Effect of Leukotriene B₄ on Enhancement of Superoxide Production Evoked by Formyl-Methionyl-Leucyl-Phenylalanine in Myeloid Differentiated HL-60 Cells: Possible Involvement of Intracellular Calcium Influx and High Affinity Receptor for Leukotriene B₄

Yoshiaki HARADA

Department of Pediatrics, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734, Japan

ABSTRACT

Exposure of a human leukemic cell line HL-60 to 1% dimethylsulfoxide (DMSO) for 4 days induced myeloid differentiation. DMSO-differentiated HL-60 cells displayed high and low-affinity binding sites for leukotriene B_4 (LTB₄). The pretreatment of myeloid differentiated HL-60 cells with 1-10 nM LTB_4 enhanced superoxide production evoked by 100 nM formyl-methionyl-leucylphenylalanine (fMLP) to 127–137% of the controls stimulated by fMLP alone. A concentration eliciting a half maximal increase (EC₅₀) of LTB₄ for the enhancing effect on superoxide production evoked by fMLP was 0.32 nM. This was roughly similar to the dissociation constant (Kd) of high affinity receptors for LTB_4 (0.23 nM). These results suggest that high affinity receptors transduce the enhancing effect of LTB_4 on fMLP-induced superoxide production. Although it seems possible that enhancement of fMLP-induced superoxide production is associated with a substantial increase and/or an affinity alteration in receptors for fMLP, LTB₄-pretreated cells failed to show significant changes in fMLP binding compared to non-pretreated ones. It seems likely that Ca²⁺ influx transduces enhancement of fMLP-induced superoxide production, because extracellular Ca²⁺ is necessary for an enhancing effect of fMLP-induced superoxide production. Also, EC_{50} of LTB_4 for Ca^{2+} influx (0.78 nM) was similar to that of the enhancing effect of superoxide generation evoked by fMLP. Although pretreatment of LTB₄ failed to enhance the maximal level of fMLP-induced intracellular Ca²⁺ rise, transient overshoot in intracellular Ca²⁺ evoked by fMLP declined more rapidly after LTB₄ pretreatment. Possible involvement of high affinity binding sites for LTB₄ and Ca²⁺ influx was noted in the LTB₄-enhancement of fMLPinduced superoxide production in DMSO-differentiated HL-60 cells. However, the significance of the rapid attenuation of intracellular Ca^{2+} overshoot needs further evaluation.

Key words: Leukotriene B₄, HL-60 cells, Superoxide, Calcium

The HL-60 cell line of a patient with leukemia, initially diagnosed as acute promyelocytic leukemia⁴⁾ but now classified as acute myeloblastic leukemia with maturation⁶⁾, undergoes differentiation to a number of different cell types by a variety of different compounds. DMSO-induced myeloid differentiated HL-60 cells exhibit functional maturity^{5,17}, possessing the binding sites for the chemotactic peptide $fMLP^{18}$ and LTB_4^{1} , as well as the ability to produce LTB_4^{29} . DMSOdifferentiated HL-60 cells provide a convenient system for assessing the synergistic effect of neutrophil stimuli on granulocyte functions. It should be kept in mind, however, that the data were obtained from a heterogeneous cell population. Experiments with HL-60 cells have many advantages in studies of receptor processing and functioning, because of these cells' long life span in vitro.

LTB₄ is a 5-lipoxygenase metabolite of arachidonic acid which is produced by neutrophils in response to specific stimuli^{3,12,24}, and shares many proinflammatory properties, including the ability stimulate neutrophil adherence to and chemotaxis^{20,24,25}). Although LTB₄ is a poor stimulant of neutrophil superoxide, it has been known to enhance fMLP-induced respiratory burst^{10,11)}. However, in myeloid differentiated HL-60 cells, the enhancing effect of LTB₄ on superoxide production has not yet been established. Experimental evidence has shown that an alternation in expression of receptors^{8,9,27}) and/or Ca²⁺ mobilization⁷⁾ modifies the cellular response of neutrophils to fMLP. It seems likely that LTB_4 -enhancement of superoxide production evoked by fMLP is mediated by alteration in expression of receptors and/or Ca^{2+} influx.

