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Abstract 

     

Gear device is one of the most commonly used and important components in machine system. 

Minor gear damage may cause serious failures of the entire equipment even huge economic losses. 

Consequently, it is crucial to detect the gear damage as early as possible to prevent the system from 

malfunction. Analyzing the vibration signal on gear or gear box is one of the effective methods to 

diagnose gear failures. Researchers have done countless studies in this respect and have developed 

many diagnostic methods based on the analysis of vibration signal in time domain, frequency 

domain and time-frequency domain. However, the diagnosis of gear damage in most widely used 

methods is usually based on observing the variations of characteristics between the normal gear and 

damaged gear. The diagnostic result mainly depends on the experience of operators and is unstable. 

Therefore, it is important to develop some technique for diagnosing gear damage with satisfactory 

accuracy independent of artificial experience.  

This study proposes an intelligent method for diagnosing gear tooth surface damage by 

analyzing the vibration accelerations on gear box and bearing box. To investigate the validity of the 

proposed method, damage contrast test has been carried out in this study. Three kinds of gears 

namely normal gear, spot damaged gear and pitted gear are tested under different loads and gear 

rotation speeds on the power circulating type gear testing machine. The vibration accelerations of 

gear box and bearing box are measured in the experiment. Moreover, in order to illustrate the 

progression of gear failures and to demonstrate the effectiveness of the proposed approach, the 

cyclic fatigue test also has been implemented on the power circulating type gear testing machine. A 

test gear is driven continually with the same rotation speed and load torque. During the cyclic 

fatigue test, the vibration accelerations on gear box and bearing box are measured at different 

cycles. Then, techniques of Fast Fourier Transform and discrete wavelet transform are employed to 

analyze the acquired vibration accelerations. Residual signal and processed signal are respectively 

acquired by these methods. In order to quantitatively illustrate the characters of vibration 

accelerations, statistical parameters and characteristic amplitude ratios of frequency bands are 

extracted from the vibration accelerations. Both of the characteristic amplitude ratios and statistical 

parameters are together served as failure feature vector for representing different gear conditions. 

Finally, the technique of support vector machine is employed to diagnose gear condition based on 

the extracted failure feature vector. The diagnostic results demonstrate the effectiveness of the 

proposed method. Although a diagnostic method for gear damage based on support vector 

machines has been proposed, I try to adopt another technique of empirical mode decomposition to 



 

 

 

extract failure feature vector for gear damage diagnosis. By the technique of empirical mode 

decomposition, the original signal is decomposed into several intrinsic mode functions. Then, the 

characteristic energy ratios are extracted from the intrinsic mode functions as failure feature 

parameters to be input to the support vector machines classifiers for diagnosis. The validity of the 

proposed approach is demonstrated by experimental results of cyclic fatigue test. 

    In Chap. 1 [Introduction], the background of gear damage diagnosis, the objective of this 

study and the organization of this dissertation are introduced. 

    In Chap. 2 [Literature Review], literature reviews on diagnostic methods of gear damage are 

presented.  

    In Chap. 3 [Types of Gear Failures], the types of gear failures are introduced.  

    In Chap. 4 [Damage Contrast Test], the experimental method, apparatus and conditions are 

introduced. The specifications of test gears are presented. In addition, the experimental results are 

shown and discussed. The acquired data is analyzed using techniques of Fast Fourier Transform 

and discrete wavelet transform. 

    In Chap. 5 [Cyclic Fatigue Test], the cyclic fatigue test is introduced. The specifications of test 

gears and experimental conditions are presented. The experimental results are also shown and 

discussed. Moreover, the acquired vibration accelerations are also analyzed using techniques of 

Fast Fourier Transform and discrete wavelet transform. 

    In Chap. 6 [Diagnosis of Gear Damage Using Support Vector Machines], a method of 

diagnosing gear damage based on support vector machine is proposed. The algorithm of support 

vector machines is introduced. The characteristic amplitude ratios of frequency bands and statistical 

parameters are together served as failure feature vector of gear conditions. Finally, the gear 

condition is diagnosed by the classifiers of support vector machines based on the extracted feature 

vector. The diagnostic results are presented. In addition, another diagnostic method based on 

empirical mode decomposition is proposed to extract failure feature parameters. The algorithm of 

empirical mode decomposition is introduced. By this method, the obtained vibration signal is 

decomposed into a number of intrinsic mode functions. Then characteristic energy ratios extracted 

from intrinsic mode functions and statistical parameters are together served as failure feature 

vectors to be input into the classifiers for identifying gear conditions. The diagnostic results are 

shown in the paper. 

    In Chap. 7 [Conclusions], the conclusions of this study are summarized and the validity of this 

study is confirmed.   
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Notation 

 

A              m×m orthogonal matrix 

ai              eigenvector of the sample covariance matrix ��             amplitude of harmonics 

Aj              amplitude of frequency ��(�)           amplitude modulation function  ���             sample amplitude of i-th intrinsic mode function 

b               scalar threshold 	�(�)           phase modulation function 

C              penalty constant ��              intrinsic mode functions 
(�)            resonance signal  �              total energy of intrinsic mode functions 

Ei              energy of i-th intrinsic mode function  

ER             characteristic energy ratios of intrinsic mode functions ��             frequency of harmonics  

f (x)            function of separating hyper-plane 
(�)            general signal  

h (x)            decision function for classification 

k (xi, x)          kernel function �	(�, 	, �)       Lagrange function 

M              order of harmonics 

m1             mean value of the local maxima and minima �(�)            noise signal 

N              sampling number of residual signal  ��              energy of residual signal  ��             energy of noise  

Pl              transformed vector by principal component analysis 

pm              principal component 

R              vector of characteristic amplitude ratio  ��              residual data 

s               a scaling factor �	(�)            original signal 
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1 Introduction 

 

1.1 Background 

With the progress of science and technology, our life becomes more and more convenient. 

Meanwhile, machines also have become an indispensable part in people’s life. The operation of 

machines must depend on power supply, such as motor, gasoline engine and so on. However, the 

machine directly driven by the power is less. Most of the machines are driven by transmitted power 

through some transmission mechanism. Therefore, the power transmission mechanism is crucial in 

machine system. There are many kinds of transmission method, including gear transmission, 

friction transmission, chain transmission, fluid transmission and so on. Because gear transmission 

has advantages of constant speed ratio, relatively smaller size and high efficiency, a considerable 

number of machines have adopted the method of gear transmission mechanism [1]. Therefore, gear 

device performs an important role in the whole machine system. The operation status of gear 

device can directly affect the working conditions of the whole machine. Consequently, it is crucial 

to detect the gear damage as early as possible to prevent the system from malfunction [2]. 

In order to keep the gear device in good condition, it is necessary to conduct maintenance 

work at appropriate regular intervals. State maintenance method is a commonly used technique to 

check the deterioration situation of the equipment without disassembling machines. Because of its 

high efficiency and lower cost, this technology has been widely applied in the field of damage 

detection in industrial production [3]. According to the state maintenance method, analyzing the 

vibration signal of gearbox is one of the effective methods to diagnose gear conditions. It is usually 

to measure the vibration or noise on gear box, and diagnose the device condition using the 

vibration characteristics. Although the research on gear vibration characteristics has been carried 

out for a long period, the developed vibration theory mainly applied to the normal gear condition, it 

is difficult to analyze the abnormal gear condition based on the existed theoretical 

acknowledgement. In practical application, the diagnosis of gear damage is usually based on 

observing the variations of characteristics between the normal gear and damaged gear, the 

diagnostic result mainly depends on the experience of operators. Therefore, it is important to 

develop some diagnostic techniques to precisely detect gear damage independent of manual 

experience.  

Because of unsteady gear rotation, lubrication situation, tooth stiffness variations, and other 

reasons, the collected vibration signal on gear box is usually non-stationary, and the failure 
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symptoms are not obvious especially in the early stage of gear failure [4]. It is difficult to extract 

distinctive characters from the vibration signal. Hence, how to emphasize the failure characteristics 

in the measured signals and extract suitable failure features from collected data is crucial for gear 

failure diagnosis. To address this, researchers have done countless studies in this respect and a lot 

of methods have been developed in the time domain, frequency domain and time-frequency domain 

[5]. In addition, with the development of artificial intelligence, many intelligent technologies, such 

as expert system, neural network and so on, have been developed and applied to the failure 

diagnosis of machines. Comparing with the traditional methods, these techniques can identify the 

gear condition automatically by computer according to the quantitative characteristic parameters 

extracted from the vibration signal. 

This study proposes an intelligent method for diagnosing gear tooth surface damage by 

analyzing the vibration accelerations on gear box and bearing box. To investigate the validity of the 

proposed method, damage contrast test has been carried out in this study. Moreover, the damage 

contrast test is used to investigate the influence of load torques, gear rotation speeds and size of 

gear damage on the vibration accelerations. Three kinds of gears namely normal gear, spot 

damaged gear and pitted gear are tested under different loads and gear rotation speeds on the power 

circulating type gear testing machine. The vibration accelerations of gear box and bearing box are 

measured in the experiment. Moreover, in order to illustrate the progression of gear failures and to 

demonstrate the effectiveness of the proposed approach, the cyclic fatigue test also has been 

implemented on the power circulating type gear testing machine. A test gear is driven continually 

with the same rotation speed and load torque. During the cyclic fatigue test, the vibration 

accelerations on gear box and bearing box are measured at different cycles. The technique of Fast 

Fourier Transform is employed to analyze the original signal, by which the frequency spectrum is 

obtained. Then, the characteristic amplitude ratios of frequency bands are computed from the 

frequency spectrum to represent the frequency-domain characteristics of the signal. Because the 

collected vibration signal is usually non-stationary, and the failure symptoms are not obvious 

especially in the early stage of gear failure. In order to emphasize the failure characteristics of the 

measured signals, the residual signal is extracted from the original vibration accelerations. 

Moreover, the method of discrete wavelet transform is adopted to reduce noise from the residual 

signal. The processed signal is obtained by reconstructing the coefficients of discrete wavelet 

transform. Additionally, statistical parameters are extracted from the processed signal. Both of the 

characteristic amplitude ratios and statistical parameters are together served as failure feature 

vector to quantitatively represent the distinctive features of different gear conditions. Then, the 

technique of support vector machine is employed to detect gear condition based on the extracted 

failure feature vector. The diagnostic results demonstrate the effectiveness of the developed method. 
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Although a diagnostic method for gear damage using support vector machines has been proposed, I 

try to adopt another technique of empirical mode decomposition to extract appropriate failure 

feature parameters to improve the diagnostic accuracy. Because of its excellent generation 

capability, the empirical mode decomposition has been proved for more effectively dealing with 

data from non-stationary and nonlinear processes. With the initial processing of empirical mode 

decomposition, the original signal is decomposed into several intrinsic mode functions. Then, the 

characteristic energy ratios of intrinsic mode functions and statistical parameters are combined as 

failure feature vectors to be input to the support vector machine classifiers for gear damage 

diagnosis. The validity of the proposed approach is demonstrated by experimental results of cyclic 

fatigue test. 

 

1.2 Objectives 

    The main objective of this study is to develop an intelligent method for diagnosing gear tooth 

surface damage effectively by analyzing vibration accelerations on gear box or bearing box. 

Consequently, the following four tasks are to be performed in this study: 

    (1) To carry out experiments under different load torques and gear rotation speeds, through 

which the vibration accelerations of gear box and bearing box are acquired and analyzed. 

    (2) To present a method for emphasizing the failure characteristics in the obtained vibration 

signals, by which the noise and other interferences can be reduced from the original data. The 

evidence of damage can be visually detected from the signal as far as possible. 

    (3) To develop a method of extracting appropriate failure feature parameters from the 

vibration signals, by which the extracted feature parameters can quantitatively represent the 

distinctive features of different gear conditions. 

    (4) To develop a method for diagnosing gear damage automatically based on the extracted 

failure feature vector, by which the gear damage can be detected accurately independent of manual 

experience. 

 

1.3 Organization 

    This dissertation consists of seven chapters. The specific arrangement of this paper is 

organized as follows. 
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In Chap. 1 [Introduction], the background of gear damage diagnosis, the objective of this 

study and the organization of this dissertation are introduced. 

    In Chap. 2 [Literature Review], literature reviews on diagnostic methods of gear damage are 

presented.  

    In Chap. 3 [Types of Gear Failures], the types of gear failures are introduced.  

    In Chap. 4 [Damage Contrast Test], the experimental method, apparatus and conditions are 

introduced. The specifications of test gears are presented. In addition, the experimental results are 

shown and discussed. The acquired data is analyzed using techniques of Fast Fourier Transform 

and discrete wavelet transform. The frequency spectrum, residual signal and processed signal are 

obtained and shown in the paper. 

    In Chap. 5 [Cyclic Fatigue Test], the cyclic fatigue test is introduced. The specifications of 

test gears and experimental conditions are presented. The experimental results are also shown and 

discussed. Moreover, the acquired vibration accelerations are also analyzed using techniques of 

Fast Fourier Transform and discrete wavelet transform, by which the frequency spectrum, residual 

signal and processed signal are acquired. 

    In Chap. 6 [Diagnosis of Gear Damage Using Support Vector Machines], a method of 

diagnosing gear damage based on support vector machine is proposed. The characteristic amplitude 

ratios of frequency bands are extracted from the frequency spectrum of original signal. Statistical 

parameters are also extracted from the processed signal. Then, the characteristic amplitude ratios of 

frequency bands and statistical parameters are together served as failure feature vector of gear 

conditions. Finally, the gear condition is diagnosed by the classifiers of support vector machines 

based on the extracted feature vector. The diagnostic results are presented. In addition, another 

method based on empirical mode decomposition is proposed to extract failure feature parameters. 

By this method, the obtained vibration signal is decomposed into a number of intrinsic mode 

functions. Then, characteristic energy ratios extracted from intrinsic mode functions and statistical 

parameters are together served as failure feature vectors to be input into the classifiers for 

identifying gear conditions. The algorithm of support vector machines, principal component 

analysis and empirical mode decomposition is also introduced in the chapter. The diagnostic results 

are shown in the paper.  

    In Chap. 7 [Conclusions], conclusions of this study are summarized and the validity of this 

study is confirmed.   
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2 Literature Review 

 

2.1 Diagnostic Methods of Gear Damage 

    Gear is one of the most important and commonly used components in machine system. Minor 

gear damage may cause fatal failures of the entire equipment, even huge economic losses. 

Consequently, failure diagnosis especially early detection of gear damage is crucial to prevent the 

mechanism from malfunction. However, because the motion of gear device is always inevitably 

affected by the motion of other components in the system or the environment disturbances, the 

failure symptoms are not obvious especially in the early stage of gear failures. Therefore, it is 

difficult to precisely diagnose gear failures in the early stage. In past years, researchers have done 

countless effort to study the characteristics of gear failures and have developed many methods to 

detect gear failures by using techniques of acoustic emission, stress wave analysis, laser scattering, 

vibration signal analysis and so on.  

Acoustic emission is gaining ground as a non-destructive technique for health diagnosis on 

rotating machinery, including gearboxes [6]. Singh et al. performed three experiments to 

investigate the feasibility of applying acoustic emission to gear fault diagnosis [7,8]. It is concluded 

that the acoustic emission technique is a useful diagnostic tool in condition monitoring of gears. 

Al-Balushi and Samanta also developed a technique for early fault diagnosis of gears by using 

energy-based features extracted from time domain acoustic emission signals of a test gearbox [9]. 

In addition, the experimental results demonstrate the effectiveness of the proposed method in 

monitoring and diagnosis of machine conditions, with the capability of early fault detection. Stress 

wave analysis is able to provide real-time measurement of shock and friction in operating process 

of gear device, as well as filter out interference vibration signal and audible noise because of its 

high frequency acoustic sensing technology. Board [10] demonstrated the ability of stress wave 

analysis to accurately detect a broad range of discrepant gears conditions and to characterize the 

severity of damage, by carrying out experiments on several diverse types of aircraft and industrial 

gears. The fault diagnosis principle of laser scattering is comparing the variations of laser reflection 

data between initial and the current conditions. If the laser-scattering data varies over some 

threshold value, we can estimate conditions on the tooth surface and detect damages such as 

abnormal abrasion, pitting, spalling, etc. based on the results. Tanaka et al. proposed an in situ 

method to accurately diagnose gear tooth surface damage at the early stage using scattering of a 

laser beam [11]. In order to confirm the effectiveness of the proposed method, a cyclic fatigue test 

was performed. A tooth surface is first irradiated at oblique incidence by a zone-covering laser 
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beam, and the zone is scanned along the surface of the gear tooth by the rotation of the gear. By 

analyzing variations in laser scattering between benchmark data and the current data, the condition 

of the gear-tooth surface can be estimated. The technique of vibration signal analysis is to detect 

gear failures by studying the vibration characteristics of gear or gear box. In the operating process 

of gear device, comparing with the normal gear condition, the gear failures will intensify or change 

the vibration of gears. Therefore, the gear conditions will be comprehensively and effectively 

reflected in the vibration signal of gear or gear box. Especially, analyzing the vibration signal of 

gear or gear box is one of the most effective methods applied in the detection of gear failures 

because of its simple operation and availability.  

For studying the characteristics of the vibration signal, researchers have done countless effort 

in this respect and various technologies in time domain, frequency domain and time-frequency 

domain have been developed and widely applied in condition monitoring and diagnosis of gear 

device. In the past years, a great of technologies are reported in the literatures.  

In the field of time-domain analysis, time-synchronous averaging is an effective technique to 

reduce the effects of noise and environment disturbances by removing any uninterested 

non-periodic events from the original signal. Some processing techniques of time-synchronous 

averaging are satisfactorily developed for the early detection of gear failures. Mafadden extracted 

residual signal by subtracting the regular tooth meshing harmonics from the original time domain 

vibration signal using technique of time-synchronous averaging [12]. The residual signal is proved 

to have excellent capability and better sensitivity to the representation and modulation phenomenon 

of gear damage, which can contribute to the diagnosis of gear damage. The validity of the proposed 

method is confirmed by an application to the early detection of gear failures. Mafadden and 

Dalpiaz estimated the location of damage on tooth surface by calculating the amplitude and phase 

angle of the vibration function of residual signal which is acquired using technique of 

time-synchronous averaging [13-15]. 

