6.2.1, we can give \ u(t)\r2 > liminf, ¢\ w.(¢)\z2. In conclusion,
it follows from (2.4.8) that if € o0, then

E(u(t)) > E(u(to)) (2.4.9)

for any t > I7. Thus, taking t; > Iz, when we consider the Cauchy problem for
(2.4.1) replacing ug to u(ty), if T is sufficiently small ( by using \u\r| g1, we
set T again ), then we can take the same T as the existence time of the solution.
Hence, in the same way as above, we have

E(ulte)) > E(u(ty)). (2.4.10)

By E(u(t)) > E(u(tg)) for any t > I, this contradicts (2.4.10). Therefore,
(2.4.9) yields
E(u(t)) = E(u(to))

for all £ > I7. In conclusion, for any ¢y > [0,T), there exists T > 0 such that

\u(t)\r2 = \u(to)\r2, E(u(t)) = E(u(to))

for all ¢ > Iz. Using the proof by contradiction, we deduce that

\u(®)\£2 = \uo\rz, E(u(t)) = E(uo)

for any ¢t > [0,T]. This completes the proof. O

2.4.2 Justification of the derivation of conservation laws
Applying the continuous dependence of solutions on
the initial data

We present the other method to justify the calculation to derive the conservation
law of the mass and the energy for H! solution of (2.2.1) as in Section 2.3.

Let ug > H'. Let u be a corresponding solution u 3 C([0,T], H') of (2.2.1)
with u(0) = ug as in Theorem 2.2.2. We remark that u > C([0, 7], H') satisfies
the continuous dependence on the initial data. Then, there exists }ug ,(5_; —
H? such that uon T up in H' as n 1t €. Moreover, combining Remark 2.2.3
with the continuous dependence, there exist u, > C([0,T], H?) such that a
corresponding solution of (2.2.1) with w,, = ug, if n is sufficiently large.

For each u,,, we can execute the calculation to derive the conservation of the
mass and the energy as in Section 2.3. That is, we obtain

\tn()\L2 = \won\r2, E(un(t)) = E(uo.n)
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for all t  [0,7] and each n > N. Using the continuous dependence and Sobolev
embedding, we deduce that for any ¢ 3 [0, 7],

Nun(\p2 \u(®)\L2[[Z \un(t)  w(t)\r2
>\un  u\pp 21T 0
asn?T €,and

E(ua(®) B>\ wa\z: \ u@)\L|
> Chun(®\7EL \u( NG

= (\un\zh g+ \u\ph g )\un  u\L)
+ (\Un\ileHl + \U\inlHl)\Un u\L), m

+0

asn T €. Thus, for any ¢t 3 [0, 7],

\u(t)\r2 =\uo\r2, E(u(t)) = E(uo)

hold.

Remark 2.4.1. Actually, to obtain the mass consevation law for H' solutions
of (2.2.1), we don’t need the approzimating arguments as in Section 2.4.1- 2.4.2.
Howewver, for L? solutions, we need the similar argument.

2.5 Global behavior of nonlinear Schrodinger equa-
tions with power type nonlinearity

In this section, we consider a global behavior of nonlinear Schrédinger equation
(2.2.1).

2.5.1 Globall wellposedness results

First, we present results for global wellposedness of (2.2.1).

Theorem 2.5.1 ([24]). Let 1 <p < 1+4/n. Let ug > L?. Assume that (q,7)
is some admissible pair. Let u > C([0, Trmax), L?) { L ((0,Tiax), L") be the
corresponding maximal solution of (2.2.1) in Theorem 2.2.1. Then Tyax = € .

Moreover u > L€ ([0, € ), L?).

Proof. Obviously, the consrvation law of the mass implies the desired assertion.
O

Theorem 2.5.2 ([16], cf. [23]). Let 1 < p < a(n). Let ug > H'. Assume that
(q,7) is some admissible pair. Let u > C([0, Trmax), H') { LL (0, Tmax), WhT)

be the corresponding maximal solution of (2.2.1) in Theorem 2.2.2. If A > 0, or
A <0 andp<1+4/n, then Tyax = € . Moreover u > LS ([0,€ ), H').
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Proof. Assume that T},,x < € . Combining the conservation of energy and mass
with Gagliardo-Nirenberg inequality, we see that

\u(®)\22 > E(ug) + C\u(t)\PT1,
> E(ug) + C\  u(t) i(217+1)\u( O\ (1 6)(p+1)

> E(ug) + C\  u(t)\2F \up\ (L, OPHY (2.5.1)

where 0 = n(p 1)/2(p+1). Noting that O(p + 1) = w < 2, there exists

> 0 depending only on \ug\ g1 such that \ w(t)\r2 > M for allt 3 [0, Trax)-
rom the conservation law of mass, this implies that there gxists M > 0 depend-
ing only on \ug\ g1 such that

\ u@)\m =M
for all t 3 [0, Tiax). We choose tg 3 [0, Tmax). We can construct the corre-
sponding solution u; with u1(0) = u(tp) as in Theorem 2.2.2. Indeed, we can
show that there exist 7' > 0 such that there exists a solution u; 3 X of (2.2.1)
replacing ug with u(tg), where
Xr = }v 3 C([to, to + T], H') { L7((to,to +T), WHPH);
\UNLI (fto,to+T1:22) + \O\Le (fto,to+ 11w 1+1) 2 4C0\u(to)\ 1 = 4Co M,
d(vi,v2) =\v1  v2\rg e+

with 0 =4(p+1)/n(p 1). Note that T" depends only on M. Furthermore, we
denote the solution u(") on [0, T] of (2.2.1) by

ul(t to) ift> [t(),T].
Again, Combining the conservation of energy and mass with Gagliardo-Nirenberg
inequality, by estimating \ «()(#)\2, in the same way as (2.5.1), we implies
that
\ WO\ > M
for all ¢ 3 [0, T]. Note that repeating the procedure similar to the above, we can
continue to take the same 7" > 0 as the time of existence of the solution. This

follows a contradiction of Ty,.x < € . Namely, Ti,.x = € . Also, by the above
argument, it is clear that u > L€ ([0, € ), H'). O

2.5.2 Blow-up results
We use the virial identity as follows to prove the finite time blow-up of (2.2.1).

Proposition 2.5.1 (virial identity, [11]). Let up  X. Let u > C([0,T],%) be a
corresponding solution of (2.2.1) with uw(0) = ug. Then it holds that

\zu(t)\32 = \zug\7> + 4t Imﬂ g Xrugde
R'Vl

+4ﬂ ﬂ }2\ u(s)\32 + ( )\ (s )\If,fil<d7ds

for any t>10,T).
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Proof. First, integrating (2.3.2) from 0 to ¢, we get
t [
\zu(t)\2: = \zug\22 + 4ﬂ Imm u(s) >xxu(s)dxds. (2.5.2)
0 Rn,
Moreover, integrating (2.3.4) from 0 to s, we deduce that

Imﬂ u Xeudr = Imﬂ ug Xrugdx
n Rn

+ﬂ }2\ u(t)\2: + ( )\ ( )\gi}< . (2.5.3)

Combining (2.5.2) with (2.5.3), we obtain the virial identity. O

Remark 2.5.1. To justify the above proof, we need a regularization argument

(see Secion 6.5 of [4]).

Applying the virial identity, we can show the finite blow-up result of (2.2.1)
as follows:

Theorem 2.5.3 ([11], cf. [23]). Assume that A < 0 and 14+ 4/n > p < a(n).
Let ug > 3. Let uw 3 C([0,T],%) be a corresponding solution of (2.2.1) with
w(0) = wug. If E(ug) < 0, then Tmax < € . Moreover, the solution u of (2.2.1)
blows up in finite time. Namely, it holds that

] =€
u%ﬂx\ u(t)\r2 = €

Proof. Assume that T, = € . Using the virial identity and the energy con-
servation law, since A < 0 and p &~ 1 + 4/n, we estimate

\zu(t)\32 = \zug\7s + 4t Imﬂ ug Xrugde

+4ﬂ N }2E (uo) H—))\ \P“<d7ds

p+ 1 p+1

= \zug\72 + 4t Imﬂ ug Xrugdr

® AN (n 1) 4

< \wug\%s + 4t Imn ug xetigdr + 4t E(ug)
]Rn
= Q(1)

for all ¢ > 0. Here, Q(t) is a quadratic function of ¢. In addition, because of
E(ug) < 0, the cofficient of ¢? is nagative. Hence, there exists Tp > 0 such
that \zu(t)\r2 < 0 for any ¢t > Ty. This is a contradiction. Therefore, we have
Tmax <€.

Next, we assume limy 7, .\ u(t)\r2 < € . In particular, this implies

ltlirgnlile\ u(t)\r2 < €.
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Using the conservation law of mass, since inf;~;, \ w(t)\z2 is a mononical in-
creasing, there exist M > 0 and a sequence }tx( —[0, Trax) such that ¢; | Trax
and \u(t;)\g: > M for all j > N. Therefore, by Theorem 2.2.2, there exists
Ty > 0 such that (2.2.1) replacing ug to u(tx) has a solution on [tx, tx + Tas].
Note that we can take T, uniformly for k. Hence, putting ky > N such that
Twax  thy < Tar, applying Theorem 2.2.2 again, (2.2.1) replacing ug to u(tx,)
has a solution on [t,, tx, + Tar], which contradicts the definition of Tiax. This
completes the proof. O

2.5.3 Application of the pseudo conformal conservation
law

We state an application of the pseudo conformal conservation law.

Theorem 2.5.4 ([3]). Let A > 0. Ifug > ¥ and if u > C([0,€ ),H!) is a
coresponding solution of (2.2.1), then the following properties hold:

(i) If p ~ 1+ %, then for any r > [2,a(n) + 1] (but, r 2 [2,€ ] if n = 1,
r>[2,€) if n=2), it holds that

\u(®)\r- > Ol (¢ +) (2.5.4)
for allt>10,€).

(ii) If p < 1+ %, then for any r > [2,a(n) + 1] (but, r 2 [2,€ ] if n = 1,
r3[2,€) if n=2), it holds that

\u(®)\pr > CJp| "3 #)0 0) (2.5.5)

for allt 3]0, € ), where

o) }0 ifr>[2,p+1],
T)=( ( (+)) n(p 1)
(r 2)@(+1) nl 1)) ifr>p+1.

Proof. We show (2.5.4). If p &= 1+ 4/n, then putting v(t) = M( t)u, using
(x +2it Ju= M(t)(2it )M( t)u, (2.5.6)
we transform the psudo conformal conservation law (2.3.1) to

4t2 t 2 8t2>\ t p+1
\ o)\ + m\v( Npt1

4\ n 4N
= \zug\%2 (n(i n 1) ) Q s\u(s)\gﬁds. (2.5.7)
This implies that
42\ v(t)\F2 > \zup\7e- (2.5.8)

Combining (2.5.8) with Gagliardo-Nirenberg’s inequality, the mass conservation
law \w(t)\r2 = \uo\rz, we calculate

\u()\rr = \v(t)\r-
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>\ w8 )
> Ct n(3 %)\xuo\L:(%
>c s 7).

This completes the proof of (2.5.4).
Next, we assume p < 1 +4/n and ¢t &~ 1. Concatenating the identity (2.3.6)
and (2.5.6), we obtain

[N
el

2 E(u(t)) = Bu(1)) ‘WQ S\u(s)\ZtLds.

Thus, putting h(t) = tQ\u(t)\gﬁ, this implies

4 (Y1
) > o+ 2 DL g
2 1 S
Using Gronwall’s Lemma, indeed, putting

H(t)=C+ % N éh(s)ds,

we deduce that
Hence, it follows that

\o()\ o > Ct "3 F). (2.5.9)
Combining (2.5.7) with (2.5.9), since p < 1 +4/n, we compute

4\ w()\}s > C+C ﬂ S\o(s)\FL ds

n(p 1)
2

>C+Ct2 —
which yields

n(p 1)
1

\ v(t)\r2 > Ct (2.5.10)

From (2.5.9), Holder’s inequality and the mass conservation law \u(t)\p2 =
\uo\ 2, it follows that for r 5 [2,p + 1],

\u(@\Lr = \v(t)\z~
2(p+1)

%)\U(t)\iz ﬁ(%

2(p+1) (%

= C\v(t)\ 51
>ct (3 7)),

3=
~—

This complete the proof of (2.5.5) if r 3 [2,p + 1].
For r > (p + 1, -2%], Applying (2.5.9), (2.5.10) and Gagliardo-Nirenberg’s

. . n 2
inequality, we get

\u(\zr = \vo()\zr
2n(r p 1) 2n(r p 1)

> C\ U@)\W U(t) ipw
1

> Ot n(3 )@ o)
This complete the proof. O
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2.5.4 Application of the momentum conservation law

Under the assumption as in Theorem 2.5.3, we don’t know whether \zu(t)\ 2 T
0 as t | Timax- Applying the momentum conservation law, by the invariance of
the equation (2.2.1) under the spatial translation, we can construct a solution
of (2.2.1) such that \zu(t)\r2 - 0 as t | Tnax. In detail, we have the following
result:

Proposition 2.5.2 ([3]). Suppose that ug > X. Let u be a corresponding maz-
imal solution u > C([0, Tmax), 2) of (2.1.1) with the initial data ug. Then there
exists xg D R™ such that \zu(t, x+ x9)\r2 - 0 as t | Tiax-

Proof. For all g 2 R™, we compute
\eu(t, <+ 20)\}
=) ettt + a0 o
=V ao e oypar
=) @t apde ol ) e @pas 2] Tt Dlfar
=\au(\Fs + lroPvuog 2] @ saolu(t .
Hence, it follows formally from the conservation law of the momentum that
% Qn x <o lu(t) |Pdx = 2 Qn x xxo Re(udyu)dx
= 2@ z xwo Im}a(Mplf ‘v Au)(dx
= 2Im(ﬂ! x xrvouAudx
= 2Im(-]g (z xxot) X udx
= 2Imrg a(t)xg X u(t)dx
= ZImQ UpTo X ugdx.

This yields

() 2 solu()Bdz = [N 2 xeo otz + 26 tml ) wdomo x uoda.
R® R"

Rn

Note that we can justify the above computation by replacing = x| (t)|F to
e £ty xxolpu(t)|F for € > 0 and converging & od). Therefore, we get

\zu(t, xt 2o)\72 = \wu(t)\L2 + ol \uo\7-

2ﬂ x xxo|uo|Fdx 4tImﬂ Ty X ugdx
R R
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for all t 3 [0, Tynax). Observe that for any ¢ 3 [0, Trnax),

leolP\uo\ 2 QQQ: seolkolfde 4tTm{ | doxo x wpde = O(Jlolf)

R

as |ro| T € and the cofficient of |fo|F is positive. Thus, we implies that
\zu(t, s+ x0)\r2 - 0 as t | Timax if |[tol|is sufficiently large. O
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Chapter 3

Nonlinear Schrodinger
equations with
non-vanishing boundary
conditions at spatial infinity

3.1 Previous Works

In this chapter, we consider defocusing nonlinear Schrodinger equations in di-
mension n > 4.

