DETERMINATION OF CHOLESTEROL AND PHOSPHOLIPIDS OF HDL₂, HDL₃ AND VHDL IN PATIENTS WITH ATHEROSCLEROSIS AND DIABETES MELLITUS*'

By

Goro KAJIYAMA, Masahiro NAKAGAWA, Koki TAKATA, Seiji NAKAO and Akima MIYOSHI

1st Department of Internal Medicine, Hiroshima University Shool of Medicine, Hiroshima 734, Japan (Received April 4, 1981)

ABSTRACT

This report describes a method for and the results of an analysis of cholesterol and phospholipids in HDL_2 and HDL_3 and phospholipids in VHDL (d.>1.210) of patients with cerebral thrombosis, myocardial infarction and diabetes mellitus.

After precipitation and elimination of LDL (low density lipoprotein) and VLDL (very low density lipoprotein) by Na phosphotangstate (NaPhT) and MgCl₂ and bringing the non-protein density to 1.125, serum was subjected to ultracentrifugation with #494 angle rotor of IEC/B-60 ultracentrifuge (Kubota-International) at 105, 000xG for 22 hours.

The inadequate separation between HDL_2 and HDL_3 was observed at the clear zone beneath the top of fraction after centrifugation under these analytical conditions. Therefore, in this contaminated fraction, the HDL_2/HDL_3 ratio was calculated by the phospholipids/cholesterol ratio which had been substantially different between HDL_2 and HDL_3 . VHDL-phospholipids was calculated by subtracting HDL_3 -phospholipids from phospholipids of density higher than 1.125.

The average HDL₂-cholesterol and phospholipids levels were 14.8 ± 4.2 and 23.9 ± 5.8 mg/dl respectively in eight healthy men and 18.8 ± 5.0 and 28.5 ± 6.8 mg/dl respectively in seven healthy women. The average HDL₈-cholesterol and phospholipid levels were 37.6 ± 7.8 and 57.3 ± 11.0 mg/dl respectively in eight healthy men and 40.3 ± 11.9 and 64.9 ± 22.1 mg/dl respectively in seven healthy women. The average VHDL-phospholipid level was 20.4 ± 5.7 mg/dl in eight healthy men and 21.4 ± 4.8 mg/dl in seven healthy women.

In patients with cerebral thrombosis, not only lipids in HDL_2 and HDL_3 but also VHDL-phospholipids significatly decreased. In patients with myocardial infarction, although lipids in HDL_2 and HDL_3 significantly decreased, VHDL-phospholipids maintained the normal value in most cases. In diabetic patients, HDL_2 decreased moderately but HDL_3 as largely as observed in patients with cerebral thrombosis and myocardial infarction, whereas VHDL-phospholipids were within the normal range.

Among four phospholipids in VHDL fraction, lecithin and lysolecithin were significantly lower in patients with cerebral thrombosis as compared with healthy subjects.

^{*)} 梶山梧朗, 中川公博, 高田耕基, 中尾精治, 三好秋馬: 動脈硬化および糖尿病患者における HDL₂, HDL₅, VHDL 分画コレステロールリン脂質の定量

INTRODUCTION

There has been suggested by a number of observations a strong inverse relation between the plasma levels of HDL (high density lipoprotein) and atherosclerosis in man^{1,2)}. The increased level of serum HDL protects humans from atherosclerosis and the dereased level predisposes them to it.

Determination of HDL-cholesterol is a convenient method that permits estimation of HDL in daily clinical examination and is in widespread use.

The HDL fraction isolated by the analytical centrifuge from human serum shows two major components termed as HDL_2 (d. 1.063–1.125) and HDL_3 (1.125–1.210).

The lipoprotein fraction of more density than 1.210 is named VHDL, which migrates with alpha₁-albumin fraction in starch electrophoresis³⁾.

Both HDL_2 and HDL_3 are low in patients with atherosclerosis and in most of the patients the decrease in HDL_2 exceeds in that in HDL_3 . Premenopausal women, having higher HDL_2 levels than men of the same age⁴⁾, may be better protected against atherosclerosis.

Perturbation of HDL subfraction concentrations can be produced by various therapeutic measures. Nicotinic acid and clofibrate therapy induces an increase in the ratio of HDL₂/ HDL₃^{5,6)}, while estrogen causes a selective rise of HDL₃ level without influencing HDL₂⁷⁾.

