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Abstract. Homogeneous polar foliations of complex hyperbolic spaces have been

classified by Berndt and Dı́az-Ramos. In this paper, we study geometry of leaves of
such foliations: the minimality, the parallelism of the mean curvature vectors, and
the congruency of orbits. In particular, we classify minimal leaves.

1. Introduction

An isometric action of a connected Lie group H on a Riemannian manifold
M is said to be polar if there exists a connected complete submanifold Σ of M
such that

(i) Σ meets each orbit of the action, that is, Σ∩H.p ̸= ∅ holds for each p ∈ M ,
(ii) Σ intersects the orbits orthogonally, that is, TpΣ ⊂ νp(H.p) holds for each

p ∈ Σ.

Note that such a submanifold Σ, called a section of the polar action, is always
a totally geodesic submanifold of M (for instance, see [4, Theorem 3.2.1]).

Polar actions on Riemannian symmetric spaces have been studied very ac-
tively (for instance, refer to [2], [10], and references therein). Above all, it is
noteworthy that cohomogeneity one actions on Riemannian symmetric spaces
are always polar ([15]). Therefore, one can regard a polar action on a Riemann-
ian symmetric space as a kind of generalizations of cohomogeneity one actions.
We also note that polar actions provide a lot of interesting examples of homo-
geneous submanifolds. For example, a principal orbit of a polar action is an
isoparametric submanifold ([14]), and has a parallel mean curvature vector field
(refer to [4, Corollary 3.2.5], and also see Remark 3.14).

In this paper, we consider polar actions on a complex hyperbolic space CHn

having no singular orbits, or equivalently, inducing homogeneous polar foliations
of CHn. The aim of this paper is to study the geometry of homogeneous polar
foliations of CHn, and to determine the minimality of their leaves. We remark
that such polar actions have been classified by Berndt and Dı́az-Ramos. More
precisely, they have proved that there exist exactly 2n− 1 actions which induce
nontrivial homogeneous polar foliations of CHn up to orbit equivalence ([5]).

The author was supported in part by Grant-in-Aid for JSPS Fellows (26 · 6060).
2010 Mathematics Subject Classification. Primary 53C40, Secondary 53C30, 53C35.
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Here, a homogeneous foliation of CHn is said to be trivial if the leaves are points
in CHn or the leaf coincides with CHn. According to their result, moreover, the
actions can be divided into the following two types:

(i) none of the orbits is contained in horospheres of CHn,
(ii) all orbits are contained in horospheres of CHn.

Let us call them S-type and N-type, respectively. Our main theorem (Theo-
rems 4.6 and 5.1) is as follows.

Main theorem. We have that

(1) every S-type action has exactly one minimal orbit,
(2) every N-type action has the congruency of orbits, and none of the orbits is

minimal.

Here, an isometric action on a Riemannian manifold is said to be having
the congruency of orbits if all orbits of the action are isometrically congruent to
each other.

Remark 1.1. Our main theorem includes the known results on cohomo-
geneity one actions on CHn in [1] and [6]. See Remark 2.5 for more details.

This paper is organized as follows. In Section 2, we recall the solvable model
of a complex hyperbolic space CHn, and recall the classification of homogeneous
polar foliations of CHn. In Section 3, we introduce new Lie groups, which play
essential roles in the study of homogeneous polar foliations of CHn. In order to
prove the main theorem, we study the geometry of orbits of the S-type actions
in Section 4, and deal with the analogue for the N-type actions in Section 5.

2. Preliminaries

In this section, we recall the solvable model of a complex hyperbolic space
CHn with n ≥ 2 (refer mainly to [8], [12]). We also recall the classification of
homogeneous polar foliations of CHn according to [5].