This report shows that LTB_4 increased fMLPinduced superoxide production in myeloid differentiated HL-60 cells. The mechanisms of this enhancing effect of LTB_4 in DMSO-induced mature HL-60 cells were examined. This study has demonstrated that high-affinity receptors for LTB_4 transduce not only Ca^{2+} influx but also have an increasing effect on fMLP-induced superoxide generation. It is shown also that transient overshoot in intracellular Ca^{2+} in LTB_4 treated cells declines more rapidly compared to that of LTB_4 non-pretreated cells.

MATERIALS AND METHODS Reagents

LTB₄ (Paesel, Frankfurt, FRG), fMLP (Protein Research Laboratory, Osaka, Japan), DMSO (Merk, Darmstock, FRG), ferricytochrome c TypeVI, (Sigma, St.Louis, MO), Ethylene glycol-bis-(ß-aminoethyl ether) N,N,N',N',- tetraacetic acid (EGTA, Nakarai, Kyoto, Japan), crystal ovalbumin (OVA, Sigma), Fura 2/AM (Dojindo, Kumamoto, Japan), Hanks' balanced salt solution (HBSS, GIBCO, Grand Island, NY), NCS tissue solubilizer (Amersham, Arlington Heights, IL), [³H] LTB₄ (32 Ci/mmol, New England Nuclear, Boston, MA) and [³H] fMLP (60 Ci/mmol, New England Nuclear) were obtained from the suppliers noted. [³H] LTB₄ and [³H] fMLP were stored in ethanol at -20°C and evaporated by centrifugal evaporator (Yamato Scientific model RD-41, Tokyo, Japan) and dissolved in Ca²⁺-free HBSS before use.

Cells

HL-60 cells obtained from the Japan Cancer Research Resources Bank (Tokyo, Japan) were cloned by limiting dilution method and maintained in RPMI 1640 (GIBCO) supplemented with 10% fetal bovine serum (FBS, KC Biological, Lenexa, KS), 2 mM l-glutamine and 1% penicillin-streptomycin (GIBCO) as previously described⁴⁾. Cells were incubated at 37°C in a humidified atmosphere of 5% CO_2 and 95% air. For the experiments, HL-60 cells were cultured as previously described⁵, but in 5% FBS and at 2–4 \times 10⁵ cells/ml in the presence of 1% DMSO for 4 days. For morphological assessment of the cells, cytospin slides were prepared using a Shandon Elliot cytospin centrifuge (Shandon Southern Products, Runcorn, England) and stained by Wright's method. The viability of the cells, assessed by trypan blue dye exclusion, was greater than 85%.

Assay for superoxide production

Superoxide generation was measured spectrophotometrically at 37°C by incubating 5×10^5 cells in a total volume of 1 ml HBSS in the presence of 100 μ M of ferricytochrome c¹⁶. After 5 min preincubation with or without different concentrations of LTB₄ (0.1–100 nM), 100 nM fMLP was added. Cytochrome c reduction was recorded at 550–540 nm on a double wave length spectrophotometer (Hitachi model 557, Hitachi, Tokyo, Japan). Where low extracellular Ca^{2+} was specified for incubation, Ca^{2+} -free HBSS containing 1 mM EGTA was used.

Fura 2 loading and measurement of intracellular Ca^{2+}

The intracellular levels of Ca²⁺ were inferred from measurement of fluorescence of Ca²⁺ indicator Fura 2 as previously described^{15,23)}. To achieve uptake of Fura 2, 10^7 cells were incubated with 2 µM Fura 2/AM for 30 min at 37°C in 1 ml of HBSS. The cells were diluted twofold and incubated for an additional 30 min at room temperature. The Fura 2-loaded cells were washed several times and resuspended in medium containing 130 mM NaCl, 5 mM KCl, 5.5 mM glucose, 1 mM MgCl₂, 1.5 mM CaCl₂ and 20 mM Hepes buffer (pH 7.2) at a concentration of 5 \times 10⁶ cells/ml. The fluorescence of Fura 2-loaded cells was recorded with a spectroflurometer (Hitachi model MPF-4, Hitachi, Tokyo, Japan) at an excitation wavelength of 335 nm and an emission wavelength of 500 nm. Intracellular Ca²⁺ levels were calculated as previously described¹⁵⁾.

