
Study on Load Management for

Hierarchical Peer-to-Peer File Search

（階層型ピア・ツー・ピアファイル検索のための
負荷管理の研究）

by

CAO QI

July, 2014

H

A dissertation submitted to the Faculty of the Information Engineering Course of the

Graduate School of Engineering of Hiroshima University in partial fulfillment of the

requirements for the degree of Doctor of Engineering.

To all the people

who have helped me reach this far.

i

Acknowledgments

This thesis is the outcome of help and guidance of a lot of people. First and foremost,

I am heartily thankful to my supervisor Prof. Satoshi Fujita, whose encouragement,

guidance and support from the initial to the final level enabled me to develop an

understanding of the subject. His serious attitude and boundless enthusiasm for

research was an excellent example for me.

I would like to thank Assoc. Prof. Sayaka Kamei and Assist. Prof. Satoshi Taoka

in Distributed Systems Laboratory, for their valuable comments during my research.

I would like to thank Mr. Masayuki Tamura and all staffs of Young Researchers

Education Center, for their warm-hearted encouragement and support.

I would like to convey my special thanks to all colleagues, tutors and leaders

when I interned at Sharp Corporation (2010), Lenovo (Japan) Ltd. (2011) and Core

Corporation (2012). They shared a number of valuable insights about the electronic

industry, and made me think “true meaning” of research from an industrial perspec-

tive.

I would like to convey my special thanks to Mr. Kazuyuki Nakagawa, and other

alumni of Hiroshima University who are working at Renesas Electronics Corpora-

tion, for their valuable suggestions, discussions and comments during my job hunting

activities. With their help, i can devote myself entirely to do research.

I would like to thank Bahaa Alghazawy, and all my friends and colleagues in

Hiroshima University, for their kind encouragements and supports in life and research.

ii

I express my sincere gratitude to the faculty members and staffs of the department

of information engineering.

I am thankful to my parent for their constant support. I am equally thankful to

my wife, for being patient, supportive and helping during preparation of this thesis.

iii

Abstract

In a Peer-to-Peer (P2P) system, multiple interconnected peers or nodes contribute

a portion of their resources (e.g., files, disk storage, network bandwidth) in order

to inexpensively handle tasks that would normally require powerful servers. Since

the emergency of P2P file sharing, load balancing has been considered as a primary

concern, as well as other issues such as autonomy, fault tolerance and security. In

a process of file search, a heavily loaded peer may incur a long latency or failure in

query forwarding or responding. If there are many such peers in a system, it may

cause link congestion or path congestion, and consequently affect the performance

of overall system. To avoid such situation, some of general techniques used in Web

systems such as caching and paging are adopted into P2P systems. However, it is

highly insufficient for load balancing since peers often exhibit high heterogeneity and

dynamicity in P2P systems. To overcome such a difficulty, the use of super-peers is

currently being the most promising approach in optimizing allocation of system load

to peers, i.e., it allocates more system load to high capacity and stable super-peers

by assigning task of index maintenance and retrieval to them.

In this thesis, we focused on two kinds of super-peer based hierarchical architec-

tures of P2P systems, which are distinguished by the organization of super-peers. In

each of them, we discussed system load allocation, and proposed novel load balancing

algorithms for alleviating load imbalance of super-peers, aiming to decrease average

and variation of query response time during index retrieval process.

iv

More concretely, in this thesis, our contribution to load management solutions for

hierarchical P2P file search are the following:

• In Qin’s hierarchical architecture, indices of files held by the user peers in the

bottom layer are stored at the super-peers in the middle layer, and the correla-

tion of those two bottom layers is controlled by the central server(s) in the top

layer using the notion of tags. In Qin’s system, a heavily loaded super-peer can

move excessive load to a lightly loaded super-peer by using the notion of task

migration. However, such a task migration approach is not sufficient to balance

the load of super-peers if the size of tasks is highly imbalanced. To overcome

such an issue, in this thesis, we propose two task migration schemes for this

architecture, aiming to ensure an even load distribution over the super-peers.

The first scheme controls the load of each task in order to decrease the total

cost of task migration. The second scheme directly balances the load over tasks

by reordering the priority of tags used in the query forwarding step. The ef-

fectiveness of the proposed schemes are evaluated by simulation. The result of

simulations indicates that all the schemes can work in coordinate, in alleviating

the bottleneck situation of super-peers.

• In DHT-based super-peer architecture, indices of files held by the user peers in

the lower layer are stored at the DHT connected super-peers in the upper layer.

In DHT-based super-peer systems, the skewness of user’s preference regard-

ing keywords contained in multi-keyword query causes query load imbalance

of super-peers that combines both routing and response load. Although index

replication has a great potential for alleviating this problem, existing schemes

did not explicitly address it or incurred high cost. To overcome such an issue, in

this thesis, we propose an integrated solution that consists of three replication

schemes to alleviate query load imbalance while minimizing the cost. The first

v

scheme is an active index replication in order to decrease routing load in the

super-peer layer, and distribute response load of an index among super-peers

that stored the replica. The second scheme is a proactive pointer replication

that places location information of an index, for reducing maintenance cost

between the index and its replicas. The third scheme is a passive index repli-

cation that guarantees the maximum query load of super-peers. The result of

simulations indicates that the proposed schemes can help alleviating the query

load imbalance of super-peers. Moreover, by comparison it was found that our

schemes are more cost-effective on placing replicas than other approaches.

vi

Contents

Acknowledgments ii

Abstract iv

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Load Balancing Problem . 1

1.2 Background of Peer-to-Peer Systems 5

1.2.1 P2P Architectures . 6

1.2.2 Search Algorithms . 11

1.3 Research Aim and Approach . 17

1.4 Thesis Organization . 21

2 A Survey on Load Balancing in P2P Systems 23

2.1 Introduction . 23

2.2 Task Migration based Approaches . 27

2.2.1 Structured P2Ps . 28

2.2.2 Unstructured P2Ps . 31

vii

2.3 Task Replication based Approaches 32

2.3.1 Structured P2Ps . 33

2.3.2 Unstructured P2Ps . 35

2.4 Summary and Discussion . 39

3 Load Balancing for Qin’s Hierarchical P2P system 42

3.1 Introduction . 42

3.2 Observation of Qin’s Hierarchical P2P Architecture 43

3.3 System Model . 45

3.3.1 Design . 45

3.3.2 Skewed Query Model . 46

3.4 Task Migration based Load Balancing Schemes 48

3.4.1 Preliminaries . 49

3.4.2 Task Migration Protocol . 50

3.4.3 Task Splitting . 51

3.4.4 Tag Reordering . 53

3.5 Simulation Model . 54

3.5.1 Simulation Model . 55

3.5.2 Effect of Load Balancing . 55

3.5.3 Spatial Load vs. Temporal Load 57

3.6 Summary and Discussion . 58

4 Load Balancing for DHT-based Super-Peer Systems 60

4.1 Introduction . 60

4.2 Observation of DHT-based Super-Peer Architecture 63

4.3 System Model . 64

4.3.1 Design . 64

4.3.2 Skewed Query Model . 67

viii

4.4 Task Replication based Load Balancing Schemes 68

4.4.1 Preliminaries . 69

4.4.2 Active Index Replication . 70

4.4.3 Proactive Pointer Replication 73

4.4.4 Passive Index Replication . 75

4.5 Simulation . 78

4.5.1 Simulation Model . 78

4.5.2 Effect of Replication Schemes 79

4.5.3 Comparison with PCache Replication 81

4.5.4 Comparison with EAD Replication 82

4.6 Summary and Discussion . 83

5 Concluding Remarks 85

5.1 Summary . 85

5.2 Contributions . 86

5.3 Discussion and Outlook . 87

Bibliography 88

Publication 101

ix

List of Tables

2.1 Causes of load imbalance . 24

3.1 Cost of migration . 57

4.1 Structure of an index entry . 66

4.2 Effect of parameter Tmin . 80

4.3 Cost of replication . 81

x

List of Figures

1.1 Network performance versus load . 3

1.2 Architecture of Napster . 7

1.3 Architecture of Gnutella . 8

1.4 Architecture of Kazaa . 10

1.5 Routing of Chord . 15

1.6 Routing of Pastry . 16

1.7 Routing of CAN . 17

1.8 Architecture of Qin’s hierarchical P2P system 20

1.9 Architecture of DHT-based super-peer system 21

2.1 Load imbalance occurred in identifier space 25

2.2 Load imbalance occurred in indegree size 25

2.3 Load imbalance occurred in response 26

2.4 Load imbalance occurred in routing 27

3.1 A model of three-tier P2P architecture. 47

3.2 An example of task splitting when |T | = 4. 52

3.3 An example of task merge when |T | = 4. 54

3.4 Effect of load balancing scheme. 56

3.5 Distribution of spatial load. 58

3.6 Distribution of temporal load. 59

4.1 A model of DHT-based super-peer system. 65

xi

4.2 Sub-queries received and forwarded at each SP 69

4.3 Query flow in tree-based routing DHT 71

4.4 Query routing after applying pointer replication 74

4.5 Load shedding distinguished by main cause of overloading 77

4.6 Load distribution after applying replication schemes 79

4.7 Comparison with PCache . 81

4.8 Comparison with EAD . 82

xii

Chapter 1

Introduction

1.1 Load Balancing Problem

Load balancing has been widely used as one of fundamental technologies in improving

the performance of parallel and distributed computing [19, 89, 91], Web server systems

[13, 14, 100] and so on. A classic load balancing problem in parallel and distributed

computing is to distribute tasks (i.e., chunks of work) among a set of processors as

evenly as possible. More concretely, this problem can be stated as follows: Suppose

we have a set of tasks T to assign them to a set of processors P , such that only one

task can run on a processor at any time. Given the execution time of each task, how

should we assign them to processors to minimize the final completion time?

Finding the exact answer to this question is not as simple as it looks. In fact,

this was one of the original problems shown to be NP-complete in [27]. In developing

simple and effective load balancing algorithms, randomization has been proven to be

a promising approach. An easy randomized load balancing problem can be analyzed

using Balls and Bins model [51, 63]. Balls and Bins model can be described as follows:

Consider a sequential process of throwing n balls into n bins. At every step, each

ball is thrown into a uniformly random bin, independent of other balls. Let the load

CHAPTER 1. Introduction 2

of a bin be the number of balls after all balls have been thrown. It is well-known

that with high probability1, the maximum load of bins will be approximately ln n
ln ln n

[32]. In the previous process, at every step we pick a bin independently and uniformly

at random and throw the ball into that bin. Instead if every time we pick two bins

independently and uniformly at random and throw the ball into the bin with fewer

balls, the expected maximum load of bins will become ln ln n
ln 2

. More generally, if we

allow t random choices for every ball, the maximum expected load of bins will be

ln ln n
ln t

. The tradeoff between the amount of randomness used and the load achieved is

optimized when t = 2. This phenomenon is called the power of two choices [51]. For

further information of load balancing problem in the field of parallel and distributed

computing, the interested reader is referred to literature [19, 89, 91].

In the field of Web server systems, Web performance perceived by end users is

already increasingly dominated by server delays, especially when contacting busy

servers [15]. The architecture solutions for scalable Web server systems can be clas-

sified into two categories, i.e., single server scale-out and multiple server scale-out.

With a rapid growing of end users and complexity of Web services, improving the

power of a single server from either hardware or software is highly insufficient to solve

the Web scalability problem in a foreseeable future. Thus, in order to provide scal-

able Internet services, load balancing is often used for distributing request load over

multiple Web servers (sometimes known as a server farm or server cluster). Multiple

server scale-up can be again classified into local scale-out and global scale-out. Local

scale-out is to deploy local cluster of Web servers [13, 14, 100], while global scale-out is

to manage load between geographically distributed servers or data centers [22, 34, 47].

DNS round-robin and “load balancer” are two common algorithms for load balancing

of multiple servers [87].

Unlike Web server systems, peer-to-peer (P2P) systems have emerged as an

1It means with probability at least 1−O(1/n), where n is the number of balls.

CHAPTER 1. Introduction 3

alternative way to provide scalable network services over the Internet [21, 3, 41]. A

P2P system consists of a large number of computers called peers or nodes, which are

connected with a logical network called P2P overlay to realize a direct communication

between them. Thus far, a number of important network services have been realized

under the P2P model, which include BitTorrent [11], Skype [79] and SopCast [80].

File sharing is a dominant P2P application on the Internet, allowing users to easily

contribute, search and obtain contents. Examples of P2P file sharing are Napster

[54], Gnutella [2] and Kazaa [45].

In many distributed systems, network performance of a peer is a function of its load

[42, 99, 90]. Figure 1.1 illustrates the relation among load, throughput and response

time inside a peer. When the load is light, throughput is linearly proportional to

the load and response time is almost unchanged. After the load reaches the network

capacity, throughput won’t increase much with the load. Instead, packets will be

queued and the response time will become longer in this period. The response time

would be significantly increased if packets get discarded due to buffer overflow.

Throughput

Response Time

Load

Figure 1.1: Network performance versus load

CHAPTER 1. Introduction 4

Thus, in P2P systems2, a heavily loaded peer may incur a long latency or failure in

forwarding or answering queries. If there are many such peers in a P2P system, it may

incur link congestion or path congestion (i.e., a path contained one or more congested

links) that affect the performance of overall system. To avoid such situation, some

of general techniques used in Web systems such as cache and paging are adopted

into P2P systems. However, it is highly insufficient for load balancing of peers since

the characters of P2P systems such as heterogeneity and dynamicity of peers are

ignored. Therefore, it is necessary to study load management from architectures and

algorithms for P2P file search, in order to decrease average and variation of response

time to queries.

Load management for P2P systems is a rather wide issue, we should make it clear

with the following questions [74].

• What causes load problem? Most of the causes come from either an inappropri-

ate architecture or the search algorithm used in the architecture. Once the load

problem is recognized, load metric needs to be determined in order to evaluate

“value” of the load.

• How to reduce the load? or How to balance it? In the former case, it needs to

find ways to either reduce the load that is generated by the input of the system,

or optimize the path length for the whole set of queries to reduce the routing

load in P2P systems. In the latter case, it needs to identify available candidate

peers to share the load.

• Which peer will be chosen as a candidate peer? Selection of candidate peers

would affect the efficiency and effectiveness of load reduction and/or load bal-

ancing.

2We use “P2P systems” to denote “P2P file sharing systems” in the following.

CHAPTER 1. Introduction 5

We give an example to demonstrate the analysis of load problem and the possible

solutions to it. Assume that a P2P overlay is used for file search. In the overlay, each

peer owns some files. Consider a peer owns much more files compared to the other

peers of the system. This peer needs more storage resource to allocate the files, and

it potentially needs to serve more requests if popularity of files are not too disparate.

The load problem is the uneven distribution of number of files at peers. On the other

hand, if popularity of files is highly skewed, a peer that owns popular files would

serve more requests than the other peers. In turn, the load problem would be the

uneven distribution of number of queries received by peers. In the overlay, a peer can

reduce its load by deleting some files it served, obviously it is not a cleaver solution

since it highly reduce the availability of the overlay. Alternatively, if a highly loaded

peer could move some files to other peers, such as neighbor peers, the load would be

balanced in a feasible way.

Through the above example, we showed that common load problems of P2P sys-

tems, and presented possible solutions to the load problems. However, these solutions

may be limited by the architecture itself, such as it may not allocate tasks to appro-

priate peers. Consequently, load management has to be thought of from the design

time of systems, in order to avoid later load problems. In this thesis, we manage the

load focusing on both of architectures and algorithms.

1.2 Background of Peer-to-Peer Systems

In P2P systems, index is a common and useful data structure for object (i.e., file)

retrieval. Mainly an index is a set of entries associated to a given keyword, and

an entry is a triple that contains keyword, object metadata and object location.

Index retrieval is a key component in object retrieval, i.e., a peer issues a query

that contains several keywords, and later the query is forwarded in the system until

CHAPTER 1. Introduction 6

a destination peer is found or some failure occurs. Depending on the overlay, the

process of index retrieval can be realized in different ways. Usually, a query tends

to use shortest communication path, in order to obtain a short response time. For

example, a centralized server can offer index retrieval service to a set of clients. The

clients always communicate with the server to obtain the destination peer. As an

alternative way, a set of peers can be used to relay the query to the destination peer.

In this way, since task of index retrieval is distributed over all peers, it could be more

scalable than the previous approach. But, the response time would become longer

than the previous approach.

In the following sections of this chapter, we overview current P2P architectures

and search algorithms, with a focus on the load management in the systems.

1.2.1 P2P Architectures

By their “degree of centralization”, existing P2P architectures can be classified into

three categories [3, 62]; i.e., centralized type, pure type and hierarchical type (hybrid

type). Pure type and hierarchical type are also categorized into decentralized type.

Details of each architecture is illustrated as follows:

• Centralized type

Index of all files are uploaded to a centralized server, and maintained by it.

Napster [54] is a centralized P2P system consisting of a number of user peers

and an index server, where the server keeps the information on the location of

shared mp3 files maintained by participating peers. Figure 1.2 illustrates the

architecture of Napster. When the server receives a query from a user peer,

it refers its index, returning a list of user peers that hold the file matching to

the query. A requester peer can open a direct connection with the peer that

holds the requested file, and download it (See Figure 1.2). This architecture

CHAPTER 1. Introduction 7

provides efficient query processing and low response time to the queries under a

low server usage. However, it is well known that it has serious drawbacks, i.e.,

index server would become a bottleneck when the server usage is high. Some

other disadvantages of this architecture are the vulnerabilities on censorship,

malicious attack and technical failure.

