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The Fundamentals of Economic Dynamics and Policy Analyses:
Learning through Numerical Examples.
Part Ⅳ. Overlapping Generations Model

Hiroshi Futamura

1．Overlapping Generations Model with Two Periods Lifecycles.
　Let us analyze a simple overlapping generations model consisting of individuals with two periods 
lifecycles.

1-1．Households.
　Let t denotes discrete time periods, t＝ ... , －2, －1, 0, 1, 2, ... . An individual born at the beginning 
of period t lives two periods, t and t＋1. Therefore, in each time period t, there are two overlapping 
generations of individuals, those who were born in the previous period t－1, and those who are born in this 
period t. (See figure 1.1.) Let Nt be the number of individuals born at the beginning of period t. Because the 
number of individuals born in t－1 is Nt－1, and the number of individuals in period t is Nt, the total number 
of individuals in period t is Nt－1＋Nt. Let us assume the growth rate of "cohort" is n, i.e.,

（1.1）

　In period t, the individual is "young", and supplies one unit labor to earn labor income wt×1, where wt is 

　An overlapping generations model is an applied dynamic general equilibrium model for which the lifecycle 
models are employed as main analytical tools. At any point in time, there are overlapping generations 
consisting of individuals born this year, individuals born last year, individuals born two years ago, and so on. 
As we saw in the analysis of lifecycle models, each individual makes an optimal consumption-saving plan to 
maximize lifetime utility over her/his lifecycle. For example, an individual with higher income in earlier stages 
and lower income in later stages of lifecycle will save in earlier stages to prepare for the consumption in later 
stages where the income is lower. In an economy consisting of overlapping generations, the aggregate variables 
are the sum of variables chosen by individuals at different stages of lifecycles. In this framework, demographic 
structure is an important element to determine macroeconomic performance. For this reason, overlapping 
generations models are used for analyzing economies in which there are intergenerational transactions such as 
social security systems, inheritances, bequests, and so on.
　This paper consists of four sections. Section 1 presents dynamic general equilibrium analysis of an 
overlapping generations model in which each individual lives two periods lifecycle. The model is the simplest 
form of overlapping generations models. Section 2 presents an application of overlapping generations model to 
tax policy analysis. Section 3 presents an application of overlapping generations model to the analysis of the 
effects of changes in demographic structure on economic growth and welfare in an economy with pay-as-you-
go public pension system. Section 4 briefly presents the Computable Dynamic General Equilibrium models 
which is often used for more realistic public policy analyses
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wage rate. The labor supply is assumed to be inelastic to the wage rate. (In more advanced and generalized 
models, however, labor supply can be modeled as an endogenous variable chosen by the individual.) The 
young individual consumes c y

t and saves st＋1 subject to the following period t young budget constraint.

（1.2）

We use the subscript t＋1 for the saving st＋1 in period t because the saving is used to finance consumption 
co

t＋1 in the next period t＋1 when the individual becomes "old". Furthermore, the saving in period t by 
young individual is employed as capital by firms in period t＋1 who pays the interest rate rt＋1 to each unit 
of capital. Therefore, the budget constraint of the old individual in period t＋1 is expressed as follows.

（1.3）

Let us assume that the individual's utility depends on young consumption c y
t and old consumption co

t＋1 
represented by the following logarithmic utility function.

（1.4）

In (1.4), α∈ (0, 1) is a parameter measuring the relative importance of young consumption c y
t to old 

consumption co
t＋1. A representative individual born at the beginning of period t chooses young consumption 

c y
t, old consumption co

t＋1, and saving st＋1 to maximize utility ut (c y
t, co

t＋1) subject to the young budget 
constraint (1.2) and the old budget constraint (1.3). There are many ways to solve this constrained 
optimization problem. In the following, we employ the Lagrangean multiplier method. By eliminating 
the saving st＋1 from the young budget constraint (1.2) and the old budget constraint (1.3), we have the 
following "lifetime" budget constraint.

（1.5）

Define the Lagrangean function with respect to three unknowns {c y
t, co

t＋1, λ} as follows.

