
Hiroshima J. Med. Sci. 
Vol.43, No.4, 179~184, December, 1994 
HIJM 43-23 

179 

Identification of 5' Regulatory Elements of the PDGF-A 
Chain Gene, and Interaction with Single-stranded DNA 

Binding Protein 

Yasuo TAKIMOT01)+* and Atsushi KURAMOT01) 

1) Department of Internal Medicine, Research Institute for Nuclear Medicine and Biology, Hiroshima 
University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734, Japan 

ABSTRACT 
The expression of platelet-derived growth factor (PDGF) is controlled in a very complicated 

manner. To clarify the mechanism of regulation of the PDGF-A chain gene, deletion analysis 
of the 5'-flanking region was performed. We identified a positive regulatory element 25 base 
pairs (hp) upstream of TATAA, a negative element 135 hp upstream, a positive element 223 
hp upstream and a negative element further upstream. These regulatory sites of the PDGF-A 
chain gene may be involved in tissue specificity, developmental regulation, and transforma­
tion. In addition, our analysis suggested the presence of a strand non-specific single-stranded 
DNA binding nuclear protein in the positive regulatory element 25 hp upstream of TATAA. 
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Human platelet-derived growth factor (PDGF) 
is present in a granules of platelets and is a het­
erodimeric protein consisting of A and B chains. 
Since PDGF proliferates mesodermal cells and 
induces migration of leukocytes, smooth muscle 
cells, and fibroblasts, its association with wound 
healing and atherosclerosis has attracted atten­
tion4>. The PDGF-A chain is widely expressed in 
tumor cells1\ suggesting the oncogenicity of this 
chain. Genomic clones of the PDGF-A chain have 
been isolated and sequenced27), and the promoter 
region has been determined33). However, the 
mechanism of its gene regulating action has not 
yet been clarified. Understanding the mechanism 
of genetic regulation may provide clues toward 
the clarification of the various pathologic condi­
tions mentioned above. In this study, we identi­
fied positive and negative regulatory elements in 
the 5' flanking region by chloramphenicol acetyl 
transferase(CAT) assay7) and demonstrated the 
presence of a nuclear protein that predominantly 
binds to single-stranded DNA in the positive ele­
ment immediately upstream of the promoter. 

MATERIALS AND METHODS 
Plasmids construction: As shown in Fig. 1, vari­

ous deletion mutants were constructed on the 5' 
side using various restriction enzymes. CAT, 
Xb-S,SstI-1~6 were constructed by partial di-

gestion with SstI, and CAT,B-S,Sl-21 and 
CAT,B-S,Sl-18 by partial digestion with nuclease 
Sl, and the sites of splitting were confirmed by 
sequencing. CAT,Syl 7 and CAT,Syl08 were 
constructed by artificial synthesis of the sites 
shown in Fig. 2. CAT,Syl 7, Sl-18 and 
CAT,Syl08,Sl-18 were produced by connecting 
the fragments of CAT,Syl 7 and CAT,Syl08, 
respectively, to a site upstream of CAT,B-S,Sl-18 
using a linker. Whether each fragment was cor­
rectly constructed was confirmed by sequencing. 
Each constructed fragment was inserted into the 
site upstream of the CAT gene in the 5' -3' 
orientation. 

DNA transfection and CAT assay: About 24 
hours before transfection, RD cells (human 
embryonal rhabdomyosarcoma cell line) were 
seeded at 5.5x105 per 100-mm Petri dish. 20µg of 
each plasmid was transfected by the calcium 
phosphate method8>. After 3 hr, the cells were 
treated with 15%(vol/vol) glycerol in 20mM Hepes 
buffer for 3min, washed, incubated for 48hr, and 
harvested, and lOOµg of lysates was assayed for 
CAT activity7>. 

