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Chapter 1

Introduction

1.1 Background and Motivation

The Graphics Processing Unit (GPU) is a specialized circuit designed to accelerate com-

putation for building and manipulating images [13, 18, 35]. GPU consists of thousands

of processing cores designed for handling multiple tasks simultaneously. Latest GPUs

are designed for general purpose computing and can perform computation in applica-

tions traditionally handled by the CPU. Hence, GPUs have recently attracted the atten-

tion of many application developers [13, 8, 32]. NVIDIA provides a parallel computing

architecture called CUDA (Compute Unifie Device Architecture) [5], the computing

engine for NVIDIA GPUs. CUDA gives developers access to the virtual instruction

set and memory of the parallel computational elements in NVIDIA GPUs. In many

cases, GPUs are more efficient than multicore processors [19, 14], since they have hun-

dreds of processor cores and very high memory bandwidth. Since the GPU also has a

high energy efficiency which denotes performance per watt, the GPU attracts notice as

a computational accelerator for high performance computing (HPC).
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NVIDIA GPUs can perform a data communication between the CPU and the GPU

through a PCI express. Then, the data from the main memory in the CPU is stored

into the global memory, off-chip DRAM in the GPU. However, the PCI express has

low bandwidth, say, 2–16 Gbytes/sec. On the other hand, the global memory has high

bandwidth, say, 180–336 Gbytes/sec. The bandwidth of the global memory is much

higher than the bandwidth of the PCI express. Developers should avoid the data com-

munication between CPU and GPU as possible [15]. GPU architecture has two types

of memories: the shared memory and the global memory. The performance of GPU

applications depends greatly on the usage of these memories. Especially, to maximize

the memory bandwidth of the global memory is a key to accelerate the GPU application.

Because of the above background, we treat independent jobs running on a single GPU

and accelerate algorithms in terms of memory access. For this purpose, this disserta-

tion shows theoretical memory machine models and memory access optimal algorithms

which are as follows:

Parallel Memory Machine Models

In this chapter, we introduce simple parallel memory machine models that capture the

essential features of NVIDIA GPUs. the Discrete Memory Machine (DMM) and the

Unifie Memory Machine (UMM), which reflec the essential features of the shared

memory and the global memory of NVIDIA GPUs. In both architectures, a sea of

threads are connected to the memory banks (MBs) through the memory management

unit (MMU). Each thread is a Random Access Machine (RAM), which can execute

fundamental operations in a time unit. Threads are executed in SIMD fashion, and

the processors run on the same program and work on the different data. The HMM

2
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AnOptimal Offline Permutation Algorithm on the HierarchicalMem-

ory Machine

In this chapter, we present optimal offline permutation algorithm on the HMM. This

permutation algorithm uses conflict-fre offline permutation algorithm in chapter 4.

Our scheduled offline permutation algorithm on the HMM performs three step permu-

tations, row-wise permutation, column-wise permutation, and row-wise permutation,

each of which is performed in DMMs of the HMM in parallel. These three permuta-

tion can be determined using a graph theoretic result about bipartite graph coloring.

This algorithm has no stride access requests on the HMM and no bank-conflict in

DMMs. We also present an offline permutation algorithm for any permutation running

in 16 n
w +16 n

kw +16L 16 time units on the HMM with k DMMs. Quite surprisingly, our

offline permutation algorithm on the GPU achieves better performance that the conven-

tional algorithm in random permutation, although the running time has a large constant

factor. We can say that the experimental results provide a good example of GPU compu-

tation showing that a complicated but ingenious implementation with a larger constant

factor in computing time can outperform a much simpler conventional algorithm.