} i0u + Au = f(|ulP)u, t>1[0,€), x >R,

u(0,z) = up(z), =z 3R", (3.1.1)

where u(t,z) : [0,€ ) * R™ 1 C. The unknown function u has the following
boundary condition:

k()P T po as [fft €,

where pg > 0 denotes the light intensity of the background. The nonlinear term
f is assumed to be defocusing. Namely the real-valued function f satisfies the
following assumption:

f(po) =0,  fTpo) > 0. (Hy)

The aim of this chapter is to state previous works for the global wellposedness
of Cauchy problem (3.1.1) in energy space

Ey, = Yu 3 Hj,(R"); w3 L2(R"), [uff po > LA(R™)(.
First, we consider the Cauchy problem for the Gross-Pitaevskii equation

} i+ Au=(luf 1u, t5[0,€), 2>R", (3.1.2)

u(0,2) = up(z), x>3R"

(that is (3.1.1) with f(r) =7 1 and pg = 1). Béthnel-Saut [2] prove that the
Caucy problem (3.1.2) is globally wellposed in 1+ H! for n = 2, 3. We state
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the result. A first strategy of the proof is that (3.1.2) is transformed as follows
to look for a solution of (3.1.2) under the form 1 + v:

} 0w+ Av=N(), t>(0,T), >R

v(0,2) = vo(x), 3R, (3:1.3)

where

N(v) = [plfv + [pIf +2Re(v)v + 2 Re(v).
In a next strategy, he prove that (3.1.3) is locally well-posed in H' by using
Strichartz’s estimates and a contraction argument for the map

B(v) = U(t)vy iQtU(t SN (u(s))ds. (3.1.4)

For a locally well-posedness, Béthnel-Saut [2] prove the following Theorem:

Theorem 3.1.1 ([2]). Let n =2, 3. For any vo > H'(R"), there exists T > 0
such that (3.1.8) has a unique solution v > C([0,T], H') { L¥3([0,T], Wh4).
Moreover, the energy

Al+0)=\ 0\3s + 3 \bIF +2Re(v)\2: (3.1.5)

is conserved.

Sketch of proof of Theorem 3.1.1. We show that the map (3.1.4) is contraction
mapping in the complete metric space

Xr =}v 3 C([0,7], HY) { L¥3((0,T), Wh);
\O\LL mt O\ 373 y00 2> 8C0\vo\ it =2 M,
d(vi,v2) =\v1  v2\z g1 +\01 U2\L8T/3W1,4~
First, combining
I N@)lI=CAl vllblF+ 1 ollbll+ 11 vl

with Strichartz’s estimate, Holder’s inequality and Sobolev embedding, we de-
duce that for all v 3 X,

\B(\n e\ B\ e

>\U(t) wvo\r), L2 + ﬂ U(t s) N(v(s))ds
0 Ll L?

+\U(t) vo\ s/3,4 + mU(t s) N(v(s)dsf
T 0 L§/3L4

>2Co\ vo\rz +C (| v |TU|F€L§/5L4/3 + O vl 3o pars + O\ 0\Lyr2
>2Co\ vo\r2 + CT*\ U\L8T/3L4\U\%\T o

+CTYVH\ ”\L8T/3L4\”\L‘T m+CT\ v\g e
> 200\ wo\rz + CTY4(M® + M? + M)
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> M/2

if T is sufficiently small depending only \vg\ 1. Also, in the same way as above,
we get
ANy 22 F AP\ 575 0 = M /2

if T is sufficiently small depending only \vg\ g:. Therefore, we see that
AWMLy it F NP /510 2 M,

which yields ®(v) 3 Xr. Moreover, by the same estimation in the above, it
follows that the map ® is a contraction mapping in Xp. Thus, we obtain the
local solution of (3.1.3) in C([0,T], H).
Furthermore, we can obtain formally the conservation law of the energy
Fi (1 + v) by multiplying the equation (3.1.3) by d;v, integrating over R", and
taking the real part as follows:
0= 2Re(idw+Av (|p|f + Re(v))(1+v),0v)2
= 2Re(Av,8v)2 + 2Re((|b|f + Re(v))(1 +v), 9pv) 2
=2Re( v,0; )2 +2Re((Jb|f + Re(v))(1 +v), )2

d
= S+ ().

Note that the above procedure is justified as in Section 2.4.2. This complete
the proof. O

Theorem 3.1.2 ([2]). Let n =2, 3. For any vy > H'(R™), the local solution v
of (3.1.3) as in Theorem 3.1.1 extends globally with
03 0([0,€), H') { Lip ((0,€ ), Wh?).

loc

Proof. Using the energy conservation law
1
F(L+v) =\ o\Le + S\PIF + 2Re(0)\72 = A1 + o),

and Sobolev embedding, we get
\ ’U\Lz Z C(\'U()\Hl).

Moreover, by multiplying the equation (3.1.3) by @, integrating over R™, and
taking the imaginary part, we estimate

33 L bz =[] (b + 2Re(w(®) m(o(e))ds
1/2

2 )N ot 2metwienia| ) piopas]

> \/m\v(t)\m,
\o(B\Zs > \uo\2s +Q 2 \/m\ms)\pds.
38
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Hence, by using Gronwall type Lemma, this implies
\o(t)\z2 = \vo\r2 + [2A(1+ o)t

for any t 3 [0,7]. Since we obtain the local uniformaly estimate of \v(t)\ g1,
we can extend the local solution v to a global solution. O

Since equation (3.1.2) has the energy Fi(u) = \ u\%, + $\[ulf  1\%.,
solution space 1+ H'! is not enough. In fact, Gravejat [13] shows the existence
of a traveling wave not even to belong to 1 4+ L?. Hence, it was expected to
prove the existence of solution of (3.1.2) in

By =}us Hp (R"); w3 LXRY), Julf 13 L*(R"),
dp(u,v) =\ u  v\g2 +\ulf [b|P\re-

After that, Gallo [7] prove a local solution of (3.1.2) in Zhidkov space
XF(R™) = }u > LS (R"); 97u > L*(R"), 1> |pl|> k(

with £ 3 N and k& > n/2. Next, Goubet [12] shows the existence of a global
solution of (3.1.2) in X2(R?) if the energy Hu) is finite. Moreover, for n = 2,
3, Gérard [9] prove that The Cauchy problem (3.1.2) is the globally wellposed
in the energy space E; as follows:

Theorem 3.1.3 ([9]). Let n = 2, 3. For any uy > Ey, there exists a global
solution u > C([0,€ ), En) of (3.1.2).

To obtain a local solution of (3.1.2) in Ej, Gérard [9] use the contraction
argument and Strichartz’s estimate in a similar way. The key Lemmas for the
proof of Theorem 3.1.3 are as follows:

Lemma 3.1.1 ([9], cf. [8]). E,, =»X'(R") + H'(R™).

V__
Proof. Using a gutoff function y 3 Co(C) with x(z) = 1 (||| > 2po) and
x(z) =0 (||~ 3po), we decompose u > E,; as

Epy /u=x(wu+ (1 x(u))u.
A ———

V___ |
Since |x(u)||=11f |ul]|>  2po and |x(u)||= 0 if |||~ 3pg, we deduce that

\ui\zl > /3po.

Vo—. -
Moreover, |||  2pg in supp(ug) implies

-

ball> L x@)ul> kP pol
Po

which yields
\uz\z2 = C\[ulf  po\r2.

On the other hand, we see that

up = (Oux(u) u+0:x(u) @Wu+ x(u) u
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(x(u) +udox(u) u+udzx(u) 1,
( O:x(u) w Osx(u) @Wu+ (1 x(uw) u
=1 x(u) wd.x(u) u udsx(u) u.
(

that
\oui\pz +\ w22 2 A\ u\ e

This complete the proof. O
Lemma 3.1.2 ([9]). Forn=2,3,4. E,,+ H' —E,,.

Proof. For any v 2 E,, and w > H', (v+w) > L? is trivial. Next,

b+ wlf po=blf  po+2Re(vw) + [w|f
implies
Wb+l povie > \BIP po\ze +2\0w e +\uhZs. (3.1.6)

Hence, from Lemma 3.1.1, (3.1.6) and Gagliardo-Nirenberg inequality, it follows
that

\lb+wlf po\ee > \PIF po\zz + C(L+  JAL+v)(\w\pe + \w\z4) +\w\ 2.
In conclusion, it holds that E,, + H' —E,,,. O
Lemma 3.1.3 ([9]). U(t): X'+ H' + X'+ H'. Moreover, U(t)(E,,) —E,,.

Proof. By the unitarity of U(t) in H', we may assume f > X! without loss of
generality. First, we decompose U(t) [ as

ui)yf=r+uys f

Let x 3 C§ (R) be a cutoff function satisfyinZg 0>x>1,x(s)=1(ls]|>1and
x(s) =0 (|||~ 2). Next, We factorize e *¢" as

U

€ e 1= 9j (ta 5)5.77
=1

where

.9 = eV e ey LR wer 3y oy

uniformly in & 5 R™. Thus, using the equality in the above, we deduce that
\U@)f e
=\8 e "¢ D\
d
=\8 1[/ 95 (t, )& f\ 12
=1
> CHF2\ f\re
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Since we have (U(t)f) > L?, we obtain U(¢)f > X! + H'.
Furthermore, combining Lemma 3.1.1 with Lemma 3.1.2, U(t)f > X' + H!

for all f> X' + H', we obtain that for all u 3 E,,

U(t)u:/& +£ﬂt)ﬁ_u) —E,,.
DEp, DH'!

This complete the proof. O

Finally, Gallo [8] has considered the Cauchy problem for (3.1.1). He proved
the following Theorem:

Theorem 3.1.4 (Theorem 1.1 in [8]). Let n > 4 and py > 0. Assume that
[3CFRy) (k=3 ifn=2,3, k=4 ifn=4) satisfying (Hy), and there exist
a1 ~ 1, with a supplementary condition oy < aF if n =3, 4 (ax=3 ifn =23,
af=2ifn=4), and oy 3 R with oy  az > 1/2 such that

a; 3, _
k El’l" ~ 1, } “f@r)nz CO’I’ an - 172737 (Hal)

[f=r)| > Cor®r *ifn = 4,
o >0, PA> py sit. \ if g > 3/2, V is bounded from below,

ifap >3/2, Irx= A, r2 > CoV(r), (Ha)
where V (r) := Ef(s)ds Then for any function ¢ satisfying

¢y RY), @3 HYRY™, PP po > PR, (Hy)

(3.1.1) is globally well-posed in ¢ + H'(R™). Namely, for any wo > H*(R™),
there exists an unique w > C([0,€ ), HL(R™)) such that ¢ + w is the solution
to (8.1.1) with the initial data w(0) = wo. Moreover, The solution depends
continuously on the initial data wo > H'. Furthermore, FHo+w(t)) = Ho+wo)
for allt > 1]0,€ ), where

Ab+w) = ﬂ | (6 +w)lPdz + ﬂ V(p + wlp)de.

Gallo [8] decompose the element of E,; as follows:

Lemma 3.1.4 (Proposition 1.1 in [8]). For any wy > E,,, there exist ¢ 5 E
satisfying the following condtion (3.1.7) and wo > H' such that ug = ¢ + wy:

¢>C5 R"), ¢>HS®RM", [pIf po>L*R") (3.1.7)

Proof of Lemma 3.1.4. Using the cutoff function x 3 Cy(C) with x(z) = 1
(ll> 1) and x(z) = 0 (|k]|~ 2) and p > C’O(R")(E p = 1), we decompose ug
as

uo = x(up)up + (1 x(ug))ug
= p2 (X(uo)uo) +(x(uo)uo_ pe (x(ug)uo)) + (1 x(uo))uo
E

po Satisfying (3.1.7) DH!

This complete the proof. O
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For n > 4, Gallo [8] prove the globally well-posedness of (3.1.1). We state the
result for n = 2, 3, 4. A first strategy of the proof is that (3.1.1) is transformed
as follows to look for a solution of (3.1.1) under the form ¢ + w.

} 0w + Aw = F(w(t)), t>[0,€), 3R,

w(0,z) = wo(x), x>3R", (3.1.8)

where
Flw):= A¢+ f(|p +wlf) (¢ +w).
In a next strategy, he proves that (3.1.8) is locally well-posed in H! by using
Strichartz’s estimates and a contraction argument for the map

¢
O (w) = U(t)wo zm Ut s)F(w(s))ds,
0
in the space
Xrp = L5 H { LW
equipped with its natural norm
\w\x, = \w\z, g +\w\rzwia,

where a pair (p,q) is a admissible pair defined as (p,q) := (6/n,6) for n = 2,
3, (p,q) = (2,4) for n = 4. We remark that Gallo [8] takes (p,q) := (4,4) for
n = 2. Note that our choice also works for getting local existence of solution to
(3.1.1).

To prove that ® is a contraction mapping in X7, we need some of estimates
for nonlinearity F(w).

Lemma 3.1.5 ([8]). Let T' > 0. For any w > Xr, there exist
Fi(w) > L§ L%, Fy(w) > L§ LY

such that
F(w) = Fi(w) + Fa(w).

Moreover it follows that
VB (0)\ g 12+ \Bo(w)\ g o
> CT(1+\w\py £2) + CTV" NGy e+ \w\ [ V),
where C' is a positive constant depending on T .
Lemma 3.1.6 ([8]). Let T' > 0. For any w > Xr, there exist
Gi(w) > LLL?,  Go(w) > LE LI

such that
F(w) = Gy (w) + G2 (w).

Moreover it follows that there exists 0 > 0 such that
\Gr )\ 12+ \Galw)\ g e
> CT(1+\ w\z), r2)
+O(L 4\ w\py 2) (TP N\, o + Te\w\§;X(1’2a1 2,

where C' is a positive constant depending on T
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Lemma 3.1.7 ([8]). Let T > 0. For any w1, wa > Xp, decomposing f(|p +
w|P)(¢ +w) as Lemma 5.2.1, it follows that there exist 6y > 0 and 61 > 0 such
that

\Fi(wi)  Fi(w2)\prpz +\Fa(w1)  Fa(w2)\ o5,
T
> CT\w1  wo\p, g +C\w1  w2\r|
" (TGO(\wl\LlT - +\w2\L\T H1)+T91(\w1\L|T - +\w2\L\T Hl)max(l,2a1 2))’
where C' is a positive constant depending on T .
Lemma 3.1.8 ([8]). Let T > 0. For any wy, wa > Xp, decomposing f(|lp +
w|P)(¢ +w) as Lemma 5.2.2, it follows that there exist 02 > 0 and 03 > 0 such
that
\Gi(wr)  Gi(w2)\pyr2 +\Go(wi)  Ga(w2)\ oy oo
> CT\ (w1 w2)\r), 2
+CTV/P 1+ \wi\z), g1+ \w2\L), )R D\gp, w2\, m
+ CT02\’LU1 wQ\XT(\wl\max 1 201 2 +\ \max 1 201 2))
+CT"\wy  wao\x, (1 + \wi\p), 1+ \w2\r, 111)
(\’LU \max(O 2a1 3) + \w \nnx(O 21 3))
where C' is a positive constant depending on T

For locally well-posedness, Gallo [8] proves the following Theorem:

Theorem 3.1.5 ([8]). Letn =2, 3, 4. Let po > 0, and f > C*(R,) satisfying
(Hy). Moreover, we assume that there exist oy ~ 1, with a supplementary
condition oy < aTifn=3,4 (ar=3ifn=3,ar=2ifn=4), and az >R
with oy «g > 1/2 such that (H,,) and (H,,). Let ¢ be a function satisfying

Then for any R > 0, there exists T(R) > 0 such that for any wo > H* with
\wo\ g1 > R, there exists an unique solution w > X7 (r) of the integral equation

w(t) = U zﬂU EFF (w(t7) dt> (3.1.9)

Moreover w > C([0,T(R)], H").