Definition 2.1. We call a triple (s, ⟨, ⟩, J) the solvable model of CHn if

(1) s := spanR{A0, X1, Y1, . . . , Xn−1, Yn−1, Z0} is a Lie algebra whose bracket
relations are defined by

[A0, Xi] = (1/2)Xi, [A0, Yi] = (1/2)Yi, [A0, Z0] = Z0, [Xi, Yi] = Z0, (2.1)

(2) ⟨, ⟩ is an inner product on s such that the above basis is orthonormal,
(3) J is a complex structure on s defined by

J(A0) = Z0, J(Z0) = −A0, J(Xi) = Yi, J(Yi) = −Xi. (2.2)

Let S be the simply-connected Lie group with Lie algebra s. Denote by the
same symbols ⟨, ⟩ and J the induced left-invariant Riemannian metric and the
complex structure on S, respectively.
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First of all, we remark that CHn can be identified with (S, ⟨, ⟩, J), and hence
with the solvable model (s, ⟨, ⟩, J). Let us define

G := SU(1, n), K := S(U(1)×U(n)). (2.3)

One knows that G is the identity component of the isometry group of CHn,
and K is the isotropy subgroup of G at some point o, called the origin of CHn.
Denote by g and k the Lie algebras of G and K, respectively. Then, CHn can
be realized as a Riemannian symmetric space of noncompact type G/K. It is
known that S is isomorphic to the solvable part of the Iwasawa decomposition
of G, and that S acts on CHn simply-transitively. Hence, we can naturally
identify CHn with the Lie group S. In particular, one can show that (S, ⟨, ⟩, J)
is holomorphically isometric to CHn with the constant holomorphic sectional
curvature −1.

We here study the structure of our solvable model (s, ⟨, ⟩, J). Let us define
a := spanR{A0}, (2.4)

v := spanR{X1, Y1, . . . , Xn−1, Yn−1}, (2.5)

z := spanR{Z0}, (2.6)

and n := v⊕ z. Then, we have the orthogonal decomposition

s = a⊕ v⊕ z = a⊕ n. (2.7)

One can easily see that n = [s, s], and n is the (2n− 1)-dimensional Heisenberg
Lie algebra. In particular, it follows from the definition of the solvable model
that, for any V,W ∈ v,

[V,W ] = ⟨JV,W ⟩Z0. (2.8)

One can also see that v is J-invariant, and hence v is an (n − 1)-dimensional
complex vector space. We note that the complex structure J is an isometry of
(s, ⟨, ⟩), that is, for any X,Y ∈ s,

⟨JX, JV ⟩ = ⟨X,Y ⟩. (2.9)

Remark 2.2. Let k0 be the centralizer of a in k, which is isomorphic to
u(n− 1), and K0 be the connected Lie subgroup of K with Lie algebra k0. Then,
one knows that k0 normalizes s, and especially, the adjoint action of K0 on v is
isomorphic to the standard action of U(n− 1) on Cn−1.

In the rest of this section, we recall the classification of homogeneous po-
lar foliations of CHn according to [5]. We always mean by ⊖ the orthogonal
complement with respect to ⟨, ⟩. Let us review the Lie groups introduced in [5].

Definition 2.3. Denote by Sb and Nb the connected Lie subgroups of S
with Lie algebras

sb := s⊖ spanR{X1, . . . , Xb} (b ∈ {1, . . . , n− 1}), (2.10)

nb := s⊖ spanR{A0, X1, . . . , Xb−1} (b ∈ {1, . . . , n}), (2.11)

respectively.
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Remark 2.4. We note that these notations are changed from ones given in
[5]. Indeed, the Lie groups Sb and Nb are written as S1,b and S0,b−1, respectively,
in [5].

One can see that the actions of Sb and Nb on CHn are of cohomogeneity b,
and have no singular orbits.

