Memory Access Optimal Algorithms for the GPU
(GPUFIDAEY 7 7k ADEEE 7)L 3Y X L)

by

Akihiko Kasagi

A dissertation submitted
in partial fulfillmen of the requirements for the degree of
Doctor of Engineering

in Information Engineering

Under Supervision of

Professor Koji Nakano

Department of Information Engineering,
Graduate School of Engineering,

Hiroshima University

March, 2015

SUMMARY

A GPU (Graphics Processing Unit) is a specialized circuit designed to accelerate com-
putation for building and manipulating images. Latest GPUs are designed for general
purpose computing and can perform computation in applications traditionally handled
by the CPU. Hence, GPUs have recently attracted the attention of many application
developers. The GPU has two types of memories: the shared memory and the global
memory. The performance of applications using a GPU depends greatly on the usage
of these memories. Because of the above background, we consider memory access op-
timal algorithms on a single GPU. This dissertation shows theoretical memory machine
models and memory access optimal algorithms which are as follows:

We introduce simple parallel memory machine models that capture the essential
features of NVIDIA GPUs. The Discrete Memory Machine (DMM) and the Unifie
Memory Machine (UMM) reflec the essential features of the shared memory and the
global memory of NVIDIA GPUs. In both architectures, a sea of threads are connected
to the memory banks (MBs) through the memory management unit (MMU). Each thread
is a Random Access Machine (RAM), which can execute fundamental operations in a
time unit. Threads are executed in SIMD fashion, and the processors run on the same
program and work on the different data. The Hierarchical Memory Machine (HMM) is
a hybrid of the DMM and the UMM. The HMM is a more practical parallel computing
model that reflect the hierarchical architecture of CUDA-enabled GPUs.

Offline permutation is a task to move data along a permutation P given beforehand.
The conventional algorithm of offline permutation performs b[P(i)] » a[i] for all i
(0>i>mn 1). We present conflict-fre offline permutation algorithm on the DMM

and implement it to run on the shared memory in the GPU. Our idea is to use two

permutations S and D which can be obtained from P. Using these two permutations
our conflict-fre permutation algorithm performs b[D(i)] » a[S(i)] for all i. In the
experimental results, our conflict-fre permutation algorithm runs in 167ns for any per-
mutation including the random permutation and the worst permutation. We also present
optimal offline permutation algorithm on the HMM. This algorithm has no stride access
requests and no bank-conflicts We evaluate these algorithms using several parame-
ters and implement these algorithms to the GPU. The experimental results show that
our optimal offline permutation algorithm on the HMM is faster than the conventional
permutation algorithm for most cases.

The summed area table (SAT) of a matrix is a data structure frequently used in
the area of computer vision which can be obtained by computing the column-wise
prefix-sum and then the row-wise prefix-sums The previously published best algo-
rithm (2R1W SAT algorithm) performs 2 read operations and 1 write operation per
element. We present a more efficient algorithm (1R1W SAT algorithm) which performs
1 read operation and 1 write operation per element. Clearly, since every element in a
matrix must be read at least once, and all resulting values must be written, our IRIW
SAT algorithm is optimal in terms of the global memory access. We also show a com-
bined algorithm ((1+7)R1W SAT algorithm) of 2R1W and 1R1W SAT algorithms that
may have better performance. The experimental results show that our (1+7)R1W SAT
algorithm runs faster than any other SAT algorithms for large input matrices. Also, it

runs more than 100 times faster than the best SAT algorithm using a single CPU.

Contents

1 Introduction

4.1

4.2

43

44

4.5

1.1 Background and Motivation

1.2 Dissertation Organization
2 GPU and CUDA

2.1 CUDA programming model
3 Parallel Memory Machine Models

3.1 The Discrete Memory Machine

3.2 The Unifie Memory Machine

3.3 The Hierarchical Memory Machine

3.4 The Asynchronous Hierarchical Memory Machine

Offline Permutation Algorithms on the Discrete Memory Machine

Offline Permutation and Conventional Algorithms
Graph coloring based conflict-fre permutation
Implementation of conflict-fre permutation algorithm
Important permutations and in-place permutation method

Experimental results L o oL

11

12

14

15

16

18

4.6 Conclusion s, 40

An Optimal Offline Permutation Algorithm on the Hierarchical Memory

Machine 42
5.1 Coalesced, Conflict-Free and Casual Memory Access 46
5.2 Offline Permutation and Conventional Algorithms 47
5.3 Transpose of a Matrixonthe HMM 50
5.4 Row-wise and Column-wise permutation. 53
5.5 Our Scheduled permutation Algorithm 56
5.6 ExperimentalResult. 59
577 Conclusion e 61

Parallel Algorithms for the Summed Area Table on the Asynchronous Hi-
erarchical Memory Machine 63

6.1 The global memory access cost on the HMM and the diagonal arrange-

mentonthe DMM o o 66
6.2 2R2W and 4R4W SAT algorithms 68
6.3 2RIW SAT algorithm 71
6.4 Our IR1W SAT algorithm 75
6.5 (1+7r)RIWSATalgorithm 77
6.6 Experimentalresults 79
6.7 Conclusion 82
Conclusions 83
7.1 Summary e 83

i

References

Acknowledgment

List of publications

il

84

89

90

List of Figures

2.1

2.2

23

24

3.1

3.2

3.3

34

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8

4.9

High-level GPU architecture 7
Hierarchy of thread groups 8
Coalesced access and stride access to the global memory 9
Conflict-fre access and bank conflic in the shared memory 10
The architectures of the DMM andthe UMM 12
DMMand UMM withw =4 13
Examples of memory access on the DMM and the UMM 15
The architecture of the HMM with d = 3 DMMs and widthw =4 . . . 16
Conventional permutation algorithm 20
Memory banks forw =4 21
A regular bipartite graph with degree4 24
Examples of augmentingpaths 27
The resulting bipartite matching after flippin operation 27
Identical permutation 31
Random permutation 31
Transpose permutation 32
Shuffle permutation, 32

v

4.10 Bit-reversal permutation 33

4.11 The word alignments of the 64-bit and 32-bitmodes 39
5.1 Diagonal arrangement withw =4 52
5.2 A regular bipartite graph with degree 4 painted by 4 colors 54
5.3 TIlustrating how numbers are routed by the permutation algorithm . . . 58
6.1 The summed area table (SAT) of a 9 9 matrix and 2R2W SAT algorithm 65
6.2 Timing chart of coalesced memory access to the global memory with

two barrier synchronization steps L. L. 67
6.3 Diagonal arrangementofa4 e 4 matrix 68
6.4 Transpose of a block using a 4 e 4 matrix with diagonal arrangement . . 70
6.5 2R1W SAT algorithm executed for a matrix in Figure 6.1 withw =3 . . 73
6.6 Step 3 of 2R1W SAT algorithm 74
6.7 Stage 7 of 4R1W SAT algorithm 75
6.8 Stage 3 of IRIW SAT algorithm for a matrix in Figure 6.1 77
6.9 Partition of a matrix for (1 + »)R1IW SAT algorithm 79

Chapter 1

Introduction

1.1 Background and Motivation

The Graphics Processing Unit (GPU) is a specialized circuit designed to accelerate com-
putation for building and manipulating images [13, 18, 35]. GPU consists of thousands
of processing cores designed for handling multiple tasks simultaneously. Latest GPUs
are designed for general purpose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have recently attracted the atten-
tion of many application developers [13, 8, 32]. NVIDIA provides a parallel computing
architecture called CUDA (Compute Unifie Device Architecture) [5], the computing
engine for NVIDIA GPUs. CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in NVIDIA GPUs. In many
cases, GPUs are more efficient than multicore processors [19, 14], since they have hun-
dreds of processor cores and very high memory bandwidth. Since the GPU also has a
high energy efficiency which denotes performance per watt, the GPU attracts notice as

a computational accelerator for high performance computing (HPC).

NVIDIA GPUs can perform a data communication between the CPU and the GPU
through a PCI express. Then, the data from the main memory in the CPU is stored
into the global memory, off-chip DRAM in the GPU. However, the PCI express has
low bandwidth, say, 2—16 Gbytes/sec. On the other hand, the global memory has high
bandwidth, say, 180-336 Gbytes/sec. The bandwidth of the global memory is much
higher than the bandwidth of the PCI express. Developers should avoid the data com-
munication between CPU and GPU as possible [15]. GPU architecture has two types
of memories: the shared memory and the global memory. The performance of GPU
applications depends greatly on the usage of these memories. Especially, to maximize
the memory bandwidth of the global memory is a key to accelerate the GPU application.
Because of the above background, we treat independent jobs running on a single GPU
and accelerate algorithms in terms of memory access. For this purpose, this disserta-
tion shows theoretical memory machine models and memory access optimal algorithms

which are as follows:

Parallel Memory Machine Models

In this chapter, we introduce simple parallel memory machine models that capture the
essential features of NVIDIA GPUs. the Discrete Memory Machine (DMM) and the
Unifie Memory Machine (UMM), which reflec the essential features of the shared
memory and the global memory of NVIDIA GPUs. In both architectures, a sea of
threads are connected to the memory banks (MBs) through the memory management
unit (MMU). Each thread is a Random Access Machine (RAM), which can execute
fundamental operations in a time unit. Threads are executed in SIMD fashion, and

the processors run on the same program and work on the different data. The HMM

is a more practical parallel computing model that reflect the hierarchical architecture
of CUDA-enabled GPUs. The asynchronous Hierarchical Memory Machine is more
realistic model for GPUs In the asynchronous HMM. In this dissertation, we evaluate

several algorithms using these parallel memory machine models.

Offline Permutation Algorithms on the Discrete Memory Machine

Offline permutation is a task to move data along a permutation P given beforehand. It
is known that the computation of FFT can be done by a multistage network in which
each stage involves permutation. Sorting network such as bitonic sorting also involves
permutation in each stage. The conventional algorithm of offline permutation performs
b[P(i)] » a[i] foralli (0 > i > n 1). In this chapter, we present conflict-fre

offline permutation algorithm on the DMM and implement it to run on the shared mem-
ory in the GPU. Our idea is to use two permutations S and D which can be obtained
from P. Using these two permutations our conflict-fre permutation algorithm performs
b[D(i)] » a[S(i)] for all i. These two permutations S and D can be determined us-
ing a graph theoretic result about bipartite graph coloring. We evaluate the several
permutation algorithms and compare these performances of read/write access. Experi-
mental results for 1024 double (64-bit) numbers on NVIDIA GeForce GTX-680 show
that the straightforward permutation algorithm takes 247.8ns for the random permuta-
tion and 1684ns for the worst permutation that involves the maximum bank conflicts
Our conflict-fre permutation algorithm runs in 167ns for any permutation including the
random permutation and worst permutation. It follows that our conflict-fre permuta-
tion is 1.48 times faster than random permutation and 10.0 times faster for the worst

permutation.

An Optimal Offline Permutation Algorithm on the Hierarchical Mem-

ory Machine

In this chapter, we present optimal offline permutation algorithm on the HMM. This
permutation algorithm uses conflict-fre offline permutation algorithm in chapter 4.
Our scheduled offline permutation algorithm on the HMM performs three step permu-
tations, row-wise permutation, column-wise permutation, and row-wise permutation,
each of which is performed in DMMs of the HMM in parallel. These three permuta-
tion can be determined using a graph theoretic result about bipartite graph coloring.
This algorithm has no stride access requests on the HMM and no bank-conflict in
DMMs. We also present an offline permutation algorithm for any permutation running
in 162 +167-+16L 16 time units on the HMM with A DMMs. Quite surprisingly, our
offline permutation algorithm on the GPU achieves better performance that the conven-
tional algorithm in random permutation, although the running time has a large constant
factor. We can say that the experimental results provide a good example of GPU compu-
tation showing that a complicated but ingenious implementation with a larger constant

factor in computing time can outperform a much simpler conventional algorithm.

Parallel Algorithms for the Summed Area Table on the Asynchronous

Hierarchical Memory Machine

The summed area table (SAT) of a matrix is a data structure frequently used in the
area of computer vision which can be obtained by computing the column-wise prefix
sums and then the row-wise prefix-sums A straightforward algorithm (2R2W SAT

algorithm), which computes the column-wise prefix-sum and then the row-wise prefix

sums, performs 2 read operations and 2 write operations per element of a matrix. The
best known algorithm (2R1W SAT algorithm) so far performs 2 read operations and 1
write operation per element [28]. We present a more efficient algorithm (1R1W SAT
algorithm) which performs 1 read operation and 1 write operation per element. Clearly,
since every element in a matrix must be read at least once, and all resulting values
must be written, our IR1W SAT algorithm is optimal in terms of the global memory
access. We show a combined algorithm (1+7)R1W SAT algorithm of 2R1W and 1R1W
SAT algorithms that may have better performance. We have also implemented these
algorithms on GeForce GTX 780 Ti. Our best algorithm, (1 + 7)RIW SAT algorithm,
runs faster than any other algorithms for large input. It also runs at least 100 times faster

than the sequential algorithm running on a single CPU.

1.2 Dissertation Organization

This doctoral dissertation is organized as follows: The background with motivation and
the introduction of this dissertation are presented in Chapter 1. In Chapter 2, we briefl

introduce NVIDIA GPUs and CUDA programming model. Chapter 3 describes simple
parallel memory machine models that capture the essential features of NVIDIA GPUs.
Chapter 4 describes an offline permutation algorithm on DMMs. Chapter 5 describes an
offline permutation algorithm on the HMM. In Chapter 6, we propose 1R1W SAT algo-
rithm and (1+7)R1W SAT algorithm which are optimal in terms of the global memory

access. Finally, this dissertation is concluded in Chapter 7.

Chapter 2

GPU and CUDA

In this chapter, we briefl introduce NVIDIA GPUs and CUDA programming model.
NVIDIA GPUs have streaming multiprocessors (SMs) each of which executes multiple
threads in parallel. For example, a multithreaded program is partitioned into each SM
that execute independently from each other, so that a GPU with more multiprocessors
will automatically. In 2006, NVIDIA introduced CUDA, a general purpose parallel
computing platform and programming model that leverages the parallel compute engine
in NVIDIA GPUs to solve many complex computational problems in a more efficient
way than on a CPU. CUDA comes with a software environment that allows developers
to use C as a high-level programming language. CUDA uses two types of memories
of the NVIDIA GPUs: the shared memory and the global memory [5]. As shown in
Figure 2.1, each SM has the shared memory, an extremely fast on-chip memory with
lower capacity, say, 16—48 Kbytes, and low latency. Every SM shares the global memory
implemented as an off-chip DRAM, and has large capacity, say, 1.5-6 Gbytes, but its
access latency is high. The efficient usage of the shared memory and the global memory

is a key for CUDA developers to accelerate applications using GPUs. In particular, we

need to consider the bank conflic of the shared memory access and the coalescing of

the global memory access [18, 19, 4, 29, 30].

streaming streaming streaming streaming
multiprocessor multiprocessor multiprocessor multiprocessor

shared
memory

shared
memory

global memory

memory memory

()
()
[]
()
[shared]

Figure 2.1: High-level GPU architecture

2.1 CUDA programming model

CUDA C extends C by allowing the programmer to defin C function called kernel.
CUDA parallel programming model has a hierarchy of thread groups called grid, block
and thread. A single grid is organized by multiple blocks, each of which has equal
number of threads as illustrated Figure 2.2. When a kernel function is called by the host
CPU, CUDA generates hierarchy of thread groups that are define by kernel call. Each
thread that executes the kernel is given a unique thread ID that is accessible within the
kernel through the built-in threadldx variable. Each block is also given a unique block
ID through the built-in blockldx variable. These variable provides a way to invoke
computation across the elements in a domain such as a vector, matrix. CUDA blocks

are allocated to streaming processors such that all threads in a block are executed by

the same streaming processor in parallel. All threads can access to the global memory.
However, threads in a block can access to the shared memory of the streaming proces-
sor to which the block is allocated. Since blocks are arranged to multiple streaming
processors, threads in different blocks cannot share data in the shared memories. In the
execution, 32 threads in a block are split into groups of thread called warps. Each of
these warps contains the same number of threads and is executed independently. When

a warp is selected for execution, all threads in the warp execute the same instruction

concurrently.
4 Grid ?/' Block
Block Block Block
Thread Thread Thread | swmmums Thread
I | I A I | I (| | I | I A I | = " = ” = |
I { I | I | I I { I Thread Thread Thread | summmam -Thread
I | I A I | I (| | I | I A I | " ” | -
\\ | Thread || Thread ” Thread | -------
AY -
Block Block Block \\ :
I I { {0 I I { I { I | I I I { {0 I N
I I I | I (| | I | I A I
I I { {0 I I { I { I | I I I { {0 I
Figure 2.2: Hierarchy of thread groups
Coalescing

Since the global memory in a GPU has very high latency, efficient global memory access
is important to improve the performance of GPU applications. To maximize a bandwidth
of the global memory, we need to consider the coalescing of the global memory access.
If memory access requests in a warp are consecutive address, this access is called co-
alesced access and maximize the memory bandwidth. On the other hand, if memory

access requests in a warp are not consecutive address, called stride accesses has large

overhead to process the memory requests. Figure 2.3 shows two patterns of memory
requests.