Parallel Algorithms for the SummedArea Table on the Asynchronous

Hierarchical Memory Machine

The summed area table (SAT) of a matrix is a data structure frequently used in the

area of computer vision which can be obtained by computing the column-wise prefix

sums and then the row-wise prefix-sums A straightforward algorithm (2R2W SAT

algorithm), which computes the column-wise prefix-sum and then the row-wise prefix

4



sums, performs 2 read operations and 2 write operations per element of a matrix. The

best known algorithm (2R1W SAT algorithm) so far performs 2 read operations and 1

write operation per element [28]. We present a more efficient algorithm (1R1W SAT

algorithm) which performs 1 read operation and 1 write operation per element. Clearly,

since every element in a matrix must be read at least once, and all resulting values

must be written, our 1R1W SAT algorithm is optimal in terms of the global memory

access. We show a combined algorithm (1+r)R1W SAT algorithm of 2R1W and 1R1W

SAT algorithms that may have better performance. We have also implemented these

algorithms on GeForce GTX 780 Ti. Our best algorithm, (1 + r)R1W SAT algorithm,

runs faster than any other algorithms for large input. It also runs at least 100 times faster

than the sequential algorithm running on a single CPU.

1.2 Dissertation Organization

This doctoral dissertation is organized as follows: The background with motivation and

the introduction of this dissertation are presented in Chapter 1. In Chapter 2, we briefl

introduce NVIDIA GPUs and CUDA programming model. Chapter 3 describes simple

parallel memory machine models that capture the essential features of NVIDIA GPUs.

Chapter 4 describes an offline permutation algorithm on DMMs. Chapter 5 describes an

offline permutation algorithm on the HMM. In Chapter 6, we propose 1R1W SAT algo-

rithm and (1+r)R1W SAT algorithm which are optimal in terms of the global memory

access. Finally, this dissertation is concluded in Chapter 7.
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Chapter 2

GPU and CUDA

In this chapter, we briefl introduce NVIDIA GPUs and CUDA programming model.

NVIDIA GPUs have streaming multiprocessors (SMs) each of which executes multiple

threads in parallel. For example, a multithreaded program is partitioned into each SM

that execute independently from each other, so that a GPU with more multiprocessors

will automatically. In 2006, NVIDIA introduced CUDA, a general purpose parallel

computing platform and programming model that leverages the parallel compute engine

in NVIDIA GPUs to solve many complex computational problems in a more efficient

way than on a CPU. CUDA comes with a software environment that allows developers

to use C as a high-level programming language. CUDA uses two types of memories

of the NVIDIA GPUs: the shared memory and the global memory [5]. As shown in

Figure 2.1, each SM has the shared memory, an extremely fast on-chip memory with

lower capacity, say, 16–48 Kbytes, and low latency. Every SM shares the global memory

implemented as an off-chip DRAM, and has large capacity, say, 1.5–6 Gbytes, but its

access latency is high. The efficient usage of the shared memory and the global memory

is a key for CUDA developers to accelerate applications using GPUs. In particular, we
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need to consider the bank conflic of the shared memory access and the coalescing of

the global memory access [18, 19, 4, 29, 30].
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Figure 2.1: High-level GPU architecture

2.1 CUDA programming model

CUDA C extends C by allowing the programmer to defin C function called kernel.

CUDA parallel programming model has a hierarchy of thread groups called grid, block

and thread. A single grid is organized by multiple blocks, each of which has equal

number of threads as illustrated Figure 2.2. When a kernel function is called by the host

CPU, CUDA generates hierarchy of thread groups that are define by kernel call. Each

thread that executes the kernel is given a unique thread ID that is accessible within the

kernel through the built-in threadIdx variable. Each block is also given a unique block

ID through the built-in blockIdx variable. These variable provides a way to invoke

computation across the elements in a domain such as a vector, matrix. CUDA blocks

are allocated to streaming processors such that all threads in a block are executed by
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the same streaming processor in parallel. All threads can access to the global memory.

However, threads in a block can access to the shared memory of the streaming proces-

sor to which the block is allocated. Since blocks are arranged to multiple streaming

processors, threads in different blocks cannot share data in the shared memories. In the

execution, 32 threads in a block are split into groups of thread called warps. Each of

these warps contains the same number of threads and is executed independently. When

a warp is selected for execution, all threads in the warp execute the same instruction

concurrently.

Block Block Block

Block Block Block

Grid

Thread Thread Thread Thread

Thread Thread Thread Thread

Thread Thread Thread Thread

Block

Figure 2.2: Hierarchy of thread groups

Coalescing

Since the global memory in a GPU has very high latency, efficient global memory access

is important to improve the performance of GPU applications. To maximize a bandwidth

of the global memory, we need to consider the coalescing of the global memory access.