Remark 2.5. Consider the case of cohomogeneity one, that is, b = 1.
Then, the actions of S1 and N1 on CHn are well-known. Note that n1 = n, and
hence N1 is the nilpotent part of the Iwasawa decomposition of G = SU(1, n).
Then, the action of N1 induces the horosphere foliation on CHn. The orbits
of N1, which are nothing but horospheres, are isometrically congruent to each
other and not minimal. On the other hand, the action of S1 induces the so-called
solvable foliation. The orbit of S1 though the origin o, which is the homogeneous
ruled minimal hypersurface, is a unique minimal orbit (refer to [1], and also see
[6]).

Berndt and Dı́az-Ramos proved the following theorem.

Theorem 2.6 ([5]). Let H be a connected closed subgroup of G = SU(1, n).
Then, the action of H on CHn induces a nontrivial homogeneous polar foliation
of CHn if and only if it is orbit equivalent to one of the following:

(1) the action of Sb, where b ∈ {1, . . . , n− 1},
(2) the action of Nb, where b ∈ {1, . . . , n}.

We note that the actions of Sb and Nb are of S-type and of N-type mentioned
in Section 1, respectively ([5]).

Owing to their result, in order to study geometry of the orbits of polar
actions having no singular orbits on CHn, it is sufficient to consider the orbits
of Sb and Nb.

3. Construction of certain Lie groups and their geometry

In this section, we introduce new Lie subgroups Sb(φ) of S, which play
essential roles in the study of both of the Sb-orbits and the Nb-orbits. We also
study the geometry of the orbits of Sb(φ) through the origin o.

Let us define w := spanR{X1, . . . , Xn−1}, which is an (n − 1)-dimensional
subspace of v with ⟨Jw,w⟩ = 0. For φ ∈ [0, π/2], we define

ξ0 := cos(φ)X1 + sin(φ)A0. (3.1)

Definition 3.1. Denote by wb a (b − 1)-dimensional subspace of w or-
thogonal to ξ0. Then, for φ ∈ [0, π/2], we define

sb(φ) := s⊖ (spanR{ξ0} ⊕wb). (3.2)

Remark 3.2. The above definition of sb(φ) depends only on φ and b, up to
conjugation, because the adjoint action of K0 on v is isomorphic to the standard
action of U(n− 1) on Cn−1.
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Remark 3.3. We remark on the range of allowable values of b. Recall that
wb is a (b−1)-dimensional subspace of w orthogonal to ξ0, and that ⟨w, A0⟩ = 0.
If φ ∈ [0, π/2[, then we have ⟨wb, X1⟩ = 0, and hence b ∈ {1, . . . , n− 1}. On the
other hand, if φ = π/2, then we have ⟨wb, ξ0⟩ = 0, and hence b ∈ {1, . . . , n}.

First of all, we shall show that sb(φ) is always a subalgebra of s. Let us
define

T0 := cos(φ)A0 − sin(φ)X1 ∈ sb(φ), (3.3)

which is orthogonal to the normal vector ξ0, and

v0 := sb(φ)⊖ (spanR{T0} ⊕ z). (3.4)

Lemma 3.4. We have that v0 ⊂ v⊖ spanR{X1}.

Proof. Note that v ⊖ spanR{X1} = s ⊖ spanR{A0, X1, Z0}. Hence, we
have only to show

⟨v0, A0⟩ = ⟨v0, X1⟩ = ⟨v0, Z0⟩ = 0. (3.5)

By definition, it is clear that v0 is orthogonal to Z0. Meanwhile, one knows
that A0, X1 ∈ spanR{T0, ξ0}. Since v0 is orthogonal to T0 and ξ0, we have
⟨v0, A0⟩ = ⟨v0, ξ0⟩ = 0, which completes the proof. □

With the notations above, one has the orthogonal decomposition

sb(φ) = spanR{T0} ⊕ v0 ⊕ z, (3.6)

which we need hereafter.

Proposition 3.5. The subspace sb(φ) is a subalgebra of s.

