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ABSTRACT 
Exposure of a human leukemic cell line HL-60 to 1 % dimethylsulfoxide (DMSO) for 4 days 

induced myeloid differentiation. DMSO-differentiated HL-60 cells displayed high and low-affinity 
binding sites for leukotriene B4 (LTB4). The pretreatment of myeloid differentiated HL-60 cells 
with 1-10 nM LTB4 enhanced superoxide production evoked by 100 nM formyl-methionyl-leucyl­
phenylalanine (fMLP) to 127-137% of the controls stimulated by ±MLP alone. A concentration 
eliciting a half maximal increase (EC50) of LTB4 for the enhancing effect on superoxide produc­
tion evoked by ±MLP was 0.32 nM. This was roughly similar to the dissociation constant (Kd) 
of high affinity receptors for LTB4 (0.23 nM). These results suggest that high affinity recep­
tors transduce the enhancing effect of LTB4 on fMLP-induced superoxide production. Although 
it seems possible that enhancement of fMLP-induced superoxide production is associated with 
a substantial increase and/or an affinity alteration in receptors for fMLP, LTB4-pretreated cells 
failed to show significant changes in ±MLP binding compared to non-pretreated ones. It seems 
likely that Ca2+ influx transduces enhancement of ±MLP-induced superoxide production, because 
extracellular Ca2

+ is necessary for an enhancing effect of fMLP-induced superoxide production. 
Also, EC50 of LTB4 for Ca2

+ influx (0.78 nM) was similar to that of the enhancing effect of 
superoxide generation evoked by ±MLP. Although pretreatment of LTB4 failed to enhance the 
maximal level of ±MLP-induced intracellular Ca2

+ rise, transient overshoot in intracellular Ca2
+ 

evoked by ±MLP declined more rapidly after LTB4 pretreatment. Possible involvement of high 
affinity binding sites for LTB4 and Ca2 + influx was noted in the LTB4-enhancement of ±MLP­
induced superoxide production in DMSO-differentiated HL-60 cells. However, the significance 
of the rapid attenuation of intracellular Ca2

+ overshoot needs further evaluation. 
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The HL-60 cell line of a patient with leukemia, 
initially diagnosed as acute promyelocytic 
leukemia4

) but now classified as acute myeloblastic 
leukemia with maturation6

), undergoes differentia­
tion to a number of different cell types by a varie­
ty of different compounds. DMSO-induced myeloid 
differentiated HL-60 cells exhibit functional 
maturity5

•
17

), possessing the binding sites for the 
chemotactic peptide ±MLP18

) and LTB 41
), as well as 

the ability to produce LTBl9
). DMSO­

differentiated HL-60 cells provide a convenient sys­
tem for assessing the synergistic effect of neu­
trophil stimuli on granulocyte functions. It should 
be kept in mind, however, that the data were ob­
tained from a heterogeneous cell population. Ex­
periments with HL-60 cells have many advantages 
in studies of receptor processing and functioning, 
because of these cells' long life span in vitro. 

LTB4 is a 5-lipoxygenase metabolite of arachi­
donic acid which is produced by neutrophils in 
response to specific stimuli3

•
12

•
24

), and shares many 
proinflammatory properties, including the ability 
to stimulate neutrophil adherence and 
chemotaxis20

•
24

•
25

). Although LTB4 is a poor 
stimulant of neutrophil superoxide, it has been 
known to enhance ±MLP-induced respiratory 
burst10

•
11

). However, in myeloid differentiated 
HL-60 cells, the enhancing effect of LTB4 on su­
peroxide production has not yet been established. 
Experimental evidence has shown that an alterna­
tion in expression of receptors8

•
9

•
27

) and/or Ca2 + 

mobilization7
) modifies the cellular response of 

neutrophils to fMLP. It seems likely that 
LTB4-enhancement of superoxide production 
evoked by fMLP is mediated by alteration in ex­
pression of receptors and/or Ca2

+ influx. 
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This report shows that LTB4 increased fMLP­
induced superoxide production in myeloid differen­
tiated HL-60 cells. The mechanisms of this enhanc­
ing effect of LTB4 in DMSO-induced mature 
HL-60 cells were examined. This study has demon­
strated that high-affinity receptors for LTB4 trans­
duce not only Ca2 + influx but also have an 
increasing effect on fMLP-induced superoxide 
generation. It is shown also that transient over­
shoot in intracellular Ca2 + in LTB4 treated cells 
declines more rapidly compared to that of LTB4 

non-pretreated cells. 