Concerning frequency-domain analysis, it is well known that the fault condition of gears can 

be observed from the meshing frequency and its harmonics, together with sidebands due to 

modulation phenomenon. Damages on gear tooth surface will produce modulation effects during 

the meshing of failure teeth, repeated once each revolution of the gear. The increment in the 

number and amplitude of sidebands with interval space of the failure gear rotation frequency may 

indicate a fault condition. Therefore, gear damage can be detected with analyzing the frequency 

spectrum of vibration signals. Randall studied the effects of various types of faults on the spectrum 

of vibration signals, and presented an alternative approach which is capable to the monitoring and 

diagnosis of gearbox faults in 1982 [16]. Researchers also have developed many methods for 
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diagnosing gear failures with combining spectra analysis with other techniques. The spectra 

analysis may be incapable of detecting gear failures at an early stage. Because the vibration is 

usually disturbed by other mechanical components, it may be difficult to evaluate the spacing and 

evolution of sidebands. Therefore, many researchers have developed other analysis techniques, 

such as cepstrum analysis [17, 18], cyclostationary analysis [19-21], high-resolution spectral 

analysis techniques [22] and so on.  

Local faults in gears always produce transient modifications in vibration signals. Therefore, 

these signals have to be considered as non-stationary. Most widely used traditional signal processing 

techniques are based on the assumption of stationary signal [18]. Thus, they are not fully suitable 

for the detection of short-duration dynamic phenomena. Besides, the time-domain map or the 

frequency-map can just represent the partial characteristics of the vibration signal. Because the 

time-frequency analysis not only can present time and frequency information of a signal 

simultaneously by time-frequency map but also enables the detection of transitory phenomena, the 

time-frequency methods (in particular wavelet transform) are currently favored in gear failure 

diagnosis [23]. The study of wavelets is started in the 1980’s by Morlet, Grossmann, Meyer, Mallat 

and others [24-27], but it is well known in 1988 by the paper written by Daubechies [28] which 

caught the attention of larger applied mathematicians in signal processing, statistics and numerical 

analysis. Wang and McFadden [29] are the pioneers of analyzing the vibration signal analysis in 

gears using the technique of wavelet transform. Results show that wavelet transform has the 

capacity of detecting both mechanical incipient failures and different types of faults simultaneously. 

With the development of wavelet transform, many techniques, including continuous wavelet 

transform, discrete wavelet transform, wavelet packet transform, Hilbert transform and so on, have 

been proposed and successfully applied to the non-stationary vibration signal processing and failure 

diagnosis [30-32]. The discrete wavelet transform, which is based on sub-band coding, is known as 

its fast application and excellent capacity to concentrate information. Wu and Hsu [33] adopted the 

technique of discrete wavelet transform to analyze the vibration signals in a gear-set experimental 

platform. The feature vector for gear faults diagnosis is extracted based on discrete wavelet 

transform. Saravanan and Ramachandran [34] extracted feature parameters from the vibration 

signals for diagnosing different conditions of gear box by using discrete wavelet transform. The 

application of discrete wavelet transform to feature extraction is demonstrated by the vibration 

signal of a spur bevel gear box in different conditions. The results show that the discrete wavelet 

transform enables to represent all possible types of transients in vibration signals generated by gear 

faults and make a great contribution to condition monitoring and fault diagnosis of gears. 

Continuous wavelet transform can provide a finer scale resolution and excellent visual inspection 

for the analysis of vibration signals. Dalpiaz et al. [18] presented a method to deal with gear 
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condition monitoring with using the visual advantages of continuous wavelet transform. 

Particularly, the diagnostic capability of continuous wavelet transform is proved when the residual 

part of the time-synchronous averaged vibration signal is used. Zheng et al. [35] proposed an 

approach based on continuous wavelet transform to diagnose and localize the faults on tooth 

surface. Wavelet packet transform divides the frequency space of vibration signal into various parts 

and allows a better time-frequency localization of signals. It has been widely used as a diagnostic 

method recently [36, 37]. Nikolaou and Antoniadis [36] adopted energy analysis of coefficients of 

wavelet packet transform for fault detection. Yen and Lin [37] used the wavelet packet transform to 

decompose the vibration signal, and select the wavelet packet node energy as feature parameters for 

fault diagnosis. The proposed method is investigated by experiments on gearboxes with several 

types of faults in a helicopter. The results show that the wavelet packet-based method is more 

robust to the white noise. Hilbert transform, which is a time-domain convolution, has been 

demonstrated to be useful for demodulation of vibration signals [38]. Fan and Zuo [39] proposed a 

new diagnostic method for gear damage that combines Hilbert transform and wavelet packet 

transform. Using the wavelet packet transform, the failure features of frequency components are 

extracted from the processed signal which is obtained by removing carrier signals from the 

vibration signal by Hilbert transform. The vibration signals collected from a gear box are used to 

confirm the validity of the presented method. Results show that the proposed method is effective to 

extract modulating signal and help to detect the early gear fault. 

Moreover, the statistical method is also an effective technique for detection gear damage 

diagnosis. The statistical parameters, including standard deviation, root mean square value, kurtosis, 

skewness, crest factor and so on, are sensitive to the variation in the vibration signal generated by 

the failure on gear tooth surface. The employ of statistical parameters have shown strong 

performance for diagnosing gear faults in several studies. Pachaud et al. [40] investigated the effect 

of crest factor and kurtosis in the monitoring of rotating machinery. By using a simple model, the 

properties and the limitations of these indicators are demonstrated and illustrated with real 

examples. Wang, et al. [41] presented an approach which explores the properties of kurtosis, mean, 

variance, form factor and crest factor of the mean amplitude of continuous wavelet transform 

coefficient as quantitative indicators of gear failure, with employing the method of the continuous 

wavelet transform to analyze the time synchronously averaged residual signals. The statistical 

parameters are proved to be insensitive to the gear conditions. 

In most widely used methods, the diagnosis of gear faults is usually based on observing the 

differences in vibration signals between the normal gear and damaged gear, the diagnostic result 

mainly depends on the experience of operators. With the development of artificial intelligence, 

many intelligent diagnostics system based on technologies, such as artificial neural network, 
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pattern recognition and support vector machines, have been developed and applied to the failure 

diagnosis of machines. Comparing with the traditional methods, these techniques identify the gear 

condition automatically by computer according to the quantitative feature parameters extracted 

from the vibration signal. An intelligent diagnostic system often needs to combine several 

techniques of time-domain, frequency-domain or time-frequency domain. 

Artificial neural network is one of the forecasting and validating methods using computer 

models with some of the architecture and processing capabilities of the human brain [42]. The 

technique trying to achieve such results is called neural computing or artificial neural networks. 

Artificial neural network mimics biological neurons by simulating the workings of the human brain. 

Researchers have developed many techniques for diagnosing gear faults based on this technology. 

Paya and Esat [43] adopted the neural network to detect gear faults and identify different kinds of 

faults based on the preprocessed data acquired by wavelet transform. The effectiveness of the 

proposed method is investigated by the real time domain vibration signals of the drive-line. The 

multiple faults were successfully detected and classified, which illustrates artificial neural network 

is effective and reliable in diagnosing faults without relying on the experience of operator. 

Saravanan et al. [44] presented a method for classifying gear faults using artificial neural networks 

with extracting features from the vibration data of a bevel gear box by Morlet wavelet technique.  

The objective of pattern recognition is to distinguish different types of patterns on the basis of 

measurements [45]. The technology can classify the inputs into its patterns based on the extracted 

features of the measurements. Staszewski et al. [46] proposed an intelligent diagnostic system for 

detecting different spur gear fault conditions using technique of statistical and neural pattern 

recognition. The types of faults are correctly classified, which shows that the neural pattern 

recognition is capable of detecting local tooth faults in spur gears. 

The support vector machines is a new generation learning system based on statistical learning 

theory. As a novel machine learning method proposed by Vapnik in early 1990s [47], the 

technology has been introduced for health monitoring of gear device, bearing and rotating 

machinery in recent investigations because of its high accuracy and good generalization capabilities. 

Especially, support vector machines are capable of effectively solving the learning problem of a 

small number of samples and avoid the over-fitting problem in artificial neural network. Therefore, 

support vector machines is considered as more suitable to the application of gear fault detection, 

Among the previous studies, Samanta [48] studied the performance of support vector machines on 

detection of gear faults, on a basis of calculating statistical parameters of vibration signals as failure 

features. Saravanan and Ramachandran [49] adopted the method of proximal support vector 

machines for fault diagnosis of spur bevel gear with extracting statistical feature vector from 
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Morlet wavelet coefficients of the signal. 

 

2.2 Discrete Wavelet Transform 

The discrete wavelet transform is a linear transformation that decomposes a signal into multi 

resolution representation with both low frequency coarse information and high frequency detail 

information. The original signal is decomposed into a compact wavelet series with different 

frequency bands, which provides the information of the signal in both time domain and frequency 

domain simultaneously. Therefore, the major advantage of the wavelet transform for analyzing the 

signal is that it possesses multi-resolutions for localizing short-time components so that all possible 

types of gear faults can be displayed by a single timescale distribution resulting from the transform. 

The advantages make it optimal for on line process monitoring of faults diagnosis in mechanical 

rotary parts by analyzing the measured signals. Comparing with the other techniques of wavelet 

transform, the discrete wavelet transform is characterized for its fast computation and strong 

capacity to concentrate information. Moreover, the time-frequency map by discrete wavelet 

transform enables the detection of transitory phenomena in non-stationary signals. Hence, the 

discrete wavelet transform is employed in this study. 

The study of wavelets is started in the 1980’s. In 1985, Meyer constructed an orthogonal 

wavelet base with satisfactory time and frequency localization properties. Later on, Daubechies [28] 

made the wavelet transform become well known and more generalization by constructing 

orthogonal wavelet bases compactly supported in a simple but ingenious way. Daubechies has done 

many researches on wavelet frames that allow more liberty in the choice of the basis wavelet 

functions at a little expense of some redundancy, and developed a series of orthogonal wavelet 

bases with great significance, which are called Daubechies wavelets later. In the past years, there 

are many reports about the application of discrete wavelet transform to the diagnosis of gear faults. 

Wang and McFadden [50, 51], for example, used orthogonal wavelets such as the Daubechies 4 and 

harmonic wavelets to detect abnormal transients generated by early gear damage based on the 

vibration signal of gearbox. Butler-Purry and Bagriyanik developed [52] an automatic detection 

method for internal incipient faults in the transformers using discrete wavelet transform. The 

detection method can provide information to predict failures ahead of time so that the necessary 

corrective actions are taken to prevent outages and reduce down times. Saravanan and 

Ramachandran [34] extracted feature parameters from the vibration signals for diagnosing different 

conditions of gear box by using discrete wavelet transform. The results show that the discrete 

wavelet transform enables to represent all possible types of transients in vibration signals generated 

by gear faults and make a great contribution to condition monitoring and fault diagnosis of gears. 
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Signals acquired from accelerometer mounted on gear box are often inevitably contaminated 

by the interference signal, which is caused by vibrations from shafts, bearings, and other 

components on the testing machine. In addition, the signals are also polluted with the white noise 

which is generated by the accelerometer or the environmental electromagnetic disturbances. Except 

for the signal of interest, the other unnecessary signal components are considered as noise in this 

study. The noise is usually random and unstable, which degrades the accuracy of detection of 

transients generated by gear faults. Therefore, it is necessary to reduce the noise from the original 

signal. The de-noisy function of discrete wavelet transform can effectively filter the noise so as to 

more accurately detect weak impulse in signals. 

The denoising procedure of discrete wavelet transform includes the analysis signal 

decomposition, threshold estimation and signal reconstruction. The estimation method is to select 

the best decomposition level and the best wavelet filter. Hard thresholding and soft thresholding are 

the two main approaches commonly applying to denoising. The algorithm of hard thresholding 

method is setting all the wavelet coefficients below a given threshold value equal to zero, while in 

soft thresholding the wavelet coefficients are reduced by a quantity equal to the threshold value 

[53]. Sqtwolog, heursure, rigrsure and minimax are the widely employed calculating methods of 

threshold value in wavelet transform. The denoising capacity of various methods are investigated 

by the signal to noise, which is defined as a ratio of the power of analytical signal to the power of 

the noise [54]. The denoising of discrete wavelet has been applied in many studies. In 1999, Pasti et 

al. [55] proposed a method to optimize the parameters used in signal denoising in discrete wavelet 

transform. The method tries to search the most appropriate decomposition level and wavelet filter 

function for denoising in the discrete wavelet domain. The result confirms the effectiveness of the 

de-noisy technique in white noise signal. Littler and Morrow [56] presented the application of 

discrete wavelet transform to denoising disturbance signals in power system. The transient fault 

signals are enhanced, which demonstrates the validity of the denoising method. Menon et al. [57] 

employed the wavelet-based method to eliminate the background operational noises to detect small 

fatigue cracks in rotor head components. 

 

2.3 Support Vector Machines 

Support vector machines (SVMs), based on structural risk minimization principle in statistical 

learning theory, are a novel machine learning method developed by Vapnik in early 1990s [58]. 

Fundamentally, support vector machines are binary classification algorithm with strong theoretical 

foundations in statistical learning theory. It is initially dealt with linear classification problems by 

constructing an optimal separating hyper-plane for high classification accuracy. Based on a given 
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set of training examples with two classes, the SVMs build a classifier that predicts whether a new 

sample falls into one category or the other (this can be extended to multi-class problems). The 

SVMs try to search for an optimal linear boundary to separate the data precisely, and ensure the 

classification distance between two classes is maximum to improve the classification accuracy [59]. 

Substantially, support vector machine is a training algorithm for learning classification and 

regression rules from data.  

The intelligent system for fault diagnosis and condition monitoring, developed with artificial 

neural networks, pattern recognition and so on, has been widely used in many areas [60]. Based on 

the structural risk minimization principle, SVMs can minimize the empirical risk of the training 

sample, ensure generalization capability of leaning process, and can successfully overcome the 

defects of over-fitting, local optimal solution and low-convergence rate existing in the neural 

network [61]. Therefore, SVMs have gained popularity in the machine learning community. The 

method has been successfully applied in many areas, such as computer vision [62], pattern 

recognition [63], industry process monitoring [64] and so on. During the recent past years, methods 

of intelligent system for diagnosing machine failures using SVMs are introduced [65, 66]. 

Especially, SVMs are capable of effectively solving the learning problem of a small number of 

samples [67]. Since it is difficult to obtain sufficient samples in practice, SVMs are introduced for 

health monitoring or fault diagnosis of gear device, bearing and rotating machinery in recent 

investigations. Researchers have developed many methods for fault detection using SVMs, with 

extracting failure features by various techniques.  

In the reported studies, Samanta [48, 68] studied the performance of SVMs on fault detection 

of gear and bearing, on a basis of calculating statistical parameters of vibration signals as failure 

features. The study compares the performance of fault detection using two different classifiers, 

which are built using artificial neural networks and support vector machines separately. The 

presented method is investigated by the experimental vibration data on gear box and bearing. Based 

on the experimental results, it is found that the performance of SVMs on fault detection is 

substantially better than that of artificial neural network. Sugumaran, et al. [69] proposed an 

intelligent method for fault diagnosis of roller bearing using SVMs. The vibration signal from a 

piezoelectric transducer is captured for the following conditions: good bearing, bearing with inner 

race fault, bearing with outer race fault, and inner and outer race fault. A set of statistical features 

are extracted from the vibration signal as input vectors to classifier of SVMs for diagnosis. 

Different conditions of bearing are successfully identified, which confirms the effectiveness of the 

proposed method. Saravanan and Ramachandran [49] adopted the method of proximal SVMs for 

fault diagnosis of spur bevel gear with extracting a group pf statistical feature vector from Morlet 

wavelet coefficients of the time-domain vibration signal. The selected parameters are treated as 
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inputs to SVMs for classification. The satisfactory results for large classes of data are acquired 

using the developed method in less time. Xue, et al. [70] presented an intelligent diagnostic method 

for identifying structural faults in rotating machinery based on SVMs under varied operating 

conditions. The optimal distinctive frequency components are extracted from vibration signals as 

feature vectors input into the classifiers of SVMs to identify fault types of rotating machinery. The 

efficiency of the presented method has been investigated using practical examples. 

Because the acquired original experimental data can’t be directly inputted into classifier of 

SVMs, we need to extract appropriate feature parameters to represent the distinctive characters of 

the signal. The diagnostic accuracy of SVMs considerably depends on the extracted failure features. 

For ensuring excellent classification performance of SVMs, it is important to extract optimal 

feature parameters from the original signal. Recently, the use of feature extraction and feature 

selection for data preparation before inputting into classifier has received considerable attention 

[71]. Many diagnostic systems for fault detection have been developed based on combining SVMs 

with features extraction methods such as continuous wavelet transform, statistical technique, 

frequency analysis and so on. Because the investigated subjects are different, although all the 

studies adopt the same SVMs method for fault detection, the signal preprocessing techniques or the 

failure features extraction methods are different. For instance, Samanta and Sugumaran both 

extracted statistical features from the original vibration signals, while Saravanan firstly 

preprocessed the signal by wavelet transform, then extracted statistical features from Morlet 

wavelet coefficients. Essentially, all the techniques are aimed to improve the diagnostic accuracy. 

In this study, I try to employ SVMs to the application of gear damage diagnosis and classification 

with extracting optimal features from the vibration signal with different methods.  

 

2.4 Empirical Mode Decomposition 

Local faults in gears always produce transient modifications in vibration signals. Therefore, 

these signals have to be considered as non-stationary. Empirical mode decomposition (EMD) as a 

new data processing method was recently introduced by Huang et al. [72], especially for analyzing 

data from nonlinear and non-stationary processes. The algorithm is based on a simple assumption 

that any data consists of different simple intrinsic modes of oscillations which have the same number 

of extremas and zero-crossings. With the initial processing of EMD, any linear or nonlinear signal 

can be decomposed into a finite sum of components known as intrinsic mode functions, each of 

which represents a simple oscillatory mode as a counterpart to the simple harmonic function and 

varies with the variation of the original signal. In contrast to other traditional time-frequency 

analysis methods, the EMD approach does not use pre-specified basis functions or filters but 
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instead decomposes a signal with a posteriori defined basis which is directly derived from the 

analytical data [73]. Therefore, it is highly adaptive and consequently can well present the time–

frequency characteristics of a signal. 