Gel Retardation Assay: Nuclear protein was 
extracted by the method of Shapiro et al31). After 
hypotonic treatment the suspended cells were 
destroyed using a Dounce homogenizer. The 
nucleus was obtained by centrifugation, and the 
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Fig. 1. Deletion analysis of 5'-flanking region RD cells were transfected with plasmids constructed with various 
deletion mutants on the 5' side (left figure). After 48 hr of incubation, the cells were harvested, lysed and 
assayed for CAT activity (right figure). Details of the experiments are shown in Materials and Methods. 
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Fig. 2. Deletion analysis of 5' -flanking region RD cells were transfected with plasmids by the calcium phosphate 
method, and CAT activity was determined after 48 hr. -33 ~ -46 upstream of TATAA were deleted in 
CAT,Sy108,Sl-18. 

nuclear protein was extracted with ammonium 
sulfate. For the gel retardation assay, 32P-DNA 
fragment (25 k cpm) labeled by T4 polynucleotide 
kinase, 5µg of nuclear protein, and 5µg of poly 
(dI-dC) were mixed in 25µ1 of binding buffer 
(lOmM Hepes,pH. 7 .9; 60mM KCl; 7 .5mM MgCl2; 
O.lmM EDTA; lmM DTT; and 10% glycerol), 
incubated at room temperature for 30 min, and 
subjected to electrophoresis (lOV/cm) with 5% 

polyacryl amide gel. 

RESULTS 
Deletion analysis of the 5'-flanking region: As 

shown in Fig. 1, CAT,B-S,Sl-18 without the 
TATAA sequence had no CAT activity, suggesting 
that TATAA in this fragment also acts as a 
promoter in CAT plasmids. Interestingly, 
CAT,B-S,Sl-21 including only 25 base pairs(bp) 
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upstream from TATAA showed high CAT activity. 
However, CAT activity almost disappeared in 
CAT,Bg-Bg (135 bp upstream from TATAA). 
Unlike the other fragments, the 3'end of CAT,Bg­
Bg terminates in a Bgll site and, therefore, the 
effects of the Bgll-Sau 3AI fragment in the 
5'-untranslated region (UTR) can not be ignored. 
However, our analysis of 5'-UTR showed positive 
CAT activity in 5'-UTR up to Bgll as in 5'-UTR 
up to Sau3Al 34). The negative effect on CAT 
activity observed in CAT,Bg-Bg seemed to be due 
to the 5' side fragment. High CAT activity re-ap­
peared in CAT,Xh-S (223 bp upstream from 
TATAA), but CAT activity was re-inhibited in fur­
ther upstream fragments. Thus, we identified a 
positive fragment 25 bp upstream from TATAA, a 
negative fragment 135 bp upstream, a positive 
fragment 223 bp upstream, and a negative frag­
ment further upstream. 

Since high CAT activity was observed in the 
fragment 25 bp upstream from TATAA, deletion 
mutants were produced as shown in Fig. 2. CAT 
activity in CAT,Syl 7,Sl-18 was lower than that 
in CAT,B-S,Sl-21, since a linker was inserted 
immediately downstream of TATAA but was defi­
nitely present as compared with CAT,B-S,Sl-18. 
However, CAT,Syl08,Sl-18, in which -33 ~ -46 
upstream of TATAA were deleted, showed no CAT 
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activity. This suggests the important role of this 
short TATAA-upstream fragment in transcription. 

Gel retardation assay: To clarify whether a 
nuclear protein binding to the fragment 25 bp 
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Fig. 3. Gel retardation assay Gel retardation 
assays were performed using nuclear proteins 
extracted from serum starved RD cells (NP-8) and 
from RD cells treated with 20% FC8 and cyclohexi­
mide (NP-F).C: competitor(15 times more than the 
probe) 
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Fig. 4. Gel retardation assay Gel retardation assays were performed using nuclear proteins extracted from 
serum starved RD cells (NP-8) and from RD cells treated with 20% FC8 and cycloheximide (NP-F).A gel retarda­
tion assay with double stranded fragment 25 bp upstream from TATAA showed a retarded band(-+). This band 
was inhibited by a double strand competitor( +C), and a single strand competitor on the sense side (+sense) or 
anti-sense side( +anti-sense). 
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Fig. 5. Promoter region of PDGF-A chain gene A purine stretch(t) primarily consisting of guanine is present 
upstream of TATAA and a pyrimidine stretch(O) mainly consisting of cytosine downstream of TATAA. A 9-base 
inverted repeat are indicated by arrows ( +- -+ ). 

upstream from TATAA is present, a gel retarda­
tion assay was performed using the fragment of 
CAT,B-S,Sl-21 and CAT,B-S,Sl-18. As shown in 
Fig. 3, there was a band that formed only in the 
fragment of CAT,B-S,Sl-21 including 25 bp 
upstream from TATAA. Therefore, the fragment 
25 bp upstream from TATAA was artificially syn­
thesized and subcloned in the form of a double­
stranded chain. A gel retardation assay with this 
double strand fragment similarly showed a 
retarded band (Fig. 4). This binding was inhib­
ited by a double strand competitor and, interest­
ingly, was also inhibited by a single strand 
competitor on the sense side or anti-sense side. A 
gel retardation assay with each single strand 
fragment on the sense and anti-sense sides 
showed band formation more markedly than that 
observed with the double strand fragment, and a 
complete block by the single strand inhibitor. 
These findings suggest the presence of a strand 
non-specific DNA binding protein that predomi­
nantly binds to single-stranded DNA in this 
region. 