Figure 1.2: Architecture of Napster

• Pure type

Each peer maintains an index of its local files.

Gnutella [2] is a fully decentralized P2P system, in which each peer can iden-

tify the location of shared files by flooding queries to the other peers. Figure

1.3 illustrates the architecture of Gnutella and its search mechanism. There is

no central server in the network and user peers connect to each other directly.

CHAPTER 1. Introduction 8

Although such a flooding-based approach removes the bottleneck in the central-

ized approach, it causes several critical issues in realizing efficient and effective

file search, such as congestion on low bandwidth peers, high amount of query

traffic on the network, and an inaccuracy of the search result.

Figure 1.3: Architecture of Gnutella

By control policy of indexing, pure P2P can be again classified into unstruc-

tured P2Ps and structured P2Ps.

– Unstructured P2Ps

In unstructured P2P networks such as Gnutella and FreeNet, the location

of files is completely unrelated to the overlay topology. Indices will be

retrieved by TTL (time-to-live) based controlled flooding over peers in the

systems, i.e., there is no tight control on index of the relevant files. There-

CHAPTER 1. Introduction 9

fore, query forwarding is totally based on randomization or probabilistic，

a large number of traffic will be generated for locating files. Usually, this

kind of systems can easily accommodate a highly transient peer population,

while the overhead of searching is huge.

– Structured P2Ps

Alternatively, most of structured P2Ps adopt Distributed Hash Table (DHT),

to overcome such a low scalability of flooding-based indexing schemes. Ex-

ample of DHT systems are Chord [82], Pastry [73], and CAN [69]. In such

networks, files are placed at precisely specified locations since it provides

a mapping between the file identifier and location, in the form of DHT, so

that queries can be efficiently routed to the peer with the desired file.

However, extra cost for maintaining the structure overlay required for rout-

ing is needed, and such maintenance cost of overlay is high when the peers

are joining and leaving the network at a high rate. For example, BitComet

[10] uses a structured network for storing peer contact information for

”trackerless” torrents. Such structured network is based on Kademila [49]

and is implemented over UDP. It is reported that in the first 30 minutes

after enabling the DHT network, there is a high traffic volume incurred by

overlay reconstruction. Therefore, in this sense, the adoption of structured

P2Ps are more suitable for a network with stable peers such as super-peer

layer in the hierarchical P2P systems (See Hierarchical type for the

details).

• Hierarchical type

Index of files in a cluster are maintained by its super-peer, and the whole index

of files are collaboratively managed by all super-peers.

The basis is the same as with pure type. However, in order to handle hetero-

CHAPTER 1. Introduction 10

geneity of peers, some of peers are selected to be index servers of files shared

by ordinary user peers. These peers are called “super-peers” [26, 25, 50, 53,

61, 95, 98, 103]. Hierarchical P2Ps such as Kazaa [45], which are based on the

notion of super-peers, have attracted considerable attentions in recent years.

Figure 1.4 illustrates the architecture of Kazaa. Kazaa consists of two layers;

i.e., the upper layer consisting of super-peers and the lower layer consisting of

ordinary user peers (See Figure 1.4). The bottleneck in the centralized scheme

could be certainly overcome by replacing the (single) index server by a col-

lection of super-peers, and the low efficiency of the fully decentralized scheme

could be overcome by introducing an upper layer of super-peers. In Kazaa,

flooding protocol is used for forwarding queries in super-peer layer. Many other

search protocols, such as Chord [82] and Pastry [73] can be applied to super-peer

networks.

Figure 1.4: Architecture of Kazaa

CHAPTER 1. Introduction 11

1.2.2 Search Algorithms

The objective of search algorithms is to successfully locate objects while incurring low

overhead and delay. Here, it is worth to noting that inappropriate search algorithms

would cause load imbalance of peers. For example, a peer always chooses the same

neighbor peer to relay incoming queries, and consequently the load of such neighbor

peer would become bigger than other neighbor peers of the peer.

Object Search in Unstructured P2Ps

Search schemes for unstructured P2Ps can be classified into two categories, i.e., blind

search and informed search [43, 84, 81]. In a blind search, peers do not keep informa-

tion about object location. Blind search schemes often employ flooding techniques to

relay queries in the network [2, 9, 29, 30, 38, 37]. In an informed search, peers gather

some metadata to assist the search operation [86, 96, 97]. The metadata could be the

statistics information related to past queries or location information of objects.

Breadth First Search (BFS) is a basic object search scheme adopted in the original

Gnutella [2], in which the originator of a search process floods a query message to all

peers within a predetermined TTL hops, and it collects reply messages from those

peers indicating whether or not a requested file is held by them. BFS generates

enormous amount of overhead by contacting multiple peers, low bandwidth peers

may simply become a bottleneck of query processing. Random Breadth First Search

(RBFS) [38] tries to reduce the overhead of BFS by restricting the number of receivers

of a query to a predetermined fraction of the number of neighbors. The portion of

neighbors that are chosen is a system parameter of RBFS. In Normalized Flooding

[30], a peer of small degree forwards a query to all his neighbors, while a peer of

large degree forwards a query to a small subset of its neighbors chosen uniformly

at random. Let σ be a threshold of minimum degree in the network. If a peer has

CHAPTER 1. Introduction 12

more than σ neighbors, then it sends the message only to σ peers that are selected

uniformly at random. With normalization, it is easier to control how many peers will

be reached by the flooding, thus, searching can be conducted at a finer granularity

than BFS.

Random Walk [9, 29, 37] is to forward a query along a randomly constructed

path. The basic idea of a random walk algorithm is that when a peer issues or

receives a query, each randomly selects a neighbor to send or forward the query. The

query message in this process is called a “walker”. There are variants of random

walk methods. One form involves the use of k-walkers [9, 29]. In k-walker random

walk, an originator sends out k query messages to randomly selected k neighbors,

and during a search process, each message follows its own random search path. Such

search process terminates with a success or a failure; i.e., after finding a target file

or after exhausting the TTL. Another variant of random walk is a two-level random

walk [37]. An originator selects k1-walker random walk with TTL1=l1. When the

TTL1 timer expires at a particular peer, each walker will then generate k2 walkers

which will perform k2-walker random walk from that peer with TTL2=l2. Given

the equal number of walkers, this scheme generates less duplicate messages, thereby

reducing the system load. On the other hand, it has an increase in the average length

of the discovered path.

Directed Breadth First Search (Directed BFS) [96] aims to improve the quality

of search results and reduce search overhead. In Directed BFS, each peer maintains

information about its neighbors, including the number of results that were received

through the neighbor for past queries or the latency of the connection with that

neighbor. Since queries are transmitted through a small subset of neighbors, the

number of query messages are significantly reduced. In the meantime, an originator

is able to choose “good neighbors” to send the query, the quality of query results can

be improved.

CHAPTER 1. Introduction 13

Adaptive Probabilistic Search (APS) [86] is an improvement of the k-random

walk. In this scheme, it utilizes feedback from previous searches to probabilistically

guide future ones. Each peer maintains a table for the forwarding probability to

each neighbor for each object. The value of each entry in the table mirrors the

relative probability of this peer’s neighbor to be selected as the next hop in a future

incoming query for a specific object. APS employs k-walker random walker to search

for the required object and each intermediate peer forwards the query to one of its

neighbors with a probability given by its table index. If a walker succeeds, the relative

probabilities of the peers on the walker’s path are increased. Each peer updates its

local table according to the search results, so as to reflect an actual distribution of

objects in the network to the collection of local tables. APS algorithm shows improved

performance over the random walker model.

In Local Indices [97] search method, each peer maintains indices of all peers located

within a predefined hop distance. Therefore, each peer can directly answer queries

for any objects in its local indices without resorting to other peers. The purpose of

this method is to reduce the number peers processing a query. Although local indices

approach reduces the processing cost by limiting processing to fewer peers, it incurs a

higher update cost for these indices. Due to the dynamics of the network, the indices

may be obsolete or inconsistent.

Object Search in Structured P2Ps

Object search in structured P2Ps is conducted in a more systematic manner compared

with unstructured P2Ps. Most of structured P2Ps adopt DHTs. DHTs are often

referenced by their geometry of hash space, such as ring [82], torus [69], tree [59] and

some hybrid [73][101].

In Chord [82], peers and keys are assigned an m-bit identifier using consistent

hashing such as SHA-1 algorithm. Using Chord protocol, peers are arranged in a ring

CHAPTER 1. Introduction 14

that has at most 2m peers. The ring can have keys ranging from 0 to 2m − 1. Each

peer has a successor and a predecessor. The successor to a peer (or key) is the next

peer (key) in the identifier circle in a clockwise direction. The predecessor is in a

counter-clockwise direction. If each peer knows only the location of its successor, a

linear search over the network could locate a particular key. This is a naive method

for searching the network, since any given query message could potentially have to

be relayed through most of the network. To accelerate lookup, Chord implements a

faster search method by maintaining additional routing information. Chord requires

each peer to keep a “finger table” containing up to m entries. The ith entry of a peer

n contains the address of successor ((n + 2i−1) mod 2m). With such a finger table,

the number of peers that must be contacted to find a successor in an N -peer network

is O(log N). Figure 1.5 illustrates routing algorithm in Chord. In Figure 1.5, the ring

can have keys ranging from 0 to 7. The overlay consists of 4 peers, each of which

maintains a finger table consisting of 3 entries. Peer 1 issues a query for searching

key 7. By referring its finger table, the query will forwarded to Peer 6, and then

forwarded to the Peer 0.

Pastry [73] realizes a message routing and an object allocation in potentially very

large overlay networks [73]. The special design of Pastry compared to other P2P

systems is that Pastry considers the network locality in message routing. The purpose

of this design is to minimize the network distance of messages in traveling. Pastry

employs a prefix-based routing scheme where each peer has a 128-bit identifier chosen

by MD5, and maintains a routing table consisting of a leaf set, a neighborhood set, and

a routing table. The leaf set consists of the L/2 closest peers in each of directions.

The neighborhood set contains M closest peers in terms of the proximity metric.

The neighborhood set is not normally used in routing messages, while it is useful in

maintaining locality properties in the routing table. The routing table is organized

into log2b N rows with 2b − 1 entries each, where b is the parameter of splitting a

CHAPTER 1. Introduction 15

Figure 1.5: Routing of Chord

key into digits. The entries at row i point to peers that share the first i digits of the

prefix with the key. Given a query, the originator first checks if the key is within the

leaf set. If so, it forwards the query to the closest peer in the leaf set. Otherwise,

Pastry forwards the query to a peer with one more matching digit in the common

prefix. In the rare case, when Pastry cannot find a peer that matches the first two

criteria, it forwards the query to any peer that is closer to the key than the current

peer’s identifier. Figure 1.6 illustrates routing algorithm in Pastry. As shown in figure

1.6, each peer has a 4-bits identifier. when a key “d3b8” are given to the network,

it efficiently route the message to the destination peer based on prefix routing, i.e.,

“53a1→ d152→ d3a0→ d3b1”.

CAN [69] centers around a virtual d-dimensional Cartesian coordinate space on

a d-torus. Consider an object held by a peer in the system. To realize an efficient

management of the object, CAN stores a key-value pair (K1, V 1) to the virtual co-

CHAPTER 1. Introduction 16

Figure 1.6: Routing of Pastry

ordinate space, where K1 corresponds to the name of the object and V 1 represents

the name of the peer that holds the object. CAN first maps key K1 onto a point

in the coordinate space in a deterministic manner by using a uniform hash function.

It then stores the corresponding pair at the peer that owns the zone within which

the point lies. The retrieval of a stored pair could be done in a similar manner;

that is, to retrieve an object corresponding to key K1, any peer can apply the same

deterministic hash function to map the key onto the target point and then retrieve

the corresponding value from the point. Figure 1.7 illustrates routing algorithm in a

2-dimensional coordinate space of CAN.

Each of the above search schemes for structured P2Ps tightly controls object

allocation and the topology of the overlay network in order to realize certain kind of

search ordering to facilitate the search of requested files. However, although it would

certainly improve the efficiency of the file search process, such a tight control leads

to a high overhead in the data allocation and the topology maintenance. The search

CHAPTER 1. Introduction 17

Figure 1.7: Routing of CAN

performance of structured P2Ps will be degraded when routing information becomes

out of date due to dynamicity of peers.

1.3 Research Aim and Approach

From a technological point of view, there is nothing a P2P system can offer, which

cannot be implemented with a centralized system [78]. Especially in nowadays, when

users are used to nearly instant reply backed up by a data center or a Cloud, P2P sys-

tems cannot impress users with response time of queries. Nevertheless, Web systems

such as Google [33] and Yahoo [93] are developing more distributed architectures and

algorithms to manage with the scalability issue [5], there is still a lot of opportuni-

ties left for P2P systems. For example, Faroo [23] and YaCy [92] are two popular

distributed information retrieval systems (IR systems) based on P2P model.

In this thesis, the reason we focused on P2P systems is that it has some important

CHAPTER 1. Introduction 18

properties compared to Web systems; i.e., 1) Pull-based (crawler-based) index collec-

tion mechanism in Web systems causes an inevitable delay in reflecting the change

of files to the collected indices. While P2P systems would naturally use push mech-

anism: peers decide themselves which files they want to make searchable. 2) Search

technology is not transparent and comprehensible in closed Web systems. While in

P2P systems, peers can determine how to index files. For example, a peer can asso-

ciate tags to a file for describing the classification of the file or the personal interest

of the peer.

In contrast to Web systems, P2P systems impose many serious restrictions on

information retrieval such as [78]:

• Decentralization. No centralized units are available.

• Heterogeneity. Bandwidth, connectivity and capacity of peers may highly

varied.

• Dynamicity. Churn rate is substantially higher than the failure rate in Web

systems.

• Limited connectivity. Stability of overlay connections is often worse than

connections in server cluster networks.

To overcome such a difficulty, the use of super-peers is currently being the most

promising approach in optimizing allocation of system load to peers, i.e., allocate

more system load to high capacity and stable super-peers by assigning task of index

maintenance and retrieval to them. In this thesis, we focused on two kind of super-

peer based hierarchical architectures of P2P systems, which are distinguished by the

organization of super-peers [25, 61]. In each of them, we discussed system load alloca-

tion, and proposed novel load balancing algorithms for alleviating load imbalance of

CHAPTER 1. Introduction 19

super-peers, aiming to decrease average and variation of query response time during

index retrieval process.

More concretely, in this thesis, our contribution to load management solutions for

hierarchical P2P file search are the following:

• Qin et al. proposed a super-peer based three-tier hierarchical architecture for

real-time file search [61]. Figure 1.8 illustrates the architecture of Qin’s sys-

tem. In this architecture, indices of files held by the user peers in the bottom

layer are stored at the super-peers in the middle layer, and the correlation of

those two bottom layers is controlled by the central server(s) in the top layer

using the notion of tags. In Qin’s system, a heavily loaded super-peer can move

excessive load to a lightly loaded super-peer by using the notion of task mi-

gration. However, such a task migration approach is not sufficient to balance

the load of super-peers if the size of tasks is highly imbalanced. To overcome

such an issue, in this thesis, we propose two load-balancing schemes for this

architecture, aiming to ensure an even load distribution over the super-peers.

The first scheme controls the load of each task in order to decrease the total

cost of task migration. The second scheme directly balances the load over tasks

by reordering the priority of tags used in the query forwarding step. The ef-

fectiveness of the proposed schemes are evaluated by simulation. The result of

simulations indicates that all the schemes can work in coordinate, in alleviating

the bottleneck situation of super-peers.

• In a two-layer DHT-based super-peer architecture, Distributed Hash Table

(DHT) is adopted into super-peer layer to collaboratively manage indices of

files held by the user peers [25]. Figure 1.9 illustrates the architecture of DHT-

based super-peer system. In this architecture, the skewness of user’s prefer-

ence regarding keywords contained in multi-keyword query causes query load

CHAPTER 1. Introduction 20

Figure 1.8: Architecture of Qin’s hierarchical P2P system

imbalance of super-peers that combines both routing and response load. This

imbalance means long file retrieval latency that negatively influences the overall

system performance. Although index replication has a great potential for alle-

viating this problem, existing schemes did not explicitly address it or incurred

high cost. To overcome such an issue, in this thesis, we propose an integrated

solution that consists of three replication schemes to alleviate query load imbal-

ance while minimizing the cost. The first scheme is an active index replication

in order to decrease routing load in the super-peer layer, and distribute response

load of an index among super-peers that stored the replica. The second scheme

is a proactive pointer replication that places location information of an index,

for reducing maintenance cost between the index and its replicas. The third

scheme is a passive index replication that guarantees the maximum query load

of super-peers. The result of simulations indicates that the proposed schemes

CHAPTER 1. Introduction 21

can help alleviating the query load imbalance of super-peers. Moreover, by

comparison it was found that our schemes are more cost-effective on placing

replicas than other approaches.

Figure 1.9: Architecture of DHT-based super-peer system

1.4 Thesis Organization

Chapter 1 provides a broad overview of this thesis. Firstly, we introduced load bal-

ancing problem in parallel and distributed computing, Web server systems and P2P

systems. Load balancing is one of fundamental technologies in improving perfor-

mance of these systems. Secondly, current P2P architectures and search algorithms

are examined with a focus on load management in the systems. We clarified that

CHAPTER 1. Introduction 22

load management of P2P systems is a wide issue, and it has to be solved from both

architectures and algorithms. Thirdly, we pointed out that the main work of the the-

sis is to study the load management for two kinds of hierarchical P2P architectures,

i.e., Qin’s hierarchical P2P architecture and DHT-based super-peer architecture. The

scope and significance of the thesis are discussed.