（1.6）

In (1.6), λ is the Lagrangean multiplier which measures the marginal value of the lifetime budget constraint 
to the utility. The first-order conditions of the optimization problem are given as follows.

Figure 1.1　Overlapping Generations Model with Two Periods Lifecycles
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（1.7）

（1.8）

（1.9）

The optimal consumption plan {c y
t, co

t＋1}, together with the "shadow price" of lifetime budget constraint λ, 
is a solution to these first-order conditions that constitute a system of simultaneous equations with respect 
to {c y

t, co
t＋1, λ}. By (1.4), (1.7) and (1.8) are rewritten as follows.

（1.10）

（1.11）

By eliminating λ from (1.10) and (1.11), we have the following condition for the optimal consumption plan 
to satisfy.

（1.12）

The left hand side of (1.12) is the marginal rate of substitution between young consumption c y
t and old 

consumption co
t＋1 that is defined as follows.

（1.13）

Therefore, (1.12) implies that the slope of the indifference curve of the utility function must be equal to the 
slope 1＋rt＋1 of the lifetime budget constraint in {c y

t, co
t＋1}-plane. In addition, (1.9) implies that the optimal 

consumption plan {c y
t, co

t＋1} must satisfy the lifetime budget constraint. Therefore, the optimal consumption 
plan is depicted in figure 1.2 as a tangent point of an indifference curve and the graph of lifetime budget 
constraint.
　Equations (1.9) and (1.12) are solved for the optimal consumption plan as functions of the wage rate wt 
and the interest rate rt＋1 as follows.

（1.14）

（1.15）

By (1.14) and the young budget constraint (1.2), the optimal saving is solved as follows.

（1.16）

(1.14) and (1.16) imply that in period t, the individual consumes α×100% of labor income wt and saves the 
rest. Therefore, α is the marginal propensity to consume and 1－α is the marginal propensity to save in this 
lifecycle model.
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1-2．Firms.
　Let us assume that in each period t, there are Nt firms. (The number of firms is irrelevant to the analysis 
because we will assume linear homogenous production function. The assumption that the number of firms 
is equal to the number of young workers, however, makes the analysis simpler because each firm employs 
one young worker in labor market equilibrium.) A representative firm in period t demands capital kt

d and 
labor lt

d to produce output yt subject to the following Cobb-Douglas production function

（1.17）

so as to maximize profit πt which is defined as follows.

（1.18）

In (1.17), β∈ (0, 1) is a parameter measuring capital intensity relative to labor in production function. The 
technology level At is assumed to grow at rate g, i.e.,

（1.19）

The first-order conditions for the profit maximization with respect to capital kt
d and labor lt

d imply the 
following expressions for the interest rate rt and the wage rate wt.

（1.20）

（1.21）

The Cobb-Douglas production function (1.17) implies the maximized profit πt is zero because

Figure 1.2　The Optimal Consumption Plan
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（1.22）

In addition, β is the share of income paid out to capital and 1－β is the share of income paid out to labor 
because of the following relationship.

（1.23）

（1.24）

1-3．Dynamic General Equilibrium Conditions.
　There are three markets in this overlapping generations model; the market for output, the market 
for capital, and the market for labor. In a dynamic general equilibrium, the aggregate demands and the 
aggregate supplies are equated in all the three markets in every period. In the market for output in period 
t, the aggregate demand consists of the aggregate demand for consumption by young individuals Nt ct

y, the 
aggregate demand for consumption by old individuals Nt－1 ct

o, and capital formation (investment) which 
is a difference between the aggregate saving by young individuals Nt st＋1 and the aggregate dissaving by 
old individuals Nt－1 st. On the other hand, the aggregate supply of output by firms is Nt yt. Therefore, the 
equilibrium condition for output market in period t is expressed as follows.

（1.25）

where Yt≡Nt yt, Ct≡Nt ct
y＋Nt－1 ct

o, and It≡Nt st＋1－Nt－1 st.
　The capital market equilibrium condition in period t is expressed as follows.

（1.26）

In (1.26), the left hand side is the aggregate demand for capital by firms, and the right hand side is the 
aggregate supply of capital by old individuals born in the previous period t－1.
　Finally, the labor market equilibrium condition in period t is expressed as follows.