If memory access requests in a warp are consecutive address, this access is called co-

alesced access and maximize the memory bandwidth. On the other hand, if memory

access requests in a warp are not consecutive address, called stride accesses has large
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overhead to process the memory requests. Figure 2.3 shows two patterns of memory

requests.

T0 T1 T2 T3

Coalesced Access

T0 T1 T2 T3

Stride Access

Global memory Global memory

Figure 2.3: Coalesced access and stride access to the global memory

Bank-Conflic

The address space of the shared memory is mapped into several physical memory banks.

Successive 32-bit words are assigned to successive banks. Each bank can only address

one dataset at a time. If two or more threads in a warp access the same memory banks at

the same time, the access requests have to be serialized, called a bank-conflict Hence,

to maximize the memory access performance, threads of CUDA should access distinct

memory banks to avoid the bank conflict of memory access. For example in Figure 2.4,

memory access requests of m[0], m[5], m[10] and m[11] has no bank conflict On the

other hand, memory access requests of m[0], m[4], m[9] and m[15] involve the bank

conflic because m[0] and m[4] are stored in the same bank.
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Figure 2.4: Conflict-fre access and bank conflic in the shared memory
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Chapter 3

Parallel Memory Machine Models

The firs contribution of this chapter is to introduce simple parallel memory machine

models that capture the essential features of the bank conflic of the shared memory

access and the coalescing of the global memory access. More specificall , we present

two models, the Discrete Memory Machine (DMM) and the Unifie Memory Machine

(UMM) [24, 27], which reflec the essential features of the shared memory and the global

memory of NVIDIA GPUs.

The outline of the architectures of the DMM and the UMM are illustrated in Fig-

ure 3.1. In both architectures, a sea of threads (Ts) are connected to the memory banks

(MBs) through the memory management unit (MMU). Each thread is a Random Access

Machine (RAM) [1], which can execute fundamental operations in a time unit. We do

not discuss the architecture of the sea of threads in this chapter but we can imagine that

it consists of a set of multi-core processors which can execute many threads in parallel.

Threads are executed in SIMD [9] fashion, and the processors run on the same program

and work on the different data.

MBs constitute a single address space of the memory. A single address space of

11
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Hence, it takes 5 + 5 1 = 9 time units to complete the memory access.
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Figure 3.3: Examples of memory access on the DMM and the UMM

3.3 The Hierarchical Memory Machine

The main contribution of this sections is to show the Hierarchical Memory Machine

(HMM) [25]. The HMM consists of d DMMs and a single UMM as illustrated in Fig-

ure 3.4. Each DMM has w memory banks and the UMM also has w memory banks.

We call the memory banks of each DMM the shared memory and those of the UMM the

global memory. Each DMM works independently. Threads are partitioned into warps of

w threads, and each warp are dispatched for the memory access for the shared memory

in turn. Further, each warp of w threads in all DMMs can send memory access requests

to the global memory. Figure 3.4 illustrates the architecture of the HMM with d = 2

DMMs. Each DMM and the UMM have w = 4 memory banks. The shared memory of

15



each DMM and the global memory of the UMM correspond to “the shared memory” of

each streaming multiprocessor and “the global memory” of GPUs. We also assume that

the shared memory in each DMM of the HMM can store up to O(w2) numbers. The ca-

pacity of the shared memory of latest CUDA-enabled GPUs is up to 48KBytes and the

number w of the banks is 32 [5]. Since an array of 322 double (64-bit) numbers occupy

8KBytes, each shared memory can store at most 6 such matrices. Thus, it is reasonable

to assume that DMM can store O(w2) numbers in the shared memory.
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Figure 3.4: The architecture of the HMM with d = 3 DMMs and width w = 4

3.4 The Asynchronous Hierarchical Memory Machine

The main contribution of this section is to show the asynchronous Hierarchical Memory

Machine. For more realistic model for GPUs, we introduce the asynchronous Hier-

archical Memory Machine (asynchronous HMM). In the asynchronous HMM, DMMs

16
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Chapter 4

Offline Permutation Algorithms on the

Discrete Memory Machine

Offline permutation is a task to move data along a permutation given beforehand. Ac-

celerating offline permutation is very important, because it has many applications. For

example, matrix transpose, which is one of the important permutations, is frequently

used in matrix computation. It is known that the computation of FFT can be done by

a multistage network in which each stage involves permutation [31]. Sorting network

such as bitonic sorting [10, 3, 12] also involves permutation in each stage. Further,

communication on processor networks such as hypercubes, meshes, and so on can be

emulated by permutation on the shared memory. Thus, parallel algorithms on processor

networks can be simulated on the shared memory machine by data permutations.

