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i

Preface

Modern automated factory environments, especially flat panel display (FPD)

assembly lines, require a very cost-intensive and sophisticated machinery. With the

huge investment involved and with the stiff competition among manufacturers for

high throughput product lines and low priced manufacturing, optimization of every

possible task in production lines is always paramount. Thin film transistor (TFT)

array fabrication process on a glass substrate is one of the most important steps in

FPD fabrication. During fabrication of TFT array lines on glass substrates, electrical

defects such as open circuits and short circuits often exist on them that have to

be inspected and detected in early manufacturing stages in order to repair and

restore them. Recently, manufacturers and researchers have started more attention

and R&D initiatives on defects inspection and repairing of TFT arrays in order to

maximize production yield and to stay competitive.

Currently, the most advanced technique of detecting such electrical defects is

the non-contact inspection method by a capacitor based sensor. The sensor scans

TFT lines, while a known voltage is applied into TFT lines on glass substrates

through a feeding electrode and is captured through a receiving electrode. Captured

voltage waveforms are digitized through an analogue to digital converter and taken

into analysis. The detection of defects is based on analyzing peaks and troughs

on those waveforms by using a known thresholding value. However determining a

proper threshold for correctly identifying such peaks and troughs on waveforms is

still not easy as the measured voltage signals are mixed with various noises such as

random noises, external vibrations and noises due to environmental effects such as

fluctuations of machine temperature.

Once such defective TFT lines are detected on glass surface of flat panel displays,

a camera based sensor, called NG sensor, is used to scan them in order to determine
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exact positions of defect points. Currently, this scanning method is a mere primitive

top-down unidirectional path which is heavily time consuming.

Under these circumstances, in this doctoral dissertation, focusing on features

at defect points (Open NG and Short NG) on waveform data we formulate the

problem as a highly data driven non-linear classification problem. Then, neural

network based solutions are proposed for defect inspection process of FPDs for the

non-contact detection method instead of existing thresholding method. There is

no any global threshold value is considered, instead, possible candidates points are

picked up from waveform data and then three parameters, which are characteristics

on and around candidate points, are considered as inputs to the neural network.

Signal to noise (SNR) at the candidate point, residual difference in a neighborhood

of the candidate point and the change of wave length in the same neighborhood in

the differential waveform are the three input parameters considered.

Firstly a feed-forward neural network with two hidden layers is adopted and

proved its successes. Then an extension, a topology optimized recurrent neural net-

work, is proposed in order to overcome some drawbacks in the feed-forward neural

network method. A genetic algorithm based evolutionary multi-objective optimiza-

tion algorithm is proposed for evolving the topology of a suitable recurrent neu-

ral network and its training by back-propagation through time. This method was

proven much better than both of the existing thresholding method and feed-forward

network based method after applying with a large set of real input data.

Finally, by focusing on the existing line scanning method of the NG sensor over

defective TFT lines, first the shortest possible scan path is approximated to an asym-

metric traveling salesman problem with precedence constraints. Then an algorithm,

a combination of modified self-organizing map, a 2-Opt algorithm and a repair al-

gorithm, is proposed for optimizing a shortest possible scan path. The superiority

of the method is proven by a number of simulation examples.
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Chapter 1

Introduction

1.1 Prospects of Flat Panel Display Industry

As a vital human-machine visual interface system, flat panel displays (FPD) are

indispensable to most electronic devices that require human operation and as a

result LCD and plasma technologies are now in commonplace. Global FPD mar-

ket has reached to a scale of multi-billion dollar and further growth is expected

to continue worldwide. The growth will be primarily driven by its widespread use

as display devices in various electronic gadgets such as TVs, notebook computers,

personal computers, mobile phones, and public display systems. Technology inno-

vations, falling prices, and robust demand from developing markets bode well for

the future of the market. Thanks to the numerous R&D initiatives, FPDs, which

carried high price tags until recently, are becoming cheaper. In addition, the FPD

technology is influencing the product development and design stages of the end-users

manufacturing processes.

Relentless R&D initiatives by both FPD manufacturers and researchers are likely

to unveil a range of advanced FPD models in the near future. Furthermore, as

LCD TVs become larger, it has become necessary for manufacturers to adopt larger

mother glass substrates of FPDs and to increase production speed both to increase

screen size and to reduce the production cost. The most modern factories for pro-

ducing large LCD panels typically operate production lines that use glass substrate
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sizes of 2, 200 × 2, 500 mm (ninth-generation) or 2, 880 × 3, 130 mm (tenth gener-

ation). Figure 1.1 shows the remarkable growth of glass sizes of FPDs during the

last decade.
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Figure 1.1: Growth of the size of mother glass substrates of flat panel displays.

1.2 Defect Inspection Process

As the demand for larger sizes of mother glasses, such as Generation 10,11 and

12, have been increasing, the demand for FPDs with high density pitch pattering of

TFT arrays have also been increasing. Particularly, with the emergence of ultra-high

definition 4K and 8K TVs and their expected growth in coming years, large scale

FPDs with high pitch TFT arrays would be in the mainstream [58, 59, 80]. However

with increasing pitch pattern density there is a tendency for having defects, such as
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inter-layer short circuits between TFT lines, to increase. Under these circumstances,

detection and repair of defects in early manufacturing stages have become signifi-

cantly important [64]. As a result, the speed and the precision of defects detection

have been major issues for the manufactures of FPDs and researchers alike.

During the fabrication process, FPDs produce surface defects due to various

reasons such as open circuits and short circuits within inside circuitry, dust, cracks,

etc. Therefore, finished panels often show unevenness and non-uniformity (mura)

due to those defects. Since flat panel display manufacturing is highly automated,

most if not all flat panels are examined for defects during and after fabrication. This

inspection stage is costly, and becomes more difficult when panel sizes increase.

Reliability of inspection is also generally unknown. There are mainly two defect

inspection processes, one is mura detection that takes place after panel fabrication,

and the other is TFT array testing that takes place in early fabrication stage.

1.2.1 Region Mura Detection

Mura, the word “mura” derived from the Japanese word for blemish, are typically

low-contrast imperfections that are larger than a single pixel, and are visible when

the display is driven at a constant gray level. They may be caused by non-uniform

distribution or impurities of liquid crystal or mechanical imperfections in the display

assembly.

In the literature, there are several methods proposed for mura region detection.

Lee and Yoo [44] proposed a region-mura defect detection method by using an

image regression technique. Then, Kim et al. [41] proposed a high pass frequency

filtering method which was also based on images. Li and Tsai [45] proposed a Hough

transform-based method to identify low-contrast defects in unevenly-illuminated

images, and especially focus on the inspection of mura defects in liquid crystal

display (LCD) panels. There is another promising mura detection method, proposed

by Tseng et al.[79], using multiple image back ground subtraction that can detect

both white mura and black mura. Alam and Guoqing [6] also proposed an image
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based mura detection method by a fast Fourier transform technique.

However these mura detection methods are only for confirming FPDs to be defect

free at latter stages of FPD fabrication, and if it is found to be defective those panels

have to be disposed. Disposing a finished FPD, particularly of a larger generation

size as described in Section 1.1, would be a huge loss and non-affordable for a

modern manufacturer. Therefore, if there is a method of repairing and restoring

those defects, it must be during early fabrication process.

1.2.2 TFT Array Testing

One of the main components of FPDs is the array of thin film transistor lines,

or TFT array, which is basically a two-dimensional pixel cell array. Each pixel

cell, in general, consists of a storage capacitor and a TFT switch. Each time, the

gate drivers activate one row of the TFT array by setting the corresponding gate

line voltage high; this turns on the pixel switches so that the source drivers can

write data to the storage capacitors in the selected row. The testing of this array

characterizes the electrical performance of the two-dimensional pixel array. It’s most

important goal is to identify and report the nature and location of the open circuits

(open NGs) and short circuits (short NGs). Comprehensive array testing is crucial

in yield management and quality control since it is the first opportunity to evaluate

the electrical performance of a FPD and the last reliable opportunity to perform

repair on defective pixels and gate/data lines. A glass panel with a defective TFT

array that enters the assembly line is a waste of not only the assembly cost but also

the other defect-free components.

When looking at literature, there are several methods proposed and already in use

in the industry in which image based automatic optical inspection (AOI) methods

were the first. Lu and Tsai [49, 50] proposed an image based defect detection method

of singular value decomposition based image reconstruction technique. This method

mostly answered for non-electrical defects such as pinholes, scratches, particles and

fingerprints on the surface of TFT array. Then Tsai and Hung [78] proposed another
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AOI based method using a Fourier reconstruction and wavelet decomposition tech-

nique and Yu and Jian [82] proposed a fuzzy classifier based method. Morphological

characteristics on binary images were used by Noh et al. [63] and a technique called

kernel principal component analysis was proposed by Liu et al.[47, 48] which was

also able to classify the types of defects. Liu and Chen[46] have proposed another

promising AOI method based on an statistical approach, a support vector machine.

All of these methods are non-contact, hence no damage occurs to the panel surface,

and almost real-time. However non of them can detect electrical defects, open NGs

or short NGs, on TFT lines on the glass surface.

Another commonly used method is the pin probe method where electrode pins

make direct contacts with each and every TFT line of the entire TFT array on panel

surface and measure the current flown after applying a known voltage. Though this

method has the advantage of detecting nothing but electrical defects, it also has

disadvantages such as poor inspection speed, difficulty of adjusting for changes of

TFT circuit design and line pitch and the necessity of frequent replacing of pin

probing fixtures, which is an expensive process.

The non-contact FPD inspection method proposed by Hamori et al. [29, 30, 31,

32] is the most promising technique to-date, which is totally non-contact, utilizing a

capacitor based sensor that scans over the TFT lines of mother glass panels of FPDs.

The detection of defects is based on analyzing peaks and troughs on a waveform

of a voltage signal captured by the sensor using a threshold method. However

determining a proper threshold to correctly detect such peaks and troughs on wave

form data is still not easy as the measured voltage signal is mixed with various noises

such as random noises, external vibrations and noises due to environmental effects

such as fluctuations of machine temperature. Another problem in this method is

that, once defectives lines are observed by the above non-contact sensor, a camera

based sensor, called NG sensor, scans all defective lines to determine exact defect

points. This line scanning method is a mere top-down left to right unidirectional

path, which is heavily time consuming.
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Henley et al.[33] proposed another non-contact FPD inspection method, by using

a voltage image of the TFT array, which looked promising in its early stage in

1990s. However it didn’t get any recognition from manufacturers mainly due to

it’s inability to adapt to different TFT arrays as well as some practical problems in

implementations.

Under these circumstances, in this doctoral dissertation, focusing on optimization

of defect inspection process of flat panel displays, we address two main sub-processes

in the main process, namely, a highly data driven defects detection sub process and

the subsequent path optimization sub-process.

In the defects detection sub-process, focusing on features at defect points (Open

NG and Short NG) on waveform data we formulate the problem as a highly data

driven non-linear classification problem. Then, neural network based solutions are

proposed for defect inspection process of FPDs for the non-contact detection method

instead of existing thresholding method. There is no any global threshold value is

considered, instead, possible candidates points are picked up from waveform data

and three parameters, which are characteristics on and around candidate points, are

considered as inputs to the neural network. Signal to noise (SNR) at the candidate

point, residual difference in a neighborhood of the candidate point and the change

of wave length in the same neighborhood in the differential waveform are the three

input parameters considered.

Firstly a feed-forward neural network, with two hidden layers, is adopted and

proved it’s success over the existing thresholding method. Then an extension to

it, a topology optimized recurrent neural network, is proposed. The optimization

algorithm is a genetic algorithm based multi-objective evolutionary process that

evolves the topology of the recurrent neural network and trained it through back-

propagation algorithm through time. This method was proven much better than

the existing thresholding method after applying and verified with a large set of real

input data.

Finally in the NG sensor’s path optimization sub-process, by focusing on the
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existing heavily time consuming top-down unidirectional line scanning method, first

the shortest scan path is approximated to a traveling salesman problem with prece-

dence constraints. Then a combination of self-organizing map with some modifica-

tions and 2-Opt algorithm is proposed for optimization of a shortest possible scan

path. The superiority of the method is proven by a number of simulation examples.

The remaining part of this chapter gives the outline of the dissertation and pub-

lished papers of the author.

1.3 Outline of the Thesis

Defects inspection process of flat panel display fabrication through neural net-

works is considered in this doctoral dissertation. Initially a feed-forward neural

network with two hidden layers is proposed for detection of NG points on waveform

data, where input waveform data are from the existing non-contact defect inspec-

tion sensor proposed by Hamori et al. [29, 30, 31, 32]. Then an extension with a

recurrent neural network, in which the the topology and training of the recurrent

network is optimized by a genetic algorithm based multi-objective evolutionary op-

timization technique, is proposed to address the drawbacks of feed-forward network.

An optimization method, combining a modified self-organizing map, a 2-Opt algo-

rithm and a repair algorithm, is also proposed for optimization of the shortest path

of the NG sensor, which scans individual defective lines for locating exact positions

of NG points on lines. The organization of each chapter is briefly summarized in

the following.

In chapter 2, the basic concepts and methods of artificial neural network used

in the dissertation are given briefly. Firstly, concepts of artificial neuron, historical

background and engineering approach of an artificial neural network are discussed.

Then different architectures of artificial neural networks including fee-forward neural

networks, recurrent neural networks and Kohonen’s network are presented. The per-

ceptron learning and the learning process of a neural network is discussed next. Fi-



8 1. Introduction

nally, the back-propagation algorithm and learning with back-propagation together

with back-propagation through time are explained.

In chapter 3, the non-contact defect inspection of flat panel displays proposed by

Hamori et al. [29, 30, 31, 32] is briefly described. Scanning of TFT lines on flat

panel displays and waveform data capture system by a non-contact sensor and the

features of waveform data are also briefly described. Then the thresholding method

currently used by Hamori et al. is explained followed by its drawbacks, where those

drawbacks were inspired for using neural network approach in this dissertation.

In chapter 4, focusing on feed-forward neural networks in defect detection on

flat panel displays, some related literature and the applicability of neural networks

to the problem is discussed. Then an analysis of input waveform data and how

to select input parameters is included. The topology of the selected feed-forward

neural network and its training by back-propagation algorithm is presented next,

and finally, some training results and detection results using the trained network are

presented

In chapter 5, focusing on recurrent neural networks in defect detection on flat

panel displays, some related literature and the applicability of recurrent neural net-

works to the problem is discussed. The topology of the recurrent neural network

and its training is evolved by a genetic algorithm based multi-objective evolutionary

optimization technique and therefore some literature about optimization is also pre-

sented. Then the multi-objective evolutionary optimization algorithm is presented

step by step and finally some detection results using the optimized recurrent network

together with a comparison with existing method is presented.