MATERIALS AND METHODS 
Reagents 

LTB4 (Paesel, Frankfurt, FRG), fMLP (Protein 
Research Laboratory, Osaka, Japan), DMSO (Merk, 
Darmstock, FRG), ferricytochrome c Type VI, (Sig­
ma, St.Louis, MO), Ethylene glycol-bis-(:B-aminoethyl 
ether) N,N,N' ,N' ,- tetraacetic acid (EGTA, Nakarai, 
Kyoto, Japan), crystal ovalbumin (OVA, Sigma), 
Fura 2/AM (Dojindo, Kumamoto, Japan), Hanks' 
balanced salt solution (HESS, GIBCO, Grand Is­
land, NY), NCS tissue solubilizer (Amersham, 
Arlington Heights, IL), [3H] LTB4 (32 Ci/mmol, 
New England Nuclear, Boston, MA) and [3H] 
fMLP (60 Ci/mmol, New England Nuclear) were ob­
tained from the suppliers noted. [3H] LTB4 and 
[
3H] fMLP were stored in ethanol at -20°C and 

evaporated by centrifugal evaporator (Yamato 
Scientific model RD-41, Tokyo, Japan) and dissolved 
in Ca2+ -free HESS before use. 
Cells 

HL-60 cells obtained from the Japan Cancer 
Research Resources Bank (Tokyo, Japan) were 
cloned by limiting dilution method. and maintained 
in RPMI 1640 (GIBCO) supplemented with 10% fe­
tal bovine serum (FBS, KC Biological, Lenexa, KS), 
2 mM 1-glutamine and 1 % penicillin-streptomycin 
(GIBCO) as previously described4

). Cells were in­
cubated at 37°C in a humidified atmosphere of 5% 
C02 and 95% air. For the experiments, HL-60 
cells were cultured as previously described5

), but 
in 5% FBS and at 2-4 x 105 cells/ml in the 
presence of 1 % DMSO for 4 days. For morpholog­
ical assessment of the cells, cytospin slides were 
prepared using a Shandon Elliot cytospin centrifuge 
(Shandon Southern Products, Runcorn, England) 
and stained by Wright's method. The viability of 
the cells, assessed by trypan blue dye exclusion, 
was greater than 85%. 
Assay for superoxide production 

Superoxide generation was measured spec­
trophotometrically at 37°C by incubating 5 x 105 

cells in a total volume of 1 ml HESS in the 
presence of 100 /LM of f erricytochrome c16

). After 
5 min preincubation with or without different con­
centrations of LTB4 (0.1-100 nM), 100 nM fMLP 
was added. Cytochrome c reduction was recorded 
at 550-540 nm on a double wave length spec-

trophotometer (Hitachi model 557, Hitachi, Tokyo, 
Japan). Where low extracellular Ca2+ was speci­
fied for incubation, Ca2 +-free HESS containing 1 
mM EGTA was used. 
Fura 2 loading and measurement of intracellu­
lar Ca2+ 

The intracellular levels of Ca2+ were inferred 
from measurement of fluorescence of Ca2+ indica­
tor Fura 2 as previously described15

•
23

). To achieve 
uptake of Fura 2, 107 cells were incubated with 2 
/LM Fura 2/AM for 30 min at 37°C in 1 ml of 
HESS. The cells were diluted twofold and incubat­
ed for an additional 30 min at room temperature. 
The Fura 2-loaded cells were washed several times 
and resuspended in medium containing 130 mM 
NaCl, 5 mM KCl, 5.5 mM glucose, 1 mM MgC12, 

1.5 mM CaC12 and 20 mM Hepes buffer (pH 7.2) 
at a GOncentration of 5 x 106 cells/ml. The 
fluorescence of Fura 2-loaded cells was recorded 
with a spectroflurometer .(Hitachi model MPF-4, 
Hitachi, Tokyo, Japan) at an excitation wavelength 
of 335 nm and an emission wavelength of 500 nm. 
Intracellular Ca2+ levels were calculated as previ­
ously described15

). 