The main contribution of this chapter is to present a conflict-fre offline permutation

algorithm on the DMM and implement it to run on the shared memory in the GPU.

Suppose that we have two arrays a and b of size n each. Let P be a permutation of

(0, 1, . . . , n 1). In other words, P(0), P(1), . . . , P(n 1) take distinct integer values

18
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and show straightforward algorithms. Section 4.2 shows our conflict-fre permutation

algorithm and Section 4.3 describes the details of the implementation. In Section 4.4, we

defin several important permutations used for our experiment, and present an in-place

permutation method. In Section 4.5, experimental results using GeForce GTX-680 are

shown. Section 6.7 concludes our work.

4.1 Offline Permutation and Conventional Algorithms

The main purpose of this section is to defin offline permutation and show conventional

algorithms for this task.

Suppose that we have two arrays a and b of size n each. Let P be a permutation of

(0, 1, . . . , n 1). In other words, P(0), P(1), . . . , P(n 1) take distinct integer values in

the range [0, n 1]. Offline permutation along P is a task to copy a[i] to b[P(i)] for all i

(0 ≤ i ≤ n 1) as shown in Figure 4.1.
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Figure 4.1: Conventional permutation algorithm

Suppose that we have n threads for the task of offline permutation. We assume that

P(0), P(1), . . . , P(n 1) are stored in an array p of size n, such that p[i] = P(i) for all

20
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Example 1Example 1Example 1 Example 2

Figure 4.4: Examples of augmenting paths

The reader should refer to Figure 4.5 for illustrating the resulting bipartite matching

after the flippin operation. Clearly, the resulting M is a matching and the number of

edges in M increases by one.

Example 1Example 1Example 1 Example 2Original

Figure 4.5: The resulting bipartite matching after flippin operation

An augmenting path can be found in polynomial time if it exists. Pick a node con-

nected to no edge in M. Construct a shortest path tree from the picked node such that,

in all paths from the root (or the picked node) to the leaves, edges M and M appears

alternatively. If we can fin a non-root node connected to no edge in M, then the path

from the root to the non-root node is an augmenting path.

From these observation, we can fin a maximum matching of a bipartite graph G as
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access operation have the same access time, the conflict-fre permutation algorithm is

4n
3n =

4
3 times slower than the Destination-designated and Source-designated permuta-

tion algorithms. However, as we are going to show later, our conflict-fre permutation

algorithm can be much faster than the Destination-designated and Source-designated

permutation algorithms.

Table 4.1: Memory access by each algorithm

Algorithms a b p q s d read write

Copy r w n n

D-designated r w r 2n n

S-designated r w r 2n n

Our conflict-fre r w r r 3n n

4.4 Important permutations and in-place permutation

method

This chapter firs introduces several important permutations used to evaluate the per-

formance of permutation algorithms later. Also, we introduce the in-place permutation

method which is the most efficient if a permutation is simple.

We use several widely-used important permutations as follows:

Identical: Permutation such that P(i) = i for every i as Figure 4.6.

Random: One of all possible n! permutations is selected uniformly at random as Fig-

ure 4.7.
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Figure4.6:Identicalpermutation

Figure4.7:Randompermutation

Transpose:Supposethataandbarematrixwithdimension
√
n×
√
n. Transpose

correspondstothedatamovementsuchthataisreadinrow-majororderandbiswritten

incolumn-majororderasFigure4.8.Thatis,P(i·
√
n+j)=j·

√
n+iforeveryiandj

(0≤i≤
√
n 1,0≤j≤

√
n 1).

Shuffle:Letimim 1···i1bethebinaryrepresentationofi.AsshowninFigure4.9,the

shufflepermutationisdefineasP(imim 1···i1)=im 1···i1im.Shufflepermutationis

usedforshuffleexchanginginsortingnetworks[10,3].