In chapter 6, focusing on Kohonen’s self-organizing maps and its applications for

traveling salesman problem solvers, some related literature in both self-organizing

maps and traveling salesman problem are discussed. Then how the problem, of

finding the shortest path of the NG scan sensor over defective TFT lines scattered

throughout a panel structure, is approximated to an asymmetric traveling salesman

problem with precedence constraints is presented. Then its solution using a com-
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bination of modified self-organizing map, a 2-Opt algorithm and a repair algorithm

is presented. Finally some simulated results together with a comparison between

existing method are also presented for the verification of the method’s superiority

over existing top-down unidirectional method.

Chapter 7 concludes the doctoral dissertation and briefly summarizes this re-

search together with some remarks of our future directions.
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Chapter 2

Artificial Neural Networks

2.1 Introduction

Artificial Neural Network (ANN) is an information processing paradigm that is

inspired by the way biological nervous systems, such as the brain, process informa-

tion. They are being successfully applied across an extraordinary range of problem

domains, in areas as diverse as engineering, medicine, physics, biology and finance.

The excitement stems from the fact that these networks are attempts to model the

capabilities of the human brain. From a statistical perspective neural networks are

interesting because of their potential use in prediction and classification problems.

ANNs are non-linear, data driven and self adaptive approaches as opposed to the

traditional model based methods. They are powerful tools for modeling, especially

when the underlying data relationship is unknown. They can identify and learn

correlated patterns between input data sets and corresponding target values. Once

trained, ANNs can be used to predict the outcome of new independent input data.

ANNs imitate the learning process of the human brain and can process problems

involving non-linear and complex data even if the data are imprecise and noisy.

Neural networks have been used for a wide variety of applications where sta-

tistical methods are traditionally employed. They have been used in classification

problems, such as recognizing speech, image pattern recognition, data classification,

and predicting the secondary structure of input patterns. In time-series applications,
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ANNs have been used in predicting stock market performance. These problems are

normally solved through classical statistical methods, such as discriminant analysis,

logistic regression, Bayesian analysis, multiple regression, etc. Learning in biologi-

cal systems involves adjustments to the synaptic connections that exist between the

neurons and is true of ANNs as well.

2.2 Historical Background

Research in Artificial Neural Networks (ANN) has experienced three period of

extensive activities in the history. The first peak of activities happened in 1940s

due to McCulloch and Pitt’s pioneering work [57]. The first artificial neuron was

produced by them but the technology available at that time did not allow them to

do much. The second rise occurred in the 1960s with the introduction of percep-

tron theorem by Rosenblatt [68]. However with results shown by the perceptron

convergence theorem by Minsky and Papert [60] , the enthusiasm of most of the

researches dampened and the lull continued another two decades. ANNs received

renewed interest again in early 1980s initially due to Hopfield’s energy approach

[34] in 1982 and the error back-propagation learning algorithm for multilayer feed-

forward neural networks first proposed by Werbos [81] in 1974 and then reinvented

several times by Rumelhart and McClelland [69, 70] in 1987. That gained recogni-

tion and led to a renaissance in the field of artificial neural network research among

a large community of researchers from many scientific disciplines.

2.3 Biological Motivation

The long course of evolution has given the human brain many desirable charac-

teristics not present in Von Neumann or modern parallel computers. These include

massive parallelism, distributed representation and computation, learning ability,

generalization ability, adaptivity, inherent contextual information processing, fault
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tolerance, and low energy consumption. Modern digital computers outperform hu-

mans in the domain of numeric computation and related symbol manipulation. How-

ever, humans can effortlessly solve complex perceptual problems (like recognizing a

man in a crowd from a mere glimpse of his face) at such a high speed and extent as

towards the world’s fastest computer. Why is there such a remarkable difference in

their performance? The biological neural system architecture is completely different

from the von Neumann architecture. This difference significantly affects the type of

functions each computational model can best perform.

Numerous efforts to develop intelligent programs based on Von Neumanns cen-

tralized architecture have not resulted in general-purpose intelligent programs. In-

spired by biological neural networks, ANNs are massively parallel computing systems

consisting of an extremely large number of simple processors with many intercon-

nections. ANN models attempt to use some organizational principles believed to be

used in the human brain. Modeling a biological nervous system using ANNs can

also increase our understanding of biological functions. State-of-the-art computer

hardware technology has made this modeling feasible.

Much is still unknown about how the brain trains itself to process such infor-

mation. In the human brain, a typical neuron (or nerve cell) collects signals from

others through a host of fine structures called dendrites (Figure 2.1). The neuron

sends out spikes of electrical activity through a long and thin stand known as axon,

which splits into thousands of branches. At the end of each branch, structure called

a synapse converts the activity from the axon into electrical effects that inhibit or

excite activity from the axon into electrical effects that inhibit or excite activity in

the connected neuron. When a neuron receives excitatory input that sufficiently

large compared with its inhibitory input, it sends a spike of electrical activity down

its axon. Learning occurs by changing the effectiveness of the synapses so that the

influence of one neuron on another changes.
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Figure 2.1: A biological neuron and its components.

2.4 Characteristics of Neural Networks

Some attractive characteristics of neural networks that make it superior to even

the most sophisticated computer system for pattern recognition are the following:

• Robustness and fault tolerance: The decay of nerve cells does not seem to

affect the performance significantly.

• Flexibility: The network automatically adjusts to a new environment without

using any preprogrammed instructions.

• Ability to deal with a variety of data situations: The network can deal with

information that is fuzzy, probabilistic, noisy, and inconsistent.

• Collective computations: The network performs routinely many operations in

parallel and also a given task in a distributed manner.

• Mapping capabilities: ANNs can map input patterns to their associated output

patterns.

• Learn by example: Thus, the networks can be trained with known examples

of a problem before they are tested with unknown instances of the problem,
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where it can identify new objects previously untrained.

• Capability to generalize: Thus, they can predict new outcomes from past

trends.

2.5 Basics of Artificial Neural Networks

As the terminology of ANNs has developed from biological model of the human

brain, a neural network consists of a set of connected cell: the neuron. The neurons

receive impulses from either input cells or other neurons and perform some kind of

transformation of the input and transmit the outcome to other neurons or to output

cells. The neural networks are built from layers of neurons connected so that one

layer receives input from the proceeding layer of neurons and passes the output on

to the next layer.

The activation function (or transformation function) in a neuron is a function of

the input vector x(x1, ..., xn). The output is obtained as:

f(xj) = f

(
αj +

k∑
i=1

wijyj

)
. (2.1)

where f is the activation function, typically a sigmoid (logistic or tangent hyper-

bolic) function or a step function and αj is a bias input to the neuron. A graphical

presentation of an artificial neuron is given in Figure 2.2, where i1, i2, .., ik are in-

puts to the neuron and w1j, w2j, ..., wkj are synaptic weights associated with each

input. Mathematically a multi-layer perceptron network is a function consisting of

composition of weighted sums of the function corresponding to the neuron.
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Figure 2.2: An artificial neuron and its components.

2.6 Architectures of Neural Networks

An ANN is defined as a data processing system consisting of a large number

of highly inter connected processing elements (artificial neurons) in an architecture

inspired by the structure of the cerebral cortex of the brain. Though there are several

types of architectures of ANNs, the two most widely used architectures described

below.

2.6.1 Feed-Forward Neural Networks

Feed-forward neural networks (FNN), also known as associative networks, are the

most popular and most widely used models in many practical applications. They

are known by many different names, such as ”multi-layer perceptron.” FNNs allow

signals to travel one way only; from input to output. There is no loops (feedbacks),

i.e. the output of any layer does not affect that same layer. FNNs tend to be straight

forward networks that associate inputs with outputs. They are extensively used in

pattern recognition. This type of organization is also referred to as bottom-up or

top-down structure.

Figure 2.3 illustrates a single hidden layer FNN with 3 inputs, 2 outputs and and

4 hidden 4 neurons. Each arrow in the figure symbolizes a synaptic weight parameter
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in the network. The network is divided into layers. The input layer consists of just

the inputs to the network. Then follows a hidden layer, which consists of any number

of neurons, or hidden units placed in parallel. Each neuron performs a weighted

summation of the inputs, which then passes a nonlinear activation function, also

called the neuron function.

Inputs

Outputs

Input
layer Hidden

layer

Output
layer

Figure 2.3: The structure of a feed-forward neural network.

2.6.2 Feedback Neural Networks

Feedback neural networks, also knows as auto-associative networks or recurrent

neural networks, can have signals traveling in both directions by introducing loops

in the network. They are very powerful and can get extremely complicated during

developing the network and training. Feedback networks are dynamic; their ’state’

is changing continuously until they reach an equilibrium point. They remain at the

equilibrium point until the input changes and a new equilibrium needs to be found.

Figure 2.4 illustrates a structure of a feedback neural network, where there are two

feedback connections or loops, one from output layer neuron to first neuron in the

hidden layer and the other from the third neuron of the hidden layer onto itself.
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Inputs

Outputs

Input
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Hidden
layer

Output
layer

Loops
(Feedback inputs)

Figure 2.4: The structure of a feedback neural network.

2.7 Types of Neural Networks

This classification, the types of neural networks, is based on the behavior of

neurons and directions of data they pass between input, processing and output

neurons. In other words, the way neurons semantically communicate within the

networks, is different in each type of neural network.

2.7.1 Multi-Layer Perceptron

The most popular form of neural network architecture is the multi-layer percep-

tron (MLP), and a multi-layer perceptron:

• has any number of inputs.

• has one or more hidden layers with any number of units.

• uses linear combination functions in the input layers.

• uses generally sigmoid activation function in hidden layers.

• has nay number of outputs with any activation function.

• has connections between the input layer and the first hidden layer, between
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the hidden layers, and between the last hidden layer and the output layer.

2.7.2 Radial Basis Function Networks

Radial basis function (RBF) networks are also feed-forward, but have only one

hidden layer. An RBF network:

• has any number of inputs.

• typically has only one hidden layer with any number of units.

• uses radial combination functions in the hidden layer, based on the squared

Euclidean distance between the input vector and the weight vector.

• typically uses exponential activation function in the hidden layer. in which

case the network is Gaussian RBF network.

• has any number of outputs with any activation function.

• has connections between the input layer and the hidden layer, and between

the hidden layer and the output layer.

2.7.3 Kohonen Networks

Kohonen networks (or Kohonen self-organizing feature maps, or SOMs for short)

are another type of artificial neural networks developed in 1982 by Tuevo Kohonen[43].

As its name suggests, SOMs learn on their own through unsupervised learning to

produce a low-dimensional (typically two-dimensional), discretized representations

of the input space, called a map. SOMs are different from other ANNs in the sense

that they use a neighborhood function to preserve the topological properties of the

input space.

The principal goal of a SOM is to transform an incoming signal pattern of ar-

bitrary dimension into one or two dimensional discrete map, and to perform this

transformation adaptively in a topologically ordered fashion. Therefore a SOM is
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a set up placing neurons at the nodes of a one or two dimensional lattice. Higher

dimensional maps are also possible, but not so common. The neurons become selec-

tively tuned to various input patterns (stimuli) or classes of input patterns during

the course of the competitive learning. The locations of the neurons so tuned (i.e.

the winning neurons) become ordered and a meaningful coordinate system for the in-

put features is created on the lattice. The SOM thus forms the required topographic

map of the input patterns.

Therefore SOMs are useful for multi-dimensional scaling or visualizing high-

dimensional data in low-dimensional views. An SOM consists of components called

nodes or neurons. Each node is associated with a weight vector and a position in the

map space.The usual arrangement of nodes is a two-dimensional regular spacing in

a hexagonal or rectangular grid. Figure 2.5 shows a mapping of a high dimensional

input space into a low dimensional space by a self-organizing map.

Continuous high dimensional 
input space

X
Discrete low dimensional 
output space

Feature map

wI(x)

I(x)

Figure 2.5: A self-organizing map.
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2.8 Learning Methods of Neural Networks

Learning is essential to most of the neural network architectures and hence the

choice of a learning algorithm is a central issue in neural network development.

What is really meant by saying that a processing element learns is that a processing

unit is capable of changing its input/output behavior as a result of changes in the

environment. Since the activation rule is generally fixed when the network is con-

structed and since the input vector cannot be changed, to change the input/output

behavior the weights corresponding to inputs need to be adjusted. A method is

thus needed by which, at least during the training stage, weights can be modified in

response to the input/output process. A number of such learning rules are available

for neural network models.

2.8.1 Supervised Learning

Supervised learning is fairly common in classification problems because the goal

is often to get the computer to learn a classification system that we have created.

More generally, classification learning is appropriate for any problem where deducing

a classification is useful and the classification is easy to determine. In some cases, it

might not even be necessary to give pre-determined classification to every instance

of a problem if the agent can work out the classification for itself.

Supervised learning entails learning a mapping between a set of input variables

and an output variable and applying that mapping to predict the output for unseen

data. Supervised learning is the most important methodology in machine learning

and it also has central importance in the processing of multimedia data. Every input

variable that is used to train the network is associated with an output pattern,

which is the target or the desired pattern. A teacher is assumed to be present

during learning process, when a comparison is made between the network’s computed

output and the desired or expected output to determine the error. The error is used

to change network parameters, which result in improving the performance.
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2.8.2 Unsupervised Learning

Unsupervised learning studies how systems can learn to represent particular input

patterns in a way that reflects the statistical structure of the overall collection of

input patterns. By contrast with supervised learning or reinforcement learning,

there are no explicit target output or environmental evaluations associated with

each input; rather the unsupervised learner brings to bear prior biases as to what

aspects of the structure of the input should be captured in the output.

Unsupervised learning is important since it is likely to be much more common

in the brain than supervised learning. For example there are around 106 photo-

receptors in each eye whose activities are constantly changing with the visual world

and which provide all the information that is available to indicate what objects are

in the world, how they are presented, what the lighting conditions are, etc. Devel-

opmental and adult plasticity are critical in animal vision ; indeed structural and

physiological properties of synapses in the neocortex are known to be substantially

influenced by the patterns of activity in sensory neurons that occur. This makes un-

supervised methods essential, and equally, allows them to be used as computational

models for synaptic adaptation.

2.8.3 Reinforced Learning

Reinforced learning is learning what to, how to map situations to actions, so as

to maximize a numerical reward signal. The learner is not told which actions to

take, as in most forms of machine learning, but instead must discover which actions

yield the most reward by trying them. In the most interesting and challenging cases,

actions may affect not only the immediately reward but also the next situation and,

through that, all subsequent rewards. These two characteristics , trial and error

search and delayed reward, are the two most important distinguishing features of

reinforcement learning.