If w > C([0,T], H') solves (3.1.9) for some T > 0, then w > Xr, and
w D X is the unique solution to (3.1.9) in C([0,T], H).

Also the flow map is locally Lipschitz continuous on the bounded sets of H',
indeed for any R > 0, there exists T(R) > 0 such that for any T°> (0,T(R)]
and wo, wo > H with \wo\g1 > R and \wo\g > R, corresponding solutions
w, w > Xreof (3.1.9) satisfy the following locally Lipschitz continuity:

\U) ﬂXTooZ C\’wo %\H17 (3110)

where C'is a positive constant depending on \w\ x... and \w\x ... Especially,
for the same constant C,

\w ’L,U\KL’\TOJ_II Z O\’LUO ’L,L;a\Hl
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Proof of Theorem 3.1.5. For any R > 0, we take wg > Xp with \wo\g1 > R.
We show that the map

B(w) = U(t)wo zq Ut s)F(w(s))ds

is a contraction mapping in

Xr=1}w> Xp; \w\x, >R+ 1(,
\w\ g, = \w\x,-

Combining Lemma 3.1.5 with Lemma 3.1.7, Strichartz’s estimate and Holder’s
inequality, we deduce that for any u 3 X,

\@(w)\ 5, = \®(wW)\r) w1 +\@(W)\ L2 w1
=\®(w)\r} £z +\@(W)\rz o +\ P(w)\r). £z +\ P(w)\rz 14
> \wo\zz + CT(1+\w\z) r2)
+CTYP N0\, g+ \\ ™ )
+\ wo\rz + CT(L+\ w\p) r2)
+ O\ w\gy )TN\ gy + TN\ g )
= \wo\mr + CT(L+\ w\r} m)
+ CTYP NG, o+ \\ )
FOM+N\ w\py £2) TP\ gy, + TOw\ 2 2))
>R+ CT(1+R+1)+ CTYP(R+1)% + (R + 1)max(Z2e 1)y
+ O+ R+ 1)(TYP(R+ 1) + TR+ 1)max(Z2e 1))
>R+ C(R)T™ (v :=min(1,1/p%0))
>R+1
if we take 7" = min(1, (1/C(R))Y/"), which implies ®(w) > X7. Similarly, for
all wy, wy 2 X7, we estimate that
\@(w1)  (w2)\xr
=\®(w1) P(w2)\z), £z +\P(w1) P(w2)\r2 L4
+\ @(wr1)  P(w)\r 2+ \ P(wr)  P(w2)\rr L
> CT\w1  wa\pp 12 + C\w1  wo\r, 2 +\w1  w2\rp 14)
 (T% (\wi\py, mr +\wa\zp 1) + T (\wi\p), g+ \w2\ g, )02 2))
+CT\ (w1 wo)\r) 12+ TP (1 + \wi\r, m + \w2\r), g )max(1,202)
* \wr  wa\r|
FOT\wy  wo\xy (\wl\max (1201 2) | \wz\max (1,204 2))
+OT"\wy  wo\xep (1 +\wi\ ) s+ \w2\z), 111)
+ (\wy \max(O 2013) \ws \max(O 201 3))

44



> CT\un wz\L\T r+C\wr  wa\x,

* (T(2R+ 1) + T (2(R + 1))mext2er 2))

+ CTYP 1+ 2(R+1))mxb2e1 2N\ )\ x,

+ CTHQ\,wl wQ\XT (2(R + 1)max(1,2a1 2))

+ CT%\w;  ws\x, (14 2(R+1))(2(R + 1)max(0.2a1 3))
> C(R)T’”\wl wg\XT. (’YQ = min(1790,01,92,92,1/p°)")

1
> 5\1111 wa\ g,

If we take T := min(1, (1/2C(R))*/"2). Thus, we complete the proof of the
local existence of a solution u of (3.1.9). To get remaining assertions, we wish
referring to Gallo [8]. O

Proof of Theorem 3.1.4. We show the existence of the global solution. The local
solution ¢ + w of (3.1.8) as in Theorem 3.1.5 has the conservation law of the
energy

Fo+u) =1 | @+ wlde+) v+ upyie

In fact, when (n,k) = (1,1), (2,2), (3,2) or (4,3), F : H*(R") 1 HF(R") is
locally Lipshitz continuous. Hence, Gallo [8] proves the results as follows:

Theorem 3.1.6. (Theorem 2.1 in [8], cf. Chapter 4 in [5]) Let (n,k) = (1,1),
(2,2), (3,2) or (4,3). Let f > CKTY(Ry) satisfying (Hy) and ¢ satisfying (Hy).
For every wg > H*(R™), there exists Two) > 0 such that there exists a unique
solution w > C([0,TS), H*(R™)) of the intergral equation (3.1.9).

If TS < €, then \w(t)\gr L € ast | TS Moreover if wy > H*2(R"),
w3 C((0,79), H*2(R™) { C1([0,T9), H*(R")).

Lemma 3.1.9. (Lemma 3.1 in [8]) Let (n, k) = (1,1), (2,2), (3,2) or (4,3). Let
f 2 CHY(Ry) satisfying (Hy) and ¢ satisfying (Hy). w > C([0,T), H*(R™))
denotes the solution of intergral equation (3.1.9) with wo > H*(R™) as in The-
orem 3.1.6. Then for any t > [0, T(wq)), H¢ +w(t)) = He + wo).

Combining Theorem 3.1.6 with Lemma 3.1.9 and approximating the initial
data wy 2 H' as a sequence }wpg,(5_; — H* such that wo, T wo in H' as
n1T €, we can prove the energy conservation law (see Chapter 5 in Gallo [8]).

Thus, Combining the condition (H,,,) with Gronwall type Lemma, we obtain
time local uniformaly estimate of \w(¢)\g1. In conclusion, we can construct a
time global soluton of (3.1.8) (see chapters 2 and 5 in Gallo [8]). O

Remark 3.1.1. In Gallo [8], to prove Theorem 3.1.5, we need the assump-
tion f > C*(Ry) and (Hy,). Moreover, to prove Theorem 8.1.4, we need the
assumption f > C¥(Ry) (k=3 ifn=2,3, k=4ifn=4), (H,,) and (H,,).

From Theorem 3.1.5, a local solution of (3.1.8) is constructed as the following
Theorem:
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Theorem 3.1.7. Let n =2, 3, 4. Let wo > H'. Let T > 0 and let w be a mild
solution of the integral equation (3.1.9) with w > C([0,T], H'). Then, for any
to 2 [0,T], there exists v(to) > H ' such that

w(to =+ h) w(to)
h

T w(ty) in H Yas ht 0.
Moreover, denoting v(to) by dyw(ty), w is a solution of (3.1.8), indeed w satisfies
(i) i0yw(t) + Aw(t) = F(w(t)) in H ' for all t 5 (0,71,

(#i) w(0) = wp.
Remark 3.1.2. From E,, + H' —E,, and

p+w=0¢+wy wo+w=uo+w wy)>E, +H,

it follows that the solution ¢ + w given by Theorem 3.1.4 belongs to E,,.
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Chapter 4

The new method to derive
conservation laws for
nonlinear Schrodinger
equations with a power
type nonlinearity

4.1 Ozawa’s idea

In this chapter, we consider the Cauchy problem for the nonlinear Schrodinger
equation

} iOpu+ Au= Al 'u, t31[0,€), z3R", (4.1.1)

U(O,L) = 'UJO(:E)v z > R",

where, A 3 R, p > 1, u(t,z) : [0,€ )« R™ + C and the initial data wuy is a
complex valued function in R”. In what follows, f(u) denotes AlulP ‘u.

We present a new method to derive the conservation laws of (4.1.1). To derive
the conservation laws, we need to use the approximating argument as in Section
2.4. However, for (4.1.1), by using additional properties of solutions provided
by Strichartz’s estimates without using approximating argument, Ozawa [19]
derives conservation laws of the charge and the energy as follows:

Proposition 4.1.1 ([19]). Let (q,r) be some admissible pair. Letw > L([0,T], L")
be a mild solution of the intergral equation

u(t) = U(t)uo MQ Ut s) (P u)(s)ds (4.1.2)

for some ug > L? and T > 0. Then \u(t)\r2 = \uo\r2 for any t > T,T].

Proposition 4.1.2 ([19]). Let (q,r) be some admissible pair. Letw > L([0,T], L")
be a mild solution of the intergral equation (4.1.2) for some ug > H* and T > 0.
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Then E(u(t)) = E(ug) for any t > T,T|, where
2\
Bu) =\ u\j.+ m\“\iﬁv

Proof of Proposition 4.1.1. For all t 3 [0, T], we obtain

a(t) |||E
— I Hu)lE
— llkoliZ: 21m)uoﬂ U( s>f<u<s>>ds[
0 L2
Vo s rsnasf (413)
0 L2

The second term on the RHS of (4.1.3) satisfies the following equality:

21m>u0,th( s)f(u(s))ds[

L2

= ZImm > s)ug, f s))z;ls, (4.1.4)

where combining Strichartz estimates with f(u) > Lq L") the time integral of

the scalar product is understood as the duality coupling on (L%.L") % (L%, LToj
with (¢,7) = (4(p+1)/n(p 1),p+1). For the last term on the RHS of (4.1.3),
using Fubini’s theorem and (4.1.2), we get

. 2
Eﬂ U( S)f(U(S))dSE
0 L2

=2Re ﬂ >f(u(s)), ﬂs U(s soff(u(sﬁ)ds”{ds,

0 0

2 Imr(] >f(u(s)), u(s) +1 QS Uls s”}ﬁf(u(s")“)dSst,
= QImm >f(u(s)), U(s)uozds,
= QImﬂ > s)ug, f s))zlis (4.1.5)

Combining (4.1.3) - (4.1.5), we complete the proof. O

Proof of Proposition 4.1.2. Acting  on (4.1.2), for all ¢ 5 [0,T], we obtain

Il u)lE

— Il UC HuE

— I wolle- 2Im) wo Y UC 8) Fluls))ds
L2

0
+ Emt U( s) f E (4.1.6)
0

48



The second term on the RHS of (4.1.6) satisfies the following equality:
¢

21m> uo,ﬂ U( s) flu(s))ds

0 2

- ZImQ >U(s) wo, [ (u(3)) s, (4.1.7)

where combining Strichartz estimates with ~ f(u) 3 L%OOLTOT the time integral of

the scalar product is understood as the duality coupling on (L%LL") % (L%OCLTDj
with (¢,7) = (4(p+1)/n(p 1),p+1). For the last term on the RHS of (4.1.6),
Fubini’s theorem implies

Eﬂ U( 5) f(U(S))dSE
0 L2
= 2Reﬂ > f(u(s)%ﬂé U(s s°% f(u(so)’)dso‘{ds7 (4.1.8)

0 0

where the time integral of the scalar product is understood as the duality cou-
pling on (LL L™ % (LLL"). Concatenating (4.1.6) - (4.1.8), we compute

\ u(t)\3s
=l wllte 21l 1 )ots) o, T s

+2Reﬂ> fae), Vo s Fu(sds] ds

0 0

= Il wollpe + 21 1) (). TG w2t

+2ImQ> flu(s)), inSU(s s¥ f(u(so)?)dso‘/ds

0

= I wollts + tm 2l T ea) * plas). a2,

where the last equality in the above holds by using (4.1.2). Taking the duality
coupling between the equation (4.1.1) and (1 €A) 'f(u) on H ' x H! and
using Im})(1  eA) 1f(u), f(u)|{ =0, we obtain

Im)(1 eA) ' f(u), ul =Tm} i)(1 eA) “f(u),dul(.

From these equalities, we can show

\ u(o)\i:
=W wollte tmamel T ea) *p(u(s). o) s
=1l wollte 2Ref 1) (ue). ) Tas (119)
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Note that in the above, the time integral of the scalar product in the last line is
understood as the duality coupling on (LL W+ (LLW 7). From (4.1.9),
we can continue as follows:

Fd Y\ 2\
Vo = wollfe (12 ) v, | ds
2\ 2\
=l uollf- 1 U(t)\iﬁl ‘*‘m uo\iﬂl
since we can show that
d 2\ p+1 - 1
o )ori u(s)\7 11| = 2Re) f(u(s)), dru(s)| in L*(0,T). (4.1.10)

We can justify the equality (4.1.10) above by combining the way to the proof of
Lemma 5.1 of [18] with Lemma 6.2.3. This completes the proof.

O

Remark 4.1.1. By using the method [19], we can derive the mass and energy

conservation law not to use the approximating agrument as in Chapter 2.4.
Moreover, we remark that applying the method [19], for the equation (4.1.1),

we can derive the conservation law of the momentum and the pseudo conformal

conservation law for time local solutions without approzimating procedure (see
Fujiwara-Miyazaki [6]).
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Chapter 5

The energy conservation
law for nonlinear
Schrodinger equations with
non-vanishing boundary
conditions at spatial infinity

5.1 Introduction in this chapter

In this chapter, we consider defocusing nonlinear Schrodinger equations in di-
mension n > 4.

} Opu+ Au= f(ulf)u, t>10,€), z>R", (5.1.1)

U(O,.f) = UO(x)a T > Rna

where u(t,x) : [0,€ ) * R™ 1 C. The unknown function u has the following
boundary condition:

@)+ po as ||t €,

where pg > 0 denotes the light intensity of the background. The nonlinear term
f is assumed to be defocusing. Namely the real-valued function f satisfies the
following assumption:

f(po) =0,  fTpo) > 0. (Hy)

In this chapter, for the equation (5.1.1) in n = 2, 3, 4, we derive the conser-
vation law for time local solutions without approximating procedure. Instead
of that, we use Ozawa’s idea [19]. Note that when n = 1, because H! ¢ L€,
Gallo [8] derived it without approximating procedure, and that for n ~ 2, Gallo
[8] derive it using the approximate argument (see a proof of Theorem 3.1.4). We
follow Ozawa’s idea, however, we can not derive the conservation law only by
Ozawa’s idea, due to the nonlinear term and the space of a solution. We derive
the conservation law to combine Ozawa’s idea with decomposing the nonlinear

51



term by applying the method for the decomposition of Schrédinger operator in
Gérard [9] (see Lemma 3.1.3). Moreover, we remove some of technical assump-
tions of the nonlinearity necessary to derive the conservation law. Our main
result in this thesis is as follows:

Theorem 5.1.1. Letn =2, 3, 4. Let py > 0, and f > C*(Ry) satisfying (Hy).
Moreover, we assume that there exist ay ~ 1, with a supplementary condition
ay <afifn=3,4 (af=3ifn=3, ar=2 if n = 4) such that

TC) >0, s.t. Ir =1, [[fO(r)]|> Cor*r ¥ * (k=1,2). (HY)
Let ¢ be a function satisfying
¢3CiR"), ¢35 H*RM", BIF po>L*R"). (HY)

(Note that such function ¢ is called as a regular function of finite energy.) Let
w > C([0,T], H' (R™)) be a mild solution of the integral equation

w(t) = U(t)wo iﬂtU(t 197 F (w (1) dt (5.1.2)
0

for some wg > H' and T > 0, where F(w) := A¢+ f(lp +w|F)(¢ + w).
Then Fw(t)) = Fwyg) for all t 5 [0,T], where

)=V 1 @+ wbde+ (] vilp+wlfyaa.

and

V(r):= ﬂr f(s)ds.