Bit-reversal:Thebit-reversalpermutationisdefineasP(imim 1···i1)=i1···im 1im.

Bit-reversalisusedfordatareorderingintheFFTalgorithms[31].
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Figure 4.8: Transpose permutation
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Figure 4.9: Shuffle permutation

If a permutation P is simple and regular, it may be possible to compute the value of

P(i) for every i (0 ≤ i ≤ n 1) easily. If this is the case, it is not necessary to use array p to

store the value P. Instead, each thread computes the value of P(threadIdx.x) in place.

For simplicity, we assume n = 1024 and explain how the values of P(threadIdx.x) for

the transpose, the shuffle, and the bit-reversal permutations are computed. Let p denote a

local integer variable of a thread to store the destination. The values of P(threadIdx.x)

for the transpose permutation can be computed by the following formula:

p = (threadIdx.x >> 5) |

((threadIdx.x & 0x1f)<< 5);
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Figure 4.10: Bit-reversal permutation

After the value p above is computed, the destination-designated permutation can be

done by executing the following assignment in parallel.

b[p]=a[threadIdx.x];

The value of P(threadIdx.x) for the shuffle permutation can be obtained by the fol-

lowing assignment:

p = (threadIdx.x >> 9) |

((threadIdx.x & 0x1ff)<< 1);

The following three assignments can perform the bit-reversal permutation. In these

formulas, two local variables u and v are used to store temporal integers.

u = (threadIdxIdx.x >> 5) |

((threadIdxIdx.x & 0x1f)<< 5);

v = ((u & 0x318) >> 3) | ((u & 0x63)<< 3);

p= ((v & 0x252) >> 1) | ((v & 0x129)<< 1) |

(u & 0x84);
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Next, let us consider the Source-designated permutation for the three permutations.

Clearly, P 1 = P for the transpose and the bit-reversal permutations. Hence, the same

assignments can be used for these two permutations. Also, the source index of the

shuffle permutation can be obtained by the following assignment.

q = (threadIdx.x >> 1) |

((threadIdx.x & 0x1)<< 9);

Thus, the Source-designated permutation method can be done in the same manner as

the Destination-designated permutation.

We can apply the same technique to the conflict-fre permutation. In other words,

the values of S (i) and D(i) can be computed in place without using arrays s and d. Let

s and d denote local integer variables to store the source and the destination. Quite sur-

prisingly, for n = 1024, the value of s for the three permutations above can be computed

by the following formula:

s = threadIdx.x ˆ ((threadIdx.x & 0x1f) << 5);

The value d can be computed using the formulas to compute p. For example, the value

d for the transpose can be computed using s as follows:

d = (s>> 5) | ((s & 0x1f)<< 5);

After the values of s and d are computed, the conflict-fre permutation can be done by

executing the following assignment in parallel.

b[d]=a[s];

For the shuffle and the bit-reversal permutations, we can use the above formula for

computing s as it is to obtain the conflict-fre permutation.
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Note that the in-place permutation approach can be used only for simple permuta-

tions such that the values p, q, s, and d can be computed by simple formulas without

using arrays to store the pre-computed values. As we have shown, the transpose, the

shuffle, and the bit-reversal permutations are examples of simple permutations. How-

ever, in general, it may not be possible to compute the values p, q, s, and d by simple

formulas if the permutation has no regularity. In particular, there is no simple way

to compute these values for the random permutation. One obvious program is to use

the switch statement “switch(threadIdx.x)“ with n cases. Clearly, this obvious program

occupies more space than the permutation methods using arrays of size n to store the

source or the destination. Actually, from the Kolmogorov complexity theory [17], the

length of programs to compute these values for the random permutation must be pro-

portional to n. It follows that, there is no better way than the program using the switch

statement for most of the randomly generated permutations.