A d.>1.210 fraction (VHDL) may belong to an albumin family ($alpha_1$ -albumin) and also contains phospholipids.

Because lysolecithin after LCAT reaction is transported in large part in plasma by albumin⁸⁾, lipoprotein of this density class may contribute indirectly to removal of peripheral cholesterol by HDL.

Recent studies on HDL show that phospholipids in HDL fraction brings about a selective change without influencing cholesterol concentration after vigorous physical exercise⁹.

Enlightenment on HDL subfractions including VHDL and their chemical compositions would, therefore, be helpful for further clinical studies on diagnosis and therapy of atherosclerosis.

However, the complete and quantitative separation of HDL between HDL₂ and HDL₃ cannot be achieved by the conventional lipoproteinfloating method with the aid of difference in density by means of preparatory ultracentrifugation. The analytical and rate zonal ultracentrifugal techniques require acquisition of expensive equipments¹⁰.

Determination of cholesterol and phospholipids in HDL₂, HDL₃ and VHDL subfractions in the device performed in the present study was designed by preparatory centrifuge with an application of difference in cholesterol/phospholipid ratio between HDL₂ and HDL₃ after precipitation and elimination of LDL and VLDL by polyanions.

The method demonstrated reliability with relative simplicity of the procedure for accurate quantification of serum lipoprotein lipids of high density classes.

MATERIALS AND METHODS

Subjects: Fifteen healthy subjects and 23 patients were used, the latter comprising 9 with cerebral thromobosis, 4 with myocardial infarction 10 with diabetes mellitus.

The blood samples were obtained at least 3 months after attacks of thrombosis or myocardial infarction. All the patients with cerebral thrombosis were examined by computed tomography before establishment of final diagnosis.

Blood was withdrawn from the antecubital vein early in the morning before breakfast after overnight fast.

Methods: The methods were fundamentally based on the combination of Burnstein¹¹⁾ and Havel's³⁾ procedures. Five milliliters of serum was added with 0.5 ml of 4% sodium phosphotangstate (NaPhT) and 0.125 ml of 2 M MgCl₂ (density of the solution containing two substances was 1.050), which were all fully mixed. After having kept the mixture upright for 10 minutes, serum was centrifuged at 3,000 r. p. m. for 15 minutes.

After determining cholesterol and phospholipids in the supernatant of samples (non-protein density was 1.011), the supernatant fraction was added with the stock solution (d. 1.346) according to the Havel's formula (the stock solution containing 153.0 g of NaCl and 354.0 g of KBr per liter to regulate the non-protein solvent density to 1.125. This solution was then centrifuged with the angle rotor #494 of the ICE/B-60 Ultracentrifuge (Kubota-International) at 105,000xG for 22 hours. The centrifuged solution was divided into four fractions, A1 (0.5 ml), A2 (1.0 ml), B (2.0 ml) and C (the remaining solution, approximately 3.5 ml). The solvent density of fraction C was then raised to 1.210 by further addition of the stock solution, and ultracentrifugation and separation were repeated (0.5 ml C1).

Cholesterol and phospholipids in each fraction were determined (A1, A2, B, C and C1).

As shown in Figure 1, separation between HDL_2 and HDL_3 or between HDL_3 and VHDL was incomplete by the centrifugation under the above mentioned condition, which may be ascribed to the following:

- 1. Fractions A1 and C1 contained HDL₂ and HDL₈ respectively.
- 2. Fraction A2 contained both HDL₂ and HDL₈ but not VHDL.
- 3. Fraction C contained both HDL_8 and VHDL.

Because the phospholipids/cholesterol ratio differs among these lipoprotein classes, being usually higher in HDL₃ than in HDL₂, the HDL₂ and HDL₃ ratio in fraction A2 was calculated from the phospholipids/cholesterol ratio.

 $CA1 \cdot x + CH \cdot y = CA2(x+y) \quad \dots \dots (1)$ PA1 \cdot x + PH \cdot y = PA2(x+y) \quad \dots \dots (2) x+y=1 \quad (3)

wherein CA1, CA2 and CH represent cholesterol (mg) in fraction A1, A2 and (B+C) respectively; PA1 and PA2, phospholipids in fractions A1 and A2 (mg); PH, phospholipids which belongs to HDL_3 in fraction B+C (this fraction contains both HDL_3 -phospholipids and VHDLphospholipids) and x : y, the volumetric ratio of HDL_2 and HDL_3 in fraction A2.

