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Chapter 1: General Inrtoduction 

 

1.1 Environmental impacts of auto-emissions 

 

Emissions from the transport sector, from cars, airplanes, and ships, are predominant sources of 

air pollution.
1
 These emissions cause a decrease in the ozone layer, occurrence of acid rain, and 

contribute to CO2-induced global warming. In particular, the emissions from cars affect urban 

air quality and human health. Unlike combustion in power plants, combustion in vehicle engines 

is incomplete; hence, their emissions contain volatile fuel constituents, carbonaceous deposits, 

nitrogen oxides, and carbon monoxide. Carbon monoxide (CO) directly affects human health. 

Nitrogen oxide (NO) and nitrogen dioxide (NO2) form through oxidation of nitrogen from air in 

the engine cylinders at high temperature. In particular, NO participates in photochemical 

reactions with hydrocarbons to form photochemical smog in the presence of sunlight. 
2-4

 Despite 

these impacts, cars are indispensable to human society as a means of transport, and their future 

use is inevitable. Therefore, converting the harmful emissions from cars is very important for 

environmental protection. 

Regulation of vehicle emissions has inspired development of emission control technologies. The 

first emission regulation was established in the 1970s in the United States, and was 

subsequently implemented in Europe and the Japan.
5-7

 The level of regulation is becoming more 

stringent worldwide. Catalytic removal of vehicle emissions, using a three-way catalyst, has 

been in practical use since 1975 because of its long lifetime, high performance, and durability. 

Until now, alongside diesel particulate filters and oxidation catalysts for converting diesel 

emissions, the three-way catalyst has been an effective measure for reducing the impacts of 

gasoline engine emissions for more than thirty years. 
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1.2 Three-way catalysis 

 

Three-way catalysis for automotive exhaust purification is one of the most important and 

interesting processes in vehicle operation. It includes the multiple processes listed below.
5
 

 

(Oxidation) 

  CO + 1/2 O2 → CO2,      (1) 

  CxHy + (x+y/4) O2 → x CO2 + y/2 H2O    (2) 

  H2 + 1/2 O2 → H2O       (3) 

(Steam reforming) 

  CxHy + x H2O → x CO + (x+y/2) H2    (4) 

(NO reduction) 

  2CO + 2NO → 2CO2 + N2     (5) 

  CxHy + (2x+y/2) NO → x CO2 + y/2 H2O + (x+y/4) N2  (6) 

  H2 + NO → H2O + 1/2 N2      (7) 

(Water-gas shift) 

  CO + H2O → CO2 + H2     (8) 

 

These reactions, known as “three-way catalysis”, promote CO oxidation, hydrocarbon oxidation, 

and NO reduction, simultaneously. The highest conversion of the three components of the 

exhaust gas (Hydrocarbons, CO and NO) occurs at stoichiometric ratio. The stoichiometric ratio 

is given by an air to fuel ratio (A/F) of 14.7. However, when the exhaust atmosphere has excess 

oxygen (a lean atmosphere, A/F > 14.7) or excess reductant (a rich atmosphere, A/F < 14.7), 

there is a decrease in the conversion of hydrocarbons, CO and NO. Under lean conditions, NOx 

conversion decreases because of a shortage of the reductant; while under rich condition, the 

conversion of CO and hydrocarbons decrease because of a shortage of oxygen. An engine 

control unit (ECU) controls the stoichiometry of the exhaust atmosphere by monitoring the 

oxygen concentration, using O2 sensors in the front and at the bottom of the catalyst bed. The 

concentration of oxygen in the exhaust strongly affects the three-way catalytic activity. 

Composition of hydrocarbons, reaction temperature, and the space velocity of the exhaust gas 

also influence three-way catalytic activity. In practice, the reaction temperature occasionally 
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rises to 1200 K. Space velocity also varies from 60,000 h
-1

 under average engine operating 

conditions, up to 200,000 h
-1

 during acceleration of the vehicle. In addition, poisoning can affect 

catalytic activity. Combustion of lubricant oil causes P- and Ca-containing deposits to form on 

the catalyst surface. Given these factors, maintaining efficient three-way catalytic activity is 

critical. Moreover, three-way catalysis needs to be active for more than 10 years to ensure their 

protective role, even under severe reaction conditions. 
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1.3 New aspects of the three-way catalysis 

 

Reaction conditions for three-way catalysis have changed with new engine developments. The 

“idling-stop” engine control recently applied to minimize fuel consumption causes a large A/F 

fluctuation, and exposes catalysts to more oxidizing conditions. The idling-stop control works 

as follows: engine operation automatically switches off when the car stops for a short period, 

while releasing the break or engaging other power demands re-starts the engine. Such engine 

mode changes affect the reaction atmosphere. Typically, auto-exhaust flows to the catalyst 

converter continuously while cruising or accelerating. When the car stops, the exhaust flow 

returns to zero. While stopped, the oxygen sensor sometimes indicates that there is excess 

oxygen in the catalyst bed from an intake. When the engine re-starts, the exhaust again begins to 

flow over the catalyst. During this whole period, the three-way catalysts continue to convert 

exhaust gases. Since excess oxygen can deactivate the three-way catalysts through oxidation of 

the precious metals and their support materials, a precise A/F control or precise camshaft timing 

to prevent air entering the exhaust is required to suppress A/F fluctuations. However, 

management of air intake during an idling-stop remains difficult. Adding excess fuel to the 

combustion re-start after the idling-stop can reduce the oxidized precious metals, but leads to a 

decrease in fuel economy. Moreover, carbonaceous deposits associated with this measure can 

deactivate the catalyst by covering their active sites. Thus, there are considerable risks involved 

to the catalysts in the practical implementation of such measures. To attain a higher fuel 

economy, increased exposure of the catalysts to excess oxygen appears unavoidable. Hence, we 

should assume lean exhaust conditions for designing future three-way catalysts. 

To minimize A/F fluctuations, oxygen storage components (OSC) comprising 

cerium-containing oxides have been employed to store and release oxygen. Cerium oxides store 

oxygen by changing valence state from Ce
3+

 to Ce
4+

 in an oxygen-excess atmosphere. While in 

an oxygen-deficient atmosphere, they release oxygen from the matrix through reduction of Ce
4+

 

to Ce
3+

. Such processes work well for controlling auto-exhaust fluctuations, contributing to a 

stable A/F ratio. However, in practice, oxygen storage components can maintain the A/F ratio 

for only 5 to 10 s. Transient conditions induced by an idling-stop last as long as 10 to 30 s, i.e., 

they are longer than present oxygen storage components can compensate. Therefore, a new 

strategy that can cope with these longer transient excess oxygen conditions is required to protect 

the three-way catalysts. 
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1.4 Advantages of rhodium under the new catalytic conditions 

 

Precious metals (Pt, Pd and Rh) are the active elements of three-way catalysis. Characteristics 

of these metals determine the properties of the three-way catalysts. Here, we summarize these 

properties, and discuss their possibilities under the new three-way catalytic conditions. 

 

 

1.4.1 Characteristics of precious metals used in catalysis 

 

Rhodium shows excellent catalytic activity compared with the other precious metals (Pt, Pd, Ir 

and Ag), especially in NOx conversion. However, its activity decreases with exposure to excess 

oxygen.
8
 In contrast, platinum is used as an active metal for diesel oxidation catalysts because 

of its high activity for oxidation of hydrocarbons, CO, and carbon under an excess oxygen 

atmosphere. However, the activity of platinum under the stoichiometric A/F ratio at which 

present engines are operating is inferior to that of rhodium, especially for NOx conversion. 

Although platinum is effective in the oxidation of CO and hydrocarbons under lean conditions, 

platinum catalysts must be used with rhodium catalysts to achieve high NOx conversion at the 

given stoichiometric A/F ratio. 

Palladium also is highly active for CO and hydrocarbon oxidation, but its NOx conversion also 

is inferior to that of rhodium. Several reports show that palladium oxide is more active in these 

oxidation reactions than Pd metal.
9-11

 Although palladium may act as an active metal under 

oxidative conditions, its low NOx conversion is an important drawback to consider. Therefore, 

we chose to develop active rhodium catalysts in this study to cope with the oxidative 

atmosphere of the new three-way catalytic reaction conditions. 
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1.4.2 Factors affecting rhodium activity 

 

For many reactions, including those in three-way catalysis, particle size, morphology and the 

oxidation state of metals are crucial factors affecting catalytic activity.
12

 In particular, oxidative 

reaction conditions affect the oxidation state of rhodium, since the valence state of rhodium 

changes between 0 and 3 under different conditions. It is known that oxidation of rhodium 

results in a decrease in its three-way catalytic activity, as observed for Rh/Al2O3 aged under an 

oxidizing atmosphere at high temperature.
13, 14

 For CO oxidation, however, the active state of 

rhodium is the surface oxide.
15-17

 Thus, further investigation is needed to clarify the relationship 

between rhodium oxidation states and its catalytic activity. The maximum temperature of the 

catalyst bed also influences the particle size of the active metal during engine operations. The 

higher the temperature of the catalyst bed, the more agglomeration occurs for both the active 

metal and its support. This increase in particle size leads to a decrease in active surface. The 

new oxidative reaction conditions may indirectly influence particle size through release of 

exothermic heat into the catalyst bed. As excess oxygen flows to the catalyst under high 

temperature, CO oxidation may cause a rapid increase in the catalyst bed temperature on re-start 

of the engine. In such cases, the catalyst bed temperature could rise over 1173 K. Unexpected 

increases in the temperature of the catalyst bed can be avoided by adopting an engine control 

system, which stops the idling-stop, if the temperature reaches a certain value. However, this 

measure limits the operation of the idling-stop engine control and leads to a decrease in fuel 

economy. Thus, both starting material and reaction atmosphere influence the size and 

morphology of rhodium particles, while the oxidative reaction conditions affect particle growth. 

Hence, suppression of the deactivation of the rhodium catalyst is an important target for 

research in three-way catalysis. 
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1.4.3 Advantages and disadvantages of rhodium 

 

Prices of precious metals influence the development of a new three-way catalyst. Rhodium is 

known to have price risks because it is produced as a by-product of mining platinum and 

palladium in limited regions (e.g., South Africa). The amount of rhodium production is very 

small compared to these other precious metals. The automotive industry uses almost 100 % of 

the rhodium production as exhaust catalysts. Therefore, the unit price of rhodium fluctuates with 

speculative investments. Although rhodium is a key catalytic element for designing three-way 

catalyst systems with high NOx conversion, minimizing rhodium amount is desirable for a 

stable production cost. In other words, we need to enhance the catalytic activity of rhodium 

particles using a minimum amount of rhodium. 

 

 

1.5 Deactivation of rhodium 

 

Oxidation, formation of solid solution and sintering products are major factors in rhodium 

deactivation. Here, we summarize the drawbacks of using rhodium, and investigate which factor 

is most affected by the new three-way catalytic atmosphere. 

 

1.5.1 Deactivation caused by the oxidation and the solid solution formation 

 

Oxidative gas conditions accelerate the formation of a solid solution between rhodium and the 

support. Rhodium aluminate formation was widely studied by H. S. Gandhi and co-workers at 

the Ford Research Laboratory during early three-way catalyst developments. They found that 

rhodium undergoes a phase change caused by thermal aging over α-Al2O3, γ-Al2O3, and zirconia 

supports, based on measurements of CO adsorption, thermal stability and H2-NO reactivity.
18

 

Increasing the aging temperature sharply decreased NO conversion of Rh/γ-Al2O3, while NO 

conversion for Rh/α-Al2O3 moderately decreased under the increased aging temperature. The 

rhodium surface concentration for Rh/γ-Al2O3 determined by CO adsorption was far below the 

saturation value after aging, indicating that there were strong Rh and γ-Al2O3 interactions during 

high temperature aging. In contrast, although Rh/ZrO2 had lower NO conversion compared to 
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Rh/γ-Al2O3, little decrease in the activity of the NO-H2 reaction occurred during aging. H. C. 

Yao and co-workers also studied the effect of aging temperature on Rh/γ-Al2O3 interactions, 

using CO and NO chemisorptions.
19

 They pointed out that rhodium oxide diffuses into γ-Al2O3 

during aging above 873 K, leading to the formation of rhodium aluminates. A. T. Bell and 

co-workers investigated rhodium oxidation states with XPS (X-ray photoelectron 

spectroscopy).
20

 They concluded that rhodium in the support oxide matrix was detected as a 

Rh
4+ signal, with a high binding energy for Rh/γ-Al2O3 aged at 1273 K in air. Many other 

researchers also reported a strong interaction between rhodium and Al2O3.
21-27

 A similarity in 

crystal structure between rhodium oxide and the support oxide enhances rhodate formation. A. 

T. Bell and co-workers also investigated the phase stability of rhodium oxides in α-Al2O3 

supported rhodium catalysts aged in air, using high resolution transmission electron 

microscopy.
28

 RhO2 formed at 773 K oxidation, while Rh2O3 formed after an oxidation at 1273 

K. These oxide phases on the alumina support did not always fit with predicted phases from 

bulk thermodynamics. These findings demonstrate that epitaxial stabilization of phases plays an 

important role in solid solution formation. Epitaxy is most pronounced when a facet of the metal 

oxide particle fits into that of the support. Many researchers have described the formation of 

cerium-rhodates from rhodium supported on cerium-containing oxides.
29-32

 Given that rhodium 

oxide is the starting material for rhodate formation, the new oxidative conditions in the 

three-way catalytic atmosphere may also enhance such rhodate formation. Thus, a 

zirconia-based oxide appears to be a good candidate for rhodium particle support in the design 

of a new active three-way catalyst. 
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1.5.2 Sintering of rhodium particles 

 

Sintering is a process involving the increase in particle size of both precious metals and the 

support materials at a high temperature, leading to a loss of active surface area. Sintering is one 

of the main factors causing deterioration of the three-way catalysts, and has been extensively 

studied over the last decades. Three-way catalysts are often exposed to high temperature 

exhaust gas during acceleration of vehicles, with temperatures often rising above 1173 K. 

Sintering processes depend on atmospheric conditions; sintering rates under oxidative 

conditions are slower than under reductive conditions. A layer of chemisorbed oxygen atoms 

plays an important role in stabilizing small particles. Relative to other precious metals, rhodium 

is oxophilic
12

, reflecting its lower cohesive energy (or the melting point) compared with 

platinum and palladium.
33

 Under a new three-way catalytic atmosphere that incorporates 

oxidative exhaust gas, formation of surface oxides could occur through sintering. However, 

sintering of the rhodium particles during three-way catalysis is not fully understood. 
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1.6 Measures to inhibit Rh-deactivation 

 

Various measures were studied to ameliorate the disadvantages of using rhodium. We 

summarize these measures below, and discuss their applicability as measures for a new 

three-way catalytic condition. 

One measure to prevent rhodium deactivation is alteration of the support structure. R. K. Usmen 

and co-workers investigated the influence of La
3+ ions on the rhodium-support interaction.

34
 La 

incorporated into alumina prevents diffusion of rhodium due to formation of a two-dimensional 

La-Al structure under high-temperature oxidizing conditions. Both NO conversion and CO 

conversion were improved by La addition. Combination of oxides, such as CeO2 and ZrO2, with 

Al2O3 is also effective for preventing the interaction of rhodium and Al2O3.
35-37

 

Moderate metal-support interaction possibly inhibits sintering of metals. Tanabe and co-workers 

reported that Rh-O-Nd bonds formed on Nd2O3-enriched zirconia, effectively inhibiting 

rhodium sintering because these bonds acted as an anchor.
38

 The bond between rhodium oxide 

and Nd2O3 forms under oxidizing conditions. Such interaction could be due to the similarity of 

the structure between rhodium oxides and Nd2O3. This type of sintering inhibition has also been 

reported for platinum catalysts supported on Ce-containing oxides by the same group.
39-45

 They 

have pointed out that both creation of metallic Pt and management of adsorbed carbonaceous 

species on metallic Pt, are important for achieving high activity under low temperature. Their 

research has revealed that chemically induced Pt sintering and re-dispersion occur within a few 

seconds and are reversible. The re-dispersion process progresses under a cyclic atmosphere, 

with formation of Pt-O-Ce bonds under an oxidative atmosphere, and breaking of these bonds to 

liberate metallic Pt under a reductive atmosphere. The driving force for this process can be 

attributed to the formation of PtOx on the support oxide surface. Similar support effects are 

reported for palladium catalysts.
9, 10, 46

 

Another measure for sintering extent is based on LaFeO3 perovskite structure. Using X-ray 

absorption fine-structure (XAFS) analyses, Tanaka and co-workers revealed that the perovskite 

LaFe0.95Pd0.05O3 has a cyclic exchange of Pd in its crystal structure.
47-53

 In-situ XAFS 

measurements showed that this cycle functions under conditions of real automotive exhaust 

gases, namely with a self-regenerative function. Rh-containing perovskite has a similar 

self-regenerative property, exchanging between the perovskite matrices, A
3+

B
3+

O3 and 
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A
2+

B
4+

O3.
50

 

These measures depend on a cyclic condition, involving alternation in rich and lean 

atmospheres of the automotive exhaust gas. The new three-way catalytic conditions, involve an 

oxidative atmosphere that could affect these cyclic conditions, especially the re-dispersion 

processes because of their limited reductive atmospheres. Therefore, sintering inhibition, using 

metal-support interactions to achieve high conversions after exposure to oxidative conditions, is 

essential to the design of effective future three-way catalysts. 