Proof. Consider the decomposition (3.6) of sb(φ). Firstly, it follows from
Lemma 3.4 and [v, v] ⊂ z that

[v0 ⊕ z, v0 ⊕ z] ⊂ z ⊂ sb(φ). (3.7)

One also can directly calculate that, for any V ∈ v0,

[T0, V ] = (1/2) cos(φ)V − sin(φ)⟨JX1, V ⟩Z0,

[T0, Z0] = cos(φ)Z0.
(3.8)

This means [T0, v0 ⊕ z] ⊂ sb(φ). Hence, we complete the proof. □

We note that sb(φ) is a solvable subalgebra of s of codimension b.

Definition 3.6. We denote by Sb(φ) the connected Lie subgroup of S
with Lie algebra sb(φ).

Remark 3.7. In the case where b = 1, the Lie groups S1(φ) have been in-
troduced in [1], and have played essential roles in the study of cohomogeneity one
actions (see [1], [12] and [13]). We remark that Sb(φ) is a natural generalization
of S1(φ), and that the propositions mentioned below are natural extensions of
the known results in the case where b = 1.
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In the rest of this section, we shall study the geometry of the orbit Sb(φ).o
through the origin o. Recall that we identify CHn with the Lie group S. Ac-
cordingly, we hereafter identify the submanifold Sb(φ).o with the Lie subgroup
Sb(φ).

We first recall the Levi-Civita connection ∇ of S, which is well-known (see
[8] for instance).

Lemma 3.8. Let X,Y ∈ s, and write as

X = x1A0 + V + x2Z0, Y = y1A0 +W + y2Z0 (3.9)

for some V,W ∈ gα. Then, one has

2∇XY = (⟨V,W ⟩+ 2x2y2)A0 − y1V

− x2JW − y2JV + (⟨JV,W ⟩ − 2x2y1)Z0.
(3.10)

Now, we calculate the second fundamental form h of Sb(φ). Recall that h
is defined by

⟨h(X,Y ), ξ⟩ = ⟨∇XY, ξ⟩ (3.11)

for X,Y ∈ sb(φ) and ξ ∈ s ⊖ sb(φ) = spanR{ξ0} ⊕ wb. Here and hereafter the
subscripts indicate the orthogonal projections onto each spaces.

Proposition 3.9. Let V,W ∈ v0. Then, the second fundamental form h
of Sb(φ) satisfies that

(1) h(T0, T0) = (1/2) sin(φ)ξ0,
(2) h(V,W ) = (1/2)⟨V,W ⟩ sin(φ)ξ0,
(3) h(Z0, Z0) = sin(φ)ξ0,
(4) h(V,Z0) = −(1/2)(JV )spanR{ξ0}⊕wb

,
(5) h(T0,W ) = h(T0, Z0) = 0.

Proof. Let V,W ∈ v0, and put

X := x1T0 + V + x2Z0, Y := y1T0 +W + y2Z0

for xi, yi ∈ R. Then, by using Lemma 3.4 and Lemma 3.8, one can directly
calculate that, for ξ ∈ spanR{ξ0} ⊕wb,

2⟨h(X,Y ), ξ⟩ = ⟨2∇XY, ξ⟩
= (x1y1 sin

2(φ) + ⟨V,W ⟩+ 2x2y2)⟨A0, ξ⟩
+ x1y1 sin(φ) cos(φ)⟨X1, ξ⟩ − ⟨x2JW + y2JV, ξ⟩

= (⟨X,Y ⟩+ x2y2) sin(φ)⟨ξ0, ξ⟩ − ⟨x2JW + y2JV, ξ⟩.