Assay for LTB4 receptors 
Specific binding of [3H] L TB 4 to HL-60 cells was 

measured as previously described14
). Briefly, 107 

cells/ml were incubated on ice for 60 min in the 
presence of 0 .1 to 40 nM [3H] LTB 4 in a final 
volume of 200 /Ll of Ca2 + -free HESS-OVA (HESS 
containing 0.1 g OVA per 100 ml) containing 1 mM 
EGTA. The reaction was terminated by a rapid 
filtration through Whatman GF/C glass fiber filter 
(Whatman, Maidstone, England) and the filters 
were immediately washed with 10 ml ice cold 
HESS. The filters were air dried and solubilized in 
1 ml of NCS solution at 50°C for 60 min in a scin­
tillation vial and the radioactivity was determined 
by liquid scintillation spectrometry. Nonspecific 
binding was defined as the number of [3H] LTB4 

bound in the presence of a 500-fold excess of unla­
beled LTB4• The binding data were analyzed by 
the method of Rosenthal22

) as previously 
reported19

) on a NEC PC-9801 microcomputer sys­
tem (NEC, Tokyo, Japan). 
[

3H] fMLP binding to LTB4-treated HL-60 cells 
Forty million per milliliter of HL-60 cells in 

HBSS were incubated with or without 100 nM 
LTB4 for 5 min at 37°C, and then equal volume 
of Ca2 + -free HESS containing 2 mM EGTA was 
added. Specific binding of [3H] fMLP of HL-60 
cells was measured as previously described, with 
some modifications8

). Briefly, 2 x 106 cells were 
incubated with different concentrations of [3H] 
fMLP (0.1-400 nM) in a total volume of 200 /Ll of 
Ca2 +-free HESS-UVA in the presence or absence 
of 500-fold excess of unlabeled fMLP. After incu­
bation for 60 min, the cell suspesions were rapidly 
filtered onto Whatman GF/C glass fiber filters, 
which were washed with ice-cold HESS. The radi-
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oactivity was counted as described in LTE4 bind­
ing assay. 
Statistical analysis 

Statistical analysis was performed by the two­
tailed Student's t-test and paired t-test. 

RESULTS 
Effect of 1 % DMSO on myefoid differentiation 
of HL-60 cells 

When the subclone of HL-60 cells was cultured 
for 4 days in the presence of 1 % DMSO, the cells 
differentiated into promyelocytes (5.8 ± 10.3%, 
mean ± SD, n= 5), myelocytes (29 ± 3.3%), 
metamyelocytes (23.6 ± 7.4%), band cells (15.2 ± 
5.4%) and segmented cells (26.2 ± 5.6%). Although 
myeloid differentiated HL-60 cells produced su­
peroxide by a stimulation of fMLP, immature 
HL-60 cells failed to produce superoxide even by 
stimulation with fMLP following LTE4 (data not 
shown). Myeloid differentiated HL-60 cells had two 
binding sites for LTE4• Kd for high affinity recep­
tor (KdH) was 0.23 nM and Kd for low affinity 
receptor (Kdd was 30.3 nM (Table 1). 
Effect of LTB4 on fMLP-induced superoxide 
production 

Preincubation of myeloid differentiated HL-60 
cells with LTE4 for 5 min, in a dose dependent 
fashion, enhanced superoxide production evoked by 
100 nM fMLP (Table 2). One hundred nM LTE4 

increased superoxide production by 137% at 100 
nM fMLP. EC50 of LTE4 for enhancement of 
fMLP-induced superoxide production was 0.32 nM. 

Table 1. LTE4 Receptors on Myeloid Differentiated 
HL-60 Cells 

Kd Emax 
Affinity nM fmol/10 7 cells 

High 0.23 ± 0.10 30.3 ± 0.78 

Low 12.4 ± 3.38 335.7 ± 72.8 

Myeloid differentiated HL-60 cells were incubated with 
0.1 to 40 nM [3H] LTE4 with or without 500-fold unla­
beled LTE4 in Ca2+ free HESS-OVA for 60 min on ice 
(n=3). 

Table 2. Effect of LTE4 on Superoxide Production 
Evoked by fMLP in Myeloid Differentiated HL-60 Cells 

Concentration Superoxide production 
of LTE4 (nM) nmol/min/106 cells 

0 4.00 ± 0.25 

0.1 3.77 ± 0.63 

1 5.08 ± 0.22* 

10 5.42 ± 0.30* 

100 5.48 ± 0.30* 

Myeloid differentiated HL-60 cells were incubated for 5 
min at 37°C with different concentrations of LTE4 be­
fore addition of 100 nM fMLP (n = 4). 
*p < 0.01 as compared with the control. 