Machida and co-workers demonstrated that aluminium phosphate (AlPO4) is another promising 

support for rhodium that inhibits rhodium sintering by interaction between rhodium and the 

support.
54, 55

 The thermal stability of highly dispersed rhodium particles was maintained by a 

non-reactive but strong anchoring effect, unlike with a Al2O3 support. 

Using other oxides, rather than alumina or Ce-containing oxides appears to be a good alternative 

for rhodium support. Burch and co-workers investigated ZrO2 as a rhodium support.
56

 They 

found that Rh/ZrO2 was more active than Rh/Al2O3 during methane oxidation. 

Temperature-programmed reduction (TPR) results show that zirconia has a weak interaction 

with rhodium particles. Rhodium supported ZrO2-containing alumina also has a high methane 

oxidation activity after aging at 773 K.
56

 TPR profiles show that the reducibility of rhodium 

oxide was improved by ZrO2 addition. Such interactions between rhodium particles and zirconia 

are worth investigating further, because of the structural flexibility of zirconia as a support 

material. The non-oxygen storage capacity of zirconia mixed oxides is also a promising factor 

for designing an active catalyst that can work under the new three-way catalytic conditions, 

involving an oxidative atmosphere. 
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1.7 A new strategy for designing effective three-way catalysts 

 

In this thesis, we introduce a new design for active three-way catalysis. To support rhodium, we 

selected zirconia mixed oxides. A zirconium oxide matrix has a weak interaction with rhodium 

particles, and can be easily chemically and structurally modified by adding other elements such 

as alkali earth or lanthanoids.
57-59

 Moreover, we assume that using a non-oxygen storage 

material is desirable for a fluctuating exhaust atmosphere, since oxygen storage and release may 

interfere with rhodium’s properties, leading to oxidation of rhodium particles. 

 

Our motives for designing an effective three-way catalyst are listed below: 

 

1) To lower the activation temperature (i.e., low light-off temperature) 

2) To maintain high conversion at high temperature 

3) To retain high catalytic activity after exposure to oxidative atmospheres 

 

The first objective of this thesis is to develop a highly active three-way catalyst for the new 

idling-stop engine condition. The second objective is to design an active three-way catalyst 

based on knowledge of its support interactions. As such, this thesis focuses on the three-way 

catalysis of rhodium particles supported by La-containing zirconium oxides. 

The first chapter (Chapter 2) shows that lanthanoid greatly affects rhodium properties. We show 

that using rhodium with a La-containing ZrO2 support effectively eliminates hydrocarbons and 

NOx from synthetic auto exhaust. Rhodium particles were able to be maintained at low 

oxidation state on ZrO2-La2O3 mixed oxide support, even after treatment with 5% O2 at 773 K. 

Chapter 3 shows that this new catalyst retains its high activity in three-way catalysis after an 

aging treatment at 1273 K, which simulates 80 000 km of mileage in real vehicles. We 

introduce a new strategy to keep rhodium active, using the steam reforming reaction that occurs 

during three-way catalysis as a “self-regenerative” function. We highlight the role of that such a 

catalyst support plays in designing effective three-way catalysts with a high tolerance to 

oxidative conditions. 

In Chapter 4, we investigate the effect of Y addition to the ZrO2-based support, especially on 

rhodium properties. Our novel highly active three-way catalyst, involving rhodium supported on 
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Y- and La- containing zirconia is proposed as a new measure for vehicles and engines with 

idling-stop engine control. Chapter 5 presents a summary and our general conclusions. 
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Chapter 2: Active three-way catalysis of rhodium particles 

under an oxidative atmosphere on a La-containing ZrO2 

support 

 

 

2.1 Introduction 

 

Controlling the oxidation state of an active metal is crucial in the design of effective three-way 

catalysts used in practical applications, because oxidant and reductant concentrations in a real 

automotive exhaust change constantly. Rhodium is a key catalyst component as an active metal 

to covert both hydrocarbons and NOx effectively.
1,2

 Under oxidative gaseous conditions, 

rhodium readily forms oxides and tends to react with the alumina support to form other phases 

at high temperature. These phase changes cause deactivation of the catalyst.
3-7

 To minimise the 

influence of fluctuations in the exhaust gas, oxygen storage components such as CeO2-ZrO2 

mixed oxides are often used as the support or as an additive element in catalyst layers. Oxygen 

vacancies associated with Ce
3+

 also provide active sites for the NO-CO reaction
8
, and additives 

promote the water-gas shift reaction.
9,10

 The oxygen storage capacity, however, can be saturated 

with large fluctuations of oxygen concentration. Furthermore, the ability of oxygen storage 

components to control the rhodium oxidation state by minimising the influence of these 

fluctuations is limited. Thus, it is desirable to develop another strategy to control the state of 

rhodium in the exhaust gas through the interaction between the support surface and the rhodium 

particles. 

In this chapter, we report that rhodium on lanthanum-containing zirconium oxide is highly 

active for the elimination of NOx, carbon monoxide and hydrocarbons (i.e. three-way catalysis) 

from a synthetic auto exhaust gas under fluctuating air-fuel ratio conditions, even though the 

support has no oxygen storage capacity. X-ray photoelectron spectroscopy (XPS), 

CO-temperature programmed reduction (TPR) and transmission electron microscopy (TEM) 

reveal that rhodium in the reduced form is stabilised on the ZrO2-La2O3 mixed oxide. This 

phenomenon leads to an improved performance in that the catalyst can immediately start 

converting auto exhaust gas after treatment with 5% oxygen for 5 min at 773 K, where this 

mimics typical exhaust gas conditions during “idling-stop” conditions as applied to engine 
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operation that save fuel by switching off the engine when the car stops. 

 

 

2.2 Experimental 

 

2.2.1 Catalyst preparation 

ZrO2-La2O3 mixed oxide was prepared by an ammonium co-precipitation method. 

ZrO(NO3)2.6H2O(60.8 g) and La(NO3)3 .6H2O (5.2 g) or Pr(NO3)3.6H2O (5.2 g) were dissolved 

in 200 g of water, followed by addition of an aqueous NH4OH solution (1.0%) to raise the pH to 

12 or more. The precipitate was dried at 423 K for 2h in air, and calcined at 773 K for 2 h in air. 

The additive content of the lanthanoid was 5.0 wt% as oxide (La2O3 or Pr6O11). The lanthanoid 

oxide/ZrO2 mixed oxides are referred to as Zr–La–O and Zr–Pr–O, respectively. Pure ZrO2 

support (BET surface area: 52.3 m
2
 g

-1
) was purchased from Kishida Chemical Co., Ltd (Osaka, 

Japan). Rhodium (0.33 wt% as rhodium metal) was loaded on these oxide supports by 

impregnation using an aqueous solution of Rh(NO3)3.H2O, followed by calcination in air at 773 

K. For evaluating the three-way catalytic reaction, the Rh-loaded ZrO2 mixed oxide catalysts 

were deposited on a cordierite honeycomb. To do this, the Rh-loaded powder catalysts were 

mixed with distilled water and colloidal zirconia (ZSL-10D, Dai-ichi Kigenso Kogyo, Osaka, 

Japan) was used for binding the catalyst powder to the cordierite honeycomb. The slurry-coated 

cordierite honeycomb was dried at 473 K for 2 h in air, then calcined at 773 K for 2 h in air. The 

amount of catalyst coated on the cordierite honeycomb was 100 g dm
−3

. The resulting products 

were termed “fresh” catalysts. 

 

2.2.2 Three-way catalytic studies 

The catalytic activity was evaluated using a fixed-bed continuous flow reactor. The Rh/ZrO2, 

Rh/Zr–La–O, or Rh/Zr–Pr–O catalysts were dispersed on a Cordierite honeycomb (loading 

amount: 100 g L
-1

). The reaction gas was a mixture of 500 ppm C3H6, 1000 ppm NO, 0.7% CO, 

0.2% H2, 0.6% O2, 10% H2O and the balance of nitrogen. Oxygen, carbon monoxide and 

hydrogen were added periodically under fluctuating conditions. One cycle of 1.0 Hz frequency 

consisted of four periods. The first period involved oxygen insertion into the static gas for 0.25 

s; the second, no insertion of added gas; the third, insertion of carbon monoxide and hydrogen 

for 0.25 s; and the last, no insertion resulting in oxygen, carbon monoxide and hydrogen 
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concentrations changing periodically between 0.43 and 1.86%, 0.7 and 2.9% and 0.20 and 

0.74% for the three gases, respectively. The flow rate of the reaction gas was 26 dm
3
 min

-1
 

corresponding to a GSHV of 60,000 h
-1

. Before measurement of the catalytic performance, the 

catalysts were pre-treated under a flow of gas mixture at 773 K for 10 min and then cooled to 

373 K under flowing nitrogen. Products were analysed continuously using a flame ionization 

detector for hydrocarbon, infrared for carbon monoxide, and chemical luminescence for NO 

contents with a Horiba MEXA-9100 evaluation system (Kyoto, Japan).  

 

2.2.3 Characterization 

For each of the characterization techniques described in sections 2.2.3.1–2.2.3.4, catalysts were 

used in powder form without the cordierite honeycomb. 

 

2.2.3.1 Transmission electron microscopy (TEM) 

TEM images were taken with a JEM-3000F microscope (JEOL Ltd., Japan). To image the 

catalyst following the catalytic reaction, the samples were treated under the reaction gas at 773 

K for 10 min followed by cooling to room temperature under a nitrogen flow prior to specimen 

preparation. 

 

2.2.3.2 X-ray photoelectron spectroscopy (XPS) 

XPS spectra were obtained with a PerkinElmer ESCA5600 by using Mg Kα radiation (400 W). 

Binding energies were referred to as C1s (284.5 eV). Before measurement of the XPS spectra, 

two types of pre-treatment were carried out. The first pre-treatment method was used to obtain 

information on rhodium during the reaction using TEM measurements, where samples were 

treated under the reaction gas at 773 K for 10 min and then cooled to room temperature under 

nitrogen flow. The other was to obtain information on rhodium under oxidative gas conditions, 

where samples were pre-treated under a flow of 5.0% O2 at 773 K for 10 min, and then cooled 

to room temperature under nitrogen flow. 

 

2.2.3.3 Temperature-programmed reduction using CO (CO-TPR) 

CO-TPR was carried out using CO (0.6%)/He as reducing gas (100 cm
3
 min

-1
) at a heating rate 

of 30 K min
-1

. Prior to TPR measurements, samples were pre-treated under a flow of 5.0% O2 at 

773 K for 10 min, and then cooled to 323 K under a flow of helium.  
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2.2.3.4 Other characterization 

Rhodium dispersions were measured by using a CO pulse chemisorption method at 300 K. The 

catalysts were pre-treated as follows: the catalysts were first heated in a flow of O2 at 573 K 

(heating rate: 30 K min
−1

) for 10 min; the catalyst temperature was then raised to 673 K, in a H2 

flow, and maintained at this temperature for 10 min prior to cooling to 300 K in a He flow. A 

thermal conductivity detector was used for measuring the concentration of CO. The dispersion 

was calculated from the CO uptake, assuming that CO adsorbed on the surface of the Rh 

particles at a stoichiometry ratio of CO:Rh = 1:1.
13

 The specific surface area of the catalysts was 

measured, using the BET one-point method, on a Shimadzu Micromeritics Flowsorb 2300. 
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2.3 Results and Discussion 

 

2.3.1 Three-way catalytic activity under fluctuaing atmosphere 

 

Table 2.1 compares the conversions of hydrocarbons, carbon monoxide and NOx at 673 K under 

static conditions and fluctuating oxygen conditions. NOx conversion for Rh/ZrO2 under static 

conditions was 95.6%, but under fluctuating oxygen conditions, the conversion decreased to 

53.2%. The decrease in NOx conversion under the fluctuating oxygen conditions are due to the 

large amount of oxygen content that mimics exhaust gas during “idling stop” engine operation. 

Similar results were obtained for Rh/Zr–Pr–O; NOx conversion decreased to 58.6% under 

fluctuating oxygen conditions, while the catalyst showed 92.3% NOx conversion under static 

conditions. Rh/Zr–La–O exhibited a 95.4% NOx conversion under static conditions, and showed 

as high as 73.2% NOx conversion under fluctuating conditions. The selectivity to N2 and CO2 

for each catalyst was almost equal to 100% at 673K indicating neither production of N2O nor 

coke formation on the catalysts. These results demonstrate that Rh/Zr–La–O converts NOx 

under fluctuating conditions much more efficiently than Rh/ZrO2 and Rh/Zr–Pr–O, even though 

the catalyst has no oxygen storage capacity unlike the cerium-containing oxides. This 

performance is notable because most of three-way catalysts show low activity for NOx 

conversion under the fluctuating oxygen. 

 

 

Table 2.1 Effect of oxygen fluctuation on conversion at 673 K  

Catalyst Conversion (%) under static 

conditions 

 Conversion (%) under fluctuating 

oxygen 

HC CO NOx HC CO NOx 

Rh/ZrO2 98.2 97.2 95.6  96.5 99.2 53.2 

Rh/Zr–La–O 98.7 97.8 95.4  98.7 98.9 73.2 

Rh/Zr–Pr–O 96.4 96.6 92.3  96.2 94.4 58.6 
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2.3.2 Particles size and rhodium dispersion 

 

TEM micrographs (Fig. 2.1) reveal that the size of the rhodium particles on Zr–La–O was 

similar to that on ZrO2. In Rh/ZrO2, rhodium particles (2–5 nm in size) were seen clearly at the 

surface of the ZrO2 primary particles (Fig. 2.1 a). In the case of Rh/Zr–La–O, rhodium particles 

(~2 nm in size) were detected (Fig. 2.1 b). BET surface areas of Rh/ZrO2, Rh/Zr–La–O and 

Rh/Zr–Pr–O were 53.2, 85.8, and 99.1 m
2
 g

-1
, respectively. Rh dispersions determined by CO 

adsorption at 300 K of Rh/ZrO2, Rh/Zr–La–O and Rh/Zr–Pr–O were 54.9 %, 87.4 % and 

83.3 %, respectively. Though Rh/Zr–La–O showed much higher activity compared to 

Rh/Zr–Pr–O under oxygen fluctuation, the two catalysts have almost the same rhodium 

dispersion. Thus, the Rh dispersion cannot explain the high performance of Rh/Zr–La–O. The 

order of the particle size, Rh dispersion and the surface areas does not coincide with that of the 

catalytic performance. 
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Fig. 2.1  TEM micrographs of fresh (a) Rh/ZrO2, (b) Rh/Zr–La–O after three-way catalytic 

reaction at 773 K for 10 min. 

Rh 

(a) 

Rh 

Rh 

(b) 
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2.3.3 Rhodium oxidation state 

 

To identify the rhodium particle state, catalysts were investigated after two types of 

pre-treatment by XPS. Rhodium 3d XPS spectra of the catalysts after treatment with the 

reaction gas at 773 K are shown in Fig. 2.2(A). The rhodium 3d5/2 peak appeared at 307.2 eV for 

Rh/ZrO2 (Fig. 2.2(A) a), and that for Rh/Zr-La-O (Fig. 2.2(A) c) is assigned to metallic rhodium. 

The rhodium 3d5/2 peak of Rh/Zr-Pr-O (Fig. 2.2(A) b) appeared at a binding energy of 307.8 eV, 

which is slightly higher than those of Rh/Zr–La–O and Rh/ZrO2 and indicates that the rhodium 

on Zr–Pr–O is partially oxidised during a three-way catalytic reaction. Rhodium is known to 

exhibit catalytic performance in reduced form for three-way catalytic reactions.
11

 Furthermore, 

XPS spectra after treatment with 5% O2 at 773 K demonstrate a clear difference in rhodium 

oxidation state depending on the supports. For Rh/ZrO2 and Rh/Zr–Pr–O, peaks at 308.7 eV 

assignable to Rh2O3 were observed. Rhodium atoms are not incorporated into the lattice of 

oxide supports, because no Rh 3d signal typical for such state was observed at around 310 eV.
7
 

In contrast, the rhodium 3d peak of Rh/Zr–La–O was observed at 307.9 eV. This indicates that 

part of the rhodium remained in reduced form, or that the rhodium adopted an oxidation state 

lower than 3 (i.e. x < 3 in Rh2Ox). In other words, rhodium is oxidised to Rh2O3 for Rh/ZrO2 and 

Rh/Zr–Pr–O after oxygen treatment, but rhodium particles dispersed on Zr-La-O were not 

readily oxidised even under a flow of 5% O2 at 773 K. 
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Fig. 2.2  Rhodium 3d XPS spectra of catalysts after pre-treatment with three-way catalytic 

reaction gas at 773 K (A) and after pre-treatment with 5% O2 at 773 K (B). 
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2.3.4 Rhodium property 

 

CO-TPR measurements were carried out to confirm quantitatively the oxidation state of the 

rhodium on the catalysts (Fig. 2.3). After oxidation pre-treatment, the amount of CO2 formed 

during TPR was evaluated using a mass spectrometer. The supports without rhodium were also 

measured and the amount of evolved carbon dioxide subtracted from the data of the 

rhodium-containing catalysts to estimate the rhodium oxidation states. The O/Rh ratio 

calculated from the TPR data was 0.14 for Rh/ZrO2. The rhodium state of Rh/ZrO2 as analysed 

by XPS after exposure to 5% O2 was trivalent (Rh2O3). Since the XPS technique analyzes only 

the metal surface with a depth of sub-nano order, the experimental results indicate that the 

rhodium particles on Rh/ZrO2 are oxidised to Rh2O3 only at the particle surface, and these 

surface Rh2O3 were easily reduced by carbon monoxide (Fig. 2.3b). Similar results have also 

been reported by Burch and Loader.
12

 They pointed out that rhodium supported on zirconium 

was easily reduced by carbon monoxide at around 473 K. 