When $\frac{PA1}{CA1} = a1$, $\frac{PA2}{CA2} = a2$, $\frac{PH}{CH} = cH$, then

$$a2 = \frac{PA2}{CA2} = \frac{PA1 \cdot x + PH \cdot y}{CA1 \cdot x + CH \cdot y} \dots \dots \dots (4)$$

Substitute equations $PA1=a1\cdot CA1$ and $PH=cH\cdot CH$ into equation (4), then

$$\frac{y}{x} = \frac{(a1-a2)AC1}{(a2-cH)CH} \dots (5)$$

PH, which is HDL_3 -phospholipids in fractions B and C, was calculated by the following equation, because phospholipids in fractions B and C are not only from HDL_3 but also from VHDL.

$$PH(mg) = CH \cdot \frac{PC1}{CC1} \dots (6)$$

wherein CC1 is cholesterol in fraction C1 and PC1, phospholipids in fraction C1. CH is assumed to be solely from HDL₃ and VHDL to contain no cholesterol, although a very small amount of cholesterol has been detected in this fraction.

Thus HDL_2 -cholesterol (or phospholipids) were derived from Al-cholesterol (or phospholipids) added to a part of A2-cholesterol (or phospholipids) which was calculated by the ratio

of HDL₂ to HDL₃ in fraction A2, that is $\frac{\Delta}{v}$.

Fig. 1. Change in phospholipids/cholesterol ratio in the test tube separated into seven fractions (extreme left) after ultracentrifugation (105,000 xG, 22 hours). The ratio gradually grew larger from the surface to the bottom of the tube (block diagram on the left). Change in phospholipids/ cholesterol ratio of fraction A1-C (test tube in the middle) after first centrifugation (solid line) and of fraction C (test tube on extreme right) after second centrifugation (broken line) (block diagram on the right).

HDL₃-cholesterol and HDL₈-phospholipids were also derived likewise.

VHDL-phospholipids were calculated by the following.

VHDL-phospholipids = phospholipids in fractions B and C-PH(7)

VHDL-phospholipids were also obtained by another formula in some cases.

(Phospholipids in supernatant after precipitation by polyanions)-(HDL₂-phospholipids+ HDL₈-phospholipids)(8)

Cholesterol in each fraction was determined by enzymatic method reported by Allain et al.¹²⁾ Phospholipids were determined by enzyme method with an application of choline determination described by Takayama et al.¹³⁾

RESULTS

1. Reproducibility of lipid concentrations in fractions of test tube and reproducibility of lipids in HDL_2 and HDL_3 :

Forty milliliters of serum (HDL-cholesterol, 50 mg/dl) was served for analysis of reproducibility in the present method. The coefficient of variation (C. V.) was 1.62-2.69% in fractions B and C which had a large volume. On the other hand, C. V. was 4.58-6.18% in fractions A1, A2 and C1 which had a small volume.

In contrast to the above results that C. V. was variable according to the volume. the phospholipids/cholesterol ratio was nearly constant and C. V. s of fractions A1, A2 and C1 were 0.91, 0.89 and 1.57% respectively. C. V. s of cholesterol and phospholipid concentrations were approximately 10% in HDL₂, approximately 5% in HDL₃ and 8.7% in VHDL.

2. VHDL-phospholipids as calculated by two procedures and possibility of contamination of VHDL in fraction B:

The columns (A) and (B) are VHDL-phospholipids calculated by two procedures. Phospholipids in fraction A2 does not participate in equation (A) but participates in equation (B). Therefore, if fraction (B) was contaminated with a large amount of VHDL-phospholipids, the figures in column (B) would always be larger than those in column (A), and (C) would be the amount of phospholipids in fraction B when experimental errors were negligible. But the averages from 10 samples calculated by these two procedures were 16.5 ± 9.3 mg/dl

Table	1.	Re	pro	ducibility	7	of	cholesterol	and
phosph	olip	oids	in	fractions	5	A1-	-C	