With the recent development on EMD method, the technique has already been employed 

successfully in wide applications : earthquake, climate variability, analysis of daily surface air 

temperature data, nonlinear ocean waves, detection of structural damage, health-monitoring and so 

on [74]. Recently, literatures of its applications on the failure detection of gear [75-78], bearing 

[79-81] and rotary machine [82] have been reported. Loutridis [75] presented the application of 

condition monitoring and detection of gear faults using EMD. Experimental vibration signals from 

a test rig are decomposed into a set of intrinsic mode functions. The energy of the intrinsic modes 

is calculated as features for gear failure prediction. The experimental results show the extracted 

energy of intrinsic modes is sensitive to gear damage, and confirm the efficiency of the proposed 

method. Liu et al. [76] applied the EMD method to vibration signal analysis for diagnosing faults in 

gearbox. The vibration signals collected from an automobile gearbox are employed to investigate 

the effectiveness of the proposed method. The results show that the EMD method can successfully 

detect and locate damage on gearbox. In addition, comparing with the traditional continuous 

wavelet transform, it presents more effective in detection of the vibration signatures. Yu et al. [79] 

developed a method for fault diagnosis of roller bearing by combining the envelop analysis and 

EMD method. In the proposed method, the EMD method and Hilbert transform are applied to the 

envelop signal acquired using wavelet bases. Then the local Hilbert marginal spectrum can be 

obtained, from which the faults in a roller bearing can be diagnosed and fault patterns can be 

identified. Vibration signals collected from roller bearings with out-race faults or inner-race faults 

are adopted to investigate the proposed method. It is found that the presented method is effective in 

extracting fault features of roller bearings. Gao et al. [82] investigated the application of EMD 

based approach for rotating machine fault diagnosis. A practical vibration signal of a power 

generator from a thermal-electric plant is used to diagnose the faults. Fault features are extracted 

from the decomposed intrinsic mode functions acquired using EMD method. The results show that 

the EMD method can extract fault features of the rotating machine and identify the fault patterns 

effectively. 
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3 Types of Gear Failures 

 

3.1 Introduction 

There are many factors that can cause various gear failures [83]. The gear failure would be 

different because of the gear material, operating situation, environment, lubricant, loads and so on. 

This chapter introduces representative types of gear failures. 

 

3.2 Tooth Fracture 

a) Fatigue breakage 

The fatigue breakage may be caused by excessive tooth loads which result in root stresses 

higher than the endurance limit of the material. When the teeth work under loads, the high stress 

concentration together with highest tensile stress is normally exist at the root of the tooth or at the 

fillet. Therefore, when gears are loaded in this manner and subjected to enough repeated stress 

cycles, the initiation of crack usually takes place at the root of the teeth. Then crack propagates fast 

and suddenly results in fracture of the tooth. Figure 3.1 shows the photograph of gear tooth with 

fatigue breakage [83]. 

 

 

Fig. 3.1 Photograph of fatigue breakage [83] 
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b) Overload breakage 

Overload breakage results from a short-cycle overload or impulsive load which exceeds the 

tensile strength of the gear material. Figure 3.2 shows the photograph of overload breakage [83]. 

 

 

Fig. 3.2 Photograph of overload breakage [83] 

 

 

Fig. 3.3 Photograph of pitting [83] 
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Fig. 3.4 Photograph of spalling [83] 

 

3.3 Damage of Gear Tooth Surface 

a) Surface fatigue 

    If the repeated contact stress exceeds the limited fatigue strength of the contact area, 

damage would occur because of the fatigue of tooth surface or the material under surface. 

This type of damage is called surface fatigue, which mainly includes pitting and spalling. 

(1) Pitting 

    Pitting occurs due to repeated loading of tooth surface and the contact stress exceeding the 

surface fatigue strength of the material. Material in the fatigue region gets removed and a pit is 

formed. In the process of meshing, because the number of teeth is relatively few when mesh around 

the pitch line, the contact stress and friction force is large on the pitch line region. Therefore, 

pitting usually initially occurs on the pitch line region of a tooth. The failure of pitting is shown as 

Fig. 3.3[83]. 

    (2) Spalling 

    Because of the high loading, the fatigue of material under the tooth surface would generate. 

Some larger sheet metals spall from the tooth surface, which is called spalling. Figure 3.4 shows 

the photograph of spalling [83]. 
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Fig. 3.5 Photograph of abrasive wear [83]            Fig. 3.6 Photograph of scratching [83] 

 

Fig. 3.7 Photograph of fretting corrosion [83] 

 

b) Wear 

Wear is a kind of tooth damage which generates during the sliding contact of metal surface. It 

would progressively remove metal from the surface. Wear is classified into abrasive wear, 

scratching and fretting corrosion. 

(1) Abrasive wear 

    Abrasive wear is a main failure type in aspect of open gearing. The abrasive particles in the oil 

dust, sand grains, and iron fillings adhering on the meshing teeth surface may result in abrasive 

wear. Figure 3.5 shows the photograph of abrasive wear [83]. 

(2) Scratching 

Scratching damage is larger and deeper than abrasive wear. The burr and protuberance of 

tooth surface, and larger foreign abrasive particles may cause the scratching damage. Figure 3.6 

shows the photograph of scratching damage [83]. 

(3) Fretting corrosion 
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Because of the slight vibration between contact surface of gear coupling, the relative 

reciprocating motion is generated between meshing teeth surface, which may cause fretting 

corrosion. Figure 3.7 shows the photograph of fretting corrosion [83]. 

c) Plastic deformation 

    Plastic deformation is the permanent undulating distortion of materials, which is commonly 

caused by the excessive loads. Plastic deformation is classified as plastic flow, ripping and ridging. 

    (1) Plastic flow 

Plastic flow of tooth surface occurs when it is subjected to high contact stress under rolling 

cum sliding action. Surface deformation takes place because of yielding of surface or subsurface 

material. Usually it occurs in softer gear materials. But it can occur on hardened gears in case of 

heavy loading. The damage of plastic flow is shown in Fig. 3.8 [83]. 

    (2) Rippling  

    Ripping is a kind of wear which often occurs in operation of heavy load and low speed with 

very thin oil films. It has fish scale appearance and usually occurs on hardened gear surface. Figure 

3.9 shows the photograph of rippling [83]. 

             

Fig. 3.8 Photograph of plastic flow [83]                Fig. 3.9 Photograph of rippling [83] 

 

Fig. 3.10 Photograph of ridging [83] 
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(3) Ridging 

After running for a longer time in the situation of inappropriate lubrication or heavier load, the 

pair of gears will often exhibit ridge along the pitch line of wheel and groove in the pitch line of the 

pinion. Figure 3.10 shows the photograph of ridging [83]. 

d) Thermal failure 

Normally, thermal failure is caused by the higher temperature which is generated in the 

friction between teeth surface. The representative thermal failures are introduced as follows. 

(1) Scoring 

In the gear transmission with heavy load and low speed, the lubricating oil film may rupture in 

local contact region because of the overheating of friction. The lubrication failure will cause the 

direct contact of metal to metal. Later on, teeth surface agglutination and tearing action resulting 

from metallic contact removes the metal rapidly and continuously. Scoring usually occurs on the 

faster sliding region of the tip or root of tooth. Figure 3.11 shows the photograph of scoring [83]. 

 (2) Burning 

Because of the excessive speed, overload, and failure lubrication, the color of tooth surface 

will change for the friction overheating of local contact region. The failure of burning not only 

results in the hardness of material becoming lower, but also causes the endurance limit fatigue 

strength become weaker. 

 

 

Fig. 3.11 Photograph of scoring [83]  



 

21 

 

4 Damage Contrast Test  

 

4.1 Introduction  

In order to investigate the influence of load torques, gear rotation speeds and size of gear 

damage on the vibration accelerations, the damage contrast test is carried out. Three kinds of gears, 

namely normal gear, spot damaged gear and pitted gear, are tested under different loads and gear 

rotation speeds on the power circulating type gear testing machine. The vibration accelerations of 

gear box and bearing box are measured in the experiment. The technique of Fast Fourier Transform 

is employed to analyze the original signal, by which the frequency spectrum is obtained. Because 

the collected vibration signal is usually non-stationary, and the failure symptoms are not obvious 

especially in the early stage of gear failure. In order to emphasize the failure characteristics of the 

measured signals, the residual signal is extracted from the original vibration accelerations. 

Moreover, the method of discrete wavelet transform is adopted to reduce noise from the residual 

signal. The processed signal is obtained by reconstructing the coefficients of discrete wavelet 

transform. 

 

4.2 Experimental Apparatus 

The vibration data analyzed in this chapter was measured on a power circulating type gear 

testing machine, whose photo is shown in Fig. 4.1. Figure 4.2 shows the scheme of the gear testing 

machine. The total length and total width of the power circulating type gear testing machine are 

about 2 meters and 1 meter respectively. It mainly consists of a variable-speed three-phase driving 

motor, a pair of test gears, a test gear box, two bearing boxes, two accelerometers, a loading device, 

and a slave unit. The load on test gears is set by the loading coupling and torsion bar. The coupling 

○
5  is loaded by a connecting lever with some weights. Then, the loading coupling is screwed 

together with the torsion bar ○6 . Therefore, the load is set on test gears. Two accelerometers (type- 

type NP-2120, Ono Sokki Co., Ltd., Kanagawa, Japan) are set at the center of the upper part of 

both test gear box and bearing box. They are used to measure the vibration accelerations. A sound 

level meter (type LA-1210, Ono Sokki Co., Ltd., Kanagawa, Japan) is placed 300 millimeters 

beside the gearbox to measure the gear noise during the experiment. The measured gear noise is 

recorded by the data recorder. To extract a periodic signal from the measured data for a detail 

analysis, a pitch disk with one hole is installed on the gear shaft together with the test driven gear. 

Then, a photosensor is used to generate the pitch signal of meshing gear pair. The output pitch 
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signal is recorded by the data recorder (type TM-3100, Ono Sokki Co., Ltd., Kanagawa, Japan). 

Figure 4.3 shows the measurement mechanism of pitch signal. When the light shines through the 

hole, the pulse level is high, otherwise the pulse level is low. 

The lubrication method was oil bath and turbine oil ISO VG32 was selected as the lubricant. 

Because the viscosity of lubricants varies with the temperature of lubricants, which will influence 

the vibration of test gears, it is necessary to stabilize the temperature of lubricants. The T type 

thermocouples are used to monitor the oil temperature. The fixing position of thermocouples is 

shown in Fig. 4.4. The temperature of lubricant is kept at 313±3 K using a heater (type sensitively 

SR-51, YAMATO) and refrigeration pipe. A thermometer placed on the test gear box cover is used 

to measure the temperature to control the heater. The diagram of refrigeration for test gear box is 

shown as Fig. 4.5. Figure 4.6 shows the diagram of temperature control of lubricant using 

thermometer and heater. 
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      Fig. 4.1 Photo of the power circulating type gear testing machine 
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Fig. 4.3 The measurement mechanism of pitch signal 

 

              

Fig. 4.4 Fixing position of thermocouples    Fig. 4.5 The diagram of refrigeration in test gear box 

 

Fig. 4.6 The diagram of temperature control of lubricant using thermometer and heater 
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4.2.1 Measurement of Vibration Acceleration 

    The vibration accelerations on gear box and bearing box are measured by accelerometers 

(type- type NP-2120, Ono Sokki Co., Ltd., Kanagawa, Japan). Figure 4.7 shows the fixing 

positions of accelerometers on test gear box and bearing box. Two accelerometers are installed at 

the center of the cover of both test gear box and bearing box. Figure 4.8 shows the block diagram 

of measurement of vibration acceleration, gear noise and pitch signal. The obtained signals 

measured by accelerometers are inputted into the charge amplifier (type CH-1200, Ono Sokki Co., 

Ltd., Kanagawa, Japan). The amplified signals are recorded by the data recorder. Meanwhile, the 

noise signal and pitch signal are recorded by the data recorder synchronously. 

 

Fig. 4.7 The fixing positions of accelerometers on test gear box and bearing box 

 

 

Fig. 4.8 The block diagram of measurement of vibration acceleration, noise signal and pitch signal 
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4.3 Test Gears 

4.3.1 Specifications of Test Gear 

Three kinds of gears, namely normal gear, spot damaged gear and pitted gear, were tested. 

Especially, the gear with a drilled spot damage on one of its teeth surface is called spot damaged 

gear I, with two drilled spots damage is called spot damaged gear II and with three drilled spots 

damage is called spot damaged gear III. Their dimensions are shown in Table 4.1. Figure 4.9 shows 

the diagram of test gears. The test gears are the involute spur gears whose module is 4mm, number 

of teeth is 29, and pressure angle is 20
o
. They are made of thermal refining steel JIS S45C, the gear 

surface finishing is hobbing, and the accuracy is JIS B1702 Grade 4.  

The damaged area is measured by the method of Suzuki’s Universal Micro Printing. 

According to this method, the tooth surface is copied and is amplified about 10 times by the 

projector. Then, the damaged part is traced and is recorded by the computer. Finally, the damaged 

area is calculated by using some software for area measurement. The average damaged area ratio is 

defined as a rate of the whole failure area of test gears to the entire meshing area of the two 

meshing gears. While the maximum damaged area ratio is defined as a rate of the maximal 

damaged area of a gear tooth to the entire area of the two meshing teeth. 

Figure 4.10 shows the tooth surface of test gears. Figure 4.10 (a) shows the normal gear with 

no failure on tooth surface. The spot damaged gear I shown in Fig. 4.10 (b) has a drilled spot 

damage with diameter 2 mm around the pitch line on the No. 1 tooth surface, whose average 

damaged area ratio is 0.1% and the maximum damaged area ratio of a tooth is 2.8%. Figure 4.10 (c) 

shows the tooth surface of spot damaged gear II with two drilled spots damage around the pitch 

line on its No.1 tooth surface. Its average damages area ratio is 0.15% and the maximum damaged 

area of a tooth is 4.44%. Figure 4.10 (d) shows the tooth surface of spot damaged gear III with 

three drilled spots damage around the pitch line on its No. 16 tooth surface. Its average damages 

area ratio is 0.23% and the maximum damaged area of a tooth is 6.53%. The tooth surfaces of 

pitted gear are shown in Figure 4.10 (e). Because the damaged teeth of pitted gear is large, the 

tooth surface of No. 5, No. 20 and No. 26 teeth are selected to represent the surface of pitted gear. 

The damaged area ratio of every gear tooth changes from 0% to 24.6%, and the average damaged 

area ratio of the whole gear is 2.5%. In this experiment, the spot damage is artificially created by 

drilling, while the pitted gear failure is generated naturally in service. 
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Table 4.1 Dimensions of test gears 

Tooth profile Involute 

Module               m [mm] 4 

Number of teeth        z1/z2 29/29 

Pressure angle         �"	[deg] 20 

Addendum            ha [mm] 4 

Dedendum            hd [mm] 5 

Pitch circle diameter    d [mm] 116 

Tip circle diameter     da [mm] 124 

Face width            b [mm] 10 

Contact ratio          � 1.65 

Material JIS S45C Thermal refining steel 

Surface finishing Hobbing 

 

 

Fig. 4.9 The diagram of test gears 
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(e) Pitted gear 

Fig. 4.10 Photographs of tooth surface of test gears 
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4.3.2 Tooth Profile Error 

Figure 4.11 shows the tooth profile error of test gears. The spot damage is all drilled on the 

pitch line of test gear surface. The tooth profile error of spot damaged gear I is adopted to present 

the tooth profile error of the spot damaged gear. The teeth of driving gear shown in Fig. 4.11 (b) 

and 4.11 (c) have spot damage and pitted failure respectively. All test gears were manufactured 

with the same lot, such as the same material, the same process, the same cutting machine and so on. 

The difference of tooth profile error on driven tooth between the normal gear and spot damaged 

gear is not obvious. The tooth profile error of driving tooth of spot damaged gear is large. The tooth 

profile error of pitted gear is larger than that of the other gears. Because the pitting failure is 

generated naturally in service, the tooth profile error will become larger with the deterioration of 

tooth surface after a long working time. 

                

(a) Normal gear      

             

(b) Spot damaged gear 

             

(c) Pitted gear 

Fig. 4.11 Tooth profile error of test gears 
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4.4 Experimental Conditions 

Test gears were driven by the motor with speed from 1200 rpm to 3000 rpm by increments of 

600 rpm. A number of tests are repeatedly carried out under different loading torques of 40 N-m 

and 70 N-m with the same speed respectively. The temperature of lubricant is kept at about 60℃±3℃

to reduce the influence of lubricant viscosity in the vibration of test gears. The vibration 

accelerations on gear box and bearing box, the sound level signal and the pitch signal are measured 

during the experiment. The sampling frequency is 20 kHz and test time is 2s.  

 

4.5 Experimental Results and Discussions 

    Analyzing the vibration accelerations of gear box or bearing box is one of the most effective 

methods to detect the gear damage. The vibration accelerations on gear box and bearing box, sound 

level signal and pitch signal are obtained during the damage contrast test. However, due to 

unsteady gear rotation, lubrication situation, tooth stiffness variations, and other reasons, the 

collected vibration signal is usually non-stationary, and the failure symptoms are not obvious 

especially in the early stage of gear failure. Hence, how to emphasize the failure characteristics of 

the measured signals and extract failure features from collected data is crucial for gear failure 

diagnosis. To address this, the residual signal is obtained from the raw signal in this paper because 

of its much less sensitive to the altering experimental conditions and more obvious representations 

of failure signatures. Because the noise contained in residual signal is relatively large, the method 

of discrete wavelet transform is employed to reduce noise from the residual signal and the 

coefficients of discrete wavelet transform are reconstructed as the processed signal as analytical 

data for the following study. In the following sections, the experimental results are presented and 

analyzed. 