The O/Rh ratio calculated from the CO-TPR data for Rh/Zr–Pr–O is 1.57, which is almost equal 

to the stoichiometric value. XPS results for Rh/Zr–Pr–O after exposure to 5% O2 show the 

presence of Rh2O3. These results indicate that almost all of the rhodium particles on the 

Zr–Pr–O are oxidised to Rh2O3 after the oxidation pre-treatment. In contrast, the O/Rh ratio for 

Rh/Zr–La–O was 0.79. This value is in agreement with the XPS results for Rh/Zr–La–O where 

the rhodium oxidation state remained between Rh
0
 and Rh

3+
 even after oxidation pre-treatment. 
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Fig. 2.3  CO-TPR of fresh (a)ZrO2, (b)Rh/ZrO2, (c) Zr–La–O, (d) Rh/Zr–La–O, (e) Zr–Pr–O 

and (f) Rh/Zr–Pr–O after 5% O2/He treatment for 10 min at 773 K. 
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2.4 Conclusion 

 

All results obtained in this study demonstrate that rhodium on the Zr–La–O support can be 

stabilised at a relatively lower valence state. This phenomenon brought about the high catalytic 

performance of Rh/Zr–La–O under fluctuating oxygen conditions even though the catalyst has 

no oxygen storage function. This outstanding property of rhodium on Zr–La–O is most likely a 

result of the interaction between the metal particles and the La-containing support. These results 

highlight a probable new strategy for highly active three-way catalysts by controlling the 

oxidation state of the nano-sized metal particles while taking advantage of the metal-support 

interaction. We confirmed that Rh/Zr–La–O maintained remarkable performance under oxygen 

fluctuated condition after aging in a stream of 2% O2, 10% H2O/N2 at 1273 K for 24 h. More 

detailed analysis of aged catalysts is represented in Chapter 3. 
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Chapter 3: Self-regeneration of three-way catalyst rhodium 

particles on a La-containing ZrO2 support under an oxidative 

atmosphere 

 

3.1 Introduction 

Three-way catalysis for automotive exhaust purification is one of the most important and 

interesting processes that has been extensively applied for numerous years.
1–5

 Although 

catalysts for three-way catalytic reactions have been studied to improve catalytic activity and 

durability, the development of efficient catalysts to comply with the stringent emission 

regulations, adopted worldwide, remains a challenge. 

The conditions to which the catalyst is subjected in an automotive exhaust are severe because of 

rapid temperature rises, accumulation of deposits on the catalyst layer, and fluctuation of the gas 

phase composition that depends on the state of engine operation. The most influential condition 

that impedes on the catalytic activity is atmospheric change, as instigated by changes in the 

oxidant and reductant concentrations. Recently, a new engine operation was commercialized to 

minimize fuel consumption—the engine automatically switches off when the car stops for a 

short while. This new operation creates increased transient and fluctuating conditions, including 

a high oxygen concentration that impedes on the efficiency of the three-way catalytic process. 

Rhodium is a catalytically active key component of a three-way catalyst for the effective 

conversion of CO, hydrocarbons, and NOx to H2O, CO2, and N2.
6,7

 However, under oxidative 

gaseous conditions, rhodium readily forms oxides and tends to react with the alumina support to 

form other phases at high temperatures. These phase changes cause deactivation of the 

catalyst.
8–12

 Therefore, controlling the oxidation state of the active rhodium is crucial for the 

design of highly efficient, rhodium-based, three-way catalysts for practical applications. 

To minimize the influence of fluctuations in the exhaust gas, oxygen storage components, such 

as CeO2–ZrO2 mixed oxides, are often used as the support or as additive elements as catalyst 

layers. The oxygen vacancies associated with Ce
3+

 provide active sites for the NO–CO 

reaction
13

 and the additives promote the water–gas shift reaction.
14,15

 

In Chapter 2, we have demonstrated the high catalytic activity of rhodium-supported 

La-containing ZrO2 for the elimination of NOx, CO, and hydrocarbons, via a three-way catalytic 

process, from a synthetic auto exhaust gas under fluctuating air–fuel ratio conditions in the 

absence of an oxygen storage capacity.
16

 The use of the La-containing ZrO2 support stabilized 
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the reduced form of rhodium, obtained after treatment with 5% of oxygen for 5 min at 773 K. In 

contrast, rhodium-supported ZrO2 showed a much lower activity when subjected to fluctuating 

oxygen conditions. 

This chapter examines the structure and performance of catalysts, aged under oxidative 

conditions. The oxidation state of the aged catalyst was affected by the steam reforming reaction. 

The produced hydrogen effectively promoted the self-regeneration of the oxidized catalyst. The 

findings highlight the potential of the herein developed materials as an effective support in 

three-way catalysts suited for recently developed vehicles and new engine operations. 
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3.2 Experimental 

 

3.2.1 Catalyst preparation 

The lanthanoid- (La, Ce, Pr, or Nd) containing ZrO2 mixed oxides were prepared by an 

ammonia-assisted co-precipitation method. The content of the lanthanoid oxide was 5 wt%. 

La(NO3)3·6H2O (99.9%), Ce(NO3)3·6H2O (99.9%), Pr(NO3)3·6H2O (99.9%), and 

Nd(NO3)3·6H2O (99.9%) were purchased from RARE METALLIC Co., Ltd. (Japan). In a 

typical synthesis, ZrO(NO3)2·6H2O (60.8 g, >98%, nacalai tesque) and La(NO3)3·6H2O (5.2 g) 

were first dissolved in 200 g of water, to which an aqueous NH4OH solution (1%, Wako Pure 

Chemical Industries, Ltd., Osaka, Japan) was added to raise the solution pH (≥12). The obtained 

precipitate was separated from the reaction solution, dried at 423 K for 2 h in air, and then 

calcined at 773 K for 2 h in air to produce the ZrO2–La2O3 mixed oxide. The lanthanoid 

oxide/ZrO2 mixed oxides are referred to as Zr–La–O, Zr–Ce–O, Zr–Pr–O, and Zr–Nd–O, 

respectively. The ZrO2 support (Brunauer–Emmett–Teller (BET) surface area: 52.3 m
2
 g

−1
) was 

purchased from Kishida Chemical Co., Ltd (Osaka, Japan). Rhodium (0.33 wt% as rhodium 

metal) was loaded on the oxide support by impregnation, using an aqueous solution of 

Rh(NO3)3·H2O (Dai-ichi Kigenso Kogyo, Osaka, Japan). The obtained Rh-loaded oxide 

supports were dried at 393 K for 12 h in air and subsequently calcined in air at 773 K. The 

resulting catalysts are termed as fresh catalysts. 

 

3.2.2 Three-way catalytic studies 

The activity of the prepared Rh-based catalysts was evaluated using a fixed-bed continuous flow 

reactor. For evaluation of the three-way catalytic reaction, the Rh-loaded lanthanoid-containing 

ZrO2 mixed oxides catalysts were coated on a cordierite honeycomb using the following process. 

The Rh-loaded powder catalysts were mixed with distilled water and colloidal zirconia 

(ZSL-10D, Dai-ichi Kigenso Kogyo, Osaka, Japan) that was used for binding the catalyst 

powder to the cordierite honeycomb. The mixed slurry-coated cordierite honeycomb was dried 

at 473 K for 2 h in air, then calcined at 773 K for 2 h in air. The amount of catalyst coated on 

the cordierite honeycomb was 100 g dm
−3

. The reaction gas was a mixture of 500 ppm C3H6, 
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1000 ppm NO, 0.7% CO, 0.2% H2, 0.6% O2, 10% H2O. Nitrogen was used as a diluent. The gas 

composition mimics the actual exhaust gas emitted at ~3000 rpm of engine operation. The flow 

rate of the reaction gas was 26 dm
3
 min

−1
 that corresponds to a gas hourly space velocity of 60 

000 h
−1

. Prior to catalytic performance measurements, the catalysts were pre-treated under a 

flow of the gas mixture at 773 K for 10 min and then cooled to 373 K under a flow of nitrogen. 

The three-way catalytic activity was evaluated across a range of temperatures from 373 to 773 

K (heating rate: 30 K min
−1

). The products were monitored using a flame ionization detector for 

hydrocarbon, infrared absorption for CO, and chemical luminescence for NO on a Horiba 

MEXA-9100 evaluation system (Kyoto, Japan). 

 

3.2.3 Aging procedure 

Accelerated durability tests, or aging treatments, were conducted by treating the fresh catalysts 

at 1273 K for 24 h in a 2 % O2 and 10 % H2O atmosphere (diluent: N2). This aging treatment 

simulated empirically a 80 000 km of mileage for real vehicles. 

 

3.2.4 Steam-reforming reaction 

 The reaction gas was a mixture of 660 ppm C3H6 and 2 % H2O (molar ratio of H2O/C=10). 

Nitrogen was used as a diluent. The flow rate of the steam-reforming reaction gas was 26 dm
3
 

min
-1

 that corresponds to an hourly gas space velocity of 60000 h
-1

. The activity of the 

steam-reforming reaction was measured using a fixed-bed continuous flow reactor the same as 

three-way catalytic activity measurements. Prior to the activity evaluations, the catalyst was 

pre-treated under three-way catalytic reaction gas at 773 K for 10 min and then cooled to 373 K 

under a flow of nitrogen. 

 

3.2.5 Characterization 

3.2.5.1 X-ray diffraction (XRD) 

Powder XRD patterns were measured on a RINT-2000 (Rigaku) using monochromated Cu Kα 

(λ = 1.54056 Å). Crystalline phases were identified using PDF files. The mean crystal size of 

the powders was determined using the Scherer’s equation. 

 

3.2.5.2 Transmission electron microscopy (TEM) 

TEM images were taken on a JEM-3000F microscope (JEOL Ltd., Japan). To image the catalyst 
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following the catalytic reaction, the samples were treated under the reaction gas at 773 K for 10 

min followed by cooling to room temperature under a nitrogen flow prior to specimen 

preparation. 

 

3.2.5.3 X-ray photoelectron spectroscopy (XPS) 

XPS spectra were recorded on a PerkinElmer ESCA5600, using Mg Kα (400 W, 1253.6 eV). 

Binding energies are referred as C1s (284.5 eV). Prior to XPS measurements, the samples 

underwent two types of treatments. One process involved treatment with the reaction gas at 773 

K for 10 min followed by cooling to room temperature under a nitrogen flow. The other 

treatment was conducted under a flow of 5% O2 at 773 K for 10 min followed by cooling to 

room temperature under a nitrogen flow. 

 

3.2.5.4 Temperature-programmed reduction using CO (CO-TPR) 

CO-TPR was carried out using CO (0.6%)/He as the reductant gas (100 cm
3
 min

−1
) at a heating 

rate of 30 K min
−1

. Prior to the TPR measurements, samples were pre-treated under a flow of 

5% O2 at 773 K for 10 min, and then cooled to 323 K under a flow of helium. 

 

3.2.5.5 Other characterization 

Rhodium dispersions were measured by using a CO pulse chemisorption method at 300 K. The 

catalysts were pre-treated as follows: the catalysts were first heated in a flow of O2 at 573 K 

(heating rate: 30 K min
−1

) for 10 min; the catalyst temperature was then raised to 673 K, in a H2 

flow, and maintained at this temperature for 10 min prior to cooling to 300 K in a He flow. A 

thermal conductivity detector was used for measuring the concentration of CO. The dispersion 

was calculated from the CO uptake, assuming that CO adsorbed on the surface of the Rh 

particles at a stoichiometry ratio of CO:Rh = 1:1. The specific surface area of the catalysts was 

measured, using the BET one-point method, on a Shimadzu Micromeritics Flowsorb 2300. 
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3.3 Results 

 

3.3.1 Effect of oxygen on the performance of the three-way rhodium-based catalysts 

 

As mentioned earlier, tolerance against oxidative conditions is a very important criterion for 

three-way catalysts in view of the recent developments in engine operations. The effect of 

oxidation treatments on the performance of the fresh (Figs. 3.1 and 3.2) and aged (Figs. 3.3 and 

3.4) catalysts is discussed. The oxidation treatment was conducted in 5% oxygen at 773 K for 

10 min. Both fresh and aged Rh/Zr–La–O catalysts were highly tolerant to the oxidation 

treatment when compared with the other Rh-supported catalysts. All fresh catalysts, except for 

Rh/Zr–Pr–O, showed comparable hydrocarbon conversions prior to the oxidation treatment, as 

shown in Fig. 3.1a. Contrarily, after the oxidation treatment, Rh/Zr–La–O showed the best 

activity among the catalysts tested (Fig. 3.1b). The catalytic performance decreased in the order 

of Rh/Zr–La–O > Rh/ZrO2 > Rh/Zr–Nd–O > Rh/Zr–Ce–O > Rh/Zr–Pr–O. Similar results were 

obtained for the NOx conversion, as shown in Fig. 3.2. Rh/Zr–La–O also exhibited the best 

performance after the oxidation treatment. 

In the case of the aged catalysts, the superior efficiency of Rh/Zr–La–O was more distinct: the 

catalyst showed a significantly high performance even after the oxidation treatment. Figure 3.3 

shows the conversion of hydrocarbon by the aged catalysts. The hydrocarbon conversion 

efficiency was highly dependent on the support, as shown in Fig. 3.3a. After the oxidation 

treatment, the conversion curves of all the tested catalysts shifted to higher temperatures, but the 

Rh/Zr–La–O catalyst maintained a relatively high performance in contrast to the other catalysts 

(Fig. 3.3b). 

As observed in Fig. 3.4a, in the absence of the oxidation treatment, aged Rh/Zr–Ce–O and 

Rh/Zr–Nd–O were more effective than aged Rh/Zr–La–O, towards NOx conversion. The 

conversion curves of aged Rh/Zr–Ce–O and Rh/Zr–Nd–O catalysts, which underwent the 

oxidation pre-treatment, were shifted to a much higher temperature (Fig. 3.4b). As a result, aged 

Rh/Zr–La–O exhibited a superior performance over the other catalysts. It is worth noting that 

this performance was achieved after the aging treatment that simulates 80 000 km of mileage in 

real vehicles. 
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Fig. 3.1  C3H6 conversion by the fresh three-way catalysts that underwent (a) no oxidation 

treatment and (b) an oxidation treatment. The catalysts studied are (+) Rh/ZrO2, () 

Rh/Zr–La–O, () Rh/Zr–Ce–O, () Rh/Zr–Pr–O, and (▲) Rh/Zr–Nd–O. 
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Fig. 3.2  NOx conversion by the fresh three-way catalysts that underwent (a) no oxidation 

treatment and (b) an oxidation treatment. The catalysts studied are (+) Rh/ZrO2, () 

Rh/Zr–La–O, () Rh/Zr–Ce–O, () Rh/Zr–Pr–O, and (▲) Rh/Zr–Nd–O. 
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Fig. 3.3  C3H6 conversion by the aged three-way catalysts that underwent (a) no oxidation 

treatment and (b) an oxidation treatment. The catalysts studied are (+) Rh/ZrO2, () 

Rh/Zr–La–O, () Rh/Zr–Ce–O, () Rh/Zr–Pr–O, and (▲) Rh/Zr–Nd–O. 
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Fig. 3.4  NOx conversion by the aged three-way catalysts that underwent (a) no oxidation 

treatment and (b) an oxidation treatment. The catalysts studied are (+) Rh/ZrO2, () 

Rh/Zr–La–O, () Rh/Zr–Ce–O, () Rh/Zr–Pr–O, and (▲) Rh/Zr–Nd–O. 
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3.3.2 Rhodium particle size and dispersion property 

 

Figures 3.5a, b, and c show TEM images of the fresh Rh/ZrO2, Rh/Zr–La–O, and Rh/Zr–Pr–O, 

respectively, after the three-way catalytic run at 773 K. The particle size of both Zr–La–O and 

Zr–Pr–O supports was 10–15 nm whereas the particle size of the ZrO2 support was 50–70 nm. 

BET surface areas of the fresh Rh/ZrO2, Rh/Zr–La–O, and Rh/Zr–Pr–O were 53.2, 85.8, and 

99.1 m
2 
g

−1
, respectively. These surface areas are in accordance with the particle sizes. Figure 

3.5d, e, and f show TEM images of aged Rh/ZrO2, Rh/Zr–La–O, and Rh/Zr–Pr–O, respectively. 