Remark 5.1.1. Gallo [8] proves the energy conservation law under f > C*(Ry.)
(k=31ifn=2,3, k=4 ifn=4) satisfying (Hy), (H,,) and (H,,) for some
a; =1 and ag 3 R with ;g > 1/2, and ¢ satisfying (Hy), but we can prove
it under f > C*(Ry) with (Hy) and (HY,) for some oq =~ 1, and ¢ with (H).

Remark 5.1.2. For proofs of the a priori estimate of f(|lp +w|F)(¢ +w) (that
is Lemmas 5.2.1 - 5.2.4, and Lemmas 4.1 - 4.4 in Gallo [8]) and boundedness of
H' norm of w on bounded intervals (that is Lemma 3.3 in Gallo [8]), we need
that there exists Cyp, > 0 such that for any r =~ 0,

Tl/ZHf(k) (T)HZ Ca(l + pmax(0,01 (2k+1)/2)) (k; = 172)7 (513)

where 1 > «ay with the same supplementary condition in Theorem 3.1.4. If
3/2 < a1 > 2, then we can not obtain (5.1.3) from (H,,) or (H,,). Therefore
by replacing (Hy,) with (Hy,), we deduce (5.1.3) from (Hg) only. To show
(5.1.3), we do not need (H,,). That is, Theorem 3.1.5 can be shown only
assuming (Hg ). To show only the local existence Theorem, we do not need
(H.,).

Moreover, as a corollary to the main result, we can deduce a globally well-
posedness of (5.1.1). Due to Theorem 5.1.1, we can remove a technical assump-
tion of the nonlinear term. We have the following result:
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Corolary 5.1.1. Let n = 2, 3, 4. We assume that f and ¢ satisfy the same
assumptions as in Theorem 5.1.1, with a supplementary assumption as f sat-
isfying (Hg,) for some as > R with oy «ag > 1/2. Then (5.1.1) is globally
well-posed in ¢ + H*(R™). That is, for any wg > H'(R™), there exist a unique
w > C(R, HY(R™)) such that ¢+w solves (5.1.1) with the initial data w(0) = wp.
Moreover, for any T > 0, the flow map wo ¥ w (H' 1 C([0,T], H')) is Lips-
chitz continuous on the bounded sets of H'(R™). The energy Fw) is conserved
by the flow.

5.2 The estimates of nonlinear terms

In what follows, we put F(w) = f(|p + w|f)(¢ + w). Applying directly the
decomposition of F'(w) that Gallo [8] gave, we can deduce the following decom-
positions for ﬁw) Note that we can show Lemmas 5.2.1 - 5.2.4 by applying
the same method to ﬁw) as corresponding Lemmas for F'(w) in Gallo [8]. The
statements of Lemma 5.2.1 and Lemma 5.2.3 is slightly different from these
Lemmas in Gallo [8]. Therefore we only prove them.

Lemma 5.2.1. Let T'> 0. For any w 2 X, there exist
Fi(w)> LE L2,  Fy(w)> LS LI

such that

Flw) = F(w) + Fy(w).

Moreover it follows that

\Fir(w)\r), 2 + \F: (w)\LIT La>
> O(1+\w\py 12) + COG, g+ \\TP" ),

where Cis a positive constant depending onT'. Also for the same decomposition
of F(w) in the above, we have Fy(w) > LY.L?* and

\Fv(w)\Lng > C(\w\zL‘T H +\w\1;;é;><(272a1 Dy,

where C' is a positive constant depending on T. Thus Fy(w) > LE.L*.
Lemma 5.2.2 ([8]). Let T > 0. For any w > X, there exist
Gi(w)> LS L, Gy(w)> LE LI

such that

Flw) = Gr(w) + Ga(w).
Moreover it follows that
\G1(w)\1), 12 +\G2(0)\ oy
>C(1+\ w\g, r2)
+ C(]. +\ w\L‘T Lz)(\w\L‘T o+ \w\ﬁix(lzoq 2)),

where C' is a positive constant depending on T
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Lemma 5.2.3. Let T > 0. For any wy, wy 3 X, decomposing f(|p+w|F)(¢+
w) as Lemma 5.2.1, it follows that

\Fi(wi)  Fi(w2)\p), 12 +\Fa(w1)  Fa(w2)\p) pe
> C\wr wo\r, m +C\w1 w2\ m
* ((\wi\z, o+ \w2\z), 1) + \wi\pp g1+ \wa2\r), g bRen 20
where C' is a positive constant depending on T

Lemma 5.2.4 ([8]). Let T > 0. For any wi, we > X7, decomposing f(|p +
w|P)(¢ +w) as Lemma 5.2.2, it follows that

\Gi(wr) - Gr(w2)\ry r2 +\Ga(w1)  Ga(w2)\ppog g

>C\ (w1 w2)\rl 12
+ C(l =+ \wl\L|T H1 + \U/Q\L\T Hl)max(1,2a1 2)\w1 ’lUQ\L\T H

max (1,207 2) max (1,207 2)
+C\wr w2\ x, (\wi\y, +\w2\x, )
+C\w1 - wa\x, (1 +\wi\z), g2 + \wa\p| 1)
e (o \ O P N\ ),
where C' is a positive constant depending on T .

Proof of Lemma 5.2.1. We decompose f(|p + w|f)(¢ + w) as

F(Ip+wlP) (@ +w) = Fi(w) + Fy(w), (5.2.1)

where

IiT(w) = f(IBIF) (@ + w) + 2 Rel[gwl fXp|F)¢,
Fy(w) =} (lp+wlf) (@ +w)  f(BIF)(¢+w)(  2Re[pwlfTpIF)¢-

According to Lemma 4.1 in Gallo [8], by the assumption (H) and f(plF) > L?,
we deduce that

\FL(@)\nj 22 > LN\ z2), - Fa(w)|2 Clolf 1+ o2 ),
Therefore for all ¢t [0, T], we estimate that

\Ey(w(t)\ > O\ (@)L + o) xO2e 9\ o
> O\w(t)\2 et C\w(t)\"52200 1

L2a [,a%max(2,2a1 1)

> C\w(t)\Z1 + C\w(t)\ @2 1)

IIGHCG, we deduce that
\ N(U/)\ [ [ ;oo> C\w\2 C\w\llla]:(2,20( )
‘ 7‘ Ht LB‘ H! .

In conclusion, we get

\Fr(w)\j, 22 + \Fo(w)\ ;o
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> C(L\w\g), £2) + CO\Gy g +\w\ 75" ).

Next, we show F(w) > LL.L?% We apply an interpolation method (see
Lemma 4.2 in Gallo [8]). Thanks to Holder’s inequality and Gagliardo-Nirenberg’s
inequality, we estimate

\FZ('LU)\LZ%L"’ > C\w\iszUl + \w\max(2,2a1 1)

L?maX<272ﬂ1 D 2max(2,2a7 1)
2 ax(2,201 1
> C\w\2) g+ \w\J Y, (5.2.2)
where we choose the pair (s,r) such that
S If % % 2 m (Wthh means that Hl (l\ Lr max(2,20 1)),
then (s,7) = (€ ,2).
1

11
< If 2 n > pmax (2,201 1)
then r > 2 and
(1) % + 2% =%  (which means that (s,r) is an admissible pair),
io=>1 1> m (which gives the Sobolev embedding
Wl,r (I\ meax(2,2a1 1))7
(iii) pimax(Zl,Qal i) %% (WhiCh gives L% 4 L?max(2,2a1 1))

Such the choice of s and r is possible if and only if s and r satisfy the following
inequality:
2o 24 n .
2 T pmax(2,2a; 1)

(5.2.3)

Indeed, if (5.2.3) is true, then it is sufficient to choose

nn 2 14 n
r 2 pmax(2,2a;5 1)’ pmax(2,2c7 1) |

Moreover, since H! 4 LPmax(2.201 1) if n — 2 orif n =3 and 1 > oy > 2 or if
n=4and 1> a; > 3/2, we consider that n =3 and 2 < a1 < 3 or n =4 and
3/2 < oy < 2. Since 2 < r < 3 and (s,7) is an admissible pair, we can choose

6> (0,1) satisfying

Thus, using interpolation method,

\w\pgwrr = C\w\lLJTOHl\w\Gngl,q
> CO\w\g), m + \w\rzwia)
= C\w\x,- (5.2.4)
From (5.2.2) and (5.2.4), we deduce that
\Fa(w)\ 1z 2 > CO\w\}) 4+ \w\ o B2 D),

Thus, we get F(w) > LL.L?. O
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Proof of Lemma 5.2.3. we use the decomposition (5.2.1) again. As is in Gallo
[8], we also have

i) Fi(w)]|> Clor
Fa(wa)  Fa(wo)| = Cllor wal(hor ||+ fwal) (1 + ko ||+ fpwz )20 2.

Therefore we deduce that
\Fi(wi)  Fi(w)\zj 2 > C\wy - ws\g) 12
Moreover let

((2,3) ifn=2orn=23anda; > 2,

((J17QZ) = \ 1 ) 1
g 1 max(1,2aq9 2) max(1,2a; 2)
ifn=3and 2 < a; <3orn=4,

-

with qioo: qil + q%. Since if n =3 and 2 < a; < 3 or n = 4, then H' ¢ L%, for
all t 3 [0,7T], we estimate
\Fa(wa(t)  Fa(ws(t)\po~
= C\wi () wa(t)\ 2o \w1(0)\ L2aoet \w2(t)\ [20%)
+C\wn(t)  wa(t)\pa \or ()| + oo ()N )
> C\wi(t) w2 (t)\ p2eo{\w1 (£)\ p2got \w2(£)\ 120>

+C\wi () wa(t)\ Lo \Jlor (8)]|+ oo (B)\Fo 22
> C\wi(t)  wa(t)\gr (w1 (t)\ g 4+ \w2(t)\g1)
+C\wi () wa()\ s (\wi(8)\ o + \wa(t)\ o)™ H21 2),

In conclusion, we get
\F'(w1) F(w2)\L|T L2 Ll La*
2 CT\U)l U}Q\L\T L2 + C\w1 'wg\LIT H1
s ((\wi\pj, g+ \w2\z), 1) + (\wi\z), mr + \wa\g), o) ™02 2)),

Remark 5.2.1. For Lemma 5.2.2 and Lemma 5.2.4, decomposing ﬁw) as

F(w) = G1(w) + Ga(w), (5.2.5)
where

Gi(w) = f(JplP) (¢ +w)+2Relp (¢+w)]fXPI)o
@Q(w)=2Re[(¢>+w) (0 +w)]fB +wlf) (¢ +w) 2Re[d (¢+ w)fTIF)o
+H(p+wlf) (e+w) FBIF) (o+w)

we can prove the assertions in Lemma 5.2.2 and Lemma 5.2.4 from way similar
to proof of Lemma 3.1.6 and Lemma 3.1.8 in Chapter 3.
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Remark 5.2.2. Let T > 0. Lemma 5.2.1 and Sobolev embedding H' ¢ L4, im-
ply that for any w > C([0,T],H') and t > [0,T], F(w(t)) > H . Furthermore,
for any to 2 [0, T], Lemma 5.2.3 yields

\F(w(t)  Fw(to)\mr + = C\w(t)  w(to)\m
T 0 as t1 to,

where C' is a positive constant depending on \w\Llr wr- To show it, for w >
C([0,T), HY), it suffices to put wi(s) = w(t) and wa(s) = w(to) in Lemma 5.2.3
(0> s>T). Thus we also obtain F(w) > C([0,T],H ).

In the proof of the main result, we use the following Lemma:

Lemma 5.2.5. For anyn > L?> + L9, it follows that
\X(Dz)n\mr > O\W\LH-Lq"" (5.2.6)
Moreover for any n > ZR") with n > L?+ L9", we obtain

A\ x(Da))n\mr 2 O\ 0\ 2y pa> (5.2.7)

Note that if X and Y are Banach spaces, then X + Y is a Banach space
equipped with the norm

\U\X+y = inf}\vl\x + \’UQ\Y tv=wv1+0v, v1 32X, V3> Y<

Proof of Lemma 5.2.5. For any n 3 L? 4+ L7, There exist 17, 3 L? and np > L9~

such that = n; +n2. Q(€) denotes (1 + [E|P)x(€). Also, Q(&) satisfies (6.2.1)
since x 3 C§ (R™). Therefore, using Fourier multiplier Theorem, we obtain

\X(Dm)n\Hl = \Q(Da:)n\H 1
> \Q(Dx)nl\LZ + \Q(DI)UQ\Lq‘X’
> C (\m\rz +\m2\ 1o -

Therefore, we deduce that

\X(Dz)n\mr = C\n\ 2 po

Next, for any n 3> 9R") with 7> L? 4 L9 there exist ((f(w))jzlymgn > L2
and (¢ (w))j=1,%n 2 L% such that 7 = ¢; + (. Using Pi(€) = i&/IEIP
(f = (gj)jZI,XXX,n = Rn), we have

Fourier multiplier Theorem implies

\(1 X(Dw))n\HleWl,qw
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> / \(1 X(D2)Pi(Da)\ i + / \(1 X(D2))Pi(Da)C3\ o
—1 J—1

> C\Ci\z2 + C\(2\ o=

Thus we get

NI X(Da))\ g pwra== O\ 0\ g2y po

5.3 Regularities of time-derivative term

In this section, we shall show properties of the time-derivative term O;u.

Lemma 5.3.1. Let n =2, 3, 4, and let (p,q) := (6/n,6) forn=2, 3, (p,q) :
(2,4) forn = 4. Letw be a solution of equation (3.1.8) belonging to C([0,T], H')
for some T > 0 with the initial data w(0) = wy > H'. Then for any 0 < & <
T°< T,

Wik h) w3
h

(i) dpw (3 t0 as ht o0,

C(le, T:H 1)

and

(ii) Orw( % T 0 as ht1 O

wi>dh)  w(F
h Lo((e,T5,W 1)
Proof. Note that equation (3.1.8) implies
Ow =i(Aw  F(w)). (5.3.1)
We show (i) and (ii) using (5.3.1).
Proof of (i). Note that from Theorem 3.1.7, for any 0 > ¢ > T, d,w(t) > H 1

exists in strong sense. Hence, it suffices to show continuity of d;w(t) on [0, 7.
Clearly,

\Aw\H 1 Z\ ’U)\Lz, (532)

which yields Aw > C([0,T], H '). Using (5.3.1), (5.3.2) and Remark 5.2.2, we
obtain

ow > C([0,T), H ).
Hence, it follows that for all ¢y, t 3 [0, 77,

w(t) w(to):mtatw(s)ds in H 1. (5.3.3)

We take 0 < e <T°< T. For all ty > [¢,TF and sufficiently small h > R,

w(to+h)  w(to)

R S

to

toth
P \Oww(s) Oyw(to)\g 1ds
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> sup \Gww(s) Oww(to)\m 1-
S to 2 h

Since t Y Qyu(t) > H Y(R™) is uniformly continuous on [0, 7], we obtain (i).
Proof of (ii).  Since W4 (R") ¢ L*(R") and w > C([0,T], H ') and ¢ sat-
isfies (Hy), we clearly get

Aw > LP([0,T],W %9) and Ag¢ > LP([0,T],W b9). (5.3.4)

Moreover, using Sobolev embedding and duality argument, we conclude L? ¢
W 14, Thus Lemma 5.2.1 yields

F(w) 3 LP([0,T),W ). (5.3.5)
Therefore, concatenating (5.3.1), (5.3.4) and (5.3.5), we obtain
oww > LP([0,T),W b9).