In this method, a teacher though available, does not present the expected an-
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swer but only indicates its network output is correct or incorrect. The information

provided helps the network in its learning process. A reward is given for a correct

answer and penalty for wrong answer. But, reinforced learning is not a popular form

of training, where a comparison is made between the network’s computed output

and the desired or expected output patterns. Hence, the system learns of its own.

One of the challenges that arises in reinforced learning and not in other kinds of

learning is the trade-off between exploration and exploitation. To obtain a lot of

reward, a reinforced learning agent must prefer actions that it has tried in the past

and found to be effective in producing reward. Another key feature of reinforced

learning is that it explicitly considers the whole problem of a goal-directed agent

interacting with an uncertain environment.

2.9 Training with Back-Propagation

The Back-propagation algorithm was originally introduced in the 1970s, but its

importance was not fully appreciated until that famous publication by Rumelhart

et al.[69] in 1986. That paper together with the book by Rumelhart and McClelland

[70] describes several neural networks where back-propagation works far faster than

earlier approaches to learning, making it possible to use neural networks to solve

problems which had previously been insoluble. Today the back-propagation is the

workhorse of learning in many neural networks.

Back-propagation requires a known, desired output for each input value in order

to calculate the gradient of the loss function. It is therefore usually considered to be

a supervised learning method. It is a generalization of the delta rule to multi-layered

feed-forward networks, made possible by using the chain rule to iteratively compute

gradients for each layer. Back-propagation requires that the activation function used

by the artificial neurons to be differentiable.
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2.9.1 The Learning Problem

A feed-forward neural network is a computational graph whose nodes are com-

puting units and whose directed edges transmit numerical information from node

to node. Each computing unit is capable of evaluating a single primitive function

of its input. In fact the network represents a chain of function compositions which

transform an input to an output vector (called a pattern). The network is a partic-

ular implementation of a composite function from input to output space, which is

called the network function. The learning problem consists of finding the optimal

combination of weights so that the network function ϕ approximates a given func-

tion f as closely as possible. However, the function f is not given explicitly but only

implicitly through some examples.

Consider a fee-forward neural network with n input and m output units. It can

consist of any number of hidden units and can exhibit any desired feed-forward con-

nection pattern. A training set {(x1, t1), (x2, t2), ..., (xp, tp)} is also given consisting

of p ordered pairs of n− and m−dimensional vectors, which are called the input and

output patterns. The primitive functions at each node of the network is considered

to be continuous and differentiable. The weights of the edges are real numbers se-

lected at random. When the input pattern xi from the training set is presented to

this network, it produces an output oi different in general from the target ti. What

is needed is to make oi and ti identical for i = 1, ..., p by using a learning algorithm.

More precisely, it is needed to minimize the error function of the network, defined

as;

E =
1

2

p∑
i=1

‖ oi − ti ‖2 (2.2)

After minimizing this function for the training set, new unknown input patterns

are presented to the network and expected to be interpolated. The network must

recognize whether a new input vector is similar to learned patterns and produce a

similar input.
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Theback-propagationalgorithmisusedtofindalocalminimumoftheerror

function.Thenetworkisinitializedwithrandomlychosenweights.Thegradientof

theerrorfunctioniscomputedandusedtocorrecttheinitialweights.Thefirststep

oftheminimizationprocessconsistsofextendingthenetwork,sothatitcomputes

theerrorfunctionautomaticallyasshowninFigure2.6.

Figure2.6:Extendednetworkforthecomputationoferrorfunction.

2.9.2 Back-PropagationAlgorithm

Inordertotrainaneuralnetworktoperformsometask,theweightsofeachunit

mustbeadjustedinsuchawaythattheerrorbetweenthedesiredoutputandthe

actualoutputisreduced.Thisprocessrequiresthatthenetworkcomputetheerror

derivativeofweights(EW),inotherwords,itmustbecalculatedhowtheerror

changesaseachweightisincreasedordecreasedslightly. Theback-propagation

algorithmisthemostwidelyusedmethodfordeterminingtheEW.

Theback-propagationalgorithmiseasiesttounderstandifalltheunitsinthe

networkarelinear.ThealgorithmcomputeseachEWbyfirstcomputingtheEA,

therateatwhichtheerrorchangesastheactivitylevelofaunitischanged.For

outputunits,theEAissimplythedifferencebetweentheactualanddesiredoutput.

TocomputetheEAforahiddenunitinthelayerjustbeforetheoutputlayer,first
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identify all the weights between that hidden unit and the output units to which it

is connected. Then those weights are multiplied by the EAs of those output units

and products are added up. This sum is equal to EA for the chosen hidden unit.

Once all the EAs in the hidden layer just before the output layer are calculated, the

EAs for other layers can be computed in like fashion, moving from layer to layer in

a direction opposite to the way activities propagate through the network. This is

what gives back-propagation its name. Once the EA has been computed for a unit,

it is straight forward to compute the EWs for each incoming connection of the unit.

The EW is the product of EA and the activity through the incoming connection

2.9.2.1 Learning with Back-propagation

Since the error function E needs to be minimized, which depends on the network

weights, it is needed to deal with all weights in the network one at a time. The feed-

forward step is computed in the usual way, but the output of each unit is stored

in its right side. The back-propagation step is performed in the extended network

that computes the error function and then fix the attention on one of the weights,

say wij whose associated edge points from the ith to the jth node in the network.

This weight can be treated as an input channel into the subnetwork made of all

paths starting at wij and ending in the single output unit of the network. The

information fed into the subnetwork in the feed-forward step was oiwij, where oi is

the stored output of the unit i. The back-propagation step computes the gradient

of E with respect to this input, i.e., ∂E/∂oiwij. Since in the back-propagation step

oi is treated as a constant, we have

∂E

∂wij

= oi
∂E

∂oiwij

. (2.3)

In other words, the back-propagation is performed in the usual way. All subnetworks

defined by each weight of the network can be handled simultaneously, but it stores

additionally at each node i:

• The output oi of the node in the feed-forward step.
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• The cumulative result of the backward computation in the back-propagation

step up to this node, and this quantity is called the back-propagated error.

If the back propagated error at the jth node is denoted by δj, then the partial

derivative of E with respect wij can be expressed as:

∂E

∂wij

= oiδj. (2.4)

Once all the partial derivatives have been computed, the gradient descent can be

performed by adding to each weight wij the increment

∆wij = −γoiδj. (2.5)

This correction is needed to transform the back-propagation algorithm into a learn-

ing method for neural networks.

2.9.3 The Case of Layered Networks

The most important special case of feed-forward networks is that of layered net-

works with one or more hidden layers. The following describes explicit formulas for

weight updates and show how they can be calculated using linear algebraic opera-

tions.

2.9.3.1 Extended Network

Consider a network with n input sites, k hidden, and m output units.The weight

between input site i and hidden unit j will be called w
(1)
ij . The weight between

hidden unit i and output unit j will be called w
(2)
ij . The bias −θ of each unit is

implemented as the weight of and additional edge. Input vectors are thus extended

with a 1 component, and the same is done with the output vector from the hidden

layer as shown in Figure 2.7. The weight between the constant 1 and the hidden

unit j is called w
(1)
n+1,j and the weight between the constant 1 and the output unit j

is denoted by w
(2)
k+1,j. There are (n+ 1)× k weights between input sites and hidden
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Figure 2.7: Notation for the 3-layered network.

units and (k + 1) × m weights between hidden and output units. Let W 1 be the

(n + 1) × k matrix with components w
(1)
ij at the ith row and jth column. Similarly

let W 2 be the (k + 1) ×m matrix with components w
(2)
ij . An over lined notation

is used to emphasize that the last row of both matrices correspond to the biases of

computing units. The matrix of weights without this last row will be needed in the

back-propagation step. The n−dimensional input vector o = (o1, ..., on) is extended,

transforming it to ô = (o1, ..., on, 1). The excitation netj of the jth hidden unit is

given by;

netj =
n+1∑
i=1

w
(1)
ij ôi. (2.6)

The activation function is a sigmoid and the output o
(1)
j of this unit is thus;

o
(1)
j = s

(
n+1∑
i=1

w
(1)
ij ôi

)
. (2.7)

The excitation of all units in the hidden layer can be computed with the vector-

matrix multiplication ôW 1. The vector o(1) whose components are the outputs of



29

the hidden units is given by;

o(1) = s(ôW 1), (2.8)

using the convention of applying the sigmoid to each component of the argument vec-

tor. The excitation of the units in the output layer is computed using the extended

vector ô(1) = (o
(1)
1 , ..., o

(1)
k , 1). The output of the network is the m−dimensional

vector o(2), where;

o(2) = s(ô(1)W 2). (2.9)

These formulas can be generalized for any number of layers and allow direct com-

putation of the flow of data in the network with simple matrix operations.

2.9.3.2 Steps of the Algorithm

Figure 2.8 shows the extended network for computation of the error function. In

order to simplify, a single input-output pair (o, t) is considered. And the network

has been extended with an additional layer of units. The right sides compute the

quadratic deviation 1
2
(o2i − ti) for the ith component of the output vector and the

left sides store (o2i − ti). Each output unit i in the original network computes the

sigmoid s and produces the output o2i . Addition of the quadratic deviations gives

the error E. The error function for p input-output examples can be computed by

creating p networks like the one shown, one for each training pair, and adding the

outputs of all of them to produce the total error of the training set.

After choosing the weights of the network randomly, the back-propagation algo-

rithm is used to compute the necessary corrections. The algorithm can be decom-

posed in the following four steps:

1. Feed-forward computation

2. Back-propagation to the output layer

3. Back-propagation to the hidden layer
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FirstStep:Feed-forwardcomputation

Thevectoroispresentedtothenetwork.Thevectorso(1)ando(2)arecomputed

andstored.Theevaluatedderivativesoftheactivationfunctionsarealsostoredat

eachunit.

SecondStep:Back-propagationtotheoutputlayer

Theback-propagationpathfromtheoutputofthenetworkuptotheoutputunitj

isshowninFigure2.9.

Fromthispathallthemultiplicativetermscanbecollectedbysimpleinspection

whichdefinetheback-propagatederrorδ
(2)
j .Therefore

δ
(2)
j =o

(2)
j(1−o

(2)
j)(o

(2)
j −tj), (2.10)
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Figure2.9:Back-propagationpathuptooutputunitj.

andthepartialderivativeis

∂E

∂w
(2)
ij

= o
(2)
j(1−o

(2)
j)(o

(2)
j −tj)o

(1)
j =δ

(2)
j o

(1)
i. (2.11)

wheretheweightw
(2)
ij isavariableanditsoutputo

(1)
i

Oi
(1)

wij
(2)

δj
(2)

isaconstant.

Figure2.10:Inputandback-propagationerroratanedge.

Figure2.10showsthegeneralsituationduringtheback-propagationalgorithm.At

theinputsideoftheedgewithweightwijthereiso
(1)
i andattheoutputsidethere

isback-propagatederrorδ
(2)
j

ThirdStep:Back-propagationtothehiddenlayer

Nowitisneededtocomputethepartialderivatives ∂E

∂w
(1)
ij

.Eachunitjinthehidden

layerisconnectedtoeachunitqintheoutputlayerwithanedgeofweightw
(2)
jq,for
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q=1,...,m.Theback-propagatederroruptounitjinthehiddenlayermustbe

computedtakingintoaccountallpossiblebackwardpaths,asshowninFigure2.11.

Theback-propagatederroristhen

δ
(1)
j =o

(1)
j(1−o
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m
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jqδ
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Figure2.11:Allpathsuptoinputsitei.

Theback-propagatederrorcanbecomputedinthesamewayforanynumberof

hiddenlayersandtheexpressionforthepartialderivativesofEkeepsthesame

analyticform.

FourthStep: Weightupdates

Aftercomputingallpartialderivativesthenetworkweightsareupdatedinthe

negativegradientdirection. Alearningconstantγdefinesthesteplengthofthe
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correction. The corrections for the weights are given by

∆w
(2)
ij = −γo(1)i δ

(2)
j , for i = 1, ...., k + 1; j = 1, ...,m, (2.14)

and

∆w
(1)
ij = −γoiδ(1)j , for i = 1, ...., n+ 1; j = 1, ..., k, (2.15)

where on+1 = o
(1)
k+1 = 1. It is very important to make the corrections to the weights

only after the back-propagated error has been computed for all units in the net-

work. Otherwise the corrections become intertwined with the back-propagation of

the error and the computed corrections do not correspond any more to the negative

gradient direction though some authors fall in this trap. Note also that some books

define the back-propagated error as the negative traversing value in the network. In

that case the update equations for the network weights do not have a negative sign

(which is absorbed by the deltas), but this is a matter of pure convention.

More than one training pattern

In the case of more than 1 input-output patterns (p > 1 in equation 2.2), an ex-

tended network is used to compute the error function for each of them separately.

The weight corrections are computed for each pattern, for example, for weight w
(1)
ij

the corrections are

∆1w
(1)
ij ,∆2w

(1)
ij , ...,∆pw

(1)
ij . (2.16)

The necessary update in the gradient direction is then

∆w
(1)
ij = ∆1w

(1)
ij + ∆2w

(1)
ij + ...+ ∆pw

(1)
ij . (2.17)

Error Convergence

Figure 2.12 shows the typical pattern of convergence of the total error during train-

ing of a feed-forward neural network. After some iterations the algorithm finds a

solution to the learning problem. In the figure the error falls fast at the beginning
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and end of training. Between these two zones lies a region in which the error func-

tion seems to be almost flat and where progress is slow. This corresponds to a region

which would be totally flat if step functions were used as activation functions of the

units. However, using the sigmoid, this region presents a small slope in the direction

of the global minimum.

No of Iterations

Er
ro

r

Convergence 
of error

Figure 2.12: Convergence pattern of error function during back-propagation.

2.9.4 Back-Propagation Through Time

The back-propagation algorithm can also be extended to the case of recurrent

neural networks. To deal with this kind of systems a discrete time variable t is

introduced. At time t all units in the network recompute their outputs, which are

then transmitted at time t+ 1. Continuing in this step-by-step fashion, the system

produces a sequence of output values when a constant or time varying input is fed

into the network. A a recurrent neural network behaves like a finite automaton and

hence the problem is how to train such an automaton to produce a desired sequence

of output values.
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The simplest way to deal with a recurrent neural network is to consider a finite

number of iterations only. Assume for generality that a network of n computing

units is fully connected and that wij is the weight associated with the edge from

node i to node j. By unfolding the network at the time steps 1, 2, ..., T , it can

be considered that this recurrent neural network as a feed-forward network with T

stages of computation. At each time step t an external input x(t) is fed into the

network and the outputs (o
(t)
1 , ...., o

(t)
n ) of all computing units are recorded. The

n−dimensional vector of the unit’s outputs at time t is called the network state

o(t). It is assumed that initial values of all unit’s outputs are zero at t = 0, but the

external input x(0) can be different from zero. Figure 2.13 shows a diagram of the

unfolded network. This unfolding strategy which converts a recurrent network into

a feed-forward network in order to apply the back-propagation algorithm is called

back-propagation through time or just BPTT.

t = 0 t = 1 t = T

X(1) X(T)

O(0) O(1) O(T)

unit n

unit 2

unit 1

X(0)

Figure 2.13: Back-propagation through time.