(3.12)

By using Equation (3.12), one can show the assertions. We here only calculate
h(V, Z0) for V ∈ v0. Let {ξi} be an orthonormal basis of spanR{ξ0} ⊕ wb. In
this case, it follows from (3.12) that

2h(V,Z0) =
∑

⟨2h(V,Z0), ξi⟩ξi

=
∑

⟨−JV, ξi⟩ξi = −(JV )spanR{ξ0}⊕wb
,

(3.13)

which proves (4). □
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Secondly, we calculate the shape operator Aξ of Sb(φ). Recall that Aξ

satisfies
⟨Aξ(X), Y ⟩ = ⟨h(X,Y ), ξ⟩ (3.14)

for X,Y ∈ sb(φ) and ξ ∈ s⊖ sb(φ) = spanR{ξ0} ⊕wb.

Proposition 3.10. Let V,W ∈ v0. Then, for each ξ ∈ spanR{ξ0} ⊕ wb,
the shape operator Aξ of Sb(φ) satisfies that

(1) AξT0 = (1/2) sin(φ)⟨ξ0, ξ⟩T0,
(2) AξV = (1/2) sin(φ)⟨ξ0, ξ⟩V + (1/2)⟨V, Jξ⟩Z0,
(3) AξZ0 = (1/2)(Jξ)v0 + sin(φ)⟨ξ0, ξ⟩Z0.

Proof. We only calculate AξV for V ∈ v0 and ξ ∈ spanR{ξ0} ⊕ wb. Let
{Ei} be an orthonormal basis of v0. Then, by Proposition 3.9, one can directly
calculate that

⟨AξV, T0⟩ = ⟨h(V, T0), ξ⟩ = 0,

⟨AξV,Ei⟩ = ⟨h(V,Ei), ξ⟩ = (1/2) sin(φ)⟨ξ0, ξ⟩⟨V,Ei⟩,
⟨AξV,Z0⟩ = ⟨h(V,Z0), ξ⟩ = (1/2)⟨V, Jξ⟩.

(3.15)

Altogether, it follows that

AξV = ⟨AξV, T0⟩T0 +
∑

⟨AξV,Ei⟩Ei + ⟨AξV, Z0⟩Z0

= (1/2) sin(φ)⟨ξ0, ξ⟩V + (1/2)⟨V, Jξ⟩Z0,
(3.16)

which proves (2). The remaining assertions can be obtained by similar calcula-
tions. □

An eigenvalue of the shape operator Aξ is called a principal curvature in
direction ξ, and the dimension of an eigenspace is called the multiplicity.

Proposition 3.11. (1) The principal curvatures in direction ξ0 are λ1, λ2

and λ3, and the multiplicities are 1, 2n− b− 2, 1, respectively, where

λ1 := (3/4) sin(φ)− (1/4)(1 + 3 cos2(φ))1/2,

λ2 := (1/2) sin(φ),

λ3 := (3/4) sin(φ) + (1/4)(1 + 3 cos2(φ))1/2.

(2) If ξ ∈ wb, then the principal curvatures in direction ξ are −1/2, 0, 1/2, and
the multiplicities are 1, 2n− b− 2, 1, respectively.

Proof. Firstly, we consider the case where ξ = ξ0. Note that we have
Jξ0 = cos(φ)JX1 + sin(φ)Z0, and JX1 ∈ v0. Then, by Proposition 3.10, one
can directly calculate that, for V ∈ v0 ⊖ spanR{JX1},

Aξ0T0 = (1/2) sin(φ)T0,

Aξ0V = (1/2) sin(φ)V,

Aξ0JX1 = (1/2) sin(φ)JX1 + (1/2) cos(φ)Z0,

Aξ0Z0 = (1/2) cos(φ)JX1 + sin(φ)Z0,

(3.17)



8 Akira Kubo

from which the former assertion follows.
Similarly, we consider the case where ξ ∈ wb, that is, ⟨ξ0, ξ⟩ = 0. Note that

Jξ ∈ v0. Then, one can also calculate that, for V ∈ v0 ⊖ spanR{Jξ},
AξT0 = AξV = 0, Aξ0(Jξ) = (1/2)Z0, Aξ0Z0 = (1/2)Jξ, (3.18)

from which the latter assertion follows. □

Lastly, we calculate the mean curvature vector H. We also study the min-
imality of Sb(φ) and the parallelism of the mean curvature vector. Recall that
the mean curvature vector is defined by

H := traceh. (3.19)

If H = 0, then the submanifold is said to be minimal.