Let tp 3 [0,77]. By (5.3.3), for any ¢ > [0, 7],
¢
w(t) wty) = ﬂ Ow(s)ds in UTR™),
to

where U(R™) and UXR™) denote Schwartz space on R™ and the space of tempered
distributions on R", respectively. Using Holder’s inequality, we get

X X
ﬂ drw(s)ds > ﬂ \Orw(s)\w 1.4ds
to Lr([0,T],W 1.q) to Lr([0,T7])
T 3 1/p
> | tO)P/pO")ﬂ \dyw(s)\E, 11qu[ dt{
0 to
JATN A 1/p
S TV >ﬂ \Grw(s)\2, qus[ dt{
0 to

T 1/p
>T1/p°o>T>«< ﬂ \Orw(s)\} qusl
0

Z T\atw\L?W 1,q.
Therefore, for all ty > [0, 77,
X
w3} w(ty) = ﬂ oww(s)ds in LP([0,T],W 9). (5.3.6)
to
Combining (5.3.6) with Strichartz’s estimate, in a way similar to the preceding

argument, for all 0 < e < T°< T, we obtain

w(>xt+h)  w(N

n Opw (3

LP([e,THW 1)

1 X-h
Z E ﬂ \8tw(5) 8tw(>}\w l,qu
* Lr ([T
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to+h
%ﬂ \Qyw(s)  Brwlto)\w rads
to

T "

ES to 1/17
Zhl/pwl}ﬂ >ﬂ " Gs) Bw(to)\l,, +,ds [dto<

€ to

- 1/p
— pi/p>1 }ﬂh ) ﬂ \Oyw(to +5)  yw(to)\}y 1..dto [ d5<

0 €

oo 1/p
> sup )ﬂ \drw(to +s)  dw(to)\}y qutol

0>s>h | ¢
T 0 as h1T 0.

This completes the proof of Lemma 5.3.1. O

5.4 The proof of the main result

Since Schrodinger operator U(t) becomes bounded operator from ¢ + H' to
itself (see Lemma 3.1.3), we can obtain

t
6=Ume il VUt tFagde
0
Combining the above equality with (5.1.2), we get

&+ w(t) = U) (6 + wo) N Ut tFF(w(tF)dt (5.4.1)

0

where F(w) = f(|ip + w|P)(¢ + w). From now on, we deduce the proof in a
way similar to Ozawa [19]. Acting  on (5.4.1), we obtain

Il (6+w(®) ks
— I UC 66+ w®)|IE
— 1l 6+ wo)llE 2Im) 6+uwo). (10 5 %(t%ﬁf

0 L2

2

+ ﬂt U( t¥ Flwu@Ddtf . (5.4.2)
0

L2
The second term on the RHS of (5.4.2) satisfies the following equality:

2Im> (¢+w0),ﬂtei< £A ﬁ“(u(toy)dtf

0 L2

- 2ImQ>U<t°>° (6+wo), (Flw@)|d>  (5.4.3)

where the time integral of the scalar product is understood as the duality cou-
pling on (LLL2 { LVLY) x (LS L? + L5 L) with (p,q) = (6/n,6) if n = 2,
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3, (p,q) = (2,4) if n = 4. For the last term on the RHS of (5.4.2), Fubini’s
Theorem implies

Eﬂ o vy <ﬁ“<w<t°>°>>dt@§p

:2Remt> Froen, e e9a ([ Fomad @ (5.44)
0

0

where the time integral of the scalar product is understood as the duality cou-
pling on (LS L2+ L L9y % (LLL2{ LE.LY). Concatenating (5.4.2) - (5.4.4), we
compute

\ (@ +wt)\72
=l (¢ +wo)llE- 2ImQ>U(t°T (¢+wo), (Flw(t)|de

+00

Ut t5 (Flw(t))dt=] dt>

)
0 0

+2Re ﬂt> (Flw(t)

=l (¢+wo)|||ﬁz+21mq> (F(w(t), UC (@ + wo)|de

100

+2Imﬂt> (F(w¥), il | U@ % (Flw(t)dt dt>®
0 0

=l @+ uo)ls +m2mml 1 ea) * (Fluey). wEar

where the last equality in the above holds by using (5.4.1). Taking the duality
coupling between the equation (5.1.1) and (1 €A) ! (F(w)) on H *% H!

and using Im})(1  €A) 'F(w), F(w)|{ = 0, we obtain

Im)(1 eA) ' (F(w),” w| =Im} i)(1 eA) 'F(w),duw|(.
From these equalities, we can show

\ (6 w(t)\ie

=l @+wollts tm2mel it ea) 1wy Guiya

— Il 6+ wo)llEs 2ReQ ) Flw(t), (0] des (5.4.5)

Note that in the above time integral of the scalar product in the last line is un-
derstood as the duality coupling on (LS H'+(L§ H'+LEWh V)« (LLH 1){
(LLH ' { LLW 19)) by applying the idea used Lemma 3 in Gérard [9] (see
Lemma 3.1.3), that is, we decompose l:—’v(w) as
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where x 3 C§ (R") is a cutoff function such that 0 > x > 1, x(§) = 1 for [£||> 1
and x(€) = 0 for [E]|=~ 2, and Py(¢) — i¢;/ .

We show (5.4.5). It follows from Theorem 3.1.7, Lemma 5.2.1, 5.2.2, 5.2.5
and 5.3.1 that

1) Fluen, 3 dt@ﬁ

> ﬂ DD Flwo (1), B i e ﬂ (D) Flw(t9), (i) it
2 \X( o) F (w)\LJT m\Ow\ g 1
+\(1 X(Dz))Fv(w)\LﬁHl+W1,qoj\3tw\L;(H W La)
> C(\Fi(w)\z), 2 + \Fa(w)\ ) 1a)\Ow\p), 1z »
+ CO\GLW)\ g +\G2(w)\ 1oy, I \Ow\ L1 1w 10, (5.4.6)

Furthermore, by using a similar argument to the above and Lebesgue conver-
gence Theorem, we deduce that

il )1 eA) (), B e () Fluo (1), Bran (05 e

el 0 0

which yields (5.4.5).
From (5.4.5), formally, we can continue as follows:

Vw1 6wl (V20 v+ wipiae] ar
=1l 6+ w0l ﬂ Vil -+ wy P+ ) Vipf)as

since a formal argument implies

at)fg V(b + wt)P) dx[—zRe> (w(®)), ).

Hence, to justify the argument above, we need to show the following Lemma.

Lemma 5.4.1. ﬂ V(b + w(H|F)dz > WH((0,T))
Rn

and
;)ﬂ V<|u>+w<t>|F>dx[2Re>ﬁ (). 0w(®)| as 5 in L'((0,T)),
Rn

where A := (H' + (H' + WY%), B:= (H '‘{ (H ‘{ W b)),

Proof. Put I = (0,T) for simplicity. Moreover, £ (I) and £ %I) denote the
Fréchet space of C€ functions I T C compactly supported in I and the space
of distributions on I, respectively. Note that as is in Gallo [8], from (H), the
mapping w¥ V(|p+w|f) become a bounded operator from H'(R") to L*(R™).
Thus, for any ¢ 3 C§ (0,T), we have

i) V(|¢+U/|F)d%<p<
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) ) vip+ wbyiea

Aoy« N (1)

= MO v+ weyte | aeoar

I

Take 0 < & < T°< T such that supp(p) —[e,TF Using Lebesgue convergence
Theorem, we compute

ﬂ)ﬂ V(|ip +w(t)|P) d:z:[ Opp(t)dt

I

—hm} njﬂ V(Ilp +w(t) |Fdw[ Pt +h) s0()dt<

h
~ iim }n M Vle+w t+h°)’|F V(Jp + w(t)[P) dx[ gp(t)dt<
Rn
= V2Re)P(u(t). Bt . (01
We need to Jubtlfy the limiting procedure of the last line in the above. Since
(0/02)(V(|k|P)) |Lz| ) for any z 5 C, it follows that
m V(p +w(t+h) IFh Vg +w@®IF) 2 Re) F{w(t)), ()] an

>

QQRe)ﬂ o (Jp + w(t) + O(w(t +h)  w(t))|P)do

(w(t+ h)
* h

w(D)) [ dr 2Re)F(w(t)), B ()] ae 5

1 —~
) Gt wto +otwe+ 1) wo)lf) Fluto)| a

0
| @) _w()

>2

dx

+2

—=: 2Ly + 2L,. (5.4.7)

The estimation of L;. Choose the cutoff function x 3 C§ (R™) such that 0 >
X > 1, x(&) = 1for [£]|> 1 and x(§) = 0 for |£]|~ 2. Using x (D), we decompose
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Ly as follows:

Ly > p )ﬂ x(D,) }ﬁ‘v(w(t)+9(w(t+h) w(t)))  Flw(t)Vde
R/ 0
(w(t+h) w))
+ P )ﬂ (1 (D) () + 0ot +h) w(t)  Fluw()Vad
Rn/ 0

= K + K».

From now on, Lp 74X denotes the Banach space LP([e,TF X) for p 3 [1,€ ]
and a Banach space X.
The estimation of K;. By Lemma 5.2.3, we get

\F(w(3+00w0eth) - w(3) Oy popny |, e
> \Fy (w0} +0(wieh) w(y)  Frw)\g,, s
F\F(w( + 0wt h) - w(3)  Falwi\yy | o~
> C\wlsh) w12+ C\w(xth) <>><\u n
* JOwOeH P\ o F\wON\L) )
+ (WO h)\pp s+ \w(P\g) )2 2
> C\w(xth)  wN\g), m +C\wixkh) w(h g m
s (\w\z), m + \w\m’(“f” ?)
> C\wlsh) w(h\g) (L \w\ g, i+ \o\JP52 )
> C\w(xth)  w(H ey a, (5.4.8)

where C' depends on the norm \w\ x, of the space Xr.
X7 denotes L TOFH { L[E TO]DWl 2. Using the estimate similar to (5.2.6) and
(5.4.8), we obtain

ﬂT Kt

>ﬂ D) bE(w(t) +0(w(t + ) w(t) F(w(t))\/g d6

w(t+h) w(t) E

>l TZ\A@O + @i h) w) A\,
AR+ 80D w) B\, (9
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(e h) w3
h Ll gl

> CQ \w( >+ h) w(g\X[E,TﬂDde EWE

et
> C\w(xt ) wh\x, EWE .
Pt
By Lemma 5.2.4, we have
\ w3+ h) w) POy e g e

>\Gi(w(3 +0(w(<th) w()  CGrlw(I\ey, e
TG0+ 0wl w(3) G\ g
> C\w(xth)  w(\g)
+ O+ \wOk P\ g+ \w(P\g) ) P22
s \w(xkh) w\y
+C\wlek b)) w(Hx,, g\ VR D gy gex2en )
+ OO R) WP\ x g1+ 0O RN+ \ 0P\ )
w (\w(dk A\FO20 D g \(p\ 0 2)

> C\wxth)  w(H\x, 1 (5.4.9)

where C' depends on \w\x,. Using the estimate similar to (5.2.7) and (5.4.9),
we have

AR X(D2)) FE(w(t) + 0(w(t+ 1) w(t))) ﬁw(theE
0 Hl4W1l.a®

(R w()
h H | W la
1 —~ —~
> (10 0o } Pl + 0w+ 1) w() FWWEMWW
@) w(@)
h H '|W la

>l I\Gitw® + i+ w®) Gl
H\Ga(w(t) + O(w(t+h)  w(t))) @<w<t>>\Lq{d9

. w(t+h) w(t)
h H 1|W e
Hence,

e get

ﬂT Kodt

€
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Eﬂ NGiwO3+ 0wl h) w()  Grlw(h\.:
A\Galw(+ 0wl h) () éé(w@)\mede(é

. w(i>x+h)  w(X
h Lf)s,TO]D(H I W La)

> o NGt + 0wt ) w3) Grlw)s

[e, T

oo
Ll rep

A G0+ 0wl 1) o) Galot e o] 0
(b w(y
h TOFH ‘LP 1,q

- C ~1 \w(x h) w(*\X[E,T d9 EWE

- o ! GFH ‘ L[p T !
> C\w(x h) w(%\X[ayT EWE .

' TO]GH oL TF "

Thus, we obtain

ﬂT Lidt = mT Kldt—‘rmT Kodt
€ €

> C\w(x+h)  w\x, e

C\qutn) w3 L (et w3 -
T

(5.4.10)

The estimation of Ly. It follows from Lemma 5.2.1, Lemma 5.2.3 and Lemma

5.2.5 that for almost all t 5 [e, T,

>X<Dm>f<w<t>>, Wt v g

Ly >

Hlx H 1

><1 (D) Flalo), S g

(H 4w
«(H Y| w ba)

> (D) Flwft)) EW o) E

H

\a x(Dm»ﬁw(t»\meE(w(t*’2 o atwa)E
—~ —~ w(t+h) wt)
> O\ )\as 4\ Eh o) EH 1
+CN\Gr(w(t)\e + \é;<w<t>>\m(

66



w(t+h) w(t)
+ Eh dyw(t) EW y { .

Hence, we deduce that

ﬂT Lodt

€

> O)\Fi(w)\ g0 + \E<w>\L;Lq{EW atw(gE

+ C)\é\;(w)\y;"iz + \é\;(w)\L‘}oiqx(

*> wi>dh)  wy ow(d
" Lol

wi>xh)  w(y
+ Eh atw(gE 3 (5.4.11)

In conclusion, concatenating (5.4.7), (5.4.10) and (5.4.11),

PTOOH >v(|¢+w(t+h°ﬂ|2) V(I +w®)F) { t)dtdx

RTL hoo

Too o~ [
(Y (Re) Flw(t)), Bra(D)] ) o(t)t

£

> 2 ﬂTOOLl lo(t)|dt + 2 ﬂTMLzlka(t)lklt

> C\w xth) w(H\x, e

><+h w( wickh)  w(y (
e
o -

T L e atw@EL "
le.T

it
+ c)\01 \pzpe +\G2(w)\ s,

E ><—|—h w( 615“’(3%
ot
(
+E ><+hh w(y atw(*E .

Noting Lemma 5.3.1 and the fact that a local Lipschitz continuity (3.1.10) in
Theorem 3.1.5 yields

\w(th)  w\x, o = C\w(Jl)  wo\a
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T 0 as h1T 0,

we obtain

>a N V(u)dz, o =2 ﬂm)ﬁw(t)), Dyw(t)| (t)dt.
Ot gn N N (1) I

Since the estimation (5.4.6) means Re)ﬁ‘v(w(t)),atw(t)\ > LY(I), we complete
the proof of Lemma 5.4.1. O

In conclusion, by Lemma 5.4.1, we complete the proof of the main result. [J
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Chapter 6

Appendix

6.1 Notation
We present the notations used throughout this thesis.
<Let Ry =[0,€).
< for a function f in R™, we defined the Fourier transform S[f] = f of f by

fley = 1 e X f(x)dx

Moreover, we denote the inverse Fourier Transform S 1[f] = f of a func-
tion f in R™ by
a 1 ix €
= — dg.
f@) = g | | e (epae

RTL
<For p>Il, €], let LP(R™) = L? be the Banach space in R™ defined by
LP =}f: R" 1 C (measurable); \f\rr < € (

equipped with the norm

t) n Lf<x>|rd:c[1/p ifp < c
%eif%ip If ()l ifp=€.