In Chapter 2, we present the state of the art of load balancing in P2P systems.

We classified existing solutions into two types, i.e., task migration based approach

and task replication based approach.

In Chapter 3, Qin’s hierarchical P2P architecture is described in detail. We pro-

pose efficient task migration schemes for load balancing of super-peers.

In Chapter 4, DHT-based super-peer architecture is described in detail. We pro-

pose cost-efficient task replication schemes for load balancing of super-peers, as well

as routing load reduction of super-peers.

In Chapter 5, we summary and give an outlook on future work of this thesis.

Thus, the contributions of this thesis are:

i) Analyzed load problem and designed load metric in dedicated hierarchical P2P

systems;

ii) Proposed efficient and effective solutions to overcome load problems in these sys-

tems.

Chapter 2

A Survery on Load Balancing in

P2P Systems

2.1 Introduction

In general, load balancing is a key technology for avoiding a peer failing in performing

its tasks in distributed systems. Load balancing in P2P systems has been researched

for more than ten years since its appearance. Load balancing can be achieved by

shedding load from heavily loaded peers (i.e., source peer) to lightly loaded peers

(i.e., destination peer) via task migration or task replication. Unlike replication,

migration implies that once task has been moved to a destination peer, it will be

deleted at the source peer.

Apart from heterogeneity of peers, there are many causes of load imbalance of

peers in P2P systems. Serbu [74] pointed out that load problem in DHTs may occur

in four resources, i.e., overlay namespace, requests, routing and underlying topology,

and such imbalance may occur in all resources. In this chapter, we give a brief survey

on load balancing schemes for P2P systems. In the survey, we focus on load problem

related to the P2P system itself, i.e., we do not consider the underlying network

CHAPTER 2. A Survey on Load Balancing in P2P Systems 24

Table 2.1: Causes of load imbalance
Resource Description Notion of load

Identifier space uneven identifier intervals assigned

to peers

storage/response load

Indegree size uneven in-links associated to peers query load combining of response

load and routing load

Response skewed queries towards to popular

keys

response load

Routing biased utilization of links for rout-

ing query

routing load

management. Based on Serbu’s work [74], we summarize the main causes of load

problem in P2P systems in table 2.1, details of each cause is listed as follows.

• Identifier space In DHTs, all peers and objects share an identifier space.

An unequal identifier interval assignment would likely to generate non-uniform

number of keys assigned to peers. Typically, a key means a query or an index

entry of an object.

• Indegree size In unstructured P2P, indegree size of peers usually follows power-

law phenomenon, i.e., a few peers has bigger indegree sizes than other peers.

The high indegree peers have would likely to forward and receive more queries

than other peers.

• Response Popularity of keywords contained in queries often follow Zipf’s law,

i.e., some keywords (or keys) are popular, being requested much more often than

others. Thus, the peers that are responsible for popular keys have to respond

more queries than other peers.

• Routing When a large number of queries are passing through a peer, the peer

CHAPTER 2. A Survey on Load Balancing in P2P Systems 25

and its corresponding links are likely to become overloaded. This situation may

be incurred by inappropriate routing algorithms of P2P systems.

Figure 2.1: Load imbalance occurred in identifier space

Figure 2.1 illustrates load imbalance occurred in identifier space in DHTs. In

figure 2.1, the identifier space is represented as a line. We assume that each peer is

responsible for the keys in its left interval. As shown in figure 2.1, B is responsible for

the largest identifier interval, and consequently it is associated with more keys than

C and D. C and D have equal identifier interval, while D is associated with more keys

than C. It explains that load imbalance may still occur when the assignment of keys

to peers is non-uniform, even if identifier interval of peers are balanced.

Figure 2.2: Load imbalance occurred in indegree size

CHAPTER 2. A Survey on Load Balancing in P2P Systems 26

Figure 2.2 illustrates load imbalance occurred in indegree size in P2Ps. In this

figure, C has larger indegree size than other peers. In power-law networks, the high

degree peers tend to experience more traffic load than low degree peers [1]. In light

of this principle, an elastic routing table (ERT) mechanism is also presented in DHTs

[76]. Unlike routing tables with a fixed number of outlinks in current DHTs, each

ERT has a different number of inlinks/outlinks, and the indegree/outdegree of each

peer can be adjusted dynamically according to its experienced traffic so as to direct

traffic flow to lightly loaded peers.

Figure 2.3: Load imbalance occurred in response

Figure 2.3 illustrates load imbalance occurred in response in P2Ps. The response

load of a peer is related to not only the number of keys (or objects) stored at it,

but also the popularity of the keys (or objects). In figure 2.3, A, C and D are all

responsible for two keys (or objects). But, A owns two popular keys (or objects).

Thus, A will receive more queries than C and D. On the other hand, B owns three

keys (or objects), thus B may potentially receive more queries than C and D.

Figure 2.4 illustrates load imbalance occurred in routing in P2Ps. In figure 2.4,

most of queries between A and D, prefers to pass by B rather than C. This may be

occurred by two causes: 1) routing algorithm such as A usually selects B to forward

queries. 2) overlay structure such as B is in the intersection of multiple routing paths.

CHAPTER 2. A Survey on Load Balancing in P2P Systems 27

Figure 2.4: Load imbalance occurred in routing

Measurement of the “value” of load on a peer in P2P systems is not an easy task.

The load on a peer may vary greatly over time due to dynamism in the following

forms [31]: (1) continuous insertion and deletion of objects, (2) skewed object arrival

patterns, and (3) continuous arrival and departure of peers. Moreover, the query

pattern and request rate of user peers may change over time [75]. In query type of

keyword search, the popularity of keyword may follow uniform distribution where each

keyword has the same possibility attached into a query, Zipf’s distribution where some

keywords are much more popular than others, or some kind of distribution generated

by real users. Thus, load balancing solutions have to be adaptive in P2P systems.

2.2 Task Migration based Approaches

we overview task migration based load balancing for each type of P2P architectures;

i.e., structured type and unstructured type.

CHAPTER 2. A Survey on Load Balancing in P2P Systems 28

2.2.1 Structured P2Ps

Most of structured P2Ps adopt Distributed Hash Table (DHT) as an overlay network,

to realize an efficient data management and information retrieval. In such P2Ps, which

are referred to as P2P DHTs in the literature, each object typically attached several

keys, and each key is mapped to a unique point in a hash space. The hash space

is partitioned among peers in the P2P, and each peer is responsible for storing all

indices of objects whose keys are mapped to a portion of the hash space associated

to the peer. Each peer can efficiently locate a peer responsible for a given key, by

identifying a point corresponding to the key in the hash space and by routing a query

message towards the identified point. P2P DHTs generally assume that all peers are

homogeneous, objects are of the same size, and IDs given to all objects are uniformly

distributed over the ID space (i.e., key space) of the DHT. Examples of P2P DHT

include Chord [82], CAN [69], Tapestry [101], and Pastry [73].

At an early research stage, load balancing in DHTs aimed to balance storage load

of peers, i.e., the number of objects per peer. CFS [20] introduces the notion of

virtual servers which play a similar role to the tasks in conventional load balancing

schemes. More concretely, each peer is assigned several virtual servers each of which

is responsible for a portion of the ID space, and a load distribution is realized by

migrating virtual servers among peers. CFS improves load balancing of peers by

taking into account the peer heterogeneity, i.e., it determines the number of virtual

servers associated to a peer in such a way that it is proportional to the peer capacity.

CFS also introduces a mechanism to decrease the number of overloaded peers by

allowing each overloaded peer to “drop” some of its virtual servers. Rao et al. [67]

propose three schemes in which virtual servers are migrated from a set of heavy peers

to a set of light peers. As such, the notion of virtual servers makes it easy to realize

an effective load balancing in P2P DHT. However, it has a serious drawback such

that it should use a number of directories to store and update the load information of

CHAPTER 2. A Survey on Load Balancing in P2P Systems 29

the peers in the system, which consumes a large amount of resources in P2P systems.

In order to reduce the high maintenance cost of multiple virtual servers, Godfrey and

Stoica [31] propose a simple DHT protocol called Y0. In Y0, a peer clusters a number

of virtual servers in a random fraction of ID space, instead of selecting virtual servers

with random IDs. Therefore, the peer could share a single set of overlay links among

a cluster of virtual servers and create one routing table for the whole cluster. Further,

by modifying successor list, figure table and routing algorithm, Y0 achieves good load

balancing with a sufficient low overhead.

Another part of load balancing schemes is realized by controlling the location of

objects or peers. Rieche et al. [70] proposed load balancing schemes based on moving

objects between peers. In the proposed schemes, the ID space is divided into intervals.

Peers within an interval are collaborative for all of the objects stored in the interval.

If the storage load in an interval exceeds a threshold value, the following operations

are conducted; i.e., 1) the interval with excessive load is split into two intervals if

the interval contains more than 2f peers, 2) it move peers from other intervals to

the overloaded interval to reach 2f peers and split it as previous case, 3) if there are

no more than f peers within the interval, interval borders between the overloaded

interval and its neighbor intervals can be shifted to balance the load. Karger and

Ruhl [39] proposed a mechanism that allows lightly loaded peers to relocate to the

ranges of the ID space associated with many objects, in order to share the load of

the peers responsible for such ranges of DHT space. More concretely, a lightly loaded

peer requests the load of a randomly chosen remote peer and makes a load comparison

between itself and the remote peer. If the load of the remote peer is higher, the peer

will relocate to share the range of ID space of the remote peer. However, it is not

evaluated under adversarial environment.

As an alternative approach, Byers et al. [12] proposed a simple but efficient load

balancing mechanism , i.e., power of two choices. When inserting an object into

CHAPTER 2. A Survey on Load Balancing in P2P Systems 30

the system, the object are generated into multiple hash values using multiple hash

functions, each of which corresponds to a candidate peer of receiving the object. After

retrieving the load of the corresponding peer candidates, the object will be stored at

the peer with the lightest load. Conversely, when searching an object, the requester

should issues multiple queries, for each one using a different hash function. The

power of two choices state a quite surprising result, i.e., it was found an exponential

improvement in reduction of the maximum load of peers by using two hash values,

and further only a constant improvement when using more than two hash values.

Ganesan et al. [24] propose a method based on the skip graph [4] which is a

distributed data structure to store an ordered set. It keeps a vector representing the

load of peers in the form of a skip graph, and updates the vector upon detecting the

change of the load. The main drawback of this scheme is that it incurs a substantial

cost for maintaining complete information about the load at every peer in the system.

Jagadish et al. [36] propose a scheme based on the notion of heap, which maintains a

set of light peers using heap (i.e., a balanced binary tree of peers) so that each peer

can acquire a list of light peers by simply referring to the heap. At last, Vu et al. [88]

propose a general framework HiGLOB based on structured P2Ps and demonstrate the

effectiveness by instantiating it over three existing structured P2P systems: Chord

[82], Skip Graph [4] and BATON [36]. HiGLOB employs histograms to keep the load

distribution of the system. Each peer constructs a load histogram by partitioning the

network into non-overlapping groups. If it detects load imbalance, it performs load

exchange similar to object balancing algorithm [39].

At a later research stage, some of researchers focused on balancing routing load

dealing with skewed popularity of objects. Bianchi et al. [8] proposed an adaptive

load balancing mechanism in Pastry; i.e., replacing peers with high traffic rate to peers

with low traffic rate in the routing tables if a peer becomes overloaded. Shen and Xu

[76] proposed an load balancing scheme based on elastic routing tables. By resizing

CHAPTER 2. A Survey on Load Balancing in P2P Systems 31

out-degree (i.e., size of routing table) of peers, thereby consequently controlling the

in-degree assignment of peers, it can balance routing load of peers.

2.2.2 Unstructured P2Ps

In unstructured P2Ps such as Gnutella, random peer selection is commonly used

to realize a load migration. Chawathe et al. [16] propose a scheme based on the

notion of random walk. It tries to increase the probability of visiting a light peer by

organizing the overlay in such a way that peers with a high capability have a large

number of adjacent peers, while it would need a global view on the distribution of

peer capabilities. Bharambe et al. [7] propose a protocol Mercury using histogram

to maintain the load distribution in the system. In Mercury, a peer maintains its

histogram by periodically sampling nearby peers to get local load and exchanging

local load information with far away peers based on random walk algorithm.

Garbacki et al. [26] propose a load balancing scheme for hierarchical P2Ps, based

on a list of super-peers (SPs) called super-peer cache. In this scheme, an overloaded

SP reduces the number of requests received from ordinary peers by decreasing its

priority in the super-peer cache, where each ordinary peer tries to connect to SPs

in the order given in the super-peer cache. Although it could autonomously reduce

the load of overloaded SPs, it has a serious drawback such that selfish SPs would

significantly degrade the performance of the overall system, since it lacks a mechanism

of determining the relative load of SPs. In hybrid P2Ps such as Napster and eDonkey,

an aggregation of global load information could be realized by using an index server as

an information aggregator. However, such a central server easily becomes a bottleneck

as increasing the number of participating peers, if we try to collect “all” of the latest

information to the aggregator.

CHAPTER 2. A Survey on Load Balancing in P2P Systems 32

2.3 Task Replication based Approaches

Replication is widely used to improve object availability[66, 57, 46] and search effi-

ciency [65][68][75]. In a system, by storing a data at more than one peer, even if a

peer fails, the system can operate using replicated data, thus increasing availability

and fault tolerance of the system. At the same time, as the data is stored at multiple

peers, a request can find the data close to the peer where the request originated, thus

increasing the performance of the system. However, the benefits of replication come

with overheads of creating, maintaining and updating the replicas. If the data is

read-only, replication can greatly improve the performance. But, if the data needs to

be updated, the overhead of maintaining consistency among multiple replicas would

become a critical issue, as will be discussed in the Section 4 of the thesis. In P2P

systems, replication also implicitly improves the load balancing of peers, since repli-

cas in the intermediate peers can intercept the queries towards home peers of popular

objects, the load of home peers is shared by replica peers, and a part of peers’ routing

load is also decreased.

By “candidate peer” of replicas, replication schemes can be categorized into three

types; i.e., client-side replication, server-side replication and path replication. By

given an object, client-side replicates the object close to requester; server-side repli-

cates the object close to object owner and path replicates on the peers in the query

path from a requester to the object owner.

By “data” of replication, replication can be classified into file replication, index

replication and pointer replication. File replication replicates the file to other peers.

The management cost of file replicas is not trivial if the size of files are large. Index

replication replicates index of files to other peers. Index contains meta information of

files, and can be used for responding queries. The management cost of index replicas is

much smaller than object replication, but the maintenance cost of index replicas may

CHAPTER 2. A Survey on Load Balancing in P2P Systems 33

be high if we want to guarantee the consistency of search results. Pointer replication

replicates a pair of a given key and the responsible peer that has the keyword. Pointer

would be an effective approach to avoiding the consistency issue of index replicas.

When designing a replication strategy, the following important aspects should be

taken into consideration [57]:

1. What to replicate (replica selection problem)?

2. Where to place the replica (replica placement problem)?

3. When and how to update the replica (update control problem)?

Keeping these questions in mind, we overview task replication based load balanc-

ing for each type of P2P architectures; i.e., structured type and unstructured type.

2.3.1 Structured P2Ps

In structured P2P, a key-value pair is replicated to several peers other than responsible

peer. By this replication, if later coming queries reaches these replica peers, the

requested value can be returned by these replica peers.

Bianchi et al. [8] consider the load problem by lookup traffic. They presented

an analysis of structured P2P systems taking into consideration Zipf-like requests

distribution, i.e., few highly popular objects being requested most of the times. In

their study, they consider the load as the number of received and forwarded requests

per unit of time. In the simulation, they confirmed the load imbalance problem, and

use server-side replication in attempt to reduce the request load of peers.

Li et al. [44] presented two replication schemes to balance routing load and query

load. The first scheme is to replica popular keys from heavily loaded peers to lightly

loaded peers via broadcasting protocol. Replicating popular keys relieves the query

answering load of the peers responsible for the keys. However, a peer may be still be

CHAPTER 2. A Survey on Load Balancing in P2P Systems 34

overloaded caused by the traffic of forwarding incoming routing queries. The second

scheme is to share routing load by copying routing table to a lightly loaded peer.

Besides load balancing, it can also improve the routing resiliency.

Ghodsi et al. [28] presented symmetric replication which only needs O(1) message

for every join and leave operation to maintain any replication degree. The main

idea behind symmetric replication is that each identifier in the system should be

associated with f other identifiers. If identifier i is associated with identifier r, then

any item with identifier i should be stored at the peers responsible for identifier i, and

r. Similarly, any item with identifier r should also be stored at the peers responsible

for the identifiers i, and r.

Ramasubramanian and Sirer [65] proposed an approximate replication solution for

Pastry. Replicas of a given object is placed on a set of peers who has the same digit-

based prefix of peer ID. By estimating the popularity of each objects, different ranges

of ID space for each objects is determined. The solution is dedicated to Domain

Name System (DNS), where each object is a static URL. The popularity of URLs

is generally relatively stable, while popularity of objects in file sharing systems is

time-varying.

Rao et al. [68] proposed an optimal replication algorithm (referred to as PCache

in this thesis) for minimizing average search hops. The algorithm is based on the

observation that peers with smaller overlay distance to object owner have higher visit

frequency, thus the replicas are suggested to place consecutively at predecessor peers.