The growth of the oxide support particles was observed. In particular, the size of the ZrO2 

particles was 50–100 nm, which is larger than the particle size of the fresh catalyst support. 

Rhodium particles on the ZrO2 support were observed, as indicated by the arrows in Fig. 3.5. 

Both fresh Rh/Zr–La–O (Fig. 3.5b) and Rh/Zr–Pr–O (Fig. 3.5c) featured rhodium particles with 

a size of ~2 nm. Aged Rh/ZrO2 comprised larger spherical rhodium particles (diameter: 10 nm), 

as shown in Fig. 3.5d. In contrast, the rhodium particles supported on Zr–Pr–O (Fig. 3.5f) were 

considerably bigger (diameter ca. 100 nm). The measured particle size agrees with that 

estimated by Scherrer’s equation, using the Rh (111) diffraction peak. The strong contrast 

observed in the TEM image in Fig. 3.5f suggests the presence of thick rhodium particles in the 

aged Rh/Zr–Pr–O. The size of the rhodium particles, supported on Zr–La–O, was about 100 nm 

(Fig. 3.5e). Rhodium agglomerates were also noted because of the elevated aging temperature 

conditions. However, the low contrast between the rhodium particles and the oxide support 

particles suggests the presence of thin and plate-like rhodium particles. 

The dispersion of Rh in the fresh and aged Rh/ZrO2, Rh/Zr–La–O, and Rh/Zr–Pr–O samples 

was determined by CO adsorption at 300 K, and the results are presented in Table 3.1. The 

rhodium dispersion in the fresh catalysts is greater than 50%. In addition, the fresh catalysts 

exhibited higher rhodium dispersions as opposed to those featured by the aged catalysts. The 

results were consistent with the TEM analysis. The addition of La2O3 and Pr6O11 to ZrO2 

favored high rhodium dispersions and high catalyst surface areas. 

 



 50 

   

   

   

Fig. 3.5  TEM images of (a) fresh Rh/ZrO2, (b) fresh Rh/Zr–La–O, (c) fresh Rh/Zr–Pr–O, (d) 

aged Rh/ZrO2, (e) aged Rh/Zr–La–O, and aged (f) Rh/Zr–Pr–O. Aging was conducted at 1273 

K and in 2% O2 and 10% H2O/N2 for 24 h. 
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Table 3.1 Properties of catalysts 

Catalysts BET surface area/m
2
 g

−1
 Rh dispersion

a
/% 

 Fresh Aged
b
 Fresh Aged

b
 

Rh/ZrO2 52.3 16.4 54.9 6.5 

Rh/Zr–La–O 85.8 29.6 87.4 4.5 

Rh/Zr–Ce–O 38.5 16.0 60.8 2.7 

Rh/Zr–Pr–O 99.1 33.3 83.3 3.8 

Rh/Zr–Nd–O 52.1 22.0 65.3 2.9 

a
 Determined by CO chemisorption. 

b
 Aged at 1273 K for 24 h in 2% of O2 and 10% of H2O/N2 atmosphere. 
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Fig. 3.6   XRD patterns of the fresh catalysts: (a) Rh/ZrO2, (b) Rh/Zr-La-O, (c) 

Rh/Zr-Ce-O, (d) Rh/Zr-Pr-O and (e) Rh/Zr-Nd-O. 
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Fig. 3.7  XRD patterns of the aged catalysts: (a) Rh/ZrO2, (b) Rh/Zr-La-O , (c) Rh/Zr-Ce-O, 

(d) Rh/Zr-Pr-O and (e) Rh/Zr-Nd-O. Aging was conducted at 1273 K and in 2% O2 and 10% 

H2O/N2 for 24 h. 
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Table 3.2  ZrO2 and other phases detected by XRD 

  Fresh Aged
a
 

Rh/ZrO2 monoclinic  monoclinic 

Rh/Zr–La–O tetragonal monoclinic, tetragonal and 

 La2Zr2O7 

Rh/Zr–Ce–O monoclinic and tetragonal monoclinic and tetragonal 

Rh/Zr–Pr–O cubic tetragonal 

Rh/Zr–Nd–O monoclinic and tetragonal monoclinic and tetragonal 

a
 Aged at 1273 K for 24 h in 2% of O2 and 10% of H2O/N2 atmosphere. 
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3.3.3 Oxidation state of rhodium 

 

XPS spectra of the fresh catalysts after treatment with the reaction gas at 773 K for 10 min are 

shown in Fig. 3.8A. Both Rh/ZrO2 and Rh/Zr–La–O (Fig. 3.8A Curves a and b, respectively) 

featured a rhodium 3d5/2 peak at 307.2 eV that was assigned to metallic rhodium.
17

 In contrast, 

Rh/Zr–Ce–O and Rh/Zr–Pr–O (Fig. 3.8A Curves c and d, respectively) featured rhodium 3d5/2 

peaks at higher binding energies of 308.2 eV and 307.8 eV, respectively. This indicated that the 

rhodium on Zr–Ce–O and Zr–Pr–O was partially oxidized during the three-way catalytic 

reaction. The rhodium 3d5/2 peak of Rh/Zr–Nd–O (Fig. 3.8A Curve e) appeared at 308.5 eV, 

indicating that rhodium was oxidized to Rh
3+

 during the reaction. 

A distinct difference in the XPS spectra of Rh/Zr–La–O and the other catalysts was noted 

following treatment with 5% O2 at 773 K, as shown in Fig. 3.8B. The spectra of Rh/ZrO2 and 

Rh/Zr–Pr–O both featured a peak at 308.7 eV that was attributed to Rh
3+

 (Fig. 3.8B Curves a 

and d, respectively). The rhodium 3d5/2 peak of Rh/Zr–Ce–O appeared at 308.5 eV (Fig. 3.8B 

Curve c), which is comparable to the binding energy associated with the rhodium trivalent state. 

The rhodium 3d5/2 peak of Rh/Zr–Nd–O, after the oxidation treatment, was observed at 309.2 

eV (Fig. 3.8B Curve e), which is a slightly higher binding energy than that associated with Rh
3+

. 

In contrast, the rhodium 3d5/2 peak of Rh/Zr–La–O was observed at an intermediate binding 

energy of 307.9 eV (Fig. 3.8B Curve b) between those associated with Rh
0
 and Rh

3+
. These 

results demonstrate that the rhodium particles, supported on Zr–La–O, were not readily oxidized 

under the current conditions (5% O2 at 773 K). Conversely, the rhodium particles, supported on 

ZrO2, Zr–Ce–O, Zr–Pr–O, and Zr–Nd–O, were oxidized to Rh
3+ 

under the same oxidation 

treatment. 

Figure 3.9 shows the Rh 3d XPS spectra of the aged catalysts, subjected to either the reaction 

gas at 773 K for 10 min or the oxidation process. Following treatment with the reaction gas, 

Rh/Zr–La–O featured a rhodium 3d5/2 peak at 307.2 eV, corresponding to metallic Rh (Fig. 3.9A 

Curve b). Contrarily, rhodium in Rh/ZrO2 was completely oxidized to the trivalent state under 

the same conditions (Fig. 3.9A Curve a). This demonstrates that the addition of La stabilized the 

low oxidation state of rhodium during the three-way catalytic reaction. XPS spectra of both 

Rh/Zr–Ce–O and Rh/Zr–Pr–O also featured a 3d5/2 peak at a binding energy comparable to that 

associated with Rh
0
 (Fig. 3.9A Curves c and d, respectively). XPS spectrum of Rh/Zr–Nd–O 
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showed a peak at a binding energy (308.2 eV) comparable to that corresponding to Rh
3+

 (Fig. 

3.9A Curve e). However, rhodium is not incorporated into the oxide lattice because the Rh 3d 

peak corresponding to the trivalent state that is typically observed at ~310 eV is not detected. 

The spectrum of Rh/Zr–La–O, following the oxidation treatment at 773 K, displayed a weak Rh 

3d5/2 peak at ~307.5 eV (Fig. 3.9B Curve b). This observation agrees with the findings discussed 

earlier relating to the stabilization of the rhodium low oxidation state by the La-containing 

support. Both Rh/ZrO2 and Rh/Zr–Nd–O XPS spectra showed a Rh 3d peak, corresponding to 

Rh
3+

 (Fig. 3.9B Curves a and e). A slight shift to the higher binding energies was observed for 

Rh/ZrO2 and Rh/Zr–Ce–O following the oxidation treatment (Fig. 3.9B Curves a and c, 

respectively). 
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Fig. 3.8  Rh 3d spectra of the fresh catalysts, subjected to (A) the three-way catalytic 

reaction at 773 K for 10 min and (B) a 5% O2 at 773 K for 5 min. The catalysts studied are 

(a) Rh/ZrO2, (b) Rh/Zr–La–O, (c) Rh/Zr–Ce–O, (d) Rh/Zr–Pr–O, and (e) Rh/Zr–Nd–O. 
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Fig. 3.9  Rh 3d spectra of the aged catalysts, subjected to (A) the three-way catalytic 

reaction at 773 K for 10 min and (B) a 5% O2 at 773 K for 5 min. The catalysts studied are 

(a) Rh/ZrO2, (b) Rh/Zr–La–O, (c) Rh/Zr–Ce–O, (d) Rh/Zr–Pr–O, and (e) Rh/Zr–Nd–O. 
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3.3.4 Temperature-programmed reduction using CO (CO-TPR) 

 

Temperature-programmed reduction profiles of the fresh catalysts are presented in Fig. 3.10. 

Rh/Zr–Ce–O, Rh/Zr–Pr–O, and Rh/Zr–Nd–O spectra displayed broad peaks in the region of 450 

–600 K (Fig. 3.10c, d, e, respectively). The O/Rh ratios of the different prepared catalysts, 

calculated from the TPR data, are shown in Table 3.3. High O/Rh atomic ratios (1.09–1.57) 

were observed for fresh Rh/Zr–Ce–O, Rh/Zr–Pr–O, and Rh/Zr–Nd–O. These results agree with 

the XPS findings in Fig. 3.8B that showed the occurrence of oxidation of the metallic rhodium 

in these three catalysts. The TPR profile of Rh/ZrO2 (Fig. 3.10a) displayed two peaks at around 

450 K and 600 K (broad peak). XPS analysis confirmed the oxidation of Rh
0
 to Rh

3+ 
in Rh/ZrO2 

after exposure to a 5% O2 atmosphere. However, the fresh Rh/ZrO2 featured a low O/Rh ratio, 

as observed in Table 3.3. As XPS is a surface-sensitive technique, these findings indicate that, 

for Rh/ZrO2, only the surface of the rhodium particles are oxidized to Rh
3+

. Similar results have 

been reported for Rh/ZrO2 by Burch and Loader.
18

 Their results also showed that the rhodium, 

supported on ZrO2, was easily reduced by CO at ~473 K. In contrast, Rh/Zr–La–O featured a 

slightly higher O/Rh ratio of 0.70. This value agrees with the XPS analysis of Rh/Zr–La–O that 

showed that the rhodium oxidation state remained between Rh
0
 and Rh

3+
 after the oxidation 

pre-treatment at 773 K. Moreover, Rh/Zr–La–O showed a significant different profile to the 

ones obtained for the other catalysts: the reduction peak of Rh/Zr–La–O was observed at a 

higher temperature. 

Fig. 3.11 shows the CO-TPR profiles of the aged catalysts. The aged Rh/Zr–La–O (Fig. 3.11b) 

produced a broad reduction profile, similar to that of the fresh Rh/Zr–La–O (Fig. 3.10b). 

Conversely, relatively sharp peaks at ~500 K were observed for Rh/ZrO2, Rh/Zr–Ce–O, 

Rh/Zr–Pr–O, and Rh/Zr–Nd–O (Fig. 3.11a, c, d, and e, respectively). This significant difference 

between Rh/Zr–La–O and the other catalysts is discussed in Section 3.4. 
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Table 3.3 Amount of CO2 released during CO-TPR and O/Rh ratios 

Catalysts  Amount of CO2 released/µmol g
−1

 O/Rh ratio
a
/% 

 Fresh Aged
b
 Fresh Aged

b 

Rh/ZrO2 45 59 0.14 0.20 

Rh/Zr–La–O 224 121 0.70 0.42 

Rh/Zr–Ce–O 349 229 1.09 0.79 

Rh/Zr–Pr–O 502 148 1.57 0.51 

Rh/Zr–Nd–O 381 165 1.19 0.57 

a
 Determined by CO-TPR. 

b
 Aged at 1273 K for 24 h in 2% of O2 and 10% of H2O/N2 atmosphere. 
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Fig. 3.10 CO-TPR profiles of the fresh catalysts: (a) Rh/ZrO2, (b) Rh/Zr–La–O, (c) 

Rh/Zr–Ce–O, (d) Rh/Zr–Pr–O, and (e) Rh/Zr–Nd–O. 
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Fig. 3.11 CO-TPR profiles of the aged catalysts: (a) Rh/ZrO2, (b) Rh/Zr–La–O, (c) 

Rh/Zr–Ce–O, (d) Rh/Zr–Pr–O, and (e) Rh/Zr–Nd–O. 
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3.3.5 Effect of La addition in the Rh-based catalysts on the performance of the steam 
reforming reaction 

 

The steam reforming reaction is an important process in the three-way catalysis to produce 

hydrogen as a reductant to enhance NOx conversion.
19–23

 Rhodium is known to catalyze such 

process.
24

 Figure 3.12 shows the C3H6 conversion in the steam reforming reaction, as catalyzed 

by the fresh catalysts. The conversion of C3H6 started at ~550 K and reached almost 100% at 

~750 K, regardless of the catalysts employed. Hydrogen production was confirmed on a mass 

spectrometer by monitoring the signal at m/z = 2. The conversion of C3H6 for the rhodium 

catalysts, supported on the lanthanoid-containing ZrO2, was slightly higher than that for the 

rhodium catalyst, supported on ZrO2, thus indicating that the steam reforming reaction is 

promoted by the addition of a lanthanoid to ZrO2. Figure 3.13 shows the C3H6 conversion in the 

steam reforming reaction, as catalyzed by the aged catalysts. Among the aged catalysts, 

Rh/Zr–La–O exhibited the highest activity. For example, the Rh/Zr–La–O-catalyzed C3H6 

conversion was 73% at 773 K whereas that obtained from the Rh/ZrO2-catalyzed reaction was 

only 24%. The addition of La, in the aged catalysts, was highly beneficial in significantly 

promoting the steam reforming reaction. 
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Fig. 3.12  C3H6 conversion in the steam reforming reaction over the fresh Rh catalysts: (+) 

Rh/ZrO2, () Rh/Zr–La–O, () Rh/Zr–Ce–O, () Rh/Zr–Pr–O, and (▲) Rh/Zr–Nd–O. 

 

 

Fig. 3.13  C3H6 conversion in the steam reforming reaction over the aged Rh catalysts: (+) 

Rh/ZrO2, () Rh/Zr–La–O, () Rh/Zr–Ce–O, () Rh/Zr–Pr–O, and (▲) Rh/Zr–Nd–O. 
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3.3.6 Effect of the steam reforming reaction on the oxidation state of rhodium 

 

XPS measurements were conducted to understand the effect of the steam reforming reaction on 

the performance of the catalysts. XPS measurements were taken following each treatment. The 

catalysts were first treated in 5% oxygen at 773 K for 10 min and then cooled to room 

temperature under a N2 flow; the steam reforming reaction was subsequently performed over the 

oxidized catalysts at increasing temperatures of up to 550 K, followed by cooling to room 

temperature under a N2 flow. Figures 3.14 and 3.15 show the XPS spectra (Rh 3d5/2) of the fresh 

and aged catalysts (Rh/ZrO2, Rh/Zr–La–O, and Rh/Zr–Pr–O), respectively, following the 

above-mentioned treatments. XPS spectrum of Rh/ZrO2, following the oxidation treatment, 

displayed a Rh 3d5/2 peak at 308.7 eV, corresponding to Rh
3+

 (Fig. 3.14a). Following the steam 

reforming reaction at up to 550 K, the Rh 3d5/2 peak shifted to 307.5 eV, which is a slightly 

higher binding energy value than the one associated with metallic Rh, indicating that rhodium is 

reduced by the steam reforming reaction; however, some rhodium species remain in the 

oxidized form (Fig. 3.14b). In the case of the Rh/Zr–La–O catalyst, some rhodium species are 

oxidized when subjected to the oxidation treatment (Fig. 3.14c). A Rh 3d5/2 peak at 307.2 eV, 

corresponding to metallic Rh was observed, after conducting the steam reforming reaction (Fig. 

3.14d). In contrast, the Rh 3d5/2 peak, observed at 309 eV following the oxidation treatment of 

Rh/Zr–Pr–O (Fig. 3.14e) remained unchanged after the steam reforming reaction (Fig. 3.14f). 

This result shows that the reduction of the rhodium oxide on the Zr–Pr–O support does not take 

place during the steam reforming reaction. 