Let W stand for the n × n matrix of network weights wij . Let W0 stand for

the m× n matrix of interconnections between m input sites and n units. The feed-
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forward step is computed in the usual manner, starting with an initial m-dimensional

external input x(0). At each time step t the network state o(t) (an n-dimensional

row vector) and the vector of derivatives of the activation function at each node

o′(t) are stored. The error of the network can be measured after each time step

if a sequence of values is to be produced, or just after the final step T if only

the final output is of importance. For a more general case, denote the difference

between the n-dimensional target y(t) at time t and the output of the network by

e(t) = (o(t) − y(t))T . This is an n-dimensional column vector, but in most cases we

are only interested in the outputs of some units in the network. In that case define

ei(t) = 0 for each unit i, whose precise state is unimportant and which can remain

hidden from view.
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Chapter 3

Non-Contact Defect Inspection on Flat Panel

Displays

3.1 Defects on Flat Panel Displays

Flat panel displays often produce surface defects due to highly automated fabri-

cation process in highly controlled factory environments. Those defects are mainly

electrical defects such as open circuits (open NGs) and short circuits (short NGs)

within inside circuitry of the TFT array and sometimes dust particles and cracks.

These dust particles and cracks can also be effective as open NGs or short NGs

according to their size and existing location. Figure 3.1 shows some photographs of

real NG situations taken by a micro camera, where Figure 3.1 (a) to (d) show an

open circuit defect on a wire, a short circuit defect on a wire, a short circuit defect

in between two layers and a dust particle on a wire which can effectively be an open

circuit.

The existence of these NGs are costly for manufactures and must be detected

and repaired in early stages of fabrication to minimize wastage and maximize their

productivity. There are various methods of such defect inspections such as optical

inspection method, direct pin probe method and the most advanced non-contact

method proposed by Hamori et al.[29, 30, 31, 32] as described in chapter 1. The

latter, Hamori et al. method, is described in detail in this chapter where its draw-

backs and possible algorithmic improvements were the main inspiration based upon
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for the research in this thesis.

(a) Wire disconnected (b)  Wire short

(c) Short circuit between layers (d) Dust particle on a wire

Figure 3.1: Various types NGs on flat panel display circuitry.

3.2 Non-Contact Inspection Method

As the demand for larger sizes of mother glasses, such as Generation 10,11 and

12, have been increasing, the demand for FPDs with high density pitch pattering

of thin film transistor (TFT) arrays have also been increasing. Particularly, with

the emergence of ultra-high definition 4K and 8K TVs and their expected growth in

coming years, large scale FPDs with high pitch TFT arrays would be in mainstream

[58, 59, 80]. However with increasing pitch pattern density there is a tendency for
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having defects, such as inter-layer short circuits between TFT lines, to increase.

Under these circumstances, detection and repair of defects in early manufacturing

stages have become significantly important [64]. As a result, the speed and the

precision of defects detection have been major issues for the manufactures of FPDs

and researchers alike.

The Non-contact defects inspection method for FPDs proposed by Hamori et

al.[29, 30, 31, 32] is the most promising technique of defects detection in FPDs to-

date, which is totally non-contact, utilizing a capacitor based sensor that scans over

the TFT lines of mother glass panels of FPDs. The capacitor based non-contact sen-

sor utilizing two electrodes, a feeding electrode and a receiving electrode, that scan

parallel to each other across TFT lines over the mother glass of FPD panel. Figure

3.2 is an illustration of a non-contact FPD inspection system proposed by Hamori

et al. During scanning, a known voltage is applied into TFT lines on the panel

surface through the feeding electrode and is received through the receiving electrode

capturing the voltage signal through an analogue to digital converter, which is sent

to the host computer as a digitized waveform for analysis.

Figure 3.3 shows a typical waveform pattern of a captured voltage waveform

through a non-contact sensor. The electrical defects, short circuits (short NG)

or open circuits (open NG), on TFT lines will manifest themselves as peaks and

toughs on the captured waveform, detection of which in effect produces the basis for

detection of defects. Generally such waveforms are mixed with lot of random noises,

external vibrations and other artifacts as shown in the Figure 3.3. The deviation at

point a may be a random electrical noise, at point b may be a deviation caused due

to a real electrical defects and at point c may be a vibration caused by an external

force. Due to practical reasons in real production environments the gap between the

surfaces of the scanning electrodes and the surface of flat panel are not uniformly

even. This unevenness causes low frequency swinging or baseline fluctuations on the

captured voltage waveform as visible in the figure.
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Figure 3.2: Non-contact inspection system of flat panel displays.
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Figure 3.3: A typical pattern of a waveform captured by a non-contact sensor.

3.3 Detection of Defects by Thresholding

3.3.1 Single Channel Inspection Method

This method is basically to determine a TFT line as defective (having Open

NG or short NG), where its voltage value exceeds a certain threshold level. This
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threshold level is a global value to the entire waveform and it is applied after some

noise reduction filters are applied. The following Figure 3.4 explains the steps in

thresholding processes used in the Hamori et al. method. The original waveform

captured by a non-contact sensor consists of lot of noise including random noise and

various environmental effects and vibrational effects as shown in Figure 3.4 (a). A

series of filtering and other operations are applied to the waveform before trying to

detect defect points on it. Initially, a moving average filter is applied to reduce high

frequency random noises (Figure 3.4 (b)). Then low frequency swinging and baseline

fluctuations of the waveform due to the unevenness of the gap between the panel

surface and the sensor surface are neutralized by applying a derivative operator with

a pre-determined step length (Figure 3.4 (c)). The resulting waveform is undergone

again a moving average operator to remove remaining spike noises. Finally magni-

tude values of the waveform are compared with a pre-determined threshold value

and the points that exceed the threshold level are considered as defect points as

shown in Figure 3.4 (c).

However, the single channel inspection was not stable due to external electrical

noises as well as mechanical vibrations. In addition, it was difficult to detect in-

complete defects between defective wirings and normal wirings. Therefore for the

purpose of decreasing of error margin due to the influence of noise and decreasing

detection ratio of imperfect wirings or short circuits, a dual channel method was

proposed by combining additional sensor as mentioned in the following section.

3.3.2 Dual Channel Inspection Method

In the dual channel method an additional sensor, located in a slightly shifted

position, scans simultaneously. As shown in Figure 3.5, the dual channel system

measures the voltage not only by a pair of the receiving electrode and the feeding

electrode but also by another pair of same electrodes slightly shifted from the other

pair to the scanning direction. In the system, two data sets of micro voltage sig-

nals with physical distance offsets are simultaneously recorded through two pairs
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Defects points

(a)

(b)

Defects pointsDefects points

Pre-defined
threshold

Detected defects points

(c)

Figure 3.4: Defects detection by thresholding method; (a) Original waveform; (b)

After noise suppression; (c) Thresholding on differential waveform.
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of electrodes. By combining these two data sets measured simultaneously, missed

detections can be reduced caused by noises and/or external forces.

inv

Two sensors 
in a distance

Figure 3.5: Configuration of a dual channel measurement system.

For example, waveforms of two data sets recorded simultaneously by two pairs

of electrodes are shown in Figure 3.6, where the horizontal axis represents the time

(the origin is where the scanning is started) and the vertical axis represents the

measured voltage. In the waveform for the electrode Set-1 (CH1) in Figure 3.6,

point A shows a change stemming from an electrical noise, point B shows a change

stemming from a real electrical defect and point C shows a change stemming from a

vibration caused by the external force. In the single channel method with only one

pair of electrodes only the data set for CH1 is available. Therefore, the inspection

system cannot discriminate between the change caused by defect (point B) and ones

caused by other factors (points A and C), and judges all the changes as defects. In

the dual channel method with two pairs of electrodes, it can discriminate among

those changes because the data set for CH2 is also available. More specifically,

since electrical noises, observed at point A, generally occur at random in both time

domain and spatial domain, changes by electrical noises like point A are recorded by

one electrode set (CH1) but not recorded by the other electrode set (CH2) like point

A. Meanwhile, changes by defects as point B are recorded by both electrode sets

(points B andB′), where point B′ is later than point B by the time corresponding to
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the physical distance offset. In addition, since the mechanical vibration, as in point

C, occurs in the total system at the same timing, changes caused by the vibration

appear at the same time in the data recorded by two electrode sets. Figure 3.7

shows waveforms where the horizontal axis represents the distance from the origin

of scanning and the vertical axis does the measured voltage. In Figure 3.7 where

both waveforms have the same origin, only the changes caused by the defect (points

B andB′) occur at the same position.

CH1

CH2

A

B
C

A’
B’

C’

Figure 3.6: Comparison of measurement data on time axis.

CH1

CH2

A
B

A’

B’

C’

C

Figure 3.7: Comparison of measurement data on distance axis.

Taking into consideration of these features, the dual channel inspection system

was able to discriminate wave features between the changes caused by defects and
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those caused by other factors. Their algorithm, of detection by reducing not only

missed detection but also non-detection utilizing these features, can be described

as follows. In the algorithm, fn is the data series measured by CH1 and gn is one

measured by CH2, which are recorded in a given constant sampling interval (for

example, in 10µm interval) from the origin of scanning i is half the length (number

of data points) of an interval where peculiar changes by defects are observed.

Detection Algorithm

The defects detection algorithm using the dual channel waveform data is de-

scribed by the following 6 steps. In the algorithm, fn is the data series measured

by CH1 and gn is one measured by CH2, which are recorded in a given constant

sampling interval (for example, in 10 µm interval) from the origin of scanning i is

of half the length (number of data points) of an interval where peculiar changes by

defects are observed.

Step 1: Data Smoothing

Captured waveform data are always included with lots of noises due to various

reasons such as random noise, vibration noise and other external effects etc.

The random noise are always scattered in high frequency. For the purpose of

removing such high frequency noises of measured data series fn and gn, first a

moving average filter is applied for a given step size.

Step 2: Matching on Distance Axis

Since electrodes for CH1 and CH2 are placed at different positions, or with

a distance offset, having different distances from the origin of scanning, both

measured data series fn and gn involve physical distance offsets (a gap in

distance, which corresponds to the distance between electrode sets). When fn

is recorded by CH1 at a position, gn+j is also recorded by CH2 at the same

position, which means that the distance offset is equal to the length of an

interval containing j points of the measured data series. Considering a new

data series g′n = gn+j generated by shifting gn with the distance offset, g′n is a
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data recorded at the same position where fn is recorded.

Step 3: Removal of Baseline Fluctuation

Due to practical reasons in real production environments the gap between the

surfaces of the scanning electrodes and the panel surface are not uniformly

even. This unevenness causes low frequency swinging or baseline fluctuations

on the captured voltage waveform. Compute differential series of fn and g′n as

dfn = fn+1 − fn and dg′n = g′n+1 − g′n to remove baseline fluctuations.

Step 4: Emphasis of Peculiar Changes

By getting the product of the differences of fn and g′n such that hn = (fn+i −
fn) ∗ (g′n+i − g′n), steep changes on waveforms are emphasized which are the

characteristics of defect points on the waveform data.

Step 5: Smoothing of Spike Noises

In order to smoothen spike noises, compute the sum of 2i points of hn since

the length of the defective part (number of data points) is assumed to be 2i

such as;

h′n =
2i∑

k=1

hn+k. (3.1)

Step 6: Judgment of Defect

The final defect judgment is determined by using a pre-determined threshold

value by comparing the value of h′n with the threshold. If the value of above

h′n at any given point in the waveform exceeds the given threshold level it is

considered to be a defect point.

Defects inspection machines, adopting this technique proposed by Hamori et

al.[29, 30, 31, 32] for flat panel displays gained a high recognition from the manufac-

turers immediately after its inception. Currently a large number of manufacturers,

market share-wise a much bigger portion, have installed this machine as it seems to

be the future of electrical defects inspection of TFT arrays of FPDs whether it is

LCD or Plasma or LED.
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3.4 Drawbacks in the Thresholding Method

Though the above mentioned non-contact inspection method based on capacitor

based sensor is the most advanced technique to-date, it has still some drawbacks

which are beyond the control of the sensor circuitry as describes below. The thresh-

olding method described above is quiet appropriate as long as environmental effects

such as the machine temperature and external vibrations and the gap between sur-

faces of the sensor and the panel remain firmly stationary, which minimizes extra

noises and unnecessary deviations on the voltage waveform. However in real pro-

duction lines the temperature and the external vibrations can vary from time to

time and from machine to machine. It can also be varied from location to location

of machines even inside the same factory.

Keeping the gap fixed between the sensor and the panel, during scanning, is

also not an easy task, so that the voltage signal shows fluctuations or swinging.

All of these factors severely affect the pattern and the noise level of the captured

voltage waveform and determining threshold parameters for the software program is

a difficult task as shown in Figure 3.8. Whenever an inspection machine is changed

or its location is changed, operators have to look carefully several waveforms and set

threshold parameters manually. On the other hand, the threshold parameter set by

the operator is a global value, which applies to the entire waveform. However most

of the above effects to the voltage signal are local effects, in which, taking a global

threshold value as the deciding factor in a highly locally dependent feature space is

lacking appropriateness.

Figure 3.8 illustrates the difficulty of determining of a proper threshold value in

thresholding method in detail , as shown in Figure 3.8 (a), points B, C and E are

real defect points and points A and D are not defects but sudden fluctuations due to

change of gaps between the sensor and the panel. The corresponding points for real

defects on the differentiated waveform (Figure 3.8 (b)) are B
′
, C

′
and B

′
. Out of

these 3 defect points only B
′

and E
′

can be detected using the given threshold and

point C
′

is difficult to be detected by the threshold although it is actually a defect
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Threshold Line

(b) Differentiated  waveform

Figure 3.8: Difficulty of determining a proper thresholding value (a) Original wave-

form (b) Differential waveform.

point. If the threshold level is further lowered the missed detected point C
′

can be

detected but in the same time points A
′

and D
′

can also be detected as defects,

which will be false detections. In manufacturer’s standpoint both missed detections

and false detections are costly.