\f\» =

<For m 2 NN }0( and p > [1,€ |, let W™P(R"™) = W™P be the Banach
space in R™ defined by

WP =} f 5 LP; \f\wmr < € (

equipped with the norm

\Awm» = J \OZ f\ Lo
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< For a Banach space X, T' > 0 and p > [1,€ ], L} X denotes the Banach
space LP([0,T], X) equipped with its natural norm.

< Let U(t) be the Schrédinger operator e*4.

< We denote by f(u) the nonlinearity Aulf 'u.

<Weput a(n) =1+ -2 ifn~3anda(n) =€ ifn=1,2.
<we define ¥ = }f > HY; xf > L*(.

< For the interval I =R, £ (I) and € %I) denote the Fréchet space of C'€
functions I 1 C compactly supported in I and the space of distributions
on I, respectively.

< S (R") = . denotes a Schwartz space on R™.
< SMR™) = s the space of tempered distributions on R™.

<For s 2Rand p > [1,€ ], Let H*P(R™) = H*P be the generalized Sobolev
space in R" defined by

H? =}f2.9%S "1+ )2 f] > L7
equipped with the norm
\\arew =\S 1+ [EF)2 f\eo-

<For s 5 R, let H*(R™) = H? be the generalized Sobolev space in R”
defined by R
H*=}f>7% (1+[gf)2f > L*

equipped with the norm
\Aie = \(1+ [EIF)2 A\ r2

<For s >R and p,q > [1,€ ], Let By ,(R™) = Bj  be the inhomogeneous
Besov space in R™ defined by

Bpa=1} 3 \f\p;, <€(
equipped with the norm

\ c rl/q

2050\ - @ f\2, if g <€
\f\B;,qZ\il)‘f\Lp-Fk ,ll Vs \L< !
&s_uszj\@- o f\rr» ifg=c¢€.
7>0

where }¢,(,;pz is the Littlewood-Paley decomposition, and D(E) =1
f j>0 ¢J(§)
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<For s > R and p,q > [1,€ ], Let B;q(R") = Bf),q be the homogeneous
Besov space in R™ defined by

Bl =137 \f\g, <€
equipped with the norm
\ c {1/q

250\¢; 0 f\1, if g <€
g, = § f e
&sup?j\gbj o f\rr ifg=c¢€.
DL

6.2 The results used in this thesis

We explain the results used in this thesis.

Functional Analysis

Definition 6.2.1. Let (X, d) be a complete metric space. We say that the map
O : X1 X is a contraction mapping in X if there exists a > (0,1) such that

d(®(f), ®(9)) = ad(f, g)
forany f, g > X.

Theorem 6.2.1 (Banach’s fixed point Theorem). (X,d) be a complete metric
space. ® denotes a contraction mapping in X. Then there exists a unique fix
point u> X of ®. That is, there exists a unique u > X such that F(u) = u.

Lemma 6.2.1. Let X be a Banach space. Let x 3 X and a sequence }xy,(p—1 —
X. Ifx, 1t x weakly in X asn T €, then the sequence }a,{n—1 is bounded in
X, and it holds that

\z\x > liminf\z,\x.
nt €
Lemma 6.2.2. Let X be a Banach space. }x,(S_, denotes a sequence in X.

If X is reflexive, then there exists a subsequence }x,, (5_, such that converges
weakly in X.

Lemma 6.2.3. Let X andY be Banach spaces such thatY ¢ X and X<4 Y=
with dense embedding, where X= and Y= denote the dual spaces of X and Y,
respectively. Then if a bounded sequence }on($_; =Y satisfies o, T 0 in X
asn?t €, then for any f 3YS Yon, fly«y: 1T Oasnt €.

Real analysis

Theorem 6.2.2 (Fourier multiplier Theorem, e.g. [21]). Let 1 < p < € . For
some integer s > n/2, suppose that m(§) > C*(R™ }0() { L€ (R"). Assume
also that for all multi-index o with ||| > s, there exdts a positive constant C,,
such that

PEM©I= Calgll *- (€2 R” \/}00 (6.2.1)

Then, there exists a positive constant C' depending on p, C,, d, s such that

\m(Dy) f\rr > C\f\L».
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Besov space

Lemma 6.2.4. Let 1 <p< € and s> R. Then

B y 4 H®P 4 B

;,min(p,Z p,max(p,2)"
Especially, B; , = H® and B;)Q = H°.
Lemma 6.2.5. (i) If s >0, then \u\p;  C\u\r» +\u\p. .

(i1) If 0 < s < 1, then

\ ) q di 1/q
\U\B;q - K)Q >t zu;t \u(x y)  u(F\rr@n) [ - [
&sup sup \u(x ) u(H\rrrny fg=E€.

t>0 y >t
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1. Introduction

In this paper, we consider defocusing nonlinear Schrodinger equations in dimension n < 4

ot
U(O,[L’):UO(IL'), r € R",

2 o n
+Au+f(’u‘ )U—O, te (07T)7 r € RY, (1-1)

where u(t,z) : (0,7) x R™ — C. The initial data uy has the following boundary condition:
2
’uo(aj)‘ — po as |x| — oo,

where pg > 0 denotes the light intensity of the background. The nonlinear term f is assumed to be defocusing.
Namely the real-valued function f satisfies the following assumption:

f(po) =0, f'(po) <0. (Hy)
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Eq. (1.1) with non-vanishing initial data at infinity appears as a relevant model in various physical problems:
for example, Bose-Einstein condensation and superfluidity (see [1,5,6]), and nonlinear topics (dark solitons,
optical vortices) (see [9,7]). Two important model cases for (1.1) have been extensively studied both in the
physical and mathematical literatures: the Gross—Pitaevskii equation (where f(r) = 1 —r) and the so-called
“cubic-quintic” Schrédinger equation (where f(r) = (r — po)(2a + po — 3r), 0 < a < pp). Gallo [3] has
considered the Cauchy problem for (1.1). He proved the following theorem:

Theorem 1.1. (See Theorem 1.1 in Gallo [3].) Let n < 4 and py > 0. Assume that f € C*(Ry) (k = 3 if
n=2,3, k=4 if n =4) satisfying (Hy), and there exist oy > 1, with a supplementary condition a; < af
ifn=3,4(af=31ifn=3,a;=2ifn=4), and ag € R with oy — ay < 1/2 such that

"(r)] < Cor*r=3  ifn=1,2,3,
L [rmiscnn o)
If"(r)| < Corr=% ifn =4,
dCy > 0, 44 > po St
if a1 < 3/2, V is bounded from below, )
if op >3/2, Vr = A, r*2 < CoV (r), “
where V(r) := frpo f(s)ds. Then for any function ¢ satisfying
¢ € CyHH(R™), V¢ € HMH(R™)", |9]> — po € L*(R™), (Hy)

(1.1) is globally well-posed in ¢ + H*(R™). Namely, for any wy € H'(R"), there exists a unique w €
C(R, HY(R™)) such that ¢ + w is the solution to (1.1) with the initial data w(0) = wy. Moreover, the
solution depends continuously on the initial data wo € H*.

Generally, we take two steps to construct a time global solution for the Cauchy problem of usual nonlinear
Schrodinger equations ((NLS)s) (see [2]). The first step is to construct a time local solution to Duhamel’s
integral equation by using a contraction argument. The next step is to extend the solution to the time
global solution by using conservation laws. For Cauchy problem (1.1), we follow the same steps stated
above. Thus, to get time global solutions, it is important to obtain conservation laws. We obtain formally
the conservation law of energy by multiplying Eq. (1.1) by u,, integrating over R™, and taking the real part.
There are basically two methods to justify the procedure above. One is that solutions are approximated by
a sequence of regular solutions, using the continuous dependence of solutions on the initial data. The other
is to use a sequence of regularized equations of (1.1) whose solutions have enough regularities to perform
the procedure above (see [8]). However, these two methods involve a limiting procedure on approximate
solutions. Instead, for (NLS)s with a local interaction nonlinearity, Ozawa [8] derives conservation laws by
using additional properties of solutions provided by Strichartz estimates. We need the following definitions
to mention it:

Definition 1.1.

(i) A positive exponent p’ is called the dual exponent of p if p and p’ satisfy 1/p+1/p" = 1.
(ii) A pair of two exponents (p, q) is called an admissible pair if (p, q) satisfies

2 n n
_+_:_a p>2a p?Q#27OO
423 (b,0) # (2, )

Strichartz estimates are described as the following lemma:
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Lemma 1.1 (Strichartz estimates). (See [2].) Let (p1,q1) and (p2,q2) be admissible pairs. Then

(i) for all f € L?>(R™),
itA
He fHLm(R,qu(]Rn)) < CHfHL?(Rn),

(ii) let T > 0, for all f € LP1([0,T], L9 (R™)),

where py and py are the dual exponents of p1 and p2, respectively.

t

/ ei(t_T)Af(T) dr

—0o0

< CHfHL”’l([O,T},Lqi (R™))’
Lv2([0,T],L92 (B"))

In this paper, for Eq. (1.1) in n = 2,3, 4, we derive the conservation law for time local solutions with-
out approximating procedure. Instead of that, we use Ozawa’s idea [8]. Note that when n = 1, because
H! — L[> Gallo [3] derived it without approximating procedure (see Sections 2, 3 in Gallo [3]), and that
for n > 2, Gallo [3] derived it using the approximate argument (see Section 5 in Gallo [3]). We follow
Ozawa’s idea, however, we cannot derive the conservation law only by Ozawa’s idea, due to the nonlinearity
and the space of a solution. We derive the conservation law to combine Ozawa’s idea with decomposing
the nonlinear term by applying the method for the decomposition of Schrédinger operator in Gérard [4].
Moreover, we remove some of technical assumptions of the nonlinearity necessary to derive the conservation
law. Our main result is as follows.

Theorem 1.2. Let n = 2,3,4. Let pg > 0, and f € C*(Ry.) satisfying (Hy). Moreover, we assume that there
exists oy = 1, with a supplementary condition on < of ifn=3,4 (o] =3 ifn=3, af =2 if n=4) such
that

3Cy >0, st Vr>1, }f(k)(r)‘ < Cor™7F (kK =1,2). (H,))
Let ¢ be a function satisfying
¢ € CZ(R™), Vo € H*(R™)", 6> — po € L*(R™). (H,)

(Note that such function ¢ is called as a reqular function of finite energy.) Let w € C([0,T], H*(R™)) be a
mild solution of the integral equation

t
w(t) = e Pwy — i/ei(t_t/)AF(w(t/)) dt’ (1.2)
0

for some wy € H' and T > 0, where F(w) := —A¢ — f(|¢ +w|?)(¢ +w).
Then E(w(t)) = E(wy) for all t € [0,T], where

E(w) = /’V(¢+w)}2d:€+/V(|¢+w|2) dz,
Rn R

and
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Remark 1.1. Gallo [3] proved the energy conservation law under f € C*(Ry) (k = 3 ifn = 2,3, k = 4
if n = 4) satisfying (Hy), (H,,) and (H,,) for some oy > 1 and as € R with ay — s < 1/2, and ¢
satisfying (Hy), but we can prove it under f € C?(R;) with (Hy) and (H/, ) for some a; > 1, and ¢
with (H}).

Remark 1.2. For proofs of the a priori estimate of f(|¢ + w|?)(¢ + w) (that is Lemmas 3.1-3.4, and Lem-
mas 4.1-4.4 in Gallo [3]) and boundedness of H! norm of w on bounded intervals (that is Lemma 3.3 in
Gallo [3]), we need that there exists C,, > 0 such that for any r > 0,

P12 fB(r)] < Co (1 + pmex@ea=CRDRN (= 1,2), (1.3)

where 1 < ay with the same supplementary condition in Theorem 1.1. If 3/2 < a3 < 2, then we cannot
obtain (1.3) from (Hq,) or (Hq,). Therefore by replacing (Hq,) with (HY, ), we deduce (1.3) from (HY, )
only. To show (1.3), we do not need (H,,).

Moreover, as a corollary to the main result, we can deduce a globally well-posedness of (1.1). Due to
Theorem 1.2, we can remove a technical assumption of the nonlinear term. We have the following result:

Corollary 1.1. Let n = 2,3,4. We assume that f and ¢ satisfy the same assumptions as in Theorem 1.2,
with a supplementary assumption as f satisfying (Hy,) for some as € R with oy — ag < 1/2. Then (1.1) is
globally well-posed in ¢ + H'(R™). That is, for any wo € H'(R™), there exists a unique w € C(R, H'(R"))
such that ¢ +w solves (1.1) with the initial data w(0) = wo. Moreover, for any T > 0, the flow map wy — w
(H' — C([0,T), HY)) is Lipschitz continuous on the bounded sets of H*(R™). The energy £(w) is conserved
by the flow.

The structure of this paper is as follows. In Section 2, we introduce the previous results of Gallo [3] on
the local existence of solutions of (1.1). In Sections 3 and 4, we give estimates of the nonlinear term and
results of the time-derivative term needed for the proof of the main result, respectively. In Section 5, we
prove the main result.

Notation. For a Banach space X, T" > 0 and p € [1,00], L% X denotes the Banach space LP([0,T], X)
equipped with its natural norm.

2. Previous results

For n < 4, Gallo [3] proved the globally well-posedness of (1.1). We state the result for n = 2,3,4. A first
strategy of the proof is that (1.1) is transformed as follows to look for a solution of (1.1) under the form
¢+ w

i%—f + Aw = F(w(t)), te€(0,T), z€R",

’UJ(O,l’) :'LU(](.TC), r € R",

(2.1)

where

F(w) = —A¢ — f(|o+w*) (¢ +w).

In a next strategy, he proves that (2.1) is locally well-posed in H' by using Strichartz estimates and a
contraction argument for the map
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t
d(w) = e Pwy — i/ei(ts)AF(w(s)) ds,
0

in the space
Xrp = LFH' nLEW
equipped with its natural norm

[wllxr == [[wll g ar + [[wll Ly wra,

where a pair (p,q) is an admissible pair defined as (p,q) := (6/n,6) for n = 2,3, (p,q) := (2,4) for n = 4.
We remark that Gallo [3] takes (p,q) := (4,4) for n = 2. Note that our choice also works for getting local
existence of solution to (1.1). For locally well-posedness, Gallo [3] proves the following theorem:

Theorem 2.1. (See Gallo [3].) Let n = 2,3,4. Let py > 0, and f € C*(Ry) satisfying (Hy). Moreover, we
assume that there exist oy > 1, with a supplementary condition aq < of if n = 3,4 (o] = 3 if n = 3,
af =2 i4fn =4), and ay € R with aq — as < 1/2 such that (Hy,) and (Ha,). Let ¢ be a function
satisfying (H,).