To re-iterate, the steam reforming reaction over the fresh Rh/Zr–La–O reduces all the 

previously oxidized rhodium species to its metallic form. In contrast, only some of the rhodium 

species in the fresh Rh/ZrO2 were reduced, and the rhodium species in the fresh Rh/Zr–Pr–O 

maintained their oxidized state following the steam reforming reaction. Similar results were 

obtained for the aged catalysts, as shown in Fig. 3.15. Likewise, the steam reforming reaction 

reduced the rhodium species in the aged Rh/Zr–La–O (Fig. 3.15d). 
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Fig. 3.14  XPS Rh 3d spectra of the fresh catalysts, subjected to different pre-treatments. (a) 

Rh/ZrO2 after oxygen pre-treatment at 773 K, (b) Rh/ZrO2 after oxygen pre-treatment at 773 

K followed by the steam reforming reaction at up to 550 K, (c) Rh/Zr–La–O after oxygen 

pre-treatment at 773 K, (d) Rh/Zr–La–O treated in the same way as (b), (e) Rh/Zr–Pr–O after 

oxygen pre-treatment at 773 K, and (f) Rh/Zr–Pr–O treated in the same way as (b). 
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Fig. 3.15  XPS Rh 3d spectra of the aged catalysts, subjected to different pre-treatments. (a) 

Rh/ZrO2 after oxygen pre-treatment at 773 K, (b) Rh/ZrO2 after oxygen pre-treatment at 773 

K followed by the steam reforming reaction at up to 550 K, (c) Rh/Zr–La–O after oxygen 

pre-treatment at 773 K, and (d) Rh/Zr–La–O treated in the same way as (b). 
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3.3.7 Effect of the steam reforming reaction on the three-way catalytic activity 

 

The influence of the steam reforming reaction on the activity of the three-way catalysis is 

investigated by the following three comparison experiments. The first study examines the 

three-way catalytic activity of the aged catalysts in the absence of any pre-treatments. The 

second study involves the aged catalysts that were pre-treated under a 5% O2 flow at 773 K for 

5 min. The third study investigates the catalytic activity of the aged catalysts that were oxidized 

under a 5% O2 flow at 773 K for 5 min followed by the steam reforming reaction at 773 K for 5 

min. The aged catalysts studied are Rh/ZrO2, Rh/Zr–La–O, and Rh/Zr–Pr–O. The resulting 

propene conversion profiles, obtained during the three-way catalysis process from 423 K to 773 

K, are presented in Fig. 3.16. Oxidation pre-treatment of Rh/ZrO2 showed a reduced activity in 

the region of 550–630 K (Fig. 3.16A Curve b) when compared with that of the non-treated 

Rh/ZrO2 (Fig. 3.16A Curve a). However, the loss in the activity of the oxidized catalyst was 

entirely recovered by subjecting the oxidized catalyst to the steam reforming reaction (Fig. 

3.16A Curve c). Oxidation pre-treatment of Rh/Zr–Pr–O also led to a decreased activity, 

however, the loss in activity was only partially recovered by the steam reforming reaction (Fig. 

3.16B). Oxidation pre-treatment on Rh/Zr–La–O induced the same effect. However, not only 

was the loss in activity completely recovered by the steam reforming reaction, but the latter 

process also enhanced the activity of the catalyst when compared with that of the non-treated 

catalyst (Fig. 3.16C). These results were consistent with the XPS results (Figs. 3.14 and 3.15). 

XPS analysis confirmed the presence of reduced rhodium species in both Rh/ZrO2 and 

Rh/Zr–La–O after the steam reforming reaction. Both catalysts showed a significant recovery in 

activity by the steam reforming reaction after the oxidation pre-treatment. Conversely, rhodium 

in Rh/Zr–Pr–O was not reduced by the steam reforming reaction, as shown in the XPS spectra 

in Fig. 3.14, hence the limited recovery in activity, as observed in Fig. 3.16B. 
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Fig. 3.16 The effect of the steam reforming reaction for the three-way catalytic C3H6 

conversion by the aged catalysts: (A) Rh/ZrO2, (B) Rh/Zr–Pr–O, and (C) Rh/Zr–La–O. For 

each catalyst, three types of pre-treatment were conducted: (a) no pre-treatment, (b) 

pre-treated with 5% oxygen at 773 K for 5 min, and (c) pre-treated with 5% oxygen at 773 K 

for 5 min followed by the steam reforming reaction at 773 K for 5 min. 
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3.3.8 Influence of La concentration on the catalytic activity 

 

To investigate the influence of La concentration on the rhodium property, a series of 

Rh/Zr-La-O catalysts having La concentration within the range of 2.0 wt% to 20.0 wt% as 

oxides were tested. The hydrocarbon (C3H6), CO and NOx light-off temperatures as a function 

of La content are shown in Fig. 3.17 and Fig. 3.18 for the fresh and aged catalysts, respectively. 

For the fresh catalysts, the three-way catalytic activity was improved as the La content increased, 

as was indicated by the decrease of light-off temperature (Fig. 3.17). After the aging treatment, 

the light-off temperature became higher indicating the deterioration of the catalyst. Although the 

addition of La to the support oxide enhanced the activity of the catalyst compared to that of 

Rh/ZrO2, the high La concentration did not give better activity (Fig. 3.18); The highest catalytic 

performance was achieved at 6.0 wt% of La in Zr–La–O mixed oxide. 

 

 

3.3.9 Influence of La concentration on the crystal structure 

 

Structural alternations caused by the La addition were studied using XRD, as shown in Figs. 

3.19 and 3.20 for the fresh and the aged catalysts, respectively. For fresh catalysts, La addition 

stabilized tetragonal and cubic zirconia structure. At high La content over 10 wt%, the cubic 

ZrO2 structure is dominant. After the aging treatment at 1273 K, cubic ZrO2 structure was not 

maintained for all La-containing ZrO2 oxides. For example, monoclinic ZrO2 phase was mainly 

observed for the samples which containing La less than 10 wt%. For the samples with more than 

10 wt% of La, La2Zr2O7 was clearly detected after the aging treatment. This has a pyrochlore 

structure that contains La and Zr with 1:1 ratio. The presence of three phases in the Zr–La–O as 

a function of La content in the aged catalysts was identified by using diffraction patterns as 

shown in Fig. 3.21. The diffraction intensity of monoclinic ZrO2 decreased monotonically as La 

content increased. On the contrary, the intensity of the tetragonal ZrO2 increased with La 

addition, reached a maximum at the La content of 6 wt%, and then decreased with further 

increase of La content. La2Zr2O7 was observed only at more than 10 wt% of La concentration. 
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Fig. 3.17  Effect of La content on the ligh-off performance of C3H6 (●), CO (□) and 

NOx (▲) for the fresh Rh/Zr-La-O. 

 

 

Fig. 3.18  Effect of La content on the ligh-off performance of C3H6 (●), CO (□) and 

NOx (▲) for the aged Rh/Zr-La-O. Aging was conducted at 1273 K in a 2 % O2, 10 % 

H2O, N2 atmosphere for 24 h. 
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Fig. 3.19  XRD patterns of the fresh catalysts: (a) Rh/ZrO2, (b) Rh/Zr–La–O, La=2.0 wt% 

(c) Rh/Zr–La–O, La=6.0 wt%, (d) Rh/Zr–La–O, La=10.0 wt% and (e) Rh/Zr–La–O, 

La=20.0 wt%. 

 



 73 

 

 

 

Fig. 3.20  XRD patterns of the aged catalysts: (a) Rh/ZrO2, (b) Rh/Zr–La–O, La=2.0 wt% 

(c) Rh/Zr–La–O, La=6.0 wt%, (d) Rh/Zr–La–O, La=10.0 wt% and (e) Rh/Zr–La–O, 

La=20.0 wt%. Aging was conducted at 1273 K in a 2 % O2, 10 % H2O, N2 atmosphere for 

24 h. 
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Fig. 3.21  Diffraction intensity of ZrO2 phases as a function of La content in the aged 

catalysts. Aging was conducted at 1273 K in a 2 % O2, 10 % H2O, N2 atmosphere for 24 h. 

Diffraction intensities were measured from the diffractions of 2 𝜃 = 28.2° for 

monoclinic-ZrO2, 2 𝜃 = 30.1° for tetragonal-ZrO2 and 2 𝜃 = 28.6° for La2Zr2O7. 
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3.3.10 Influence of La concentration on the reducibility of rhodium 

 

Temperature programmed reduction profiles of the fresh catalysts with an increasing of La 

amounts are shown in Fig. 3.22. For all fresh catalysts, rhodium supported La-containing 

catalysts exhibited a broad reduction profile starting at around 480 K, while a sharp peak was 

observed at 450 K for the fresh Rh/ZrO2. The broad reduction profile started at slightly higher 

temperature for catalysts with higher La content in the supports; reduction started at 480 K for 

Rh/Zr–La(6)–O, 520 K for Rh/Zr–La(10)–O and 530 K for Rh/Zr–La(20)–O, respectively (the 

figures in the parentheses are La contents). The amount of CO2 generated during the TPR 

process for each catalyst did not change with the increase of La amount.  

Fig. 3.23 shows the CO-TPR profiles of the aged catalysts. A sharp peak was observed at 520 K 

for both Rh/ZrO2 and Rh/Zr–La(6)–O, as shown in Fig. 3.23a and 3.23b, respectively. However, 

the La content was higher than 6 wt%, broad reduction profiles were observed. It should be 

noted that the reduction profiles had two peaks centered at 530 K and 680 K. These results 

indicated that La did affect the rhodium reducibility. 
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Fig. 3.22  CO-TPR profiles of the fresh catalysts: (a) Rh/ZrO2, (b) Rh/Zr–La–O, La=2.0 

wt% (c) Rh/Zr–La–O, La=6.0 wt%, (d) Rh/Zr–La–O, La=10.0 wt% and (e) Rh/Zr–La–O, 

La=20.0 wt%. 
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Fig. 3.23  CO-TPR profiles of the aged catalysts: (a) Rh/ZrO2, (b) Rh/Zr–La–O, La=2.0 

wt% (c) Rh/Zr–La–O, La=6.0 wt%, (d) Rh/Zr–La–O, La=10.0 wt% and (e) Rh/Zr–La–O, 

La=20.0 wt%. 
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3.3.11 Influence of aging time on the sintering of rhodium particles 

 

To investigate the sintering process of rhodium particles and phase alteration of Zr–La–O 

support, we aged the Rh/Zr–La(6)–O catalyst at 1273 K for different aging time (1 h, 2 h, 6 h, 

12 h, and 24 h). XRD patterns after these aging treatments are shown in Fig. 3.24. After aging at 

1273 K for 1 h, monoclinic-ZrO2 and tetragonal-ZrO2 were observed. Since the tetragonal ZrO2 

was the main structure of the fresh Rh/Zr–La–O catalyst, aging at 1273 K altered a part of the 

support phase from tetragonal ZrO2 to monoclinic ZrO2. At this aging time (1273 K for 1 h), 

there were no diffractions of rhodium and that of La2Zr2O7. After the aging for 24 h, however, 

the diffraction of rhodium at 2 θ = 41.07° was detected (Fig. 3.24b, pattern 5). Similarly, the 

diffraction peaks of La2Zr2O7 were observed after aging for 12 h and for 24 h (Fig. 3.24a, 

patterns 4 and 5). These results indicate that La2Zr2O7 was gradually formed on the support and 

sintering of rhodium particles could be accelerated during the period from 12 to 24 h of the 

aging treatment. Phase stability and the local structure of La could have an impact for the 

rhodium sintering processes. 
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Fig. 3.24  XRD patterns of Rh/Zr-La-O with 6 wt% of La aged at 1273 K for 1) 1 h, 2)   

2 h, 3) 6 h, 4) 12 h and 5) 24 h. Top panel (a) represents the region of 2 𝜃 = 26° to 40°, 

bottom panel (b) represents the region of 2 𝜃 = 38° to 48° in the same diffraction patterns. 
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3.4 Discussion 

 

 

We have described in Chapter 2 that the Rh/Zr–La–O three-way catalyst is highly active under 

oxygen-fluctuating reaction conditions as opposed to Rh catalysts supported on ZrO2 or 

lanthanoid-added ZrO2.
16

 In this chapter, we investigated the catalytic performance of the 

catalysts before and after an aging treatment. In particular, we focused on the oxidation states of 

Rh in the Rh-based catalysts and on the tolerance behavior of the catalysts against oxidation 

pre-treatments. 

The oxidation treatment of the fresh catalysts elicited differences between the catalysts in terms 

of the oxidation states of Rh. The latter were elucidated by XPS and the O/Rh molar ratios, as 

derived from the CO-TPR profiles (Table 3.3). Rh oxidized species (i.e., Rh
3+

) were detected by 

XPS following oxidation treatment of Rh/ZrO2. However, a relatively low O/Rh molar ratio of 

0.14 was measured, demonstrating that only the surface of the Rh particles was oxidized to Rh
3+

. 

Strong Rh
3+

 XPS signals and considerably high O/Rh ratios from ca. 1.1 to 1.6 were obtained 

for Rh/Zr–Ce–O, Rh/Zr–Pr–O, and Rh/Zr–Nd–O. In contrast, Rh/Zr–La–O featured XPS peaks 

centered between the binding energies corresponding to Rh
0
 and Rh

3+
 and a relatively low O/Rh 

ratio of 0.7. In summary, the rhodium species, supported on the different lanthanoid-containing 

ZrO2 supports, except for the Zr–La–O support, were oxidized to the high valence states, 

following the oxidation treatment. Thus, demonstrating that the Rh particles, supported on 

Zr–La–O, have a high tolerance to the oxidation treatment. The performance of the three-way 

catalyst correlated with these characteristic differences, as shown in Figs. 3.1 and 3.2. Both the 

fresh and aged Rh/Zr–La–O showed the highest performance especially after the oxidation 

treatment. 

The high tolerance of fresh Rh/Zr–La–O against oxidation is possibly because of favorable 

chemical and/or electronic interactions between the highly dispersed Rh particles (diameter: 2 

nm; dispersion >50%, as determined by CO chemisorption) and the La-modified ZrO2 support. 

The aged catalysts featured larger Rh particles, as determined by TEM and CO chemisorption. 

Rh/Zr–La–O had plate-like Rh particles of ca. 100 nm in size and Rh/Zr–Pr–O had thick Rh 

particles of ca. 100–200 nm in size, based on TEM. Accordingly, the Rh dispersion in the aged 

catalysts, as assessed by CO chemisorption, drastically decreased to ca. 3–6%. Thus, it is 
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unlikely that the oxide support influences the catalytic performance through strong interactions 

between the Rh particles and the support. 

XPS analysis of the catalysts, however, showed significant differences in the oxidation states of 

the Rh particles after the oxidation treatment. Rh, supported on lanthanoid-modified ZrO2, 

featured intermediate oxidation states except for Rh/Zr–Nd–O and Rh/ZrO2 that exhibited Rh
3+

 

signals (Fig. 3.9B). The Rh-based catalysts, following the three-way catalytic reaction, also 

possessed Rh species with different oxidation states, as determined by XPS. Rh/Zr–La–O, 

Rh/Zr–Ce–O, and Rh/Zr–Pr–O showed Rh
0
 signals whereas Rh/ZrO2 and Rh/Zr–Nd–O 

exhibited Rh
3+

 signals (Fig. 3.9A). 

The catalytic performances of the aged catalysts differed considerably especially after the 

oxidation treatment (Figs. 3.3b and 3.4b). Rh/Zr–La–O exhibited the best catalytic activity 

among all the catalysts. Additionally, the aged Rh/Zr–La–O exhibited the highest activity for 

the steam reforming reaction of C3H6. This reaction generates molecular hydrogen that reduces 

the previously oxidized Rh (Fig. 3.15), thereby regenerating the catalyst that was originally 

deactivated by the oxidation treatment (Fig. 3.16). The recovery effect by the steam reforming 

reaction was the largest for Rh/Zr–La–O (Fig. 3.16). The very broad CO-TPR profile, as 

featured by Rh/Zr–La–O only (Fig. 3.11b), suggests that the plate-like Rh particles in the aged 

Rh/Zr–La–O possess different reduction properties to those exhibited by the rhodium species in 

the other catalysts. However, this was not directly related to the superior performance of the 

catalyst. It is very likely that the molecular hydrogen, produced by the steam reforming reaction, 

reduces the oxidized Rh species to regenerate the catalytic activity of the catalyst. These results 

highlight the important role of the catalyst support for the self-regeneration of the catalyst under 

an oxidative atmosphere. 