This hurdle of determining a proper threshold value is difficult to leap over as long

as the threshold value is global and the features around real defect points are local.

The lower the threshold value is set the higher the ratio of false detections appear
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whereas the higher the threshold value is set the higher the ratio of missed detections

occur. Moreover, the captured waveform data always consists of uncertain amount

of noise which are difficult to judge as from what conditions they arise. Therefore

parameter determination is always not easy, such as the step size of the moving

average in step 1 and the gap size for differentiation in step 3 in the above algorithm.

3.5 Existing Line Scan Method and its Drawbacks

In the above mentioned non-contact FPD inspection method, the defective TFT

lines (or NG lines), which are detected using thresholding or feed-forward neural

network or recurrent neural network methods, have to be scanned again using a

micro camera based sensor (called NG sensor) to determine exact locations of NGs

(open circuits or short circuits) on defective lines. This process is necessary for

operators in order to determine if NGs are to repair or not. Once defective lines

are observed by the non-contact sensor, this line scanning by a NG sensor must

obviously be a shortest possible path. The currently used motion path of the NG

sensor is a simple top-down unidirectional method (Figure 3.9) which is heavily time

consuming particularly on larger glass panels such as 3m x 3m panels. The scan time

may be negligible for a few number of NG lines or for small sizes of mother glasses.

However due to current trend of high demand of bigger sizes of flat panels it is no

longer negligible. Moreover with the emergence of finer pitch patterns for 4K and

8K TVs, the number of lines for a panel becomes bigger and hence the possibility

of more defective lines on panels increases. Therefore, it is necessary to find a more

realistic and intelligent approach of the possible shortest path of NG scanning.

3.6 Proposed Solutions

To address the drawbacks mentioned in the section 3.4, from next chapter , by

formulating the problem of detecting NGs on a noisy waveform to a data driven
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Scan path Start positionPanel layout Defect lines

Figure 3.9: Existing unidirectional top-down NG scan method.

non-linear classification problem we attempt to solve it by a feed-forward neural

network. The single hidden layer feed-forward neural network is trained by error

back-propagation algorithm. There are three inputs to the network which are char-

acteristics on and around candidate points on the waveform, which are Signal to

noise (SNR) at the candidate point, residual difference in a neighborhood of the

candidate point and the change of wave length in the same neighborhood in the

differential waveform.

Then in the next chapter, the method extends to a more realistic and noise re-

silient recurrent neural network which overcomes some drawbacks in feed-forward

network. The topology of the recurrent network and its training by back-propagation

through time are evolved by a genetic algorithm based multi-objective optimization

algorithm. The inputs for the recurrent neural network are same as those used in the

feed-forward neural network. This evolutionary multi-objective optimization algo-
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rithm optimizes all topological parameters of the recurrent neural network including

the number of layers and number of neurons in each layer and each network in the

population trains during the evolution process using back-propagation through time

to determine if they can be trained well.

Then in the following chapter, for the purpose of addressing the drawbacks men-

tioned in the section 3.5, the problem of finding a shortest scan path of the distance

traversed by the NG sensor to locate exact locations of NG points, is also addressed

by a Kohonen’s self-organizing map based solution. First, the problem is approx-

imated to an asymmetric traveling salesmen problem with precedence constraints,

and then, an algorithm with a combination of a modified self-organizing map, a

2-Opt algorithm and a repair algorithm for node assignment is proposed for the

optimization of path of NG sensor.

Both of defect detection method by feed-forward and recurrent neural network ap-

proaches and the NG sensors scan path optimization method by kohonen’s network

were proved much superior than the existing thresholding method and top-down

unidirectional scan method.
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Chapter 4

Defects Inspection Using a Feed-Forward Neural

Network

Feed-forward neural network (FNN) or a multi-layer perceptron is a well-known

and widely used class of neural networks. The popularity of feed-forward networks

derives from the fact that they have been applied successfully to a wide range of

information processing tasks in such diverse fields as speech recognition, financial

prediction, image compression, medical diagnosis and classifications. Feed-forward

neural networks are trained, rather than programmed, to carry out the chosen infor-

mation processing tasks. Training a feed-forward neural network involves adjusting

the network so that it is able to produce a specific output for each of a given set

of input patterns. Since the desired inputs are known in advance, training a feed-

forward neural network is an example of supervised learning. A good analysis on

neural network modules and training algorithms can be seen in Auda and Kamel

[8]. Zhang [83] have also presented another good survey of feed-forward neural net-

works in classification. When looking at literature on applications of feed-forward

neural networks it can be seen that a majority of work done in classification theme.

They are bio-engineering applications such as feature classifications of electrocar-

diogram (ECG)[37, 51] and Electroencephalography (EEG) [17, 62, 66]. Chambayil

et al. [17] have proposed EEG eye blink classification using a feed-forward neural

network. Though the purpose is different from the work in this thesis the basic anal-

ysis is based on a wave signal captured from an electrical signal which also include

noise.
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Other types of wave feature classification using feed-forward neural networks

includes the work done by Du et al. [23], which extracts features from a sine wave,

and Slazar et al. [71] proposed a feed-forward neural networks for defect detection

in non-destructive evaluation by sonic signals. Sathiya et al. [72] proposed another

interesting work by using a feed-forward neural network, which extracts ocean wave

height data in highly noisy environment. There are more promising works presented

in waveform feature extraction area using feed-forward neural networks [11, 38, 65,

75].

As described in Chapter 1, the focus in this chapter is to classify voltage waveform

data captured from a non-contact defect inspection sensor proposed by Hamori et

al. [29, 30, 31, 32], using a feed-forward neural network. Other applications of FNN

in similar patterns of data can be identified as ECG and EEG feature detection

[17, 62, 66], wave feature detection [23, 71, 72] and financial and stock related time

series analysis.

4.1 Formulation of the Problem

In the thresholding method used in Hamori method [29, 30, 31, 32] for classi-

fication of waveform data, the criteria of determining a threshold value lacks ap-

propriateness since the feature variations on and around defect points are largely

local features whereas the threshold is a global value. Hence it requires an adaptive

algorithm with a high degree of accuracy and efficiency since the system is largely

data driven and the patterns of defect points on waveforms are highly non-linear.

The cross correlation methods can be used to detect such patterns on waveform

data, which is a measure of goodness of fit with a pre-selected pattern. The level

of fitness of about 80% or more corresponds to patterns in data that are easily

discerned as good matches by the human eye. However having various patterns of

waveforms with various patterns of defect points on them it requires to prepare and

store hundreds of patterns if not thousands, which would be a huge time consuming
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exercise. Moreover, the features around defect points on waveforms are varied from

channel to channel, from location to location etc. So that a technique such as a

neural network that can learn the environmental effects and memorize, must be a

much suitable way of addressing the problem. Since artificial neural networks are

intelligent agents that can handle effectively a large amount of dynamic, non-linear

and noisy data [8, 39, 67]. It also can observe, learn and memorize from the ex-

perience before performing a particular task. Therefore the most reliable approach

must be an intelligent approach such as using a feed-forward neural network since

a neural network can be trained by feeding known data before actually put into

perform and can keep the adaptability.

4.2 Inputs Selection

Feed-forward neural networks are trained by giving a known set of input data

having all variations in the input space. When classifying input patterns by the

network all the characteristics of the input space that are influential for the clas-

sification must be considered. In our case too, any feature of the input pattern or

(input point on the input waveform) that can be considered as influential to the

output must be considered as an input to the network. Therefore it is necessary to

throughly observe and analyze a large set of input data before determining what the

the input parameters. After such analysis of a large set of waveform data consisting

all kinds of defect points and normal regular patterns including the neighborhoods of

defect points, following three features were identified as inputs to the network (input

vector x), namely signal to noise ration (SNR), residual difference, and change of

wave length on the differential waveform. All of these input parameters x(x1, x2, x3)

are picked within a pre-determined length of neighborhoods of possible candidate

points on the waveform whereas candidate points are selected by a simple low level

threshold such that it may include many false detection but not to miss any of them

.
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4.2.1 SNR

If the characteristics within a neighborhood of a defect point on a waveform are

observed (Figure 4.1) it is understood that there is a sharp deviation of magnitude.

In other words the level of the signal at a particular point shows a considerable

deviation against the level of background noise, which means a change of signal to

noise ratio (SNR). SNR is a measure of signal strength relative to background noise.

Therefore SNR is considered as the first input (x1) of the input vector x and is taken

as:

x1 = SNR =
µ

σ
, (4.1)

where µ is the mean value and σ is the standard deviation of the waveform within

the selected neighborhood around a candidate point.
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Figure 4.1: Picking up SNR and residual difference from a neighborhood of a can-

didate point.
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4.2.2 Residual Difference

Besides the sharp deviation at the defect point, the neighboring area consisting

of a few wave lengths can also be seen deviated towards the same direction as main

deviated point (Figure 4.1). This particular feature of the waveform within the

neighborhood is measured as the difference of average upper peak level with the

regression line (h1) and the difference of average lower peak level with the regression

line (h2). In other words the residual difference of upper and lower peek levels in the

neighborhood is taken as the second input (x2) of the input vector x and is taken

as:

x2 = |h1 − h2|. (4.2)

4.2.3 Change of Wave Length

In the original waveform it shows a considerable change of wave length at a

defect point (Figure 4.1) and is taken as the next input to the network. Though

this change of wave length appears in the normal waveform, it is easier to measure

on the differentiated waveform as seen in Figure 4.2. So that the rate of change of

wave length of a defect point from that of average wave length in the normal area

is taken as the third input (x3) of the input vector x and is taken as:

x3 =
|D − d|

d
, (4.3)

where D is the wave length at the input point and d is the average wave length at

neighborhood.
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Average wave length in normal area

Variation of wave length 

at defect point

D

d

Figure 4.2: Picking up the change of wave length on the differential waveform.

4.3 Architecture of the Feed-Forward Neural Network.

4.3.1 Topology of the Network

Determining the best topology of a feed-forward neural network for a certain

problem is one of the most important tasks. Therefore, various topologies with

various number of hidden layers with various number nodes were tested using a

selected good set of input data. Convergence pattern and the convergence limit

of the error graphs during error back-propagation of many of them were not as

expected as described and shown in chapter 2 and Figure 2.12. Most of their error

convergence levels were much higher or the error curve fell rapidly but converged to

a higher level. However After testing numerous topologies of neural networks, we

have found that the most reliable network for our problem is a 4-layer feed-forward

neural network such that an input layer with two units, two hidden layers with 2

units and 3 units respectively and an output layer with one unit (Figure 4.3). The

input feature vector x(x1, x2, x3) consists of 3 components (above mentioned 3 input
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parameters), the weight space consists of 27 weights which is inclusive of weights

associated with bias inputs to each unit which are not depicted in the figure and

the output vector y is single component. Then the total network function Net can

be represented as:

y = Net(x). (4.4)
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Figure 4.3: Topology of the feed-forward neural network.

4.3.2 Activation Function

The activation function of each computing unit in the network is in the form of

a sigmoid function (logistic function) because training of the network is to be done

by error back-propagation algorithm, which requires the activation function to be a

continuous function [24, 69].

Since the back-propagation requires computation of gradients of the error function

at each iteration step, the continuity and differentiability of the error function must

be guaranteed. Therefore the activation function f of each unit in the network is

taken as:

f(X) =
1

1 + e−X
, (4.5)
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and

X =
n∑

i=1

wixi ,

where xi(i = 1, .., n) are the inputs to the unit (in case of input layer those are the

components of the input vector x, and in case of a hidden or output layer those are

outputs from the previous layer) and wi are the weights associated with each such

input.

4.3.3 Network Function

The network function (4.4) of the above FNN (Figure 4.3) can then be explicitly

expressed as:

y = f

(
3∑

i=1

wol.(f(
2∑

k=1

wlk.(f(
2∑

j=1

wkj.(f(
3∑

i=1

wjixi+BI
j )) +BH1

k )) +BH2
l )) +Bo

)
,

(4.6)

where wij is a weight in input layer connecting ith input and jth neuron, wkj is a

weight in hidden layer 1 connecting jth neuron in the input layer and kth is a neuron

in the hidden layer 1, wlk is a weight in hidden layer 2 connecting kth neuron in the

hidden layer 1 and lth neuron in the hidden layer 2 and wol is a weight in the output

layer connecting lth neuron in the hidden layer 2 and the output neuron. BI
j is the

bias for the jth neuron in the input layer, BH1
k is the bias for the kth neuron in the

hidden layer 1, BH2
l is the bias for the lth neuron in the hidden layer 2 and BO is

the bias for the output neuron. xi is the ith component of the input vector x and

f is the common activation function (or the sigmoid function described in equation

4.5) of the network.
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4.4 Training by Back-Propagation

A feed-forward neural network is a computational graph whose nodes are com-

puting units and whose directed edges transmit numerical information from node to

node. In the network each arrow from left side to right side (Figure 4.3) is associated

with a synaptic weight and those weight values must be optimized before use in a

real situation task. The combination of those weights, which minimizes the error,

is said to be the optimal solution to the learning problem. Since there are many

weights in the network associating each input in a layer to the each unit in the next

layer, we don’t know how much each of those weights is to blame for the final error

and divvy up the adjustment among these weights proportionately. Therefore this

problem can be called a blame assignment problem or a credit assignment problem.

The back-propagation solves this problem, as its name depicts it looks for the min-

imum of the error function in weight space using the method of gradient descent.

A set of known inputs comprising both NG points and OK points in all sorts of

patterns of input data will be used as the training data set. We also have adopted

an adaptation technique [67] in order to accelerate the convergence of the error

function. It is an adaptive step algorithm that the step size is increased whenever

the algorithm proceeds down the error function over several iterations. When the

algorithm moves over a valley of the error function the step size is decreased.

Training of the network was carried out with the error back-propagation algo-

rithm by using a set of hand picked data containing 50 defect points (NG) and 50

non-defect points (OK) covering every possible pattern of defect points and non-

defect points as shown in Figure 4.4. The data were captured by OHTs three

different GX-3 High speed LCD/PDP testers in different factories. The set of 3

input parameters was picked from those selected data points and used as the input

data set for back-propagation training of the neural network.

As described in section 4.3.1, numerous topologies of feed-forward neural networks

with both one hidden layer and two hidden layers were tested to determine the best

one for this problem. Error graphs of most of them were either moved a little bit
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Figure 4.4: Picking up input data (both NG points and OK points) for network

training.

horizontally or fell suddenly and then in both cases converged to a higher level than

the excepted level. Figure 4.5 (a) and Figure 4.5 (a) are two of such unacceptable

error graphs with a single hidden layer consisting 3 units and 2 units respectively.