Coalesced Access Stride Access

[T [[T HEEENENNE

Global memory Global memory

Figure 2.3: Coalesced access and stride access to the global memory

Bank-Conflic

The address space of the shared memory is mapped into several physical memory banks.
Successive 32-bit words are assigned to successive banks. Each bank can only address
one dataset at a time. If two or more threads in a warp access the same memory banks at
the same time, the access requests have to be serialized, called a bank-conflict Hence,
to maximize the memory access performance, threads of CUDA should access distinct
memory banks to avoid the bank conflict of memory access. For example in Figure 2.4,
memory access requests of m[0], m[5], m[10] and m[11] has no bank conflict On the
other hand, memory access requests of m[0], m[4], m[9] and m[15] involve the bank

conflic because m[0] and m[4] are stored in the same bank.

Bank0 Bankl1 Bank?2 Bank3

m[0] m[1] m[2] m[3] Conflict-Free

m[0] | m[5] | m[10] | m[11]

m[4] m(5] m[6] m[7]

m[8] m([9] m[10] m[11] Bank-Conflict

m[12] m[13] m[14] m[15] m[0] | m[4] | m[9] | m[15]

Figure 2.4: Conflict-fre access and bank conflic in the shared memory

10

Chapter 3

Parallel Memory Machine Models

The firs contribution of this chapter is to introduce simple parallel memory machine
models that capture the essential features of the bank conflic of the shared memory
access and the coalescing of the global memory access. More specificall , we present
two models, the Discrete Memory Machine (DMM) and the Unifie Memory Machine
(UMM) [24, 27], which reflec the essential features of the shared memory and the global
memory of NVIDIA GPUs.

The outline of the architectures of the DMM and the UMM are illustrated in Fig-
ure 3.1. In both architectures, a sea of threads (Ts) are connected to the memory banks
(MBs) through the memory management unit (MMU). Each thread is a Random Access
Machine (RAM) [1], which can execute fundamental operations in a time unit. We do
not discuss the architecture of the sea of threads in this chapter but we can imagine that
it consists of a set of multi-core processors which can execute many threads in parallel.
Threads are executed in SIMD [9] fashion, and the processors run on the same program
and work on the different data.

MBs constitute a single address space of the memory. A single address space of

11

the memory is mapped to the MBs in an interleaved way such that the word of data
of address i is stored in the (i mod w)-th bank, where w is the number of MBs. The
main difference of the two architectures is the connection of the address line between
the MMU and the MBs, which can transfer an address value. In the DMM, the address
lines connect the MBs and the MMU separately, while a single address line from the
MMU is connected to the MBs in the UMM. Hence, in the UMM, the same address
value is broadcast to every MB, and the same address of the MBs can be accessed in
each time unit. On the other hand, different addresses of the MBs can be accessed in the
DMM. The DMM and the UMM capture the essence of the shared memory access and
the global memory access of current GPUs.

a sea of threads a sea of threads

H HIH EI|

MMU | | MMU
-1 AN -
[we] [me] [me] [we] |MB| |MB| |MB| |MB|
DMM UMM

........ address line — data line

Figure 3.1: The architectures of the DMM and the UMM

3.1 The Discrete Memory Machine

The main contribution of this sections is to show the Discrete Memory Machine (DMM).
We defin the Discrete Memory Machine (DMM) of width w and latency /. Let m[i] (0 >

i) denote a memory cell of address i in the memory. Let B[] =}/, j+w, j+2w, j+3w,..

12

(0> j>=w 1)be aset of address of the j-th memory bank of the memory. In other
words, address i is in the (i mod w)-th memory bank. Clearly, a memory cell m[i] is in
the (i mod w)-th memory bank. Figure 3.2 illustrates memory banks of DMM for w =
4. We assume that memory cells in different banks can be accessed in a time unit, but

no two memory cells in the same bank can be accessed in a time unit.

A[0] A[1] A[2] A[3]

A A
BOIl O |4]| 8|12 o 41 8|f12
Bl 1| 5] 9|13 159 |13
—————eee— w W
B2]| 2 | 6 |10 14 2161014
B3I 3 | 7 |11]15] 307 |11 15 v
DMM UMM

Figure 3.2: DMM and UMM with w = 4

Also, we assume that addresses in different banks can be accessed in a time unit,
but no two addresses in the same bank can be accessed in a time unit. Also, we assume
that / time units are necessary to complete an access request and continuous requests are
processed in a pipeline fashion. Thus, it takes £ +/ 1 time units to complete memory
access requests to k addresses in a particular bank.

We assume that p threads are partitioned into £ groups of w threads called warps.
More specificall , p threads 7(0), 7(1), ..., T(p 1) are partitioned into £ warps
w(0), w(l),..., W(£ 1) such that W(i) = }T(i>w), T(i>xw+1),....T(([+1)xw 1)
(0>i> 2 1). Warps are dispatched for memory access in turn, and w threads in a warp

iz

try to access the memory at the same time. In other words, W(0), W(1),..., W(5 1)

are dispatched in a round-robin manner if at least one thread in a warp requests mem-

13

ory access. If no thread in a warp needs memory access, such warp is not dispatched
for memory access. When W (i) is dispatched, w threads in W(i) send memory access
requests, at most one request per thread, to the memory. We also assume that a thread
cannot send a new memory access request until the previous memory access request is
completed. Hence, if a thread sends a memory access request, it must wait at least / time

units to send a new memory access request.

3.2 The Unifie Memory Machine

The main contribution of this sections is to show the Unifie Memory Machine (UMM,).
We defin the Unifie Memory Machine (UMM) of width w and latency / as follows.
Let A[j]=}j>w, j>w+1,...,(j+1)>w 1({denote a set of addresses in the j-th address
group. We assume that addresses in the same address group are processed at the same
time. However, if they are in the different groups, one time unit is necessary for each of
the groups. Also, similarly to the DMM, p threads are partitioned into warps and each
warp accesses the memory in turn.

Figure 3.3 shows examples of memory access on the DMM and the UMM. We
assume that each memory access request is completed when it reaches the last pipeline
stage. Two warps W(0) and W(1) access to)7,5,15,0] and)10, 11, 12, 9], respectively.
In the DMM, memory access requests by W(0) are separated into two pipeline stages,
because addresses 7 and 15 are in the same bank B(3). Those by W(1) occupies 1
stage, because all requests are in distinct banks. Thus, the memory requests occupy
three stages, it takes 3 +5 1 = 7 time units to complete the memory access. In the
UMM, memory access requests by W(0) are destined for three address groups. Hence

the memory requests occupy three stages. Similarly those by (1) occupy two stages.

14

Hence, ittakes 5+ 5 1 = 9 time units to complete the memory access.

DMM UMM
POI s os]lo]) B Iis][e]
innoojinnBan

v ¥V v ¥
h2f | []
vV ¥
e M
pipeline
registers | |‘|‘|15|
L I15] [7]
vy
oL 1 1]

Figure 3.3: Examples of memory access on the DMM and the UMM

3.3 The Hierarchical Memory Machine

The main contribution of this sections is to show the Hierarchical Memory Machine
(HMM) [25]. The HMM consists of d DMMs and a single UMM as illustrated in Fig-
ure 3.4. Each DMM has w memory banks and the UMM also has w memory banks.
We call the memory banks of each DMM the shared memory and those of the UMM the
global memory. Each DMM works independently. Threads are partitioned into warps of
w threads, and each warp are dispatched for the memory access for the shared memory
in turn. Further, each warp of w threads in all DMMs can send memory access requests
to the global memory. Figure 3.4 illustrates the architecture of the HMM with d = 2

DMMs. Each DMM and the UMM have w = 4 memory banks. The shared memory of

15

each DMM and the global memory of the UMM correspond to “the shared memory” of
each streaming multiprocessor and “the global memory” of GPUs. We also assume that
the shared memory in each DMM of the HMM can store up to O(w?) numbers. The ca-
pacity of the shared memory of latest CUDA-enabled GPUs is up to 48KBytes and the
number w of the banks is 32 [5]. Since an array of 322 double (64-bit) numbers occupy
8KBytes, each shared memory can store at most 6 such matrices. Thus, it is reasonable

to assume that DMM can store O(w?) numbers in the shared memory.

DMM DMM DMM
|. :MMb : ||: .MMG . ||. :MMQ :|
' o - I 1

| F F : .
1 =1 =] I | I | " m

| . MMU - |

| we || wme [[ws || we |

UMM

-------- address line m— data line

Figure 3.4: The architecture of the HMM with d = 3 DMMs and width w = 4

3.4 The Asynchronous Hierarchical Memory Machine

The main contribution of this section is to show the asynchronous Hierarchical Memory
Machine. For more realistic model for GPUs, we introduce the asynchronous Hier-

archical Memory Machine (asynchronous HMM). In the asynchronous HMM, DMMs

16

work asynchronously in the sense that some DMMs may work slightly slower or faster
than the others. Instead, all threads in all DMMs can execute a barrier synchronization
instruction. If a thread in a DMM executes the barrier synchronization instruction, it
must wait until all the other threads in all DMMs execute it [22]. Also, after all threads
execute the barrier synchronization instruction, all DMMs are reset, that is, the shared
memory of all DMMs are initialized and all data stored in it are lost. The reader may
think that this reset assumption of all DMMs is not reasonable. However, this assump-
tion is mandatory for program scalability of DMMs in the HMM. More specificall ,
suppose that a programmer writes a program of the HMM with d DMMs. It may be
possible to execute this program in the HMM with d* DMMs such that d° < d. If this is
the case, the program of d* DMMs are executed until a barrier synchronization instruc-
tion is executed. After that, the d© DMMs are reset and the program of next & DMMs
are executed. The same procedure is repeated until all threads execute the barrier syn-
chronization instruction. Hence, it makes sense to assume that all DMMs are reset after
each barrier synchronization step. The previous DMMs are responsible for copying the
data stored in the shared memory to the global memory before barrier synchronization
if they are used after the synchronization. Actually, we need to terminate a CUDA ker-
nel call for a GPU when barrier synchronization of all threads is necessary [5]. When
a CUDA kernel call is terminated for barrier synchronization, the data stored in the
shared memory by a CUDA block are lost. This is because CUDA blocks are executed

in streaming multiprocessors with small shared memory one by one in turn.

17

Chapter 4

Offline Permutation Algorithms on the

Discrete Memory Machine

Offline permutation is a task to move data along a permutation given beforehand. Ac-
celerating offline permutation is very important, because it has many applications. For
example, matrix transpose, which is one of the important permutations, is frequently
used in matrix computation. It is known that the computation of FFT can be done by
a multistage network in which each stage involves permutation [31]. Sorting network
such as bitonic sorting [10, 3, 12] also involves permutation in each stage. Further,
communication on processor networks such as hypercubes, meshes, and so on can be
emulated by permutation on the shared memory. Thus, parallel algorithms on processor
networks can be simulated on the shared memory machine by data permutations.

The main contribution of this chapter is to present a conflict-fre offline permutation
algorithm on the DMM and implement it to run on the shared memory in the GPU.
Suppose that we have two arrays a and b of size n each. Let P be a permutation of

(0,1,...,n 1). In other words, P(0), P(1),...,P(n 1) take distinct integer values

18

in the range [0,» 1]. Offline permutation along P is a task to copy a[i] to b[P(i)]
foralli (0 > i > n 1). The destination-designated (D-designated) algorithm just
performs b[P(i)] » ali] for all i. However, writing operation in array b may involve
bank conflicts Our idea is to use two permutations S and D which can be obtained
from P. Using these two permutations our conflict-fre permutation algorithm performs
b[D(i)] » a[S(i)] for all i. Two permutations S and D are determined so that memory
access operations to arrays a and b have no bank conflict Two permutations S and D can
be determined using a graph theoretic result about bipartite graph coloring. This idea is
originally shown in [24]. Our main contribution is to actually implement permutation
algorithms including the D-designated and our conflict-fre permutation algorithms on
the shared memory of the latest GPU, NVIDIA GeForce GTX-680.

The experimental results for 1024 double (64-bit) numbers on NVIDIA GeForce
GTX-680 show that the straightforward permutation algorithm takes 247.8ns for the
random permutation and 1684ns for the worst permutation that involves the maximum
bank conflicts Our conflict-fre permutation algorithm runs in 167ns for any permuta-
tion including the random permutation and the worst permutation, although it performs
more memory accesses. It follows that our conflict-fre permutation is 1.48 times faster
for the random permutation and 10.0 times faster for the worst permutation. Further,
we show a conflict-fre in-place permutation method that computes S and D in place.
Quite surprisingly, for the transpose, the shuffle, and the bit reversal permutations, it
runs in 105.4-109.0ns. Since the simple copy operation of two arrays takes 102.8ns, our
conflict-fre in-place permutation method has very small overhead for permutation. We
also present the experimental results for 1024 floa (32-bit) numbers.

This chapter is organized as follows. In Section 4.1, we defin off-line permutation

19

and show straightforward algorithms. Section 4.2 shows our conflict-fre permutation
algorithm and Section 4.3 describes the details of the implementation. In Section 4.4, we
defin several important permutations used for our experiment, and present an in-place
permutation method. In Section 4.5, experimental results using GeForce GTX-680 are

shown. Section 6.7 concludes our work.

4.1 Offline Permutation and Conventional Algorithms

The main purpose of this section is to defin offline permutation and show conventional
algorithms for this task.

Suppose that we have two arrays a and b of size n each. Let P be a permutation of
(0,1,...,n 1). In other words, P(0), P(1),...,P(n 1) take distinct integer values in
the range [0,n 1]. Offline permutation along P is a task to copy a[i] to b[P(i)] for all i

(0>i>n 1)asshown in Figure 4.1.

P = (13,10, 7, 4, 2, O, 6 3, 8 1, 9, 15, 11, 5, 12, 14)

p 13|10 7| 4|2 (0| 6|3 |8|1|9|15|11(5 (12|14
0 [1 [213457186789 [10]11]12][13[1a]15
a A/ B(C/ID|IE|F|G|H|I |[J|K|L{M|N[fO|P
0 1 [213 a5 7167 [89 [10]11]12]13[1a]15
b F|)J D G Il K|B M[O[A|P]|L

Figure 4.1: Conventional permutation algorithm

Suppose that we have n threads for the task of offline permutation. We assume that

P(0), P(1),...,P(n 1) are stored in an array p of size n, such that p[i] = P(i) for all

20

i(0>i>n 1). LetT(@(#) (0 >i>n 1)denote athread. The following algorithm,
Destination-designated permutation algorithm, performs the offline permutation along

P.

[Destination-designated permutation algorithm]
foris Oton 1do

T(i) performs b[p[i]] 7 ali]

Clearly, reading operations from arrays a and p have no bank conflict However,

writing operation in array b may have bank conflict

B[0] B[1] B[2] B[3]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

memory banks of DMM

Figure 4.2: Memory banks for w = 4

For example, if P = (0, 4, 8, 12, 1, 5,9, 13, 2, 6, 10, 14, 3,7, 11, 15) and w = 4,
then the firs warp W(0) performs writing operation to b[0], b[4], b[8], and b[12], which
are in the same bank B[0] (Figure 4.2). Hence, writing operations by #(0) have bank
conflict

We can avoid writing bank conflic if we use the Source-designated permutation Q.

Let P ! be the inverse of P, thatis, P '(P(i)) = iforalli (0 > i>n 1). We assume

21

that P 1(0), P '(1),...,P '(n 1) are stored in an array g of size n, such that each g[i]

stores P !(i). The following algorithm performs the offline permutation along P.

[Source-designated permutation algorithm]
fori» Oton 1do

T(i) performs b[i] » a[q[i]]

Let us show that this algorithm performs the offline permutation along P correctly.
The goal of the permutation along P is to satisty b[P(i)] = a[i] foralli (0 >i>n 1).
Hence, it is sufficient to satisfy b[P '(P(i))] = a[Q(i)] foralli (0 > i > n 1). From
P Y(P(i)) = i, it is also sufficient to satisfy b[i] = a[P !(i)]. Thus, the Source-designated
permutation algorithm performs the offline permutation along P correctly.