Assay for LTB₄ receptors

Specific binding of $[^{3}H]$ LTB₄ to HL-60 cells was measured as previously described¹⁴). Briefly, 10⁷ cells/ml were incubated on ice for 60 min in the presence of 0.1 to 40 nM [³H] LTB₄ in a final volume of 200 µl of Ca²⁺-free HBSS-OVA (HBSS containing 0.1 g OVA per 100 ml) containing 1 mM EGTA. The reaction was terminated by a rapid filtration through Whatman GF/C glass fiber filter (Whatman, Maidstone, England) and the filters were immediately washed with 10 ml ice cold HBSS. The filters were air dried and solubilized in 1 ml of NCS solution at 50°C for 60 min in a scintillation vial and the radioactivity was determined by liquid scintillation spectrometry. Nonspecific binding was defined as the number of [³H] LTB₄ bound in the presence of a 500-fold excess of unlabeled LTB_4 . The binding data were analyzed by the method of Rosenthal²²⁾ as previously reported¹⁹⁾ on a NEC PC-9801 microcomputer system (NEC, Tokyo, Japan).

[³H] fMLP binding to LTB₄-treated HL-60 cells Forty million per milliliter of HL-60 cells in HBSS were incubated with or without 100 nM LTB₄ for 5 min at 37°C, and then equal volume of Ca²⁺-free HBSS containing 2 mM EGTA was added. Specific binding of [³H] fMLP of HL-60 cells was measured as previously described, with some modifications⁸. Briefly, 2 × 10⁶ cells were incubated with different concentrations of [³H] fMLP (0.1-400 nM) in a total volume of 200 μ l of Ca²⁺-free HBSS-OVA in the presence or absence of 500-fold excess of unlabeled fMLP. After incubation for 60 min, the cell suspesions were rapidly filtered onto Whatman GF/C glass fiber filters, which were washed with ice-cold HBSS. The radioactivity was counted as described in LTB_4 binding assay.

Statistical analysis

Statistical analysis was performed by the twotailed Student's t-test and paired t-test.

RESULTS

Effect of 1% DMSO on myeloid differentiation of HL-60 cells

When the subclone of HL-60 cells was cultured for 4 days in the presence of 1% DMSO, the cells differentiated into promyelocytes ($5.8 \pm 10.3\%$, mean \pm SD, n=5), myelocytes ($29 \pm 3.3\%$), metamyelocytes ($23.6 \pm 7.4\%$), band cells ($15.2 \pm$ 5.4%) and segmented cells ($26.2 \pm 5.6\%$). Although myeloid differentiated HL-60 cells produced superoxide by a stimulation of fMLP, immature HL-60 cells failed to produce superoxide even by stimulation with fMLP following LTB₄ (data not shown). Myeloid differentiated HL-60 cells had two binding sites for LTB₄. Kd for high affinity receptor (K_{dH}) was 0.23 nM and Kd for low affinity receptor (K_{dL}) was 30.3 nM (Table 1).

Effect of LTB₄ on fMLP-induced superoxide production

Preincubation of myeloid differentiated HL-60 cells with LTB₄ for 5 min, in a dose dependent fashion, enhanced superoxide production evoked by 100 nM fMLP (Table 2). One hundred nM LTB₄ increased superoxide production by 137% at 100 nM fMLP. EC_{50} of LTB₄ for enhancement of fMLP-induced superoxide production was 0.32 nM.

Table 1. LTB_4 Receptors on Myeloid DifferentiatedHL-60 Cells

Affinity	Kd nM	${ m B_{max}} { m fmol}/{ m 10^7} { m cells}$
High	0.23 ± 0.10	30.3 ± 0.78
Low	12.4 ± 3.38	335.7 ± 72.8

Myeloid differentiated HL-60 cells were incubated with 0.1 to 40 nM [³H] LTB₄ with or without 500-fold unlabeled LTB₄ in Ca²⁺ free HBSS-OVA for 60 min on ice (n=3).