Proposition 3.12. The mean curvature vector H of Sb(φ) is given by

H = (1/2)(2n− b+ 1) sin(φ)ξ0. (3.20)

In particular, Sb(φ) is minimal if and only if φ = 0.

Proof. Let {Ei} be an orthonormal basis of v0. It follows readily from
Proposition 3.9 that

H = h(T0, T0) +
∑

h(Ei, Ei) + h(Z0, Z0)

= (1/2)(2n− b+ 1) sin(φ)ξ0.
(3.21)

Therefore, since φ ∈ [0, π/2], the remaining assertion is clear. □

Denote by ∇⊥ the normal part of ∇, namely, the normal connection of
Sb(φ). The mean curvature vector H is said to be parallel if ∇⊥

XH = 0 holds for
any X ∈ sb(φ).

Proposition 3.13. The mean curvature vector H of Sb(φ) is always par-
allel.

Proof. It follows from Proposition 3.12 that we have only to calculate
∇T0ξ0, ∇Z0ξ0, and ∇V ξ0 for any V ∈ v0. Take any V ∈ v0. By Lemma 3.8, one
can directly calculate that

∇T ξ0 = −(1/2) sin(φ)T0,

∇V ξ0 = −(1/2) sin(φ)V + (1/2) cos(φ)⟨JV,X1⟩Z0,

∇Z0ξ0 = −(1/2) cos(φ)JX1 − sin(φ)Z0.

(3.22)

It follows that ∇Xξ0 ∈ sb(φ), and hence ∇⊥
Xξ0 = 0 for any X ∈ sb(φ). □

Remark 3.14. We note that Proposition 3.13 can be shown by the general
theory of polar actions. As we mention in the following sections, Sb(φ).o is
always a principal orbit of some polar action. Therefore, it follows from [4,
Corollary 3.2.5] that the mean curvature vector field on Sb(φ).o is parallel with
respect to ∇⊥.
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4. Orbits of the S-type actions

In this section, we consider the S-type actions on CHn, namely, the Sb-
actions, and study the geometry of their orbits. In particular, we show that, for
every Sb-action the orbit through the origin o is a unique minimal orbit.

Throughout this section, we fix b ∈ {1, . . . , n − 1}. Recall that Sb is the
connected Lie subgroup of S with Lie algebra

sb := s⊖ spanR{X1, . . . , Xb}. (4.1)

Our first aim is to show that every Sb-orbit can be translated into the orbit
Sb(φ).o for some φ ∈ [0, π/2[. From now on, we identify the tangent space
ToCHn with s = a⊕n through CHn = S. Then, for each k ∈ K0, the differential
(dk)o of k at o satisfies that (dk)o = Ad(k)|s. Recall that K0 is the connected
Lie subgroup of K with Lie algebra k0, the centralizer of a in k.

Lemma 4.1. Let NK0(Sb) be the normalizer of Sb in K0. Then, NK0(Sb)
acts transitively on the unit sphere in νo(Sb.o) = spanR{X1, . . . , Xb}.

Proof. Recall that the adjoint action of K0 on v is isomorphic to the
standard action of U(n−1) on Cn−1. One can see that the action of NK0(Sb) on
the normal space νo(Sb.o) at the origin o is isomorphic to the standard action of
O(b) on Rb. Hence, if b > 1, then the assertion is clear. In the case where b = 1,
one knows that O(1) = {±1} acts on R naturally, and hence, on its unit sphere
{±1} transitively. □

Remark 4.2. Denote by No
K(Sb) the identity component of the normalizer

NK(Sb) of Sb in K. Then, the action of No
K(Sb)Sb on CHn is of cohomogeneity

one. If b > 1, especially, the orbit No
K(Sb)Sb.o = Sb.o is a singular orbit. Refer

to [3], [7] for more details.