It should be clear that writing operations in b and reading operations from ¢ have
no bank conflict However, reading operations from a may have bank conflict For
example, for P define above, we have P = P !. Hence, reading operations have always
bank conflicts

We will show that, bank conflict-fre permutation is possible if we use two arrays s
and d determined from P appropriately. Let S and D be permutations over (0, 1,...,n
1). Suppose that S '(D(i)) = P(i) foralli (0 > i>n 1), where S ! denotes the inverse
of §. Let s and d be arrays of size n storing the values of S and D respectively. The

following algorithm performs permutation along P:

[Conflict-f ee permutation algorithm]
forir Oton 1do
T(i) performs b[d[i]] » a[s[i]]
Let us see the correctness of the algorithm. When the algorithm terminates, b[D(i)]
is storing a[S(i)] for all i (0 > i > n 1). In other words, b[S '(D(i))] is storing

22

a[S '(S(i))] for all i. Thus, b[P(i)] = a[i] is satisfie and permutation along P is per-
formed correctly.

Clearly, reading operations for array s and d are conflict-free However, access to
arrays a and b may have bank conflicts If we defin § and D appropriately, access to
arrays s and d can be conflict-free Let P be a permutation define above. We defin
S and D as follows: §=(0, 5, 10, 15, 1, 6, 11, 12, 2, 7, 8, 13, 3, 4, 9, 14) and D=(0,
5,10,15,4,9,14,3,8,13,2,7,12, 1, 6, 11). For such S, we have S '=(0, 4, 8, 12,
13,1,5,9,10, 14,2, 6, 7, 11, 15, 3). Hence, S ' xD = (0, 4, 8,12, 1,5, 9, 13, 2, 6,
10, 14, 3, 7, 11, 15) = P. Thus, after our conflict-fre permutation algorithm using S
and D are executed, permutation along P can be completed. Also, reading operations
from a and writing operations in b are conflict-free For example, warp W(1) reads from
al[1],a[6],a[11],a[12] which are in banks B[1], B[2], B[3], B[0], respectively. It also
writes in b[4], b[9], b[14], b[3] which are in banks B[0], B[1], B[2], B[3], respectively.

Let us evaluate the computing time of our conflict-fre permutation algorithm. We
assume that » threads are used to permute an array of size n. Since we have = warps of
w threads each and reading from array s involve no bank conflict reading from array s
takes O(Z + /) time units. Similarly, reading from array a and d, and writing in array
b also take O(3 + [) time units. On the other hand, in the worst case, the Destination-
designated and Source-designated permutation algorithms take O(n + /) time units if

memory access by a warp is performed to the same bank.

4.2 Graph coloring based conflict-f ee permutation

This chapter is devoted to show how S and D are determined from P to guarantee that

the conflict-fre permutation using S and D involves no bank conflict The same idea is

23

used in [24].

We use an important graph theoretic result [21, 36] as follows:

Theorem 4.2.1 (Konig) A regular bipartite graph with degree p is p-edge-colorable.

Figure 4.3 illustrates an example of a regular bipartite graph with degree 4 painted by 4
colors. Each edge is painted by 4 colors such that no node is connected to edges with
the same color. In other words, no two edges with the same color share a node. The

readers should refer to [21, 36] for the proof of Theorem 4.2.1.

Figure 4.3: A regular bipartite graph with degree 4

Suppose that a permutation P of (0, 1,...,n 1) is given. We draw a bipartite graph

G = (U, V,E) of P as follows:

C U =}B[0],B[1],B[2],...,B[w 1](1is a set of nodes each of which corresponds

to a bank of a.

C V =}B[0],B[1], B[2],...,B[w 1](is a set of nodes each of which corresponds

to a bank of b.

24

C For each pair source a[i] and destination b[P(i)], E has a corresponding edge

connecting B[i mod w](0 U) and B[P(i) mod w](@ V).

Clearly, an edge (B[u], B[v]) (0 > u,v > w 1) corresponds to a word of data to be
copied from bank B[u] of a to B[v] of b. Also, G = (U, V, E) is a regular bipartite graph
with degree #. Hence, G is Z-colorable from Theorem 4.2.1. Suppose that all of the

edges in E are painted by colors 0, 1, ..., 1. We determine value ¢;; (0 > i >

L 1,0 j>w 1,0>c¢;; >n 1)suchthatanedge (B[c;; mod w], B[P(c; ;) mod w])
with color i corresponds to a pair of source a[c; ;] and destination b[P(c;;)]. It should

have no difficulty to confir that, for each i,

€ w banks B[c;o mod w], B[c;; mod w], ..., B[c;,, 1 mod w] are distinct, and

C w banks B[P(c;p) mod w], B[P(c;;) mod w], ..., B[P(c;, 1) mod w] are distinct.
Thus, we have the following important lemma:

Lemma 4.2.2 Letc;; (0>i> ,L0>j>w 1,0>c¢;; >n 1) denote asource

n
w

define above. For each i, we have, (1) a[c;o), alci1), ..., alci, 1] are in different banks,

and (2) b[P(c;p)], b[P(ci1)], - ., b[P(ci\ 1)] are in different banks.

We defin permutation S and D using c; ; as follows:

S(IXW+]) Cij

D(l)(\/V'i‘]) = P(C,’J)

Suppose that the conflict-fre permutation algorithm using S and D above is exe-
cuted. Since the copy operation is performed from a[c; ;] to b[P(c;;)], the permutation

along P is completed correctly. Also, each warp W (i) (0 > i > 1) performs copy

n
w

operation from a[c;o], alci1], ..., alciw 1] to b[P(cip)], b[P(cii)], - .., b[P(ciy 1)]. From

Lemma 4.2.2, reading from a and writing in b by warp W(i) are conflict-free

25

4.3 Implementation of conflict-f ee permutation algorithm

The main purpose of this section is to show an implementation of the conflict-fre per-
mutation algorithm to the GPU using CUDA.

Suppose that a permutation P of (0,1,...,n 1) is given. We firs draw a bipartite
graph G = (U, V, E) of P shown in the previous chapter and fin an edge coloring. Recall
that edges are painted by # colors so that no two edge with the same color shares a node.
Clearly, the edge coloring can be done by repeating a bipartite graph matching 2 times.
Also, it is known that a maximum bipartite graph matching, which is a subset of edges
sharing no node, can be found in polynomial time.

For the reader’s benefits we briefl explain how a maximum bipartite graph match-
ing can be found. Please see [11] for the details. Let G = (U, V, E) be a bipartite graph
and M (< E) is a matching. Note that M may not be a maximal. A path 4 of G is called

an augmenting path if
C two terminals of 4 are not connected to M, and
C edges of Mand M(= E M) appear alternatively in 4.

Figure 4.4 shows examples of augmenting paths.
Clearly, the firs and the last edges are in M. Also, in an augmenting path A4, the

number of edges of M is exactly one larger than that of M. In other words, j | M \/:

dl_ M\j— 1 holds.

Let us consider the flippin operation for an augmenting path as follows:
CMr M (A|l M),thatis, remove edgesin 4| M from M.

CMr Mn(4|]_4), that is, add edges in 4 | Mto A.

26

O O
O
O O
O
O O
O O
O O
O O
— % Example 1 Example 2

Figure 4.4: Examples of augmenting paths

The reader should refer to Figure 4.5 for illustrating the resulting bipartite matching
after the flippin operation. Clearly, the resulting M is a matching and the number of

edges in M increases by one.

O O O
Example 1 Example 2

Figure 4.5: The resulting bipartite matching after flippin operation

An augmenting path can be found in polynomial time if it exists. Pick a node con-
nected to no edge in M. Construct a shortest path tree from the picked node such that,
in all paths from the root (or the picked node) to the leaves, edges M and M appears
alternatively. If we can fin a non-root node connected to no edge in M, then the path
from the root to the non-root node is an augmenting path.

From these observation, we can fin a maximum matching of a bipartite graph G as

27

follows. Initially, let M = C. Find an augmenting path with respect to G and M and
performs flippin operation. This task is repeated until we can fin no augmenting path
with respect to G and M. The resulting matching M is a maximum matching.

For graph coloring, we repeat findin the maximum matching. First, fin the max-
imum matching M, paint edges in M with color 0, and remove edges in M from G. In
this way, we can fin a bipartite graph coloring in polynomial time.

Note that, we perform a bipartite graph coloring in offline. So, it is not necessary to
fin a bipartite graph coloring using a GPU. Actually, we have implemented a bipartite
graph coloring to run on a convectional Linux PC.

We have implemented permutation algorithms using CUDA. Arrays a and b are
define as arrays of n 32-bit floa (or 64-bit double) numbers in the shared memory of
the GPU and arrays p, ¢, s, and d are define arrays of » int numbers in the shared

memory as follows:

__shared__ floa a[n], b[n];

__shared__int p[n], q[n], s[n], d[n];

Also, three permutation algorithms are implemented by CUDA device functions as fol-

lows:

[Destination-designated permutation algorithm]
_ _device_ _ d-designated(floa *a, floa *Db, int *p)}

b[p[threadldx.x]]=a[threadldx.x];

[Source-designated permutation algorithm]

_ _device_ _ s-designated(floa *a, floa *b, int *q)}

28

b[threadldx.x]=a[q[threadldx.x]];

[Conflict-f ee permutation algorithm]
__device_ _ conflict-free(flo *a, floa *b, int *s, int *d)}

b[d[threadldx.x]]=a[s[threadldx.x]];

Each of the above codes is executed by every thread with a unique ID represented by
threadldx.x such that threadldx.x = i for 7'(7).
To clarify the overhead of permutation, we also use a simple copy CUDA device

function as follows:

[Copy algorithm]
__device_ _copy(floa *a, floa *b)}

b[threadldx.x]=a[threadldx.x];

In other words, the copy algorithm performs identical permutation such that P(i) = i for
all i.

Since the permutation algorithms use one or two arrays of p, ¢, s, and d, we call
the array-use methods. Table 4.1 summarizes memory access operations performed by
each of the permutation algorithms. For example, the Destination-designated permu-
tation algorithm performs read operations for arrays a and p, and write operations for
array b. Hence, it performs 2n + n = 3n memory access operations. Our conflict-fre

permutation algorithm performs 4n» memory access operations. Thus, if each memory

29

access operation have the same access time, the conflict-fre permutation algorithm is

4n

= ‘5‘ times slower than the Destination-designated and Source-designated permuta-

tion algorithms. However, as we are going to show later, our conflict-fre permutation
algorithm can be much faster than the Destination-designated and Source-designated

permutation algorithms.

Table 4.1: Memory access by each algorithm

Algorithms a|lb|p|q|s|d| read | write
Copy r|w n n
D-designated r|w|r 2n n
S-designated r|w r 2n n
Our conflict-fre | r | w r|r| 3nm n

4.4 Important permutations and in-place permutation

method

This chapter firs introduces several important permutations used to evaluate the per-
formance of permutation algorithms later. Also, we introduce the in-place permutation
method which is the most efficient if a permutation is simple.

We use several widely-used important permutations as follows:
Identical: Permutation such that P(i) = i for every i as Figure 4.6.
Random: One of all possible n! permutations is selected uniformly at random as Fig-

ure 4.7.

30

P= (13,10, 7, 4, 2, 0, 6, 3, 8 1, 9, 15 11, 5 12, 14)
0 1 2 3 4 5 [+] 7 8 10 11 12 13 14 15 |
a |A|B E|lF|lcg|H|I1|J|K|L[M|N|O|P
0 2 3 4 5] 7 8 9 10 11 12 13 14 15 |
b [F | pDIN|lGg|c|i1|kK|B[M|O|A|P]|L

Figure 4.6: Identical permutation

P= (0, 1, 2, 3, 4 5 6 7, 8, 9 10, 11, 12, 13, 14, 15)

(1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
a |A|B|C|D|E|F|[G|H|I|J|K|L|[M|[N|O]|P

o1 T2 TsTaTsTelr s 0 31 [12 8 5]
b |a|B|c|D|E|[F|G|H|I1|J]|K|L|[M|N|O]|P

Figure 4.7: Random permutation

Transpose: Suppose that ¢ and b are matrix with dimension »n e n. Transpose
corresponds to the data movement such that a 1s read in row-major order and b is written
in column-major order as Figure 4.8. Thatis, P(iX n+ j)= jXx n+iforeveryiand j
O0>i> n 1,0>j> n 1)

Shuffle: Let 7,7, | X<, be the binary representation of i. As shown in Figure 4.9, the
shuffle permutation is define as P(i,i, 1 X%41) = in 1 XX%¥17,. Shuffle permutation is
used for shuffie exchanging in sorting networks [10, 3].

Bit-reversal: The bit-reversal permutation 1s define as P(i,i,, 1 X%41) = iy X% 17m-

Bit-reversal is used for data reordering in the FFT algorithms [31].

P- (0, 4 8 12, 1, 5 9, 13, 2, 6, 10, 14, 3, 7, 11, 15)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a A|B|C|D|E|F|G|H|I|J|K|L|M|[N|O|P
: % —— é 2 E _
‘0 1 2 3 4 ‘5' 6 7 8 9 1‘(') 11 12 13 14 1"5
b |AlE|I|M|B|F|J|N|C|G|K|O|D|H|L
Figure 4.8: Transpose permutation
P= (0, 2, 4 6 8 10,12, 14, 1, 3, 5 7, 9, 11, 13, 15)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a A|B|C|D l{J|K|LI[M|N|O|P
1) 1 2 4 5 6 7 8 9 10 11 12 13 14 1"5
b All |B]|)J D|/L|E|(M|F|[N|G|O|H

Figure 4.9: Shuffle permutation

If a permutation P is simple and regular, it may be possible to compute the value of

P(i) foreveryi(0 > i > n 1)easily. Ifthis is the case, it is not necessary to use array p to

store the value P. Instead, each thread computes the value of P(threadIdx.x) in place.

For simplicity, we assume n = 1024 and explain how the values of P(threadIdx.x) for

the transpose, the shuffle, and the bit-reversal permutations are computed. Let p denote a

local integer variable of a thread to store the destination. The values of P(threadIdx.x)

for the transpose permutation can be computed by the following formula:

p = (threadIdx.x >> 5) |

((threadldx.x & 0x1f)<< 5);

32

P- (0, 8 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a A|B|(C|D|E|F|G|H|I |J|K|[L{M|N[O|P
\ / -
Y A/" | v
0 1 2 3 4 5 6 7 8 10 11 12 13 14 15
b Al M|C|K|G|O|B|J|F|N|[D|L|H

Figure 4.10: Bit-reversal permutation

After the value p above is computed, the destination-designated permutation can be

done by executing the following assignment in parallel.
b[p]=a[threadldx.x];

The value of P(threadIdx.x) for the shuffle permutation can be obtained by the fol-

lowing assignment:

p = (threadldx.x >> 9) |

((threadldx.x & Ox1ff)<< 1);

The following three assignments can perform the bit-reversal permutation. In these

formulas, two local variables u and v are used to store temporal integers.

u = (threadldxIdx.x >> 5) |

((threadIldxIdx.x & Ox1f)<< 5);
v=_(u&0x318)>>3) | ((u & 0x63)<< 3);
p=((v & 0x252) >> 1) | ((v & 0x129)<< 1) |

(u & 0x84);

33

Next, let us consider the Source-designated permutation for the three permutations.
Clearly, P ' = P for the transpose and the bit-reversal permutations. Hence, the same
assignments can be used for these two permutations. Also, the source index of the

shuffle permutation can be obtained by the following assignment.

q = (threadldx.x >> 1) |

((threadldx.x & 0x1)<< 9);

Thus, the Source-designated permutation method can be done in the same manner as
the Destination-designated permutation.

We can apply the same technique to the conflict-fre permutation. In other words,
the values of S'(7) and D(i) can be computed in place without using arrays s and d. Let
s and d denote local integer variables to store the source and the destination. Quite sur-
prisingly, for n = 1024, the value of s for the three permutations above can be computed

by the following formula:
s = threadldx.x " ((threadldx.x & 0x1f) << 5);

The value d can be computed using the formulas to compute p. For example, the value

d for the transpose can be computed using s as follows:
d=(s>>5) | ((s & 0x1f)<< 5);

After the values of s and d are computed, the conflict-fre permutation can be done by

executing the following assignment in parallel.
b[d]=als];

For the shuffle and the bit-reversal permutations, we can use the above formula for

computing s as it is to obtain the conflict-fre permutation.