		Ch	PL	PL/Ch
A1	m s. d. C. V.	9.41 0.43 4.58	$\substack{14.51\\0.68\\4.65}$	$1.541 \\ 0.014 \\ 0.910$
A2	m s. d. C. V.	9.99 0.53 5.29	$15.79 \\ 0.78 \\ 4.95$	$1.580 \\ 0.014 \\ 0.890$
В	m s. d. C. V.	$14.98 \\ 0.24 \\ 1.62$	$25.58 \\ 0.49 \\ 1.91$	$1.710 \\ 0.025 \\ 1.460$
С	m s. d. C. V.	13.34 0.25 1.87	$40.64 \\ 1.10 \\ 2.69$	3.060 0.102 3.330
C1	m s. d. C. V.	$2.39 \\ 0.12 \\ 5.02$	$3.85 \\ 0.24 \\ 6.18$	$1.678 \\ 0.026 \\ 1.530$

m mean (mg/dl)

s. d. standard deviation (mg/dl)

C. V. coefficient of variation (%)

Ch Cholesterol

PL Phospholipids

Table 2.Reproducibility of cholesterol andphospholipids in HDL-subfractions

	HD	L2	HD	HDL3		
	\mathbf{Ch}	PL	Ch	PL	PL	
m	14.80	22.90	32.90	53.40	20.20	
s. d.	1.47	2.34	1.58	2.63	1.76	
C. V.	9.93	10.21	4.80	4.93	8.72	

m mean (mg/dl)

s. d. standard deviation (mg/dl)

C. V. coefficient of variation (%)

Ch Cholesterol

PL Phospholipids

and 16.3 \pm 11.3 mg/dl, with negative figures in column (C) in half the samples. These results support that there was not or was merely a trace amount of contamination of VHDL-phospholipids in fraction B.

3. Cholesterol and phospholipids in HDL-subfractions in healthy subjects:

The individual and average cholesterol and phospholipid concentrations in HDL₂, HDL₃ and VHDL are listed in Table 4. The average cholesterol and phospholipids in these fractions were lower in men than in women.

4. Cholesterol and phospholipids in HDL-subfractions in cerebral thrombosis, myocardial infarction and diabetes mellitus:

Cholesterol and phospholipids in HDL_2 and HDL_3 were low in patients with cerebral throm-

Table 3.VHDL-phospholipids calculatedby two procedures

Tab	le 4.	Chol	esterol	and	ph	los	pholipids	3 ir	h HDL ₂
and	HDLa	and	phosph	olipi	ds	in	VHDL	in	healthy
subi	ects								

	(A)	(B)	(C)
1	17.5	16.3	-1.2
2	19.2	14.1	-5.1
3	13.4	14.7	+1.3
4	40.3	46.8	+6.5
5	18.1	16.8	-1.3
6	17.9	16.6	-1.3
7	10.7	8.4	+2.3
8	12.5	14.9	+2.4
9	6.7	7.2	+0.5
10	9.1	7.6	-1.5
	16.5 ± 9.3	16.3 ± 11.3	

(A) = Whole	phosp	holipids	in	fraci	ons	В	and	I C
minus	HDL ₈	phospho	lipid	s in	frac	ions	В	and
C (mg/	/dl)							

(B)=Whole phospholipids after precipitation by polyanions minus(HDL₂ phospholipids+HDL₈ phospholipids) (mg/dl)

(C) = (B) - (A)

=

bosis and myocardial infarction. In diabetic patients these lipids decreased as compared with the normal subjects. But the decrease of lipids in HDL_2 was less in disbetic patients when compared with patients with cerebral thrombosis and myocardial infarction, resulting in the higher average of HDL-cholesterol and HDL-phospholipids in the former disease than in the latter two.

While VHDL-phospholipids decreased significantly in patients with cerebral thrombosis in most cases, they did not decrease in patients with myocardial infarction except for the case,