Each replica peer will later respond to lookups for the object. However, in fact, their

observation might not be true under the most common cases, i.e., some of predecessor

peers close to object holder might forward very few queries if the access pattern over

requesters is skewed. Hence, the replicas in PCache might not be fully utilized. Rao et

al. claimed that the number of replicas generated for an object should be proportional

to the popularity of the object if the total number of replicas is predetermined, so

CHAPTER 2. A Survey on Load Balancing in P2P Systems 35

as to optimize the average search hops. However, the popularity estimation for all

objects is a very difficult task in a distributed environment.

In order to improve the hit rate of replicas, Shen [75] proposed an efficient and

adaptive decentralized (EAD) replication algorithm. In the algorithm, each peer

records and updates query traffic rate of each object, denoted by qf . By determining

a constant value Tq based on the average query rate in the system, if qf > Tq, the peer

will initiates an object replication request to the object owner. Such requests will be

temporarily saved in a cache of the object owner during a time period. If the object

owner goes to overloaded, it will replicate object to the peers in the cache according

to qf in a descending order. EAD can highly improve the utilization rate of replicas.

However, in the manner of load shedding, EAD may place replicas close to object

owner, thereby EAD is not fully utilized the replica on reducing search hops.

2.3.2 Unstructured P2Ps

Since unstructured P2P systems use flooding or random probing-based methods for

file location, the number of replicas directly affects the efficiency of file query. These

works study the system performance such as successful queries and bandwidth con-

sumption when the number of replicas of a file is uniform, proportional and square-

root proportional to the query rate [48, 18, 83]. In the uniform strategy, replications

are uniformly distributed throughout the network. For each data object, approxi-

mately the same number of replicas are created. While this controls the overhead of

replication, replicas may be found in places where peers do not access the files. In the

proportional replication, the number of copies for each object is proportional to its

query distribution. The higher the query rate of an object, the higher is the number

of copies for that object. On the other hand, with proportional replication, although

queries on popular data are processed efficiently, unpopular data search may take

a long time, thus degrading the overall system performance. Square-root replication

CHAPTER 2. A Survey on Load Balancing in P2P Systems 36

was proposed to provide the optimal search size on successful resource request queries

and minimize the overall search traffic.

Another category of replication algorithms is based on selection of destination

replica peers. Client-side replication and path replication are two popular methods.

In client-side replication, only the sender peer of the query stores a replica of the

requested data. In path replication, The requested data is replicated on all the peers

along the data transmission path between the peer requesting the data and the peer

having the data. These schemes have been employed in many distributed systems

because of ease of implementation [17, 72, 48].

Yamamoto et al. [94] focused on path replication and developed a way of load

balancing on distributed storages in P2P Network. In order to mitigate the load

concentration on the high-degree peers over the P2P network without deteriorating

the search performance too much, they propose the two methods: Path Random

Replication and Path Adaptive Replication. In path random replication, each inter-

mediate peer randomly determines whether or not the replica is created and placed

there based on the probability of the pre-determined replication ratio. Path ran-

dom replication may still cause much load imbalance, because high-degree peers are

frequently located in the data transmission path. Therefore, each peer should adap-

tively determine whether or not to create a replica depending on its resource status.

Path adaptive replication further improves the procedure in the decision to make a

replica on a peer depends on how much storage is still available on it as well as the

predetermined replication ratio.

Kawasaki et al. [40] proposed a more effective replica placement method than

probabilistic ones. The proposed strategy is cooperated with index caching, as well

as LRU-based content replacement. More concretely, a replica will be allocated on

the halfway peer between the requester and the holder, as long as the access rate for

that content exceeds a threshold value. Each peer has limited capacity of storage, and

CHAPTER 2. A Survey on Load Balancing in P2P Systems 37

when its storage is full, a replica is discarded in a LRU (Least Recently Used) manner.

The proposed strategy can reduce the excessive traffic and improve search efficiency

if the threshold for switching from an index to a replica placement is appropriately

determined.

Commercially available super-peer based P2P system such as Kazaa [45] use super-

peers in the network to replicate the index of several other peers. It is evident that

searching is more effective when a larger index can be probed. However, even though

per-probe capacity is increased in these systems, the same resource replication strat-

egy as Gnutella is deployed for the actual replication of resources. Yang et al. [95]

compare the performance of super peer systems with different replication and server

organization schemes. Four different types of architectures are proposed based on

server organization, query forwarding and object index replication: Chained Architec-

ture, Full Replication Architecture, Hash Architecture and Unchained Architecture.

However, the replication of the actual resources is not addressed.

Rajasekhar et al. [64] addresses the problem of load sharing in P2P networks

across heterogeneous super-peers, and propose two novel techniques to share the load

using replication techniques. In the first technique, called Periodic Push-based Repli-

cation (PPR), super-peers periodically send replicas of the most frequently accessed

files to remote super-peers. This effectively reduces the hop count to fetch these files.

The second technique, called On-Demand Replication (ODR), performs replication

based on access frequency. By performing replication on-demand, ODR provides

adaptability to changes in access behavior. It is found that a significant improvement

in super-peer networks where a reduction in hops result in lower transmission cost,

reduced latency and improved QoS.

Rong [71] proposed an adaptive resource replication strategy to facilitate resource

replication in a dynamic resource adaptation P2P network. The replication strategy

takes an active approach through using resource request rate as the prime metric

CHAPTER 2. A Survey on Load Balancing in P2P Systems 38

to trigger the replication process and then adaptively creating resource variations in

the network according to the heterogeneities of peers. In addition, the strategy uses

peer related information stored on super-peers to determine which peers should be

selected to perform adaptive replications and where the resulting replicas should be

stored. Simulation results showed that the proposed scheme reduces network delays

while increasing resource success rate in comparison to commercial super-peer P2P

systems and random replication strategies.

Puttaswamy et al. [60] improve the search effectiveness for rare items, and reduce

the bandwidth overhead incurred in super-peer based P2P networks. It explores the

use of two-hop index replication to significantly improve the effective search space.

In the two-hop index replication scheme, each peer sends its index to all of its one-

hop neighbors in its routing table. All of the one-hop neighbors, in turn, forward

this index to all of their one-hop neighbors except the source peer. This strategy

effectively reduces to a two-hop flooding of indices around the peers. Two variants of

two hop index replication are used: SR replication and constant replication. In SR

replication, each peer performs one-hop replication. Super-peers then replicate the

indices of their one hop neighbors to a random subset of their super-peer neighbors.

Each super peer’s two-hop replica set size is equal to the square root of the number

of its super-peer’s neighbors. The advantage is reduction in the amount of replication

and its cost. In constant replication, each super-peer does two-hop index replication

to a constant number of super-peer neighbors. After each peer does one hop index

replication, super-peers propagate the index to only a constant number of their super-

peers. This reduces indexing load on super-peers.

CHAPTER 2. A Survey on Load Balancing in P2P Systems 39

2.4 Summary and Discussion

In this survey, we have identified the main causes of load imbalance in P2P systems.

We have confirmed that load problems could occur in the following resources, i.e.,

identifier space, indegree size, response and routing. In each resource, the load is

represented by a different metric, i.e., storage/response load, query load, response

load and routing load. We have then classified the solutions for load problems into two

categories, i.e., task migration based approach and task replication based approach.

We have presented the most relevant existing solutions in each category.

In a more general sense, there are two types of load balancing solutions: the

system-specific (applicable only on specific system) and the system-independent (ap-

plicable on any systems) [74]. The former may be more efficient, however they are

limited, while the latter can be applied to any systems as a complement to an existing

system-specific solution. Examples of system-independent load management solutions

for file search are caching [6] and paging [58]. A cache is a high-speed “memory” that

acts to minimize the number of accesses to a large low-speed “memory”. For example,

in web systems, the high-speed “memory” could be hard disk of a computer acting to

cache web pages fetched from the web (i.e., low-speed “memory”). While paging is

often used for displaying a large amount of search results in alleviating server-client

traffic load. For instance, if a result set is less than 50 rows, paging may be optional.

However, if it is bigger than 5 × 104 rows, paging is practically required for split-

ting the result set. Caching and paging have been widely adopted in many systems

[33, 93, 45, 23, 92].

Although such general techniques used in web systems have been adopted into

P2P systems, it is highly insufficient and some of system-specific solutions are strongly

required for time-consuming search operations. Novak [56] analyzed the source of the

load related to response time. They suggest that the load should be measured as two

CHAPTER 2. A Survey on Load Balancing in P2P Systems 40

separate quantities, i.e.,

• processing load is taken as an average time of processing a search query on the

local data of a given peer. This value considers the data volume, the complexity

of the queries, and quality of the local index.

• waiting load is measured as an average time a query is waiting in the queue

before processed. This value considers the frequency of queries and the pro-

cessing load of particular peers.

Mondal et al. [52] analyzed the best selection between the options of data migra-

tion and data replication in a cluster based P2P networks, and formulated a strategy

based on run-time decision described as follows.

• “Pushing” non-hot data (via migration for large sized data and via replication

for small-sized data) to large capacity peers as much as possible.

• Replicating small-sized hot data at small capacity peers (smaller search space

expedites search operations).

• Large-sized hot data are migrated to large capacity peers only if such peers

have low probability of leaving the system, otherwise they are replicated at

large capacity peers, an upper-limit being placed on the number of replicas to

save disk space.

However, their strategy is very abstract and the management cost of object migration

and replication is very high in the system.

In Chapter 3 and 4, we focused on two kind of super-peer based hierarchical archi-

tectures of P2P systems, which are distinguished by the organization of super-peers.

In each of them, we discussed system load allocation, and proposed index migration

CHAPTER 2. A Survey on Load Balancing in P2P Systems 41

or replication based load balancing algorithms for alleviating load imbalance of super-

peers, aiming to decrease average and variation of query response time during index

retrieval process.

Chapter 3

Load Balancing for Qin’s

Hierarchical P2P system

3.1 Introduction

In this Chapter, we focus on a hierarchical P2P proposed by Qin et al. [61]. This

is a three-tier P2P architecture consisting of top, middle, and bottom layers, where

indices of files held by the user peers (UPs, for short) in the bottom layer are stored

at the super-peers (SPs, for short) in the middle layer, and the correlation between

those two layers is maintained by the central server(s) in the top layer using the

notion of tags (see Section 3.3.1 for the details). As will be described later, in this

system, an overloaded SP easily becomes a bottleneck of query processing, which

would significantly degrade the overall performance of information retrieval. In other

words, Qin’s hierarchical P2P has a great potential for striking a good trade-off point

between the search efficiency and the system cost if we could remove such bottleneck

by balancing the load of SPs, although it was not explicitly addressed in [61].

In this Chapter, we address several issues in P2P load balancing. In Qin’s system,

the task of an SP is defined by a collection of indices held by the UPs associated with

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 43

the SP, and is represented by a set of tags associated with the collected indices. Al-

though the load imbalance of SPs can be alleviated by migrating excessive tasks from

heavily loaded SPs to lightly loaded SPs as in many previous load balancing schemes

[67][16], such a simple approach is not sufficient if the size of tasks is highly imbal-

anced, i.e., if the preference of users concerned with tags follows a power-distribution

such as the Zipf’s law [55]. To overcome such a critical issue, we will propose two load

balancing schemes based on the resizing of tasks. The first scheme tries to bound the

maximum size of tasks by splitting large tasks to have a size not exceeding a thresh-

old µ. A mechanism which efficiently realizes such a task splitting with low overhead

is also proposed. The second scheme controls the size of each task by updating the

“definition” of tasks. More concretely, we conduct a reordering of the priority of tags

used in the query forwarding step in Qin’s system (see Section 4.4 for the details).

The performance of the proposed schemes is evaluated by simulation. The result

of simulations indicates that the proposed schemes effectively reduce the maximum

load, and ensure an even load distribution over SPs.

The remainder of this Chapter is organized as follows. Section 3.2 summarizes the

characteristics of Qin’s system. Section 3.3 overviews Qin’s hierarchical P2P. Section

3.4 proposes two load balancing schemes. The result of evaluation is given in Section

3.5. Finally, Section 3.6 concludes this Chapter.

3.2 Observation of Qin’s Hierarchical P2P Archi-

tecture

In this model, the bottleneck of the index server used in Napster [54] could be certainly

overcome by replacing the single index server by a collection of super-peers, and the

low search efficiency of the fully decentralized P2Ps could be overcome by introducing

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 44

top and middle layers (i.e., the central server layer and the super-peer layer). In other

words, this hierarchical model has a great potential for striking a good trade-off point

between the search efficiency and the system cost if the load of super-peers is well

balanced.

There are two attractive factors of this architecture. The first factor we have to

note here is that by adopting this architecture, the load of overall system is optimally

distributed among three layers. More concretely,

• The load of the central server is sufficiently low, since it does not conduct a

search of files relevant to a given query, i.e., it merely forwards a received query

to super-peers.

• The message transmission over the network is effectively controlled by the cen-

tral server, since a query received from a user peer is merely forwarded to those

super-peers relevant to the query, i.e., it effectively avoids flooding of messages.

• The load imbalance of super-peers can be significantly decreased by adopting

load balancing schemes (see Section 3.4 for the details) , i.e., it guarantees a

quick response to a given query.

The second factor we concerned is the real-time search of shared files. By combin-

ing an event detection mechanism at each user peer with a collection mechanism at

the super-peers, this architecture can realize a real-time update of file indices collected

from user peers. In addition, this architecture allows a user peer to send a query to

both of central server and its corresponding super-peers. After receiving a forwarded

query from the central server or a query directly received from its local user peers,

the super-peer will process the query and return search results to the requester as an

independent search engine.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 45

3.3 System Model

In this section, we describe an outline of hierarchical P2P proposed by Qin et al.

which is aiming to realize a real-time file search in distributed networks. Moreover,

we describe a skewed query model assumed in this Chapter.

3.3.1 Design

Consider a hierarchical P2P consisting of three layers, where the top layer consists

of a central server S0, the middle layer consists of a set of super-peers (SPs) S =

{S1, S2, . . . , Sm}, and the bottom layer consists of a number of user peers (UPs) [61].

Figure 3.1 illustrates an overview of the P2P architecture.

In this system, each file held by a UP is associated with an SP so that an index of

the file is maintained by its corresponding SP. Such a mapping of files is controlled by

a set of “tags” attached to each file. Let T be the set of all tags attached to the files.

Let σ be a bijection from T to {1, 2, . . . , |T |}, where in the following, σ(t) is called the

priority of tag t under σ. Given tag set T ′ ⊆ T , the priority sequence of T ′ under σ

is defined as a sequence of elements in T ′ which is arranged in the increasing order of

their priority under σ. Given two tag sets T1, T2 ⊆ T , T1 is said to be included by

T2 under σ, if the priority sequence of T2 is a prefix of the priority sequence of T1.

By using such an inclusion relation between tag sets, we can define a mapping of

files to SPs in the following manner:

1. Each SP Si is associated with a tag set Ti, where concrete procedure to deter-

mine a set of tag sets assigned to SPs will be described later.

2. Each file x is attached a tag set T (x) by its content holder.

3. File x is mapped to Si if Ti is a minimal tag set including T (x), where Ti is

said to be minimal if no tag sets in the current system are included by Ti (the

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 46

reader should note that a minimal tag set has a longest priority sequence).

The set of “tag sets” which will be assigned to SPs is determined by using a tree

structure defined as follows (in what follows, we call it a discrimination tree):

1) The root of the tree is associated with an empty set. Tag sets associated with

the other vertices are determined by using the following procedure recursively.

2) Let T (u) denote a tag set associated with vertex u. Let t′ be a lowest priority

tag in T (u) and let i′ = σ(t′) for brevity.

3) Then, vertex u has at most |T | − i′ children each of which is associated with

tag set T (u) ∪ {σ−1(j)} for i′ + 1 ≤ j ≤ |T |.

4) If the number of children of u is smaller than |T |− i′, we may select any tag set

from the candidates, and attach them to the children.

The reader should note that the above procedure realizes the split of a task into

several subtasks, as will be described in Section 4.3. In the Qin’s system, such a tree

structure (i.e., discrimination tree) is used to find a tag set matching a given query,

in such a way that the query is initially placed at the root vertex and moves toward

a vertex associated with a minimal tag set including the query (note that the tree is

constructed so that any tag set on the path connecting to the minimal tag set includes

the given query).

3.3.2 Skewed Query Model

Suppose that the system receives a query Q consisting of several tags. After receiving

it, the system retrieves the network to return a set of files attached all tags contained

in Q. In this Chapter, we assume that there are no correlation between tags. Let pi

denote the probability of associating tag ti ∈ T to a query (or a file), and without

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 47

(a) File Upload procedure.

(b) File Retrieval procedure.

Figure 3.1: A model of three-tier P2P architecture.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 48

loss of generality, we assume that pi ≥ pi+1 for any 1 ≤ i ≤ |T |− 1. More specifically,

we assume that it follows the Zipf’s first law, i.e.,

pi =
1

is ×H|T |,s
, (3.1)

where

H|T |,s
def
=

∑
1≤i≤|T |

(1/is) (3.2)

and s is a parameter called Zipf-parameter. Note that
∑|T |

i=1 pi = 1 by definition.

The length of each query is assumed to follow a binomial distribution as is roughly

verified using actual statistical data [85]. More concretely, we assume that each query

is constructed using a Bernoulli trial with stopping probability p; i.e., the probability

that a given query has length i is given by as follows:

|Q| def
= (1− p)i−1 × p. (3.3)

It should be worth noting that under such natural and reasonable assumptions, the

number of queries associated with each tag will be highly imbalanced; i.e., a popular

tag is contained in a large number of queries, while an unpopular tag is rarely con-

tained in the queries. In other words, an SP which is associated with a popular tag

should receive a significant number of queries which causes an overload of the SP.