（1.27）

In (1.27), the left hand side is the aggregate demand for labor by firms, and the right hand side is the 
aggregate supply of labor by young individuals each inelastically supplies one unit labor by assumption. 
(1.27) implies that each firm employs one labor in equilibrium, i.e.,

（1.28）

Definition: Dynamic General Equilibrium of the Overlapping Generations Model.
　Let us assume the economy starts from period zero (t＝0). The saving s0 by each individual born in the 
previous period t＝－1 is taken as predetermined. Then, if the capital market equilibrium condition holds 
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in period t＝0, the capital employed by each firm k 0d is also predetermined by

（1.29）

which is rewritten as

（1.30）

by using (1.1). Then, the consumption by each old individual in t＝0 is also predetermined because

（1.31）

where the interest rate r0 is

（1.32）

Then for every time period t＝0, 1, 2, ... , the dynamic general equilibrium is described by factor prices and 
resource allocations that satisfy the following three conditions;
(ⅰ) Given the sequence of factor prices {rt, wt ; t＝0, 1, 2, ... }, the sequence of consumption-saving plan {c y

t, 
co

t＋1, st＋1 ; t＝0, 1, 2, ... } maximizes the utility (1.4) of each individual of generation t subject to the young 
budget constraint (1.2) and the old budget constraint (1.3).
(ⅱ) Given the sequence of factor prices {rt, wt ; t＝0, 1, 2, ... }, the sequence of capital and labor {kt

d, lt
d ; t

＝0, 1, 2, ... } maximizes the profit (1.18) of each firm subject to the production function (1.17).
(ⅲ) The sequence of factor prices {rt, wt ; t＝0, 1, 2, ... } clears all the markets {output market, capital 
market, labor market} in every period t.

　Although there are three markets in each period, it can be shown when any two markets out of three 
are in equilibrium, so is the remaining one market. This is an example of Walras' law. The proof of the 
statement is given as follows.
[Proof : Walras' Law] In a dynamic general equilibrium, the aggregate supply of output in any period t 
satisfies the following relationship.

（1.33）

If the capital market equilibrium condition (1.26) and the labor market equilibrium condition (1.27) are 
satisfied, then (1.33) becomes

（1.34）

In period t, the aggregation of young budget constraint (1.2) over Nt young individuals gives the following.

（1.35）

Similarly, in period t, the aggregation of old budget constraint (1.3) over Nt－1 old individuals gives the 
following.
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（1.36）

By adding (1.35) and (1.36), we have the following resource constraint for period t.

（1.37）

(1.34) and (1.37) imply that the output equilibrium condition (1.25) is also satisfied.

　The dynamical system for the endogenous variables in the dynamic general equilibrium of this 
overlapping generations model is derived as follows. By (1.16) and (1.21), the capital market equilibrium 
condition in period t is rewritten as follows.

（1.38）

Divide both sides of (1.38) by Nt and use (1.1) and (1.28) to derive the following.

（1.39）

By shifting the time index t one period forward, and dropping the superscript "d", we have the following 
first-order nonlinear difference equation with respect to kt.

（1.40）

Given s0, which is predetermined by young individual in the previous period t＝－1, the capital in period t
＝0 is also predetermined by (1.30). Then, for t＝0, 1, 2, ... , given the initial capital k0, (1.40) generates a 
dynamic general equilibrium sequence of capital {kt ; t＝0, 1, 2, ... }.
　Once the dynamic general equilibrium, sequence of capital is determined, the other endogenous variables 
are calculated as follows. For t＝0, 1, 2, ... ,

（1.41）  : interest rate

（1.42）  : wage rate

（1.43）  : saving

（1.44）  : young consumption

（1.45）
: old consumption

（1.46）  : utility

(The utility of an individual born in period t＝－1 is measured by her/his consumption in period t＝0 
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calculated by c0o＝ (1＋r0) s0 where s0 is given as predetermined variable.)