	Н	DL	HE	L_2	HD	DL ₈	VHDL
	Ch	PL	Ch	PL	Ch	PL	PL
(Male)							
Y.M.65	49.7	108.7	12.4	21.0	37.3	69.7	17.5
N.M.66	51.4	103.1	17.3	27.5	34.1	56.4	19.2
S.Y.56	48.7	75.7	12.7	15.2	36.0	48.7	11.8
K.I.69	66.5	108.4	22.3	28.4	46.2	65.1	14.9
R.S.71	56.4	102.4	12.9	17.6	43.5	63.3	21.5
L.D.65	53.7	114.8	8.1	21.8	46.6	69.1	23.8
M.D.52	51.4	98.5	17.3	29.0	34.0	42.5	26.9
K.I.62	50.0	103.5	15.8	30.9	34.1	44.2	28.1
m	53.4	101.8	14.8	23.9	37.6	57.3	20.4
S. 1	d. 5.8	11.6	4.2	5.8	7.8	11.0	5.7
(Female)							
Y.U.55	58.5	116.3	18.6	28.3	39.9	66.5	21.5
A.I.47	72.6	148.6	19.2	30.7	53.4	93.5	24.4
S.M.56	68.7	119.7	27.8	39.6	40.9	62.1	18.0
U.N.62	70.4	131.3	11.8	18.3	58.6	95.7	17.3
K.T.77	43.2	97.6	15.4	23.0	27.8	43.9	30.7
T.H.72	46.1	87.3	17.3	27.5	28.7	42.6	17.6
N.K.54	54.0	103.6	21.8	32.7	33.0	50.0	20.9
m	59.1	117.8	18.8	28.5	40.3	64.9	21.4
S,	d. 11.9	21.3	5.0	6.8	11.9	22.1	4.8

Ch Cholestesterol

PL Phospholipids

m mean

s. d. standard deviation

HY and in diabetic patients except for two cases, RI and KI.

5. Fractional phospholipids in VHDL in

			HDL		H	HDL ₂		DL	VHDL
		Age	Ch	PL	Ch	PL	Ch	PL	PL
F.	Υ.	74F	36.5	69.3	4.2	5.6	32.3	51.4	12.3
т.	к.	85 F	41.9	82.1	11.3	18.9	30.6	55.7	7.5
Α,	Ι.	73F	28.1	54.3	6.1	9.2	22.0	34.4	10.7
Ν.	н.	64 F	29.6	79.6	6.3	10.9	23.1	43.8	24.8
н.	м.	60 F	27.6	43.2	3.7	7.5	23.8	36.8	8.8
м.	н.	77M	30.2	60.5	5.2	7.1	25.0	39.6	13.8
J.	Ι.	72M	32.0	52.1	7.3	9.2	24.7	38.9	4.0
м.	т.	68M	32.9	68.4	7.4	12.8	25.4	42.5	13.2
Т.	С.	70M	32.7	66.9	6.6	11.2	26.1	50.3	5.3
		m	32.3***	64.0***	6.4***	10.2***	25.8***	43.7**	11.1***
		s. d.	4.4	12.7	2.2	3.9	3.4	7.2	6.1

Table 5. (1) Cholesterol and phospholipids in HDL subfractions in patients with cerebral thrombosis

			F	HDL		DL ₂	H	IDL ₃	VHDL
		Age	Ch	PL	Ch	PL	$\mathbf{C}\mathbf{h}$	PL	PL
н.	Υ.	62 F	35.5	78.2	4.9	23,3	30.6	48.2	6.7
К.	н.	77M	33.5	83.3	9.6	17.2	23.9	44.7	21.4
Υ.	н.	38M	40.8	82.4	7.6	10.7	33.2	52.8	18.9
Ν.	U.	67M	28.5	63.6	3.3	4.0	25.2	37.9	21.7
		m	37.1**	76.9**	6.3**	13.8**	28.2*	45.9*	17.2N.S.
		s, d.	7.6	9.1	2.8	8.3	4.4	6.3	7.1

Table 5. (2) Cholesterol and phospholipids in HDL subfractions in patients with myocardial infarction

(3) Cholesterol and phospholipids in HDL subfractions in patients with diabetes mellitus