3.4 Task Migration based Load Balancing Schemes

In this section, we first describe a formal definition of the load balancing problem.

After illustrating a simple task migration scheme for solving the problem, we propose

two concrete load balancing schemes, i.e., 1) a task splitting scheme to ensure that

the size of each task is bounded by an appropriate value, and 2) a tag reordering

scheme to bound the depth of the discrimination tree used in the query forwarding

step.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 49

3.4.1 Preliminaries

In the following, we assume that each SP is associated with several tag sets cor-

responding to tasks, and will use words “task” and “tag set” interchangeably. Let

D = {d1, d2, . . . , d|D|} be a set of tasks in the system. Let w(di) denote the number

of files associated with di, and let v(di) denote the number of queries included by di.

In this Chapter, to reflect both of the number of files indices (i.e., spatial cost) and

their access frequency (i.e., temporal cost), we define the load of task di as follows:

ℓ(di)
def
= w(di)× v(di). (3.4)

A mapping of tasks in D to the set of SPs in S is represented by a binary matrix C

such that C[i, j] = 1 iff di is assigned to Sj. The load of Sj, denoted as ℓ(Sj), is the

summation of the load of tasks assigned to it, i.e.,

ℓ(Sj)
def
=

∑
1≤i≤|D|

ℓ(di)× C[i, j]. (3.5)

The load balancing problem is now stated as follows:

Definition 3.4.1 (Load balancing problem) Find matrix C to minimize

max1≤j≤m ℓ(Sj).

In this Chapter, we propose heuristic schemes to solve the above load balancing

problem in P2P environment. In describing the details of the proposed algorithm,

we use several notations as follows: Let bi be a Boolean variable which represents

whether or not the load of Si exceeds a threshold θ. Threshold θ is referred to as the

target load of SPs which is typically defined as follows:

θ
def
=

∑
di∈D w(di)×

∑
di∈D v(di)

|D| × |S|
+ c (3.6)

where c > 0 is an appropriate slack. The load of Si is said to be heavy if bi = true,

and non-heavy otherwise. Let B = (b1, b2, . . . , bn) be a Boolean vector representing

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 50

the load of SPs, where in the following, we assume that vector B is maintained by

central server S0 in its local storage. Finally, we should remind that in our hierarchical

P2P architecture, the migration of tasks is realized by modifying binary matrix C,

and by transferring a set of indices corresponding to the migrated tag sets to their

destination.

3.4.2 Task Migration Protocol

In this subsection, we describe a protocol to migrate excessive tasks of heavy SPs to

non-heavy SPs, which will be used as a basic procedure in the proposed schemes.

Let S∗ be a heavy SP, and D∗ be the set of tasks assigned to S∗. By definition,

ℓ(S∗) > θ. At first, S∗ notifies S0 that it becomes heavy. Upon receiving the notifica-

tion message, S0 updates vector B to reflect the change of the status, and returns S∗

a list of non-heavy SPs which can accommodate excessive tasks of S∗. After receiving

the list, S∗ tries to hand over (a portion of) excessive tasks to the recommended SPs

until it satisfies ℓ(S∗) ≤ θ or the list of non-heavy SPs becomes empty.

Task migration between two SPs is executed as follows. Let D̂ be the set of

excessive tasks of S∗, and suppose that S∗ selects SP S ′ as the target of task migration.

Before starting a task migration, S∗ acquires the available capacity δ (
def
= θ − ℓ(S ′))

of S ′ by directly communicating with S ′. It then determines the set of tasks to be

migrated to S ′ as follows:

function TASK SELECTION(δ)

Step 1: Let Q = ∅.

Step 2: If δ < mind∈D̂ ℓ(d), then go to Step 4.

Step 3: Let d′ be a task with largest load in D̂ such that ℓ(d′) ≤ δ. It moves d′ from

D̂ to Q, decrements δ by ℓ(d′), and go to Step 2.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 51

Step 4: Output Q, and terminate.

After that, S∗ sends a copy of index set associated with tasks contained in Q to

S ′, and after completing such an index transfer, it sends a message to S0 to change

the mapping of tasks to S∗ and S ′.

3.4.3 Task Splitting

In the task migration protocol described above, we could not avoid a situation in

which no tasks in a heavy SP can be migrated to other SPs if the load of tasks is

highly imbalanced. For example, if the target load θ is set to 10, and if S1 is associated

with three tasks of load 10, 15, and 20, respectively, then an excessive task with load

15 or 20 cannot be migrated to any other SPs under the protocol.

The key idea of our first scheme is to bound the maximum load of tasks by an

appropriate constant µ satisfying µ ≤ θ. In the following, the load of task di is said

to be heavy if ℓ(di) > µ. Suppose that SP S∗ is assigned a heavy task d∗. In the

proposed scheme, after recognizing the heaviness of task d∗, S∗ splits d∗ into several

subtasks according to a given bijection σ, in the following manner:

function TASK SPLITTING(d∗)

Step 1: Let P := ∅.

Step 2: Consider a tag set associated with d∗. Let t′ be a lowest priority tag in the

tag set, and i′ := σ(t′) be the priority of t′ in σ.

Step 3: Recall that d∗ can have at most |T | − i′ children in the discrimination tree.

For i := i′ + 1 to |T |, repeat the following procedure until ℓ(d∗) ≤ µ: 1) add a

new child to d∗; 2) associate tag set d∗ ∪{σ−1(i)} to the new child; 3) move the

load of d∗ concerned with the tag set to the new child; and 4) add the new tag

set to P .

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 52

Figure 3.2: An example of task splitting when |T | = 4.

Step 4: Output P , and terminate.

Figure 3.2 illustrates task splitting when |T | = 4. The number of possible tasks

consisting of k tags is given by C(|T |, k) = |T |!
(|T |−k)!k!

, and the number of all possible

tasks over T is 2|T | − 1. After completing the task splitting, it applies the task

migration scheme to balance the load of SPs.

Task integration is a reverse operation of task splitting, which is effective to reduce

the depth of the discrimination tree and the number of tasks manipulated by the

central server. Recall that the depth of the tree corresponds to the response time

of query forwarding and the size of the tree corresponds to the overhead of each

operation conducted by the central server. Basically, a task integration is simply

realized by removing a task from the discrimination tree since the load of a removed

task should always be migrated to its parent. Thus, if we use such an integration

operation, we should remind that the load of the parent does not exceed the target

load, while it is left as a future work.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 53

3.4.4 Tag Reordering

Under the skewed query model introduced in Section 3.2, each query consists of several

tags, and the length of most queries is bounded by a constant L. This means that a tag

set larger than L will rarely match the queries, which would cause a significant load

imbalance even if the number of files associated with each task was evenly balanced.

On the other hand, it is also true that under the first scheme, a tag set containing

many popular tags must be split into a number of smaller subsets so that the size of

each subset is sufficiently small.

The objective of our second scheme is to resolve such a conflict by conducting

a reordering of tags in the given bijection σ. More concretely, it updates σ so that

popular and high priority tags are moved to the end of the tag sequence derived from

σ. Let d∗ be a heavy task assigned to SP S∗. Suppose that tag set d∗ contains more

than L tags, and that t∗ is the lowest priority tag in d∗. Upon detecting the heaviness

of such task d∗, S∗ asks S0 to reduce the priority of t∗ in the set T of all tags. After

receiving such an inquiry, S0 conducts a tag reordering in the following manner:

function TAG REORDERING(t∗)

Step 1: Let i′ := σ(t∗). For each (i′ + 1) ≤ i ≤ |T |, S0 conducts the following

operations: 1) ti := σ−1(i); and 2) σ(ti) := i − 1. It then updates σ(t∗) such

that σ(t∗) := |T |.

Step 2: After completing the update, S0 broadcasts a message so that tag t∗ is

removed from all tag sets associated with SPs. If a tag set associated with a

vertex in the discrimination tree becomes identical to the tag set associated

with its parent after the removal, it simply removes the child vertex from the

tree, and migrates file indices associated to the child to the SP associated to

the parent vertex.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 54

Figure 3.3: An example of task merge when |T | = 4.

Figure 3.3 illustrates tag reordering when |T | = 4. After reordering the priority

sequence from 1, 2, 3, 4 to 2, 3, 4, 1, a number of tasks will merge into existing tasks.

3.5 Simulation Model

We evaluate the performance of the proposed load balancing schemes by simulation.

The simulator is written in Java, and is developed under the following environment:

open-SUSE/10.1, Intel CoreTM 2 Duo CPU 3.00GHz, Memory 2GB, Eclipse/3.4,

JDK/1.6.

In the set of simulations, we omit a concentration of task migration to a non-heavy

SP which may cause a chain effect of task migration; i.e., the non-heavy SP becomes

next heavy SP and continue to migrate its tasks to the other SPs. Note that such a

situation can be avoided using an appropriate lock mechanism during task migration

in a real system.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 55

3.5.1 Simulation Model

In the following, we fix |S| = 100 and |T | = 500, i.e., we do not consider join and

leave of SPs. In the beginning, each SP is associated with 5 non-overlapped tags. The

probability of associating tags to a query or a file follows the same Zipf’s distribution

with parameter s = 1.0. The length of each query is determined by a Bernoulli

trial with stopping probability 0.4, i.e., the probability of assigning i tags is given by

(0.6)i−1 × 0.4, while the maximum length of each query is bounded by 10.

In many social tagging systems such as Delicious and Yahoo! Bookmarks, most

users attach 2 to 5 tags to each file. In this Chapter, we assume that the number of

tags attached to each file follows a normal distribution with mean 10 and standard

deviation 2.5 (i.e., a large portion of files are assigned around 10 tags), while it is

bounded by 20. The total number of queries and files are both fixed to 10000. Finally,

bijection σ is initially given at random.

3.5.2 Effect of Load Balancing

We first evaluate the performance of three load balancing schemes. Figure 3.4 sum-

maries the result. The vertical axis is the load of each SP and the horizontal axis is

SPs arranged in an ascending order of the load. Four curves in the figure show the

initial distribution of the load and the load distributions after applying three schemes,

respectively. In order to obtain good load distribution of SPs, we set a small target

load value θ = 2100 in all simulations. Here, it is worth noting that how to set an

appropriate threshold value of task size µ is also important. If µ is set to a high value,

the load over tasks may be still highly imbalanced, and if µ is set with a low value,

it may accelerate task splitting. Empirically, the maximum load of tasks used in the

task splitting scheme is set as µ = 300.

As shown in Figure 3.4, although it could reduce the ratio of heavy SPs from 22%

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 56

100

101

102

103

104

105

106

107

 10 20 30 40 50 60 70 80 90 100

Lo
ad

 o
f S

up
er

-p
ee

r

Super-peer

Initial state
Task migration

Task splitting
Tag reordering

Figure 3.4: Effect of load balancing scheme.

to 20%, the effect of the task migration scheme is very limited. In contrast, the ratio

of heavy SPs could be significantly reduced by applying proposed methods. More

concretely, the ratio of heavy SPs reduces to 2% by the task splitting scheme, and it

further reduces to zero by the tag reordering scheme. In other words, we could attain

a sufficient load balancing by our first scheme, while there are few cases which could

not be resolved by the first scheme but could be effectively resolved by our second

scheme.

Table 3.1 compares the cost of migration based load balancing schemes in terms

of the percentage of indices exchanged among SPs. This result indicates that our

two proposed schemes realize an even load balancing by spending more cost than the

simple task migration scheme. In addition, we could observe a remarkable feature of

the schemes such that the total cost of task splitting significantly reduces by applying

the tag reordering; i.e., an inappropriate ordering of tags causes a number of splitting

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 57

Table 3.1: Cost of migration

Load balancing Percentage of Moved indices

Initial State NULL

Task Migration 5.24%

Task Splitting 43.65%

Tag Reordering 18.85%

of tasks to realize a fair distribution of the load, which could effectively be removed

by conducting a tag reordering.

3.5.3 Spatial Load vs. Temporal Load

In the proposed schemes, the load of SPs is defined as a product of spatial and

temporal metrics as was described in Section 4.1. In this subsection, we examine how

each of those metrics could be balanced under the proposed load balancing schemes.

Figure 3.5 shows the distribution of the number of indices held by each SP (i.e.,

spatial load) under three load balancing schemes. We can observe from the figure

that by using proposed schemes, a high concentration of indices assigned to three SPs

is effectively distributed to 25 SPs, whereas the simple task migration scheme cannot

migrate excessive tasks due to the imbalance of the load of tasks. In fact, the standard

deviation of the number of indices assigned to SPs is summarized as follows: 1) before

conducting a load balancing, the standard deviation is 284.82, 2) after applying the

task migration scheme, it slightly reduces to 282.30, and 3) by applying task splitting

and tag reordering schemes, the standard deviation significantly reduces to 148.82

and 146.08, respectively.

Figure 3.6 shows the distribution of number of queries (i.e., temporal load) under

three load balancing schemes. We can make a similar observation to the case of spatial

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 58

100

101

102

103

104

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f i
nd

ic
es

 o
f S

up
er

-p
ee

r

Super-peer

Initial state
Task migration

Task splitting
Tag reordering

Figure 3.5: Distribution of spatial load.

distribution, where the standard deviation of the schemes is summarized as follows:

1) before conducting a load balancing, the standard deviation is 320.49, 2) after

applying the task migration scheme, it slightly reduces to 305.17, and 3) by applying

task splitting and tag reordering schemes, the standard deviation significantly reduces

to 150.98 and 149.97, respectively.

3.6 Summary and Discussion

In this Chapter, we studied the load balancing problem in Qin’s hierarchical P2P

architecture, and proposed two load-balancing schemes based on the notions of task

splitting and tag reordering. Those schemes help to avoid overloading super-peers for

this system. We evaluated the performance of the schemes by simulation, and the

results demonstrate the effectiveness of these schemes.

CHAPTER 3. Load Balancing for Qin’s Hierarchical P2P system 59

100

101

102

103

104

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f q
ue

rie
s

of
 S

up
er

-p
ee

r

Super-peer

Initial state
Task migration

Task splitting
Tag reordering

Figure 3.6: Distribution of temporal load.

We have some thoughts about the system design and migration schemes. Firstly,

richness of search result for a given query could be improved. In system design (See

Section 3.3.1 for the details), a given query is only match to the task with the longest

prefix (i.e., destination task). Such a restriction on search algorithm can be easily

relaxed. For example, parent and child of destination task in the discrimination

tree could be the candidate of providing search results. Secondly, if we relax the

search algorithm, a given query would be forwarded to several super-peers if the

corresponding destination tasks of the query is maintained at different super-peers.

Therefore, a middleware at user-peers to receive parallel computed search results

needs to be implemented. Thirdly, the performance of load balancing schemes such

as scalability and dependability needs to be tested in a more realistic P2P environment

such as heterogeneous bandwidth of super-peers, and join and leave of super-peers.

Chapter 4

Load Balancing for DHT-based

Super-Peer Systems

4.1 Introduction

In this Chapter, we focus on a two-tier hierarchical P2P [25]. In this architecture,

indices of files held by the user peers in the lower layer are stored at the super-peers

in the upper layer. The same user peers could be grouped into different super-peers

according to a certain policy (e.g., the proximity of their geographical locations), and

each group is required to have one super-peer. The super-peers are gateways between

the groups, and they are connected based on DHTs.

To retrieve indices, multi-keyword search is a quite common type, and it can be

realized by using the solution for single keyword (or key) search with an intersection or

union operation of indices. More concretely, by given a multi-keyword query initiated

by a user, it will be parsed into multiple sub-queries, each of which corresponds to a

keyword contained in the query. Those sub-queries are sent to corresponding super-

peers by using the DHT. The search result received by the user is an intersection or

union of the indices obtained by each sub-queries. In this process, since the preference

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 61

of users concerned with keywords contained in queries generally follows a power-

law distribution such as Zipf’s law [55], an access concentration of queries would

probably happen at two kinds of super-peers, i.e., i) home super-peers that hold

indices associated with popular keywords, and ii) intermediate super-peers who are

in the intersection of multiple routing paths towards “hot” home super-peers. In

the system, those two kinds of super-peers are easily become a bottleneck of query

processing. If there are several such overloaded super-peers in the routing path for a

given query, it would incur long index retrieval latency and consequently negatively

influence the overall performance of object retrieval.

Index replication has a great potential for alleviating this issue. However, existing

schemes did not explicitly address it or incurred high cost [65][68][75]. Management

cost of index replicas (i.e., cost of copying and keeping index replicas) is very small.

For example, suppose that an entry is approximately 500B, an index consists of 200

entries would be just approximately 100KB. On the other hand, maintenance cost of

index replicas may be high if we want to guarantee the consistency between an index

and its replicas, since the index entries associated to a keyword would be continuously

inserted or deleted. The degree of overhead for guaranteeing index consistency may

be varied according to the need of real systems, and it is an open problem in this

Chapter. Generally, the cost of index replication is evaluated through the number

of replicas rather than the size of replicas, i.e., the maintenance cost is assumed far

larger than the management cost. Instead of index replication, pointer would be

an effective approach to avoiding the consistency issue of index replication, where a

pointer is a pair of key (i.e., hashed keyword) and index location. In other words, the

pointer is a “shortcut” between a search key and a home super-peer of the keyword.

Replica placement has a significant impact on minimizing the replication cost.