This was roughly similar to KdH for LTE4 (0.23 
nM). 
Effect of LTB4 on [3H] fMLP binding 

Differentiated HL-60 cells expressed both high 
and low-affinity receptors for fMLP. Scatchard 
analysis of specific binding of [3H] fMLP in 
LTE4-pretreated myeloid differentiated HL-60 cells 
expressed as KdH of 1.83 ± 1.26 nM and KdL of 
36.07 ± 24.6 nM (n= 3). Total binding capacity 
(Emax) for high affinity receptors (EmaxH) was 39.1 
± 8.8 fmol/107 cells, and Emax for low affinity 
receptors (EmaxL) was 436.8 ± 126.1 fmol/107 cells 
in LTE4-pretreated cells. In non-pretreated cells 
KdH was 0.90 ± 0.32 nM, KdL 73.9 ± 4.6 nM, 
EmaxH 48.3 ± 24.0 fmol/107 cells, and EmaxL 416. 7 
± 115.5 fmol/107 cells in non-pretreated cells (Fig. 
1). The difference in fMLP binding affinity and the 
number of binding sites exhibited by the 
LTE4-pretreated cells compared with non­
pretreated cells was not statistically significant 
(p>0.05). 
Role of Ca2 + in modulation of superoxide 
production 

When the cells were suspended in Ca2+-free 
HESS containing 1 mM EGTA, fMLP-induced su­
peroxide production of LTE4-pretreated myeloid 
differentiated HL-60 cells and non-pretreated cells 
was 1.15 ± 0.10 and 1.36 ± 0.21 nmol 
0 2-/min/106 cells (p>0.05, n=3, Fig.2). In Ca2+ 
containing HESS, fMLP-induced superoxide produc­
tion of LTE4 pretreated cells and non-pretreated 
cells were 6.07 ± 0.31 and 3.97 ± 0.21 nmol 
0 2-/min/106 cells (p<0.01, n=3). Although 
pretreatment with LTE4 failed to enhance fMLP­
induced superoxide generation in the absence of 

100 

• LTB4-pretreated 

A. non-pretreated 

100 200 300 400 500 60J 

Bound [3H] fMU' (fmol/107 cells) 

Fig. 1. Effect of LTE4 on [3H] fMLP binding to my­
eloid differentiated HL-60 cells. Cells were incubated 
in HESS with or without 100 nM LTE4 for 5 min at 
37°C followed by [3H] fMLP binding assay on ice. 
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Fig. 2. Effect of elimination of extracellular Caz+ on 
LTB4-induced enhancement of superoxide production 
evoked by fMLP. Myeloid differentiated HL-60 cells 
were preincubated with 100 nM LTB4 or HBSS for 
5 min before addition of 100 nM fMLP. Cells were 
incubated in HBSS containing Caz+ (upper figures) or 
in Caz+ -free HBSS containing 1 mM EGTA (lower 
figures). 
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Fig. 3. LTB4-induced intracellular Caz+ mobilization 
of myeloid differentiated HL-60 cells. Maximal level 
of intracellular Caz+ mobilization of the cells stimu­
lated with 0.1, 1, 10 and 100 nM of LTB4 was 123 
± 25.3 nM, 194.4 ± 7.8 nM, 245.2 ± 16.5 nM and 
248.2 ± 19.7 nM, respectively. Base-line intracellular 
Caz+ was 113 ± 8.5 nM. Triplicate determinations 
were performed in each condition. 
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Fig. 4. Effect of LTB4 on fMLP-induced intracellu­
lar Caz+ mobilization in myeloid differentiated HL-60 
cells. The decline of the transient overshoot is present­
ed as tangent D, where D is the angle between the 
base line and the tangential line of the decreasing 
phase of transient intracellular Caz+ mobilization that 
draws from the peak point to a level at 30 sec later. 
Tangent D of the decreasing phase of intracellular 
Caz+ in the cells pretreated with PBS or 100 nM 
LTB4 was 1.22 ± 0.23 and 2.00 ± 0.23*, respective­
ly. Triplicate determinations were performed in each 
condition. 
* p < 0.05 as compared to PBS pretreated cells. 

extracellular Caz+, LTB4 significantly enhanced 
fMLP-induced superoxide production in Caz+ con­
taining HESS. 