（1.47）  : output

（1.48）  : aggregate output

　The endogenous variables in the dynamic general equilibrium have the following properties that parallel 
those derived in Solow-Swan economic growth model with technological progress. (See Futamura (2013).) 
Define the aggregate capital Kt in period t as follows.

（1.49）

Then, kt＝Kt /Nt is capital-labor ratio. Define the capital-labor ratio in "efficiency labor unit" as follows.

（1.50）

Then, the capital-labor ratio kt and the capital-labor ratio in efficiency labor unit k̃t satisfies the following 
relationship.

（1.51）

Multiply both sides of (1.40) with A－1/(1－β)
t＋1  and use (1.19) to transform the equation as follows.

（1.52）

By (1.51), equation (1.52) implies the following first-order nonlinear difference equation with respect to 
capital-labor ratio in efficiency labor unit k̃t given as follows.

（1.53）

where

（1.54）

The dynamical system (1.53) has the following two properties;
(ⅰ) (1.53) has a unique steady state k̃s where

（1.55）

(ⅱ) The steady state k̃s is globally stable. If the initial capital-labor ratio in efficiency labor unit k̃0＝
A0－1/(1－β) k0 is smaller (larger) than the steady state k̃s, then (1.53) generates a monotonically increasing 
(decreasing) sequence {k̃t ; t＝0, 1, 2, ... } converging to the steady state. By using (1.19), the capital-labor 
ratio kt is rewritten as follows.
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（1.56）

where

（1.57）

(1.56) implies that the growth rate of capital-labor ratio kt in the steady state is γ－1.
　The output yt in period t is rewritten as follows.

（1.58）

(1.58) implies that the growth rate of output in the steady state is also γ－1.
　By using (1.1) and (1.58), the aggregate output is rewritten as follows.

（1.59）

(1.59) implies that the growth rate of aggregate output Yt in the steady state is (1＋n) γ－1.
　The interest rate is rewritten as follows.

（1.60）

(1.60) implies that the interest rate becomes constant in the steady state.
　In the steady state, the growth rate of the wage rate wt, the growth rate of young consumption ct

y, and the 
growth rate of old consumption co

t＋1 are same and equal to γ－1 because wt＝ (1－β) At kt
β＝ (1－β) yt, ct

y＝
αwt, and co

t＋1＝ (1＋rt＋1)(1－α) wt.

1-4．Numerical Example.
The dynamic general equilibrium of above overlapping generations model can be numerically simulated 
through the following steps.
Step 1. Specify the values for parameters and initial conditions. For example, we specify the values as 
follows.
α＝ 0.5 ; the weight of the utility of young consumption in the utility function (1.4). (The weight of the 
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utility of old consumption in the utility function is 1－α＝0.5.)
β＝0.3 ; the weight of capital in the Cobb-Douglas production function (1.17).
n＝0.1 ; the rate of change in the cohort population.
g＝0.1 ; the growth rate of technological progress.
s0＝1.1 ; the saving in the initial period t＝0, predetermined by young individual in the previous period t＝
－1.
k0＝ s0/(1＋n)＝1.0 ; initial capital.
A0＝10 ; initial level of technology.
N0＝100 ; initial cohort population.
　Given these values, the initial capital-labor ratio in efficiency labor unit k̃0 and the steady state capital-
labor ratio in efficiency labor unit k̃s are

（1.61）

(1.61) implies that the dynamic general equilibrium sequence of capital-labor ratio in efficiency labor unit 
{k̃t ; t＝ 0, 1, 2, ... } is a monotonically increasing sequence converging to the steady state. In the steady 
state, capital-labor ratio kt, output yt, wage rate wt, young consumption ct

y, and old consumption co
t＋1 all grow 

at the same rate γ－1＝0.1459. The aggregate output Yt grows at (1＋n) γ－1＝0.2604. The interest rate is 
constant at r＝1.0804.
　In the overlapping generations model where each individual lives two periods, one period may 
corresponds to 30~40 years. Therefore, a growth rate x in the model implies (1＋x)1/40－1~ (1＋x)1/30－1 
annual growth rate. By the same reason, the interest rate r in the model implies (1＋r)1/40－1~ (1＋r)1/30－1 
annual interest rate.
Step 2. Calculate the endogenous variables for period t＝0 as follows.