Table 2. Effect of LTB_4 on Superoxide Production Evoked by fMLP in Myeloid Differentiated HL-60 Cells

Concentration of LTB_4 (nM)	Superoxide production nmol/min/10 ⁶ cells
0	4.00 ± 0.25
0.1	3.77 ± 0.63
1	$5.08 \pm 0.22^*$
10	$5.42 \pm 0.30^*$
100	$5.48 \pm 0.30^*$

Myeloid differentiated HL-60 cells were incubated for 5 min at 37°C with different concentrations of LTB_4 before addition of 100 nM fMLP (n=4).

p < 0.01 as compared with the control.

This was roughly similar to K_{dH} for LTB₄ (0.23 nM).

Effect of LTB₄ on [³H] fMLP binding

Differentiated HL-60 cells expressed both high and low-affinity receptors for fMLP. Scatchard analysis of specific binding of [3H] fMLP in LTB₄-pretreated myeloid differentiated HL-60 cells expressed as K_{dH} of 1.83 ± 1.26 nM and K_{dL} of 36.07 ± 24.6 nM (n=3). Total binding capacity (B_{max}) for high affinity receptors (B_{maxH}) was 39.1 \pm 8.8 fmol/10⁷ cells, and B_{max} for low affinity receptors (B_{maxL}) was 436.8 ± 126.1 fmol/10⁷ cells in LTB₄-pretreated cells. In non-pretreated cells K_{dH} was 0.90 ± 0.32 nM, K_{dL} 73.9 ± 4.6 nM, B_{maxH} 48.3 ± 24.0 fmol/10⁷ cells, and B_{maxL} 416.7 \pm 115.5 fmol/10⁷ cells in non-pretreated cells (Fig. 1). The difference in fMLP binding affinity and the number of binding sites exhibited by the LTB₄-pretreated cells compared with nonpretreated cells was not statistically significant (p>0.05).

Role of Ca^{2+} in modulation of superoxide production

When the cells were suspended in Ca²⁺-free HBSS containing 1 mM EGTA, fMLP-induced superoxide production of LTB₄-pretreated myeloid differentiated HL-60 cells and non-pretreated cells was 1.15 ± 0.10 and 1.36 ± 0.21 nmol $O_2^{-/min}/10^6$ cells (p>0.05, n=3, Fig.2). In Ca²⁺ containing HBSS, fMLP-induced superoxide production of LTB₄ pretreated cells and non-pretreated cells were 6.07 ± 0.31 and 3.97 ± 0.21 nmol $O_2^{-/min}/10^6$ cells (p<0.01, n=3). Although pretreatment with LTB₄ failed to enhance fMLP-induced superoxide generation in the absence of

Fig. 1. Effect of LTB_4 on $[^{3}H]$ fMLP binding to myeloid differentiated HL-60 cells. Cells were incubated in HBSS with or without 100 nM LTB_4 for 5 min at 37°C followed by $[^{3}H]$ fMLP binding assay on ice.

Fig. 2. Effect of elimination of extracellular Ca^{2+} on LTB_4 -induced enhancement of superoxide production evoked by fMLP. Myeloid differentiated HL-60 cells were preincubated with 100 nM LTB_4 or HBSS for 5 min before addition of 100 nM fMLP. Cells were incubated in HBSS containing Ca^{2+} (upper figures) or in Ca^{2+} -free HBSS containing 1 mM EGTA (lower figures).

Fig. 3. LTB₄-induced intracellular Ca²⁺ mobilization of myeloid differentiated HL-60 cells. Maximal level of intracellular Ca²⁺ mobilization of the cells stimulated with 0.1, 1, 10 and 100 nM of LTB₄ was 123 \pm 25.3 nM, 194.4 \pm 7.8 nM, 245.2 \pm 16.5 nM and 248.2 \pm 19.7 nM, respectively. Base-line intracellular Ca²⁺ was 113 \pm 8.5 nM. Triplicate determinations were performed in each condition.