4.5 Experimental results

This section is devoted to show the experimental results using GeForce GTX-680 with

CUDA Compute Capability 3.0 [5]. The shared memory has w = 32 memory banks

with access latency l = 1. It has two modes: 64-bit mode and 32-bit mode. In the 64-bit

mode, the word size of each of the 32 banks is 64. In the 32-bit mode, the word size is

32. We have evaluated the performance three permutation algorithms, the Destination-

designated permutation algorithm, the Source-designated permutation algorithm, and

our conflict-fre permutation algorithm for both of the two modes. The computing time

for f ve permutations, the identical, the random, the transpose, the shuffle, and the bit-

reversal is evaluated. Further, the in-place permutation method are evaluated for the
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three permutations, the transpose, the shuffle, and the bit-reversal. Also, to estimate

the overhead of these three permutation algorithms, we have evaluated the performance

of the simple copy algorithm. Since any permutation algorithm cannot be faster than

the copy algorithm, its computing time is the lower bound of that for all permutation

algorithms. Hence, we can see the overhead of the computation and/or the memory

access performed by permutation algorithms. The performance has been evaluated for

arrays of size n = 1024. We used the 64-bit mode to permute 64-bit (double) numbers

and the 32-bit mode to permute 32-bit (float numbers. A CUDA kernel with a single

block of 1024 threads was invoked from the host.

Table 4.2 shows the execution time to permute an array of 64-bit (double) numbers

of size n = 1024. Since the execution time of each algorithm for n = 1024 is too

short to measure, each algorithm has been executed for each permutation 100 million

times and we have taken its average. The simple copy operation takes 102.8ns, which

is the lower bound of the execution time of all permutation algorithm. Our conflict

free algorithm runs in 166.7-167.1 ns for all permutations. We can clarify the fact that

our conflict-fre algorithm runs in the same time units for any permutation. Also, if

the in-place computation is used, our conflict-fre algorithm runs in 105.4-109.0 ns.

Since the in-place computation of the bit-reversal is more complicated than the others,

it takes a bit more time. However, compared with the simple copy, the overhead of

the in-place computation is less than 10% of the total execution time. Thus, if the in-

place computation of a required permutation is enough simple, then we should select

the in-place conflict-fre permutation algorithm.

The Destination-designated and the Source-designated permutation algorithms both

for the transpose and for the bit-reversal permutations involve the full bank-conflic , in
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cost of the Destination-designated permutation algorithm for the transpose permutation

is 1/32, because reading of a has no bank conflic and 32 write requests to b are destined

for the same memory bank. Also, its total cost for the in-place method is 33. For

the array-use method, the Destination-designated permutation algorithm need to access

array p and its cost is 1. Thus, the total cost for the array-use method is 34. We can see

that more the permutation algorithm with more total costs takes more execution time.

Table 4.3: The cost of memory access requests for arrays a (read) / b (write) and the

total cost (array-use/in-place)

64-bit(double) 32-bit(float

D-designated S-designated Conflict-fre D-designated S-designated Conflict-fre

Identical 1/1 (3) 1/1 (3) 1/1 (4) 1/1 (3) 1/1(3) 1/1(4)

Random 1/3.46 (5.46) 3.46/1 (5.46) 1/1 (4) 1/3.37 (5.37) 3.37/1(5.37) 1/1(4)

Transpose 1/32 (34/33) 32/1 (34/33) 1/1(4/2) 1/16 (18/17) 16/1 (18/17) 1/1 (4/2)

Shuffle 1/2 (4/3) 2/1 (4/3) 1/1 (4/2) 1/1 (3/2) 2/1 (4/3) 1/1 (4/2)

Bit-reversal 1/32 (34/33) 32/1 (34/33) 1/1 (4/2) 1/16 (18/17) 16/1 (18/17) 1/1(4/2)

Table 4.4 shows the execution time to permute an array of 32-bit (float numbers

of size n = 1024. Each execution time for 32-bit (float numbers is almost equal to

the corresponding execution time of 64-bit (double) numbers except the underlined.

Each underlined execution time for 32-bit numbers is much smaller than that for 64-bit

numbers. This is because the 32-bit mode of the shared memory has some exception of

the bank conflict If two memory requests are destined for different 32-bit words of the

same bank and these different 32-bit words are aligned in the same 64-bit word, they

can be accessed at the same time. For example, two 32-bit words b[0] and b[32] are in

the same bank, but they are aligned in the same 64-bit word. Thus, b[0] and b[32] can

be access at the same time without bank conflict The reader should refer to Figure 4.11
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By comparing Tables 4.2, 4.3, and 4.4, we can see that the execution time is almost

proportional to the total cost. More specificall , the total cost multiplying by 50ns is

a moderately good estimation of the execution time. For example, the total cost of the

Destination-designated permutation algorithm (array-use) for the 64-bit transpose is 34.