34

Note that the in-place permutation approach can be used only for simple permuta-
tions such that the values p, ¢, s, and d can be computed by simple formulas without
using arrays to store the pre-computed values. As we have shown, the transpose, the
shuffle, and the bit-reversal permutations are examples of simple permutations. How-
ever, in general, it may not be possible to compute the values p, g, s, and d by simple
formulas if the permutation has no regularity. In particular, there is no simple way
to compute these values for the random permutation. One obvious program is to use
the switch statement “switch(threadldx.x)* with n cases. Clearly, this obvious program
occupies more space than the permutation methods using arrays of size n to store the
source or the destination. Actually, from the Kolmogorov complexity theory [17], the
length of programs to compute these values for the random permutation must be pro-
portional to n. It follows that, there is no better way than the program using the switch

statement for most of the randomly generated permutations.

4.5 Experimental results

This section is devoted to show the experimental results using GeForce GTX-680 with
CUDA Compute Capability 3.0 [S]. The shared memory has w = 32 memory banks
with access latency / = 1. It has two modes: 64-bit mode and 32-bit mode. In the 64-bit
mode, the word size of each of the 32 banks is 64. In the 32-bit mode, the word size is
32. We have evaluated the performance three permutation algorithms, the Destination-
designated permutation algorithm, the Source-designated permutation algorithm, and
our conflict-fre permutation algorithm for both of the two modes. The computing time
for fve permutations, the identical, the random, the transpose, the shuffie, and the bit-

reversal is evaluated. Further, the in-place permutation method are evaluated for the

35

three permutations, the transpose, the shuffle, and the bit-reversal. Also, to estimate
the overhead of these three permutation algorithms, we have evaluated the performance
of the simple copy algorithm. Since any permutation algorithm cannot be faster than
the copy algorithm, its computing time is the lower bound of that for all permutation
algorithms. Hence, we can see the overhead of the computation and/or the memory
access performed by permutation algorithms. The performance has been evaluated for
arrays of size n = 1024. We used the 64-bit mode to permute 64-bit (double) numbers
and the 32-bit mode to permute 32-bit (float numbers. A CUDA kernel with a single
block of 1024 threads was invoked from the host.

Table 4.2 shows the execution time to permute an array of 64-bit (double) numbers
of size n = 1024. Since the execution time of each algorithm for n = 1024 is too
short to measure, each algorithm has been executed for each permutation 100 million
times and we have taken its average. The simple copy operation takes 102.8ns, which
is the lower bound of the execution time of all permutation algorithm. Our conflict
free algorithm runs in 166.7-167.1 ns for all permutations. We can clarify the fact that
our conflict-fre algorithm runs in the same time units for any permutation. Also, if
the in-place computation is used, our conflict-fre algorithm runs in 105.4-109.0 ns.
Since the in-place computation of the bit-reversal is more complicated than the others,
it takes a bit more time. However, compared with the simple copy, the overhead of
the in-place computation is less than 10% of the total execution time. Thus, if the in-
place computation of a required permutation is enough simple, then we should select
the in-place conflict-fre permutation algorithm.

The Destination-designated and the Source-designated permutation algorithms both

for the transpose and for the bit-reversal permutations involve the full bank-conflic , in

36

Table 4.2: The execution time (ns) of the three algorithms for an 64-bit (double) array

of size 1024.

Algorithms (array-use) Algorithms (in-place)
Permutations | D-designated | S-designated | Conflict-fre D-designated | S-designated | Conflict-fre Copy
Identical 135.4 124.4 167.1
Random 247.8 275.5 166.7
Transpose 1684 1696 167.1 1626 1633 105.4 | 102.8
Shuffle 178.4 183.4 166.9 160.0 161.3 105.4
Bit-reversal 1684 1697 166.9 1668 1677 109.0

the sense that all memory access requests by a warp are destined for the same memory
bank. For example, the firs warp of the Destination-designated permutation algorithm
read from a[0], a[1], ..., a[31] and write in b[0 x32], b[1 x32], ..., b[31 x32] for the
transpose permutation. Clearly, the write operations are performed to the same bank
of b. We can see this fact that the Destination-designated and the Source-designated
permutation algorithms for the transpose and the bit-reversal permutation are 10 times
slower than our conflict-fre algorithm. In the shuffle permutation, a pair of memory
requests is destined for the same same memory bank. For example, the firs warp of the
Destination-designated permutation algorithm read from a[0], a[1],...,a[31] and write
in b[0], b[2],...,b[62]. Each of 16 pairs (b[0], b[32]), (b[2], b[34]), ..., (b[30], b[62])
are in the same memory bank. Hence, every two memory bank receives two write
requests. Thus, the Destination-designated and the Source-designated permutation al-
gorithms are bit slower than our conflict-fre permutation algorithm for the shuffle per-
mutation.

Table 4.3 summarizes the the cost of memory access requests for arrays a (read) / b

(write) and the total costs of the array-use and the in-place methods. For example, the

37

cost of the Destination-designated permutation algorithm for the transpose permutation
is 1/32, because reading of a has no bank conflic and 32 write requests to b are destined
for the same memory bank. Also, its total cost for the in-place method is 33. For
the array-use method, the Destination-designated permutation algorithm need to access
array p and its cost is 1. Thus, the total cost for the array-use method is 34. We can see

that more the permutation algorithm with more total costs takes more execution time.

Table 4.3: The cost of memory access requests for arrays a (read) / b (write) and the

total cost (array-use/in-place)

64-bit(double) 32-bit(float
D-designated | S-designated | Conflict-fre | D-designated | S-designated | Conflict-fre
Identical 1/13) 1/1 3) 1/1 (4) 1/1 3) 1/13) 1/1(4)
Random | 1/3.46 (5.46) | 3.46/1 (5.46) 1/1 (4) 1/3.37(537) | 337/1(5.37) 1/1(4)
Transpose | 1/32(34/33) | 32/1 (34/33) 1/1(4/2) 116 (18/17) | 16/1 (18/17) | 1/1 (4/2)
Shuffle 1/2 (4/3) 2/1 (4/3) 1/1 (4/2) 1/1 3/2) 2/1 (4/3) 1/1 (4/2)
Bit-reversal | 1/32(34/33) | 32/1(34/33) | 1/1(4/2) 1/16 (18/17) | 16/1 (18/17) 1/1(4/2)

Table 4.4 shows the execution time to permute an array of 32-bit (float numbers
of size n = 1024. Each execution time for 32-bit (float numbers is almost equal to
the corresponding execution time of 64-bit (double) numbers except the underlined.
Each underlined execution time for 32-bit numbers is much smaller than that for 64-bit
numbers. This is because the 32-bit mode of the shared memory has some exception of
the bank conflict If two memory requests are destined for different 32-bit words of the
same bank and these different 32-bit words are aligned in the same 64-bit word, they
can be accessed at the same time. For example, two 32-bit words 5[0] and b[32] are in

the same bank, but they are aligned in the same 64-bit word. Thus, b[0] and 5[32] can

be access at the same time without bank conflict The reader should refer to Figure 4.11

38

for illustrating the word alignment of the 64-bit and the 32-bit mode. Please see chapter
F.5.3 in [5] for the details. From the word alignment of the 32-bit mode, the cost of
each permutation algorithm is evaluated as shown in Table 4.3. For example, in the
Destination-designated permutation algorithm of the shuffle permutation, the firs warp
writes in b[0], b[2], ..., b[62]. Since each of 16 pairs (b[0], b[32]), (b[2], b[34])), ...,
(b[30], b[62]) are aligned in a 64-bit word, the writing operations by a warp are conflict

free. From Tables 4.3 and 4.4, we can see that if more requests are destined for the same

bank, a permutation takes more time.

Table 4.4: The execution time (ns) of the three algorithms for an 32-bit (float array of

size 1024.
Algorithms (array-use) Algorithms (in-place)

Permutations | D-designated | S-designated | Conflict-fre D-designated | S-designated | Conflict-fre Copy
Identical 135.5 123.6 164.9 - -
Random 2459 265.8 164.9 - -
Transpose 876.3 891.0 164.7 839.3 847.5 105.5 | 102.8
Shuffle 1353 183.2 164.9 104.0 161.3 105.0
Bit-reversal 876.3 891.2 164.8 862.0 870.5 108.9

w 64-bit mode
0 1 2 31
32 33 34 63
64 65 66 95
96 97 98 127
32-bit mode
0 (32| 1 [33]]|2 [34 31 (63
64 (96 | |65 97 | |66 (98 95 127

Figure 4.11: The word alignments of the 64-bit and 32-bit modes

39

By comparing Tables 4.2, 4.3, and 4.4, we can see that the execution time is almost
proportional to the total cost. More specificall , the total cost multiplying by 50ns is
a moderately good estimation of the execution time. For example, the total cost of the
Destination-designated permutation algorithm (array-use) for the 64-bit transpose is 34.
Hence, we can estimate that the execution time is 1700ns, while the experimental result
shows that the execution time is 1684ns. Thus, we can say that the DMM is a good
theoretical model of GPUs.

Suppose that some new permutation is given and we need to write a program for it.
We can use the Destination-designated or the Source-designated permutation algorithms
if the execution time is not dominant in the whole application program. If we want to
minimize the execution time we should use the conflict-fre permutation algorithm. If
the permutation is so simple that we can write a simple program to compute the values
of s(i) and d(i) of the conflict-fre permutation, we should choose the in-place conflict
free permutation algorithm. If this is the case, the execution time is almost the same
as the simple copy program. If we cannot fin such simple program, we should use

graph-coloring based conflict-fre permutation algorithm using two additional arrays s

and d.

4.6 Conclusion

The main contribution of this chapter is to implement several permutation algorithms
including our conflict-fre permutation algorithm on the shared memory of NVIDIA
GeForce GTX-680. The experimental results for 1024 64-bit numbers on NVIDIA
GeForce GTX-680 show that the destination-designated permutation algorithm takes

247.8 ns for the random permutation and 1684ns for the worst permutation that involves

40

the maximum bank conflicts Our conflict-fre permutation algorithm runs in 167ns for
any permutation including the random permutation and the worst permutation, although

it performs more memory accesses.

41

Chapter 5

An Optimal Offline Permutation
Algorithm on the Hierarchical

Memory Machine

Offline permutation is a task to move numbers along a permutation given beforehand.
More specificall , for given two arrays a and b of size n, and a permutation P, the value
ofeacha[i] (0 >i>n 1)iscopiedto b[P(i)]. A conventional algorithm can complete
the offline permutation by executing b[p[i]] » a[i] foralli (0 >i>n 1) in parallel,
where an array p stores the permutation P.

The offline permutation has many applications in the area of parallel computing. For
example, matrix transpose, which is one of the important permutations, is frequently
used in matrix computation. It is known that the computation of the FFT can be done
by a multistage network in which each stage involves permutation [31]. Sorting net-
works such as bitonic sorting [10], [3] also involve permutation in each stage. Further,

communication on processor networks such as hypercubes, meshes, and so on can be

42

emulated by permutation. Further, random permutation is very helpful for randomized
algorithms [20, 34].

On the PRAM, the conventional permutation algorithm achieves the optimal running
time. Since b[p[i]] # a[i] can be done in parallel using »n processors, the conventional
permutation algorithm runs in O(1) time on the PRAM. However, the running time of
the conventional algorithm on GPUs depends on the permutation. As we will show in
this chapter, the conventional algorithm for permutation P takes a lot of time for most
of all possible permutations.

In chapter 4, we have presented a conflict-fre offline permutation algorithm run-
ning in O(% + ”;’ + /) time units using p threads on the DMM with width w and la-
tency /. Later, we have implemented the conventional offline permutation algorithm
and this conflict-fre permutation algorithm on a single SM of GeForce GTX-680 GPU
and evaluated the performance. The experimental results showed that the conventional
permutation algorithm and the conflict-fre permutation algorithm run in 246ns and in
165ns, respectively, for the random permutation of 1024 floa (32-bit) numbers. Hence,
the conflict-fre permutation algorithm is 1.5 times faster. However, since the shared
memory has only 48Kbits, it is not possible to permute larger arrays than 4096 floa
(32-bit) numbers. It is also shown in chapter 4 an offline permutation algorithm running
in O(3"¢ %(ﬁ + ”;[+/)) time units using p threads on the UMM with width w and latency

[. This algorithm is time optimal only for small 7 such that n > w0

. This permutation
algorithm has large overhead for large ».
The main contribution of this chapter is to present an optimal permutation algorithm

for larger arrays on the global memory of the HMM. Our scheduled offline permuta-

tion algorithm performs three step permutations, row-wise permutation, column-wise

43

permutation, and row-wise permutation, each of which is performed in DMMs of the
HMM in parallel. Our scheduled offline permutation runs in 322 + 16L 16 time units
using #n threads on the HMM with width w and global memory latency L. This algorithm
is time optimal in the sense that permutation takes at least Q(: + L) time units. We also
show that the conventional algorithm runs in D, (P) + 22 + 3L 3 time units, where
D,,(P) is the distribution of P, which takes a value between 2 and n. Intuitively, D,,(P)
is large if the distribution of contiguous w values in P is large. Hence the computing
time of the conventional algorithm is between 32 + 3L 3 and n + 22 + 3L 3 time
units.

The readers may think that, our scheduled permutation algorithm is not practically
fast on GPUs, although it is time optimal from the theoretical point of view. The constant
factors 32 and 16 in the running time seem too large to achieve better performance than
the conventional algorithm with small constant factors in the computing time. How-
ever, contrary to this instinct, our scheduled permutation algorithm can run faster than
the conventional algorithm. To show this fact, we have implemented our scheduled of-
flin permutation algorithm on GeForce GTX-680 GPU and evaluate the performance
for various permutations. The experimental results show that, the running time of our
scheduled offline permutation algorithm terminates in constant time for any permutation
of the same size. In other words, the computing time depends on the size of the input
array, but is independent of permutation P.

On the other hand, the computing time of the conventional algorithm depends on
the permutation. The experimental results also show that, for permutations with large
distribution, our scheduled permutation algorithm runs faster than the conventional al-

gorithm whenever n ~ 256K (= 2'®). For example, our offline permutation algorithm

44

runs in 780ms for any permutation of 4M (= 22?) floa (32-bit) numbers. The conven-
tional algorithm takes 2328ms for the bit-reversal permutation.

We also show that, for almost all of the permutations over all possible n! permuta-
tions, our scheduled permutation algorithm is faster than the conventional algorithm. To
show this fact, we pick 1000 permutations from all possible n! permutations at random
for n =4M(= 2°?). The conventional algorithm takes 424.87-426.39ms, while our sched-
uled permutation algorithm takes 173.50-173.92ms. Thus, our scheduled permutation
algorithm is 2.45 time faster than the conventional algorithm for almost all permutations
over all possible n! permutations.

This chapter is organized as follows. In Section 5.1, we defin three memory access
operations, casual memory access, coalesced memory access, and conflict-fre mem-
ory access and evaluate the running time. Section 5.2 define the offline permutation
and show two conventional permutation algorithms, destination-designated permutation
algorithm and source-designated permutation algorithm. Section 5.3 presents an algo-
rithm for transposing a matrix, and Section 5.4 shows algorithms for row-wise permuta-
tion and column-wise permutation of a matrix. In Section 5.5, we present our scheduled
permutation algorithm and show the optimality. Finally, Section 5.6 shows experimen-
tal results for comparing the conventional permutation algorithms and our scheduled

permutation algorithm. Section5.7 concludes our work.

45

5.1 Coalesced, Conflict-F ee, and Casual Memory Ac-
cess

This section firs define a round of memory access by threads. We also defin offline
permutation and show conventional algorithms for this task.

We can evaluate the performance of algorithms on the HMM by the number of
rounds of memory access. 4 round of memory access is an operation such that all threads
perform a single memory access to the shared memory or the global memory. For ex-
ample, the conventional permutation algorithm performing b[p[i]] » a[i] involves one
reading round for a and p each, and one writing round for .

Next, we defin coalesced and conflict-fre memory access rounds. A round of
memory access by a warp of w threads is coalesced if all memory access by a warp
destined for the same address group of the global memory. Also, that by a warp is
conflict-f ee if all memory access by a warp destined for the distinct memory banks
of the shared memory. More specificall , a round of the memory access by a warp
is coalesced if |"Of = |0{ = xxx= |"™1D{ where m(i)0 > i > w 1) is the
address accessed by thread 7(7) in the warp. A round of the memory access by a warp
is conflict-f ee if, for all pairiand j (0 > i < j > w 1), m(i)) = m(j) or m(i) #
m(j) (modw). We also say that a round of the memory access by all of the » threads
is coalesced if memory access by all of the = warps is coalesced. Also, that by »
threads is conflict-f ee if memory access by every warp is conflict-free For example,
in the conventional permutation algorithm, a round of the memory access to a and p

are coalesced. However, that to » may not be coalesced or conflict-free Clearly, the

memory access is conflict-fre if it is coalesced. We also say that a round of memory

46

access is casual if it is not guaranteed to be coalesced or conflict-free For example, a
round of access to b in the conventional permutation algorithm is casual because it may
not be coalesced.