 

4.5.1 Vibration Accelerations on Gearbox and Bearing box and Sound Level Signal 

Figures 4.12~4.21 separately show the vibration accelerations on gear box and bearing box of 

test gears measured under conditions of applied torque T=40, 70N-m and rotation speeds n= 1200, 

1800, 2400 and 3000rpm. The waveform corresponds to one wheel revolution. The abscissa axis 

shows gear tooth number and the ordinate axis represents the vibration acceleration. 

As shown in Figs. 4.12 and 4.13, the vibration accelerations of normal gear are nearly stable 

and there are no abnormal large amplitudes in the waveform. In Figs. 4.14 and 4.15, the vibration 

accelerations on bearing box change slightly. However, the waveform on gear box is always 
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fluctuating over the whole period. The spot damaged gear I has a spot damage on its No.1 tooth 

surface. Some larger amplitude occur around No.1 tooth in the waveform on gear box in Figs. 4.14 

(c) and (c), Figs. 4.15 (a) ~ (c). In spot damaged gear II, the 2 spots damage is drilled on the tooth 

surface of No. 1 tooth. In Figs. 4.16 and 4.17, although the vibration accelerations on gear box 

fluctuate, it is still difficult to detect gear damage only based on the original waveform. Figures 

4.18 and 4.19 present the vibration accelerations of spot damaged gear III which has 3 drilled spots 

damage on its No. 16 tooth surface. As shown in the two figures, the larger amplitudes almost 

appear around No. 16 tooth in all of the vibration accelerations on gear box. Besides, in Figs 4.19 

(c) and (d), the waveform on bearing box also appears the indication of damage. Most of the 

vibration accelerations on bearing box changes slightly. Figs 4.20 and 4.21 represent the vibration 

accelerations of pitted gear. The short-time larger amplitude appears around No. 7 tooth both in 

waveforms on gear box and bearing box. It indicates that the pitting damage on No. 7 tooth surface 

is more serious. 

As found in these figures, the vibration acceleration on gear box is a little larger than that on 

bearing box. The waveform on bearing box is more stable than that on gear box. Comparing with 

the vibration accelerations on gear box, it is more difficult to detect gear damage based on the 

vibration accelerations on bearing box whether the failure is slight or serious. This can be 

considered as: the gear box and bearing box are respectively installed on the same baseplate 

through the screw connection. The vibration of test gears will generate the vibration of bearings 

through the gear shaft between them. Then, the vibration of bearing causes the vibration of bearing 

box and the vibration of baseplate. Then, the vibration of gear box is resulted from the vibration of 

baseplate. The accelerometers are set at the center of the gear box cover and the upper part of 

bearing box. The thickness of the upper part of bearing box is larger than the stiffness of gear box 

cover. The stiffness of the upper part of bearing box is larger than that of gear box cover. Moreover, 

the width of gear box cover is larger than that of bearing box. Therefore, the vibration of gear box 

cover is stronger than that of the upper part of bearing box. In addition, along with the increase of 

rotation speeds the vibration accelerations become larger and the indication of damage also 

becomes more and more obvious, such as Figs. 4.18~4.21. The vibration accelerations acquired 

under T=70N-m is a little stronger than that acquired under T=40N-m. Generally, the vibration 

acceleration gradually increases in the order of normal gear, spot damaged gear, and pitted gear. 

The reason for this is that the large vibration acceleration is mainly generated by the tooth profile 

error which becomes larger along with the increase of the damaged area. Since the amplitudes of 

waveform are large and fluctuate strongly when the pitting area is large, the gear condition of 

severe failure can be diagnosed roughly according to the measured waveform, such as pitted gear. 

However, it is difficult to detect the early gear damage from the original signals, such as spot 
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damaged gear I and II. 

The noise is generated by the vibration of gears and other components of the machine. 

Moreover, the noise changes with the variation of gear conditions. However, the sound level signal 

is easily affected by the vibration of the other parts of the testing machine or the disturbance from 

the environment. Therefore, it makes more difficult for operators to measure and analyze the sound 

level signal. Figure 4.22 presents the sound level signal in one rotation of test gears acquired under 

conditions of n=1800rpm, T=40N-m and 70N-m respectively. The abscissa axis shows the gear 

tooth number and the ordinate axis represents the sound pressure. The sound level signal of normal 

gear and spot damaged gear is nearly stable, and the transient abnormal amplitude can’t be found in 

these signals. The sound pressure of pitted gear is larger than that of the other gears. However, it is 

still difficult to diagnose gear damage only based on the original sound level signal. 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.12 Vibration accelerations of normal gear under load T=40N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.13 Vibration accelerations of normal gear under load T=70N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.14 Vibration accelerations of spot damaged gear I under load T=40N-m  
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.15 Vibration accelerations of spot damaged gear I under load T=70N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.16 Vibration accelerations of spot damaged gear II under load T=40N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.17 Vibration accelerations of spot damaged gear II under load T=70N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.18 Vibration accelerations of spot damaged gear III under load T=40N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.19 Vibration accelerations of spot damaged gear III under load T=70N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

 

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.20 Vibration accelerations of pitted gear under load T=40N-m 
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(a) Vibration accelerations on gear box and bearing box under n=1200rpm 

  

(b) Vibration accelerations on gear box and bearing box under n=1800rpm 

  

(c) Vibration accelerations on gear box and bearing box under n=2400rpm 

  

(d) Vibration accelerations on gear box and bearing box under n=3000rpm 

Fig. 4.21 Vibration accelerations of pitted gear under load T=70N-m 
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Fig. 4.22 Sound level signal under T=40N-m and 70N-m, n=1800rpm  
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4.5.2 Frequency Analysis of Vibration Accelerations 

In frequency domain, the spectrum is always varying with the gear conditions. The meshing 

frequency and its harmonics, together with sidebands show respective characteristics of various 

gear conditions. The meshing frequency and its harmonics are the main components of the 

vibration signal. In case of a localized fault on tooth surface, the amplitude and phase modulation 

of the meshing frequency can be visible in frequency spectrum of the vibration signal. In the other 

words, sidebands will appear around the meshing frequency and its harmonics, the spacing of 

sidebands corresponds to the rotational frequency of the shaft carrying the defective gear [5, 84]. 

Therefore, fault features can be detected by analyzing the frequency spectrum of vibration signal. 

The signals acquired from accelerometer mounted on gear box are often inevitably contaminated 

by the interference signal, which is caused by vibrations from shafts, bearings, and other 

components on the testing machine. In addition, the signals are also polluted with the white noise 

which is generated by the accelerometer or the environmental electromagnetic disturbances. Except 

for the signal of interest, the other unnecessary signal components are considered as noise in this 

study. The noise is usually random and unstable, whose variation would be reflected in the 

frequency spectrum, especially in the high frequency bands. 

I adopt the frequency spectrum of vibration accelerations on gear box under T=70N-m and 

n=1800rpm to representatively illustrate the characteristics of gear damage in frequency domain, 

which is shown in Fig. 4.23. Figures on the left depict the holistic spectrum of the signal, while 

figures on the right presents the details of meshing frequency and its sidebands. With the 

experimental conditions of gear rotation speed n=1800rpm and the number of teeth 29, the 

rotational frequency and the meshing frequency are 30Hz and 870Hz respectively. The natural 

frequency of system is about 3000Hz, and the analytical frequency is 10 kHz in Fast Fourier 

Transform.  

From the spectrum of vibration signal for normal gear, it can be seen that the spectrum for 

normal gear is mainly dominated by the meshing frequency, two harmonic components and the 

natural frequency. High-order harmonics hardly appear in the spectrum, and the amplitudes of high 

frequencies are quite small, which shows the noise contained in the measured signal is weak. 

Moreover, the sidebands around the meshing frequency are narrow and weak, which indicates that 

there is no damage on the gear tooth surface. 

In the spectrum of vibration signal for spot damaged gear I, the natural frequency, and the 2nd 

and 3rd harmonics become more significant and dominating and the amplitude of meshing 

frequency becomes smaller. Moreover, the modulation sideband around the meshing frequency 

with the frequency interval of rotational frequency becomes large, but it is still not obvious. This is 
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because the damaged area is small, which is incapable of strongly impacting the vibration of gears. 

Therefore, the modulation phenomenon is not clear. 

In the spectrum of vibration signal for spot damaged gear II, the 3rd and 4th harmonics and 

natural frequency becomes more significant and dominating. In addition, the amplitude of the 

modulation sideband around the meshing frequency is large. In the spectrum of vibration signal for 

spot damaged gear III, the harmonics and sidebands become larger and wider. The modulation 

phenomenon is clearly observed from the spectrums for spot damaged gear II and III. 

As shown in the spectrum of pitted gear, the natural frequency and harmonics appear with 

significant amplitude and the amplitude of meshing frequency is relatively weaker. Especially, the 

3rd harmonic and natural frequency account for a considerable proportion in the spectrum. In 

addition, the sidebands around the meshing frequency are wide and strong, which shows the gear 

condition is abnormal. 

Comparing the spectrums for normal gear, spot damaged gear and pitted gear, it is found that 

the amplitudes of harmonics and the natural frequency become larger with the increase of damaged 

area. Similarly, the sidebands also become stronger and broader. This is because the tooth profile 

error caused by gear damage intensifies the vibration when the failure tooth meshing, which can 

generate larger modulation of amplitude and phase in frequency spectrum. Consequently, the 

frequency spectrum can represent particular characteristics of various gear conditions, and 

representative failure features can be extracted from the spectrum. 
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Fig. 4.23 Frequency spectrum of the vibration acceleration under T=70N-m, n=1800rpm 
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state of the target gear is concentrated at the meshing frequency and its harmonics, the residual 

signal will be much less sensitive to the alternating experimental conditions than the original 

signal. 

I just present the residual signals on gear box and bearing box under conditions of load 

T=40N-m, 70N-m and rotation speed n=1800rpm. The residual signals corresponding to one wheel 

revolution are shown in Figs. 4.24 and 4.25. As shown in these figures, the residual signal of the 

normal gear is still stable. Comparing with the original signal, the fluctuation of the amplitude 

seems to be strengthened in the residual signal of spot damaged gear. Especially in the residual 

signal of spot damaged gear III in Fig. 4.25, the amplitude around No. 16 tooth seems larger in the 

waveform on bearing box. The evident of fault impulse for spot damage is a little more obvious in 

residual signals on gear box. However, it is still hard to detect gear faults from the residual signal 

on bearing box. There is no evident indication in the residual signal for spot damaged gear II. 

Although the residual signal can strengthen the characteristics of gear damage to some extent, it is 

still hard to diagnose the early gear faults only based on the residual signal. Additionally, the 

amplitude value of the residual signal is smaller than that of the raw signal. The reason for this is 

considered as the harmonics and resonance signal is eliminated from the raw signal and the energy 

of the residual signal becomes smaller.  
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Fig. 4.24 Residual signals of vibration accelerations under T=40N-m and n=1800rpm  
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Fig. 4.25 Residual signals of vibration accelerations under T=70N-m and n=1800rpm 
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4.5.4 Processed Signal Acquired Using Discrete Wavelet Transform 

Wavelet analysis has been the favorite analytical tool of gear damage detection in 

time-frequency domain and used to extract the failure signatures from the measured signal in many 

studies [51, 86]. Because the noise contained in the residual signal is relatively large and affects the 

diagnosis of gear damage, it is necessary to eliminate the noise from the residual signal. In this 

study, discrete wavelet transform with Daubechies 4 wavelet was employed to reduce the noise 

from the residual signal. After that, the coefficients of discrete wavelet transform with noise filtered 

are reconstructed as analytical data, called processed signal, for extracting characteristic parameters 

in the following study. 

Unlike the Fourier transform, in which a signal is decomposed in to a sinusoid function basis, 

the wavelet transform uses a more general basis to decompose the signal into a series of resolutions 

in a single time-scale display. Because the wavelet transform uses a series of sizes of windows to 

compare with all sections of the signal, it is possible to display the symptoms of damage all 

simultaneously. According to the algorithm of wavelet transform, the original signal x(t) can be 

decomposed into a family of functions which are the translation and dilation of a unique-valued 

function !(�). The wavelet transform is defined as the following equation [50]: 

)*+(,, -) = / �(�),01 2⁄ !(,01(� − -))d56
06 																																																																																(4.3) 

Where, s is a scaling factor which produces dilation, - is the time or some other spatial 

coordinate, and !(�) is called a wavelet. The corresponding wavelet family is generated by 

translation of the wavelet in the time domain and dilation in the scale domain. The wavelet family 

is defined as[50]: 

!�,:(�) = 	 ,01 2⁄ !;,01(� − -)<							(-, ,	 ∈ >2)																																																																													(4.4) 
Where, R denotes the set of real numbers. Any function x(t) in R

2
 can be characterized by its 

decomposition of the wavelet family of equation (4.4). A wavelet transform can be interpreted as a 

decomposition of a signal into a set of frequency channels. 

Make, , = ,"? , - = �-","?,	the discrete wavelet family is defined as: 

!?,�(�) = 	,"0? 2⁄ !;,"0?� − �-"<							(@, �	 ∈ A2)																																																																										(4.5) 
Where, Z denotes the set of integers. The discrete wavelet transform is defined as [50]: 

)*+(@, �) = / �(�),"0? 2⁄ !;,"0?� − �-"<	d56
06 																																																																										(4.6) 



−
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because some noise is reduced from the residual signal, the energy of the signal become weaker. In 

the processed signal of normal gear, the waveform on gear box and bearing box is stable over the 

period. For spot damaged gear I, the amplitude of the signal before No. 5 tooth is much larger than 

that of the other parts. It can be considered that some damage may exist between No.1~5 teeth of 

the test gear. The abnormal indication can’t be found from the processed signal on bearing box. For 

spot damaged gear II, although the processed signals on gear box fluctuates irregularly, it is still 

impossible to detect gear damage based on the indications. For spot damaged gear III, the 

amplitudes around No. 16 tooth is obviously large in the processed signals on both gear box and 

bearing box. Especially, the indication of gear damage is strengthened in the processed signal of 

bearing box. For the pitted gear, the difference of amplitude value becomes larger. The fault 

indication is more significant in the processed signal. In the processed signals of spot damaged gear 

I, III and pitted gear, the amplitude value of normal teeth is reduced more than that of the damaged 

tooth, which enlarges the difference of the waveform. Therefore, the fault features are more clearly 

visualized in processed signals. It is investigated that the method of discrete wavelet transform can 

contribute to strengthen the characteristics of damage. 

 

 

  



 

55 

 

  

  

  

  

  

Fig. 4.26 Processed signals of vibration accelerations under T=70N-m and n=1800rpm  
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4.6 Summary 

    In this chapter, the damage contrast test is performed. The vibration accelerations on gear box 

and bearing box and the sound level signal are presented and discussed. The original vibration 

accelerations are analyzed using Fast Fourier Transform and discrete wavelet transform. The 

frequency spectrum, residual signal and processed signal are obtained from the vibration 

accelerations. 

The following conclusions can be drawn from the present work. 

1. The large damage on tooth surface will cause transient larger amplitude in the original 

vibration signals, based on which the abnormal gear condition can be diagnosed. However, the 

abnormal amplitude is invisible when the damaged area is small. Therefore, the slight gear damage 

would not be detected based on the original waveform. The vibration accelerations acquired under 

T=70N-m is a little stronger than that acquired under T=40N-m. In addition, along with the increase 

of rotation speeds the vibration accelerations become larger and the indication of damage also 

becomes more and more obvious in the original signal. The influence of varying loads on the 

vibration accelerations is weaker than the influence of varying gear rotation speed on the vibration 

accelerations. 

2. In the frequency spectrum of various gear conditions, the amplitudes of high-order 

harmonics and the natural frequency become larger with the increase of damaged area. Moreover, 

the sidebands also become stronger and broader. The frequency spectrum can represent particular 

characteristics of different gear conditions. Representative failure features can be extracted from 

the spectrum. 

3. Comparing with the original signal, the method of residual signal can emphasize the 

abnormal amplitude generated by the gear damage. The evidence of fault impulse is a little more 

obvious in residual signals on gear box. Although the residual signal can strengthen the failure 

features of gear damage to some extent, it is still hard to diagnose the early gear faults only based 

on the residual signal.  

4. The noise can be effectively reduced from the residual signal by employing the method of 

discrete wavelet transform. The processed signal is acquired with reconstructing the coefficients of 

discrete wavelet transform. In the processed signals of spot damaged gear and pitted gear, the 

difference of amplitude value is enlarged. Therefore, the fault indications are more clearly 

visualized in processed signals. It is confirmed that the method of discrete wavelet transform can 

contribute to strengthen the characteristics of gear damage.  



 

57 

 

5 Cyclic Fatigue Test 

 

5.1 Introduction 

In order to investigate the generation and progression of gear failures and confirm the validity 

of the proposed method, cyclic fatigue test was implemented on the power circulating type gear 

testing machine. The experimental apparatus is the power circulating type gear testing machine, as 

same as the experimental set-up introduced in chapter 4. The vibration accelerations on gear box 

and bearing box, gear noise and pitch signal are measured during the fatigue test. Then the 

vibration accelerations are analyzed by Fast Fourier Transform, by which the frequency spectrum 

and residual signal are obtained. In order to emphasize the failure features shown in the residual 

signal, the technique of discrete wavelet transform is employed to reduce noise from the residual 

signal. Then, the processed signal is acquired by reconstructing the coefficients of discrete wavelet 

transform.  

This chapter introduces the cyclic fatigue test. The original vibration accelerations and sound 

level signal are presented. The algorithm of residual signal and discrete wavelet transform is also 

introduced. Then, the residual signal, processed signal and frequency spectrum are represented. 