Fig. 4. Effect of LTB₄ on fMLP-induced intracellular Ca²⁺ mobilization in myeloid differentiated HL-60 cells. The decline of the transient overshoot is presented as tangent D, where D is the angle between the base line and the tangential line of the decreasing phase of transient intracellular Ca²⁺ mobilization that draws from the peak point to a level at 30 sec later. Tangent D of the decreasing phase of intracellular Ca²⁺ in the cells pretreated with PBS or 100 nM LTB₄ was 1.22 \pm 0.23 and 2.00 \pm 0.23^{*}, respectively. Triplicate determinations were performed in each condition.

 \ast p<0.05 as compared to PBS pretreated cells.

extracellular Ca^{2+} , LTB_4 significantly enhanced fMLP-induced superoxide production in Ca^{2+} containing HBSS.

 LTB_4 itself induced intracellular Ca^{2+} rise in a dose dependent manner (Fig. 3). EC_{50} for LTB_4 to increase intracellular Ca^{2+} level in myeloid differentiated HL-60 cells was 0.78 nM, which was also approximately similar to K_{dH} for LTB_4 .

However, fMLP-induced intracellular Ca²⁺ rise was not affected by LTB_4 pretreatment (Fig. 4). The maximal level of increase of 100 nM fMLP- Ca^{2+} induced intracellular in 100 nM LTB_4 -pretreated cells (332.6 ± 49.3 nM) was similar to that of non-pretreated ones (330.7 ± 65.9) nM). When LTB_4 (100 nM)-pretreated cells were stimulated with 1 nM and 10 nM fMLP, the maximal level of intracellular Ca²⁺ was also similar to that of the non-pretreated ones (data not shown). The transient overshoot in intracellular Ca²⁺ induced by fMLP in LTB₄-pretreated cells declined more rapidly compared to that of the cells stimulated with fMLP alone. Similar rapid declines of intracellular Ca^{2+} were observed when differentiated HL-60 cells were pretreated with 1 nM and 10 nM LTB₄ before stimulation with 100 nM fMLP (data not shown).

DISCUSSION

It is a widely accepted hypothesis that cell surface receptors regulate the responses of the cells. In this study, pretreatment of the myeloid differentiated HL-60 cells with 1–100 nM LTB₄ increased fMLP-evoked superoxide production to 127–137% of the control. EC_{50} of LTB₄ for an enhancing effect of superoxide production evoked by fMLP was roughly similar to K_{dH} for LTB₄. These results suggest that high-affinity receptors for LTB₄ transduce an enhancing effect of superoxide production evoked by fMLP.

It is well known that several substances, including Ca²⁺ ionophore A23187 and PMA, increase both the number of fMLP receptors on the neutrophil plasma membrane and the cellular oxidative response to fMLP^{8,10,27,28)}. It seems possible that subsequent fMLP exposure can cause an increase and/or an affinity change in receptor-ligand coupling, resulting in an enhancement of fMLPmediated responses. However, in the present data, pretreatment of LTB_4 failed to cause significant changes in high and low-affinity receptors for fMLP in myeloid differentiated HL-60 cells. In human neutrophils, LTB₄ also failed to alter fMLP binding in spite of enhancing fMLP-induced NBT reduction¹⁰). It seems likely that an enhancing effect of LTB_4 is not mediated by a change in the number and affinity of fMLP binding sites. However, because the binding studies were performed in heterogeneous differentiated HL-60 cells, modulation of receptor number and/or affinity of a subpopulation of cells cannot be ruled out.

Since LTB_4 is a calcium ionophore¹³⁾, the role of calcium in the enhancing effect was also investigated. fMLP-induced superoxide production was enhanced by pretreatment of LTB_4 in the presence of extracellular Ca²⁺. However, in the absence of Ca^{2+} , an enhancing effect of LTB_4 was not observed. These results suggest that the extracellular Ca^{2+} is necessary for an enhancing effect of LTB_4 on superoxide production evoked by fMLP in myeloid differentiated HL-60 cells. EC_{50} of LTB₄ for intracellular calcium mobilization was approximately similar to that of LTB_4 for the enhancing effect on fMLP-induced superoxide production. Therefore, it seems likely that Ca²⁺ influx evoked by LTB_4 transduces enhancement of fMLP-induced superoxide production.