Let us evaluate the time necessary for coalesced and conflict-fre memory access.
Suppose that n threads perform a round of coalesced memory access to the global mem-
ory. Since we have 2 warps each of which sends w memory requests to the same address
group, it takes 2 time units to send all » memory requests, after that L 1 time units are
necessary to complete the memory requests by the last warp. Thus, it takes 2 + L 1
time units to complete a round of coalesced memory access by n threads. Similarly, a
round of conflict-fre memory access for the shared memory takes 2 time units to send
all memory requests. Since the latency of the shared memory on the HMM is 1, the

memory access is completed in - time units. Thus, we have,

Lemma 5.1.1 A round of coalesced memory access for the global memory and that of
conflict-f ee memory access for the shared memory by n threads take & +L 1 time units

and * time units, respectively.

Note that casual memory access by # threads may be destined for the different address
group or the same memory bank. If this is the case, it takes » time units to send n
memory requests. Thus, the casual memory access to the global memory and the shared

memory may take n + L 1 time units and # time units, respectively.

5.2 Offline Permutation and Conventional Algorithms

Let us defin the permutation of an array as follows. Suppose that we have two ar-

rays a and b of size n. Let P be a permutation of (0,1,...,n 1). In other words,

47

(P(0), P(1),..., P(n

tion along P is a task to copy a[i] to b[P(i)] foralli (0 > i >n

(P(0), P(1), .., P(n

1)) take distinct integers in the range [0, »

1]. Offline permuta-

1). We assume that

1)) are stored in an array p of size n, such that p[i] = P(i) for all i

(0>i>n 1). The following algorithm can perform the offline permutation:

[Destination-designated permutation algorithm]|

forir Oton 1do

T'(i) performs b[p[i]] 7

ali]

The Destination-designated (D-designated) permutation algorithm involves three

rounds of memory access: one round of coalesced reading from a, one round of co-

alesced reading from p, and one round of casual writing in b. Thus, we have

Lemma 5.2.1 The D-designated permutation algorithm performs the offline permuta-

tion by memory access rounds in Table 5.1.

Table 5.1: The number of rounds and the running time of algorithms on the HMM

global memory

shared memory

casual casual | coalesced | coalesced | conflict-fre conflict-fre running time
reading | writing reading writing reading writing
D-designated permutation 1 2 - - Dy(P)+2% +3L 3
S-designated permutation 1 - 1 1 - - Dy(P 1)+ 28 +3L 3

Transpose - 1 1 1 1 45 +2L 2
Row-wise permutation - 3 1 2 2 85 +4L 4
Column-wise permutation - 5 3 4 4 165 +8L 8

Our scheduled permutation - 11 5 8 8 322 +16L 16

48

We can design the Source-designated (S-designated) permutation algorithm using
the inverse permutation P ! of P such that P '(P(i)) = iforalli (0 > i >n 1).
Suppose that P '(0), P '(1),..., P '(n 1) are stored in an array g of size n, such that
g[il]= P '(i)foralli (0 > i > n 1). The following algorithm can perform the offline

permutation:

[Source-designated permutation algorithm]
forir Oton 1do

T (i) performs b[i] » a[g[i]]

Clearly, memory access to b and g are coalesced, while that to a may not. Thus, we

have

Lemma 5.2.2 The S-designated permutation algorithm performs the offline permuta-

tion by memory access rounds in Table 5.1.

Let us defin several important permutations that will be used to evaluate the perfor-
mance of permutation algorithms by experiments on the GPU.
Identical: Permutation such that P(i) = i for every i.
Random: One of all possible n! permutations is selected uniformly at random.
Transpose: Suppose that a and b are matrix with dimension 7 e n. Transpose
corresponds to the data movement such that a is read in row-major order and b is
written in column-major order. That is, P(i X n+ j) = j X n + i for every i and j
0>i> n 1,0>j> n 1).
Shuffle: Let i,i, | x%<d; be the binary representation of i. The shuffle permutation is
define as P(i,i,, | X)) = iy | X1y,

Shuffle permutation is used for shuffle exchanging in sorting networks [10, 3].

Bit-reversal: The bit-reversal permutation is define as P(i,i, | X)) = i} XX, 1ip.

49

Bit-reversal is used for data reordering in the FFT algorithms [31].

For later reference, we defin the distribution of a permutation for conventional
permutation algorithms. The distribution of a permutation P is the total number of
address groups of b accessed by all warps in D-designated permutation algorithm. We

can defin the distribution D,,(P) of a permutation P with respect to width w as follows:

n
w

1
D,(P) = o \}J

J

P(jxw){’JPU><w+ 1){,,_.,JP(U+ 1) xw 1){<

w w w v

where x denote the number of unique elements in a set x. It should be clear that the
D-designated permutation algorithm for P occupies D,,(P) pipeline registers for writing
in b. Hence, the casual writing in b takes D,,(P) + L 1 time units. Similarly, the
S-designated permutation algorithm for P takes D,(P ')+ L 1 time units for reading

from a. Thus, we have,

Lemma 5.2.3 The D-designated permutation algorithm and the S-designated permuta-

tion algorithm for a permutation P take time units shown in Table 5.1.

Clearly, D,,(identical) = # and D,,(shuffle(k)) = D,,(shuffle(k) N = 22, Further, the
values of D, (bit-reversal), D, (bit-reversal !, D, (transpose), and D,,(transpose ') are n.
Since the random permutation is not a fi ed permutation, D,,(random) is not a constant
value. However, we can say that, for enough large », there exists small € > 0, such that

n € < D,(random) > n with high probability.

5.3 Transpose of a Matrix on the HMM

This section is devoted to show that the transpose of a matrix a of size ne n stored

in the global memory of the HMM can be done by four memory access rounds. For

50

simplicity, we assume that » is a multiple of w. We assume that elements in a matrix
a are arranged in the row-major order in the memory space, that is, each a[i][/] in the
i-th row and j-th column is allocated in address (i X 7 + j) of the global memory.

We firs show that a matrix a of size w ¢ w on the global memory can be transposed
using one DMM with w? threads. We use an array « of size we w on the shared memory.
We write each element in @ such that afi, j]J(0 > i,j > w 1), which is allocated
in address i xw + (i + j) mod w. We call such allocation the diagonal arrangement.
Figure 5.1 illustrates the diagonal arrangement of a 4 e 4 matrix. The advantage of the

diagonal arrangement is:

C all elements «[7, 0], «[i, 1], ...,a[i,w 1]in the same row are arranged in different

memory banks, and

C all elements [0, j],a[1, j],...,a[w 1,/] in the same column are arranged in

different memory banks.

Hence, access to the same row or the same column of « is conflict-free Thus, we

can transpose a matrix a using « as follows.

[Transpose of a matrix of size w e w]
foris Otow 1 do in parallel
foris Otow 1 doin parallel
Step 1: T(i xw + j) performs «[i, j] 7 a[i][/]

Step 2: T(i xw + j) performs a[i][j] 7 «alJ, 1]

Since each a[i][j] is copied to a[j][i] through af[i, j], the transposing can be done

correctly. Every element of a in the global memory is read once and written once.

51

B[0] B[] B[2] B[3]

0 1 2 3

[0.0] | [[0.1] 5[0.215 [0.3]

S amun®

4 5 6 7

(31| 1o | 1.1 §[1.2]§

8 9 10 11

E[z.z]i 2310 | [2.0] | || [2.1]

L TR RN L

12 13 14 15
[N |

3310 | 13.0]

[3.1] 3.2]
~

Figure 5.1: Diagonal arrangement with w = 4

Also, every element of @ in the shared memory is read once and written once. Clearly,
memory access to a is coalesced, and that to al/pha is conflict-free

Next, we will show that the transpose of a matrix @ of size n e n can be done
using that of size w ¢ w. We assume that 7 is a multiple of w. We partition a into

° 72 submatrices of size w e w. Let A(7, j) (0 > i,j > 72 1) denote a submatrix

=[5y

of elements a[i€][j] (ixw > i€ > i+ 1)xw 1,jxw > j<> (G +1)xw 1). The
transpose can be done by storing the transpose of each A(i, j) in A(j, i) for all i and j
0>14,j> 72 1). This can be done by the transposing algorithm for a w e w matrix.

Thus, we have,

Lemma 5.3.1 The transpose of a matrix of size ne ncan be done by memory access

rounds and running time in Table 5.1.

52

5.4 Row-wise and Column-wise permutation

The main purpose of this section is to show efficient row-wise permutation and column-
wise permutation algorithms, which are key ingredients of our scheduled permutation
algorithm on the HMM.

Suppose that we have matrices @ and b of size n e 7 each stored in the global
memory. Also, #n permutations Py, Pi,...,P ; ; of (0,1,..., n 1) are given. The
goal of the row-wise permutation is to copy the value of each a[i][j] (0 > i,j > n) to
bli][P:())]-

Let D;and S; (0 > i > »n 1) be permutations such that a P;(S,(j)) = Di(j) is
satisfie foralliand j(0>i,j> n 1). We show how D; and S; are determined from
P; later. We assume that matrices s and d such that each s[i][j] = S:(j) and d[i][j] =
Dy(j) are also stored in the global memory. We use n threads, which are partitioned
into 7 blocks of # threads each. Let By,B,...,B ; | denote the n blocks. Also,
let 7:(j) (0 > i,j > n) denote the j-th thread of block B;. Each B; (0 >i> n 1)
is assigned to a row a[i] of a and works for the permutation of a[i]. Since we have d
DMMs, each DMM has 75 blocks. We assume that each block B; (0 >i> n 1) has
two arrays a;and 3; of size n each in the shared memory of the DMM. Further, each
T{(j) (0 = i,j > n) has two local (register) variables S, ; and D; ;. The details of the

row-wise permutation are spelled out as follows:

53

[Row-wise permutation]
forir Oto n 1doin parallel
foris Oto n 1 doin parallel
Step 1: T;(j) performs «;[j] 7 a[i][/]
Step 2: T;(j) performs S; ; » s[i][j] and D;; » d[i][]]
Step 3: T;(j) performs S;[D; ;] 7 a;[S;]

Step 4: T(j) performs b[i][/]1 7 Bil/]

Figure 5.2: A regular bipartite graph with degree 4 painted by 4 colors

It should be clear that b[{][D;(j)] stores a[i][D;(j)]. Hence, b[i/][D«(S, '(j))] stores
alil[S (S, '()))]. From P«(S(j)) = Di(j), we have P,(j) = Di(S, '()), and thus b[i][P())]
stores a[i][j]. Hence, this algorithm performs the row-wise permutation correctly. We
will show that D; and S; can be determined from P; such that P;(S;(j)) = D;(j)holds and
memory access to a; and S; is conflict-free

We use the following graph theoretic result [21], [36]:
Theorem 5.4.1 A regular bipartite graph with degree p is p-edge-colorable.

Figure 5.2 illustrates an example of a regular bipartite graph with degree 4 painted by

4 colors. Each edge is painted by one of the 4 colors such that no node is connected to

54

edges with the same color. In other words, no two edges with the same color share a
node. The readers should refer to [21], [36] for the proof of Theorem 5.5.1.
We will show how D; and §; are determined from permutation P;. We draw a bipar-

tite graph G = (U, V, E) from P; as follows:

C U = B[0], B[1], ..., Blw 1] 1is a set of nodes each of which corresponds to a bank
of a;
C V =B[0],B[1],..., Blw 1] 1is a set of nodes each of which corresponds to a bank

of B;

C For each pair source «;[/] and destination B;[P(j)], E has a corresponding edge

connecting B[j mod w](0 U) and B[P;(j) mod w](D V).

Clearly, an edge (B[u], B[v]) (0 > u,v > w 1) corresponds to a number to be copied
from bank B[u] of @; to B[v] of B;. Also, G = (U, V, E) is a regular bipartite graph with
degree 75 Hence, Gis %-colorable from Theorem 5.5.1. Suppose that all of the n
edges in E are painted by 72 colors 0, 1, ..., 72 1. We can determine integer values
fGHO= /> 1,02k>=w 1,02 f(jk = n 1)such that an edge
(B[fi(j, k) mod w], B[P(fi(j, k) mod w)]) with color j corresponds to a pair of source
a;[fi(j, k)] and destination S;[P(fi(j,k))]. It should have no difficulty to confir that,
for each j, (1) w banks B[fi(j, 0) mod w], B[fi(j, 1) mod w], ..., B[fi(j,w 1) mod w]are
distinct, and (2) w banks B[P(fi(j,0)) mod w], B[P(f:(j,1)) mod w], ..., B[P(f:(j,w
1)) mod w] are distinct. It follows that, (1) a;[fi(j,0)], ai[fi(j, D], ... ;[fi(j,w 1)]
are in different banks, and (2) B:[fi(j, 0)],B:Lf:(j, D],B:[fi(j,w 1)]are in different

banks. Hence, we defin §; and D; from f;(j, k) such that S;(j xw + k) = fi(j, k) and

55

Di(j>xw+k)= P(fi(j,k)) forall jand k(0 > j > 75,0 >k>w 1). ForsuchS;and D;,
P(S(j)) = Di(j) holds and the memory access to ; and 3; is conflict-free

Let us evaluate the number of memory access rounds. Step 1 performs one round
of coalesced reading from a and one round of coalesced (conflict-free writing in a.
Step 2 performs one round of coalesced reading from s and d each. Step 3 involves
one round of conflict-fre reading from a and one round of conflict-fre writing in .
Finally, Step 4 performs one round of coalesced (conflict-free reading from 8 and one
round of coalesced writing in b. Note that a, b, s, and d are in the global memory, and

a and B are in the shared memory. Thus, we have,

Lemma 5.4.2 The row-wise permutation can be done by memory access rounds and

running time in Table 5.1.

It should be clear that, the column-wise permutation can be done in three steps:
transpose, row-wise permutation, and transpose. Thus, from Lemmas 5.3.1 and 5.4.2

we have,

Lemma 5.4.3 The column-wise permutation can be done by memory access rounds and

running time in Table 5.1.

5.5 Our Scheduled permutation Algorithm

The main purpose of this section is to show our scheduled offline permutation algorithm
on the HMM. The scheduled permutation algorithm uses the row-wise permutation and
the column-wise permutation.

Suppose that arrays a and b of size n each are given. Let P be a permutation of

(0,1,...,mn 1). For convenience, we can think that both a and b are matrices of size

56

ne n. For simplicity, we assume that 7 is a multiple of w. The goal of permutation
is to move a number stored in a[i][/] to B[|P(i xw + j) n{][P(i xw + j) mod n] for
everyiand j (0 > i,j > w 1). Note that, the permutation is define for a 1-dimensional
array and our scheduled permutation algorithm is not restricted to a square matrix.
Our scheduled permutation has three steps, row-wise permutation (Step 1), column-
wise permutation (Step 2), and row-wise permutation (Step 3). We will show how we
determine three permutations performed in the three steps. For a given permutation P

on a matrix a, we draw a bipartite graph G = (U, V, E) as follows:

C U = R[0],R[1],...,R[w 1] is a set of nodes each of which corresponds to a row
of a
C V =R[0],R[1],...,R[w 1]1is a set of nodes each of which corresponds to a row

of b

C For each pair source a[/][/] and destination b[|P(i>xw+j) n{][P(i>xw+j) mod n],

E has a corresponding edge connecting R[i](0 U) and R[|P(i xw + j) n{](0 V).

Clearly, G is a regular bipartite graph with degree n. From Theorem 5.5.1, the
bipartite graph G thus obtained can be painted using 7 colors such that » edges
painted by the same color never share a node. Thus, we have that (1) numbers in the
same row are painted by different colors, and (2) numbers painted by the same color
have different row destination. The readers should refer to Figure 5.3 for illustrating
how input numbers are painted.

In Step 1, row-wise permutation is performed such that a number with color i
(0 2i> n 1)in each row is transferred to the -th column. From (1) above, n

numbers in each row are painted by # colors and thus, Step 1 is possible. Step 2

57

uses column-wise permutation to move numbers to the fina row destinations. From
(2) above, n numbers in each column has different 7 row destinations and Step 2
is possible. Finally, in Step 3, row-wise permutation is performed to move numbers
to the fina column destinations. The readers should refer to Figure 5.3 for illustrat-
ing how numbers are routed by the permutation algorithm for » = 4. In this figure
(IPG>w+ j) n{][P(ixw+ j)mod n) is stored in a[i][/] initially, and after the permu-
tation algorithm terminates, (i, j) is stored in b[Z][/].