Then for any R > 0, there exists T(R) > 0 such that for any wy € H' with ||wo|/z: < R, there exists a
unique solution w € Xp(gy of the integral equation (1.2). Moreover w € C([0, T(R)], H").

If w € C([0,T],H') solves (1.2) for some T > 0, then w € Xr, and w € Xr is the unique solution
o (1.2) in C([0,T], H).

Also the flow map is locally Lipschitz continuous on the bounded sets of H', indeed for any R > 0, there
exists T(R) > 0 such that for any T' € (0,T(R)] and wo,wo € H* with |jwo| g < R and ||wo|lm < R,
corresponding solutions w,w € X of (1.2) satisfy the following locally Lipschitz continuity:

|w — @] x,, < Cllwo — ol 1, (2.2)
where C'is a positive constant depending on ||w||x., and ||| x.,,. Especially, for the same constant C,
lw =l g < Cllwo — wol| -
Furthermore, the energy E(w(t)) is conserved for allt € [0,T].

Remark 2.1. To obtain the local existence theorem above, it seems too much to assume both (H,,) and
(Hy,) for some a1 > 1 and ap € R with a; — ap < 1/2. Theorem 2.1 can be shown only assuming (HY, ).
To show only the local existence theorem, we do not need (H,,).

From Theorem 2.1, a local solution of (2.1) is constructed as the following theorem:

Theorem 2.2. Let n = 2,3,4. Let wg € H'. Let T > 0 and let w be a mild solution of the integral equa-
tion (1.2) with w € C([0,T], H'). Then, for any ty € [0,T), there exists v(tg) € H™1 such that

w(to + h) — w(to)
h

—w(ty) in H ' ash—0.
Moreover, denoting v(tg) by Oyw(ty), w is a solution of (2.1), indeed w satisfies

(i) i0pw(t) + Aw(t) = F(w(t)) in H=Y for all t € [0,T],
(i) w(0) = wp.
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3. The estimates of nonlinear terms

In what follows, we put F(w) = —f(|¢ +w|2)(¢ + w). Applying directly the decomposition of F(w) that
Gallo [3] used, we can deduce the following decompositions for F'(w). Note that we can show Lemmas 3.1-3.4
by applying the same method to F(w) as corresponding lemmas for F(w) in Gallo [3]. The statements of
Lemma 3.1 and Lemma 3.3 are slightly different from these lemmas in Gallo [3]. Therefore we prove them
in Appendix A.

Lemma 3.1. Let T' > 0. For any w € X, there exist
Fi(w) € LPL?,  Fy(w) e LFLY

such that

Moreover it follows that
1B} e g + (B < OO 0lliez) + Ol + [l E2E2 D), (3.0)

where C' is a positive constant depending on T. Also for a same decomposition of ﬁ(w) in the above, we
have Fy(w) € LL.L* and

1Eo ()]l 1o < ClwlFg r + ool a2 7Y,

where C is a positive constant depending on T. Thus Fy(w) € L5 L%
Lemma 3.2. Let T > 0. For any w € X, there exist
Gi(w) € LFL?,  Gy(w) € LE LY
such that
VE(w) = Gy (w) + Ga(w).
Moreover it follows that

G2 (@) | 12 + 1 Go (@)l gy o < OO+ IVl 25022)

max(1,2a1 —2
+C(1+ [Vl ) (Jwll g + lwl[%exh2*1 7)),

where C' is a positive constant depending on T.
Lemma 3.3. Let T > 0. For any wy, wy € X, decomposing f(|¢ +w|?)(¢+w) as Lemma 3.1, it follows that

Hﬁ(wﬁ—ﬁ(wz 2+|’ﬁ2(w1)—ﬁ2(w2

)HL39L )HL%OLQ'

< Cllwy — wa|ee gy + Cllwy — wal|pge mr (([lwil ooy + NJwall oo )

1,21 —2
+(”QUIHL%OHl—i—HwQHL%OHl)maX( a ))

i

where C' is a positive constant depending on T .
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Lemma 3.4. Let T > 0. For any wy,wy € X, decomposing f(|¢ +w|?)(¢+w) as Lemma 3.2, it follows that

Hél(wl) - él(U)?)HLg?L? + HéQ(wl) - éQ(wQ)HLg'LQ’

)max(1,2a1 —2) ’

< O||V(wr - w2)HL%oL2 + C(1+ [Jwi ]l Lzo gt + lJwal| o i lwi — w2l Lge m

+ w2l

+ Cllw — wa| xp ([fwn | 3552012

ax(1,2a1 —2)
. )

0,21 —3 0,201 —3
+ Cllwr — wallxp (14 lwrl| g mrr + lJwallpze mro) (Jwn 302473 4 [y | 32021 79)),

where C' is a positive constant depending on T.

Remark 3.1. Let T' > 0. Lemma 3.1 and Sobolev embedding H! < L4, imply that for any w € C([0,T], H')
and t € [0,T], F(w(t)) € H~'. Furthermore, for any tq € [0, 7], Lemma 3.3 yields

1 (w () = F(w(to))]| - < Cllw(®) = w(to)|

— 0 ast—tg,

where C' is a positive constant depending on ||w|| gz g1. To show it, for w € C([0,T], H'), it suffices to put
wi(s) = w(t) and wy(s) = w(to) (0 < s < T). Thus we also obtain F(w) € C([0,T], H™1).

In the proof of the main result, we use the following lemma:
Lemma 3.5. For any n € L?>+ L7, it follows that
XDl e < Cllll e o (3:2)
Moreover for any n € 8'(R™) with Vi € L? + LY, we obtain
1 =D))< CUVAl o o (33)
Note that if X and Y are Banach spaces, then X 4 Y is a Banach space equipped with the norm
vl x4y = inf{|lo1]|x + |Jv2]ly: v=v1 +v2, v1 € X, v2 €Y }.
We use the following theorem to prove Lemma 3.5.

Theorem 3.1 (Fourier multiplier theorem). (See [10].) Let 1 < p < oco. For some integer s > n/2, suppose
that m(§) € C*(R™\{0}) N L>(R™). Assume also that for all multi-index o with |a| < s, there exists a
positive constant C,, such that

|ogm(©)] < Calél™ (£ € R\ {0}). (34)

Then, there exists a positive constant C' depending on p, Cy, d, s such that

(D) f|,,, < Cllf |l o

Proof of Lemma 3.5. For any n € L2 4+ LY, there exist g, € L? and 1, € L7 such that n = n, + 2.
Q(&) denotes (1+ [£]?)x(€). Also, Q(&) satisfies (3.4) since y € C§°(R™). Therefore, using Fourier multiplier
theorem, we obtain
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[X(Da)]] g1 = [|QDa)n|[ -
< |Q(D2)m || . + [|Q(D2)m2 ||
< C([lmllze + ln2ll par)-

Therefore, we deduce that

X(D2)nl] o < Clinll 2y par -

Next, for any 1 € S'(R") with Vy € L? 4+ LY, there exist (¢J(w))j=1...n € L? and (¢J(w))j=1. . € LY
such that Vi = (1 + ¢o. Using P;(€) := —i&; /€] (€ := (&) j=1,...n € R"), we have

(1—x(D2))n = (1-x(Dy)) ZPj(Dw)ajn

= > (1= XD PP + Y (1= X(Da) Pi(D2).
=1
Fourier multiplier theorem implies

03P g € SN0 =MD PG s + S~ XD DI .
j=1 Jj=1
< OlGillzz +CliGall Lo -
Thus we get
H (1 - X(Dz))W"H1+W1,qI < O||V77||L2+Lq/- U
4. Regularities of time-derivative term
In this section, we shall show properties of the time-derivative term 0;u.

Lemma 4.1. Let n = 2,3,4, and let (p,q) := (6/n,6) for n = 2,3, (p,q) = (2,4) for n = 4. Let w be a

solution of Eq. (2.1) belonging to C([0,T], H') for some T > 0 with the initial data w(0) = wo € H*. Then
forany0<e<T' <T,

(i) Hw(‘di—h) —wl) — Jqw(-) —0 ash—0,
h C(le,T'],H1)
and

—0 ash—0.

[2een e g

Lr([e,T"],W—1.9)

Proof. Note that Eq. (2.1) implies
dw = i(Aw — F(w)). (4.1)

We show (i) and (ii) using (4.1).
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Proof of (i). Note that from Theorem 2.2, for any 0 < t < T, dyw(t) € H~! exists in strong sense. Hence,
it suffices to show continuity of d;w(t) on [0, T]. Clearly,

[Aw| -1 < [[Vwl|ze, (4.2)
which yields Aw € C([0,7], H™!). Using (4.1), (4.2) and Remark 3.1, we obtain
dw e C([0,T],H™Y).

Hence, it follows that for all ¢y, ¢ € [0,T],
—w(ty) = /8tw(s) ds in H™'. (4.3)

We take 0 < e < T’ < T. For all ¢y € [¢,T’'] and sufficiently small h € R,

to+h
Hw(t“h,z_w(to) —dalto)|| <l [ 19a0(s) = i)l - ds
to
< 0. — 0 t 1
Is_St(?II;wH rw(s) = Orw(to) | -

Since t +— dyu(t) € H~1(R™) is uniformly continuous on [0, T], we obtain (i).
Proof of (ii). Since W4 (R") < L*(R") and w € C([0,T], H~') and ¢ satisfies (Hy), we clearly get

Aw e LP([0,T],W=19) and Ag¢ e L ([0, T], W~ 19). (4.4)

Moreover, using Sobolev embedding and duality argument, we conclude L? < W~=14, Thus Lemma 3.1
yields

F(w) € LP([0,T], W~ 19). (4.5)
Therefore, concatenating (4.1), (4.4) and (4.5), we obtain
dw € LP([0,T), W—11).

Let to € [0,T]. By (4.3), for any t € [0, 7],
t
—w(ty) = /(?tw(s) ds in 8'(R™),

where S(R™) and S’(R™) denote Schwartz space on R™ and the space of tempered distributions on R™,

JALC

to

oo i )]

respectively. Using Holder’s inequality, we get

/8tw(s) ds

Lr([0,T],W—14) Lr([0,T7)
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](/tuﬁtw(s)usv_lﬂ ds) dt] v
0 to

T 1/p
< Tl/p' (T X /HaﬂU(S)HI;Vl,q dS)
0

< T)|0vwl Lo wr—r.a-

< T1/%

Therefore, for all ¢y € [0,T],
W) — wito) = /atw(s) ds in LP([0,T], W~1a). (4.6)
to

Combining (4.6) with Strichartz’s estimate, in a way similar to the preceding argument, for all 0 < ¢ <
T' < T, we obtain

[

Lr([e,T'],W—1:q)

<

!
3 [ Nowts) = 0]y v, ds
/ Lr([e,T"])

T’ P 1/p
{J “)
T , to+h 1/p
< hl/p’—l{ /( / |0pw(s) — atw(to)H’;V,l,q ds> dto}

to+h
1 H@tw(s) — 8tw(t0)HW_1’q ds
h

to

g to
h T’ 1/p
0 €

T’ 1/p
< sup (/H&w(to +5) = Orw(to) |7y 1. dto)

0<s<h

—0 as h—0.

This completes the proof of Lemma 4.1. O
5. The proof of the main result

Since Schrédinger operator e”*® becomes bounded operator from ¢ + H' to itself (see Lemma 3 in
Gérard [4]), we can obtain

t
¢ _ €itA¢ - / ei(t_tl)AA(bdt/.
0

Combining the above equality with (1.2), we get
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¢
b+ w(t) = e (¢ + wp) — '/ei(tt/mﬁ(w(t’)) dt’, (5.1)
0
where F(w) := —f(|¢ + w|?)(¢ + w). From now on, we deduce the proof in a way similar to Ozawa [8].

Acting V on (5.1), we obtain

[V (6 +w®)ll;z = Ve 0% (6 + w(t) | 1.

t

= ¥(6-- w210 S0, [ ) a

0 L2
t 2
4 / FCBY F(w(t')) di (5.2)
0 L2
The second term on the RHS of (5.2) satisfies the following equality:
t
—2Tm (V(QS + wp), / ei(_t/)AVf(u(t’)) dt’)
0 L2

t
— %M / (e5V(6 + wo), V(F(w(t')))) dt' (5.3)

0

where the time integral of the scalar product is understood as the duality coupling on (LLL? N LYLY) x
(L¥L* + L’:}Lq/) with (p,q) = (6/n,6) if n = 2,3, (p,q) = (2,4) if n = 4. For the last term on the RHS
of (5.2), Fubini’s theorem implies

2

j OB (F(w(t'))) de

L2

t t’

= 2Re/<v(ﬁ(w(t’))),/ei<t’—t”>Av(ﬁ(w(t~))) dt”> dt’, (5.4)
0 0
where the time integral of the scalar product is understood as the duality coupling on (L L?* + L’}, Lq/) X

(LAL? N LY LY). Concatenating (5.2)(5.4), we compute

96+ w0) 32 = (1966 + wo) 1z —20m [ (496 + o), W (F(w(?)))) a

t t’

+2Re / <V(ﬁ(w(t’))), / it =AY (B (w(t7))) dt”> dt

0 0

= [ (6 -+ un). + 21 [(F(F((¢))). 73T+ )
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t/

+2Tm /t <v(ﬁ(w(t'))),_z~ / it =AY (F(w(t7))) dt”>dt’

0

= ||V (6 + wo)|% + 1€i%121m/<(1 — AT (F(w(t'))), V() dt',

where the last equality in the above holds by using (1.2). Taking the duality coupling between Eq. (2.1)
and (1 — eA)"'V(F(w)) on H~! x H! and using Im{((1 — eA)~'F(w), F(w))} = 0, we obtain

Im((1 - eA)"'V (F(w)), Vo) = Im{—i((1 — eA) " F(w), Fra)}.

From these equalities, we can show

HV(gbwLw(t))HiZ = ”V(¢+wo)|’; —lgngRe/((l —5A)_1F(u(t’)),8tw(t’)>dt’
0

t

— |96+ wo) || - 2Re/<F(w(t’)),8tw(t/)>dt’. (5.5)

0

Note that in the above time integral of the scalar product in the last line is understood as the duality
coupling on (L H' + (L H' + L Wh9)) x (LY H=Y) N (LLH=1 0 LEW—14)) by applying the idea used
in Lemma 3 in Gérard [4], that is, we decompose F'(w) as

Fw) = +Zl— D)0, F(w),

where x € C§°(R"™) is a cutoff function such that 0 < x <1, x(§) =1 for |{| < 1 and x(£) = 0 for [¢] > 2,

and P;(§) = i&;/|¢]*.
We show (5.5). It follows from Theorem 2.2, Lemmas 3.1, 3.2, 3.5 and 4.1 that

t

[(F o)), u(e)) | <

0

/\<>< wlt)), B )] '+ /\<1 )F(w(t)). )] e

< HX Dl‘ F w HL°°H1||8tw||L1 H-1
+ H(l B X<Dm)) HLP (H14+W1.a )HathL (H-'nW—1.a)
C(HFl(w)HL%OLQ + HF2 w HL%"LQ’)HathL“H*l

+ C(HGl(w)HL’;’Iﬂ + HGQ(M)HL’;'LQ )HaﬁwHL” (H-*NW~—1a)- (5.6)
Furthermore, by using a similar argument to the above and Lebesgue convergence theorem, we deduce that

t t

lim [ {(1—eA)" F(w(t'),dw(t))dt’ = /(ﬁ(w(t’)),&tw(t'»dt’,

el0
0 0

which yields (5.5).
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From (5.5), formally, we can continue as follows:

2 2 / 0 |2 /
9+ w) e = 9@+ wnlfa = [ 5 ([ V(o+w@)Pye) i
0 R

= V(6 + wo)|3- —/V(\¢+w(t)\2)dx+/v(|¢12)dx,

R R
since a formal argument implies
0 .
5 (v (lo+ wlof)de) = 2Re(F (w(o). B
Rn

Hence, to justify the argument above, we need to show the following lemma.
Lemma 5.1. [, V(¢ +w()]*)dz € WHL((0,T)) and

%( /V(|¢+w(t)|2)d:c> = 2Re(F(w(t)),dw(®)) ., in L'((0,7)),
A

where A := (H' + (H' + W), B:= (H ' n (H- ' nW~19)).