						_		_	
			F	IDL	HD	2	HD	L ₈	VHDL
		Age	Ch	PL	Ch	PL	Ch	PL	PL
R.	Ι.	76F	24.9	51.7	7.4	10.2	17.5	28.1	13.4
H.	s.	71 F	44.9	98.0	19.0	32.0	25.9	46.3	19.2
Т.	М.	68F	56.1	120.5	16.2	28.7	39.9	51.5	40.3
М.	н.	66 F	34.3	81.3	8.2	14.1	26.1	49.1	18.1
М.	Κ.	76F	37.3	92.5	10.0	17.6	27.3	49.8	25.5
Κ.	К.	23 F	47.4	101.7	13.7	19.6	33.7	51.6	30.5
s.	Κ.	55 F	39.3	101.2	11.7	20.8	27.6	50.7	29.7
Κ.	Υ.	39M	53.6	97.8	17.5	25.6	36.1	46.9	25.4
s.	Τ.	48M	25.8	74.2	12.1	17.0	13.7	38.1	18.1
Κ.	Ι.	72M	51.7	95.6	22.8	33.8	28.9	49.3	12.5
		m	41.5**	91.5*	13.9N.S.	21.9N.S.	27.7**	46.1*	23.3N.S.
		s. d.	11.1	18.6	5.0	7.8	7.9	7.5	8.7

Ch: Cholesterol, PL: Phospholipids, F: Female, M: Male

***p<0.001 **p<0.01 *p<0.05 Statistically significant decrease as compared with normal healthy subjects

	Cephalin & others	Lecitin	Sphyngo- myelin	Lyso- lecithin
Normal	1.28	2.04	1.64	15.45
	0.69	2.17	1.49	13,15
	1.03	1.90	1.52	17.04
	1.17	2.52	2.02	18.68
m	1.04	2.15	1.66	16.08
s. d.	0.25	0.26	0.24	2.35
Cerebral	0.35	0.77	0.42	2.46
Thrombosis	0.69	1.35	1.16	9.10
	1.14	1.74	1.77	9.15
	0.54	1.43	1.56	7.17
m	0.68	1.32	1.22	6.97
s. d.	0.33	0.40	0.59	3.14
	N.S.	p<0.05	N.S.	p≪0.01

Ta	ble 6.	Fra	ctional	phospholipids	of	VHDL
in	health	and	cerebral	thrombosis		

healthy subjects and patients with cerebral thrombosis:

Table 6 lists four main fractional phospholipids in VHDL separated by the thin layer chromatography in four healthy subjects and four patients with cerebral thrombosis.

Lecithin and lysolecithin were significantly lower in these patients than in healthy subjects. Because lysolecithin was the majority in VHDL -phospholipids, the decreased VHDL-phospholipids seen in these patients seemed attributable to the decrease in lysolecithin in the VHDL fraction.

DISCUSSION

Havel et al.³⁾ separated lipoprotein density classes from 1.006 to 1.063 slicing the clear zone in the middle beneath the layer at the top. But as seen in Figure 1, the clear zone of high density classes contain a good deal of cholesterol and phospholipids, which is an indication of inadequate isolation of HDL₂ from HDL₃ at 10, 500xG for 22 hours.

They performed ultracentrifugation with the J rotor of the Spinco Model E ultracentrifuge at 173,000xG for 18 hours and reported that 40 rotar driven for 48 hours produced the same results⁸.

These methods, however, are time-consuming or require a unusual rotor.

Reproducibility of lipid determination of HDL₂ and HDL₃ by the present method is simpler and satisfies the clinical purpose.

Precise collection of each fraction after ultracentrifugation is important for reproducibility.

The tube-slicing device reported by Randolph and Ryan¹⁴) is helpful for precise reproducibility but again is time-consuming. In the present experiment of the authors, a plastic syringe was used which was fixed to a heavy iron stand and equipped with a $18G \times 11/2''$ injection needle, the end which was cut horizontally to obtain toughness on the surface of the liquid.

A volume of 0.5 ml for fractions A1 and C1 is the maximum volume for acceptable accuracy. Fraction A2 (1.0 ml) has to be a mixture of HDL₂ and HDL₈ contaminated with the least possible amount of VHDL. No contamination of VHDL in fraction A2 was predicted, which was endorsed by the fact that the average values of VHDL-phospholipids as calulated by two procedures proved almost identical with each other as shown in Table 3.

Concentration of cholesterol and phospholipids in HDL₂ was less than those in HDL₃ and concentration of phospholipids changed in parallel with that of cholesterol. VHDL-phospholipids was the least of all other lipoprotein phospholipids among three lipoprotein classes. In all three lipoprotein classes there were more concentrations of these lipids in female than in male.