The highest three-way catalytic activity was achieved at 6 wt% of La addition. At this La 

content, tetragonal ZrO2 phase was predominant (Fig. 3.19). On the contrary, for La content 

over the 6 wt%, La2Zr2O7 appeared. From these results, La addition around 6 wt% could be a 

criterion for stabilizing ZrO2 structure after 1273 K aging. CO-TPR results for aged catalysts 

suggested that the La amount affect the reducibility of rhodium, and La addition over the 6 wt% 

caused broad reduction profiles (Fig. 3.23). It was pointed out that oxygen vacancies in a 

lanthanoid-modified zirconia were detected by using neutron-scattering technique with a 

Rietveld analysis.
30, 31

 They concluded that oxygen-vacancies induced by atomic displacements 

were formed in the structures of La0.1Zr0.9O1.95 and Nd0.1Zr0.9O1.95. They also pointed out that 

these oxygen vacancy sites might play an important role to produce surface OH groups that are 
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active for the water-gas shift reaction. These oxygen-defects in the supports could also relate to 

the observed low oxidation state of rhodium particles under oxidative conditions. 
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3.5 Conclusions 

 

The high activity of fresh and aged Rh/Zr–La–O for three-way catalytic processes under an 

oxidative atmosphere is herein reported. Rhodium particles, supported on Zr–La–O, maintained 

their low oxidation state during the three-way catalytic reaction and even after the oxidation 

treatment unlike the rhodium particles, supported on ZrO2 and other lanthanoid-containing ZrO2. 

After aging at 1273 K, Rh/Zr–La–O exhibited superior performance for the steam reforming 

reaction. The steam reforming reaction enhanced the catalytic activity of Rh/Zr–La–O even 

though the catalyst was initially deactivated by an oxidation treatment. XPS results also 

confirmed the reduction of the rhodium species under the steam reforming reaction. The low 

valence state of rhodium, supported on Zr–La–O, was maintained by the steam reforming 

reaction, which produces molecular hydrogen that acts as a reductant. This effect was more 

pronounced in the aged Rh/Zr–La–O. These results highlight the importance of the catalyst 

support in designing three-way catalysts with high tolerance to oxidative reaction conditions.  
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Chapter 4: Highly active three-way catalysis of rhodium 

particles on a Y-stabilized La-containing ZrO2 support 

 

4.1 Introduction 

 

Three-way catalysis for automotive exhaust purification is an important process that has been 

extensively studied for several decades.
1-11

 Since emission regulations are constantly becoming 

more stringent worldwide,
12, 13

 there has been consistent focus on improving three-way catalytic 

activity and durability. The conditions to which a catalyst is subjected in automotive exhaust are 

severe: the temperatures and gas phase compositions quickly change over wide ranges. The 

most influential condition impeding catalytic activity is atmospheric changes in oxidant and 

reductant concentrations. Recently, a new type of engine operation was commercialized to 

minimize fuel consumption; the engine automatically switches off when the car stops for a short 

time. This new operation causes highly transient and fluctuating conditions, including high 

oxygen concentrations that deactivate three-way catalysts. Tolerance against oxidative 

conditions is crucial for designing a highly efficient three-way catalyst for practical 

applications.
2
 

Rhodium is a key catalytic component in three-way catalysts for the effective conversion of CO, 

hydrocarbons and NOx to H2O, CO2 and N2.
10, 14

 However, rhodium has a number of drawbacks 

under oxidative conditions.
3, 4

 In the case of alumina supports, rhodium readily reacts with the 

support to form different phases at high temperatures. Rhodium is known to form oxides with 

various oxidation states, structures and morphologies (rafts or plate-like structures) on alumina 

supports.
15, 16

 Changes in size, shape and phase induced by rhodium interactions with alumina 

supports significantly affect the activity of the catalysts.
17, 18

 Bond formation between Rh and 

the support is possible for suppressing the sintering behaviour of rhodium.
19

 Zirconia has 

weaker interactions with rhodium than alumina does, and zirconia-modified alumina was 

reported to be useful for controlling the activity of rhodium.
20

 

Previously, we have demonstrated the high catalytic activity of rhodium supported on 

La-containing ZrO2 (Rh/Zr–La–O) for the elimination of NOx, CO and hydrocarbons, through a 

three-way catalytic process, from a synthetic automotive exhaust gas.
21, 22

 The catalyst showed 

better performance than other catalysts, especially after oxidative pre-treatment, though the 
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catalyst did not contain oxygen-storage components such as CeO2. The Rh/Zr–La–O catalyst 

showed high activity in the steam reforming reaction, even after an aging treatment that 

mimicked a mileage of 80 000 km for real vehicles. Exposure to steam reforming reaction 

conditions reduced the oxidized Rh on the Zr–La–O support, refreshing the deactivated catalyst. 

The state of rhodium was not only affected by interactions between the metal particles and the 

support, but also by the steam reforming reaction occurring over the catalyst. After the aging 

treatment, the Rh/Zr–La–O catalyst exhibited rhodium sintering and phase separation of the 

support, indicating that further work is required to develop more efficient catalysts. 

In this chapter, we prepared a novel, highly active three-way catalyst, Rh supported on yttrium- 

and lanthanum-added zirconia (Rh/Zr–Y–La–O). We also investigated the effect of yttrium 

addition to ZrO2-based supports in detail. Yttrium is a typical stabilizing element for zirconia.
23

 

The redox properties and dispersion of rhodium, and the crystal structure of the support were 

significantly affected by the addition of Y. The importance of the steam reforming reaction was 

also demonstrated for the yttrium-added catalyst Rh/Zr–Y–La–O. These investigations aimed to 

identify the reason for the excellent three-way catalytic activity of Rh/Zr–Y–La–O. 
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4.2 Experimental 

 

4.2.1 Catalyst preparation 

The yttrium-stabilized ZrO2 was prepared using an ammonia-assisted co-precipitation method 

where zirconium nitrate ZrO(NO3)2·6H2O (60.8 g, > 98 %, Nacalai Tesque) and yttrium nitrate 

Y(NO3)3·6H2O (8.7 g) were dissolved in 200 g of water and an aqueous NH4OH solution (1 %, 

Wako Pure Chemical Industries, Ltd., Osaka, Japan) was added to raise the pH (≥ 12). The 

precipitate was filtered, dried at 423 K for 2 h in air, and then calcined at 773 K for 2 h in air to 

produce the ZrO2–Y2O3 mixed oxide. The ZrO2–La2O3 and Y-stabilized ZrO2–La2O3 mixed 

oxides were also prepared using the ammonia-assisted co-precipitation method from 

Y(NO3)3·6H2O and La(NO3)3·6H2O (Rare Metallic Co., Ltd., Tokyo, Japan). For the preparation 

of Y-stabilized ZrO2–La2O3, lanthanum nitrate, yttrium nitrate and zirconium nitrate were 

dissolved in water before adding an aqueous NH4OH solution. The concentrations of Y and La 

were 10 and 5 wt % as oxides, respectively. The Y, La and Y–La mixed oxides were designated 

as Zr–Y–O, Zr–La–O and Zr–Y–La–O, respectively. The ZrO2 support 

(Brunauer–Emmett–Teller (BET), surface area: 52.3 m
2
 g

−1
) was purchased from Kishida 

Chemical Co., Ltd. (Osaka, Japan). Rhodium (0.33 wt % as rhodium metal) was loaded onto the 

oxide support by impregnation, using an aqueous solution of Rh(NO3)3·H2O (Dai-ichi Kigenso 

Kogyo, Osaka, Japan). The obtained Rh-loaded oxide supports were dried at 393 K for 12 h in 

air and subsequently calcined in air at 773 K. For evaluating the three-way catalytic reaction, 

the Rh-loaded ZrO2 mixed oxide catalysts were deposited on a cordierite honeycomb. To do this, 

the Rh-loaded powder catalysts were mixed with distilled water and colloidal zirconia 

(ZSL-10D, Dai-ichi Kigenso Kogyo, Osaka, Japan) was used for binding the catalyst powder to 

the cordierite honeycomb. The slurry-coated cordierite honeycomb was dried at 473 K for 2 h in 

air, then calcined at 773 K for 2 h in air. The amount of catalyst coated on the cordierite 

honeycomb was 100 g dm
−3

. The resulting products were termed “fresh” catalysts. 
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4.2.2 Three-way catalytic reaction 

The activity of the Rh-based catalysts was evaluated using a fixed-bed continuous flow reactor. 

The reaction gas was a mixture of 500 ppm C3H6, 1000 ppm NO, 0.7 % CO, 0.2 % H2, 0.6 % O2, 

13.6 % CO2 and 10 % H2O. Nitrogen was used as a diluent. The gas composition mimicked the 

actual exhaust gas emitted at ≈3000 rpm engine operation. The flow rate of the reaction gas was 

26 dm
3
 min

−1
, corresponding to an hourly gas space velocity of 60000 h

−1
. Prior to catalytic 

performance measurements, the catalysts were pre-treated under a flow of the gas mixture at 

773 K for 10 min and then cooled to 373 K under a flow of nitrogen. The three-way catalytic 

activity was evaluated over a range of temperatures from 373–773 K (at a heating rate of 30 K 

min
−1

). The products were monitored using a flame ionization detector for hydrocarbons, 

infrared absorption for CO and chemical luminescence for NO using a Horiba MEXA-9100 

system (Kyoto, Japan). 

 

4.2.3 Aging procedure 

Accelerated durability tests, or aging treatments, were conducted by treating the fresh catalysts 

at 1273 K for 24 h in a 2 % O2 and 10 % H2O atmosphere (diluent: N2). This aging treatment 

simulated empirically a 80 000 km of mileage for real vehicles. 

 

4.2.4 Steam-reforming reaction 

 The reaction gas was a mixture of 660 ppm C3H6 and 2 % H2O (molar ratio of H2O/C=10). 

Nitrogen was used as a diluent. The flow rate of the steam-reforming reaction gas was 26 dm
3
 

min
-1

 that corresponds to an hourly gas space velocity of 60000 h
-1

. The activity of the 

steam-reforming reaction was measured using a fixed-bed continuous flow reactor the same as 

three-way catalytic activity measurements. Prior to the activity evaluations, the catalyst was 

pre-treated under three-way catalytic reaction gas at 773 K for 10 min and then cooled to 373 K 

under a flow of nitrogen. 
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4.2.5 Characterization 

 

For each of the characterization techniques described in sections 4.2.5.1–4.2.5.5, catalysts were 

used in powder form without the cordierite honeycomb. 

 

4.2.5.1 X-ray diffraction (XRD) 

Powder XRD patterns were measured using a RINT-2000 (Rigaku Corporation, Tokyo, Japan) 

with monochromated Cu Kα radiation (λ = 1.54056 Å). Crystalline phases were identified using 

PDF files. The mean Rh crystal size was determined from the Rh (111) diffraction peak at 2θ = 

40.1° using Scherrer’s equation. 

 

4.2.5.2 Transmission electron microscopy (TEM) 

TEM images were taken with a JEM-3000F microscope (JEOL Ltd., Tokyo, Japan). To image 

the catalyst after the catalytic reaction, the samples were treated under the reaction gas at 773 K 

for 10 min followed by cooling to room temperature under a nitrogen flow prior to specimen 

preparation. The approximate range of Rh particle sizes were evaluated from TEM images by 

counting about 10 to 20 particles from each sample. 

 

4.2.5.3 Temperature-programmed reduction using CO (CO-TPR) 

CO-TPR was carried out using CO (0.6 %) / He as the reductant gas (100 cm
3
 min

−1
) at a 

heating rate of 30 K min
−1

. Prior to the TPR measurements, samples were pre-treated under a 

flow of 5 % O2 at 773 K for 10 min and then cooled to 323 K under a flow of He. The O/Rh 

ratios were calculated from the amount of CO2 formed during TPR. The supports without 

rhodium were also measured and the amount of evolved carbon dioxide was subtracted from the 

data of the rhodium-containing catalysts to estimate the rhodium oxidation state using the 

following equation 1. 

 

3CO + Rh2O3 → 3CO2 + 2Rh   (1) 
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4.2.5.4 In situ Fourier transform infrared (FT-IR) spectra 

FT-IR spectra were recorded using a BioRad FTS-155 equipped with a diffuse reflectance in 

situ cell (ST Japan Inc., Tokyo, Japan). To clarify the state of rhodium after oxidation, spectra 

of adsorbed NO were measured. The sample was first pre-treated in 5 % O2 in He at 773 K for 

10 min and then cooled to 373 K under a flow of He. First, background spectra were taken at 

increasing temperatures from 373–773 K, with steps of 100 K in a flow of He. Then, the sample 

was cooled to 373 K under a flow of He and then the flow gas was switched to NO (1000 ppm) / 

He for each measurement. Spectra were recorded with a resolution of 4 cm
-1

 at each increasing 

temperature from 373–773 K, with 100 K steps after exposure for 5 min to the gas flow 

containing the probed molecules for each measurement. 

 

4.2.5.5 Other characterization techniques 

Rhodium dispersion was measured using the CO pulse chemisorption method at 300 K. The 

catalysts were pre-treated as follows: the catalysts were first heated (heating rate of 30 K min
−1

) 

in a flow of O2 to 573 K and the temperature was held for 10 min. The catalyst temperature was 

then increased to 673 K in a H2 flow and the temperature was maintained for 10 min, followed 

by cooling to 300 K in a He flow. Pulses of known amounts of CO were injected into the 

flowing gas and the CO concentrations at the outlet of the reactor were monitored using a 

thermal conductivity detector. The dispersion was calculated from the CO uptake, assuming that 

CO adsorbed to the surface of the Rh particles with a 1:1 stoichiometry for CO:surface Rh.
30

 

The rhodium particle size was estimated using the dispersion value from Equation 2, 
31 

 

L = f × M / (ρ×NA×π×r
2
×D)    (2) 

 

where L is the particle size (nm), f is the shape factor (spherical = 6), M is the atomic weight 

(103), ρ is the density (12.4 g cm
-3

), NA is Avogadro’s number (6.02 × 10
23

 mol
–1

), r is the 

atomic radius (1.34 × 10
-10

 m) and D is the dispersion. The specific surface areas of the catalysts 

were measured by the BET one-point method using a Shimadzu Micrometrics Flowsorb 2300, 

SHIMADZU Corporation, Kyoto, Japan). 
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4.3 Results 

 

4.3.1 Crystal phases of supports 

 

Structural alterations caused by the introduction of Y and La into ZrO2 were studied using XRD, 

as shown in Fig. 4.1. For fresh Rh/ZrO2, only the monoclinic ZrO2 phase was detected (Fig. 

4.1a). The addition of either Y or La to ZrO2 stabilized the high temperature ZrO2 phases; the 

cubic ZrO2 phase was formed for Rh/Zr–Y–O (Fig. 4.1c), and the tetragonal ZrO2 phase was 

formed for Rh/Zr–La–O (Fig. 4.1e). When both Y and La were added to ZrO2, the structure 

became cubic ZrO2. Regardless of the presence of La, addition of Y into zirconia caused the 

formation of the cubic phase (Fig. 4.1c and g). No diffraction peak of Rh was detectable for the 

fresh catalysts. 

After the aging treatment at 1273 K, the structure of Rh/ZrO2 did not change from monoclinic 

ZrO2 (Fig. 4.1b). For Rh/Zr–La–O after the aging treatment, the tetragonal ZrO2 transformed 

into three phases. One was tetragonal ZrO2 as the major phase, and the others were monoclinic 

ZrO2 and La2Zr2O7 as minor phases (Fig. 4.1f). La2Zr2O7 had a pyrochlore structure with 1:1 

molar ratio of La and Zr. In contrast, as shown in Fig. 4.1d and h, the cubic ZrO2 phase was 

maintained, even after the aging treatment, for Rh/Zr–Y–O and Rh/Zr–Y–La–O. The 

introduction of Y to ZrO2 resulted in the formation of the cubic ZrO2 phase for both the fresh 

and aged catalyst. Rhodium diffraction peaks for the aged catalysts were very weak but Rh 111 

peak was detectable for some aged catalysts (Fig. 4.2). 
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Fig. 4.1  XRD patterns of (a) fresh Rh/ZrO2, (b) aged Rh/ZrO2, (c) fresh Rh/Zr–Y–O, (d) 

aged Rh/Zr–Y–O, (e) fresh Rh/Zr–La–O, (f) aged Rh/Zr–La–O, (g) fresh Rh/Zr–Y–La–O 

and (h) aged Rh/Zr–Y–La–O. Aging was conducted at 1273 K in a 2 % O2, 10 % H2O, N2 

atmosphere for 24 h. 
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Fig. 4.2  XRD patterns for the aged catalysts of Rh111 region at (a) Rh/ZrO2, (b) 

Rh/Zr–Y–O, (c) Rh/Zr–La–O and (d) Rh/Zr–Y–La–O. Aging was conducted at 1273 K in a 

2 % O2, 10 % H2O, N2 atmosphere for 24 h. 
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4.3.2 Effects of oxidation treatment on the performance of the three-way rhodium-based 
catalysts 

 

Because of recently developed engine operations, catalytic activity after exposure to oxidative 

conditions is an important criterion for applications in real vehicles. We have previously 

reported that Rh/Zr–La–O showed higher three-way catalytic activity compared with Rh/ZrO2 

and rhodium supported on other lanthanide (Ce, Pr or Nd)-added ZrO2.
21, 22

 In this study, the 

catalytic activities were evaluated for Y-stabilized ZrO2 and for Y-stabilized Zr–La–O using 

two different pre-treatments. The first was a treatment under the reaction gas (simulated 

automotive exhaust) and the second was under oxidative conditions. For the fresh catalysts, 

their activities after treatment under the reaction gas and after the oxidation pre-treatment are 

shown in Figs. 4.3 and 4.4, respectively. Figures 4.7 and 4.8 present the activities of the aged 

catalysts after the two different pre-treatments. In each figure, the top panel shows hydrocarbon 

conversion and the bottom panel shows NOx conversion. Corresponding CO conversions are 

also provided as Figs. 4.5 and 4.6 for the fresh catalysts, and Figs. 4.9 and 4.10 for the aged 

catalysts. 