DISCUSSION 
The gene regulatory sites in the 5' flanking 

region of the PDGF-A chain gene could be divided 
into a positive regulatory element 25 bp 
upstream from TATAA, a negative element 135 
bp upstream, a positive element 223 bp 
upstream, and a negative element further 
upstream, showing a mosaic pattern. In many 
genes, positive regulation is considered to play a 
primary role. However, recent reports have 
shown the presence of negative regulatory ele­
ments such as those in genes of c-mos38\ p532\ 
y-interferon6\ c-myc26\ Insulin I15\ MHC class 
I19) a-fetoprotein20) growth hormone18) c-fos29) 

' ' ' ' retinol binding protein3\ lysozyme32\ and immu-
noglobulin heavy chain11). These reports show 
physiological and tissue specific regulation by 

means of the blocking of an enhancer by the neg­
ative regulator in its neighborhood. In the PDGF­
A chain gene, positive and negative regulators 
seems to be complicatedly involved in the regula­
tion of gene expression. In the PDGF-B chain 
gene, negative regulators were reported to be 
present by some authors23) but to be absent by 
others25). 

In the positive regulatory element immediately 
upstream of the promoter in the PDGF-A chain, 
we demonstrated the presence of a nuclear pro­
tein that predominantly binds to single-stranded 
DNA. The structure around the PDGF-A chain 
promoter is interesting as shown in Fig. 5. A 
purine stretch primarily consisting of guanine is 
present upstream of TATAA and a pyrimidine 
stretch mainly consisting of cytosine downstream 
of TATAA. In addition, a 9-base inverted repeat 
centering TATAA is observed. A polypurine or 
polypyrimidine stretch is capable of forming a tri­
ple-stranded form of DNA (H-DNA) containing a 
single-stranded loop10). Actually, the area sur­
rounding the PDGF-A chain promoter is a Sl 
hypersensitivity site35), suggesting that this area 
plays an important role in gene regulation17). In 
this study, a strand non-specific nuclear protein 
that predominantly binds to single-stranded DNA 
was present in this region. Though this protein 
appeared to be also bound with double-stranded 
DNA, there is a possibility that a part of the frag­
ment is single stranded. Another strand non-spe­
cific single-stranded DNA binding protein is 
human single-stranded DNA binding protein 
(HSSB)12,36) which is also called RF-A5) or RP­
A37). HSSB is a protein consisting of 70, 32, and 
14 KDa subunits. The 70 KDa subunit binds to 
single-stranded DNA. HSSB not only stabilizes 
the bound single-stranded DNA but also activates 
DNA polymerase13,l4) and helicase30\ suggesting 
its involvement in replication and repair. How­
ever, there are no reports that suggest the 
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involvement of HSSB in transcription. Whether 
HSSB is identical to the single-stranded DNA 
binding protein observed in the PDGF-A chain in 
this study is also an interesting problem. 
Recently, single-stranded DNA binding proteins 
involved in transcription have been reported, but 
they are sequence (strand) specific16•21•22•24•28). 

The strand non-specific DNA binding protein that 
binds to single-stranded DNA 5' upstream in the 
PDGF-A chain observed in this study may play 
the following roles. (!)Maintenance of the pro­
moter region in the single-stranded state, (2)faci­
litation of binding of other single-stranded DNA 
binding proteins, and (3)activation of proteins 
involved in transcription, facilitating transcrip­
tion. A recent study has shown that TFIID, 
which binds to TATAA and initiates transcription, 
also has single-stranded DNA binding activity9). 

The 25-base fragment upstream of TATAA may 
form a single-stranded loop, binds to the strand 
non-specific single-stranded DNA binding protein 
to continuously send positive signals regardless of 
the effects of the serum. 
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