As shown, their convergence levels are much higher than the level in our selected

network with 2 hidden layers as shown in Figure 4.6, which converges until the given

limit of 0.01. Therefore a 4 layer network with 2 hidden layers was judged as the

best topology for this problem as its error graph converged until the given small

convergence limit.

4.5 Training Results

Initially all the weight values of the above selected network were randomly set

to small values between 0 and 0.1 and the learning constant γ was set to 0.1. The

error back-propagation was performed iteratively until the error function converged

to a level smaller than a pre-determined small value as shown in Figure 4.6. The

convergence time of the error graph was considerably reduced by using an adaptive

technique that adjusts the step length according to flow of the error function. Table
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Figure 4.5: Error convergence in a single hidden layer network: (a) 3 neuron hidden

layer, (b) 2 neuron hidden layer.

4.1 and Table 4.2 show the training results.
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Figure 4.6: Convergence of error graph in back-propagation.

As seen in Table 4.2, although the initial weight values were set between 0 and
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Table 4.1: Parameters of training by back-propagation.

No of training data 100

Initial weight values (Random) 0 ∼ 0.1

Initial step size (γ) 0.1

Error convergence limit 0.01

No of iterations 54454

0.1 the final optimized weight values, after error back-propagation, range from even

smaller values to even bigger values. A positive weight represents an excitatory

connection whereas a negative weight represents an inhibitory connection.

Table 4.2: Network weights after error back-propagation training.

Input layer Hidden layer 1 Hidden layer 2 Output layer

0.4299 −0.0869 0.4477 −0.56339

−0.2330 −1.5049 0.153 −1.1827

−0.1928 3.7513 −0.5832 3.6198

0.0507 −3.1422 −0.5832 3.7065

1.7997 0.4497 −1.6563

−0.5134 −0.2282 3.8409

0.2399 −0.5956

0.1892 −1.6760

2.2174

4.6 Defects Detection Using the Trained Neural Network

The feed-forward neural network (with parameters shown in Table 4.2 ), trained

by back-propagation algorithm, was used to detect defect points on waveform data

captured by a non-contact sensor scanned over TFT lines of flat panels displays. A
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simple moving average filter was initially applied to smooth waveform data before

picking candidate points to the network. Then candidate points were selected using

a lower threshold value than the threshold value used in Hamori et al. method

[29, 30, 31, 32] and the three input parameters to the network were picked from those

candidate points and entered into the network. Figure 4.7 shows some detection

results on 3 different waveforms captured from 3 different machines in different

locations. All of those voltage waveforms consist of different levels of random noises,

external vibrations and baseline fluctuations on them but were able to detect using

this method correctly. The points marked at dashed lines in Figure 4.7 (a) (both

red and blue) are candidates that were selected as inputs to the network, and there

were 3 defects (at red dashed lines) detected correctly out of 10 candidates. Similarly

Figure 4.7 (b) shows 3 defects detected out of 8 candidates and Figure 4.7 (c) shows

2 defects detected out of 26 candidates correctly.

Table 4.3: Comparison of missed detections and false detections between FNN based

method and thresholding method

Total defects Missed detections False-detections

Old method New method Old method New method

Data set 1 40 11 (27.5%) 3 (7.5%) 10 (25.0%) 6 (15.0%)

Data set 2 55 13 (23.6%) 3 (5.4%) 16 (29.0%) 7 (12.7%)

Data set 3 36 7 (19.4%) 1 (2.7%) 11 (30.5%) 5 (13.8%)

Total 131 31 (23.6%) 7 (5.3%) 37 (28.2%) 18 (13.7%)

Table 4.3 shows a comparison of missed detections and false detections between

this method and existing thresholding method. It shows comparison results for 3

different data sets captured from 3 different machines. The ratio of missed detections

was dropped to around 5% from existing range of 20% to 30% whereas the ratio of

false detections wa dropped to below 15% from existing range of 20% to 30%.

In addition, due to the reduction of ratio of false detections, the number of repairs

were able slash drastically and due to the reduction of missed detections, manual
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Figure 4.7: Detection results on 3 different waveforms captured by 3 different ma-

chines in 3 different locations.

check ups were reduced and customer satisfaction was increased. Moreover, manual

workload for threshold setting for operators, whenever the machine or the location or

the product type to be tested is changed, was also decreased with the use of already

trained network. As a result the overall testing time was improved and hence this

method can be considered as fast and adaptive.
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Chapter 5

Extension to an Optimized Recurrent Neural

Network

Recurrent neural networks (RNN) are another type artificial neural networks

that are fundamentally different from feed-forward neural network architecture in

the sense that they not only operate on an input space but also on an internal state

space, a trace of what already has been processed by the network. In other words,

an internal feedback can be processed together with external inputs at a RNN [67].

RNNs behave like biological recurrent networks that are found in the brain. Since

feedback is ubiquitous in the brain, this task in general could include most of the

brain’s dynamics.

There are many types of formal RNN models. Discrete-time models are math-

ematically cast as maps iterated over discrete time steps (such as n = 1, 2, 3, ...).

Continuous-time models are defined through differential equations whose solutions

are defined over continuous time t. Especially for purposes of biological modeling,

continuous dynamical models can be quite involved as activation signals on the level

of individual action potentials. On the other hand engineering applications often

use discrete-time models of RNNs.

In the settings of reinforcement learning, there is no teacher providing target

signals for the RNN, instead a fitness function or reward function is occasionally used

to evaluate the RNN’s performance, which is influencing its input stream through

output units connected to actuators affecting the environment.
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In literature, there is a great extent of discussions on RNNs, and good surveys can

be found in [8, 9, 77]. Connor and Martin [19] and Huang et al. [35] also presented

interesting RNN approaches for time series predictions. Dolinsky and Takagi [22]

proposed an RNN based method for learning of naturalness of a system. Some RNN

approaches have been proposed [16, 75] for classification problems as well.

The focus in this chapter is to address the drawbacks in feed-forward neural net-

work based method for defect inspection on flat panel displays discussed in chapter

4. The FNN based approach has some drawbacks such as difficulties in topology

determination process and poor performance in noisy data environment. One of

the major reasons, why an RNN is brought into this problem, is because it is more

resilient on noisy and imperfect inputs.

5.1 Proposed Method Using Multi-Objective Evolutionary

Optimization

After careful observation of the variation of patterns of waveform data from

various environments with varying levels of noise, it was clear that a recurrent

neural network would be the best approach to the problem. RNNs are fundamentally

different from feed-forward architecture in the sense that they not only operate on

an input space but also on an internal state space, a trace of which has already been

processed by the network. In other words, an internal feedback can be processed

together with external inputs in an RNN. One of the major reasons, why an RNN

is brought into this problem, is because it is more resilient on noisy and imperfect

inputs.

Since choosing an appropriate RNN is also not an easy task, initially a RNN with

one input layer and one hidden layer with unknown number of units was considered.

Making the network recurrent there must be one or more feed-back connections, so

that, the hidden layer itself in number of past iterations keep as inputs to hidden

layer itself as well as to the output layer. Moreover, the input layer in number of
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past iterations also keep as input to the hidden layer as shown in Figure 5.1. The

determination of these unknown numbers of units in input layer and hidden layer

and the unknown numbers of hidden layers and input layers in past iterations is

the major task in this chapter. As it is not easy by trial and error approach, an

evolutionary optimization approach is the best way. Therefore a genetic algorithm

based multi-objective evolutionary optimization approach was used to determine

those parameters. During the optimization process the relevant RNN is trained by

back-propagation through time. This process optimizes all the parameters of the

RNN and trains that RNN by back-propagation through time and hence it is a

multi-objective optimization algorithm. The optimization algorithm is described in

the following sections in detail.

Choosing an appropriate topology of an RNN was again a major hurdle as it was

even difficult than the FNN method by using the trial and error approach. There-

fore a genetic algorithm based evolutionary optimization approach to determine the

topology of the RNN is employed. It is clear that topologies generated by a genetic

algorithm may contain many superfluous [67, 70] components such as single nodes

or even whole clusters of nodes isolated from the network input. Such units, called

passive nodes, do not process the signals applied to the network sensors and produce

only constant responses that are caused by the relevant biases. A simplification pro-

cedure or a list of constraints can be used to remove passive nodes and links so that

the input/output mapping of the network remains unchanged.

In the literature, there are various types of approaches of RNN for feature clas-

sification in waveform type data and training [8, 9, 77]. Haseken and Stagge [36]

presented a recurrent neural network for noisy time series data classification and

various techniques have been used for training of RNN [22, 55].

Among various methods of topology optimization in the literature, Delgado et

al. [21] proposed a technique for simultaneous training and topology optimization

of RNNs using a multi-objective hybrid process based on SPEA2 [85] and NSGA2

[20]. Katagiri et al. [40] introduced some improvements to the Delgado et al.
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[21] method by introducing an elite preservation strategy, a self-adaptive mutation

probability and preservation of local optimal solutions and their efficiency have

been verified with benchmark time series data. For this reason, multi-objective

evolutionary optimization of training and topology of RNN is adopted for optimizing

an appropriate topology of an RNN with the capability of addressing our problem.

5.2 Initial Topology of the Recurrent Neural Network

The initial topology of the RNN to be optimized will be constructed with one

input layer of n units, one hidden layer of m units and a single unit output layer.

And a p number of consecutive previous input layers, called past input layers, are

copied and kept and are considered as inputs to the hidden layer during each epoch.

Similarly a q number of consecutive hidden layers, called feedback layers, are copied

and kept and are considered as inputs to both the hidden layer itself and the output

layer. As depicted in Figure 5.1, black arrow lines indicate the inputs to respective

layers whereas dashed arrow lines indicate copying of layers to past input layers and

feedback layers. I1, I2, .., In are input layer neurons, H1, H2, ..., Hm are hidden layer

neurons and X1, X2, X3 are inputs to the network (SNR, residual difference and

change of wave length at a candidate point). Moreover, the upper shady area shows

the p number of past input layers and the lower shady area shows the q number of

feed-back layers.

With this RNN, if the output of the network is Y (t) for a given set of inputs X

at any given time t, then Y (t) can be explicitly expressed as:

Y (t) = f

(
m∑
a=1

wH
oa(t).Ha(t) +

q∑
b=1

m∑
c=1

wF
obc(t).Hc(t− 1)

)
, (5.1)

where

Ha(t) = f

(
n∑

d=1

wIH
ad (t).Id(t) +

q∑
e=1

m∑
g=1

wFH
aeg (t).Hg(t− e) +

p∑
h=1

n∑
i=1

wPH
ahi (t).Ii(t− h)

)
,

(5.2)
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Figure 5.1: Initial topology of the recurrent neural network.

where Id(t) = f

(
3∑

j=1

wXI
dj (t).xi

)
(5.3)

and f(x) =
1

1 + e−x
. (5.4)

Hg(t) and Ii(t) in equaition 5.2 can also be expressed in similar pattern.

In equations 5.1 and 5.2, Ha(t), a = 1, . . . ,m , Hc(t), c = 1, . . . ,m and Hg(t), g =

1, . . . ,m are outputs from the hidden layer and feedback layers at time t. In equation

5.2 Id(t), d = 1, . . . , n and Ii(t), i = 1, . . . , n are outputs from the input layer and

past input layers at time t. wH
oa is the weight associated with connection between

ath unit of the hidden layer and the output layer and wF
obc is the weight associated

with connections between cth unit of the bth feedback layer and the output layer.

Similarly wIH
ad is weight the weight associated with the connection between dth unit
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of the input layer and the ath unit of the hidden layer, wFH
aeg is the weight associated

with the connection between gth unit of the eth feedback layer and ath unit of the

hidden layer and wPH
ahi is the weight associated with the connection between ith unit

of the hth past input layer and ath unit of the hidden layer. In equation 5.3 wXI
dj is

the weight associated with the connection between jth input and the dth unit of the

input layer.

5.3 Multi-Objective Topology Optimization

With the above topology of an initial recurrent neural network and with a set of

initial training data set, the objective functions for the multi-objective optimization

algorithm can be formulated as follows.

• Minimize error: 1
N

N∑
i=1

(Oi(t)− Yi(t))2

• Minimize number of neurons in the input layer

• Minimize number of neurons in the hidden layer

• Minimize number of past input layers

• Minimize number of feed-back layers

• Minimize Converged error value

• Minimize the difference between the error curve and standard back-propagation

error curve

where Yi(t) is the network function mentioned in equation 5.1 and Oi(t) is the target

value at the tth iteration step.
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5.4 Optimization Algorithm

This optimization is a genetic algorithm based multi-objective evolutionary opti-

mization algorithm, that optimizes the best topology of the recurrent neural network

suited for the problem in the form of Figure 5.1. The recurrent neural network is

also trained during evolution by back-propagation through time. A selected set of

input data, in the form of x(x1, x2, x3), is picked from actual voltage waveform data

captured from flat panel display inspection machine utilizing a non-contact sensor.

The genetic algorithm consists of N number of populations for the evolution process.

Each member of the population is a chromosome where a chromosome consists of

RNN with the initial topology mentioned in the above section. The mathematical

representation of a chromosome in the algorithm is in floating point form which

allows both integer and floating point parameters to be included. Figure 5.2 shows

a chromosome used in this algorithm. The genetic algorithm based multi-objective

evolutionary optimization algorithm is described in the following 8 steps.

γ

Figure 5.2: Format of the chromosome of the genetic algorithm.

Step 1: Initialization of population

Create a population of chromosomes of size N such that each chromosome

contains an RNN with the topology as shown in Figure 5.1. All of the topol-

ogy parameters in all RNNs of chromosomes are set randomly within their
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respective ranges. The selected set of training data is also assigned to the

system initially.

Step 2: Evaluation of Solutions

Each RNN of each chromosome in the population is trained with back propaga-

tion through time (BPTT) algorithm using the given training data set. Since

this is the most time consuming step, the patterns of error graphs of each RNN

is checked frequently during training. If the error graph of any RNN goes out

of shape from the expected convergence pattern, the training process of that

particular RNN will be immediately terminated without continuing for the

rest of the preset number of iterations. Such terminated chromosomes will be

assigned zero marks of fitness level, which will be discarded and not allowed

for cross overs or mutations.

Step 3: Measurement of fitness

A fitness value is assigned to each chromosome according to a pre-set marking

scheme. The marking scheme assigns percentage of marks to each chromosome

with the following criteria.

1. Converged error value.

2. Convergence pattern of error graph of its RNN (the better the conver-

gence the higher the marks it earns) .