Hence, we can estimate that the execution time is 1700ns, while the experimental result

shows that the execution time is 1684ns. Thus, we can say that the DMM is a good

theoretical model of GPUs.

Suppose that some new permutation is given and we need to write a program for it.

We can use the Destination-designated or the Source-designated permutation algorithms

if the execution time is not dominant in the whole application program. If we want to

minimize the execution time we should use the conflict-fre permutation algorithm. If

the permutation is so simple that we can write a simple program to compute the values

of s(i) and d(i) of the conflict-fre permutation, we should choose the in-place conflict

free permutation algorithm. If this is the case, the execution time is almost the same

as the simple copy program. If we cannot fin such simple program, we should use

graph-coloring based conflict-fre permutation algorithm using two additional arrays s

and d.

4.6 Conclusion

The main contribution of this chapter is to implement several permutation algorithms

including our conflict-fre permutation algorithm on the shared memory of NVIDIA

GeForce GTX-680. The experimental results for 1024 64-bit numbers on NVIDIA

GeForce GTX-680 show that the destination-designated permutation algorithm takes

247.8 ns for the random permutation and 1684ns for the worst permutation that involves

40



the maximum bank conflicts Our conflict-fre permutation algorithm runs in 167ns for

any permutation including the random permutation and the worst permutation, although

it performs more memory accesses.

41



ffl

ffl

≥ ≥

ffl ′ ≥ ≥

ffl



′

ffl

+ +

ffl

ffl

+ +

≥

ffl



permutation, and row-wise permutation, each of which is performed in DMMs of the

HMM in parallel. Our scheduled offline permutation runs in 32 n
w + 16L 16 time units

using n threads on the HMM with width w and global memory latency L. This algorithm

is time optimal in the sense that permutation takes at least Ω( nw + L) time units. We also

show that the conventional algorithm runs in Dw(P) + 2 n
w + 3L 3 time units, where

Dw(P) is the distribution of P, which takes a value between n
w and n. Intuitively, Dw(P)

is large if the distribution of contiguous w values in P is large. Hence the computing

time of the conventional algorithm is between 3 n
w + 3L 3 and n + 2 n

w + 3L 3 time

units.

The readers may think that, our scheduled permutation algorithm is not practically

fast on GPUs, although it is time optimal from the theoretical point of view. The constant

factors 32 and 16 in the running time seem too large to achieve better performance than

the conventional algorithm with small constant factors in the computing time. How-

ever, contrary to this instinct, our scheduled permutation algorithm can run faster than

the conventional algorithm. To show this fact, we have implemented our scheduled of-

flin permutation algorithm on GeForce GTX-680 GPU and evaluate the performance

for various permutations. The experimental results show that, the running time of our

scheduled offline permutation algorithm terminates in constant time for any permutation

of the same size. In other words, the computing time depends on the size of the input

array, but is independent of permutation P.

On the other hand, the computing time of the conventional algorithm depends on

the permutation. The experimental results also show that, for permutations with large

distribution, our scheduled permutation algorithm runs faster than the conventional al-

gorithm whenever n ≥ 256K (= 218). For example, our offline permutation algorithm
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runs in 780ms for any permutation of 4M (= 222) floa (32-bit) numbers. The conven-

tional algorithm takes 2328ms for the bit-reversal permutation.

We also show that, for almost all of the permutations over all possible n! permuta-

tions, our scheduled permutation algorithm is faster than the conventional algorithm. To

show this fact, we pick 1000 permutations from all possible n! permutations at random

for n =4M(= 222). The conventional algorithm takes 424.87-426.39ms, while our sched-

uled permutation algorithm takes 173.50-173.92ms. Thus, our scheduled permutation

algorithm is 2.45 time faster than the conventional algorithm for almost all permutations

over all possible n! permutations.