Pretreatment of LTB_4 did not alter the maximal level of increase of fMLP-induced intracellular Ca^{2+} . The maximal intracellular Ca^{2+} level reflects mainly Ca^{2+} release from intracellular Ca^{2+} stores²¹⁾. Therefore, the enhancing effect of LTB_4 may not be associated with changes in fMLP- induced Ca^{2+} release from intracellular Ca^{2+} stores.

It is interesting that the transient overshoot in intracellular Ca^{2+} in LTB_4 -treated cells declined more rapidly compared to LTB_4 non-pretreated cells. The possibility that plasma membrane ionic channels are modified by a protein kinase Cdependent mechanism has been reported²⁶. In myeloid differentiated HL-60 cells, inositol trisphosphate is thought to be a signal for fMLPinduced Ca^{2+} mobilization³. It seems likely that a rapid decrease in intracellular Ca^{2+} transient may indicate a change of activation of protein kinase C and/or phospholipase C in LTB_4 -treated cells. The significance of LTB_4 induced rapid decline of Ca^{2+} influx must be further evaluated.

ACKNOWLEDGEMENT

The author would like to thank Professor K. Ueda, Hiroshima University School of Medicine, and Dr. T. Sakano, Hiroshima Prefectural Hospital, for helpful advice and manuscript review.

> (Received March 29, 1990) (Accepted August 16, 1990)

REFERENCES

- Benjamin, C.W., Rupple, P.L. and Gorman, R.R. 1985. Appearance of specific leukotriene B₄ binding sites in myeloid differentiated HL-60 cells. J. Biol. Chem. 260: 14208-14213.
- Burges, G.M., McKinney, J.S., Irvine, R.F., Berridge, M.J., Hoyele, P.C. and Putney, J.W., Jr. 1984. Inositol 1,4,5,-triphosphate may be a signal for f-Met-Leu-Phe-induced intracellular Ca mobilization in human leukocytes (HL-60 cells). FEBS Lett. 176: 193-196.
- Borgeat, P. and Samuelsson, B. 1979. Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187. Proc. Natl. Acad. Sci. USA 76: 2148-2152.
- Collins, S.J., Gallo, R.C. and Gallaghen, R.E. 1977. Continuous growth and differentiation of human myeloid leukemic cells in suspension culture. Nature 270: 347-349.
- Collins, S.J., Ruscetti, F.W., Gallaghen, R.E. and Gallo, R.C. 1978. Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other compounds. Proc. Natl. Acad. Sci. USA. 75: 2458-2462.
- Dalton, W.T., Jr., Ahearn, M.J., McCredie, K.B., Freireich, E.J., Stass, S.A. and Trujillo, J.M. 1988. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood 71: 242-247.
- Dewald, B. and Baggiolini, M. 1985. Activation of NADPH oxidase in human neutrophils. Synergism between fMLP and the neutrophil products PAF and LTB₄. Biochem. Biophys. Res. Commun. 128: 297-304.
- Fletcher, M.P. and Gallin, J.I. 1980. Degranulating stimuli increase the availability of receptors on human neutrophils for the chemoattractant f-Met-Leu-Phe. J. Immunol. 124: 1585-1588.