3. Number of neurons in input layer (the fewer the better)

4. Number of neurons in hidden layer (the fewer the better)

5. Number of past input layers (the fewer the better)

6. Number of feedback layers (the fewer the better)

Step 4: Checking for the pass mark limit

If the total fitness level of a chromosome exceeds the pass mark (a pre-set

value, i.e. 90%), the evolution process is terminated, and the recurrent neu-

ral network associated with that chromosome will be considered as the op-

timized recurrent neural network. Since the network is already trained by
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back-propagation through time during this optimization process, it will be

directly applied to the system.

Step 5: Discarding week chromosomes

If the fitness level of a chromosome is lower than a pre-set level, for example

20%, it is discarded from the populations for not to allow it to mutate or

cross over with others members. The fitness level drops that low means that

recurrent neural network is far below the expected level of the system and hence

it should not be allowed to mutate or cross-over with other chromosomes for

the next generation.

Step 6: Preservation

If the fitness level of a chromosome is bigger than a pre-set level but lower than

pass mark, it is considered to be good enough to carry forward to the next

generation without mutation or cross over, and that chromosome is flagged

and kept. This step is to preserve considerably good chromosomes without

any change in the current generation and allow them to improve in the next

generation by mutation or crossing over with others.

Step 7: Mutation

Remaining chromosomes are allocated a mutation probability based on a

roulette wheel based selection procedure. Accordingly the chromosomes that

mutates will select mutation points on the chromosome randomly and performs

the mutation.

Step 8: Cross Over

Remaining chromosomes are allocated a cross over probability based on a

roulette wheel based selection procedure. Accordingly the chromosomes pairs

that crosses over will select their cross over points randomly and performs

cross over operation.

Step 9: Evolution

Create new chromosomes for discarded chromosomes in Step 2 and Step 5

and return to Step 2. For maintaining a constant number of population size,
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new members are created and added to the population. When create new

chromosomes, the initial parameters are set as in the same criteria with the

Step 1 where initial population is created. The population in this step is mixed

with newly created members, mutated members from the previous generation,

siblings from cross overs in previous generation and members who are preserved

from previous generation. All of these newly fresh generation is passed again

into Step 2 for evaluation.

5.5 Optimization Results

The multi-objective evolutionary optimization process, mentioned above, was

performed with a population of size 40. The program has to be executed in a multi

threaded environment with a visual interface indicating all the status of each chro-

mosome. This process needs a huge system speed and capacity and as a result the

number of population was needed to be limited to 40 with limitations on currently

used PC. Since one chromosome means one recurrent neural network is associated

with it, the size of population always matters the evolution time, as every single

recurrent neural network must be trained parallel. We observed that the average

fitness level of generations was gradually increasing during the evolution, as in the

graph shown in the Figure 5.3, and after about 100 generations a chromosome with

a fitness level over 90% was found. Though the graph had some uncertain fluctu-

ations during initial few generations, as shown in the figure, it became stable and

quite smooth in the end.

The topology of the RNN of optimized chromosome was consisting of one input

layer with 2 units and one hidden layer with 6 units. The number of past input layers

were optimized to 3, and the number of previous hidden layers were optimized to 1.

Figure 5.4 shows the topology of the optimized recurrent neural network. The black

arrows indicate inputs to a certain layer from a certain layer whereas big dashed

arrows indicate the copying of a layer in time steps during back-propagation through
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Figure 5.3: Change of average finesses during evolution.

time. With this RNN, the equations of explicit expressions; equations 5.1, 5.2 and

5.3 will be simplified to:

Y (t) = f

(
6∑

l=1

wH
ol (t).Hl(t) +

6∑
m=1

wF
om(t).Hm(t− 1)

)
, (5.5)

where

Hl(t) = f

(
2∑

i=1

wIH
li (t).Ii(t) +

6∑
j=1

wFH
lj (t).Hj(t− 1) +

3∑
r=1

2∑
k=1

wPH
lkr (t).Ik(t− r)

)
,

(5.6)

where Ii(t) = f

(
3∑

s=1

wXI
is (t).Xs

)
(5.7)

In equations 5.5 and 5.6, Hl(t), l = 1, . . . , 6 are outputs from the hidden layer and

Ii(t), i = 1, 2 are outputs from the input layer at time t. wH
ol and wF

om in equation

5.5 are weights associated with connections between lth unit of the hidden layer and

the output unit and between mth unit of the feedback layer and the output layer

respectively. Similarly wIH
li , wFH

lj and wPH
lkr in equation 5.6 are weights associated

with connections between the ith unit in input layer and the lth unit in hidden layer,

between the jth unit in feedback layer and the lth unit in hidden layer, and between

kth unit in the rth past input layer and the lth unit in the hidden layer respectively.
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Figure 5.4: Optimized topology of the recurrent neural network.

In equation 5.7 wXI
is is the weight associated with the connection between sth input

and the ith unit in the input layer.

During the optimization, a high rate of discarded chromosomes was witnessed

in early stages but was gradually reduced in the latter stages. The reason is that

almost all chromosomes in initial stages are randomly created new chromosomes and

do not possess any genetic feature brought from previous generation by crossing over

or mutating. Therefore, the tenancy to discarded them in fitness test and even before

the checking of error graph features during back-propagation through time is high.

However with the number of generations grows the number of randomly created

new chromosomes gets smaller and the number of chromosomes possessing good

genetic features gets bigger. Therefore the number of discarded chromosomes will

get smaller in latter parts, which is a good indication that the algorithm gets going
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smoothly.

Furthermore, the number of preserved chromosomes in initial stages was zero and

it started to appear a few numbers in the latter part. Once a preserved chromo-

some appears it will appear until the end, as the algorithm preserves them while

allowing it to be crossed over and mutated. Therefore the possibility of one of those

preserved chromosomes to cross the final pass mark is always high as they always

keeps improving but never gets discarded.

5.6 Detection Results

The above optimized recurrent neural network was used for detection of NGs on

various types waveform data, captured from many different machines in different

locations, and produced very good results. Figures 5.5 and 5.6 show some detection

results on 2 different waveforms captured from 2 different machines in different

locations. Both of those voltage waveforms consist of different levels of random

noises, external vibrations and baseline fluctuations on them but were able to detect

using this method correctly.

The red circles in Figures 5.5 and 5.6 show real defect points while blue dashed

lines are candidates and red dashed lines are detected defect points by the RNN

among candidates. The upper graph of both figures 5.5 and 5.6 show detection in

FNN based method while the lower graph of both figures shows detection in RNN

based method. It shows in both cases that there are some defects points that cannot

be detected in FNN method but were possible in RNN method.

Several sets of input data, selected from different types of voltage waveform data

captured from different machines in different locations, were tested and the results

were compared with both thresholding method and our previous feed-forward neural

network based method.

Table 5.1 shows the rates of missed detections and false detections in existing
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Figure 5.5: Detection results on a wave segment.

method, FNN method and RNN method over a selected data set. Existing rate of

missed detections of about 25% has dropped to 9% in FNN method and further

dropped to 5% in RNN method, whereas existing rate of false detections of about

28% has dropped to 16% in FNN method and further dropped to 7.5% in RNN

method. Moreover, it was also realized that the huge manual workload, such as

determining threshold values manually whenever a new machine or product is intro-

duced, can be drastically dropped. The time taken for optimization of the topology

and training of the network, which was around 20 minutes, can be negligible as it is

once and for all comparative with huge time taken by operators in each time when
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Figure 5.6: Detection results on another wave segment.

a product or machine is changed.

Among these two types of detections, missed detections and false detections,

missed detections are the most crucial and never liked to be accepted by any man-

ufacturer. If it allows assuming the judgment is correct it will continue to flow the

production line until up to a finished product. However, it is highly unlikely to get

100% correct inspection and detection by any system, so that manufacturers always

tend to have a manual inspection step sometime for all and sometime randomly.

However by reducing the rate of missed detection drastically, that rate of manual

inspections will also be reduced and the manufacturer’s confidence will also increase.
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Reducing the rate of false detection will also reduce the manual inspection time

and the relation is always one to one since each and every panel that has been shown

as defective has to be inspected manually.

Table 5.1: Comparison of missed detections and false detections between FNN

method, RNN method and thresholding method.

Missed detection False detection

Total defects Threshold FNN RNN Threshold FNN RNN

method method method method method method

Data set 1 48 14 (29.1%) 6(12.5%) 3(6.25%) 13(27.0%) 8(16.6%) 5(10.4%)

Data set 2 60 16(26.5%) 5(8.3%) 3(5.0%) 18(30.0%) 9(15.0%) 4(6.6%)

Data set 3 50 11(22.0%) 4(8.0%) 2(4.0%) 14(28.0%) 8(16.0%) 3(6.0%)

Total 158 41(25.9%) 15(9.45%) 8(5.0%) 45(28.4%) 25(15.8%) 12(7.5%)
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Chapter 6

Scan Path Optimization Using a Self-Organizing

Map

The best known and most popular model of self-organizing map (SOM) is the

topology preserving map proposed by Teuvo Kohonen [42, 43]. SOMs, also known

as Kohonen networks, are an embodiment of some of the ideas developed by Rosen-

blatt [68], von der Malsburg [53], and other researchers. If an input space is to be

processed by a neural network, the first issue of importance is the structure of this

space. A neural network with real inputs computes a function f defined from an

input space A to an output space B. The region where f is defined can be covered

by a Kohonen network in such a way that when, for example, an input vector a1 is

selected from the region A, only one unit in the network fires. Such a tiling in which

input space is classified in sub regions is also called a chart or a map of input space.

Kohonen networks learn to create maps of the input space in a self-organizing way.

Kohonen network model works with elements not very different from the ones

used by other researchers. More relevant is the definition of the neighborhood of a

computing unit. Kohonen networks are arrangements of computing nodes in single

or multi-dimensional lattices (Figure 6.1). During learning, the weights of computing

units and their neighbors are updated. The objective of such a learning approach is

that neighboring units learn to react to closely related signals.

Kohonen learning uses a neighborhood function φ, whose value φ(i, k) represents

the strength of the coupling between unit i and unit k during the training process.
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A simple choice is defining φ(i, k) = 1 for all units i in a neighborhood of radius r

of unit k and φ(i, k) = 0 for all other units [42, 43].

● ● ●X1 X2
Xn

2 dimensional grid

Input vector

Figure 6.1: A typical self-organizing map.

6.1 Scan Path of Defective TFT Lines

In the non-contact FPD inspection method proposed by Hamori et al.[29, 30, 31,

32], the defective TFT lines (or NG lines), which are detected using thresholding

or feed-forward neural network or recurrent neural network methods (proposed in

chapters 4 and 5), have to be scanned again using a micro camera based sensor (called

NG sensor) to determine exact locations of NGs (open circuits or short circuits) on

defective lines. This process is necessary for operators in order to determine if those

NGs are to be repaired or not. Once defective lines are observed by the non-contact

sensor, this line scanning by the NG sensor must obviously be a shortest possible

path. However, currently used motion path of the NG sensor is a simple top-down

unidirectional method which is heavily time consuming particularly on larger glass

panels such as 3m x 3m panels. It may be negligible for a few number of lines or

small sizes of mother glasses. However due to current trend of high demand of bigger

sizes of flat panels it is no longer negligible. Moreover with the emergence of finer

pitch patterns for 4K and 8K TVs, the number of lines for a panel becomes bigger
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and hence the possibility of more defective lines on panels increases. Therefore, it

is necessary to find a more realistic and intelligent approach of the possible shortest

path of NG scanning. Figure 6.2 depicts an existing top-down unidirectional motion

path of NG sensor, where red dashed lines indicate detected defective TFT lines

and blue arrow path depicts the top-down unidirectional motion path. As seen in

the figure it is obvious that this top-down unidirectional scan path is a huge time

waisting particularly for large panels such as 3m× 3m.

Therefore optimizing the detection of defective lines by feed-forward neural net-

work and then improving with a multi-objective topology optimized recurrent neural

network alone does not finish the task of defect detection on flat panel displays. The

second stage where those detected defective line scanning by a NG scanner must

also be optimized to overcome the huge time consuming problem in the current this

primitive scanning method of top-down unidirectional method.

Start PositionDefective Lines

Motion path 
of the sensor

Figure 6.2: Existing top down unidirectional line scan path on a 3x3 panel lay out.



86 6. Scan Path Optimization Using a Self-Organizing Map

6.2 Greedy Approach

A greedy algorithm is a mathematical process that looks for simple, easy-to-

implement solutions to complex, multi-step problems by deciding which next step

will provide the most obvious benefit. Such algorithms are called greedy because

while the optimal solution to each smaller instance will provide an immediate output,

the algorithm doesn’t consider the larger problem as a whole. Once a decision has

been made, it is never reconsidered. At each step the value for one decision variable

is assigned by making the best available decision. A heuristic is needed for making

the decision at each step: what is the best next?. Therefore we cannot expect the

greedy algorithm to obtain the overall optimum solution.

Nearest neighbor search is one such algorithm that can be applied to this kind of

problems. Nearest neighbor search, also known as proximity search or closest point

search, is an optimization problem for finding closest points. It is good for a few

number of inputs (in our case defective lines) but when the size of input space grows

the algorithm time increases exponentially. Since in each step it searches the next

best step it obviously involves a huge time factor.

Practically, after testing the greedy nearest neighbor search, it was realized that

our system cannot afford to loose such a huge time. It was well within the allowed

time frame only for less than 7 lines. However the number defective lines can always

be much more than that and therefore it was understood that greedy approaches

are not appropriate for this system. Under these circumstance, again a self learning

neural network approach was considered. How the problem of finding a closest scan

path is approximated to a asymmetric traveling salesman problem and how it is

solved by a self organization map or Kohonen network is described in following

sections.
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6.3 Approximation to a TSP Solver

The existing top-down unidirectional line scan method (Figure 6.2) is heavily time

consuming for larger sized glass panels as well as for panels with higher number of

defective TFT lines. This problem can be described as finding the shortest path of

visiting each defective TFT line once and only once. Furthermore, without loss of

generality, if a defective line is considered as a pair of points (two tips of the line)

the path of the sensor would become a path connecting a set of pairs of points.

However, once an either point on a defective line (a tip) is reached the next point

must necessarily be the other point (other tip) of the same defective line. In other

words there is a precedence of reaching the next point when one tip of a defective

line is reached. Hence the problem of finding the shortest path within a set of

points is restricted by precedence of those pairs of points. Therefore, this problem

can be approximated to an asymmetric traveling salesman problem (TSP) with a

precedence constraint [56].