 

5.2 Test Gears 

Two involute spur gears are used as test gears, whose module is 4 mm, number of teeth is 29, 

and pressure angle is	20°. They are made of thermal refining steel JIS S45C, the gear surface 

finishing is hobbing, and the accuracy is JIS B1702 Grade 4. Their dimensions are shown in Table 

5.1. Figure 5.1 shows the diagram of test gears. 
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Table 5.1 Dimensions of test gears 

Module               m [mm] 4 

Number of teeth        z1/z2 29/29 

Pressure angle         �"	[deg] 20 

Addendum            ha [mm] 4 

Dedendum            hd [mm] 5 

Pitch circle diameter    d [mm] 116 

Tip circle diameter     da [mm] 124 

Face width            b [mm] 10 

Contact ratio          � 1.65 

Material JIS S45C Thermal refining steel 

Surface finishing Hobbing 

 

 

Fig. 5.1 The diagram of test gears 
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Table 5.2 Experimental conditions of the cyclic fatigue test 

Torque           T [N-m] 70 

Rotation speed     n [rpm] 1800 

Cycles            N 
0, 5×10

4
, 1×10

5
, 2×10

5
, 5×10

5
, 1×10

6
, 

2×10
6
, 3×10

6
, 5×10

6
, 7×10

6
, 1×10

7
 

 

5.3 Experimental Conditions 

Table 5.2 presents the experimental conditions of cyclic fatigue test, test gears were 

continuously driven until 1×10
7 
cycles with the rotation speed n =1800rpm and load torque 70 N-m. 

During the fatigue test, the vibration accelerations of gear box and bearing box, gear noise and 

pitch signal are measured at cycles N = 0, 5×10
4
, 1×10

5
, 2×10

5
, 5×10

5
, 1×10

6
, 2×10

6
, 3×10

6
, 5×10

6
, 

7×10
6
 and 1×10

7
 respectively to investigate the progression of pitting failure. Meanwhile, the photo 

of tooth surface, gear tooth profile error and pitting area ratio are also taken and measured. The 

sampling frequency is 20 kHz, and the sampling time is 2 seconds. 

 

5.4 Experimental Results and Discussions 

5.4.1 Photographs of Tooth Surface 

Figures 5.2 and 5.3 represent the photographs of tooth surfaces of test driving gear and test 

driven gear respectively. The width of gear teeth is 10mm, and the dashed line represents the 

tracing line for measuring tooth profile error of test gears. The photographs are taken at various 

cycles N, which illustrate the occurrence and progressing of the pitting damage. At N=0, there is 

only tool marks on the gear tooth surface. The roughness of tooth surface becomes smaller with the 

increase of cycles N. However, damage also gradually generates and becomes larger as the driving 

time passes. For test driving gear, the initial pitting begins to occur on the root of tooth surface at 

N=2×10
6
. While for test driven gear, the pitting begins to generate on tooth surface at N=5×10

6
. 

The pitting damage more early generates on the tooth surface of driving gear. Moreover, the pitting 

damage on driving gear is severer than that on driven gear. Additionally, the pitting damage of both 

driving gear and driven gear initially appear on the root of tooth surface, and the damaged area 

becomes larger with the increase of cycles N. 
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Fig. 5.2 Photographs of tooth surface of test driving gear 
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Fig. 5.3 Photographs of tooth surface of test driven gear 
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5.4.2 Pitting Area Ratio of Test Gears 

    The damaged area ratio is defined as a rate of the whole pitting area of a gear tooth to the 

entire meshing area. It can be measured by the method of Suzuki’s Universal Micro Printing. 

Figure 5.4 shows the pitting area ratio of test gears. As shown in this figure, the pitting failure 

begins to occur on tooth surface of driving gear since N=2×10
6
. The average pitting area ratio is 4% 

and the maximal pitting area ratio of one tooth reaches 7.4%. For test driven gear, the pitting failure 

begins to occur on tooth surface of driving gear since N=5×10
6
. The average pitting area ratio is 

about 2%. Obviously, the pitting area of driving gear is larger than that of the driven gear. 

Additionally, the pitting area becomes larger with the increase of cycles N. Especially after 

N=3×10
6
, the pitting area increases significantly and almost every tooth has pitting failure after 

N=7×10
6
. 

According to the average pitting area ratio of test gear, I separate the gear condition into three 

types, called normal, slight failure and severe failure. When the average pitting area ratio is 0, the 

gear condition is normal. If the average pitting area ratio is between 0 and 2%, the gear condition is 

defined as slight failure. The gear condition is severe failure while the pitting area ratio is greater 

than 2%. Therefore, the condition of driving gear is normal at cycles N=0～1×10
6
, is slight failure 

at N=2×10
6
～3×10

6
 and is severe failure at N=5×10

6
～1×10

7
. Similarly, the condition of driven 

gear is normal at cycles N=0～3×10
6
 and is slight failure at N=5×10

6
～1×10

7
. 

 

 

    Fig. 5.4 Pitting area ratio of test gears 
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5.4.3 Tooth Profile Error of Test Gears 

    The tooth profile error of test driving gear and test driven gear is acquired by measuring the 

tooth profile along the center line of tooth width. Figure 5.5 shows the change in tooth profile error 

of test driving gear and driven gear. From the tooth profile error of driving gear, it can be seen that 

comparing with the other parts of gear tooth, the wear of tooth root is larger and enlarges with the 

increase of cycles N. While for the driven gear, the wear of tooth tip is severer than that of the other 

parts. This is because the tooth tip of driven gear is meshing around the tooth root of driving gear 

when the two gears begin to mesh. The impact generated by the initial meshing on the two parts is 

stronger which can exacerbate the wear. The wear begins to occur on the pitch point of driving gear 

after cycles N=1×10
6
, while the wear appear on the pitch point of driven gear after N=3×10

6
. For 

the involute gear, the wear of pitch point is little due to the small sliding speed, and the wear of 

tooth tip or root is continuously generated because of larger sliding speed of these parts. However, 

accompany with the increase of wear of the other parts, the pitch point becomes higher and the 

contact stress of this point also becomes larger. Therefore, the wear of pitch point also becomes 

larger with the increase of cycles. The wear of the whole tooth would be generated after some 

cycles. Consequently, the tooth profile error becomes larger with the increase of driving time. 

 



μ
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slightly from cycles N=0 to N=3×10
6
. After N=5×10

6
, the vibration accelerations and its 

fluctuations increase rapidly as the increase of cycles N and pitting area. The abnormal large 

amplitude transiently appear at the neighborhood of number 9 tooth in the waveform of N=5×10
6
 

and N=7×10
6
. Also, the pitting area of number 9 tooth is the largest in the whole gear teeth. 

Additionally, comparing with the normal teeth which have no failure on tooth surface, the vibration 

accelerations of the failure teeth are a little larger and manifest an increasing tendency with the 

growth of pitting area. The reason is that the tooth profile error becomes larger with the increase of 

pitting area, which will cause stronger vibration when meshing with the failure teeth. Since the 

amplitudes of waveform are large and fluctuate strongly when the pitting area is large, the gear 

condition for severe failure can be diagnosed roughly according to the measured waveform, such as 

graphs of N=7×10
6
 and N=1×10

7
 shown in Fig. 5.6. However, it is difficult to discriminate the gear 

condition of slight failure from normal condition when the pitting area is small at N=2×10
6
 and 

N=3×10
6
. Therefore, it is necessary to extract some representative features from the acquired data 

to diagnose the early gear damage. 

The vibration of test gears can affect the vibration of its adjacent bearing box through the gear 

shaft between them. Therefore, the abnormal of gears can be reflected from the vibration 

accelerations of bearing box. Figure 5.7 shows the vibration accelerations on bearing box in one 

rotation measured under conditions of applied torque T=70N-m and rotation speed n=1800rpm. 

The abscissa axis shows gear tooth number and the ordinate axis represents the vibration 

acceleration. The histogram shows the pitting area of each tooth. As shown in this figure, the 

amplitude of vibration accelerations at N= 0 and 2×10
5
 is very large. However, there is no damage 

on teeth surface at these cycles. This can be considered as the fixation of the testing machine 

become loose resulting in the stronger vibration of bearing box. The vibration accelerations for 

normal gear condition at cycles N=5×10
4
, 1×10

5
, 5×10

5
 and 1×10

6
 change slightly, and there is not 

any abnormal large amplitude appear on the waveform. For slight failure condition at cycles 

N=2×10
6
 and 3×10

6
, there is still not any large fluctuations in the vibration accelerations. Therefore, 

it is difficult to detect the early gear damage from the original signals at these cycles. The vibration 

accelerations at cycle N=5×10
6
 is very large. However, the abnormal amplitude can’t be found in 

the waveform. The fluctuation of the waveform is a little stronger at cycle N=7×10
6
. Conversely, 

the vibration accelerations at cycle N=1×10
7
 are relatively stable. Comparing with the vibration 

accelerations on gear box, it is more difficult to detect gear damage based on the vibration 

accelerations on bearing box whether the failure is slight or serious. 

The noise would be generated by the test gears when they are operating. Moreover, the noise 

also changed with the variation of gear conditions. However, the sound level signal is easily 

affected by the vibration of the other parts of the testing machine or the disturbance from the 
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environment. Therefore, the measurement and analysis of sound level signal makes more difficult 

to operators. Figure 5.8 presents the sound level signal in one rotation of test gears during the 

fatigue test. The abscissa axis shows the gear tooth number and the ordinate axis represents the 

sound pressure. The histogram corresponds to the pitting area ratio of each tooth. The sound 

pressure of the signal from cycles N= 0 to 3×10
6
 is nearly stable, and the transient abnormal 

amplitude can’t be found in the signal. The sound pressure presented at N= 7×10
6
 and 1×10

7
 is 

larger than that at the other cycles. However, it is still difficult to diagnose gear damage only based 

on the original sound level signal. 

  



 

66 

 

 

 

 

 

 

 

 

 

(a) Vibration accelerations on gear box ( T=70N-m, n=1800rpm, N=0 ~ 1×10
6
) 
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(b) Vibration accelerations on gear box ( T=70N-m, n=1800rpm, N=2×10
6
 ~ 1×10

7
) 

Fig. 5.6 Vibration accelerations on gear box in cyclic fatigue test 
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(a) Vibration accelerations on bearing box ( T=70N-m, n=1800rpm, N=0 ~ 1×10
6
) 
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(b) Vibration accelerations on bearing box ( T=70N-m, n=1800rpm, N=2×10
6
 ~ 1×10

7
) 

Fig. 5.7 Vibration accelerations on bearing box in cyclic fatigue test 
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(a) Sound level signal ( T=70N-m, n=1800rpm, N=0 ~ 1×10
6
) 

 

 

 

0

10

20

30

40

-3

-1.5

0

1.5

3

P
it

ti
n

g
 a

re
a 

ra
ti

o
 %

N=0 Pitting area ratio

1       5      10       15    20 25     29  
Gear tooth number 

S
o

u
n

d
 p

re
ss

u
re

 [
P

a]

One rotation

0

10

20

30

40

-3

-1.5

0

1.5

3

P
it

ti
n
g
 a

re
a 

ra
ti

o
 %

N=5×104 Pitting area ratio

1       5      10       15    20 25     29  
Gear tooth number 

S
o
u
n
d
 p

re
ss

u
re

 [
P

a]

One rotation

0

10

20

30

40

-3

-1.5

0

1.5

3

P
it

ti
n
g
 a

re
a 

ra
ti

o
 %

N=1×105 Pitting area ratio

1       5      10       15    20 25     29  
Gear tooth number 

S
o
u
n
d
 p

re
ss

u
re

 [
P

a]

One rotation

0

10

20

30

40

-3

-1.5

0

1.5

3

P
it

ti
n
g
 a

re
a 

ra
ti

o
 %

N=2×105 Pitting area ratio

1       5      10       15    20 25     29  
Gear tooth number 

S
o
u
n
d
 p

re
ss

u
re

 [
P

a]

One rotation

0

10

20

30

40

-3

-1.5

0

1.5

3

P
it

ti
n
g
 a

re
a 

ra
ti

o
 %

N=5×105 Pitting area ratio

1       5      10       15    20 25     29  
Gear tooth number 

S
o
u
n
d
 p

re
ss

u
re

 [
P

a]

One rotation

0

10

20

30

40

-3

-1.5

0

1.5

3
P

it
ti

n
g
 a

re
a 

ra
ti

o
 %

N=1×106 Pitting area ratio

1       5      10       15    20 25     29  
Gear tooth number 

S
o
u
n
d
 p

re
ss

u
re

 [
P

a]

One rotation



 

71 

 

 

 

 

 

 

 

 

 

(b) Sound level signal ( T=70N-m, n=1800rpm, N=2×10
6
 ~ 1×10

7
) 

Fig. 5.8 Sound level signal acquired in cyclic fatigue test 
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5.4.5 Frequency Analysis of Vibration Accelerations 

In frequency domain, the spectrum is always varying with the gear conditions. The meshing 

frequency and its harmonics, together with sidebands show respective characteristics of various 

gear conditions. In case of a localized fault on tooth surface, the amplitude and phase modulation of 

the meshing frequency can be visible in frequency spectrum of the vibration signal. In the other 

words, sidebands will appear around the meshing frequency and its harmonics, the spacing of 

sidebands corresponds to the rotational frequency of the shaft carrying the defective gear. Therefore, 

fault features can be detected by analyzing the frequency spectrum of vibration signal. With the 

experimental conditions of gear rotation speed n=1800rpm and the number of teeth 29, the 

rotational frequency and the meshing frequency are 30Hz and 870Hz respectively. The natural 

frequency of the system is about 3000Hz, and the analytical frequency is 10 kHz in Fast Fourier 

Transform. The frequency spectrum of the vibration accelerations has been analyzed and presented 

in the paper. 

The frequency spectrum of vibration accelerations on test gear box is shown in Figure 5.9. 

Figure 5.9 (a) shows the frequency spectrum of vibration accelerations at cycle 5×10
5
 for normal 

gear condition. It can be seen that the spectrum for normal condition is mainly dominated by the 

meshing frequency. The amplitude of harmonics is relatively smaller. Moreover, high-order 

harmonics hardly appear in the spectrum, and the amplitudes of high frequencies are quite small. 

The sidebands around the meshing frequency are weak and not obvious. 

Figure 5.9 (b) depicts the spectrum of vibration accelerations at cycle 3×10
6
 for slight failure 

condition. As shown in this figure, the 3rd harmonic is significant and dominating, while the 

amplitude of meshing frequency becomes smaller. The amplitude of the modulation sideband 

around the meshing frequency is large. The modulation phenomenon is clearly observed in the 

spectrum for slight failure condition. 

Figure 5.9 (c) depicts the spectrum of vibration signal at cycle 1×10
7
 for severe failure 

condition. As shown in Fig. 5.9 (c), the harmonics appear with significant amplitude and the 

amplitude of meshing frequency is relatively weaker. Especially, the 3rd harmonic accounts for a 

considerable proportion in the spectrum. In addition, the sidebands around the meshing frequency 

are wide and strong, which shows the gear condition is abnormal. 

Comparing the spectrum for normal, slight failure and severe failure condition, it is found that 

the amplitudes of the harmonics become stronger with the increase of damaged area. Similarly, the 

amplitude of sidebands becomes stronger and the band width also becomes broader. This is because 

the tooth profile error caused by gear damage intensifies the vibration when the failure tooth 
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meshing, which can generate larger modulation in aspect of amplitude and phase in frequency 

spectrum.  

Figure 5.10 presents the frequency spectrum of vibration accelerations on bearing box. The 

frequency spectrum for normal gear condition, slight failure condition and severe failure condition 

are shown in Fig. 5.10 (a), Fig. 5.10 (b) and Fig. 5.10 (c) respectively. In these figures, the meshing 

frequency is uniformly strong and dominating in the spectrum. Moreover, the amplitude of the 3rd 

harmonic is larger than that of the 2nd harmonic. The amplitude of the sidebands for normal 

condition is weaker. On the contrary, the amplitude of the sidebands for slight failure condition is 

the largest. Additionally, the width of sidebands for severe failure condition is the broadest. In 

general, the difference of the frequency spectrum of bearing box is not obvious among the three 

conditions. 
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(a) Normal condition 

   

(b) Slight failure condition 

   

(c) Severe failure condition 

Fig. 5.9 Frequency spectrum of the vibration acceleration on gear box in cyclic fatigue test 
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(a) Normal condition 

   

 (b) Slight failure condition 

   

(c) Severe failure condition 

Fig. 5.10 Frequency spectrum of the vibration acceleration on bearing box in cyclic fatigue test 
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5.4.6 Residual Signal 

Since the residual signal is much less sensitive to the altering experimental conditions and 

shows more obvious failure features than the raw signal, it is obtained as the analytical signal in 

this paper. The residual signal can be acquired by removing the fundamental and harmonics of the 

meshing frequency and resonance signal from Fast Fourier Transform spectrum of the raw signals 

and then reconstructing the remaining signal in the time domain [41]. The residual signals on both 

gear box and bearing box over full gear lifetime are shown in Figs. 5.11 and 5.12. The signals in 

the plots correspond to one wheel revolution.  

The amplitude value of the residual signal is smaller than that of the raw signal. The reason for 

this is considered as the harmonics and resonance signal is eliminated from the raw signal and the 

energy of the residual signal becomes smaller. Additionally, we can also observe that the amplitude 

value and waveform of residual signal is more stable than that of the raw signal for normal 

condition (see Figs. 5.6 (a) and 5.11 (a), Figs. 5.7 (a) and 5.12 (a)). The observation agrees with the 

description that the influence of experimental conditions is weaker in residual signal than in the 

raw signal.  

In Fig. 5.11 (b), the residual signals at N=5×10
6
 and 7×10

6
 appear evident fault impulse. In 

residual signal at N=1×10
7
, there are several greater fault impulses, revealing that several teeth 

have been broken. In addition, the larger the pitting area the larger the amplitude value is. 

Comparing with Figs. 5.6 (b) and 5.11 (b), the evident of fault impulse for severe failure is more 

obvious in residual signals at N=5×10
6
 ~ 1×10

7
. However, it is hard to detect gear faults from either 

the raw signal or the residual signal on bearing box in Figs. 5.7 (b) and 5.12 (b).  

There is no evident indication both in the residual signal on gear box or bearing box when the 

damage is small, such as residual signals at N=2×10
6
 and 3×10

6
 in Figs. 5.11 (b) and 5.12 (b). 