The replica placement problem concerned on optimizing one kind of resources in P2P

systems is found to be NP Complete [102], i.e., optimal placement of replicas will al-

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 62

ways lead to exponential time algorithms. Alternatively, a lot of heuristic algorithms

have been proposed to give approximate solutions for the problem. Majority of exist-

ing replication methods place replicas in the query paths to intermediate super-peers

between requesters and home super-peers, referred to as path-based replication or

probabilistic replication. PCache [68] and EAD [75] are two prominent probabilistic

replica placement schemes. On the other hand, deterministic replication [28] has also

been proposed based on DHTs. In deterministic replication, each point in a hash

space is associated with a set of other identified points, i.e., if a point i is associated

with identified point r, then any (key, value) pair with point i should be stored at the

super-peers responsible for points i and r. To realize benefits of these approaches for

minimizing the replication cost, it is necessary to instantiate particular schemes for

different classes of DHTs, utilizing their routing characteristics.

In this Chapter, we focus on a class of tree-based routing DHTs (See Section 4.3.1

for the details). In such DHT-based super-peer systems, we will propose an integrated

solution consisting of three replication schemes to alleviate load imbalance of super-

peers while minimizing the cost. The first scheme tries to bound the maximum

response load received by each index to have it not exceeding a threshold µ. Under

such constraint, an index with a popular keyword (i.e., popular index) will make

more replicas, so that routing load for the popular index would be highly reduced

and response load received by the popular index can be shared by its home super-

peer and replica super-peers. The second scheme places a predetermined number of

pointers for each index, aiming to decrease the number of index replicas generated by

the first scheme. The third scheme controls the maximum query load of super-peers

by operations of pushing or pulling index replicas, in order to eliminate bottleneck

situation of query processing in the system. The result of simulations indicates that all

the proposed schemes can work in coordinate, in alleviating the query load imbalance

of super-peers. Moreover, by comparison it was proved that our schemes are more

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 63

cost-effective on placing replicas than PCache and EAD.

The remainder of this Chapter is organized as follows. Section 4.2 summarizes

the characteristics of DHT-based super-peer systems. Section 4.3 describes the details

of system model. Section 4.4 proposes three replication based query load balancing

schemes. The result of evaluation is given in Section 4.5. Finally, Section 4.6 concludes

this Chapter.

4.2 Observation of DHT-based Super-Peer Archi-

tecture

Since super-peers act as centralized servers to the user peers, they can handle queries

efficiently. On the other hand, since there are relatively many super-peers in this

architecture, there is no single super-peer has to handle a very large load, avoiding a

bottleneck and/or single point of failure for this architecture. In order to optimally

allocate system load in this architecture, it is well-known that gossip mechanism can

be used to construct super-peer layer in the following way [53], i.e., a user peer may

decide to become a super-peer and take responsibility for some of the clients of the

other peer, to allocate more system load in super-peer layer; alternatively, a super-

peer may decide to move all its user peers to the other super-peers and become a

user peer, to reduce the number of super-peers and thus reduce the load generated

by query routing between super-peers.

In this architecture, the network performance can be measured based on two types

of load metrics [98], i.e., a) individual load (the load of a single peer), and b) aggregate

load (the sum of the loads of all peers in the system). Increasing the number of super-

peers in the network, it will reduce the load of the individual super-peers. However,

it increases the aggregate load in the network since the routing load in the overlay is

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 64

increased, hence it is necessary to find the balance in this architecture.

Therefore, load management for DHT-based super-peer architecture includes two

aspects, i.e., 1) reduce the aggregate load of super-peers, and 2) balance the load of

super-peers.

4.3 System Model

In this section, we describe a basic keyword search model based on a class of tree-

based routing DHTs. Moreover, we describe a skewed query model assumed in this

Chapter.

4.3.1 Design

Consider a two-tier super-peer system, where the upper layer consists of a set of

DHT-based super-peers (SPs) S = {S1, S2, . . . , Sn}, and the lower layer consists of

a number of user peers (UPs) [25]. Figure 4.1 illustrates an overview of DHT-based

super-peer architecture.

We consider a class of tree-based routing DHTs defined in [35]. In such DHTs,

paths from any requester peer to all possible home peers that stored indices are

aggregated, the resulting topology is a tree. Many popular DHTs belong to this

category such as Chord [82], Pastry [73] and Tapestry [101].

More concretely, in this Chapter, we adopt Chord (an instance of tree-based rout-

ing DHTs) to super-peer layer. In the system, index entry of each object held by a

UP is maintained by its corresponding SPs. Such a mapping is controlled by a set of

keywords attached to the object. By using consistent hashing and routing protocol of

Chord, we can define a mapping of objects to its corresponding SPs in the following

manner:

1. Each object x is attached a keyword set D(x) by its content holder.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 65

(a) File Upload procedure.

(b) File Retrieval procedure.

Figure 4.1: A model of DHT-based super-peer system.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 66

2. For each di ∈ D(x), object x is mapped to Si if Si is a successor of hashed di.

For example, given keywords d1, d2, d3 assigned to an object f0, and SPs of d1, d2, d3

are S1, S2, S3, respectively. Index entry of f0 will be mapped to these three SPs. This

ensures indices of objects to be approximately1 evenly distributed over participating

SPs. An example of an index entry is given in Table 4.1.

Table 4.1: Structure of an index entry

Key Metadata Location

hash(d1) album, artist, year user peer ID: A

As shown in Table 4.1, an index entry consists of three main fields, i.e., key,

metadata and location. The metadata field is used to help users choosing objects to

download, as well as supporting metadata search in the system. Here, it is worth

noting that an index is a set of entries associated to a given keyword, and an index

replica is a copy of the whole entries contained in the index.

Conducting a search for a single keyword is to reveal all of the index entries

containing the keyword. The search key is mapped to a SP using Chord. The index

for the computed key will be delivered to the requester. To answer a boolean “AND”

or “OR” query that contains multiple keywords, it fetches the indices of each keyword

and calculate the intersection or union of obtained indices as the final result. In the

following, we consider the basic keyword search model as described above. But, it

is worth noting that by carefully caching the search result of frequently requested

keyword sets and parsing queries into proper phases, the performance of keyword

search could be improved.

1Consistent hashing produces a bound of O (log n) imbalance degree of keys between SPs, where

n is the number of SPs in the system.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 67

4.3.2 Skewed Query Model

Keyword popularity is defined as the fraction of queries associated with the keyword.

Suppose that the system receives a query consisting of several keywords. The possi-

bility of appearance of a keyword in the query can be estimated by two factors: i.e.,

1) the probability of query length, and 2) the probability of associating each keyword

to the query.

In the model, the length of each query is assumed to follow a binomial distribution

as is roughly verified using monthly statistical data [85]. More concretely, we assume

that each query is constructed using a Bernoulli trial with stopping probability p; i.e.,

the probability that a given query has length i is given by as follows:

Li
def
= (1− p)i−1 × p. (4.1)

Let Q denote the set of queries, and L be the maximum query length. Then, according

to the basic keyword search model described in Section 4.3.1, the number of sub-

queries generated in the system is

|Q| ×
∑

1≤i≤L

(1− p)i−1 × p× i. (4.2)

Let pj denote the probability of associating keyword dj to a query, and we assume

that it follows the Zipf’s first law, i.e.,

pj =
1

is ×H|D|,s
, (4.3)

where

H|D|,s
def
=

∑
1≤j≤|D|

(1/is), (4.4)

and s is a parameter called Zipf-parameter. Note that
∑|D|

j=1 pj = 1 by definition,

where D is the super-set of keywords in the system.

It should be worth noting that under such natural and reasonable assumptions,

a number of sub-queries will be generated for getting indices matched to the key of

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 68

sub-queries. The number of sub-queries associated with each keyword will be highly

imbalanced; i.e., a popular keyword is contained in a large number of queries, while

an unpopular keyword is rarely contained in the queries.

To better understand this problem, we have performed a simulation to gather

sub-query information of SPs in the system. At each SP, we keep track of the number

of sub-queries received by local index, as well as the number of sub-queries forwarded

to other SPs. In the simulation, we fix N=1000, and |D|=10000. The total number

of queries are 20000 with Zipf’s parameter s=0.8. Query length parameter p=0.6

and L=10. Each query is initiated by a randomly selected SP in the system. Figure

4.2 shows the result of sub-queries received and forwarded at each SP. In this figure,

it is found that 1) a large number of SPs in the system forwarded much more sub-

queries than they received; 2) some SPs received large number of sub-queries, but

they forwarded few sub-queries. 3) some SPs received many sub-queries and also

forwarded many sub-queries. These observations justify the importance of routing

load reduction and query load balancing in realizing low latency in index retrieval.

4.4 Task Replication based Load Balancing Schemes

In this section, we first introduce some notations using in the Chapter. Afterwards, we

propose three concrete replication schemes for balancing query load, i.e., 1) an active

index replication scheme to highly decrease routing load in the system, and share

response load received by popular indices with replica SPs; 2) a proactive pointer

replication scheme to reduce the number of index replicas generated by the first

scheme; 3) a passive index replication scheme to guarantee the maximum query load

of SPs.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 69

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r o

f s
ub

-q
ue

rie
s

Super-peers in ascending order of sum number of sub-queries received and forwarded

Sub-queries received and forwarded
Sub-queries received

Sub-queries forwarded

Figure 4.2: Sub-queries received and forwarded at each SP

4.4.1 Preliminaries

Reminding that D = {d1, d2, . . . , d|D|} is the superset of keywords in the system. In

the following, di is also used for representing a sub-query contained keyword di (i.e.,

sub-query di) or an index associated with keyword di (i.e., index di). Let w(di, Sj)

denote the number of sub-queries received by Sj that stores index di (i.e., response

load), and let v(di, Sj) denote the number of sub-queries initiated or forwarded by Sj

for index di (i.e., routing load). w(di, Sj) and v(di, Sj) are periodically calculated by

every SP during a unit time interval T . Exponential moving average (EMA) technique

is employed to predict the traffic in the next time period, the formula for calculating

w(di, Sj) and v(di, Sj) of Sj at time periods t ≥ 2 is

wt(di, Sj)
def
= βwt−1(di, Sj) + (1− β)wt(di, Sj),

vt(di, Sj)
def
= βvt−1(di, Sj) + (1− β)vt(di, Sj), (4.5)

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 70

where β ∈ [0, 1]. Note that smaller β makes the new observations relatively more

important than larger β, while larger β can alleviate replica fluctuation by a suddenly

short-time traffic variation. An appropriate value of β can be determined according

to the actual situation of the system.

Let D̂ be the set of indices and represented as a set of keywords assigned to Sj,

and let D̄ be the set of sub-queries and represented as a set of keywords initiated or

routed by Sj. The load of Sj, denoted as l(Sj), is the weighted sum of its response

load and routing load:

ℓ(Sj)
def
= a

∑
1≤i≤|D̂|

w(di, Sj) + b
∑

1≤i≤|D̄|

v(di, Sj). (4.6)

In the following, we assume that weighted factor a = b = 1, i.e., the entire of routing

load is higher than the entire response load in the system. For any given Si, we also

define an threshold value, T0, which is referred to target load. The target load of SPs

which is typically defined as follows:

T0
def
=

∑
Sj∈N

ℓ(Sj) + c (4.7)

where c > 0 is an appropriate slack.

4.4.2 Active Index Replication

Under the skewed query model, if we could make a substantial reduction on the search

hops for popular indices, routing load in the system would be highly reduced, and

the response load of home SPs that stored popular indices will be shared with index

replica SPs.

The key idea of the first scheme is to bound the maximum response load of each

index by an appropriate constant µ. With this constraint, an index with a popular

keyword need to have more replicas to distribute the response load of the index.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 71

Figure 4.3: Query flow in tree-based routing DHT

Suppose that Si has an index di, a bottom-up directed weighted tree graph rooted

at Si can be utilized for describing query flow of searching di. The search from a SP

in the tree is the process of moving sub-query di along the path towards to root. The

level of a SP in the tree is the path length from such SP to root, where the level of

root is 0. In the tree graph, each SP maintains the number of incoming queries for

index di from its child SPs.

Load information aggregation is conducted using this tree. In order to ensure

utilization of replicas, we exclude some SPs with low traffic rate to be candidate

SPs of index replicas by setting an appropriate minimum load threshold Tmin = αµ,

where α ∈ [0, 1]. Each SP Sx in the tree forwards load information of a child SP

(v(di, Sj), TTR) to its parent SP, if and only if the child Sj satisfies two condition:

i) v(di, Sj) ≥ Tmin; and ii) v(di, Sj) is the biggest among Sx’s child SPs. TTR is

initialized to 1 and used for recording the level of Sj. In such a way, home SP Si will

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 72

maintain R disjoint paths, which is referred to as critical path of home SP. Let Ni be

the direct child SP set of home SP Si, then the number of critical paths will be no

more than the size of home SP’s child SPs, i.e., |R| ≤ |Ni|. An example of query flow

for an index is given in Figure 4.3. In the Figure 4.3, when Tmin = 200, A maintains

two critical paths, i.e., (B,C, D,E) and (G,M).

The concrete process of index replication initiated at home SP or replica SP that

stored di is given in Algorithm 1. As shown in Algorithm 1, index replication is

triggered when response load received by di at Sj exceeds a threshold µ (line 1), this

operation is periodically executed by Sj. Each time the threshold is reached, a critical

path will be selected if the direct child SP of home SP Si has the highest routing load

for index di (lines 3-5). Upon determining the critical path, a utility value of placing

replica on each SP in the critical path is calculated, where the utility value means

the reduction of routing load if placing a replica on that SP. The SP corresponding

to the highest utility value will be selected to receive a replica of index di (line 6-7).

The above process will be repeatedly executed until response load w(di, Si) is no more

than µ (2-8).

Replica deletion is a reverse operation of replica placement, which is effective

to reduce maintenance cost of replicas. We propose a lightweight replica deletion

algorithm executed by each replica SP. In replica placement, each replica is attached

a TTL field, where TTL is the retention period of the index replica. Remainder that

T is the unit time interval of calculating the traffic rate. Thus, TTL can be divided

into a number of unit time intervals by T . Let’s denote w(di, Sj) < δTmin(δ < 1),

where δ is a underloaded factor, indicates the replica as infrequently used replica.

By checking the last h unit time intervals of TTL, if w(di, Sj) < δTmin condition

continuously occurs during h time intervals, the index replica will be automatically

deleted after TTL is exhausted. Otherwise, TTL will be automatically reset to the

initial value and consequently the index replica will be kept for a new retention period.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 73

Algorithm 1 Pseudocode of active index replication of di, executed at home SP or

replica Si

Ensure: w(di, Si) ≤ µ

1: if w(di, Si) > µ then

2: repeat

3: for all path ri ∈ R do

4: Choose the path ri satisfying that ri ← arg max
nk∈Ni

(nk, ri).

5: end for

6: di, Sj ← arg max
Sj∈ri

TTR× v(di, Sj).

7: send a replica of indices associated with di to Sj.

8: until w(di, Si) ≤ µ

9: end if

Above all, the determination of keeping index replicas can be executed by each replica

SP without extra communication cost.

4.4.3 Proactive Pointer Replication

The second scheme places a number of pointers for each key (i.e., hashed keyword),

in order to reduce the number of index replicas generated in the first scheme. Note

that the pointer is a pair of a keyword and its home SP.

Intuitively, each keyword di is assigned to a predetermined number of identified

points in a ID space. The corresponding SPs of these identified points are referred

to as “gateway” SPs. The gateway SPs divide the ID space into approximately

equivalence sub-ranges, and each of which maintains a pointer to the home SP of di.

By having all queries initiated by SPs from a sub-range passing through the gateway

SP in the sub-range, the height of the query flow tree for searching index di can be

compressed.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 74

A gateway SP can monitor the traffic coming from its sub-range, and then help

home SP placing more replicas to the high traffic of sub-ranges, thereby effectively

reduce the routing load in the system. Moreover, increased disjoint paths towards

home SPs could further balance query load of SPs.

Figure 4.4: Query routing after applying pointer replication

More concretely, the idea of the second scheme is realized by introducing a system

parameter b. By changing the b-bits prefix of the hashed di, 2b − 1 identified points

are determined. The home SP of di places pointers on the corresponding SPs (i.e.,

gateway SP) of these identified points. Then in the query routing, each requester

selects the closest gateway SP based on the ID space distance between the search key

and the requester SP. An example of query routing using pointers based on Chord is

shown in Figure 4.4. As shown in Figure 4.4, the hash value of “key0” is 00xx. In

the case of b = 2, three gateway SPs corresponding to 01xx, 10xx, 11xx are fixed. An

requester in the range between 10xx and 11xx, could calculate the distance between

itself and 00xx, 01xx, 10xx and 11xx, respectively. Then, it will choose the closest

gateway SP in the clockwise direction, i.e., the SP corresponding to 11xx. Finally,

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 75

the gateway SP will forward the query to home SP using the information in pointer

replica.

The concrete process of placing pointer replicas based on Chord is given in Al-

gorithm 2. First, let’s prepare a null set K and let m-bit k∗ be the hash value of

keyword di (line 1). Then, Si changes the b-bits prefix of k∗ using bit operation func-

tion ShiftRight and ShiftLeft and then move 2b keys into K (line 2-6). Last, Si will

send a pointer replica to every corresponding SP who is the successor of k ∈ K except

Si itself (line 7-9).

Algorithm 2 Pseudocode of proactive pointer replication for di, executed by home

SP Si

1: Let K = Ø, and k∗ = hash(di).