(3 1) (2 l) (2,0)

-:'<0,3>I=E (13)} ©0.,1) 13)if o 3)

ELLELLLL] IR
RS

G @D}

1
YT '- -‘

0

(0.2 -.‘(3,2>‘=

1.2 §(3,2)I= (1,2)
i 3.3) E(z,z)i (3.3)

Ll * *
L]
[ETTTTTTT Sunsnt

FECLLLLL 3| Jemw
a G .

20 (L0}

- u
tasssnnnm Ceunns®

Input After Step 1
o EHoOm S
u,z)\é'{{:;;'ée:‘a,'é)} @) I 1
neESame s

Afer 's'{;;"z") nfer Step

Figure 5.3: Illustrating how numbers are routed by the permutation algorithm

Since the scheduled permutation algorithm on the HMM performs row-wise permu-

58

tation twice and the column-wise permutation once, we have,

Theorem 5.5.1 Our scheduled permutation algorithm on the HMM can be done by

memory access rounds and running time in Table 5.1.

We can prove Q2 + L)-time lower bound for the permutation on the HMM. Since
all of the n elements in @ must be read at least once and w elements can be read in a
time unit, 2 time units are necessary. Also, reading of one element takes L time units.
Thus, (2 + L) time units are necessary for permutation of # elements and our scheduled

permutation algorithm is optimal from the theoretical point of view.

5.6 Experimental Result

The main purpose of this section is to show experimental results on GeForce GTX-680.
We have implemented D-designated, S-designated, and our scheduled algorithm and
evaluate the performance for #n = 256,512, 1024,2048 and 4096. The experiment is
performed for an array a both of floa (32-bit) numbers and of double (64-bit) numbers.
Also, fve permutations, identical, shuffle, random, bitreversal, and transpose permuta-
tions are used to evaluate the performance.

We have invoked 157 1024 CUDA blocks [S] of 1024 threads each for D-designated
and S-designated permutation algorithms. In the D-designated algorithm, each block
is assigned to a row of a and works for the copy of the assigned row. Similarly, in
the S-designated algorithm, each block is assigned to a row of b. Also, arrays p and ¢
used in D-designated and S-designated are arrays of int (32-bit) numbers, since at most

log 4096% = 24 bits are necessary

Recall that scheduled permutation algorithm involves three steps, row-wise permu-

59

tation, column-wise permutation, and row-wise permutation. Also, column-wise per-
mutation has three substeps, transpose, row-wise permutation, and transpose. Thus, it
has essentially f ve steps, three for rowwise permutation and two for transpose. The im-
plementation of our scheduled algorithms performs f ve sequential kernel calls for these
fve steps. For the row-wise permutation, 7 CUDA blocks are invoked. However,
since each CUDA block can have up to 1024 threads [5], each block is assigned 1024
threads when 7 ~ 1024. If this is the case, each thread works for o5z umbers. Also,
arrays s and d used in our scheduled permutation algorithms are 2-dimensional arrays
of n short int (16-bit) numbers in the global memory, since at most log4096 = 12 bits
are necessary.

Table 5.2 shows the running time of the three permutation algorithms for fve per-
mutations. Since the shared memory of GeForce GTX680 has up to 48Kbytes, it is not
possible to implement our scheduled algorithm for 4096 e 4096 double (64-bit) num-
bers. Thus, we evaluate the performance up to 2048 e 2048 double (64-bit) numbers.
Clearly, for the D-designated and S-designated permutation algorithms, the identical
permutation is fastest, because it is just a copy between two arrays.

From Table 5.2, we can see that D-designated and S-designated permutation algo-
rithms take more time for permutation with larger distribution, while our scheduled per-
mutation algorithm takes almost the same running time for each value of » Since the
identical and the shuffle permutation have very small distribution, our scheduled permu-
tation algorithm cannot be better than the D-designated and S-designated permutation
algorithms. Since the random, the bit-reversal, and the transpose permutations have
large distribution, our scheduled permutation algorithm runs faster when »n ~ 512.

However, our scheduled permutation algorithm is slower when 7 = 256. We can

60

presume that the L2 cache of size 512Kbytes [6] on GeForce GTX-680 decreases the
overhead of the casual memory access performed by the D-designated and S-designated
permutation algorithms efficiently for small n. Also, in most cases, the S-designated
permutation algorithm is more efficient that the D-designated. This is because the ca-
sual writing takes more running time than the casual reading due to the overhead of
cache coherency in writing.

Table 5.3 shows the running time of the three permutation algorithms for double
(64-bit) numbers and the values of DWT(P). We have selected 1000 permutations P of size
4M at random. The table shows the minimum, the average, and the maximum values
for 1000 permutations. We can see that the values of D,,(P) are very close to n for all
permutations. Also, the variance of the computing time of each algorithm is very small.
Hence, we can say that, for most of all possible permutations, our scheduled permuta-
tion is faster than the D-designated and the S-designated permutation algorithms. The

identical and the shuffle permutations are examples of few exceptions.

5.7 Conclusion

In this chapter, we have presented an optimal offline permutation algorithm on the
HMM, a theoretical model of CUDA-enabled GPUs. We have implemented the op-
timal offline algorithm and the conventional algorithms on GeForce GTX-680 GPU and
evaluate their performance. The experimental results showed that our optimal offline
permutation algorithm is faster than the conventional permutation algorithm for most

cascs.

61

Table 5.2: The running time (milliseconds) of D-designated, S-designated and Our

scheduled algorithm

(a) Permutation for float(32-bit numbers

D-designated S-designated Our scheduled
n 256 512 1024 | 2048 | 4096 | 256 512 1024 | 2048 | 4096 | 256 512 1024 | 2048 | 4096
identical 0.86 | 248 | 9.06 | 33.2 130 | 0.86 | 249 | 9.13 | 33.1 129 | 3.87 | 11.7 | 46.9 173 780
shuffle 094 | 3.05 | 11.5 | 447 186 | 0.84 | 247 | 9.09 | 33.6 133 | 3.87 | 11.7 | 46.9 174 780
random 1.55 | 15.1 | 939 | 425 | 1756 | 3.3 157 | 89.8 398 | 1644 | 3.87 | 11.7 47 173 780
bit-reversal | 1.6 | 15.6 | 953 459 | 2328 | 3.12 | 20.8 | 96.6 | 414 | 1870 | 3.87 | 11.7 47 173 780
transpose 1.44 | 21.2 | 127 636 | 2850 | 2.72 | 17.8 87 370 | 2037 | 3.87 | 11.7 | 469 173 780
(b) Permutation for double(64-bit) numbers
D-designated S-designated Our scheduled

n 256 | 512 | 1024 | 2048 | 256 | 512 | 1024 | 2048 | 256 | 512 | 1024 | 2048

identical 1.07 | 3.57 | 135 | 546 | 1.07 | 3.60 | 13.8 | 54.6 | 507 | 169 | 66.6 | 275

shuffle 1.44 | 5.14 | 19.7 | 822 | 1.08 | 3.57 | 13.6 | 54.6 | 509 | 17.0 | 66.7 | 275

random 298 | 21.6 | 104 452 34 | 21.3 | 100 424 | 5.09 | 17.0 | 66.6 | 275

bit-reversal | 3.00 | 22.0 | 108 559 | 336 | 25.0 | 104 498 | 5.09 | 17.0 | 66.6 | 275

transpose | 2.07 | 22.2 | 134 638 | 299 | 154 | 803 358 | 5.12 | 17.0 | 66.6 | 275

Table 5.3: The Running time(milliseconds) of the three permutations and the values of

D,,(P) for permutation P of size 4M

D-designated | S-designated | Scheduled D%(P)
424.87 397.89 173.5 | 0.99987
425.52 398.27 173.66 | 0.99989
426.39 398.77 173.92 | 0.99990

62

Chapter 6

Parallel Algorithms for the Summed
Area Table on the Asynchronous

Hierarchical Memory Machine

The summed area table (SAT) of a matrix is a data structure frequently used in the area
of computer vision which can be obtained by computing the column-wise prefix-sum
and then the row-wise prefix-sum [23, 2, 33]. The main contribution of this chapter is
to show a global-memory-access-optimal parallel algorithm for computing the summed
area table stored in the global memory of the asynchronous HMM.

In the chapter 3, we have introduced the Hierarchical Memory Machine (HMM) [25],
which is a hybrid of the DMM and the UMM. The HMM is a more practical parallel
computing model that reflect the hierarchical architecture of CUDA-enabled GPUs.
Figure 3.4 illustrates the architecture of the HMM. The HMM consists of d DMMs and
a single UMM. Each DMM has w memory banks and the UMM has w memory banks.

We call the memory banks of each DMM the shared memory and those of the UMM

63

the global memory after CUDA-enabled GPUs. Each DMM can work independently
and can perform the computation using its shared memory. Also, all threads of DMMs
work as a single UMM and can access to the global memory. While the memory access
latency of the shared memory of GPUs is very low, that of the global memory is several
hundred clock cycles [5]. Hence, we assume that the latency of the shared memory is 1,
and we use parameter / to denote the latency of the global memory in the HMM.

Suppose that a matrix a of size ne nis given. The summed area table (SAT) [7]
is a matrix b of the same size such that

Bl =), el
02,02 /< j

It should have no difficulty to confir that the SAT can be obtained by computing the
column-wise prefix-sum and the row-wise prefix-sum as illustrated in Figure 6.1.
Once we have the summed area table, the sum of any rectangular area of a can be
computed by evaluating

Z alillj]1 = bld1[r] + blullr] + b[d][1] blu][/].

u<izd,i<jzr
Thus, the sum of a rectangular area can be computed using four elements of the summed
area table b. Since the sum of any rectangular area can be computed in O(1) time the
summed area table has a lot of applications in the are of image processing and computer
vision [16]. In [26], They have presented a parallel algorithm that computes the SAT in
o=+ ”;l +/log n) time units using p threads on the UMM with width w and latency /. This
algorithm is optimal in the sense that any SAT algorithm takes at least Q(< + ”;’ +/logn)
time units. However, this algorithm repeats pairwise addition and has a large constant
factor in the computing time and it is not practically efficient.

A straightforward algorithm (2R2W SAT algorithm) on the asynchronous HMM,

64

input matrix summed area table (SAT)

O{o00}1|1[1]0|0]0 OTo0 [T [T|{T[0]070 0100 |1 (|21(3|3(3]3
O 1O [|L {(1|{1|{1[]1][O[[O 07O T[22 (Z2[T]070 0]0|1|3|5|7|8 (88
O |1 [|L {1 |21]1[[1[[O 0T 12374312170 0[1]3]|6 1013151616
T (T[22 (2] |1 273565321 113 (6 (1117221252728
TR RIBIRIRIIIN|—=|2Z[3[5[7[9[7[5[3[2|—|2|5|10]172633 384143
L2 (2 (21|11 3147691196 43 317 (132233 4214852155
O |1 [|L {1 |21][O 357103107753 318 (152538485560 63
O 10 [|L {1 |{1]{1|]1][O[[O IS5 IT(I4 T8 (53 3 (8 1612714152160 65 68
0 {*0 [0 [*1 |1 ("1 |0 |0 |0 358121512185 (3 318 1628435516368 71

Figure 6.1: The summed area table (SAT) of a 9 @ 9 matrix and 2R2W SAT algorithm

which computes the column-wise prefix-sum and then the row-wise prefix-sums per-
forms 2 read operations and 2 write operations per element of a matrix. The best known
algorithm (2R1W SAT algorithm) so far performs 2 read operations and 1 write opera-
tion per element [28]. We present a more efficient algorithm (1IR1W SAT algorithm) on
the asynchronous HMM, which performs only 1 read operation and 1 write operation
per element. Clearly, since every element in a matrix must be read at least once and
all resulting values must be written, our IR1IW SAT algorithm is optimal in terms of
the global memory access. We also show a combined algorithm ((1 + #)R1W SAT algo-
rithm) of 2R1W and 1R1W SAT algorithms that can run faster than any other algorithms
for large matrices. Table 6.1 shows the total number of memory access operations to the
global memory and the shared memory, the number of barrier synchronization steps,
and the global memory access cost. The global memory access cost, which is com-
puted from the number of global memory access operations and the number of barrier
synchronization steps, approximates the computing time on the HMM.

For simplicity, in the table, we omit small terms to focus on dominant terms. For

example, 2R2W SAT algorithm performs n n coalesced write operations, but we

65

simply write 7 in the corresponding entry.

Table 6.1: The performance of SAT algorithms on the HMM

global memory access shared memory access barrier global memory

SAT algorithms | Coalesced Stride synchronization access cost
Read/Write | Read/Write Read/Write steps
2R2W n/n n/n - 1 2n+25 +21
4R4W 4n [4n - n/n 3 8L +41

4R1W - 4n/n - 2 n Sn+2 nl

2R1IW 2n/n - 4n [4n 2d+2 30 +(2d +3)]
IRIW nin - 2n/2n 22 28 400

1.25RIW 1.25n/n - 2.5n/2.5n I r4d+4 1254 + (<2 +4d +5)!
(1+M)RIW | (1+r)m/n . @+ Pnje+ Pn [28D idgea | 1408+ 02T 4 4q4 5y

d is the depth of recursion, which takes value no more than 1 from the practical point of view.

6.1 The global memory access cost on the HMM and the
diagonal arrangement on the DMM

Let C, S, and B be the total number of coalesced global memory access operations, the
total number of stride global memory access operations, and the number of barrier syn-
chronization steps performed on the HMM. The global memory access cost is define
to be % +S +(B+ 1) 1). We will show that the global memory access cost approxi-
mates the computing time on the HMM if the computation performed in each DMM is
negligible.

Suppose that an algorithm performs # coalesced memory access operations and two
barrier synchronization steps. Clearly, by two barrier synchronization steps, the memory

access is partitioned into three stages as illustrated in Figure 6.2. Let ny, n;, and n, such

66

barrier synchronization steps
no ny ny

w1 w1 w1

Figure 6.2: Timing chart of coalesced memory access to the global memory with two

barrier synchronization steps

that n = ny + n; +n, be the numbers of memory access operations performed in the three
stages. Since w coalesced memory access operations by a warp of w threads occupy
one pipeline stage, the three stages takes > +/ 1, +/ 1,and 2> +/ 1 time units
respectively. Hence, the algorithm runs 2 + 3(/ 1) time units. Also, if » memory
access operations are stride, each memory access operation occupy one pipeline stage,
the algorithm runs in » + 3(/ 1) time units. In general, if an algorithm performs C
coalesced memory access operations, S stride memory access operations, and B barrier
synchronization steps, it runs TCV +S +(B+ 1)/ 1), which is the global memory access
cost.

Suppose that we have a matrix of size w e w in the shared memory of a DMM in
the HMM. Since a column of the matrix is in the same bank, column-wise access by
w threads has bank conflicts while row-wise access is conflict-free In [24], we have
presented a diagonal arrangement of a matrix such that each (7, j) element is arranged in
ali][(i+ j) mod w]. Figure 6.3 illustrates the diagonal arrangement of a 4 e 4 matrix. We

can confir that both a row-wise access to (1,0), (1, 1),(1,2),(1,3) and a column-wise

access to (0, 1),(1,1),(2,1),(3, 1) are conflict-free Thus, we have,

Lemma 6.1.1 In the diagonal arrangement of a w ® w matrix, both a row-wise access

and a column-wise access are conflict-f ee.

67

(0,0) (0, 1)[|(0,2) |(0,3)

S8TC

(2,2)1(2,3)|1(2,0) (2, 1)

(3,1)/1(3,2)|(3,3)[(3,0)

Figure 6.3: Diagonal arrangement of a 4 e 4 matrix

The diagonal arrangement is used to compute the SAT of a w @ w matrix in a shared

memory and transpose of a matrix in the global memory of the HMM.