Therefore, although the residual signal can strengthen the characteristics of gear damage to some 

extent, it is still hard to diagnose the early gear faults only through the waveform of residual signal. 
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(a) Residual signal on gear box ( T=70N-m, n=1800rpm, N=0 ~ 1×10
6
) 
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(b) Residual signal on gear box ( T=70N-m, n=1800rpm, N=2×10
6
 ~ 1×10

7
) 

Fig. 5.11 Residual signal on gear box in cyclic fatigue test 
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(a) Residual signal on bearing box ( T=70N-m, n=1800rpm, N=0 ~ 1×10
6
) 
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(b) Residual signal on bearing box ( T=70N-m, n=1800rpm, N=2×10
6
 ~ 1×10

7
) 

Fig. 5.12 Residual signal on bearing box in cyclic fatigue test 
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5.4.7 Processed Signal acquired Using Discrete Wavelet Transform 

The signals acquired from accelerometers mounted on gear box or bearing box are often 

inevitably contaminated by the interference signal, which is generated by the vibrations from shafts, 

bearings, and other components on the testing machine. In addition, the signals are also polluted 

with the white noise which is generated by the accelerometer or the environmental electromagnetic 

disturbances. Except for the signal of interest, the other unnecessary signal components are 

considered as noise in this study. The noise is usually random and unstable, whose variation would 

be reflected in the frequency spectrum, especially in the high frequency bands. In this study, I adopt 

discrete wavelet transform with Daubechies 4 wavelet to reduce the noise from residual signal. The 

noise is reduced by the denoising method of minimaxi. After that, the coefficients of discrete 

wavelet transform with noise filtered are reconstructed as processed signal for the following 

analysis. 

Figs. 5.13 and 5.14 respectively depict the processed signal on gear box and bearing box 

obtained using discrete wavelet transform. The waveform corresponds to one wheel revolution over 

the full lifetime of test gear. 

In these figures, the burrs of waveform are weaker in the processed signal. Therefore, the 

waveform of processed signal is much smoother than that of the residual signal. Moreover, the 

amplitude value of the processed signal is weaker than that of the residual signal. This is because 

part of the noise is reduced from the residual signal and the energy of the processed signal is 

weakened. 

For normal condition of test gear at N=0 ~ 1×10
6
, almost all the waveform of processed signal 

is stable in Figs. 5.13 (a) and 5.14 (a). The processed signal of bearing box is more regular than that 

of gear box. Moreover, the meshing frequency can be clearly observed through the processed 

signals. It indicates that there is no abnormal on tooth surface. However, the processed signals on 

gear box at N=5×10
5
 and 1×10

6
 in Fig. 5.13(a), and on bearing box at N=1×10

5
 and 5×10

5
 in Fig. 

5.14(a) are irregular. It may be caused by the error of operation when measuring. For slight failure 

condition of test gear at N=2×10
6
 and 3×10

6
, the amplitude value of number 15 tooth seems a little 

larger in processed signal in Fig. 5.13 (b). However, the early damage indication is not obvious. For 

severe failure condition of test gear at N=5×10
6
 ~ 1×10

7
, the fault features are more clearly 

visualized in processed signals in Fig. 5.13 (b). In addition, the difference of amplitude value 

among different pitting areas becomes large. In Fig. 5.14 (b), the amplitude value of No. 9 tooth is 

larger than that of the others, which corresponds the largest pitting area on No. 9 tooth. Among 

original signal, residual signal and processed signal of bearing box, the indication of damage can be 

only observed through the processed signal.  
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(a) Processed signal on gear box ( T=70N-m, n=1800rpm, N=0 ~ 1×10
6
) 
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(b) Processed signal on gear box ( T=70N-m, n=1800rpm, N=2×10
6
 ~ 1×10

7
) 

Fig. 5.13 Processed signal on gear box in cyclic fatigue test 
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(a) Processed signal on bearing box ( T=70N-m, n=1800rpm, N=0 ~ 1×10
6
) 
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(b) Processed signal on bearing box ( T=70N-m, n=1800rpm, N=2×10
6
 ~ 1×10

7
) 

Fig. 5.14 Processed signal on bearing box in cyclic fatigue test  
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5.5 Summary 

    In this chapter, the cyclic fatigue test is introduced. The original vibration accelerations on 

gear box and bearing box are presented and discussed. The frequency spectrum of the original 

vibration signal is also analyzed. Then, the residual signal and processed signal are acquired using 

techniques of Fast Fourier Transform and discrete wavelet transform. Conclusions can be 

summarized as follows: 

1. The vibration accelerations gradually become larger and fluctuate more and more strongly as 

the increase of pitting area. Additionally, comparing with the normal teeth which have no failure on 

tooth surface, the vibration accelerations of the failure teeth are a little larger and manifest an 

increasing tendency with the growth of pitting area. The gear condition of severe failure can be 

diagnosed according to the original signal. However, it is difficult to diagnose the gear condition of 

slight failure only based on the waveform. 

2. In the frequency spectrum for normal, slight failure and severe failure condition, the 

amplitude of meshing frequency becomes smaller and the amplitudes of the harmonics become 

stronger with the increase of pitting area. Similarly, the amplitude of sidebands becomes stronger 

and the band width also becomes broader with the deterioration of gear condition. 

3. For normal condition, the amplitude value and waveform of residual signal are more stable 

than that of the original signal. For slight failure condition, there is no evident indication of gear 

damage in the residual signal. For severe failure condition, the evident of fault impulse for severe 

failure is more obvious in residual signals. However, it is still hard to diagnose the early gear faults 

only through the waveform of residual signal. 

4. The waveform of processed signal is much smoother than that of the residual signal, which 

indicates the noise is reduced from the residual signal. Comparing with the residual signal, the 

difference of amplitude value of each tooth becomes larger in the processed signal. The fault 

features are more clearly visualized in processed signals. 
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6 Diagnosis of Gear Damage Using  

Support Vector Machines 

 

6.1 Introduction 

This chapter proposes a diagnostic method for gear damage using support vector machines 

(SVMs) with extracting statistical parameters and characteristic amplitude ratios of frequency 

bands from the vibration signal as failure feature vector. Moreover, the method of empirical mode 

decomposition is also employed to extract failure feature parameters to represent gear conditions. 

The procedure of diagnosis can be summarized as Fig. 6.1. Generally, data acquisition, failure 

features extraction and diagnosis are the main parts of the procedure. Vibration signals of gear box 

and bearing box are acquired as original data by testing three kinds of gears namely normal gear, 

spot damaged gear and pitted gear in the experiment. The original signal is analyzed using Fast 

Fourier Transform (FFT) and the frequency spectrum is obtained. Then, the characteristic 

amplitude ratios of frequency bands are extracted from the frequency spectrum. Meanwhile, the 

residual signal is acquired using FFT. After that, the technique of discrete wavelet transform (DWT) 

is employed to reduce noise from the residual signal. The coefficients of discrete wavelet transform 

are reconstructed into the processed signal for the further analysis. Then, statistical parameters are 

computed from the processed signals. Both of the characteristic amplitude ratios and statistical 

parameters are together served as failure feature vector for representing characteristics of gear 

conditions. Additionally, in order to reduce the computational complexity, the method of principal 

component analysis (PCA) is adopted to reduce the dimensions of failure feature vector. The 

original features are transformed into a smaller set of parameters as input vector of SVMs 

classifiers. In the process of diagnosis, the experimental data is separated into training dataset and 

test dataset. Then, multiple classifiers of SVMs based on binary tree are built using the training 

data. Finally, the test data is diagnosed by the trained model of SVMs.  

In this chapter, techniques of SVMs and PCA are introduced. The characteristic amplitude 

ratios of frequency bands and statistical parameters are also discussed in the paper. Finally, the 

diagnostic results are presented. In addition, another technique called empirical mode 

decomposition is also introduced and is employed to extract failure feature parameter. The results 

of cyclic fatigue test are adopted to demonstrate the effectiveness of this approach. 
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Fig. 6.1 The flow chart of gear damage diagnosis 
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6.2 Support Vector Machines 

6.2.1 Algorithm of Support Vector Machines 

Support vector machines (SVMs) are a machine learning method developed from the theory of 

limited samples Statistical Learning Theory by Vapnik in early 1990s [47]. It is initially dealt with 

linear classification problems by constructing an optimal separating hyper-plane for high 

classification accuracy.  

In case of linear classification, supposing a data set is{(xi,yi)}, i = 1, 2, . . ., n, n is the total 

number of samples, yi = {1, -1} is the class label of samples. As shown in Fig. 6.2, squares stand 

for class A and circles stand for class B, x1 and x2 are feature parameters value of input vector xi. 

SVMs try to search for an optimal linear boundary to identify the two classes precisely and to 

ensure the margin between two classes is maximum to improve the classification accuracy [48]. 

The nearest data points used to determine the margin are called support vectors. When the feature 

space of input vector xi is high-dimensional (>2), the boundary is called separating hyper-plane 

which can be defined as: 

( )  f b= × +x w x                                                          (6.1) 

Where, w is a weight vector with the same dimensions of x, 〈	∙	〉	denotes a scalar product of 

vectors, b is a scalar threshold, w and b are used to determine the position of the hyper-plane. w 

and b are obtained by training data set. The feature parameters of test data are inputted into the 

decision function. If sgn(f(x))=1, the test data is defined as class A; if sgn(f(x))= -1, the test data is 

defined as class B. 

 

 Fig. 6.2 Linear SVMs for two classes             
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(a) Statistical Parameters Calculated From the Experimental Results of Damage Contrast Test 

    The statistical parameters are extracted from the processed signals acquired from the 

experimental results of damage contrast test under load torque T=70N-m. The parameters for five 

kinds of test gears are shown in Figs. 6.4~6.7. 

Figure 6.4 shows the standard deviation calculated from the processed signal on gear box and 

on bearing box respectively. The standard deviation stands for the dispersion degree of data 

distribution. As found from Fig. 6.4, the standard deviation of normal gear is the smallest. The 

standard deviation of spot damaged gear and pitted gear becomes larger along with the increase of 

damaged area and gear rotation speed. In addition, the difference of standard deviation among 

different kinds of test gears is little under the lower speed 1200rpm, but the difference becomes 

larger with the increase of gear rotation speed. It is because the major factor resulting in the 

vibration and noise of test gears is the tooth profile error, which becomes larger as the increase of 

damaged area on tooth surface. The larger the tooth profile error, the stronger the vibrations of 

gears become. The vibrations of gears also become stronger with the increase of gear rotation speed. 

Therefore, the scattering of the vibration accelerations becomes larger with the increase of 

damaged area and gear rotation speed. Comparing Fig. 6.4 (a) with Fig. 6.4 (b), one can find that 

the standard deviation calculated from the processed signal on gear box is larger than that 

calculated from the processed signal on bearing box. Moreover, the relative difference of the 

standard deviation among the normal gear, spot damaged gear and pitted gear shown in Fig. 6.4 (a) 

is larger than that shown in Fig. 6.4 (b). This is because the vibration accelerations on gear box are 

larger than those on bearing box. 

 

(a) Calculated from the signal on gear box   (b) Calculated from the signal on bearing box 

Fig. 6.4 Standard deviation calculated from the processed signal (T=70N-m) 

0

2

4

6

8

10

12

1200 1800 2400 3000

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

Gear rotation speed (rpm)

Normal gear
Spot damaged gear I
Spot damaged gear II
Spot damaged gear III
Pitted gear

0

2

4

6

8

10

12

1200 1800 2400 3000

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

Gear rotation speed (rpm)

Normal gear
Spot damaged gear I
Spot damaged gear II
Spot damaged gear III
Pitted gear



 

95 

 

 

(a) Calculated from the signal on gear box   (b) Calculated from the signal on bearing box 

Fig. 6.5 Kurtosis calculated from the processed signal (T=70N-m) 

 

Figure 6.5 represents the kurtosis calculated from the processed signal on gear box and on 

bearing box respectively. Kurtosis is a measurement of whether the data probability distribution is 

peaked or flat around the mean value, which equals to 3 for a standard normal distribution. From 

Fig. 6.5, it can be seen that the kurtosis of the normal gear is almost stable and equals to 3 under all 

the gear rotation speeds. The kurtosis of spot damaged gear I and II is nearly equal with each other 

and the value is a little larger than that of normal gear. The kurtosis of spot damaged gear III is 

larger than that of gear I and II. While, the value of kurtosis for pitted gear is the largest. Moreover, 

for the damaged gear, the larger the gear rotation speed and the damaged area are, the larger the 

kurtosis is. This is because the vibration accelerations of the normal gear fluctuate slightly under all 

the gear rotation speeds, but the abnormal vibration accelerations caused by the gear damage 

fluctuate greatly along with the increase of the damaged area and gear rotation speed. The larger 

the amplitude of transient abnormal vibration accelerations is, the larger the kurtosis is [90]. 

Comparing Fig. 6.5 (a) with Fig. 6.5 (b), the kurtosis calculated from the signals on gear box and 

the difference of kurtosis among various test gears are larger than that shown in Fig. 6.5 (b). 

Figure 6.6 depicts the skewness value calculated from the processed signal on gear box and 

bearing box. Skewness is a measure of asymmetry in a statistical distribution and can be quantified 

to define the extent to which distribution differs from a normal distribution. If the skewness value is 

positive, it indicates that the distribution has wide skirts on the right side of the mean value. As 

shown in Fig. 6.6, the skewness value of normal gear is the smallest, while the value of pitted gear 

is the largest. The skewness of spot damaged gear I and II is almost as same as each other and the 

value is a little larger than that of normal gear. The skewness of spot damaged gear III is larger than 
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that of damaged gear I and II. For spot damaged gear and pitted gear, the skewness increases 

gradually as the increase of gear rotation speed. This can be explained as the abnormal vibration 

accelerations caused by the tooth profile error become larger when the gear rotation speed increases, 

which results in enlarging the deviation of the waveform from the mean value. Additionally, the 

skewness represented in Fig. 6.6 (a) is larger than that represented in Fig. 6.6 (b). However, the 

difference of skewness among spot damaged gear I, II and III can be more clearly observed from 

Fig. 6.6 (b). 

Figure 6.7 represents the root mean square value calculated from the processed signal on gear 

box and bearing box. As one can see from Fig. 6.7, under the same gear rotation speed, the root 

mean square becomes larger in the order of normal gear, spot damaged gear and pitted gear. 

Furthermore, along with the increase of gear rotation speed, the root mean square becomes larger. 

The root mean square value of normal gear change slightly, while the value of spot damaged gear 

and pitted gear varies obviously. This is because the influence of tooth profile error on the 

vibrations of gears becomes stronger when the damaged area and gear rotation speed become large. 

As shown in Fig. 6.7 (a) and Fig. 6.7 (b), the root mean square value calculated from the processed 

signal on gear box is a larger than that calculated from the signal on bearing box. The difference of 

value between spot damaged gear I and II is little. However, the difference of root mean square 

value among spot damaged gear II and III is obvious as presented in Fig. 6.7 (a). 

 

  

  (a) Calculated from the signal on gear box   (b) Calculated from the signal on bearing box 

Fig. 6.6 Skewness calculated from the processed signal (T=70N-m) 
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(a) Calculated from the signal on gear box   (b) Calculated from the signal on bearing box 

Fig. 6.7 Root mean square value calculated from the processed signal (T=70N-m) 

 

(b) Statistical Parameters Extracted From the Experimental Results of Cyclic Fatigue Test 

Figure 6.8 shows the statistical parameters of standard deviation ( ), kurtosis(β1), skewness 

(β2) and root mean square value (γ) which are calculated from the processed signals acquired in 

cyclic fatigue test. When the gear condition is normal from N=0 to 1×10
6
, the values of statistical 

parameters are nearly stable and relatively smaller. After the generation of pitting failure on tooth 

surface, the values of statistical parameters become larger with the increase of cycles after about 

N=1×10
6
. Particularly after N=3×10

6
, the statistical parameters increase obviously. This is because 

the vibration of gear is considerably influenced by the tooth profile error which becomes larger 

with the increase of pitting area. The failure area on tooth surface becomes larger as the increase of 

cycles after the generation of pitting damage, especially after N=3×10
6
. Therefore, after the failure 

occurs on tooth surface, the measured vibration acceleration and its statistical parameters increase 

with the progression of pitting area. The statistical parameters can be employed to represent 

characteristic features of various gear conditions. 
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(a) Calculated from the signal on gear box   (b) Calculated from the signal on bearing box 

Fig. 6.8 Statistical parameters extracted from the processed signal of cyclic fatigue test 

 

6.3.2 Characteristic Amplitude Ratios of Frequency Bands 

As described in the frequency analysis of the vibration accelerations, the frequency spectrum 

changes with different gear conditions. The amplitude of harmonics and sidebands varies with the 

conditions of test gears. Thus, it is capable to extract failure features from the frequency spectrum 

based on the amplitude of harmonics and sidebands. We can separate the spectrum into several 

frequency bands according to the harmonics and their sidebands. Then, the sum-of-squares of 

amplitudes of each frequency band is computed and normalized to form the vector of characteristic 

amplitude ratio R = (r1, r2, … , ri). The calculation procedure is shown as follows: 
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Where, Aj is the amplitude of frequency spectrum, Ti is the sum of squares of amplitude, n is 

the number of samples in each frequency band, m is the number of frequency bands (] ≈ 

analytical frequency / meshing frequency -1), ri is the characteristic amplitude ratio of i-th 

frequency band.  

The vibration accelerations on gear box under conditions of 70N-m and 1800rpm is employed 
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to representatively present the characteristic amplitude ratios from its frequency spectrum. The gear 

rotation speed is n=1800rpm, the meshing frequency is 870Hz and the analysis frequency is 

10000Hz. The frequency spectrum is divided into 10 frequency bands (m=10). The range of each 

frequency band are 0-1000Hz, 1001-2000Hz, 2001-3000Hz, 3001-4000Hz, 4001-5000Hz, 

5001-6000Hz, 6001-7000Hz, 7001-8000Hz, 8001-9000Hz and 9001-10000Hz respectively. The 

frequency interval of the spectrum is 0.5Hz, therefore, each of the frequency bands has 2000 

samples (n=2000). 