- Fletcher, M.P., Seligman, B.E. and Gallin, J.I. 1982. Correlation of human neutrophil secretion, chemoattractant receptor mobilization, and enhanced functional capacity. J. Immunol. 128: 941-948.
- 10. Fletcher, M.P. 1986. Modulation of the heterogenous membrane potential response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (FMLP) by leukotriene B_4 . Evidence for cell recruitment. J. Immunol. 136: 4213-4219.
- Gay, J.C., Beckman, J.K., Brash, A.R., Oates, J.A. and Lukens, J.N. 1984. Enhancement of chemotactic factor-stimulated neutrophil oxidative metabolism by leukotriene B₄. Blood 64: 780-785.
- Goetzl, E.J. 1980. Mediators of immediate hypersensivity derived from arachidonic acid. N. Engl. J. Med. 303: 822–825.
- 13. Goldman, D.W., Gifford, L.A., Olson, D.M. and Goetzl, E.J. 1985. Transduction by Leukotriene B_4 receptors of increases in cytosolic calcium in human polymorphonuclear leukocytes. J. Immunol. 135: 525–530.
- 14. Gormann, R.R. and Lin, A.H. 1987. Assay for leukotriene B_4 receptor. Methods Enzymol. 141: 372–378.
- Grynkiwicz, G., Poenie, M. and Tsien, R.Y. 1985.
 A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440-3450.
- Nakagawara, A. and Minakami, S. 1979. Role of cytoskeletal elements in cytochalasin E-induced superoxide production by human polymorphonuclear leukocytes. Biochim. Biophys. Acta 584: 143–148.
- Newburger, P.E., Spier, C., Borregaard, N., Walsh, C.E., Whitin, J.C. and Simons, E.R. 1984. Development of the superoxide-generating system during differentiation of the HL-60 human promyelocytic leukemia cell line. J. Biol. Chem. 259: 3771-3776.
- Niedel, J., Kahne, I., Lachman, L. and Cuatrecas, P. 1980. A subpopulation of cultured human promyelocytic leukemia cells (HL-60) displays the formyl peptide chemotactic receptor. Proc. Natl. Acad. Sci. USA 77: 1000–1004.
- Nomura, Y., Kawai, M., Mita, K. and Segawa, T. 1984. Developmental changes of cerebral [³H] clonidine binding in rats: Influences of guanine nucleo-

tide and cations. J. Neurochem. 42: 1240-1245.

- Palmblad, B.J., Malmsten, A.M.U., Radmark, O., Engsted, L. and Samuelsson, B. 1981. Leukotriene B4 is a potent and stereospecific stimulatior of neutrophil chemotaxis and adherence. Blood 58: 658-661.
- Rickard, J.E. and Sheterine, P. 1985. Evidence that phorbol ester interferes with stimulated Ca²⁺ redistribution by activating Ca²⁺ efflux in neutrophil leukocytes. Biochem. J. 231: 623-628.
- 22. Rosenthal, H.E. 1967. A graphic method for the demonstration and presentation of binding parameters in a complex system. Anal. Biochem. 20: 525-532.
- Sakano, T., Fujie, A., Harada, Y., Taniguchi, H. and Ueda, K. 1988. Intracellular Ca²⁺ mobilization in immature and more mature U937 induced to differentiate by dimethyl sulfoxide or phorbol myristate acetate. Cell. Immunol. 111: 370-379.
- Samuelsson, B. 1983. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 220: 568–575.
- 25. Serhan, C.N., Radin, A., Smolen, J.E., Korchak, H., Samuelsson, B. and Weissmann, G. 1982. Leukotriene B_4 is a complete secretagogue in human neutrophils: A kinetic analysis. Biochem. Biophys. Res. Commun. 107: 1006–1012.
- Virgilio, F.D., Lew, P.D., Anderson, T.A. and Pozzan, T. 1987. Plasma membrane potential modulate chemotactic peptide stimulated cytosolic free Ca²⁺ changes in human neutrophils. J. Biol. Chem. 262: 4573-4579.
- 27. Weisbart, R.H., Golde, D.W. and Gasson, J.C. 1986. Biosynthetic human GM-CSF modulates the number and affinity of neutrophil f-Met-Leu-Phe receptors. J. Immunol. 137: 3584-3587.
- 28. Weisbart, R.H., Kwan, L., Golde, D.W. and Gasson, J.C. 1987. Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to major physiological chemoattractants. Blood 69: 18-21.
- Ziboh, V.A., Wong, T. and Wu, M.C. 1986. Lipoxygenation of arachidonic acid by differentiated and undifferentiated human promyelocytic HL-60 cells. J. Lab. Clin. Med. 108: 161–166.