（1.62）

（1.63）

（1.64）

（1.65）

（1.66）

（1.67）

（1.68）

Step 3. Update the capital-labor ratio and the capital-labor ratio in efficiency labor unit for period t＝1 as 
follows.
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（1.69）

（1.70）

Then, calculate the endogenous variables for period t＝1 as follows.

（1.71）

（1.72）

（1.73）

（1.74）

（1.75）

（1.76）

（1.77）

（1.78）

（1.79）

The utility of an individual born in period t＝0 is calculated as follows.

（1.80）

Step 4. Update the capital-labor ratio and the capital-labor ratio in efficiency labor unit for period t＝2 as 
follows.

（1.81）

（1.82）

Then, calculate the endogenous variables for period t＝2 by repeating step 3.
Step 5. Repeat the above steps to generate the sequence of endogenous variables in the dynamic general 
equilibrium {k̃t, kt, rt, wt, st, ct

y, ct
o, ut, yt, Yt ; t＝0, 1, 2, ... }.

　The result of the numerical simulation is summarized in Table 1.1. As predicted, the capital-labor ratio 
in efficiency labor unit k̃t starts at k̃0＝0.0373 and converges monotonically and quickly toward the steady 
state k̃s＝0.1603. The movement of k̃t is depicted in figure 1.3. Figure 1.4 depicts the movement of capital-
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Table 1.1　Simulation of Overlapping Generations Model with Two Periods Lifecycles

t A(t) N(t) k̃(t) k(t) r(t) w(t) s(t)
0 10.00 100.00 0.0373 1.00 3.00 7.00 1.10

1 11.00 110.00 0.1035 3.18 1.47 10.90 3.50

2 12.10 121.00 0.1406 4.95 1.18 13.69 5.45

3 13.31 133.10 0.1542 6.22 1.11 16.12 6.84

4 14.64 146.41 0.1585 7.33 1.09 18.63 8.06

5 16.11 161.05 0.1598 8.47 1.08 21.40 9.31

6 17.72 177.16 0.1602 9.73 1.08 24.54 10.70

7 19.49 194.87 0.1603 11.15 1.08 28.12 12.27

8 21.44 214.36 0.1603 12.78 1.08 32.23 14.06

9 23.58 235.79 0.1603 14.65 1.08 36.93 16.11

10 25.94 259.37 0.1603 16.79 1.08 42.32 18.46

11 28.53 285.31 0.1603 19.23 1.08 48.49 21.16

12 31.38 313.84 0.1603 22.04 1.08 55.56 24.24

t c y(t) co(t) u(t) y(t) Y(t) Δy(t)/y(t) ΔY(t)/Y(t)
0 3.50 4.40 1.70 10.00 1000.00

1 5.45 8.64 2.09 15.57 1712.33 0.5567 0.7123

2 6.84 11.90 2.30 19.55 2366.09 0.2562 0.3818

3 8.06 14.45 2.46 23.03 3065.72 0.1779 0.2957

4 9.31 16.84 2.60 26.61 3896.28 0.1554 0.2709

5 10.70 19.40 2.74 30.57 4923.27 0.1487 0.2636

6 12.27 22.27 2.87 35.05 6210.15 0.1467 0.2614

7 14.06 25.53 3.01 40.18 7829.32 0.1461 0.2607

8 16.11 29.26 3.15 46.04 9869.11 0.1459 0.2605

9 18.46 33.52 3.28 52.76 12439.76 0.1459 0.2605

10 21.16 38.41 3.42 60.45 15679.77 0.1459 0.2605

11 24.24 44.02 3.55 69.27 19763.58 0.1459 0.2605

12 27.78 50.44 3.69 79.37 24910.98 0.1459 0.2604
alpha＝0.5, beta＝0.3, n＝0.1, g＝0.1, A(0)＝10, N(0)＝100, k(0)＝1.
s(0)＝(1＋n)*k(0)＝1.1.
kxs＝0.160347, kx(0)＝0.0372759, Gamma＝0.277679.
gamma＝1.14586, (1＋n)*gamma＝1.26045.