The traveling salesman problem is one of the most intensively studied problems

in the computational mathematics, and is commonly encountered in the areas of

manufacturing, planning, scheduling, and transportation logistics, that involves the

determination of a tour, which starts from a base city and then visits all other

given cities once and only once and terminates at the base city while minimizing

the total distance traveled. The goal in solving a TSP is to find the minimum cost

tour, or the optimal tour, covering a n number of cities. A tour of vertices of a

graph which visits each vertex (repeating no edge) once and only once is known

as Hamiltonian cycle. No general method of solution is known, and the problem

is NP-hard. Figure 6.3 shows a typical traveling salesman problem. TSP has been

discussed extensively in the literature [10, 13, 18, 25]. The presence of precedence

constraints within the asymmetric TSP framework is encountered quite often in

practice. Examples include: disassembly optimization and scheduling of wafers/

ICs on automated testing equipments in a semiconductor manufacturing facility;

among others.
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citiesHamiltonian cycle

Figure 6.3: Solution of a typical traveling salesman problem.

Solving TSPs has many approaches in the literature and neural network based

approaches are numerous and a promising survey of neural network applications

for TSPs is given in the work done by Maire and Mladenov [52]. Takahashi [76],

Mandziuk [54] and Feng and Douligeris [26] proposed Hopfield network based ap-

proaches for TSP solvers. Ghaziri and Osman [27] proposed a new heuristic based

on a self-organizing map for TSP with back-hauls. Siqueira et al.[74] have proposed

a TSP solver by using a recurrent neural network while a genetic algorithm based

approach was proposed by Moon et al. [61]. And there is a recent work done by

Zhong et al. [84] which proposed a dynamic Tabu artificial Bee colony algorithm

for multiple TSPs with precedence constraints.

However determining what approach must be taken for a particular problem

depends on many factors of the behavior of precedence involved, the size of input

space, etc. Therefore in this work a combination of modified self-organizing map, a

2-Opt algorithm and a repair algorithm is proposed to find the shortest path of NG

sensor over detected defective TFT lines on flat panel displays.
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6.4 Scan Path Optimization by a Modified Self-Organizing

Map

As described in the above section our problem of finding a shortest possible scan

path of the NG sensor through NG lines on flat panel displays can be formulated

as an asymmetric traveling salesman problem with precedence constraints. Our fo-

cus in this chapter is to solve this problem using a modified self-organizing map

together with a 2-Opt algorithm and a repair algorithm. Self-organizing map based

TSP solvers have also been discussed in the literature. Budinich [14, 15] presented a

self-organizing map very early in 1996 instead of traditional neural networks which

produced approximate solutions for TSP. Schabauer [73] proposed a parallelized

SOM cluster architecture to solve very large TSP. Incorporating efficient initializa-

tion algorithm and a parameter adaptation algorithm to achieve faster convergence

for non-constraint TSP was proposed by Bai et al.[10] and Brocki and Korzinek [13]

also discussed an SOM based method.

6.4.1 Formulation of the SOM

As described in above sections, the shortest path of the NG sensor through de-

fective TFT lines can be approximated to an asymmetric traveling salesman prob-

lem with precedence constraints. And our focus is to find a solution using a self-

organizing map. Though a single line is considered as a pair of points, that pair of

points is again considered as a single point (the middle point) in input space to the

SOM. In other words a visit of the sensor to a defective line is considered as a visit

to the middle of the line, and therefore the number of points in input space is equal

to the number of lines.

Initially, a random map of neurons (nodes) is created with the same number of

inputs and, without loss of generality, the random neurons are placed on a circular

chain with same distance between them as shown in Figure 6.4. When mapping

input points to nodes, the distance from a point to a node is taken as the synaptic
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weight of the node (neuron). There are two approaches of mapping input points to

nodes, namely Winner Takes All (WTA) and Winner Takes Most (WTM), and here

WTM approach is adopted since it gives a chance not only to the best matched node

but also to neighboring nodes to be adjusted. This is more appropriate particularly

in cases with larger sizes of input spaces.

In the learning process of the SOM, the synaptic weight of the best matching node

(BMN) for an input will be adjusted as in the following equation and as shown in

Figure 6.5.

Wi −→ Wi − λWi (6.1)

where Wi is the synaptic weight of ith node and λ(0 < λ < 1) is the learning rate.

Synaptic weights of the neighboring nodes of ith node will also be adjusted as:

Wij −→ Wij − αλWij (6.2)

where Wij is the synaptic weight of jth neighboring node of the ith node and α(0 <

α < 1) is a neighborhood function. The learning rate is decayed linearly during each

iteration such as:

λ = λ0
1− r
N

(6.3)

where λ0 is the initial learning rate, r is the current iteration number and N is

the total number of iterations. The neighborhood function (update length) is also

decayed linearly in the learning process as:

γr+1 = γr −
γr

0.5r
(6.4)

Where r is the iteration number and γr is the update length in the rth iteration.

6.4.2 SOM Learning Algorithm

The learning of the SOM is performed, adhering to above mentioned protocols of

change of synaptic weights, for a pre-determined n number of iterations as follows:
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1. Create a set of nodes (the number of nodes is equal to the number of input

points) and place them randomly on a circular chain with same distance be-

tween them. Initial positioning of nodes on a circular chain is more general

than keeping them randomly scattered or on any other format since the input

patterns are on the surface of a rectangular FPD panel lay out (Figure 6.4).

2. Take one input point randomly and find the BMN according to their synaptic

weights, i.e. the nearest node (Figure 6.5).

3. Update synaptic weight of BMN as in Equation (6.1). The synaptic weight

is the distance between the node and the input point, therefore, it actually

moves the node towards the input point as shown in Figure 6.5.

4. Find the neighboring nodes to the BMN and update their weights according

to Equation (6.2). Again the neighboring nodes are also moved towards the

input point.

5. Repeat the step (2) to step (4) for all remaining input points.

6. Adjust the learning rate according to the Equation (6.3). In Equation 6.3 the

learning rate λ decays linearly in each step with respect to the initial learning

rate λ0, therefore the amount or the distance of moving nodes towards input

points are getting smaller in each iteration.

7. Adjust the neighborhood function according to Equation (6.4). By adjusting

neighborhood function the number of neighboring nodes to be updated are

getting decayed with iterations. Therefore only the BMN is getting moved

during latter parts of iterations.

8. Repeat step 2 to step 7 for N number of iterations.

Figure 6.5 shows how a synaptic weight of a node is updated during training. Black

dots are original positions of the input points whereas orange color dots are nodes.

Yellow color dots indicate weight adjustment (distance) of neighboring nodes for one

input point (start point) in one step of the training.
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Figure 6.4: Initial positions of nodes.

6.4.3 Node Assignment Algorithm

After the learning algorithm of the SOM is over it can be observed that nodes

are not yet perfectly mapped onto input points as shown in Figure 6.6. This may

lead to confusions due to two reasons, one is when multiple nodes are closer to a

single point and the other is when some nodes are isolated. Therefore we follow

three steps when assigning nodes to points as:

1. Assign the nearest node for each point. When assigning nodes to points in

this way, multiple nodes can be assigned to a single point and there may be

some isolated points without any node assignment (Figure 6.7).

2. In multiple assignments, delete all nodes other than the nearest node.

3. Create a new node per each node deleted in step 2 and assigned them to points

where there are no assignments.
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Figure 6.5: Updating synaptic weights of a node.
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Figure 6.6: Node mapping after 1 and n iterations.

6.4.4 Using 2-Opt Algorithm

The points, assigned by nodes, are replaced by their original pairs of points (the

two tips of the defect lines). However the path distance, after replacing by original

pairs of points, may have huge differences on the way on which direction the line

of one point connects to the line of next one. In order to overcome this problem
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Figure 6.7: Assignment of nodes to points.

and also to avoid any possible loop (Figure 6.8) within the path, a greedy 2-opt

algorithm for each node was employed when restoring lines.

In the area of optimization theory, 2-opt is a simple local search algorithm first

proposed by Croes in 1958 for solving the traveling salesman problem. The main

idea behind it is to take a route that crosses over itself and reorder it so that it

does not. 2-opt algorithm consists of eliminating two edges and reconnecting the

two resulting paths in a different way to obtain a new tour. There is only one way

to reconnect the paths that yield a different tour. Among all pairs of edges whose

2-opt exchange decreases the length we choose the pair that gives the shortest tour.

This procedure is then iterated until no such pair of edges is found. The pairwise

exchange or 2-opt technique involves iteratively removing two edges and replacing

these with two different edges that reconnect the fragments created by edge removal

into a new and shorter tour for a traveling salesman problem or graph traversing

problem. The resulting tour is called 2-optimal.

3-opt (3-optimal) or 4-opt (4-optimal) may be better but only the 2-Opt is

adopted in this work due to the time factor. Blazinskas and Misevicius [12] have
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studied 2-opt, 3-opt, 4-opt and their combination in TSP. In Figure 6.8 ABCD is a

loop and 2-Opt algorithm searches and replace them as follows;

If path ABCD > path ACBD then Set the path to ACBD

Figure 6.9 shows the final line restored path created by this SOM method for the

input lines in Figure 6.4.

●

●

●

●

●

●

●A loop in the path

●

A

B

D

C

Figure 6.8: Loops on the optimized path.

6.5 Simulation Results

Numerous patterns of NG lines on different layouts of flat panel displays were

simulated using simulator software. It was observed that this method improved the

distance of line scan sensor by around 40%. The rate of improvement ranged from

20% to 60% and the algorithm time was also greatly impressive as it was below 10

ms even for 100 lines. Figures 6.10 to 6.14 are some selected randomly simulated

results for a 3x3 panel layout. The path distances showed in figures are the distances

by GUI coordinates. The path depicted in blue color is the new SOM based path
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Figure 6.9: Final scan path optimized by the SOM.

and the path in black dashed lines is the existing top down unidirectional method

in each figure. The numbers indicate the sequence on the path.

Table 6.1 shows a comparison of performance between this SOM based method

and the existing top-down unidirectional method for some selected number of lines.

Furthermore these figures are average distances traversed calculated of 10 random

locations of lines using our simulator software.

Practically, when applying this method, the minimum number lines for the 2-

Opt algorithm must be 4 and the minimum number of lines for the SOM learning

must be 5 for a minimum of 2 neighbor learning. Therefore it was decided that this

method is applied only for the cases where there are more that 5 number of lines,

and otherwise the greedy nearest neighbor search method mentioned in section 6.2

was used, and the search time was within the allowed time for such a small number

of defective lines. Moreover the simulation examples like in Figure 6.14, it is easy to

understand even by human eye that the existing top-down unidirectional scan path

is a careless time waste and it shows a huge improvement by our method which is

nearly 60%. In another case, like shown in Figure 6.11, though it’s improvement
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using our method is 30% it is still very much better from manufactures stand point.

And overall the average improvement of our SOM based method, which is nearly

40%, against the existing unidirectional method, was a tremendous achievement

and very much within the acceptance ratio by any manufacturer. Furthermore,

The algorithm time does not matter if the inputs are from simulator data or real

factory data as the path optimization is purely a system task dependent only on

numerical input array (coordinates and orientation) of defective lines. Therefore

factory environments or locations never matter which is also another factor view by

manufactures stand point.

New path =  2196Old path =  3163 Improvement = 30.5%
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Figure 6.10: Optimized scan path for 3 random NG lines.
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New path =  4375Old path =  7001 Improvement = 37.5%
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Figure 6.13: Optimized scan path for 9 random NG lines.
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Table 6.1: Comparison of path distances between existing method and SOM based

method.

Distance traversed Distance traversed

No of lines in existing method in SOM method Improvement (%)

2593 1602 38.18

6 2881 1639 43.11

7 3105 1990 35.91

8 4000 2236 44.10

9 4214 2406 42.09

10 4808 2869 40.33

15 6401 3842 39.98

20 8088 4813 40.49

25 9468 5988 39.76

30 10784 6578 39.00

50 17098 9866 42.3

Average Improvement 40.28
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Chapter 7

Conclusion

In this dissertation defects inspection process of flat panel display fabrication

through neural networks was presented. First chapter is devoted to an introduction

and the explanations of the flat panel display industry, its prospects and defect

inspection process of thin film transistor (TFT) array of flat panel displays and the

second chapter presented basic definitions and methods in neural networks. Chapter

three presented a brief explanation of non-contact defect inspection of flat panel

displays together with currently used thresholding method .

In chapter 4, the problem was identified as a largely data driven and highly

non-linear classification problem of waveform data captured through a non-contact

sensor by scanning over a TFT array of flat panel display. Then the problem was

attempted to solve by using a feed-forward neural network. The approach was shown

much better than the existing thresholding method through experimental results as

the rates of missed detections and false detections were dropped below 15% from

existing rate of around 25%.

In chapter 5, for the purpose of addressing the drawbacks that were encoun-

tered in feed-forward neural network method, such as difficulty of determination of

a correct topology of the network and vulnerability to massively noisy input data,

a multi-objective evolutionary optimized recurrent neural network was adopted to

the problem. A genetic algorithm based multi-objective evolutionary optimization

algorithm evolved the recurrent network and trained. Each chromosome of a genera-

tion consists of an initially assumed architecture of a recurrent neural network, and,
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during the evolution process each network of each chromosome is trained by back-

propagation through time in every generation. The experimental results showed

that the method is superior than both existing thresholding method and previous

feed-forward neural network based method. The rate of missed detections dropped

below 5% and the rate of false detections was dropped below 8%. Furthermore

this method drastically dropped the work load of operators for manually determin-

ing thresholding values for each and every time when a machine change, product

change, location change or recipe change

In chapter 6, the shortest scan path of the NG sensor over defective TFT lines

was focused and a method, combining a modified self-organizing feature map (SOM)

and 2-Opt algorithm, was adopted. First the problem was approximated to a asym-

metric traveling salesman problem with precedence constraints. The SOM based

TSP solver, together with a repair algorithm for node assigning and 2-Opt algo-

rithm for avoiding any possible loops on the final path, produced highly accept-

able results through the simulator. The average distance of the path traversed by

this method was improved by around 45% against existing top-down unidirectional

method. Moreover, the algorithm time did not exceed 10 ms even for 100 defective

lines, which was very much impressive and acceptable from manufacturers perspec-

tive.

By the results of several experiments given in each chapter, the proposed opti-

mized recurrent neural network based defect inspection method of TFT lines on flat

panel displays and the self-organizing map based NG line scan method were found

to be much efficient and effective for defect inspection process of flat panel displays.

As some future directions of this research work, firstly the multi-objective opti-

mization algorithm of the recurrent neural network is to be improved for faster evo-

lution by applying a better learning coefficient in back-propagation through time.

Furthermore, the path optimization algorithm is to be improved by avoiding the

repair algorithm, where repair algorithm can be failed if two nodes are overlapped

or multiple nodes are positioned very closely during training.
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