2: Preserve low (m− b) bits of k, saved as l.

3: ShiftRight(m− b, k), saved as h.

4: for all i ∈ [0, 2b] do

5: ShiftLeft(m− b, h⊕ i) + l, and move it to K.

6: end for

7: for all k ∈ K \ k∗ do

8: Home SP Si send a pointer replica to the SP corresponding to k.

9: end for

4.4.4 Passive Index Replication

In the system, a SP would be still overloaded caused by the summation of response

load and routing load , although the imbalance of query load of SPs is alleviated

after applying Scheme 1 and Scheme 2. In order to solve this problem, we distinguish

overloading of SPs caused mainly by the routing load and the respond load, and

effectively determine the operation of pushing or pulling index replicas under each

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 76

case.

Algorithm 3 Pseudocode of excessive load shedding, after the query load of Si

exceeds T0

Ensure: ℓ(Si) ≤ T0

1: query counter ← query counter + 1

2: if query counter > T0 then

3: repeat

4: if
∑

1≤i≤|D̂| w(di, Sj) ≥
∑

1≤i≤|D̄| v(di, Sj) then

5: di, Sj ← arg max
di∈D̂,Sj∈Ni

w(di, Sj)

6: push a replica of indices associated with di to neighbor Sj

7: else

8: di, Sj ← arg max
di∈D̄,Sj∈Ni

v(di, Sj)

9: pull a replica of indices associated with di from home SP

10: push the replica of indices associated with di to neighbor Sj

11: end if

12: until ℓ(Si) ≤ T0

13: end if

The concrete process of load shedding is given in Algorithm 3. A query counter

for counting total number of incoming queries is used at every SP (line 1). If Si

exceeds the threshold of query load T0 (line 2), then the following process is to justify

the main cause of this overloading (line 4-11). If this overloading is caused mainly by

response load (line 4), Si will choose an index replica of di to its neighbor Sj, where

di and Sj are selected by sorting w(di, Sj) maintained by Si (line 5-6). For example,

in Figure 4.5, S1 will push a replica of index d1 to neighbor A. Otherwise, Si will pull

an index replica from home SP that stored index di, and then push the index replica

to its neighbor Sj, where di and Sj are selected by sorting v(di, Sj) maintained by Si

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 77

(line 8-10) For example, in Figure 4.5, S2 will pull a replica of d2 from home peer S1,

and then push it to neighbor G. The above process will be repeatedly executed until

query load l(Si) is no more than T0 (3-12).

Figure 4.5: Load shedding distinguished by main cause of overloading

The purpose of our third scheme is to eliminate bottleneck situation of query

processing in the system. Thus, an appropriate target load T0 should be determined

according to the actual situation of the system. It is worth noting that there is a

trade-off between the target load and index replication cost incurred by the third

scheme. If the target load is set with a high slack value c, the maximum query load of

SPs would be still high, and consequently such SPs would become bottleneck of query

processing in the system. On the other hand, if the target load is set with a small

slack value c, a large number of index replicas would be created, thereby maintenance

cost of these index replicas would be high in the system.

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 78

4.5 Simulation

We evaluated our proposed schemes based on Overlay Weaver [77]. Chord is used

as the routing protocol in our simulation. Chord assigns each SP a 160-bit identifier

using a SHA-1 hash function. Each SP maintains its successor, predecessor, and

finger table with 160 entries. Note that the size of finger table would be incomplete

when the system stabilization process of Chord is not conducted enough times. In

our simulations, the stabilization period is set from 2s to 128s. After all SPs joined

the system, the system wait 1h for letting SPs fix their finger tables before index

uploading and query searching.

The following simulations are conducted to verify the effect of index replication.

Thereby, we assume that each of index size is equivalent (e.g. 200KB), and we measure

the cost of index replication in terms of the number of index replicas in the system.

In other words, we do not simulate the actual maintenance cost of index replicas, and

we do not simulate the size of each object. Finally, the cost of pointer replication is

ignored in the simulation, since the size of pointer replica is small enough.

4.5.1 Simulation Model

In the following, we fix N=1000, and |D|=50, i.e., we do not consider join and leave

of SPs. The probability of associating keyword set from D to a query follows the

Zipf’s distribution with parameter s = 0.8. The total number of queries are fixed to

20,000. The length of each query is determined by a Bernoulli trial with stopping

probability 0.4, i.e., the probability of assigning i tags is given by (0.6)i−1×0.4, while

the maximum length of each query is bounded by 10. The requester are chosen follows

a bounded Pareto distribution with parameter 2. The time interval of generating

queries is 20ms. The unit time interval T = 1s, and the EMA parameter β = 0.5.

The system parameter b = 4. Note that the weight of response load and routing load

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 79

are fix to 1. Finally, we do not set any restriction on storage capacity of SP, i.e., there

is no replica will be discarded due to the storage usage in the following simulations.

4.5.2 Effect of Replication Schemes

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

Q
ue

ry
 lo

ad

Super-peer

Initial state
Scheme 1

Scheme 1 + Scheme 2
Scheme 1 + Scheme 2 + Scheme 3

Figure 4.6: Load distribution after applying replication schemes

We first evaluate the performance of three replication based query load balancing

schemes. Figure 4.6 summaries the result. The vertical axis is the query load of each

SP and the horizontal axis is SPs arranged in an ascending order of the query load.

Four curves in the figure show the initial query load distribution and the query load

distributions after applying three schemes, respectively. Empirically, we set µ = 500

and Tmin = 80 in Scheme 1. The reason of determining Tmin = 80 can be explained

using Table 4.2. In Table 4.2, we investigate the effect of Tmin by varing Tmin form 30

to 180 with an interval of 50. We found that when Tmin is smaller than 80, it cannot

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 80

significantly reduce the replication cost anymore. While a smaller Tmin means more

load aggregation messages needed in the system. Thus, we set Tmin = 80 in Scheme

1. In addition, the target query load T0 = 1000.

Table 4.2: Effect of parameter Tmin

Tmin Number of Index Replicas

180 175

130 158

80 135

30 134

As shown in Figure 4.6, by applying Scheme 1, the query load (more exactly,

routing load) of system is significantly reduced by 47.26% compared to initial state.

Meanwhile, the load variation is significantly reduced from 1055.79 to 627.52. Further,

by combining Scheme 1 and Scheme 2, the query load is reduced by 68.28% compared

to initial state, and the load variation is reduced to 262.44. In the Figure, it is easy

to see that the query load of SPs is more balanced after applying Scheme 2. Finally,

by applying Scheme 3, the query load is reduced by 73.95% compared to initial state,

and the load variation is further reduced to 165.69.

Table 4.3 shows the cost of replication based load balancing schemes in terms of

the number of index replicas. This result indicates that by applying Scheme 2, it can

reduce the number of index replicas generated by Scheme 1. Moreover, by applying

Scheme 3, query load of all SPs are smaller than target load.

Consequently, we could attain a sufficient query load reduction by Scheme 1. After

applying Scheme 2, we could get more even load distribution compared to Scheme

1 with a smaller cost. There are few overloaded SPs which could not be solved by

Scheme 1 and Scheme 2, but could be effectively resolved by Scheme 3 with acceptable

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 81

Table 4.3: Cost of replication

Scheme Number of Index Replicas

Initial State NULL

Scheme 1 135

Scheme 1 and 2 98

Scheme 1, 2 and 3 120

cost.

4.5.3 Comparison with PCache Replication

100

101

102

103

104

 0 100 200 300 400 500 600 700 800 900 1000

Q
ue

ry
 lo

ad

Super-peer

Consecutive Replication in PCache
Scheme 1

Figure 4.7: Comparison with PCache

In this section, we compare our replica placement schemes with PCache replica-

tion. To be fairly comparable, we evaluate the effect of query load distribution when

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 82

the given number of replicas are equal to 80. Figure 4.7 illustrates the result.

As shown in Figure 4.7, Scheme 1 can further reduce 34.36% query load compared

to PCache. The load variation of PCache is 713.69, higher than 513.25 in Scheme

1. It is because in each index replication operation, PCache place the index replicas

consecutively at the predecessor SPs without considering of the actual query rate of

replica SPs.

4.5.4 Comparison with EAD Replication

 50

 100

 150

 200

 250

500

600

700

800

900

N
um

be
r o

f i
nd

ex
 re

pl
ic

as

Threshold of maximum response load

Scheme 1
Scheme 1 + Scheme 2

EAD

Figure 4.8: Comparison with EAD

In this section, we compare our replica placement schemes with EAD replication.

Under a given target load T0, we evaluate the index replication cost in terms of the

number of index replicas. Figure 4.8 illustrates the index replication cost of different

schemes. By varying the threshold of response load µ from 500 to 900, we found that

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 83

the number of index replicas generated by EAD is higher than our schemes. It is

worth noting that when µ is set smaller, the cost of EAD become significantly higher

than our schemes. It is because that EAD selects candidate replica SPs only according

to query rate, resulting in a large number of replicas placed near the home SP. In

contrast, in Scheme 1, we used TTR to record the level of the candidate replica SPs,

and thereby we can select candidate replica SP more effectively on reducing routing

load than EAD.

4.6 Summary and Discussion

In this Chapter, we studied the query load balancing problem in DHT-based super-

peer architecture, and proposed an integrated solution that consists of three repli-

cation schemes to solve it. We evaluated the performance of the proposed schemes

by simulation, the results demonstrate that all the schemes can work in coordinate,

in avoiding overloading super-peers and alleviating the query load imbalance for the

systems. Moreover, by comparison with two prominent replica placement schemes, it

was proved that the cost-effectiveness of the proposed schemes.

We have some practical consideration on replication schemes. Firstly, an index

replica with elastic size should be implemented. In a practical system, an index for a

keyword should be divided into several pages, and those pages are ranked according to

an appropriate ranking scheme, as in web systems. When replicating an index, there

is no necessary to replica the whole pages of the index. For example, just replicate

the first 10 pages, while maintaining a pointer to the home SP of the index for the

left pages, since majority of users often browse only first few pages in index retrieval.

Secondly, the maintenance cost of index replicas should be considered in practical

systems. Thirdly, the performance of replication schemes needs to be measured in a

more realistic P2P environment such as heterogeneous bandwidth of super-peers, and

CHAPTER 4. Load Balancing for DHT-based Super-Peer Systems 84

join and leave of super-peers.

Chapter 5

Concluding Remarks

5.1 Summary

In this thesis, we proposed novel solutions for managing the load for hierarchical P2P

file search, in order to decrease average and variation of query response time during

index retrieval process.

In Chapter 1, we introduced the load problem in P2P systems. Meanwhile, existing

P2P architectures and a number of well-known search algorithms are introduced.

In Chapter 2, related works to realize load balancing in P2P systems are presented.

We classified load balancing solutions into two categories, i.e., task migration and

task replication. For each of category, we presented the most relevant load balancing

schemes, including their attributes, advantages and drawbacks.

In Chapter 3, we described details of Qin’s hierarchical P2P architecture. We have

proposed two efficient task migration schemes for this architecture, in alleviating the

bottleneck situation of super-peers. The first scheme controls the load of each task in

order to decrease the total cost of task migration. The second scheme directly balances

the load over tasks by reordering the priority of tags used in the query forwarding

step. The effectiveness of the proposed schemes are evaluated by simulation.

CHAPTER 5. Concluding Remarks 86

In Chapter 4, we described details of DHT based super-peer architecture. We

have proposed an integrated solution consisting of three replication schemes for this

architecture, in alleviating query load imbalance of super-peers while minimizing the

cost. The first scheme is an active index replication in order to decrease routing load

in the super-peer layer, and distribute response load of an index among super-peers

that stored the replica. The second scheme is a proactive pointer replication that

places location information of an index, for reducing maintenance cost between the

index and its replicas. The third scheme is a passive index replication that guarantees

the maximum query load of super-peers. The result of simulations indicates that the

proposed solution is more cost-effective on placing replicas than other schemes.

5.2 Contributions

Our load management solutions focused on two kind of super-peer based hierarchical

architectures of P2P systems, which are distinguished by the organization of super-

peers. The super-peers can be isolated or organized into a overlay, depending on

the design requirement of real systems. For each of architecture, our load balancing

solutions provide very good performance.

We summarize the contributions of this thesis as follows:

• We gave a deep observation on two kinds of hierarchical P2P architectures, i.e.,

Qin’s hierarchical P2P architecture and DHT-based super-peer architecture. We

analyzed load problem and designed load metric for each kind of architectures.

• we proposed efficient and effective solutions to overcome load problems in these

architectures. The proposed solutions are based on task migration and task

replication. We evaluated the proposed solutions in simulation. The simulation

results proved that our proposed solutions can alleviate load imbalance of super-

CHAPTER 5. Concluding Remarks 87

peers.

5.3 Discussion and Outlook

There are some possible file sharing applications can be built on Qin’s hierarchical

P2P architecture and DHT-based super-peer architecture. For example,

• Company wide P2P systems. Super-peer in each geographically distributed

subsidiary are controlled by a central server at headquarter.

• University wide P2P systems. Each department has its own super-peer, and

connected by DHTs.

• Commercial search engines. Commercial P2P search engines can improve sys-

tem performance using load balanced super-peer based hierarchical architec-

tures.

Our future work is as follows. At first, our skewed query model assumed in

Chapter 3 and Chapter 4 are entirely artificial. We would like to measure the system

performance of real queries generated by real users. Secondly, we should improve

availability of the proposed solutions in practical systems. For example, a practical

system may adopt paging and ranking algorithm of indices into super-peers. Thus,

load balancing solutions need to adapt to changes of the system. At last, we should

enhance the dependability of the proposed solutions in a more realistic dynamic P2P

environment such as heterogeneous bandwidth of super-peers, and join and leave of

super-peers.

Bibliography

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani and B. A. Huberman, “Search in

Power-Law Networks,” Physical Review E, vol. 64, no. 4, 2001, pp.46135-46143.

[2] E. Adar and B. A. Huberman, “Free Riding on Gnutella,” First Monday, vol.5,

no.10, 2000.

[3] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-Peer Content

Distribution Technologies,” ACM Computing Surveys, vol. 36, no. 4, December

2004, pp.335-371.

[4] J. Aspnes and G. Shah, “Skip Graphs,” ACM Transactions on Algorithms, vol.

3, no. 4, 2007, article no. 37.

[5] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras and F. Silvestri, “Chal-

lenges on Distributed Web Retrieval,” the 23rd International conference on

Data Engineering, Istanbul, Turkey, 2007, pp.6-20.

[6] G. Barish and K. Obraczke, “World Wide Web Caching: Trends and Tech-

niques,” IEEE Communications Magazine, vol.38, no.5, 2000, pp.178-184 .

[7] A. R. Bharambe, M. Agrawal and S. Seshan, “Mercury: Supporting Scal-

able Multi-Attribute Range Queries,” Proceedings of the 2004 Conference on

88

Applications, Technologies, Architectures, and Protocols for Computer Commu-

nications, Oregon, USA, 2004, pp.353-366.

[8] S. Bianchi, S. Serbu, P. Felber, and P. Kropf, “Adaptive Load Balancing for

DHT Lookups,” Proceedings of 15th International Conference on Computer

Communications and Networks, Arlington, VA, October, 2006, pp.411-418.

[9] N. Bisnik and A. Abouzeid, “Modeling and Analysis of Random Walk Search

Algorithms in P2P Networks,” Second International Workshop on Hot Topics

in Peer-to-Peer Systems, 2005, pp.95-103 .

[10] BitComet, http://www.bitcomet.com/

[11] BitTorrent, http://www.bittorrent.com/

[12] J. Byers, J. Considine, and M. Mitzenmacher, “Simple Load Balancing for

DHTs,” 2nd International Workshop on Peer-to-Peer Systems, 2002, pp.80-87.

[13] V. Cardellini, M. Colajanni and P. S. Yu, “Dynamic Load Balancing on Web-

Server Systems,” IEEE Internet Computing, vol. 3, no. 3, May-June 1999,

pp.28-39.

[14] V. Cardellini, E. Casalicchio, M. Colajanni and P. S. Yu, “The State of the Art

in Locally Distributed Web-Server Systems,” ACM Computing Surveys, vol.

34, no. 2, June 2002, pp.263-311.

[15] V. Cardellini, M. Colajanni and P. S. Yu, “Request Redirection Algorithms

for Distributed Web Systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 14, no. 4, April 2003, pp.355-368.

[16] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker, “Making

Gnutella-like P2P Systems Scalable,” Proceedings of the 2003 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Commu-

nications, Karlsruhe, Germany, 2003, pp.407-418.

[17] I. Clarke, O. Sandberg, B. Wiley and T.W. Hong, “Freenet: A Distributed

Anonymous Information Storage and Retrieval System,” Proceedings of Inter-

national workshop on Designing privacy enhancing technologies: design issues

in anonymity and unobservability, July 2000, pp.46-66.

[18] E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-to-

Peer Networks,” Proceedings of the 2002 conference on Applications, technolo-

gies, architectures, and protocols for computer communications, October 2002,

pp.177-190.

[19] G. Cybenko, “Dynamic Load balancing for Distributed Memory Multiproces-

sors,” Journal of Parallel and Distributed Computing, vol. 7, no. 2, October

1989, pp.279-301.

[20] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area

Cooperative Storage with CFS,” Proceedings of 18th ACM Symposium on Op-

erating System Principles, New York, NY, 2001, pp.202-215.

[21] N. Daswani, H. Garcia-Molina and B. Yang, “Open Problems in Data-Sharing

Peer-to-Peer Systems,” International Journal of Database Management Sys-

tems, 2003, pp.1-15.