6.2 2R2W and 4R4W SAT algorithms

Let s; denote a local register of thread 7(i) (0 > i >n 1). As illustrated in Figure 6.1,
the summed area table (SAT) ofa ne » matrix a can be computed by the column-

wise prefix-sum and the row-wise prefix-sums

[2R2W SAT algorithm]
foris 0to 7 doin parallel // column-wise prefix-sum
T(i) performs s; » a[0][{]
forjr 1to n 1do
T(i) performs s; 7 s; + a[j][i]
T(i) performs a[j][i] 7 s;
barrier_synchronization

foris 0to 7 doin parallel // row-wise prefix-sum

T(i) performs s; » a[i][0]

68

forjr 1to n 1do
T(i) performs s; » s; + a[i][/]

T(i) performs a[i][j] 7 s;

Ny

In the computation of the column-wise prefix-sums a[0][0], a[0][1],...,a[O0][1]
1]

are read and written. Clearly, memory access to these elements are coalesced. In the

S|

are read. After that, foreach j (1 > j > n 1), a[j][0],alj1[1],....alj][

computation of the column-wise prefix-sums a[0][0],a[1][0],...,a[n 1][0] are read.
After that, foreach j (1 > j > n 1), a[0][j],a[l][/],...,a[n 1][j] are read and
written. Memory access to these elements are coalesced. Hence, 2R2W SAT algorithm
performs 2n n coalesced memory access operations and 2n n stride memory
access operations. Since 2R2W SAT algorithm has one barrier synchronization step, we

have,

Lemma 6.2.1 The global memory access cost of 2R2W SAT algorithm is at most 2n +

2242(1 1),

We can avoid stride memory access when we compute the row-wise prefix-sum by
transposing a matrix. More specificall , the row-wise prefix-sum can be obtained by
transpose, column-wise prefix-sums and transpose. It has been shown in chapter 4 that
transpose of a matrix of size ne 1 in the global memory of the HMM can be done in
2n coalesced memory access operations with no barrier synchronization step. The idea
of the transpose it to partition the matrix into 75 ° 72 blocks with w e w elements each.
We can transpose a block via a w e w matrix with diagonal arrangement in a shared
memory of a DMM efficiently. First, a block in the global memory is read in row-wise

and it is written in a we w matrix with diagonal arrangement in row-wise. After that, the

69

we wmatrix is read in column-wise and it is written in a a block in the global memory in
row-wise. The reader should refer to Figure 6.4 illustrating transpose of a block using
a 4 e 4 matrix with diagonal arrangement. By executing this block transpose for all
blocks in parallel so that a pair of corresponding two blocks are swapped appropriately,
the transpose of a n e 7 can be done. The reader should refer to chapter 5 for the

details of the transpose.

0[1]|2(3]4 013(6]9 |12

506|789 ||1]4|7]10]13

10(11]12]13(14 215811114
a b

Figure 6.4: Transpose of a block using a 4 e 4 matrix with diagonal arrangement

By executing matrix transpose twice, we can design 4R4W SAT algorithm as fol-
lows:
[4R4W SAT algorithm]
Step 1: Compute the column-wise prefix-sum
Step 2: Transpose
Step 3: Compute the column-wise prefix-sum
Step 4: Transpose
After Steps 1, 2, and 3, barrier synchronization is necessary. Also, each step needs no

more than 2» coalesced global memory access. Thus, we have,

Lemma 6.2.2 The global memory access cost of 4R4W SAT algorithm is at most 8% +

a0 1.

70

6.3 2R1W SAT algorithm

The main purpose of this chapter is to review a SAT algorithm for GPU shown in [28].
Since this SAT algorithm performs 2# read and » write operations to the global memory,
we call it 2R1W SAT algorithm. 2R1W SAT algorithm that we will explain is slightly
different from that in [28] for easy understanding of the algorithm.

Suppose thata ne x matrix a is partitioned into 75 ° 72 blocks of we w elements
each. 2R1W SAT algorithm has three steps as follows:
[2R1W SAT algorithm]
Step 1: Each DMM reads a block in the global memory and write it in the shared
memory. The column-wise sums, the row-wise sums, and the sum of the block are

computed. More specificall , for a block a® of size w e w,

N

column-wise sums: C[i] = Z;”:Ol a¥jl[i] foralli (0 =i=w 1),

w1

C row-wise sums: R[i] = 7y a¥i][j/] foralli (02 i=w 1), and

N

sum: § = Y Z;V:ol aqilj]-

The column-wise sums of all blocks excluding the bottom blocks are written in the
global memory such that they constitute a matrix of size (72 1)e nin the global mem-
ory. Similarly, the row-wise sums of all blocks constitute a matrix of size ne (75 1),
and the sums constitute a matrix of size (72 l)e (72 1). The reader should refer
to Figure 6.5 for illustrating the resulting values for a matrix in Figure 6.1 with w = 3.
Let R, S, and U denote matrices of the resulting values for the column-wise sums, the
row-wise sums, and the sums, respectively. In Figure 6.5, the sizes of R, S, and U are

209,96 2 and 2 e 2, respectively.

71

Step 2: The column-wise prefix-sum of R and the row-wise prefix-sum of § are com-
puted in the same way as 2R2W SAT algorithm. If U is no larger than w e w then we
compute the SAT of U using a single DMM. Otherwise, we execute 2R1W SAT algo-
rithm recursively for U. The reader should refer to Figure 6.5 for the resulting values of
R, S, and U.

Step 3-1: Each DMM reads a block from the global memory and write it in the shared
memory. Let a denote a block read by a particular DMM. It reads w elements in R,
and adds them to the top row of a so that each of the resulting sums is the sum of all
elements above it, inclusive, in the same column. Similarly, it reads w elements in S,
and adds them to the leftmost column of a® so that each of the resulting sums is the sum
of all elements to the left-side of it, inclusive, in the same row. Further, an element in
U is added to the top left corner of a€ so that the resulting sum is the the sum of all
blocks above and to the left of it, inclusive. The reader should refer to Figure 6.6 illus-
trating these operations for a block. Also, Figure 6.5 illustrates the resulting values of
all blocks.

Step 3-2: Each DMM computes the SAT of a block obtained in Step 3-1 and the result-
ing values are written in the global memory. Figure 6.6 illustrates the values of a block
before and after this step. The reader should have no difficulty to confir that the block
thus obtained stores the SAT of the input matrix correctly.

Let us evaluate the global memory access cost. In Step 1, all elements in a are read,
and R, S, and U are written. Thus, » elements are read from the global memory and
less than 22 + = elements are written in the global memory. Note that we should write
ST, that is, transposed S in the global memory for the purpose of coalesced memory

access for the row-wise prefix-sum computation in Step 2. If this is the case, the row-

72

After Step 1 After Step 2

o110 o) (T 73 ([0 |jo [0 olologs1|1|134¢+0]0]0
aiid7 limimid 2 g ololita+i]1l1A4+1]o]o
o T[T 2] T2 [T 4] Y1 [[oli{1Z4p1]2l14p1]1]o0
oli]2 3|43 210 2 3[4]3 2 0
| []
T 2] IR %) 1] 1] a2 2|2 A+
mimiedZ a7 iERE THE ZAHE s 2NE
T T3] (222 [1]1]1 1|2 2mp1 1]
3|34 6716 41313 3 6 911]9 41313
| | | |

ol T{TZ2] Tzt |1]1]o 0 a1 2|1 0
oot T3] [1]o]o ololitari|1|1A4+1]0]o0
ofo 0| |[TIT{T/3] |o]o]o ololopg+1|1|134+0]0]o0

After Step 3-1
oo o 1T B Dcolumn-wise sums % sums
OO [T IPTITIT] (5 o0 7 .
O T f 2 f 1 6 /j TOW-WI1S€ Sums
T3 |IT (3T : -
IR ARIC IR AR LI DC R 5
INMEMERN o4 (WM
ST | 12530 |21 (13

et (B ToTe
oo M| T[T T 00

Figure 6.5: 2R1W SAT algorithm executed for a matrix in Figure 6.1 with w = 3

wise prefix-sum of S corresponds to the column-wise prefix-sum of S”, which can
be computed by coalesced memory access to the global memory. Also, in Step 1, the
column-wise sums, the row-wise sums, and the SAT of a block in a shared memory are
computed. This computation can be done without bank conflict by diagonal arrange-
ment of a block. Each of the d DMMs performs the computation of the column-wise
sums for -5 blocks of size w e w. Since the memory access is conflict-free this takes

only -5 time units, which is so small that it can be hidden by latency overhead.

73

Ay Ds LR

253848
274152 Step 3-2
28143155

t
3

13 91119

Ne)
—_
—
O

<
V)
3

Step 3-1

[a—
I
A\

\S]
1
A\
—
— | | NOe
—_ |]
— | N
—
—

s
—

Figure 6.6: Step 3 of 2R1W SAT algorithm

Step 2 performs the computation of the the column-wise prefix-sum and the row-
wise prefix-sum for matrices of 2 elements. It also computes the SAT of - elements,
recursively, which performs global memory access to O(:5) elements. In Step 3-1 all
elements in a and the resulting values of R, S, and U are read from the global memory. In
Step 3-2 the resulting SAT is written in the global memory. Thus, 2R1W SAT algorithm
performs at most 31 + 82 + O(-7) coalesced memory access operations. This includes
the memory access by recursive computation of U.

Let us evaluate the number of barrier synchronization steps. Barrier synchronization
step is necessary after Steps 1 and 2 if the SAT of U is computed without recursion. If
the SAT of U is computed recursively, additional two barrier synchronization steps is
necessary for each recursion. Hence, if 2R1W SAT algorithm involves d recursions, it

performs 2d + 2 barrier synchronization steps. Thus, we have,

Lemma 6.3.1 The global memory access cost of 2RIW SAT algorithm with recursion
depthd is 3% + 8% + O(%5) + (2d + 3)(I 1)
Since w = 32 in current GPUs, d = 0 if n > 2?° and d = 1 if n > 2%. Thus, d is no more

than 1 from the practical point of view.

74

6.4 Our 1R1W SAT algorithm

The main purpose of this chapter is to show our novel SAT algorithm called IRIW SAT
algorithm. This algorithm performs only n + O(%) read operations and » + O(%) write
operations to the global memory. Before showing IR1W SAT algorithm, we present
4R1W SAT algorithm. By combining techniques used in 4R1W SAT and 2R1W SAT
algorithms, we can obtain IR1W SAT algorithm.

Let b be the SAT of an input 7 e 7n matrix a. Suppose that the values of b[i
[11, b[7][; 1], and b[i 1][/] are already computed. We can obtain the value of

b[i][j] by evaluating the following formula:
blil[j1 = alilj]1+ 0Ll 11+ b0 101 bli 1[j 1] (6.1)

From this formula, 4R1W SAT algorithm computes the SAT in a diagonal scan order
from the top left to the bottom right. More specificall , 4R1W algorithm has 2 n 1
stages and each Stage k (0 > k>2 n 2) computes Formula (6.1) for all i and j such

that i + j = k. Figure 6.7 illustrates the computation performed in Stage 7.

ojofo[1]2]3]3Fo][of0ofo]1]2]3]3]3]
0(0|1[3]5]7f1 0[0|1|3|5|7(8
0|1]3]6]Jiof7 0/1]3]610[13
1]3]6]11f3 1[13]6]11]17

2[5]10F3 _ . [2]5]0[17

31 71 317113

_3;4 138

0] 3]

Figure 6.7: Stage 7 of 4R1W SAT algorithm

Let us evaluate the performance of 4R1W SAT algorithm. To compute each b[i][/],

3 elements in b and 1 element in a are read. Also, the resulting value is written in b.

75

Thus, 4n reading operations and » writing operations are performed. Unfortunately, all
memory access are stride. Further, barrier synchronization step is necessary after every

stage from0to2 »n 3. Thus, we have,
Lemma 6.4.1 The global memory access cost of 4RIW SAT algorithm is 5n+(2 n 1)L

We are now in a position to show our new 1R1W SAT algorithm. The idea is to
extend 4R1W SAT algorithm to perform SAT computation in block-wise. In each block-
wise computation, a similar computation to 2R1W SAT algorithm is performed. Again,

an input matrix a of size n e 7 is partitioned into —~ e — blocks of size w e w

n

each. Let 4(i,j) (0 > i,j > 77 1) denote a block in the i-th row and in the j-th
column. 1R1W SAT algorithm has 27Z 1 stages. Each Stage £ (0 > k > 275 2)
computes the SAT of block A(i, j) with i + j = k. The reader should refer to Figure 6.8
for illustrating the computation performed in Stage 3. In Stage 3, 4(2,1) and A(1,2)
are computed using the resulting values in 4(2,0), 4(1,1), and 4(0,2). From these
resulting values, we can obtain R, S, and U for each of 4(2, 1) and 4(1, 2). For example,
in Figure 6.8, R for A(2,1) 1s (9, 11,9). This can be obtained by the resulting value 13
of the bottom top corner in A(1,0) and the resulting values (22, 33,42) in the bottom
row of A(1,1). More specificall , we can obtain R by computing pairwise subtraction
(22,33,42) (13,22,33) = (9,11,9). After the values of R, S, and U, these values
are added to A(2, 1) in the same way as Step 3-1 of 2R1W SAT algorithm. Finally, we
compute the SAT of 4(2, 1) in the same way as Step 3-2 of 2R1W SAT algorithm.

Let us evaluate the performance of IR1W SAT algorithm. In each stage, the values
of'a block in the global memory are read and the resulting values are written to the global

memory. Also, the values necessary to compute R, S, and U are read and written to the

global memory. For each block, 2w + 1 elements are read from the global memory for

76

21313 y
1[3]6 17224 [11 ™ot
2151010 [17]26[33H2 [1 |1 | — i3 Tt
317013] [22[3342/94-1 |1 |1 ORI

911]9

3852451 (21 25113110 25[38148
3lsli6eaabt 11| — |z | —[2741]52
318 l16ab1 |11 mUBL 2814355

L= Zs (A

Figure 6.8: Stage 3 of IR1W SAT algorithm for a matrix in Figure 6.1

this task. Since we have 5 blocks, n+(2w+ 1) X’; elements are read and n+ 2w+ 1) X5
elements are written in all stages. Barrier synchronization is necessary after each of

Stages from 0 to 272 3. Thus, we have,

Theorem 6.4.2 The global memory access cost of 4RIW SAT algorithm is 22> + O(-5) +

Q-2 2

6.5 (1+r)R1W SAT algorithm

The main purpose of this chapter is to accelerate the SAT computation further by com-
bining 1R1W and 2R1W SAT algorithms. The idea of further acceleration is to use
2R1W SAT algorithm in early and late stages of 1IRIW SAT algorithms to reduce the
latency overhead.

Again, suppose thata n e » matrix a is partitioned into 72 ° 7% blocks of size
w e w each. As illustrated in Figure 6.9, for any fi ed parameter » (0 < » < 1), we

partition blocks into (A) top left triangle, (B) bottom right triangle, and (C) remaining

77

blocks. Clearly, (A) and (B) have - E+(L 1)+ >0¢ 1 = ;WZ>(- E+1)/2 35

w w w

blocks each. We firs use 2R1W SAT algorithm to compute the SAT of (A). After that,
we use IRIW SAT algorithm for (C). Finally, 2R1W SAT algorithm is used for the
computation of the SAT in (B).

Let us evaluate the performance. Since (A) and (B) have approximately 5 elements
in 575 blocks each, 2R1W SAT algorithm for (A) and (B) performs rn+ O(=) read oper-
ations and 7 + O(%) write operations each. Also, since (C) has (I r)n elements, IRTW
SAT algorithm for (C) performs (1 r)n+0(%) read operations and (1 »)n+ O(“Tr)”)
write operations. Hence, this SAT algorithm performs (1+7)n+O(%) read operations and
n+ O(%) write operations. Thus, we call this SAT algorithm (1 +7)R1W SAT algorithm.
Further, 2R1W SAT algorithm for (A) and (B) needs 2 +2d barrier synchronization steps
each, where d is the depth of the recursion of 2R1W SAT algorithm. Since IR1W SAT

r)

algorithm for (C) has 2L Doy stages, it needs 20 on

2 barrier synchronization
w w

steps. Also, after the computation of the SAT for (A) and (B), 1 barrier synchronization
1 r n

steps each is necessary. Totally, (1 + 7)R1W SAT algorithm executes 2-———— + 4 + 4d

w

barrier synchronization steps. Thus, we have,

Theorem 6.5.1 The global memory access cost of (1 + r)RIW SAT algorithm is (2 +

ML+ O(L) + T 4 5 4 4d)

w

When r = 0.25, the global memory access cost of 1.25R1W SAT algorithm is 2.52 +
(75 + 5 + 4d)[time units. Since 2R1W and 1R1W SAT algorithms run approximately
32+ (3 +2d) and 22 + 2721 time units, respectively, 1.25R1W SAT algorithm may run
faster than these algorithms. Further, we can select the best value that minimize the

running time of (1 + »)R1W SAT algorithm.