LTB4 itself induced intracellular Caz+ rise in a 
dose dependent manner (Fig. 3). EC50 for LTB4 to 
increase intracellular Caz+ level in myeloid 
differentiated HL-60 cells was 0. 78 nM, which was 
also approximately similar to KaH for LTB4• 

However, fMLP-induced intracellular Caz+ rise 
was not affected by LTB4 pretreatment (Fig. 4). 
The maximal level of increase of 100 nM fMLP­
induced intracellular Caz+ in 100 nM 
LTB4-pretreated cells (332.6 ± 49.3 nM) was simi­
lar to that of non-pretreated ones (330.7 ± 65.9 
nM). When LTB4 (100 nM)-pretreated cells were 
stimulated with 1 nM and 10 nM fMLP, the max­
imal level of intracellular Caz+ was also similar to 
that of the non-pretreated ones (data not shown). 
The transient overshoot in intracellular Caz+ in­
duced by fMLP in LTB4-pretreated cells declined 
more rapidly compared to that of the cells stimu­
lated with fMLP alone. Similar rapid declines of in-
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tracellular Ca2+ were observed when differentiat- induced Ca2 + release from intracellular Ca2 + 

ed HL-60 cells were pretreated with 1 nM and 10 stores. 
nM LTB4 before stimulation with 100 nM fMLP It is interesting that the transient overshoot in 
(data not shown). intracellular Ca2+ in LTB4-treated cells declined 

DISCUSSION 
It is a widely accepted hypothesis that cell sur­

face receptors regulate the responses of the cells. 
In this study, pretreatment of the myeloid differen­
tiated HL-60 cells with 1-100 nM LTB4 increased 
fMLP-evoked superoxide production to 127-137% 
of the control. EC50 of LTB4 for an enhancing ef­
fect of superoxide production evoked by fMLP was 
roughly similar to KaH for LTB4 • These results 
suggest that high-affinity receptors for LTB4 

transduce an enhancing effect of superoxide produc­
tion evoked by fMLP. 

It is well known that several substances, includ­
ing Ca2+ ionophore A23187 and PMA, increase 
both the number of fMLP receptors on the neu­
trophil plasma membrane and the cellular oxidative 
response to fMLP8

•
10

•
27

•
28

). It seems possible that 
subsequent fMLP exposure can cause an increase 
and/or an affinity change in receptor-ligand 
coupling, resulting in an enhancement of fMLP­
mediated responses. However, in the present data, 
pretreatment of LTB4 failed to cause significant 
changes in high and low-affinity receptors for fMLP 
in myeloid differentiated HL-60 cells. In human 
neutrophils, LTB4 also failed to alter fMLP bind­
ing in spite of enhancing fMLP-induced NET 
reduction10

). It seems likely that an enhancing ef­
fect of LTB4 is not mediated by a change in the 
number and affinity of fMLP binding sites. 
However, because the binding studies were per­
formed in heterogeneous differentiated HL-60 cells, 
modulation of receptor number and/or affinity of a 
subpopulation of cells cannot be ruled out. 

Since LTB4 is a calcium ionophore13
), the role of 

calcium in the enhancing effect was also investigat­
ed. fMLP-induced superoxide production was en­
hanced by pretreatment of LTB4 in the presence 
of extracellular Ca2 +. However, in the absence of 
Ca2

+, an enhancing effect of LTB4 was not ob­
served. These results suggest that the extracellu­
lar Ca2+ is necessary for an enhancing effect of 
LTB4 on superoxide production evoked by fMLP 
in myeloid differentiated HL-60 cells. EC50 of 
LTB4 for intracellular calcium mobilization was ap­
proximately similar to that of LTB4 for the en­
hancing effect on fMLP-induced superoxide 
production. Therefore, it seems likely that Ca2

+ in­
flux evoked by LTB4 transduces enhancement of 
fMLP-induced superoxide production. 

Pretreatment of LTB4 did not alter the maximal 
level of increase of fMLP-induced intracellular 
Ca2 +. The maximal intracellular Ca2+ level reflects 
mainly Ca2 + release from intracellular Ca2 + 

stores21
). Therefore, the enhancing effect of LTB4 

may not be associated with changes in fMLP-

more rapidly compared to LTB4 non-pretreated 
cells. The possibility that plasma membrane ionic 
channels are modified by a protein kinase C­
dependent mechanism has been reported26>. In my­
eloid differentiated HL-60 cells, inositol 
trisphosphate is thought to be a signal for fMLP­
induced Ca2+ mobilization3

). It seems likely that a 
rapid decrease in intracellular Ca2 + transient may 
indicate a change of activation of protein kinase C 
and/or phospholipase C in LTB4-treated cells. The 
significance of LTB4 induced rapid decline of Ca2

+ 

influx must be further evaluated. 
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