[22] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman and B. Weihl,

“Workload-Aware Load Balancing for Clustered Web Servers,” IEEE Inter-

net Computing, vol. 6, no. 5, September 2002, pp.1089-7801.

[23] Faroo, http://www.faroo.com/

[24] P. Ganesan, M. Bawa and H. Garcia-molina, “Online Balancing of Range-

Partitioned Data with Applications to Peer-to-Peer Systems,” Proceedings of

the 30th international conference on Very large data bases, Toronto, Spain, 2004,

pp.444-455.

[25] L. Garces-Erice, E. W. Biersack, P. A. Felber, K. W. Ross, and G. Urvoy-Keller,

“Hierarchical Peer-to-Peer Systems,” Proceedings of International Conference

on Parallel and Distributed Computing, 2003.

[26] P. Garbacki, D. H. J. Epema and M. van Steen, “Optimizing Peer Relationships

in a Super-Peer Network,” Proceedings of 27th International Conference on

Distributed Computing Systems, Toronto, Canada, 2007, pp.31-42.

[27] M. R. Garey and D. S. Johnson, “Computers and Intractability : A Guide to

the Theory of NP-Completeness,” W.H. Freeman and Company, New York,

USA, 1979.

[28] A. Ghodsi, L. O. Alima, and S. Haridi, “Symmetric Replication for Structured

Peer-to-Peer Systems,” Proceedings of the 2005/2006 international conference

on Databases, information systems, and peer-to-peer computing, 2005, pp.74-85.

[29] C. Gkantsidis, M. Mihail and A. Saberi “Random Walks in Peer-to-Peer Net-

works,” Proceedings of 23th Annual Joint Conference of the IEEE Computer

and Communications Societies, 2004.

[30] C. Gkantsidis, M. Mihail and A. Saberi, “Hybrid Search Schemes for Unstruc-

tured Peer-to-Peer Networks,” Proceedings of 24th Annual Joint Conference of

the IEEE Computer and Communications Societies, March 2005, pp.1526-1537.

[31] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load

Balancing in Dynamic Structured P2P Systems,” Proceedings of Twenty-third

AnnualJoint Conference of the IEEE Computer and Communications Societies,

2004, pp.2253-2262.

[32] G. Gonnet, “Expected Length of the Longest Probe Sequence in Hash Code

Searching,” Journal of the ACM, vol. 28, no. 2, April 1981, pp.289-304.

[33] Google, http://www.google.com

[34] A. Greenberg, J. Hamilton, D. A. Maltz and P. Patel, “The Cost of a Cloud:

Research Problems in Data Center Networks,” ACM SIGCOMM Computer

Communication Review, vol. 39, no. 1, January 2009, pp.68-73.

[35] C. Harvesf and D. M. Blough, “Replica Placement for Route Diversity in Tree-

Based Routing Distributed Hash Tables,” IEEE Transactions on Dependable

and Secure Computing, vol. 8, no. 3, 2011, pp.419-433.

[36] H. V. Jagadish, B. C. Ooi and Q. H. Vu, “Baton: A Balanced Tree Structure

for Peer-to-Peer Networks,” Proceedings of 31st International Conference on

Very Large Databases Conference, Trondheim, Norway, 2005, pp.661-672.

[37] I. Jawhar and J. Wu, “A Two-Level Random Walk Search Protocol for Peer-to-

Peer Networks,” Proceedings of the 8th World Multi-Conference on Systemics,

Cybernetics and Informatics, 2004.

[38] V. Kalogeraki, D. Gunopulos and D. Zeinalipour-Yazti, “A Local Search Mech-

anism for Peer-to-Peer Networks,” Proceedings of the Eleventh International

Conference on Information and knowledge Management, 2002, pp.300-307.

[39] D. R. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms for

Peer-to-Peer Systems,” Proceedings of the sixteenth annual ACM symposium

on Parallelism in algorithms and architectures, New York, NY, 2004, pp.36-43.

[40] Y. Kawasaki, N. Matsumoto and N. Yoshida, “Popularity-Based Content Repli-

cation in Peer-to-Peer Networks,” Proceedings of the 6th international confer-

ence on Computational Science, 2006, pp.436-443.

[41] R. A. King, A. Hameurlain, F. Morvan, “Query Routing and Processing in

Peer-to-Peer Data Sharing Systems,” Lecture Notes in Computer Science, vol.

2429, vol.2, no. 2, 2010, pp.116-139.

[42] A. Klemm, C. Lindemann and O. P. Waldhorst, “A Special-Purpose Peer-to-

Peer File Sharing System for Mobile Ad Hoc Networks,” IEEE 58th Vehicular

Technology Conference, 2003, 2003, pp.2758-2763.

[43] X. Li and J. Wu, “Searching Techniques in Peer-to-Peer Networks,” Handbook

of Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-

to-Peer Networks, New York, USA, 2006.

[44] J. Li, B. Cheung and S. Vuong, “A Scheme for Balancing Heterogeneous Re-

quest Load in DHT-based P2P Systems,” Proceedings of the Fourth Interna-

tional Conference on Heterogeneous Networking for Quality, Reliability, Secu-

rity and Robustness, 2007, Article No. 4.

[45] J. Liang, R. Kumar, and K. Ross, “The Kazaa Overlay: A Measurement Study,”

Proceedings of 19th IEEE Annual Computer Communications Workshop, 2004.

[46] W.K. Lin, C. Ye and D. M. Chiu, “Decentralized Replication Algorithms for

Improving File Availability in P2P Networks,” Proceedings of Fifteenth IEEE

International Workshop on Quality of Service, 2007, pp.29-37.

[47] Z.H. Liu, M.H. Lin, A. Wierman, S. H. Low and L. L.H. Andrew, “Greening

Geographical Load Balancing,” Proceedings of the ACM SIGMETRICS joint

international conference on Measurement and modeling of computer systems,

New York, USA, 2011, pp.233-244.

[48] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, “Search and Replication in

Unstructured Peer-to-Peer Networks,” Proceedings of the 16th international

conference on Supercomputing, 2002, pp.84-95.

[49] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information

System based on the XOR Metric,” Lecture Notes in Computer Science, vol.

2429, 2002, pp.53-65.

[50] S.H. Min, J. Holliday and D.S. Cho, “Optimal Super-peer Selection for Large-

scale P2P System,” Proceedings of the 2006 International Conference on Hybrid

Information Technology, Washington, DC, USA, 2006, pp.588-593.

[51] M. D. Mitzenmacher, “The Power of Two Choices in Randomized Load Bal-

ancing,” Ph.D. dissertation, 1996, University of California at Berkeley.

[52] A. Mondal, K. Goda and M. Kitsuregawa, “Effective Load-Balancing of Peer-

to-Peer Systems,” Proceedings of Data Engineering Workshop, Ishikawa, Japan,

March 2003.

[53] A. Montresor, “A Robust Protocol for Building Superpeer Overlay Topologies,”

Proceedings of IEEE International Conference on Peer-to-Peer Computing, CA,

USA, 2004, pp.202-209.

[54] Napster, http://www.napster.com/

[55] M. Newman, “Power Laws, Pareto Distributions and Zipf’s Law,” Contempo-

rary Physics, vol. 46, 2005, pp.323-351.

[56] D. Novak, “Load Balancing in Peer-to-Peer Data Networks,” Proceedings of

2nd Doctoral Workshop on Mathematical and Engineering Methods in Computer

Science, 2006, pp.151-157.

[57] G. On, J. Schmitt and R. Steinmetz, “The Effectiveness of Realistic Replication

Strategies on Quality of Availability for Peer-to-Peer Systems,” Proceedings

of the Third International Conference on Peer-to-Peer Computing, September

2003, pp.57-64.

[58] A. Peytchev, M. P. Couper, S. E. McCabe and S. D. Crawford, “Web Survey

Design. Paging Versus Scrolling,” Public Opinion Quarterly, vol. 70, No. 4,

2006. pp.596-607.

[59] C. G. Plaxton, R. Rajaraman and A. W. Richa, “Accessing Nearby Copies

of Replicated Objects in a Distributed Environment,” Proceedings of the ninth

annual ACM symposium on Parallel algorithms and architectures, 1997, pp.311-

320.

[60] K. P. N. Puttaswamy, A. Sala and B. Y. Zhao, “Searching for Rare Objects

using Index Replication,” Proceedings of 27th Conference on Computer Com-

munications - IEEE INFOCOM 2008, April 2008, pp.1723-1731.

[61] T.T. Qin, Q. Cao, Q.Y. Wei, and S. Fujita, “A Tag-Based Scheme to Real-

ize Real-Time File Search in Hierarchical Peer-to-Peer Systems,” Journal of

Information Processing, vol. 20, no. 2, 2012, pp.463-471.

[62] T.T. Qin, “A Study on Hierarchical Peer-to-Peer Systems to Realize Real-Time

File Search,” Ph.D. thesis, Hiroshima University, 2012.

[63] M. Raab and A. Steger ““Balls into Bins” - A Simple and Tight Analysis”

Lecture Notes in Computer Science, vol. 1518, 1998, University of California at

Berkeley, pp.159-170.

[64] S. Rajasekhar, B. Rong, K. Y. Lai, I Khalil and Z. Tari, “Load Sharing in

Peer-to-Peer Networks using Dynamic Replication,” Proceedings of the 20th

International Conference on Advanced Information Networking and Applica-

tions, 2006, pp.1011-1016.

[65] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1) Lookup Performance for

Power-Law Query Distributions in Peer-to-Peer Overlays,” Proceedings of the

First Symposium on Networked Systems Design and Implementation, Berkeley,

CA, 2004, pp.8-8.

[66] K. Ranganathan, A. Iamnitchi, and I. Foster, “Improving Data Availability

through Dynamic Model-Driven Replication in Large Peer-to-Peer Commu-

nities,” Proceedings of 2nd IEEE/ACM International Symposium on Cluster

Computing and the Grid, May 2002, pp.376-376.

[67] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load Balanc-

ing in Structured P2P Systems,” Proceedings of Second International Workshop

on Peer-to-Peer Systems, 2003, pp.68-79.

[68] W.X. Rao, L. Chen, A.W.C. Fu, and G.R. Wang, “Optimal Resource Place-

ment in Structured Peer-to-Peer Networks,” IEEE Transactions on Parallel

and Distributed Systems, vol. 21, no. 7, 2010, pp.1045-9219.

[69] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network,” Proceedings of the 2001 conference on Applica-

tions, technologies, architectures, and protocols for computer communications,

New York, NY, 2001, pp.161-172.

[70] S. Rieche, L. Petrak, and K. Wehrle, “A Thermal-Dissipation-Based Approach

for Balancing Data Load in Distributed Hash Tables,” Proceedings of the 29th

Annual IEEE International Conference on Local Computer Networks, Washing-

ton, DC, 2004, pp.15-23.

[71] L. Rong, “Multimedia Resource Replication Strategy for a Pervasive Peer-to-

Peer Environment,” Journal of Computers, vol. 3, No. 4, April 2008, pp.9-15.

[72] A. Rowstron and P. Druschel, “Storage Management and Caching in PAST,

a Large-Scale, Persistent Peer-to-Peer Storage Utility,” Proceedings of 18th

Symposium on Operating Systems Principles, 2001, pp.188-201.

[73] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Loca-

tion, and Routing for Large-Scale Peer-to-Peer Systems,” Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms, Lon-

don, 2001, pp.329-350.

[74] S. Serbu, “Load Management in Peer-to-Peer Systems: Structures and Algo-

rithms,” PhD Thesis, University of Neuchatel, April 2010.

[75] H.Y. Shen, “An Efficient and Adaptive Decentralized File Replication Algo-

rithm in P2P File Sharing Systems,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 21, no. 6, 2010, pp.827-840.

[76] H.Y. Shen and C.Z. Xu, “Elastic Routing Table with Provable Performance

for Congestion Control in DHT Networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 21, no. 2, 2010, pp.242-256.

[77] K. Shudo, Y. Tanaka, and S. Sekiguchi, “Overlay Weaver: An Overlay Con-

struction Toolkit,” Computer Communications In Special Issue: Foundation of

Peer-to-Peer Computing, vol. 31, no. 2, 2008, pp.402-412.

[78] G. Skobeltsyn, “Query-Driven Indexing in Large-Scale Distributed Systems,”

Ph.D. dissertation, EPFL, 2009.

[79] Skype, http://www.skype.com/

[80] SopCast, http://www.sopcast.com/

[81] D. Tsoumakos and N. Roussopoulos, “Analysis and Comparison of P2P Search

Methods,” Proceedings of the 1st international conference on Scalable informa-

tion systems, Article No.25, 2006.

[82] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:

A Scalable Peer-to-Peer Lookup Service for Internet Applications,” Proceedings

of the 2001 conference on Applications, technologies, architectures, and protocols

for computer communications, 2001, pp.149-160.

[83] S. Tewari and L. Kleinrock, “Proportional Replication in Peer-to-Peer Net-

works,” Proceedings of 25th International Conference on Computer Communi-

cations and Networks, April 2006, pp.1-12.

[84] S. M. Thampi and C. S. K, “Survey of Search and Replication Schemes in

Unstructured P2P Networks,” Network Protocols and Algorithms, vol. 2, no. 1,

2010, pp.93-131.

[85] Trellian, http://www.keyworddiscovery.com/keyword-stats.html.

[86] D. Tsoumakos and N. Roussopoulos, “Adaptive Probabilistic Search for Peer-

to-Peer Networks,” Proceedings of the 3rd International Conference on P2P

Computing, 2003, pp.102-109.

[87] V. Viswanathan, “Load Balancing Web Applications,” http://www.onjava.

com/pub/a/onjava/2001/09/26/load.html

[88] Q. H. Vu, B. C. Ooi, M. Rinard and K. L. Tan, “Histogram-Based Global

Load Balancing in Structured Peer-to-Peer Systems,” IEEE Transactions on

Knowledge and Data Engineering, vol. 21, no. 4, 2009, pp.595-608.

[89] M.H. Willebeek-LeMair and A.P. Reeves, “Strategies for Dynamic Load Bal-

ancing on Highly Parallel Computers,” IEEE Transactions on Parallel and

Distributed Systems, vol. 4, no. 9, September 1993, pp.979-993.

[90] Y.L. Xiong, “A Congestion Control Scheme for Wireless Sensor Networks,”

Master Thesis, Texas A&M University, 2006.

[91] C.Z. Xu and F. C. Lau, “Load Balancing in Parallel Computers: Theory and

Practice,” Kluwer Academic Publishers Norwell, MA, USA, 1997.

[92] YaCy, http://yacy.net/

[93] Yahoo, http://www.yahoo.com

[94] H. Yamamoto, D. Maruta and Y. Oie, “Replication Methods for Load Balanc-

ing on Distributed Storages in P2P Networks,” Proceedings of the The 2005

Symposium on Applications and the Internet, 2005, pp.264-271.

[95] B. Yang and H. Garcia-Molina, “Comparing Hybrid Peer-to-Peer Systems,”

Proceedings of the 27th International Conference on Very Large Databases,

September 2001, pp.561-570.

[96] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks,”

Proceedings of the 22nd IEEE International Conference on Distributed Com-

puting, 2002, pp.5-14.

[97] B. Yang and H. Garcia-Molina, “Efficient Search in Peer-to-Peer Networks,”

Proceedings of International Conference on Distributed Computing Systems,

2002, pp.5-14.

[98] B. Yang, and H. Garcia-Molina, “Designing A Super-Peer Network,” Pro-

ceedings of 19th International Conference on Data Engineering, March 2003,

pp.49.

[99] X.Y. Yang and G. Veciana, “Service Capacity of Peer-to-Peer Networks,” Pro-

ceedings of Twenty-third Annual Joint Conference of the IEEE Computer and

Communications Societies, March 2004, pp.2242-2252.

[100] Q. Zhang, A. Riska, W. Sun, E. Smirni and G. Ciardo, “Workload-Aware

Load Balancing for Clustered Web Servers,” IEEE Transactions on Parallel

and Distributed Systems, vol. 16, no. 3, March 2005, pp.219-233.

[101] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, Tapestry: An Infrastruc-

ture for Fault-tolerant Wide-area Location and Routing, Technical report,

University of California at Berkeley, 2001.

[102] J. Zhou, X. Zhang, L. N. Bhuyan, and B. Liu, “Clustered K-Center: Effec-

tive Replica Placement in Peer-to-Peer Systems,” Proceedings of the Global

Communications Conference, Washington, DC, November, 2007, pp.2008-2013.

[103] Y.W. Zhu , H.H. Wang and Y.M. Hu, “A Super-peer Based Lookup in Struc-

tured Peer-to-Peer Systems,” Proceedings of 16 th International Conference on

Parallel and Distributed Computing Systems, 2003, pp.465-470.

Publication

International Journal

• Q. Cao and S. Fujita, “Load Balancing Schemes for a Hierarchical Peer-to-

Peer File Search System,” International Journal of Grid and Utility Computing

(IJGUC), vol. 2, no. 2, pp. 164-171, 2011.

• Q. Cao and S. Fujita, “Cost-effective Replication Schemes for Query Load Bal-

ancing in DHT based Peer-to-Peer File Search,” Journal of Information Pro-

cessing Systems (JIPS). (Accepted.)

International Conference

• Q. Cao and S. Fujita, “Load Balancing Schemes for a Hierarchical Peer-to-

Peer File Search System,” In Proceedings the Fifth International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2010), pp.

63-70, November, 2010.

101