Both lipids of HDL_2 and HDL_3 significantly dereased in patients with cerebral thrombosis and myocardial infarction. In well controlled diabetes mellitus, the concentration of lipids in HDL subfraction was shown to vary from the normal to the very low value. On an average, however, the decrease of lipids in HDL_2 was less in these patients as compared with patients with cerebral thrombosis and myocardial infarction. Havel et al. reported that VHDL-phospholipids (d.>1.210) was soluble in ethanol-acetone, that six young adults had 15 to 27 mg of 1.210 density infranate per 100 ml of serum phospholipids and that there was no difference in its concentration between them and eight hyperlipidemic individuals³⁰.

The results of the present study showed the significant decrease in VHDL-phospholipids in patients with cerebral thrombosis.

In the previous report of the authors, phospholipids in liporoteins of density below 1.063 (α -lipoprotein phospholipids) had been determined by precipitation of VLDL and LDL with polyanions (Na phosphotangstate and MgCl₂) to find that phospholipids in this fraction decreased in atherosclerotic patients, particularly in cerebral thrombosis¹⁵⁾.

The present study clarified that decreased phospholipids in this fraction is due not only to the decrease in phospholipids in HDL_2 and HDL_3 but also in VHDL-phospholipids.

The clinical significance of lowered VHDLphospholipids and its relationship to the pathogenesis of atherosclerosis are not known at the present time as yet.

REFERENCES

- Miller, G. J. and Miller, N. E.': Plasma high density lipoprotein concentration and development of ischemic heart disease. Lancet, I, 16-19, 1975.
- 2) Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B. and Dawber, T. R.: High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med., 62, 707, 1977.
- 3) Havel, R. J., Eder, H. A. and Bragdon, J. H.: The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Inves., 34, 1345-1353, 1955.
- Nichols, A. V.: Human serum lipoproteins and their interrelationship. Adv. Biol. Med. Phys., 11, 110-158, 1967.
- 5) Blum, C. B., Levy, R. L., Hall, M., Goebel, R. and Berman, M.: Reciprocal changes in high density lipoprotein metabolism with nicotinic acid treatment and carbohydrate feeding. Circulation, 54, Suppl. II-26, 1976.
- 6) Nichols, A. V., Strisover, E. H., Lindgren, F. T., Adamson, G. L. and Colliola, E. L.: Analysis of change in ultracentrifugal lipoprotein profiles following heparin and ethyl-p-chlorophenoxyisobutylate administration. Clin. Chim. Acta, 20, 277-283, 1968.

- 7) Krauss, R. M., Lindgren, F. T., Bradley, D. and Silvers, A.: Specific increase in a high density lipoprotein subfraction in women using birth control pills. Circulation, 54, Suppl. II-211, 1976.
- Switzer, S. and Eder, H. A.: Transport of lysolecithin by albumin in human and rat plasma. J. Lipid Res., 6, 506-511, 1965.
- 9) Carlson, L. A. and Mossfeldt, F.: Acute effects of prolonged, heavy exercise on the concentration of plasma lipids and lipoproteins in man. Acta. Physiol. Scan., 62, 51-59, 1964.
- 10) Patch, J. R., Sailer, S., Kostner, G., Sandhofer, F., Holasek, A. and Braunsteiner, H.: Separation of the main lipoprotein density class from human plasma by rate-zonal ultracentrifugation. J. Lipid Res., 15, 356-366, 1974.
- 11) Burstein, M., Scholnick, H.R. and Morfin, R.: Rapid method for the isolation of lipoproteins

from human serum by precipitation with polyanions. J. Lipid Res., 11, 543-595, 1970.

- 12) Allain, C. C., Poon, L. S. and Chan, C. S.: Enzymatic determination of total serum cholesterol. Clin. Chem., 20, 470-475, 1974.
- 13) Takayama, S., Ito, S., Mori, A., Nagasaki, H., Tanimizu, K., Horiuchi, Y., Imamura, S. and Ikuta, S.: Enzyme method for the determination of choline. Japanese J. Clin. Path., 24 (Supple), 461, 1976 (Abst).
- 14) Randolph, M. L. and Ryan, R. R.: A slicer for sampling liquids. Science, 112, 528, 1950.
- 15) Kajiyama, G., Mizuno, T., Matzuura, C., Yamada, K., Suzukawa, M., Fujiyama, M. and Miyoshi, A.: The lowered serum phospholipids in α-lipoprotein in patients with atherosclerosis. Hiroshima J. Med. Sci., 23, 229-236, 1974.