Let γ0 : R → CHn be the unit-speed geodesic defined by

γ0(0) = o, γ̇0(0) = −X1. (4.2)

Lemma 4.3. Let p ∈ CHn, and t0 ≥ 0 be the distance between the orbit
Sb.p and the origin o. Then, Sb.p is isometrically congruent to Sb.γ0(t0).

Proof. Take any point p ∈ CHn. In the case where p ∈ Sb.o, one knows
t0 = 0, and hence we have nothing to prove more.

Thus, we now consider the case where p /∈ Sb.o. Since the orbit Sb.p is
closed, there exists q ∈ Sb.p such that the distance between o and q is equal to t0.
Since CHn is complete, there exists a unit-speed geodesic γ satisfying γ(0) = o
and γ(t0) = q. A standard variational argument implies that γ intersects the
orbit Sb.q perpendicularly. It, hence, follows that γ intersects all orbits of Sb

perpendicularly (see for instance [9, p. 78]). Put

V := γ̇(0) ∈ νo(Sb.o). (4.3)

Then, Lemma 4.1 shows that there exists k ∈ NK0(Sb) such that Ad(k)V = −X1,
that is, (dk)oγ̇(0) = γ̇0(0). Since k is an isometry, we have k.γ(t) = γ0(t) for
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any t. Consequently, it follows that

k(Sb.p) = kSb.γ(t0) = Sbk.γ(t0) = Sb.γ0(t0), (4.4)

which completes the proof. □
Recall that b ∈ {1, . . . , n − 1}, and let φ ∈ [0, π/2[. Recall also that Sb(φ)

is the connected Lie subgroup of S with Lie algebra

sb(φ) = s⊖ (spanR{ξ0} ⊕wb), (4.5)

where ξ0 = cos(φ)X1 + sin(φ)A0, and wb is a (b− 1)-dimensional subspace of w
orthogonal to ξ0. In this case, according to Remark 3.2, one may assume that

wb = spanR{X2, . . . , Xb} (4.6)

without loss of generality. Then, we have

sb = s⊖ (spanR{X1} ⊕wb) = sb(0). (4.7)

Proposition 4.4. Let t ≥ 0. Then, the orbit Sb.γ0(t) is isometrically
congruent to Sb(φ).o, where φ := arcsin(tanh(t/2)) ∈ [0, π/2[.

Proof. Take any t ≥ 0. Consider the connected Lie subgroup H of S with
Lie algebra h := spanR{A0, X1}. Since H.o is a totally geodesic real hyperbolic
plane RH2, the geodesic γ0 lies in H.o. It, hence, follows that there exists g ∈ H
such that g.o = γ0(t) holds. One can readily see that

g−1(Sb.γ0(t)) = g−1Sbg.o = Ig−1(Sb).o. (4.8)

This means that the orbit Sb.γ0(t) is isometrically congruent to Ig−1(Sb).o, since
g−1 is an isometry of CHn. Now it remains to show that Ig−1(Sb) = Sb(φ), or
equivalently, Ad(g−1)sb = sb(φ). Since g ∈ H ⊂ S, one has Ad(g−1)sb ⊂ s. For
our goal, hence, it suffices to prove that Ad(g−1)sb is orthogonal to ξ0 and wb.