First, the effects of Y addition on the activity of the fresh catalysts were studied. After the 

reaction gas pre-treatment, the activity of Rh/Zr–Y–O decreased compared with Rh/ZrO2 for 

both hydrocarbon conversion (Fig. 4.3a) and NOx conversion (Fig. 4.3b). For Y addition to the 

Rh/Zr–La–O, hydrocarbon and NOx conversion were both enhanced, as shown in Fig. 4.3a and 

4.3b, respectively. This indicates that Rh/Zr–Y–La–O had higher catalytic activity than the 

previously reported Rh/Zr–La–O catalyst. 

The effects of Y addition on the activities of the fresh catalysts that underwent the oxidative 

pre-treatment were also investigated. Figure 4 presents the results of the activity tests. After the 

oxidative pre-treatment, Rh/Zr–Y–O showed almost the same hydrocarbon conversion activity 

as Rh/ZrO2 (Fig. 4.4a) and the activity of Rh/Zr–Y–La–O was comparable to that of 

Rh/Zr–La–O. For NOx conversion, Y addition slightly enhanced the activity for 

Rh/Zr–Y–La–O and Rh/Zr–Y–O compared with the catalyst without Y (Fig. 4.4b). 

Rh/Zr–Y–La–O had the best catalytic activity after the oxidative pre-treatment. 

The NO conversion started at 500K, which was lower temperature compared to the C3H6 

conversion (520 K). The conversion of CO started at almost the same temperature as NO 

conversion (Figs. 4.5 and 4.6). NO must have reacted with CO and/or H2 in the reaction gas 
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before C3H6 started to convert. 

The effects of Y addition on the activities of the aged catalysts were also studied, as shown in 

Fig. 4.7. After the reaction gas pre-treatment, Rh/Zr–Y–O had higher hydrocarbon and NOx 

conversion than Rh/ZrO2. Also, Rh/Zr–Y–La–O had higher hydrocarbon and NOx conversion 

than Rh/Zr–La–O (Fig. 4.7a and b). Among the tested catalysts, Rh/Zr–Y–La–O had the highest 

activity for hydrocarbon and NOx conversions. After the oxidative pre-treatment of the aged 

catalysts (Fig. 4.8), the activity of Rh/Zr–Y–La–O was comparable to, or slightly lower than, 

that of Rh/Zr–La–O. Rh/Zr–Y–O also had activities similar to Rh/Zr–Y–La–O. Rh/ZrO2 had 

much lower activity than the other catalysts under these conditions. 

We measured the inlet and outlet temperatures of the catalyst bed at the working state of 

three-way catalysis by using thermocouples. When the conversion of C3H6 and NO started in 

three-way catalytic reaction at around 520K, the outlet temperature showed higher values than 

the inlet temperature (Fig. 4.11), indicating the occurrence of exothermic reaction (e.g. 

hydrocarbon oxidation). When the temperature raised up to 673 K, however, the outlet 

temperature became lower than the inlet temperature. This phenomenon demonstrated that the 

endothermic reaction such as steam-reforming reaction was taking place during the three-way 

catalysis. 

 



 98 

 

 

 

 

 

Fig. 4.3 Conversion of the fresh three-way catalysts that underwent the reaction gas 

pre-treatment for (a) C3H6 conversion and (b) NO conversion. The catalysts studied were (+) 

Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O, and () Rh/Zr–Y–La–O. 
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Fig. 4.4  Conversion of the fresh three-way catalysts that underwent the oxidation treatment 

for (a) C3H6 conversion and (b) NO conversion. The catalysts studied were (+) Rh/ZrO2, () 

Rh/Zr–Y–O, () Rh/Zr–La–O, and () Rh/Zr–Y–La–O. 
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Fig. 4.5  CO conversion of the fresh three-way catalysts that underwent the reaction gas 

pre-treatment. The catalysts studied were (+) Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O, 

and () Rh/Zr–Y–La–O. 

 

Fig. 4.6  CO conversion of the fresh three-way catalysts that underwent the oxidation 

treatment. The catalysts studied were (+) Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O, and 

() Rh/Zr–Y–La–O. 
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Fig. 4.7  Conversion by the aged three-way catalysts that underwent the reaction gas 

pre-treatment for (a) C3H6 conversion and (b) NO conversion. The catalysts studied were (+) 

Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O, and () Rh/Zr–Y–La–O. 
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Fig. 4.8  Conversion by the aged three-way catalysts that underwent the oxidation treatment 

for (a) C3H6 conversion and (b) NO conversion. The catalysts studied were (+) Rh/ZrO2, () 

Rh/Zr–Y–O, () Rh/Zr–La–O, and () Rh/Zr–Y–La–O. 

 



 103 

 

 

Fig. 4.9  CO conversion by the aged three-way catalysts that underwent the reaction gas 

pre-treatment. The catalysts studied were (+) Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O, 

and () Rh/Zr–Y–La–O. 

 

Fig. 4.10  CO conversion by the aged three-way catalysts that underwent the oxidation 

treatment. The catalysts studied were (+) Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O, and 

() Rh/Zr–Y–La–O. 
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Fig. 4.11  Catalyst in-let and out-let temperature during the three-way catalytic activity 

measurement of aged Rh/Zr–Y–La–O. Aging was conducted at 1273 K and in 2 % O2 and 

10 % H2O/N2 for 24 h. 
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4.3.3 Rhodium particle sizes and dispersion on different supports 

 

Figure 4.12 presents TEM images of the catalysts before and after the aging treatment. Figure 

4.12a–d are images of fresh catalysts after the three-way catalytic run at 773 K for Rh/ZrO2, 

Rh/Zr–Y–O, Rh/Zr–La–O and Rh/Zr–Y–La–O, respectively. Figure 4.12e–h are images of the 

aged catalysts presented in the same order as Fig. 4.12a–d. The particle size range of the support 

was 10–20 nm for Zr–Y–O (Fig. 4.12b), while for ZrO2 the particle size range was 50–70 nm 

(Fig. 4.12a). Particle sizes for the Zr–La–O and Zr–Y–La–O supports both ranged from 10–20 

nm (Fig. 4.12c and d). For the fresh catalysts, the support oxides formed smaller particles when 

La or Y was added. After the aging treatment, the particle size ranges for ZrO2 and Zr–Y–O 

were 50–100 nm, indicating that the support particles of fresh catalysts sintered to form larger 

ones during the aging treatment (Fig. 4.12e and f). Conversely, the particle size ranges for 

Zr–La–O and Zr–Y–La–O were 10–20 nm, even after the aging treatment, implying that the 

La-containing supports do not readily sinter. The surface areas of these catalysts were in 

agreement with their particle sizes (Table 4.1). The BET surface areas of Rh/ZrO2 and 

Rh/Zr–Y–O, in which support particle growth was observed, were 16.4 and 21.4 m
2
g

-1
, 

respectively. Rh/Zr–La–O and Rh/Zr–Y–La–O, which had smaller particle sizes, had higher 

surface areas of 29.6 and 51.2 m
2
g

-1
, respectively. The largest surface area was measured for 

Rh/Zr–Y–La–O, and the decrease in the surface area of this catalyst from the aging treatment 

was small (from 75.3 m
2
g

-1
 to 51.2 m

2
g

-1
) compared with the other catalysts. 

The effect of Y addition on rhodium particle size is even more important. The rhodium particle 

size was approximately 1–2 nm for the fresh catalysts prepared in this study, as shown in Fig. 

4.12a–d (the arrows indicate Rh particles). Table 4.1 lists the dispersion of Rh estimated by CO 

adsorption at 300 K for both the fresh and the aged catalysts. Rhodium dispersion in the fresh 

catalysts was greater than 50 % and Rh particle sizes estimated from the dispersion were 

approximately 2 nm, being consistent with the TEM observations. Rhodium particle sizes did 

not appear to be affected by the addition of Y. The presence of rhodium was confirmed from 

energy-dispersive x-ray (EDX) analysis for all the fresh and aged catalysts. For aged Rh/ZrO2, 

spherical rhodium particles with diameters of approximately 10 nm were observed (Fig. 4.12e). 

Aged Rh/Zr–Y–O contained larger rhodium particles (diameter = 70 nm), as shown in Fig. 4.12f 

(EDX data are given as Fig. 4.13). For aged Rh/Zr–La–O, large rhodium particles (30–100 nm, 
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most likely thin, plate-like particles based on their pale contrasts) were observed (Fig. 4.12g, 

EDX data are given as Fig. 4.14). No nano-sized rhodium particles were detected in Rh/Zr–Y–O 

and Rh/Zr–La–O. In the TEM image of Rh/Zr–Y–La–O (Fig. 4.12h), a number of small 

rhodium particles (approximately 5 nm in size) were observed, while the particle size estimated 

by Scherrer’s equation using the Rh 111 diffraction peak (Fig. 4.2) was approximately 80 nm, 

suggesting that larger particles were present in areas outside that covered in the TEM analysis. 

Although the Rh dispersion for all of the aged catalysts was quite low (below 10 %), aged 

Rh/Zr–Y–La–O exhibited the highest dispersion among the aged catalysts tested in this study. 

The rhodium particle sizes were calculated from the dispersion assuming that the particles were 

spherical. The values were 22.6, 27.7, 32.6 and 15.8 nm for Rh/ZrO2, Rh/Zr–Y–O, Rh/Zr–La–O 

and Rh/Zr–Y–La–O, respectively. The smaller mean rhodium size for Rh/Zr–Y–La–O was 

consistent with the TEM observations. 
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Fig. 4.12 TEM images of (a) fresh Rh/ZrO2, (b) fresh Rh/Zr–Y–O, (c) fresh 

Rh/Zr–La–O, (d) fresh Rh/Zr–Y–La–O, (e) aged Rh/ZrO2, (f) aged Rh/Zr–Y–O, (g) 

aged Rh/Zr–La–O, and (h) aged Rh/Zr–Y–La–O. Aging was conducted at 1273 K 

and in 2 % O2 and 10 % H2O/N2 for 24 h. 
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Fig. 4.13  EDX mapping of aged Rh/Zr–Y–O. Aging was conducted at 1273 K and in 2 % 

O2 and 10 % H2O/N2 for 24 h. 
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EDX spectra of aged Rh/Zr-La-O 

 

Fig. 4.14  EDX mapping and EDX spectrum of aged Rh/Zr–La–O. Aging was conducted at 

1273 K and in 2 % O2 and 10 % H2O/N2 for 24 h. 
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Table 4.1 Measured properties of the catalysts 

Catalysts BET surface area / m
2
 g

−1
 Rh dispersion

a
 (%) 

 Fresh Aged
b
 Fresh Aged

b
 

Rh/ZrO2 52.3 16.4 54.9 6.5 

Rh/Zr–Y–O 57.3 21.4 68.3 5.3 

Rh/Zr–La–O 85.8 29.6 87.4 4.5 

Rh/Zr–Y–La–O 75.3 51.2 85.2 9.3 

a
 Determined by CO chemisorption. 

b
 Aged at 1273 K for 24 h in 2 % O2 and 10 % H2O/N2 atmosphere. 
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4.3.4 Temperature-programmed reduction by CO (CO-TPR) 

 

Temperature-programmed reduction profiles of the fresh catalysts are presented in Fig. 4.15. 

The O/Rh atomic ratios calculated from the TPR data are shown in Table 4.2. A higher O/Rh 

ratio (1.48) was measured for fresh Rh/Zr–Y–O compared with Rh/ZrO2 (0.14). In our previous 

study, the oxidation state of rhodium on ZrO2 analyzed by X-ray photoelectron spectroscopy 

(XPS) was trivalent after being oxidized by 5 % O2. The difference between the low O/Rh ratio 

for Rh/ZrO2 and the presence of trivalent rhodium from XPS results indicated that only the 

surface of rhodium particles were oxidized to Rh
3+

.
22

 Conversely, the O/Rh ratio was 1.48 for 

Rh/Zr–Y–O, indicating that all the rhodium particles were almost fully oxidized. Similarly, the 

amount of CO2 generated during the TPR process increased by the addition of Y to Rh/Zr–La–O 

(Fig. 4.15c and d). A larger O/Rh ratio of 1.20 was measured for Rh/Zr–Y–La–O, while 

Rh/Zr–La–O had a lower O/Rh ratio of 0.70. The TPR profile also changed by Y addition to 

Rh/Zr–La–O. It should be noted that Rh/Zr–Y–La–O was more readily reduced at low 

temperature than Rh/Zr–La–O (Fig. 4.15c and d). These results indicate, for the fresh catalysts, 

that Y addition caused Rh to be more readily oxidized and the reducibility of Rh was also 

enhanced by the addition of Y to the La-containing catalyst. Figure 4.16 presents the CO-TPR 

profiles of the aged catalysts. A sharp peak was observed at 520 K for Rh/ZrO2 and Rh/Zr–Y–O, 

as shown in Fig. 4.16a and b, respectively. Conversely, the aged Rh/Zr–La–O and 

Rh/Zr–Y–La–O catalysts exhibited a broad reduction profile starting at around 500 K (Fig. 

4.16c and d). No significant effect of Y addition on the reduction profiles was detected for the 

aged catalysts. 
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Fig. 4.15  CO-TPR profiles of the fresh catalysts: (a) Rh/ZrO2, (b) Rh/Zr–Y–O, (c) 

Rh/Zr–La–O and (d) Rh/Zr–Y–La–O. 
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Fig. 4.16  CO-TPR profiles of the aged catalysts: (a) Rh/ZrO2, (b) Rh/Zr–Y–O, (c) 

Rh/Zr–La–O and (d) Rh/Zr–Y–La–O. 
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Table 4.2 Amount of CO2 (µmol g
–1

) released during CO-TPR and O/Rh ratios 

Catalysts  Amount of CO2  

released / µmol g
−1

 

O/Rh ratio
a
 

 Fresh Aged
b
 Fresh Aged

b
 

Rh/ZrO2 45 59 0.14 0.20 

Rh/Zr–Y–O 428 36 1.48 0.12 

Rh/Zr–La–O 224 121 0.70 0.42 

Rh/Zr–Y–La–O 344 155 1.20 0.54 

a
 Determined by CO-TPR. 

b
 Aged at 1273 K for 24 h in 2 % O2 and 10 % H2O/N2 atmosphere. 
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4.3.5 Infrared spectra 

 

Although XPS is a powerful tool to investigate the oxidation state of rhodium, the Y 3p3/2 signal 

at 311 eV overlaps with the Rh 3d5/2 signal at 307 eV. Therefore, in the case of Y-containing 

materials, information about rhodium was not accessible, especially when the loading of 

rhodium was as low as 0.33 wt %, as was the case in this study. For this reason, we employed 

NO molecules as probes for the Rh metallic state because it is widely accepted that NO readily 

forms Rh
0
-NO adsorbate on rhodium particles.

24, 25
  

 Figure 4.17 presents the IR absorption spectra of the Rh/Zr–La–O and Rh/Zr–Y–La–O 

catalysts after exposure to NO at various temperatures. Several bands associated with NOx 

adsorbate were clearly detected for the La-containing catalysts. Bands at 1894, 1857, 1533, 

1242 and 1185 cm
-1

 were observed for Rh/Zr–La–O (Fig. 4.17a). The band at 1857 cm
-1

 was 

assigned to Rh
0
-NO

δ+
,
24

 and the bands from 1533–1185 cm
-1

 were attributed to nitrate species.
26

 

The band at 1894 cm
-1

 was assigned to Rh
I
-NO

+
.
27

 In the case of Rh/Zr–Y–La–O, the intensity 

of the Rh
0
-NO band at 1848 cm

-1
 was higher than for Rh/Zr–La–O at temperatures from 

473–573 K (the magnified bands in Fig. 4.17). These results indicate that the amount of Rh
0
 on 

the surface was higher for Rh/Zr–Y–La–O than for Rh/Zr–La–O. 

 

 

Fig. 4.17  IR spectra of NO absorbed on fresh (a) Rh/Zr–La–O, (b) Rh/Zr–Y–La–O. 

Spectra were taken at (1) 373 K, (2) 473 K, (3) 573 K, (4) 673 K and (5) 773 K. 
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4.3.6 Steam reforming reaction activity and its effect on three-way catalysis 

 

The steam reforming reaction is influential in three-way catalysis for enhancing NOx conversion 

by producing hydrogen as a reductant. This reaction is known to proceed over Rh catalysts.
28, 29

 

Previously, we reported that exposure to the steam reforming reaction reduced the oxidized 

rhodium and recovered the activity of the catalyst.
22

 In this study, the effect of Y addition on 

this reaction was examined. Figure 4.18 presents C3H6 conversion in the steam reforming 

reaction over the fresh catalysts. The addition of Y to ZrO2 resulted in a dramatic decrease in the 

activity of this reaction. Yttrium addition to La-containing ZrO2 decreased the activity by a 

small amount, but the catalyst still maintained high activity. Figure 4.19 presents C3H6 

conversion in the steam reforming reaction over the aged catalysts. Both Rh/Zr–La–O and 

Rh/Zr–Y–La–O exhibited superior activity compared with Rh/ZrO2 and Rh/Zr–Y–O. It is 

evident that when Y was added to the support, the presence of La was highly effective in 

maintaining the catalyst’s high steam reforming reaction activity for both fresh and aged 

catalysts.  