    The characteristic amplitude ratios shown in Fig. 6.9 are calculated from the frequency 

spectrum of the original signal on gear box under 70N-m and 1800rpm in damage contrast test,. 

Figure 6.9 shows the characteristic amplitude ratios of frequency bands obtained from the 

frequency spectrum of normal gear, spot damaged gear I, II, III and the pitted gear respectively. 

From the amplitude ratios of all the test gears, it can be seen that the amplitude ratios of the 3rd and 

4th frequency bands are relatively larger than those of the other frequency bands. This is because 

the resonance frequency of the gear box is about 3000Hz, which is included in the 3rd and 4th 

frequency bands. As shown in Fig. 6.9 (a), the amplitude ratio of the first frequency band is the 

largest. The amplitude ratios of the 3rd and 4th frequency bands are relatively larger than that of the 

other frequency bands. This can be considered as, for the normal gear, the meshing frequency is 

dominant and is included in the 1st frequency band, and the amplitude of its high-order harmonics 

is relatively weaker. Comparing with Fig. 6.9 (a), in Fig. 6.9 (b), the amplitude ratio of the 1st 

frequency band becomes smaller, while the amplitude ratio of the 4th frequency band becomes 

larger and more dominant. It indicates that the resonance frequency becomes stronger. Figure 6.9 (c) 

presents the amplitude ratios of frequency bands for spot damaged gear II. Comparing with that of 

spot damaged gear I, The amplitude ratio of the 3rd frequency band becomes larger. In the 

amplitude ratio of frequency bands for spot damaged gear III shown in Fig. 6.9 (d), the amplitude 

ratio of the 4th frequency band becomes significantly larger than that of the other frequency bands. 

Similarly, the amplitude ratio of the 4th frequency band shown in Fig. 6.9 (e) is also obviously 

larger than that of the other frequency bands, which indicates the abnormal gear condition. As 

shown in Fig.6.9, for the spot damaged gear and pitted gear, the amplitude ratio of the 4th 

frequency band is always dominant and much larger. This shows that the high-order harmonics and 

the resonance frequency will become stronger with the increase of damaged area.  
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      (a) Normal gear          (b) Spot damaged gear I       (c) Spot damaged gear II   

  

(d) Spot damaged gear III         (e) Pitted gear 

Fig. 6.9 Characteristic amplitude ratios of frequency bands in damage contrast test 

 

   

         (a) Normal           (b) Slight failure condition     (c) Severe failure condition 

Fig. 6.10 Characteristic amplitude ratios of frequency bands in cyclic fatigue test 

 

Figure 6.10 shows the characteristic amplitude ratios of frequency bands obtained from the 

frequency spectrum of original signals in cyclic fatigue test. Figures 6.10 (a), (b) and (c) 

correspondingly illustrate the amplitude ratios of frequency bands for normal gear, slight failure 

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

R
at

io
 [

%
]

Frequency bands

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

R
a
ti

o
 [

%
]

Frequency bands

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

R
at

io
 [

%
]

Frequency bands

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

R
at

io
 [

%
]

Frequency bands

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

R
at

io
 [

%
]

Frequency bands

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

R
at

io
 [

%
]

Frequency bands

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

R
at

io
 [

%
]

Frequency bands

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

R
at

io
 [

%
]

Frequency bands



 

101 

 

gear and severe failure gear respectively. In the amplitude ratios of frequency bands for normal 

gear shown in Fig. 6.10 (a), the amplitude ratio of the first frequency band is the largest. Except for 

the 3rd and 4th frequency bands, the amplitude ratios of the other frequency bands become weaker 

in order. Figure 6.10 (b) depicts the amplitude ratio of frequency bands for slight failure gear. The 

amplitude ratio of the 4th frequency band becomes the largest. In addition, the amplitude ratio of 

the 3rd frequency band becomes larger. On the contrary, the amplitude ratio of the 1st frequency 

band becomes smaller. Figure 6.10 (e) illustrates the amplitude ratio of the frequency bands for 

severe failure gear. The amplitude ratio of the 4th frequency band becomes significantly larger than 

that of the other frequency bands, which shows the abnormal gear condition.  

Overall, the characteristic amplitude ratios shown in Fig. 6.10 are similar with that of normal 

gear, spot damaged gear I and pitted gear shown in Fig. 6.9. In addition, the amplitude ratios of 

frequency bands approximately represent the characteristics of frequency spectrum and change 

with the variation of gear conditions. Consequently, the characteristic amplitude ratios of frequency 

bands can be adopted to demonstrate features of the vibration signals in frequency domain. 

 

6.4 Features Extraction Using Principal Component Analysis 

In order to acquire satisfactory classification accuracy using SVMs, it is necessary to 

preprocess the extracted feature parameters to preparing the data inputs for classifier of SVMs. The 

feature parameters extracted from the experimental results can’t be directly inputted into classifier 

because it will decrease the performance of classifier. Moreover, too many features can cause the 

curse of dimensionality phenomenon since irrelevant and redundant features degrade the 

performance of classifier [91]. Problem with high-dimensional data, known as the curse of 

dimensionality in pattern recognition implies that the number of training samples must grow 

exponentially with the number of features in order to learn an accurate model. Moreover, the 

high-dimensional data will increase the difficulty and time of calculation. Therefore, we need 

feature extraction to reduce the number of features for avoiding the redundancy. Feature extraction 

means transforming the existing features into a lower dimensional space [92]. 

Many feature extraction techniques have been developed based on principal component 

analysis, linear discriminant analysis, and independent component analysis. Recently, the use of 

feature extraction methods for data preprocessing before inputting into classifier has been reported 

in many literatures. Zang, et al. [93] and Ypma & Pajunen [94] have applied independent 

component analysis to machine condition monitoring and faults detection. Sohn, et al. [95] and 

Worden & Manson [96] have employed principal component analysis to enhance the 
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is adopted to reduce dimensions of the failure feature vector. The threshold value is set as 95, and 8 

principal components are selected to represent the features of the original vector. Therefore, the 

original features are transformed into a 8-dimensions input vector P = (p1, … , p8) for SVMs 

classifiers 

In order to generally illustrate the distribution of input vector in the feature space, the space 

diagram was made based on the first 3 principal components of the input vector. The distribution of 

test samples in damage contrast test is shown in Fig. 6.11. As shown in this figure, the distribution 

of samples for normal gear, spot damaged gear I and pitted gear is concentrated. While the 

distribution of spot damaged gear II and III is a little more scattered. The distribution of normal 

gear and spot damaged gear I is very close, which indicates the difference of failure feature vectors 

between the spot damaged gear and the normal gear is not obvious. The identification between the 

normal gear and spot damaged gear I may be difficult. Some samples of spot damaged gear II 

overlap with the range of spot damaged gear I and III. It would be difficult to clearly separate the 

types of spot damaged gear. The samples of pitted gear distinguish clearly with the normal gear and 

the spot damaged gear. 

 

 

Fig. 6.11 Distribution of test data in damage contrast test based on the first 3 principal components 
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    In the diagnostic results, the 5th and 6th samples of spot damaged gear I are misdiagnosed into 

spot damaged gear II, the second sample of spot damaged gear II is misdiagnosed into spot 

damaged gear I. This is because the difference of the damaged area between spot damaged gear I 

and II is not obvious. The vibration accelerations and extracted characteristic parameters value of 

the two test gears are also similar, which can be seen from the statistical parameters of the signal. 

In feature space, the distribution of some samples of spot damaged gear II also overlaps with the 

distribution of spot damaged gear I. Therefore, there is a possibility of misdiagnosis in classifying 

the spot damaged gear I and II. Moreover, the 5th and 6th samples of spot damaged gear II are 

misdiagnosed into spot damaged gear III. The extracted feature parameters of spot damaged gear II 

fluctuates a little larger, which can be seen from Fig. 6.11. In feature space, the data distribution of 

spot damaged gear II is a little more scattered, and some samples distribute in the range of spot 

damaged gear III. Consequently, some samples of spot damaged gear II may be misdiagnosed. The 

diagnostic accuracy is 79%. The results show that the proposed method is able to correctly 

diagnose most of the damaged gear. However, there is a possibility of misdiagnosis in identifying 

the degree of damage. The failure feature parameters should be further optimized to improve the 

diagnostic accuracy. 
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Table 6.2 Diagnostic results of gear conditions in damage contrast test 

Test dataset 
SVM classifiers 

Diagnostic result 
SVM1 SVM2 

Normal gear 

1 
 

normal gear 

1 
 

normal gear 

1 
 

normal gear 

1 
 

normal gear 

1 
 

normal gear 

1  normal gear 

-1 2 spot damaged gear* 

1  normal gear 

Spot damaged 

gear 

Spot damage 

gear I 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

1 
 

normal gear* 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

Spot damage 

gear II 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

Spot damage 

gear III 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 3 pitted gear* 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

-1 2 spot damaged gear 

Pitted gear 

-1 3 pitted gear 

-1 3 pitted gear 

-1 3 pitted gear 

-1 3 pitted gear 

-1 3 pitted gear 

-1 3 pitted gear 

-1 3 pitted gear 

-1 3 pitted gear 

Total diagnostic accuracy 92.5% 

*denotes misdiagnosed sample 
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Table 6.3 Results of diagnosing the degree of damage 

Test dataset 
SVM classifiers 

Diagnostic result 
SVM1 SVM2 

Spot damage gear I 

1  spot damage gear I 

1  spot damage gear I 

1  spot damage gear I 

1  spot damage gear I 

-1 2 spot damage gear II* 

-1 2 spot damage gear II* 

1  spot damage gear I 

1  spot damage gear I 

Spot damage gear II 

-1 2 spot damage gear II 

1  spot damage gear I* 

-1 2 spot damage gear II 

-1 2 spot damage gear II 

-1 3 spot damage gear III* 

-1 3 spot damage gear III* 

-1 2 spot damage gear II 

-1 2 spot damage gear II 

Spot damage gear III 

-1 3 spot damage gear III 

-1 3 spot damage gear III 

-1 3 spot damage gear III 

-1 3 spot damage gear III 

-1 3 spot damage gear III 

-1 3 spot damage gear III 

-1 3 spot damage gear III 

-1 3 spot damage gear III 

Total diagnostic accuracy 79% 

*denotes misdiagnosed sample 
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6.5.2 Diagnostic Results of Cyclic Fatigue Test 

For cyclic fatigue test, the vibration accelerations on gear box measured in the test are utilized 

as testing dataset. To acquire the training data set, several times of experiments were performed on 

a normal gear, slight failure gear and severe failure gear respectively. All the experiments are 

carried out under the same conditions with cyclic fatigue test. Finally, 40 experimental results are 

obtained as training dataset. Then, SVMs classifiers of SVM1 and SVM2 are built based on the 

training data set. Test gear conditions are diagnosed by inputting principal components of test 

dataset to the training model. 

Table 6.4 shows the diagnostic results of test gear conditions in cyclic fatigue test using 

support vector machines. The number -1, 1, 2 and 3 represent the diagnostic result of classifiers 

SVM1 and SVM2. If the output result is 1, it means the test gear condition is normal, and the 

diagnosis procedure completes.  The number -1 means the gear condition is not normal, and the 

test data is inputted into SVM2. The output result 2 represents the gear condition is slight failure, 

while 3 shows the gear condition is severe failure. 

 

Table 6.4 Diagnostic results of gear conditions in cyclic fatigue test 

Cycles 

 

Actual condition Result 

SVM1 SVM2 Diagnostic result 

N=0 Normal 1  Normal 

5×10
4
 Normal -1 2 Slight failure * 

1×10
5
 Normal 1 

 
Normal 

2×10
5
 Normal 1 

 
Normal 

5×10
5
 Normal 1 

 
Normal 

1×10
6
 Normal -1 2 Slight failure* 

2×10
6
 Slight failure -1 2 Slight failure 

3×10
6
 Slight failure -1 2 Slight failure 

5×10
6
 Severe failure -1 2 Slight failure* 

7×10
6
 Severe failure -1 3 Severe failure 

1×10
7
 Severe failure -1 3 Severe failure 

Accuracy 73% 

            * represents misclassified data. 
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In Table 6.4, samples of N =5×10
4
, N =1×10

6
 and N =5×10

6
 are misclassified into slight failure. 

The vibration acceleration at N =5×10
4
 may be strongly affected by the operation conditions or 

environment disturbances during measurement. The vibration acceleration and its statistical 

parameters acquired at N =5×10
4
 are a little larger and close to those of slight failure condition, 

which can be seen from Fig. 6.12. It is possible to diagnose the condition of this sample into slight 

failure. The sample of normal condition at N =1×10
6
 is also misdiagnosed into slight failure. The 

damage began to generate on tooth surface between cycles 1×10
6
 and 2×10

6
. When the test gear 

working until 1×10
6
 cycles, the condition of tooth surface begins to deteriorate and the tooth profile 

error becomes larger, which will intensify the vibration of gears. Therefore, the vibration 

acceleration and failure features acquired at N =1×10
6
 is a little larger, which would be 

misdiagnosed into slight failure. For the misdiagnosed sample of N =5×10
6
, the reason can be 

considered as follows. The number of failure teeth of test gear at N =3×10
6
, 5×10

6 
and 7×10

6
 are 9, 

12 and 21 respectively. The number of failure teeth at N =5×10
6
 is much fewer than that of severe 

failure at N =7×10
6
. Although the condition of test gear at N =5×10

6
 is regarded as severe failure 

according to the average pitting area ratio, the pitting area of most damaged teeth is much smaller 

than that of severe failure teeth. The vibration accelerations and failure feature vectors acquired at 

N =5×10
6
 are more similar with those of slight failure. Thus, the sample at N =5×10

6
 is more likely 

to misdiagnosed as slight failure.  

The diagnostic accuracy of test data is 73%. The proposed method can correctly classify 

almost all the samples of normal condition and damaged condition. However, the capability of the 

proposed method in diagnosing the degree of damage is still need to be strengthened. 

 

6.6 Diagnosis of Gear Damage by Empirical Mode Decomposition 

In section 6.4, a diagnostic method for gear damage using SVMs was proposed, in which 

amplitude ratios of frequency bands and statistical parameters were extracted as failure feature 

parameters. In this section, a diagnostic method based on techniques of empirical mode 

decomposition and SVMs is proposed to monitor and diagnose gear conditions. I try to employ the 

empirical mode decomposition method to extract the appropriate failure feature parameters from 

the vibration acceleration. Because the vibration data on gear box is always non-stationary, and 

empirical mode decomposition has been proved for effectively dealing with data from 

non-stationary and nonlinear processes because of its excellent generation capability. The 

experimental results of cyclic fatigue test are adopted to demonstrate the effectiveness of the 

proposed approach. The obtained vibration signal is decomposed into a number of intrinsic mode 

functions using empirical mode decomposition. Then characteristic energy ratios of intrinsic mode 
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functions and statistical parameters are together served as failure feature vectors for SVMs 

classifiers to identify gear conditions.  

 

6.6.1 Empirical Mode Decomposition 

Local faults in gears always produce transient modifications in vibration signals. Therefore, 

these signals have to be considered as non-stationary. Empirical mode decomposition (EMD) as a 

new data processing method was recently introduced by Huang et al. in 1990s [72], especially for 

analyzing data from nonlinear and non-stationary processes. The main purpose of EMD is to 

decompose any linear or nonlinear signal into a number of intrinsic mode functions (IMFs), each of 

which represents a simple oscillatory mode as a counterpart to the simple harmonic function and 

varies with the variation of the original signal. In contrast to other previous decomposition methods, 

the EMD approach is intuitive and adaptive, with a posteriori defined basis which is derived from 

the analytical data [73]. With the recent development on EMD method, the technique has already 

been employed successfully in wide applications : earthquake, climate variability, analysis of daily 

surface air temperature data, nonlinear ocean waves, detection of structural damage, 

health-monitoring and so on [74]. Recently, literatures of its applications on the failure detection of 

gear, bearing and rotary machine have been reported [75, 77, 81, 82]. Because the vibration signals 

on gear box is always non-stationary, I try to adopt the EMD method to extract the most suitable 

feature vectors from the measured signal for fault detection.  

The algorithm of EMD is based on a simple assumption that any data consists of different 

simple intrinsic modes of oscillations which have the same number of extremas and zero-crossings. 

With the initial processing of EMD, any signal can be decomposed into a finite set of IMFs with 

frequency bands ranging from high to low, each of which must satisfy the following definitions 

[74]: 

(i) in the whole dataset, the number of extremas and the number of zero-crossings must either equal 

each other or differ at most by one, and 

(ii) at any point, the mean value of the envelopes defined by the local maxima and local minima is 

zero. 

    An IMF represents a simple oscillatory mode as a counterpart to the simple harmonic function, 

however, it is much more general as the IMF can have a variable amplitude and frequency as 

functions of time. With the definition of IMF, a sifting process is employed for identifying IMFs in 

time-series signal [98]. Supposing a time-series signal is S(t), it can be decomposed into its 



−

− −−

−
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6.6.2 Analysis of Vibration Accelerations Using Empirical Mode Decomposition 

The vibration accelerations on gearbox acquired from the cyclic fatigue test are adopted to be 

analyzed by the method of EMD. With the initial processing of EMD, the vibration signal is 

decomposed into 6 IMFs with frequency bands ranging from high to low. An IMF represents a 

simple oscillatory mode as a counterpart to the simple harmonic function, but it is much more 

general as the IMF can have a variable amplitude and frequency as functions of time. The original 

signal can be constituted of several IMFs, each of which contains different frequency component of 

the original signal from high to low. Therefore, an IMF is also a modulation signal of the original 

signal and varies with the change of original signal. The characteristics of local fault on tooth 

surface can be extracted from the IMFs.  