78

Figure 6.9: Partition of a matrix for (1 + »)R1W SAT algorithm

6.6 Experimental results

We have implemented all SAT algorithms presented so far in this chapter on GeForce
GTX 780 Ti.

Since the number of memory banks and the number of threads in a warp is 32 [5], we
have implemented SAT algorithms with w = 32. Barrier synchronization of all threads
is implemented by invoking separated CUDA kernel calls. For example, one CUDA
kernel call is invoked for each of 27Z 1 stages of 4R1W SAT algorithm.

We have tested several configuratio in terms of the number of threads in a CUDA
block, and selected the best configuration For example, in 2R2W, 4R4W, and 4R1W
SAT algorithms, CUDA blocks with 64 threads each are invoked. Since each Stage i
and each Stage 27; I i(0>i> 75 1) of 4R1W SAT algorithm computes i + 1
values of the SAT, it uses i + 1 threads in %41 CUDA blocks. In 2R1W and 1R1W SAT
algorithm, a 32 e 32 block in a matrix is copied to the shared memory in a streaming
multiprocessor and the column-wise sums, the row-wise sums, and/or the SAT of it is
computed. After that, the resulting values are copied to the global memory. For this
operation, we use one CUDA block with 128 threads for each 32 e 32 block. All 128

threads in a CUDA block are used to copy a 32 e 32 block in the shared memory and

79

32 threads out of 128 threads are used to compute the column-wise sums, the row-wise
sums, and/or the SAT.

Table 6.2 shows the running time of SAT algorithms for a double (64-bit) matrix of
size from 1Ke 1K (= 1024 ¢ 1024) to 18Ke 18K (= 18432 e 18432). Since a 18Ke 18K
64-bit matrix uses 2.53GBytes, it is hard to store a matrix larger than it in the global
memory of GeForce GTX 780 Ti of size 3GBytes. The running time of the best SAT
algorithm for each value of 7 is highlighted in boldface. Since 4R1W SAT algorithm
performs a lot of kernel calls and stride memory access, and has large memory access
latency overhead, it needs much more computing time than the other algorithms. Re-
call that 4R4W SAT algorithm corresponds to 2R2W SAT algorithm with transpose
and 4R4W SAT algorithm performs much more memory access operations than 2R2W
SAT algorithm. Since 2R2W SAT algorithm performs stride memory access, it is much
slower than 4R4W SAT algorithm. These experimental results imply that stride memory
access imposes a large penalty on the computing time.

Recall that 2R1W and 1R1W SAT algorithms are block-based algorithms, that per-
form 3n + O(%) and 2n + O(%) global memory access operations, respectively. Hence,
they are faster than 4R4W SAT algorithm, which performs approximately 8» global
memory access operations. Although 1R1W SAT algorithm performs fewer global
memory access operations than 2R1W SAT algorithm, it runs slower when 7n >6K.
The reason is that IR1W SAT algorithm has a larger latency overhead than 2R1W SAT
algorithm and the latency overhead dominates the bandwidth overhead when the size of
input is small. 1.25R1W SAT algorithm runs faster than both 2R1W and 1R1W SAT
algorithms whenever n ~5K. We have evaluated the computing time for all possi-

ble values of » to fin the best value that minimize the running time of (1 + r)R1W.

80

Table 6.2: The running time of SAT algorithm (in milliseconds) and the value of » that
minimize the running time of (1 + »)R1W SAT algorithm for matrices of sizes from

1Ke 1K to 18Ke 18K

SAT Algorithms 1K 2K 3K 4K SK 6K 7K 8K 10K 12K 14K 16K 18K
2R2W 1.47 3.28 5.71 9.53 13.6 239 27.1 47.8 90.8 163 160 234 401
4R4W 1.07 2.52 4.48 6.77 9.67 13.7 17.2 222 339 50.4 64.2 83.1 117
4RIW 11.5 229 36.4 50.1 113 104 173 252 315 597 437 742 1600
2R1IW 0.332 | 0.850 1.83 3.09 4.79 6.78 9.25 12.3 18.9 27.2 36.8 48.7 61
IRIW 0.902 1.46 243 3.65 5.05 6.81 8.71 10.9 16.2 22.6 29.7 38 53.8

1.25R1W 0.453 1.05 1.96 3.25 4.71 6.41 8.47 10.8 16.5 23 31.2 40.7 57.6
fastest (1 +) RIW | 0.365 | 0.958 1.94 3.16 4.58 6.32 8.25 10.5 15.7 22.0 29.1 37.5 53.1
r(0<r<l 0.168 | 0.174 | 0.172 | 0.159 | 0.136 | 0.123 | 0.0876 | 0.103 | 0.0963 | 0.0710 | 0.0835 | 0.0694 | 0.0725
2R2W(CPU) 259 107 241 427 670 966 1310 1690 2670 3850 5250 6760 8670
4R1W(CPU) 18.0 732 165 293 459 660 904 1160 1830 2660 3600 4590 5950

Table 6.2 also shows the values of 7 (0 < r < 1) that minimize the running time of
(1 + »)RIW SAT algorithm. From the table, we can see that (1 + »)RIW SAT algo-
rithm attain the best performance when n ~5K. Also, the value of r that gives the best
performance decreases as the size of a matrix increases. This is because the memory
bandwidth overhead of 1IR1W SAT algorithm dominates the latency overhead for larger
matrices and IR1W SAT algorithm has better performance than 2R1W algorithm. We
can conjecture that IR1W SAT algorithm could be the best if an input matrix was much
larger than 18Ke 18K.

To see a speed-up factor of SAT algorithms running on the GPU over a conventional
CPU, we have evaluated the performance of several sequential SAT algorithms on Intel
Xeon X7460 (2.66GHz). Table 6.2 shows the running time of top two sequential algo-

rithms as follows:

81

2R2W(CPU): The column-wise prefix-sum are computed in a raster scan order from
the top row to the bottom row. More specificall , a[i + 1][j] » a[i + 1][j] + a[i][j] is
executed in a raster scan order of (i, j). The row-wise prefix-sum are also computed in
a raster scan order, that is, a[i][j + 1] 7 a[i][j + 1] + a[i][/] is executed in a raster scan
order of (i, j).
4R1W(CPU): Formula (6.1) is evaluated in a raster scan order of (i, f).
From the table, we can see that 4R1W(CPU) SAT algorithm runs faster than 2R2W(CPU)
SAT algorithm, because of the memory access locality.

Also, (1 +7)R1W SAT algorithm runs more than 100 times faster than 4R1W(CPU)

SAT algorithm when #n ~5K.

6.7 Conclusion

The main contribution of this chapter is to propose SAT algorithms optimized for GPU.
We have also presented a global-memory-access-optimal parallel algorithm for com-
puting the summed area table on the asynchronous HMM. The experimental results on
GeForce GTX 780 Ti show that our best algorithm, (1 + #)R1W SAT algorithm, runs
faster than any other algorithms for an input matrix of size SKe 5K or larger. It also runs

at least 100 times faster than the best sequential algorithm running on a single CPU.

82

Chapter 7

Conclusions

7.1 Summary

In this dissertation, we have presented several algorithms which are optimal from the
theoretical point of view. These algorithms have no bank-conflic on the shared memory
and perform coalesced access to the global memory to maximize the bandwidth. We
have also evaluated several parallel algorithms on the GPU and compared performance
of algorithm.

Offline permutation is a task to move data along a permutation given beforehand.
The conventional algorithm which performs b[P(i)] » a[i] foralli (0 > i >n 1).
Since this algorithm involves many bank conflict on the shared memory and performs a
lot of stride access, this algorithm has lower performance for the shared memory and the
global memory. In chapter 4, we evaluate the several permutation algorithms and com-
pare these performances of read/write access. Our algorithms are scheduled memory
access using bipartite graph coloring to avoid the bank-conflict We have implemented

several permutation algorithms including our conflict-fre permutation algorithm on the

&3

shared memory of NVIDIA GeForce GTX-680. The experimental results for 1024 64-
bit numbers on NVIDIA GeForce GTX-680 show that the destination-designated per-
mutation algorithm takes 247.8 ns for the random permutation and 1684ns for the worst
permutation that involves the maximum bank conflicts Our conflict-fre permutation
algorithm runs in 167ns for any permutation including the random permutation and the
worst permutation, although it performs more memory accesses.

Similarly, we have presented an optimal offline permutation algorithm on the HMM
in chapter 5. Our scheduled offline permutation algorithm on the HMM performs three
step permutations, row-wise permutation, column-wise permutation, and row-wise per-
mutation, each of which is performed in DMMs of the HMM in parallel. We have also
implemented the optimal offline permutation algorithm and the conventional algorithms
on GeForce GTX-680 GPU and evaluated their performance. The experimental results
showed that our optimal offline permutation algorithm is faster than the conventional
permutation algorithm for most cases.

Finally, We have presented a global-memory-access-optimal parallel algorithm for
computing the summed area table on the asynchronous HMM. The experimental results
on GeForce GTX 780 Ti showed that our best algorithm, (1 + 7)R1W SAT algorithm,
runs faster than any other algorithms for an input matrix of size 5Ke 5K or larger. It
also runs at least 100 times faster than the best sequential algorithm running on a single

CPU.

84

References

[1] A. V. Aho, J. D. Ullman, and J. E. Hopcroft. Data Structures and Algorithms. Addison
Wesley, 1983.

[2] J. Bai, Q. Song, O. Veksler, and X. Wu. Fast dynamic programming for labeling problems
with ordering constraints. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 16-21, June 2012.

[3] K. E. Batcher. Sorting networks and their applications. In Proc. of AFIPS Spring Joint
Computer Conference, pages 307-314, 1968.

[4] N. Corporation. NVIDIA CUDA C best practice guide version 5.0. 2012.

[5] N. Corporation. NVIDIA CUDA C programming guide version 5.0. 2012.

[6] N. Corporation. NVIDIA GeForce GTX680 GPU whitepaper. 2012.

[7] F. Crow. Summed-area tables for texture mapping. In Proc. of the 11th annual conference
on Computer graphics and interactive techniques, number 207-212, 1984.

[8] M. Daga, T. Scogland, and F. Wu. Architecture-aware mapping and optimization on a
1600-core gpu. In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th Interna-
tional Conference on, pages 316—323, December 2011.

[9] M. J. Flynn. Some computer organizations and their effectiveness. /EEE Transactions on
Computers, C-21:948-960, 1972.

[10] A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press,

1988.

85

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. E. Hopcroft and R. M. Karp. An »/? algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225-231, 1973.

S. H. Hsiao and C. Y. R. Chen. Performance evaluation of circuit switched multistage
interconnection networks using a hold strategy. IEEE Transactions on Parallel and Dis-

tributed Systems, pages 632—640, September 1992.
W. W. Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann, 2011.

Y. Ito and K. Nakano. A GPU implementation of dynamic programming for the optimal
polygon triangulation. /EICE Transactions on Information and Systems, E96-D(12):2596—

2603, December 2013.

R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt. An investigation of unifie
memory access performance in cuda. In IEEE High Performance Extreme Computing

Conference (HPEC), 2014.

A. Lauritzen. “Chapter 8: Summed-area variance shadow maps” in GPU Gems 3.
Addison-Wesley, 2007.

M. Li and P. M. Vitanyi. 4n Introduction to Kolmogorov Complexity and Its Applications,

3rd Edition. Springer, 2008.

D. Man, Y. I. K. Uda, and K. Nakano. A GPU implementation of computing euclidean
distance map with efficient memory access. In Proc. of International Conference on Net-

working and Computing, pages 68—76, December 2011.

D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano. Implementations of a parallel algo-
rithm for computing euclidean distance map in multicore processors and GPUs. Interna-

tional Journal of Networking and Computing, 1(2):260-276, July 2011.
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

K. Nakano. Optimal sorting algorithms on bus-connected processor arrays. /EICE Trans-

action Fundamentals, E76-A(11):2008-2015, November 1993.

K. Nakano. Asynchronous memory machine models with barrier syncronization. In Proc.

of International Conference on Networking and Computing, pages 58—67, December 2012.

86

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

K. Nakano. An optimal parallel prefix-sum algorithm on the memory machine models for
GPUs. In Proc. of International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP, LNCS7439), pages 99—113, September 2012.

K. Nakano. Simple memory machine models for GPUs. In Proc. of International Parallel
and Distributed Processing Symposium Workshops, pages 788—797, May 2012.

K. Nakano. The hierarchical memory machine model for GPUs. In Proc. of International
Parallel and Distributed Processing Symposium Workshops, pages 591-600, May 2013.
K. Nakano. Optimal parallel algorithms for computing the sum, the prefix-sums and the
summed area table on the memory machine models. [EICE Transaction on Information
and Systems, E96-D(12), 2013. 2626-2634.

K. Nakano. Simple memory machine models for GPUs. International Journal of Parallel,
Emergent and Distributed Systems, 29(1):17-37, 2014.

D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe. GPU-efficient recursive filterin and
summed-area tables. ACM Transaction Graphics, 2011.

N. Nishida, Y. Ito, and K. Nakano. Accelerating the dynamic programming for the ma-
trix chain product on the GPU. In Proc. of International Conference on Networking and
Computing, pages 320-326, December 2011.

K. Ogawa, Y. Ito, and K. Nakano. Efficient canny edge detection using a GPU. In Proc.
of International Conference on Networking and Computing, pages 279-280, 2010.

J. D. S. Parker. Notes on shuffle/exchange-type switching networks. IEEE Transaction on
Computers, C-29(3):213-222, March 1980.

D. P. Playne and K. A. Hawick. Job parallelism using graphical processing unit indi-
vidual multi-processors and localised memory. In Proc. 19th Int. Conf. on Parallel and

Distributed Processing Techniques and Applications (PDPTA), July 2013.

87

[33] M. Poostchi, K. Palaniappan, F. Bunyak, M. Becchi, and G. Seetharaman. Efficient gpu
implementation. In ACCV’12 Proceedings of the 11th international conference on Com-
puter Vision, volume 1, pages 266278, 2012.

[34] H.S. Stone. Parallel processing with the perfect shuffle. /[EEE Transaction on Computers,
C-20(2):153-161, February 1971.

[35] A. Uchida, Y. Ito, and K. Nakano. Fast and accurate template matching using pixel rear-
rangement on the GPU. In Proc. of International Conference on Networking and Comput-
ing, pages 153-159, December 2011.

[36] R.J. Wilson. Introduction to Graph Theory, 3rd edition. Longman, 1985.

88

Acknowledgment

First and foremost, I would like to express my sincere gratitude to my adviser, Professor
Koji Nakano for his continuous encouragement, advice and support. His knowledge
and research experience are in value through the whole period of my Ph.D. study. He
is acknowledged, in particular, for his kindness, generous guidance and illuminating
discussions. As an advisor, he taught me practices and skills that will benefi my future
academic career.

I also wish to express my heartful thanks to Associate Professor Yasuaki Ito for his
invaluable help throughout the study. My heartiest thanks go to all members of computer
system laboratory. They were always kind and very keen to help.

I am grateful to all the faculty members and staffs of the Department of Information
Engineering, Hiroshima University.

Last but not least, I wish to express my thanks to my parents who has always sup-

ported me.

89

List of publications

Journals

[J-1] Akihiko Kasagi, Koji Nakano, and Yasuaki Ito, Offline Permutation Algorithms
on the Discrete Memory Machine with Performance Evaluation on the GPU, IE-
ICE Transactions on Information and Systems, Vol. E96-D, No. 12, pp. 2617—

2625, December 2013.

[J-2] Akihiko Kasagi, Koji Nakano, and Yasuaki Ito, Offline Permutation on the CUDA-
enabled GPU, IEICE Transactions on Information and Systems Vol. E97-D, No. 12,

pp. 3052-3062, December 2014.

International Conferences

[I-1] Akihiko Kasagi, Koji Nakano and Yasuaki Ito, An Implementation of Conflict
Free Offline Permutation on the GPU, Proc. of International Conference on Net-

working and Computing (ICNC), pp. 226232, December 2012.

[I-2] Akihiko Kasagi, Koji Nakano, and Yasuaki Ito, An Optimal Offline Permutation
Algorithm on the Hierarchical Memory Machine, with the GPU implementation,
Proc. of International Conference on Parallel Processing, pp. 1-10, October,

2013.

[I-3] Akihiko Kasagi, Koji Nakano, Yasuaki Ito, Parallel Algorithms for the Summed
Area Table on the Asynchronous Hierarchical Memory Machine, with GPU im-

plementations, Proc. of International Conference on Parallel Processing, pp.251—

260, Septembe, 2014.