The influence of the steam reforming reaction on the activity of the three-way catalysis was 

investigated for Rh/Zr–Y–O and Rh/Zr–Y–La–O to identify the impact of Y addition on the 

reaction. Figure 4.20a and b present the results for the aged Rh/Zr–Y–O and Rh/Zr–Y–La–O, 

respectively. First, the three-way catalytic activity of the aged catalysts was examined without 

any pre-treatment (curve 1 in each figure). The next experiments examined the three-way 

catalysis of the aged catalysts after pre-treatment under a 5 % O2 flow at 773 K for 5 min 

(curves 2 in each figure). The final experiments investigated the three-way catalytic activity of 

the aged catalysts that were oxidized under a 5 % O2 flow at 773 K for 5 min followed by the 

steam reforming reaction at 520 K for 5 min (curves 3 in each figure). The oxidative 

pre-treatment caused dramatic decreases in the three-way catalytic activities for the two tested 

catalysts. In the case of Rh/Zr–Y–O, which had low steam reforming activity, recovery of the 

three-way catalytic activity after the steam reforming reaction was limited (Fig. 4.20 a, curve 3). 

Conversely, Rh/Zr–Y–La–O showed a complete recovery (Fig. 4.20 b, curve 3) after the steam 

reforming reaction from the low activity after the oxidation treatment (Fig. 4.20 b, curve 2). 

Besides hydrogen and CO generated by the steam reforming reaction, C3H6 also recovered the 

three-way catalytic activity for Rh/Zr–La–O (results not shown). Recovery of the catalyst by the 

steam reforming reaction included the contribution of C3H6 as a reductant. These experiments 
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demonstrated that the regenerative effect of the steam reforming reaction worked well for 

Rh/Zr–Y–La–O, as was also observed for Rh/Zr–La–O in our previous study.
21 
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Fig. 4.19  C3H6 conversion in the steam reforming reaction over the aged Rh catalysts: (+) 

Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O and (■) Rh/Zr–La–Y–O. 

 

 

Fig. 4.18  C3H6 conversion in the steam reforming reaction over the fresh Rh catalysts: (+) 

Rh/ZrO2, () Rh/Zr–Y–O, () Rh/Zr–La–O and (■) Rh/Zr–La–Y–O. 
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Fig. 4.20  Effect of the steam reforming reaction for the three-way catalytic C3H6 

conversion by the (a) aged Rh/Zr–Y–O and (b) aged Rh/Zr–Y–La–O catalysts. Three types 

of pre-treatment were conducted: (1) no pre-treatment, (2) pre-treatment with 5 % oxygen at 

773 K for 5 min, and (3) pre-treated with 5 % oxygen at 773 K for 5 min followed by the 

steam reforming reaction at 520 K for 5 min. 
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4.4 Discussion 

 

We have previously reported that rhodium supported on Zr–La–O was highly active under fresh 

and the aged conditions.
22

 Rhodium supported on Zr–La–O maintained its low oxidation state 

during the three-way catalytic reaction and after the oxidative treatment. This performance was 

not achieved when other lanthanides (Ce, Pr, or Nd) were added to the zirconia supports. After 

the aging treatment, the Rh/Zr–La–O catalyst exhibited higher activity in the steam reforming 

reaction. It was confirmed that the catalytic activity was recovered because oxidized rhodium 

was reduced by the steam reforming reaction. The aging treatment transformed the structure of 

the Zr–La–O support from tetragonal to three phases: monoclinic-ZrO2, tetragonal-ZrO2 and 

pyrochlore (La2Zr2O7). The treatment also altered the rhodium particle size from a few 

nanometers to 30–100 nm. In this chapter, Y was added to the ZrO2-based supports to stabilize 

the structure and its effect was investigated based on the state of Rh, activity for the steam 

reforming reaction and the three-way catalytic performance. As a result, it was found that 

Rh/Zr–Y–La–O showed excellent three-way catalytic performance that was better than a 

previously reported Rh/Zr–La–O catalyst.
21, 22

 

For the fresh Rh/ZrO2 and Rh/Zr–Y–O catalysts, Y addition to ZrO2 enhanced the oxidation of 

Rh, as demonstrated by the results of O/Rh ratio derived from CO-TPR. The O/Rh ratio 

increased from 0.14 for Rh/ZrO2 to 1.48 for Rh/Zr–Y–O (Table 2). The O/Rh ratio of 1.48 for 

Rh/Zr–Y–O was almost the stoichiometric value corresponding to the formation of fully 

oxidized Rh2O3 particles. Also, the introduction of Y induced a dramatic decrease in the steam 

reforming activity of the fresh catalysts (Fig. 4.18). As a result, the three-way catalytic activity 

of Rh/Zr–Y–O was low. The oxidation states of Rh for the two aged catalysts were similar to 

each other; the O/Rh ratios for Rh/ZrO2 and Rh/Zr–Y–O were 0.20 and 0.12, respectively. The 

sharp TPR peaks (Fig. 4.16 a and b) suggest that only the surfaces of rhodium particles were 

oxidized to Rh2O3 in each aged sample. The steam reforming activities were very low for the 

aged catalysts. In particular, Rh/Zr–Y–O had the lowest activity (Fig. 4.19). The limited 

regeneration was demonstrated for the aged Rh/Zr–Y–O catalyst, as shown in Fig. 4.20 a. The 

lower three-way catalytic activities of these two catalysts can be readily explained by their low 

regeneration. The reason why the aged Rh/Zr–Y–O showed three-way catalytic activity higher 

than the aged Rh/ZrO2 is unclear. 

The enhancement of rhodium oxidation by Y addition was also observed for fresh 

Rh/Zr–Y–La–O. Also, the introduction of Y to Zr–La–O improved the reducibility of rhodium 
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oxides (lower reduction temperature at CO-TPR). Enhancement of rhodium oxidation was 

indicated by the increased O/Rh ratio from 0.70 for Rh/Zr–La–O to 1.20 for Rh/Zr–Y–La–O 

(Table 4.2). In our previous report,
22

 the oxidation state of rhodium on Zr–La–O after oxidative 

pre-treatment averaged between Rh
0
 and Rh

3+
 (Fig. 2.2 in Chapter 2, p. 33). These results 

indicate that rhodium particles became more readily oxidized after Y addition. The CO-TPR 

profile of the fresh Rh/Zr–Y–La–O showed that rhodium on Zr–Y–La–O was more readily 

reduced than that on Zr–La–O. Specifically, the reduction profile of Rh/Zr–La–O began at 

approximately 540 K, but in the case of Rh/Zr–Y–La–O, the profile started from a much lower 

temperature (440 K, Fig. 4.15c and d). IR spectra of adsorbed NO also revealed that the band 

assigned to Rh
0
-NO

+
 was enhanced by Y addition, especially at around 473 K, the temperature 

at which the three-way catalytic reaction started (Fig. 4.17b). This is also an indication of the 

presence of rhodium (0) on the surface, highlighting that the rhodium on Zr–Y–La–O was 

reduced more readily than on Rh/Zr–La–O. Also, Rh/Zr–Y–La–O demonstrated a high steam 

reforming activity that was comparable to Rh/Zr–La–O (Fig. 4.18). Therefore, the regeneration 

of Rh was likely pronounced during the three-way catalysis over Rh/Zr–Y–La–O. 

Y addition did not affect rhodium oxidation for the aged catalysts as indicated by the results of 

the CO-TPR profiles (Fig. 4.16). Aged catalysts contain larger Rh particles as was indicated by 

their low Rh dispersion. Thus, it is unlikely that the oxide support influences the oxidation of 

rhodium through interactions between the Rh particles and the support. The XRD results for 

Rh/Zr–Y–La–O after the aging treatment showed that Y addition prevented phase separation 

(Fig. 4.1h). Stabilization of the support was also reflected in the changes of BET surface areas 

before and after the aging treatment. Rh/Zr–La–O decreased its surface area to 29.6 m
2
g

-1
, while 

Rh/Zr–Y–La–O had a surface area as high as 51.2 m
2
g

-1
. The relatively high rhodium dispersion 

for the aged Rh/Zr–Y–La–O (Table 4.1) was likely from the high surface area of the support 

after the aging treatment. The small rhodium particles in the TEM images correlated well with 

the dispersion for aged Rh/Zr–Y–La–O (Fig. 4.12). The high steam reforming activity was 

maintained, even after Y addition (Fig. 4.19). It was also confirmed that the steam reforming 

reaction recovered the catalytic activity that was deactivated by the oxidative treatment (Fig. 

4.20b). 

Steam-reforming reaction is endothermic reaction.
32

 The fact that the outlet temperature was 

lower compared to the inlet temperature during three-way catalysis above 673 K demonstrated 

that the endothermic reaction was taking place during the three-way catalysis (Fig. 4.11). 

Rh/Zr–Y–La–O showed high steam-reforming activity (Fig. 4.19), and correspondingly the 
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recovery of the catalyst was confirmed (Fig. 4.20b). Based on these findings, it is reasonable to 

conclude that the recovery of the catalyst by the steam-reforming reaction was taking place 

under the actual three-way catalysis conditions. Therefore, the recovery function of 

Rh/Zr–Y–La–O can be regarded as “self-regeneration”. Overall, Rh/Zr–Y–La–O showed 

excellent performance, even after the aging treatment. 
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4.5 Conclusions 

 

High activity for fresh and aged Rh/Zr–Y–La–O in three-way catalytic processes was identified 

in this chapter. The effects of Y addition to the supports were also investigated in detail. 

Yttrium addition to Rh/Zr–La–O increased the oxidation of rhodium compared with 

Rh/Zr–La–O, but the reducibility of rhodium was also enhanced, as indicated by CO-TPR. 

Rh/Zr–Y–La–O showed high steam reforming activity, comparable to Rh/Zr–La–O. Thus, the 

regeneration of Rh was likely pronounced for Rh/Zr–Y–La–O. In the case of Rh/Zr–Y–O, 

rhodium particles were fully oxidized after an oxidation treatment. Yttrium addition to ZrO2 

dramatically decreased the steam reforming activity. Rhodium particles on ZrO2 and Zr–Y–O 

are readily oxidized during reaction, leading to low three-way catalytic activity. 

After the aging treatment, Rh/Zr–Y–La–O showed higher rhodium dispersion than the other 

tested catalysts. This is likely because of the relatively high surface area of the support after the 

aging treatment and stabilization of ZrO2 by the addition of Y. Excellent steam reforming 

activity was maintained for Rh/Zr–Y–La–O after the aging treatment. The high steam reforming 

activity regenerates deactivated oxidized Rh, providing the best three-way catalytic activity. 

These results demonstrate the importance of the catalyst support in designing three-way 

catalysts. Our findings highlight the potential to design and develop effective three-way 

catalysts with high tolerances to oxidative reaction conditions in recently developed vehicles 

and engines. 
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Chapter 5: Summary and General Conclusions 

 

 

5.1 Summary of each Chapter 

 

The first subject of this thesis is to develop highly active three-way catalyst for the new engine 

operation by adopting zirconia based catalysts. The second subject is to introduce the basis of 

designing active three-way catalysis of rhodium including the knowledge of the support effect. 

Here are the summarized results obtained in each chapter. 

 

 

5.1.1 Summary of Chapter 2 

 

In Chapter 2, we studied the catalytic activities and properties of rhodium supported lanthanoid 

(La, Pr)-containing zirconia mixed oxides, and showed that the advantages and scope of 

rhodium catalysts supported on non-oxygen storage function. It was demonstrated that rhodium 

on a La-containing ZrO2 support can be stabilized at a relatively lower valence state. This 

phenomenon brought about the high catalytic performance of Rh/Zr–La–O under fluctuating 

oxygen conditions even though the catalyst has no oxygen storage function. Rhodium particles 

maintained a low oxidation state on the ZrO2-La2O3 mixed oxide even after treatment with 5% 

O2 at 773 K, highlighting the significant effect of the La addition. 

 

 

5.1.2 Summary of Chapter 3 

 

We investigated the influence of aging treatment on the catalytic activity of the catalyst reported 

in Chapter 2. In chapter 3, we described the findings that Rh/Zr–La–O was active for three-way 

catalysis from fresh though 1273 K aged conditions even after treatment under the oxidative 

atmosphere. Rhodium supported on lanthanoid- (La, Ce, Pr, or Nd) containing ZrO2 was 

investigated as a three-way catalyst following an aging treatment (oxidation at 1273 K) that 
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simulates 80 000 km mileage in real vehicles. The properties of rhodium were assessed by 

transmission electron microscopy, CO chemisorption, and temperature-programmed reduction 

using CO. The oxidation states of rhodium before and after the aging treatment were evaluated 

by X-ray photoelectron spectroscopy. Rhodium supported on lanthanum-containing ZrO2 

(Rh/Zr–La–O) was highly active for the removal of NOx and hydrocarbons from a synthetic 

auto exhaust. The support determined the oxidation state of rhodium after the aging treatment: 

rhodium supported on Zr–La–O maintained its low oxidation state during the three-way 

catalytic reaction and after the aging treatment, whereas rhodium supported on ZrO2 and other 

lanthanoid-containing ZrO2 was converted to the higher oxidation states. The Rh/Zr–La–O 

catalyst, following the aging treatment, exhibited superior activity for the steam reforming 

reaction. The hydrogen, produced from the steam reforming reaction, reduced the previously 

oxidized Rh in Rh/Zr–La–O, thereby regenerating the catalyst that was previously deactivated 

by an oxidation treatment. Self-regeneration of the Rh/Zr–La–O catalyst by the steam reforming 

reaction was more efficient when compared with that of the other lanthanoid-containing ZrO2 

catalysts. These results highlight the potential of the present strategy for developing active 

three-way catalysts with high tolerance to oxidative conditions. 

 

 

5.1.3 Summary of Chapter 4 

 

A novel, highly active three-way catalyst, rhodium supported on Y- and La-added zirconia 

(Rh/Zr–Y–La–O) was found in this chapter. Rh/Zr–Y–La–O showed superior performance 

compared with a previously reported Rh on La-added ZrO2 (Rh/Zr–La–O) catalyst. The effects 

of Y addition to ZrO2–based supports were investigated in detail. CO temperature programmed 

reduction and in situ Fourier transform infrared spectra of adsorbed NO species indicated that Y 

addition to La–containing ZrO2 enhanced the reducibility of rhodium supported on the catalyst 

and more metallic Rh was exposed on the surface after oxidation for Rh/Zr–Y–La–O than for 

Rh/Zr–La–O. Before and after an aging treatment at 1273 K that simulated 80 000 km travelled 

by vehicles, Rh/Zr–Y–La–O showed high steam reforming activity. After the aging treatment, 

Rh/Zr–Y–La–O was deactivated using an oxidation treatment, but its three-way catalysis 

activity was completely regenerated after a short (5 min) exposure to steam reforming reaction 

conditions, demonstrating self-regeneration capability. After the aging treatment, 
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Rh/Zr–Y–La–O showed higher rhodium dispersion than other catalysts. This was attributed to 

the high surface area of the support after aging and the stabilization of ZrO2 from the addition of 

Y. These findings highlight the role of catalyst supports in designing effective three-way 

catalysts with high tolerance to the oxidative conditions in new vehicles and engines. 
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5.2 General Conclusions 

 

From the summary of each chapter, we can highlight the importance of metal-support 

interactions for the rhodium property. 

 

1. Rhodium supported on La-containing ZrO2 support achieved high activity in three-way 

catalysis under fluctuating oxygen conditions even though the catalyst has no oxygen storage 

function. 

 

2. It is concluded that Rh/Zr-La-O has a function to maintain its rhodium oxidation state in a 

low valence state not only by the interaction of the support but also by the surface reaction 

(steam-reforming reaction) that produce hydrogen as a reductant. This phenomenon brought 

about the high catalytic performance of Rh/Zr-La-O under fluctuating oxygen conditions and 

the oxidative reaction conditions even though the catalyst has no oxygen storage function. 

 

3. High activity for fresh and aged Rh/Zr–Y–La–O in three-way catalytic processes was also 

identified with superior performance compared with Rh on La-added ZrO2 (Rh/Zr–La–O) 

catalyst. Stabilization of ZrO2 by the addition of Y maintained both rhodium dispersion and 

excellent steam reforming activity after the aging treatment. Thus, the regeneration of Rh was 

likely pronounced for Rh/Zr–Y–La–O, providing the best three-way catalytic activity. 

 

These findings became a probable new strategy for highly active three-way catalysts by 

controlling the oxidation state of the nano-sized metal particles while taking advantage of the 

metal-support interaction. Our conclusions highlight the potential to design and develop 

effective three-way catalysts with high tolerances to oxidative reaction conditions in recently 

developed vehicles and engines. 
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