Figure 6.13 shows the decomposed IMFs of original signal for different gear conditions in 

cyclic fatigue test. Figure 6.13 (a) shows the decomposed IMFs of vibration accelerations at cycles 

N=0, which is for normal gear condition. Figure 6.13 (b) illustrates the decomposed IMFs of 

vibration accelerations at cycles N = 2×10
6
 for slight failure gear condition. Figure 6.13 (c) presents 

the decomposed IMFs of vibration accelerations at cycles N = 1×10
7
 for severe failure gear 

condition. Each of the IMFs corresponds to one wheel rotation of the signal. In Fig. 6.13, figures 

from top to bottom are arranged in order of frequency from high to low. IMFs 1-3 contain the high 

frequency bands components of the raw signal, while IMFs 4-6 mainly contain signals of low 

frequency bands. Moreover, amplitudes of IMFs become weaker and more stable from IMF1 to 

IMF6. This is because the high-order harmonics and interference signals mainly concentrate in high 

frequency bands and attenuate rapidly with the decrease of frequency. The interference signals are 

usually caused by the vibration of other components on the testing machine, the environmental 

disturbances or the error of measurement system. The signals in low frequency bands are usually 

periodic and stable, such as signals with meshing frequency in IMF5. In IMF1, the amplitudes are 

relatively flat throughout the whole rotation under normal condition. The fluctuation of the 

waveform can be observed under slight failure condition and the fluctuation becomes stronger 

under severe failure condition. Additionally, comparing with the raw signal, IMF1 of severe failure 

magnifies the variation of the signal, which can more clearly manifests the characteristic of pitting 

fault. The IMF2 of severe failure is stronger than that of normal and slight failure, while IMF3 of 

normal is a little larger than that of other conditions. In IMFs4-6, the signal periodicity of normal 

and slight failure is more stable and clearer than that of severe failure. However, the magnitude of 

vibration acceleration is nearly the same among three conditions. Generally, the whole IMFs are 

relatively stable in normal case, in addition, their fluctuation becomes stronger with the increase of 

pitting area. Consequently, IMFs can be employed to represent intrinsic features of the vibration 

signal. 
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(a) Normal (N=0)       (b) Slight failure (N = 2×10
6
)  (c) Severe failure (N = 1×10

7
) 

Fig.6.13 Intrinsic mode functions of vibration acceleration in cyclic fatigue test 

 

6.6.3 Extracting Failure Feature Vectors 

From the analysis of section 6.5.2, the method of EMD can decompose the original signal into 

a number of IMFs, each of which corresponds to various frequency bands from high to low and 

represents the local characteristics of the original signal. Since the IMFs are adaptively derived 

from the measured data, the amplitude of each IMF also changes along with the variation of gear 

conditions. Thus, the energy of IMFs from first to n-th can be served as representative parameters 

to demonstrate characteristics of various gear conditions. The energy of IMFs is computed as: 

2

1

( )   i

j

M

i AcE j
=

= ∑                                                       (6.21) 

Where, Ei is the energy of i-th IMF, M is the discrete data length of i-th IMF and ���(@) is the 

sample amplitude of i-th IMF. In order to eliminate the impact of dimension and make convenience 

for the following data processing, the energy of IMFs are normalized by using the total energy � = ∑ ����P1 . Thus, the characteristic energy ratios of IMFs ER are computed as representative 

parameters of gear conditions as follows: 
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 �a = (b�1, b�2, … , b��) = (�1 �⁄ , �2 �,⋯ ,⁄ �� �⁄ )                           (6.22) 

Energy of each IMF is computed to constitute the characteristic energy ratios by Eq. 6.22. 

Figure 6.14 shows the characteristic energy ratios of IMFs for normal, slight failure and severe 

failure gear conditions respectively. Ap is the damaged area ratio of the test gear. The condition of 

test driving gear at N=0 is normal, at N=2×10
6
 is slight failure, and is severe failure at N=1×10

7
. In 

this figure, the energy ratios of IMFs for normal, slight failure and severe failure are different from 

each other. In addition, the energy ratio of the first IMF becomes larger in order of normal, slight 

failure and severe failure. This is because most part of the first IMF is comprised of high frequency 

bands of vibration accelerations. The vibration acceleration and its high order harmonics become 

stronger with the increase of damaged area. 

As shown in section 6.2.1, statistical parameters of standard deviation ( ), kurtosis(β1), 

skewness (β2) and root mean square value (e) are calculated from the processed signal of the 

vibration acceleration. The obtained statistical parameters characteristic energy ratios of IMFs are 

combined as failure feature vector 	f = 	 ( , Z1, Z2, e, b�1, … , b�g)  for the diagnosis of gear 

conditions. Since the high-dimensionality of feature vector complicates the calculation and extends 

the processing time, the method of principal component analysis is adopted to transform the 

original feature vector into a new smaller-dimensions vector P consisted of several principal 

components. The first 7 principal components contribute 95% effect in vector P. Thus, components 

(p1, … , p7) are selected as reduced input vector for SVM. 

 

             

     (a) Normal (Ap= 0)     (b) Slight failure (Ap= 0.54%)   (c) Severe failure (Ap= 3.65%) 

Fig. 6.14 Characteristic energy ratios of IMFs for various gear conditions 
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Table 6.5 shows the diagnostic results of test gear conditions with EMD method. In the results, 

samples for N =5×10
4
 and N =5×10

6
 are misclassified into slight failure. The reason is that the 

vibration acceleration at N =5×10
4
 may be strongly affected by the operation conditions or 

environment disturbances during measurement. Therefore, the vibration acceleration and its 

statistical parameters acquired at N =5×10
4
 are a little larger and close to those of slight failure 

condition, which is possible to be misdiagnosed. The sample for N =5×10
6
 is misdiagnosed into 

slight failure. This is because the vibration accelerations and failure feature vectors acquired at N 

=5×10
6
 are more similar with those of slight failure. The number of failure teeth of test gear at N 

=3×10
6
, 5×10

6 
and 7×10

6
 are 9, 12 and 21 respectively. The number of failure teeth at N =5×10

6
 is 

much fewer than that of severe failure at N =7×10
6
. Although the condition of test gear at N =5×10

6
 

is regarded as severe failure according to the average pitting area ratio, the pitting area of most 

damaged teeth is much smaller than that of severe failure teeth. Thus, the sample at N =5×10
6
 is 

more likely to misdiagnosed as slight failure. The diagnostic accuracy is 82%. The diagnostic 

results show that the proposed method can detect gear damage with satisfactory accuracy. In 

addition, the diagnostic accuracy acquired with the EMD method is better than that acquired with 

the previous method, which indicates that the EMD method is effective for gear damage diagnosis 

and classification, even can improve the accuracy of diagnosis. 

Table 6.5 Diagnostic results of gear conditions  

Cycles Actual condition Result  

SVM1 SVM2 Diagnostic result 

N=0 Normal 1  Normal 

5×10
4
 Normal  -1 2 Slight failure *  

1×10
5
 Normal  1  Normal  

2×10
5
 Normal  1  Normal  

5×10
5
 Normal  1  Normal  

1×10
6
 Normal  1  Normal  

2×10
6
 Slight failure  -1 2 Slight failure 

3×10
6
 Slight failure  -1 2 Slight failure  

5×10
6
 Severe failure -1 2 Slight failure* 

7×10
6
 Severe failure  -1 3 Severe failure  

1×10
7
 Severe failure  -1 3 Severe failure  

Accuracy 82% 

* represents misclassified data. 
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6.7 Summary 

In this chapter, a diagnostic method of gear damage using support vector machines with 

extracting failure feature vector from the vibration signal is proposed. The characteristic amplitude 

ratios of frequency bands and statistical parameters are extracted from the signals as failure feature 

vector. Then, support vector machines is adopted to diagnose gear conditions based on the 

extracted feature vector. Moreover, the method of empirical mode decomposition is also employed 

to extract failure feature parameters to represent gear conditions. The algorithm of support vector 

machines, principal component analysis and empirical mode decomposition are also introduced. 

The following conclusions can be concluded from the performed work. 

1. Statistical parameters of standard deviation, root mean square value, kurtosis and skewness 

are extracted from the processed signal. The value of statistical parameters becomes larger along 

with the increase of the gear rotation speed and damaged area. Especially, the value of statistical 

parameters of normal gear is the smallest and changes slightly with the variation of gear rotation 

speeds. While, the parameters’ value of spot damaged gear and pitted gear varies obviously with 

the variation of gear speeds. The difference of parameters value between different kinds of gears is 

little when the damaged area is small. 

2. The amplitude ratios of frequency bands approximately represent the characteristics of 

frequency spectrum and change with the variation of gear conditions. The amplitude ratio of the 

first frequency band becomes smaller with the increase of damaged area, while the amplitude ratios 

of 3rd and 4th frequency bands become larger. The statistical parameters and characteristic 

amplitude ratios of frequency bands can be adopted to demonstrate features of gear conditions. 

3. The method of principal component analysis can transform the extracted failure feature 

vector into a fewer-dimensional inputting vector for classifiers of support vector machines. The 

distribution of samples in feature space can be generally illustrated based on the first three principal 

components. The data distribution of normal gear and failure gear with small damage area is a little 

closer. The samples of severe failure gear or pitted gear are clearly separate with the other samples. 

4. By using the method of support vector machines, most of the samples in damage contrast 

test are correctly classified into three types, called normal gear, spot damaged gear and pitted gear. 

The diagnostic accuracy is 92.5%. The diagnostic accuracy of test data in cyclic test is 73%. The 

proposed method can correctly classify almost all the samples of normal condition and damaged 

condition. However, the capability of the proposed method in diagnosing the degree of damage is 

still need to be strengthened. 

5. By the technique of empirical mode decomposition, the original signal can be decomposed 
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into a number of intrinsic mode functions, each of which represents the local characteristics of the 

original signal and changes along with the variation of gear conditions. Therefore, the characteristic 

energy ratios can be extracted from the intrinsic mode functions as failure features to be input to the 

support vector machine classifiers. The diagnostic accuracy of test data in cyclic fatigue test is 82%. 

It is confirmed that the empirical mode decomposition method is effective for gear damage 

diagnosis and classification, even can improve the accuracy of diagnosis. 
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7 Conclusions 

 

This study proposes an intelligent method for diagnosing gear tooth surface damage by 

analyzing the vibration accelerations of gear box and bearing box. To investigate the validity of the 

proposed method, damage contrast test has been carried out in this study. Three kinds of gears 

namely normal gear, spot damaged gear and pitted gear are tested under different loads and gear 

rotation speeds on the power circulating type gear testing machine. The vibration accelerations of 

gear box and bearing box are measured in the experiment. Moreover, in order to illustrate the 

progression of gear failures and to demonstrate the effectiveness of the proposed approach, the 

cyclic fatigue test also has been implemented on the power circulating type gear testing machine. A 

test gear is driven continually with the same rotation speed and load torque. During the cyclic 

fatigue test, the vibration accelerations on gear box and bearing box are measured at different 

cycles. The acquired vibration accelerations are analyzed by techniques of Fast Fourier Transform 

and discrete wavelet transform. In order to quantitatively illustrate the characters of vibration 

accelerations, statistical parameters and characteristic amplitude ratios of frequency bands are 

extracted from the vibration accelerations. Both of the characteristic amplitude ratios and statistical 

parameters are together served as failure feature vector for representing different gear conditions. 

Finally, the technique of support vector machine is employed to diagnose gear condition based on 

the extracted failure feature vector. The diagnostic results demonstrate the effectiveness of the 

proposed method. Although a diagnostic method for gear damage based on support vector 

machines has been proposed, I try to adopt another technique of empirical mode decomposition to 

extract failure feature vector for gear damage diagnosis. By the technique of empirical mode 

decomposition, the original signal is decomposed into several intrinsic mode functions. Then, the 

characteristic energy ratios of intrinsic mode functions and statistical parameters are extracted as 

failure feature vectors to be input to the support vector machines classifiers for diagnosis. The 

validity of the proposed approach is demonstrated by experimental results. 

    In Chap. 4 [Damage Contrast Test], the damage contrast test is performed. The vibration 

accelerations on gear box and bearing box and the sound level signal are presented and discussed. 

The original vibration accelerations are analyzed using Fast Fourier Transform and discrete wavelet 

transform. The frequency spectrum, residual signal and processed signal are obtained from the 

vibration accelerations. The following conclusions can be drawn from the previous work. 

1. The large damage on tooth surface will cause transient larger amplitude in the original 

vibration signals, based on which the abnormal gear condition can be diagnosed. However, the 
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abnormal amplitude is invisible when the damaged area is small. Therefore, the slight gear damage 

would not be detected based on the original waveform. The vibration accelerations acquired under 

T=70N-m is a little stronger than that acquired under T=40N-m. In addition, along with the increase 

of rotation speeds, the vibration accelerations become larger and the indication of damage also 

becomes more and more obvious in the original signal. The influence of varying loads on the 

vibration accelerations is weaker than the influence of varying gear rotation speed on the vibration 

accelerations. 

2. In the frequency spectrum of various gear conditions, the amplitudes of high-order 

harmonics and the natural frequency become larger with the increase of damaged area. Moreover, 

the sidebands also become stronger and broader. The frequency spectrum can represent particular 

characteristics of different gear conditions. Representative failure features can be extracted from 

the spectrum. 

3. Comparing with the original signal, the method of residual signal can emphasize the 

abnormal amplitude generated by the gear damage. The evidence of fault impulse is a little more 

obvious in residual signals on gear box. Although the residual signal can strengthen the failure 

features of gear damage to some extent, it is still hard to diagnose the early gear faults only based 

on the residual signal.  

4. The noise can be effectively reduced from the residual signal by employing the method of 

discrete wavelet transform. The processed signal is acquired by reconstructing the coefficients of 

discrete wavelet transform. In the processed signals of spot damaged gear and pitted gear, the 

difference of amplitude value is enlarged. Therefore, the fault indications are more clearly 

visualized in processed signals. It is confirmed that the method of discrete wavelet transform can 

contribute to emphasize the characteristics of gear damage. 

In Chap. 5 [Cyclic Fatigue Test], the cyclic fatigue test is introduced. The original vibration 

accelerations on gear box and bearing box are presented and discussed. The frequency spectrum of 

the original vibration signal is also analyzed. Then, the residual signal and processed signal are 

acquired using techniques of Fast Fourier Transform and discrete wavelet transform. Conclusions 

can be summarized as follows: 

1. The vibration accelerations gradually become larger and fluctuate more and more strongly as 

the increase of pitting area. Additionally, comparing with the normal teeth which have no failure on 

tooth surface, the vibration accelerations of the failure teeth are a little larger and manifest an 

increasing tendency with the growth of pitting area. The gear condition of severe failure can be 

diagnosed according to the original signal. However, it is difficult to diagnose the gear condition of 
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slight failure only based on the waveform. 

2. In the frequency spectrum for normal, slight failure and severe failure condition, the 

amplitude of meshing frequency becomes smaller and the amplitudes of the harmonics become 

stronger with the increase of pitting area. Similarly, the amplitude of sidebands becomes stronger 

and the band width also becomes broader with the deterioration of gear condition. 

3. For normal condition, the amplitude value and waveform of residual signal is more stable 

than that of the original signal. For slight failure condition, there is no evident indication of gear 

damage in the residual signal. For severe failure condition, the evidence of fault impulse for severe 

failure is more obvious in residual signals. However, it is still hard to diagnose the early gear faults 

only through the residual signal. 

4. The waveform of processed signal is much smoother than that of the residual signal, which 

indicates the noise is reduced from the residual signal. Comparing with the residual signal, the 

difference of amplitude value of each tooth becomes larger in the processed signal. The fault 

features are more clearly visualized in processed signals. 

In Chap. 6 [Diagnosis of Gear Damage Using Support Vector Machines], a diagnostic 

method of gear damage using support vector machines with extracting failure feature vector from 

the vibration signal is proposed. The characteristic amplitude ratios of frequency bands and 

statistical parameters are extracted from the signals as failure feature vector. Then, support vector 

machines is adopted to diagnose gear conditions based on the extracted feature vector. Moreover, 

the method of empirical mode decomposition is also employed to extract failure feature parameters 

to represent gear conditions. The algorithm of support vector machines, principal component 

analysis and empirical mode decomposition is also introduced. The following conclusions can be 

concluded from the performed work. 

1. Statistical parameters of standard deviation, root mean square value, kurtosis and skewness 

are extracted from the processed signal. The value of statistical parameters becomes larger along 

with the increase of the gear rotation speed and damaged area. Especially, the value of statistical 

parameters of normal gear is the smallest and changes slightly with the variation of gear rotation 

speeds. While, the parameters’ value of spot damaged gear and pitted gear varies obviously with 

the variation of gear speeds. The difference of parameters value between different kinds of gears is 

little when the damaged area is small. 

2. The amplitude ratios of frequency bands approximately represent the characteristics of 

frequency spectrum and change with the variation of gear conditions. The amplitude ratio of the 

first frequency band becomes smaller with the increase of damaged area, while the amplitude ratios 
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of the 3rd and 4th frequency bands become larger. The statistical parameters and characteristic 

amplitude ratios of frequency bands can be adopted to demonstrate features of gear conditions. 

3. The method of principal component analysis can transform the extracted failure feature 

vector into a fewer-dimensional inputting vector for classifiers of support vector machines. The 

distribution of samples in feature space can be generally illustrated based on the first three principal 

components. The data distribution of normal gear and slight failure gear with small damaged area is 

a little closer. The samples of severe failure gear or pitted gear are clearly separate with the other 

samples. 

4. By using the method of support vector machines, most of the samples in damage contrast 

test are correctly classified into three types, called normal gear, spot damaged gear and pitted gear. 

The diagnostic accuracy of damage contrast test is 92.5%. The diagnostic accuracy of test data in 

cyclic test is 73%. The proposed method can correctly classify almost all the samples of normal 

condition and damaged condition. However, the capability of the proposed method in diagnosing 

the degree of damage is still need to be improved. 

5. By the technique of empirical mode decomposition, the original signal can be decomposed 

into a number of intrinsic mode functions, each of which represents the local characteristics of the 

original signal and changes along with the variation of gear conditions. Therefore, the characteristic 

energy ratios can be extracted from the intrinsic mode functions as failure features to be input to the 

support vector machine classifiers. The diagnostic accuracy of test data in cyclic fatigue test is 82%. 

It is confirmed that the empirical mode decomposition method is effective for gear damage 

diagnosis and classification, even can improve the accuracy of diagnosis. 
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