Firstly, we show that Ad(g−1)sb is orthogonal to wb. One can see that
h ⊂ sb⊕ spanR{X1}, and sb⊕ spanR{X1} is a subalgebra. It, hence, follows that

Ad(g−1)sb ⊂ sb ⊕ spanR{X1} = s⊖wb. (4.9)

Next we show that Ad(g−1)sb is orthogonal to ξ0 = cos(φ)X1 + sin(φ)A0.
For this purpose, we consider X1 and A0 as left-invariant vector fields on S.
Since γ̇(t) is a unit normal vector of Sb.γ(t) at γ(t), and the left-translation
Lg−1 is an isometry, one can see that (dLg−1)eγ̇(t) is a unit normal vector of
Ig−1Sb.o at o. On the other hand, by [8, Theorem 2, p.94] one can obtain that

γ̇(t) = (1/ cosh(t/2))(−X1)g − tanh(t/2)(A0)g

= −(cos(φ)(X1)g + sin(φ)(A0)g) = −(ξ0)g,
(4.10)

and hence, (dLg−1)eγ̇(t) = −(ξ0)e. Therefore, we have that Ad(g−1)sb is orthog-
onal to ξ0.

Altogether, we have proved that Ad(g−1)sb ⊂ sb(φ), which completes the
proof. □

From the arguments above, one can readily obtain the following.
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Proposition 4.5. Let p ∈ CHn. Denote by t ≥ 0 the distance between
the orbit Sb.p and the origin o, and set φ := arcsin(tanh(t/2)). Then, Sb.p is
isometrically congruent to the orbit Sb(φ).o.

Therefore, in order to study the geometry of orbits of the Sb-action, it is
sufficient to study Sb(φ).o for φ ∈ [0, π/2[. We conclude this section by proving
the first assertion of the main theorem.

Theorem 4.6. For each b ∈ {1, . . . , n − 1}, the action of Sb has exactly
one minimal orbit, which is through the origin o.

Proof. It readily follows from Proposition 3.12 that Sb.o = Sb(0).o is
minimal. Now we show the uniqueness. Assume that p /∈ Sb.o, and let t > 0
be the distance between the orbit Sb.p and the origin o. Since we have φ =
arcsin(tanh(t/2)) ̸= 0, it also follows from Proposition 3.12 that Sb.p = Sb(φ).o
is not minimal. □

Remark 4.7. In fact, it has been known that the orbit Sb.o through the
origin is minimal. In the case where b = 1, Berndt has proved its minimality
in [1]. On the other hands, if b > 1, one knows that Sb.o is a singular orbit of
a cohomogeneity one action on CHn, as we mentioned in Remark 4.2. It has
been proved that any singular orbit of a cohomogeneity one action is an austere
submanifold, and hence, a minimal submanifold (see [17] for more details).

5. Orbits of the N-type actions

In this section, we consider the N-type actions on CHn, namely, the Nb-
actions, and study the geometry of their orbits. In particular, we show that the
action of Nb has the congruency of orbits, and has no minimal orbits.

Throughout this section, we fix b ∈ {1, . . . , n}. Recall that Nb is the con-
nected Lie subgroup of S with Lie algebra

nb := s⊖ spanR{A0, X1, . . . , Xb−1}. (5.1)

We consider the case where φ = π/2. In this case, according to Remark 3.2, one
may assume that

wb = spanR{X1, . . . , Xb−1}, (5.2)

without loss of generality. Note that wb is a (b− 1)-dimensional subspace of w
orthogonal to ξ0 = A0. Then, we have

nb = s⊖ (spanR{A0} ⊕wb) = sb(π/2). (5.3)

Now we show the second assertion of the main theorem.

Theorem 5.1. For each b ∈ {1, . . . , n}, the action of Nb has the congru-
ency of orbits, that is, all of the Nb-orbits are isometrically congruent to each
other. Moreover, the action has no minimal orbits.
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Proof. We first show the congruency of orbits. Recall that S acts tran-
sitively on CHn. One can directly see that nb is an ideal in s. Hence, it follows
from [16, Lemma 2.1] that the action of Nb has the congruency of orbits.

Recall that Nb.o = Sb(π/2).o is not minimal by Proposition 3.12. Hence,
owing to the congruency, we conclude that the action of Nb has no minimal
orbits. □
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