Proof. Put I = (0,7') for simplicity. Moreover, D(I) and D’(I) denote the Fréchet space of C*° functions
I — C compactly supported in I and the space of distributions on I, respectively. Note that as is in Gallo [3],
from (Hy), the mapping w — V(|¢ + w|?) becomes a bounded operator from H'(R™) to L'(R™). Thus, for
any ¢ € C§°(0,T), we have

0

<E/V(]¢+w|2) dw,<p> = <—/V(!q§+w|2) dx 8tg0>
D/(I)xD(I) o D/(I)xD(I)

/(/V 6+ w(t) )m)at@( ) dt.

Take 0 < ¢ < T" < T such that supp(p) C [g,T"]. Using Lebesgue convergence theorem, we compute

_/</V(‘¢+w(t)‘2) dw)@‘ﬂ(t)dt

1 Rn

’

:}llii%{_/</V(}¢+w(t)‘z)dw)w(t+h})b—<ﬁ(t) dt}

€ Rn

~ { /< /v 6+ wlt+ M)P) = V(6 + ) dm>¢(t) dt}

&€

:/2Re<F(u(t)),8tw(t)>Ango(t) d.

I
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= F(|2|) for

We need to justify the limiting procedure of the last line in the above. Since (9/9z)(V (]z]%))

any z € C, it follows that

— V(o +w(t)?) dz — 2Re(F (w(t)), 0w (t)) ., 4

’ / V(¢ +w(t+h)P)

h
1
) Re (/
0

-9 Re<ﬁ(w(t)),atw(t)>A><B

(w(t+h) —w(t))
Y ) dx

(|6 + w(t) + 0(w(t + h) — w(t))|*) do

S?H

(w(t+h) —w(t))
df Y ) dl“

<2

/(/1< (|¢ +w(t) +6(w(t+h) — ())\2)_ﬁ(w(t))>

Rn

+2‘/ Hh W®) gy (F(w(t)

Il

Rn

w(t+ h) —w(t))
Y ) dz

w(t))) - F(w(®))) do <

<2

/(ﬁ(w(t) +0(w(t+ h) —
0

(w(t+h)—w(t))>H . — (F(w(t),0w(t)) ,, 5

+2
(5.7)

(Flu).

=:2L1 + 2Ls.
The estimation of Li. Choose the cutoff function x € C§°(R™) such that 0 < xy < 1, x(§) =1 for |{] < 1

and x(§) = 0 for |£| > 2. Using x (D), we decompose L as follows

s /(/ D{F(w(t) + 0 (w(t +h) —w(t)) = F(w(t)) } db (w(thL— ()))dw
R™ 0
1
' (/“‘X(D) (1) + 0wt + 1) — w(®)) — F(w(n)} ap L <>)>dw
R N0
::K1+K2.

X denotes the Banach space LP([e,T'],X) for p € [1,00] and a Banach space X

From now on, Lfg T
The estimation of K. By Lemma 3.3, we get

I () + 6wl +h) =w()) = F@) e popre, o

< ||Fu(w(e) + 0(w(- + h) —
+ || F2(w(-) 4+ 6(w(- + h)

w -)HLO:T,]L2 + C||lw(- + h) — w(-)
max(1,2a172)}

w())) -k (w()) HL[O;T/]L2

—w())) = Fa(w(")) HLF:,T,]L‘J'
HLoc Hl{(Hw( + h)HLFEO’T,]Hl + Hw(')HLF:YT,]Hl)

< C|lw(-+h) -

ol Wl o+ 10Ol )
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1,200 —2
<COllwC+m) = w0l o+ CllwC +0) = wOl| e s (el + [l 250 )

< Cljw(-+h) - w(')HLw o H (1 + Jwllpgem + ||W||El§oxf({1{2°‘l_2))

CHw +h) —w(- HLN o H (5.8)

where C' depends on the norm ||wl|x, of the space Xp.
Xie 7 denotes LE’EOT,}HI N L’[; T,]Wl*q. Using the estimate similar to (3.2) and (5.8), we obtain

-
/Kl dt < /(/Hx () + 0(w(t+h) —w(t)) — Flwt) }| dQHw(Hh})L_w(t)HH) at
1
C’/ HF1 ('+h) —w())) _ﬁl(w('))HLF;T,]LQ
0
+ HFQ( )+ 0(w(- +h) —w(-))) _ﬁ2(w(’))”L<[>§,T,]Lq’)dgHw('+h})L_w(‘) I H-
(e. 7]

< Co/llw(' 0 -wl)y,,, d H wi+ h}z —w()

Lee, , H-1
€

w(-+h) —w()
h

B w(')HX[a,T’l L2, ot
:

By Lemma 3.4, we have

|[VE(w() +0(w(- + h) —w(-))) = VF (w(

)HLoo L +r? , La

[e,T’]

HGl( )+ 9( (-+h) - w())) ~ G (w(‘))HLF;T,]Lz

G (w) + 00+ 1) = w0) = Galw )

< COllw(-+h) - HLF"T,]Hl

max(1,2a1—2)
+CO(1+ Hw( + h)HLF;T/]Hl + Hw()HLOO - Hl) Hw( +h) - w(')HLF;T,]Hl

max(l 2a1 —2)

sl + 1) = w0y (- + 2 2=

+ [l

+Olfw(+h) —wl)y, ,, (1 + [l +hHLoo Ol )

le T’]

max(O 2a1—3)

X ([l +x, )

[

< Cl|lw(- + h) — w(- HX[E’T/], (5.9)

where C' depends on ||w||x,. Using the estimate similar to (3.3) and (5.9), we have
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Ko < | [ (1= (D) [F () + 6(ult + 1) - w(0)) - Flu(t)} 49

Hl4wta

4ww+m—mmu

h R
</1H(1— D)) {F (w(t) + 0 (w(t + h) = w(t))) = F(w()) }] 1.0 46
b
. w@+2—mmu 7
PRI
C/1 (|G (w(t) + 0 (w(t + h) —w(t))) = VG (w(®)) | ..
0

+ || Ga (w(t) + 0(w(t + h) —w(t))) — VG (w(t))]| ) 6
w(t+h) —w(t)
<[]

H-'nW-1la

Hence, we get

1

<)l [ (16 (w) + 0wt + )~ w)) = i ()],

+[|Ga(w() +0(w(- + 1) = w()) = Ga(w() | v dF)

’
L

LP ,](H—lmw—M)

—_

C'/ HG1 +h)_w(‘)))_é1(w('))HL°; L2

[e,T’]
0

+ HGQ( ) +0(w(-+h) —w(-)) - éQ(w('))HLP' Lq’) do

[e.T"]
" w(-+ h})L —w(-)

oo I3 —1,
L2 oy H-IOLY, L Wb

<Cjuw+mmo&ﬂ¢w“%+2w0

L[OOT]H mLf ]Wfl»q

w(-+h) —w()

<C’Hw('+h)— 3

w(.)HX[EYT/]

oo — p —
L[E,T’]H 1ﬁL[E’T,]W L.q

Thus, we obtain
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T’ T T
/let:/Kldt—l-/Kgdt
e

<CHw +h) —w(-

X <Hw +h ) (5.10)
L[pa,T’]W_l’q

The estimation of L. It follows from Lemma 3.1, Lemma 3.3 and Lemma 3.5 that for almost all ¢t € [, T"],

H&T]

w(-+h) —w()
h

)

LR H ™

12 < |(x(p2) Fu), "= )

HlxH-1

# (0= 2D Fo), 0@

x(H 'nw 1)

< PP w(®) [ ot
+ H(l — X(Dm))ﬁ(w(t))HHlerq’ ottt h) i a atw(t)HHlmWW
C(Hﬁl (w(t))HL2 + Hﬁ2 (w(t)) HL‘/) ‘w(t - ) 0 N atw(t)”ﬂl

+ C (|G (et )HLz+HG2( )l )

([ o], [ ] )
Hence, we deduce that
!mw<cwﬁww%m+wawmﬂnr”+2‘w“—aw»W&WA
C(16s )y 12 + G} 1)
(e
. Hw(- + h})L —w() drw(-) Lﬁ’T/]WLq). (5.11)

In conclusion, concatenating (5.7), (5.10) and (5.11),

T’ [
<V(|¢ +w(t+h )\2)/ — V(¢ + w(t)|2)>¢(t) dt dx — /(Re<ﬁ(w(t)),m>)@(t) di
e R» )

T’ T’
< 2/L1\¢(t)\dt+2/Lg\gp(t)\dt
3 €

<+ -uOy
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x <Hw<-+hf>L —w() o HMMZ —w() L@,T,]W-l,)
CUIFw)] 1y + 1P )| <0y |
[e,T]
+C(IG W)y 1o + o) 1)
x <H wi+ h}z ~00) () I + H Wl AR Zwl) () L;T,]w—l,q)

Noting Lemma 4.1 and the fact that a local Lipschitz continuity (2.2) in Theorem 2.1 yields

oo+ 1)~ w0, < Clw(inl) ~woll

—0 ash—0,

we obtain

Since the estimation (5.6) means Re(F (w(t)), dyw(t)) € L'(I), we complete the proof of Lemma 5.1. O
In conclusion, by Lemma 5.1, we complete the proof of the main result. O
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Appendix A
Proof of Lemma 3.1. We decompose — f(|¢ + w|?)(¢ + w) as

—f (¢ +w|*) (¢ + w) = Fi(w) + Fa(w), (A1)

where

E(w) = —f(|6]*) (¢ +w) — 2Re[pw]f’ (|6]%) ¢,
Fy(w) = ~{f(l¢ +w*) (¢ +w) — f(|6]*) (¢ +w)} + 2Relpw]f'(|6]*) .

According to Lemma 4.1 in Gallo [3], by the assumption (H),) and f(|¢|*) € L?, we deduce that

Hﬁl(w)HL%’Lz < O(1+ [lwlpgre), | Fa(w)] < Clwl*(1+ |w|)max(072ar3).

Therefore for all ¢ € [0, T], we estimate that
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|Eaw®) | < Ol (1 + [ )™

max(2,2cc1 —1)

Cllw ()|} + Cllw(®) || Far masia s 1

CHw(t)Hip + C'Hw(t)”ﬁ?"(lhl—l)'

N

N

Hence, we deduce that

- 2,201 —1
|Fo@)] o o < CllwllFe prr + Cllwll F >~

In conclusion, we get

1E ()| e o + [ F2()] e < €U+ Nwlliger2) + C(lll e g + w757 0).

Next, we show F(w) € LY. L?. We apply an interpolation method (see Lemma 4.2 in Gallo [3]). Thanks
to the Holder inequality and Gagliardo—Nirenberg’s inequality, we estimate

max(2,2c0—1)
L?maX(2¢2a1 =1 1,2 max(2,2a1 —1)

[F2(w)]| 1 12 < CllwlF2s 1 + 0]

max(2,2a1—1
< Clwlf g + lwlFewan™ Y, (A2)
where we choose the pair (s,r) such that
o If1-1¢ Wlﬁm—l) (which means that H' < LP™ax(2:201=1)) "then (s,7) = (o0, 2).
11 1
. Ifi—ﬁ>m,thenr>2,and
(i) 2+ 2 =2 (which means that (s,r) is an admissible pair),
(i) 0<+-1g m (which gives the Sobolev embedding W7 s [Pmax(2,2a1=1))
i)

% (which gives L5 Lg_‘max(Q,zOél—l))‘

—~
—
—-
—_

1
p max(2,2a1—1) 2

Such the choice of s and r is possible if and only if s and r satisfy the following inequality:

1< 24n

= pmax(2,2a; — 1) (A.3)

N3

Indeed, if (A.3) is true, then it is sufficient to choose

n n 2 n

- 1 .
r 2 pmax(2,2ay — 1)’ * pmax(2,2a; — 1)

Moreover, since H' < [pmax(2201-1) if p = 9 orif n =3 and 1 < ap <2orifn=4and 1 <oy <3/2, we
consider that n =3 and 2 < a3 <3 orn =4 and 3/2 < a; < 2. Since 2 < r < 3 and (s,r) is an admissible
pair, we can choose 0 € (0,1) satisfying

1-0 0 B
q

—

5 +

1 1-6
T (oe]

"I D™

1
Y s :

Thus, using interpolation method,

Lewir S CHWH}L%QHl kuigwlyq

[[]

< C(lwllzgem + lwlizpwa)

= Cllwl[x- (A4)
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From (A.2) and (A.4), we deduce that

HFQ(U}) Hmax(2 2a1 1))

HL’,}Lz < (||w”L°°H1 + [lw
Thus, we get F(w) € LLL?. O
Proof of Lemma 3.3. we use the decomposition (A.1) again. As is in Gallo [3], we also have

‘fl(wl Fl ’UJ2 | C|w1 ’LU2|,

Fauws) — Fa(wa)] < Cluoy —wal(fwal + uwal) (1 + un] + fsa]) ™.

Therefore we deduce that
Hﬁ1(w1 — Fy(wy HLooLz < Cllwy — wa||pss 12

Moreover let

ifn=3and 2 < a; <3 orn=4,

(2,3) ifn=2 orn=3and oy <2,
(71, 92)
( : 5 )
q—1—max(1,2a1—2)’ max(1,2a1—2)

with % = qil + qiz. Since if n =3 and 2 < a; < 3 or n =4, then H! — L% for all t € [0,T], we estimate

Hﬁ2(w2(t)) ~F (wg(t))HLq, < Cle(t) - w2(t)HL2q’ (le t)HLQ‘Z’ + sz(t)HL%’)
+ Clwr () = wa &) o, || [ (8)] + [w2(2)
< Cllw(t) = w2 ()| o (w1 )] p2or + [[w02®)]] f20r)
(t)

+0le(t) _ ‘Hmax(l 2a1—2)

max(1,2a1—2)
‘ HL(IQ max(1,2a1 —2)

Ol o [0 (®)] + [ (2)

< Cllwr(®) = wa | g (s @ g + [lw2 @] )

+ C’le(t) — wz(t)HHl (le(t)HH1 + HwQ(t)HHl)max(l’ml_m,

In conclusion, we get

Hﬁ(wl) - ﬁ(wQ)HL%OL2+L%°Lq’

< CTljwy — wal[pgere + Cllwr — w2 pse

1,2c1 —2
x (g + lwallpse i) + (lwnllpse e + lwallpge ) ™02 72,
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