This chapter is organized as follows. In Section 5.1, we defin three memory access

operations, casual memory access, coalesced memory access, and conflict-fre mem-

ory access and evaluate the running time. Section 5.2 define the offline permutation

and show two conventional permutation algorithms, destination-designated permutation

algorithm and source-designated permutation algorithm. Section 5.3 presents an algo-

rithm for transposing a matrix, and Section 5.4 shows algorithms for row-wise permuta-

tion and column-wise permutation of a matrix. In Section 5.5, we present our scheduled

permutation algorithm and show the optimality. Finally, Section 5.6 shows experimen-

tal results for comparing the conventional permutation algorithms and our scheduled

permutation algorithm. Section5.7 concludes our work.
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access is casual if it is not guaranteed to be coalesced or conflict-free For example, a

round of access to b in the conventional permutation algorithm is casual because it may

not be coalesced.

Let us evaluate the time necessary for coalesced and conflict-fre memory access.

Suppose that n threads perform a round of coalesced memory access to the global mem-

ory. Since we have n
w warps each of which sends wmemory requests to the same address

group, it takes n
w time units to send all n memory requests, after that L 1 time units are

necessary to complete the memory requests by the last warp. Thus, it takes n
w + L 1

time units to complete a round of coalesced memory access by n threads. Similarly, a

round of conflict-fre memory access for the shared memory takes n
w time units to send

all memory requests. Since the latency of the shared memory on the HMM is 1, the

memory access is completed in n
w time units. Thus, we have,

Lemma 5.1.1 A round of coalesced memory access for the global memory and that of

conflict-f ee memory access for the shared memory by n threads take n
w +L 1 time units

and n
w time units, respectively.

Note that casual memory access by n threads may be destined for the different address

group or the same memory bank. If this is the case, it takes n time units to send n

memory requests. Thus, the casual memory access to the global memory and the shared

memory may take n + L 1 time units and n time units, respectively.

5.2 Offline Permutation and Conventional Algorithms

Let us defin the permutation of an array as follows. Suppose that we have two ar-

rays a and b of size n. Let P be a permutation of (0, 1, ..., n 1). In other words,
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presume that the L2 cache of size 512Kbytes [6] on GeForce GTX-680 decreases the

overhead of the casual memory access performed by the D-designated and S-designated

permutation algorithms efficiently for small n. Also, in most cases, the S-designated

permutation algorithm is more efficient that the D-designated. This is because the ca-

sual writing takes more running time than the casual reading due to the overhead of

cache coherency in writing.

Table 5.3 shows the running time of the three permutation algorithms for double

(64-bit) numbers and the values of Dw(P)
n . We have selected 1000 permutations P of size

4M at random. The table shows the minimum, the average, and the maximum values

for 1000 permutations. We can see that the values of Dw(P) are very close to n for all

permutations. Also, the variance of the computing time of each algorithm is very small.

Hence, we can say that, for most of all possible permutations, our scheduled permuta-

tion is faster than the D-designated and the S-designated permutation algorithms. The

identical and the shuffle permutations are examples of few exceptions.

5.7 Conclusion

In this chapter, we have presented an optimal offline permutation algorithm on the

HMM, a theoretical model of CUDA-enabled GPUs. We have implemented the op-

timal offline algorithm and the conventional algorithms on GeForce GTX-680 GPU and

evaluate their performance. The experimental results showed that our optimal offline

permutation algorithm is faster than the conventional permutation algorithm for most

cases.
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Chapter 6

Parallel Algorithms for the Summed

Area Table on the Asynchronous

Hierarchical Memory Machine

The summed area table (SAT) of a matrix is a data structure frequently used in the area

of computer vision which can be obtained by computing the column-wise prefix-sum

and then the row-wise prefix-sum [23, 2, 33]. The main contribution of this chapter is

to show a global-memory-access-optimal parallel algorithm for computing the summed

area table stored in the global memory of the asynchronous HMM.

In the chapter 3, we have introduced the Hierarchical Memory Machine (HMM) [25],

which is a hybrid of the DMM and the UMM. The HMM is a more practical parallel

computing model that reflect the hierarchical architecture of CUDA-enabled GPUs.

Figure 3.4 illustrates the architecture of the HMM. The HMM consists of d DMMs and

a single UMM. Each DMM has w memory banks and the UMM has w memory banks.

We call the memory banks of each DMM the shared memory and those of the UMM
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