labor ratio kt, and figure 1.5 depicts the movement of utility ut of each individual born in period t. Because 
young consumption ct

y and old consumption co
t＋1 grow at the same rate γ＝ (1 ＋g) 1/(1 －β), and because the 

utility function is assumed to be of logarithmic form, the slope of the graph of ut is approximately equal to 
g/(1－β). (ln γ t＝ t×ln γ＝ t×ln[(1＋g)1/(1－β)]＝ t×(1/(1－β))×ln(1＋g)≅ t×(1/(1－β))×g.)
　Figure 1.6 depicts the movement of output yt, and figure 1.7 depicts the movement of the growth rate 
of output (yt＋1－yt)/yt. As predicted, the growth rate of yt converges monotonically and quickly toward the 
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Figure 1.3　The Graph of Capital-Labor Ratio in Efficiency Labor Unit k̃t

Figure 1.5　The Graph of Utility ut

Figure 1.4　The Graph of Capital-Labor Ratio kt
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steady state growth rate γ－1＝0.1459. Figure 1.8 depicts the movement of aggregate output Yt, and figure 
1.9 depicts the movement of the growth rate of output (Yt＋1－Yt)/Yt. As predicted, the growth rate of Yt 
converges monotonically and quickly toward the steady state growth rate (1＋n) γ－1＝0.2605.

Figure 1.8　The Graph of Aggregate Output Yt

Figure 1.6　The Graph of Output yt

Figure 1.7　The Graph of the Growth Rate of Output (yt＋1－yt)/yt
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2．Exercise: Is Sales Tax Regressive to Income?

　In this exercise, we are going to investigate if the conventional wisdom that “sales tax is regressive 
to income” is true. For this purpose, we construct and analyze a two periods lifecycle model which is 
described as follows. There are two individuals, A and B. Each individual lives two periods. The optimal 
consumption-saving problem of A is described as follows.

（2.1）  ; utility function.

（2.2）  ; first period budget constraint.

（2.3）  ; second period budget constraint.

In (2.1), (2.2), and (2.3), uA is utility, c1A is first period consumption, c2A is second period consumption, sA 
is saving, yA is first period income, t is sales tax rate, and r is interest rate. In (2.1), c

_
 is interpreted as the 

minimum consumption level that is necessary to sustain livelihood in the first period. (In fact, the first 
period consumption c1A must be above c

_
 because ln[c1A－c

_
]＝－∞ at c1A＝c

_
.) Given {yA, r, t}, A chooses a 

consumption-saving plan {c1A, c2A, sA} that maximizes utility uA subject to the first period budget constraint 
(2.2) and the second period budget constraint (2.3). The optimal consumption-saving problem of B, 
likewise, is described as follows.

（2.4）  ; utility function.

（2.5）  ; first period budget constraint.

（2.6）  ; second period budget constraint.

In the following analysis, we assume yA＝200 and yB＝400 so that B is richer than A. In addition, we 

Figure 1.9　The Graph of the Growth Rate of Aggregate Output (Yt＋1－Yt)/Yt
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assume c
_
＝50 so that the minimum consumption level in first period is same for A and B, and α＝0.5 so 

that A and B have the same preference (utility function) with respect to first period consumption and second 
period consumption. We also assume r＝0 for analytical simplicity. (The analytical implications do not 
change even if  r≠0.)

Question 1.  Assume that the sales tax rate is zero (t＝0). Then, calculate the optimal consumption-saving 
plan of A {c1A, c2A, sA} that maximizes A's utility uA subject to the first period budget constraint (2.2) and the 
second period budget constraint (2.3).

Answer: c1A＝ (　　　　　), c2A＝ (　　　　　), sA＝ (　　　　　).

Question 2.  Assume t＝0. Then, calculate the optimal consumption-saving plan of B {c1B, cB
A, sB} that 

maximizes B's utility uB subject to the first period budget constraint (2.5) and the second period budget 
constraint (2.6).

Answer: c1B＝ (　　　　　), c2B＝ (　　　　　), sB＝ (　　　　　).

Question 3.  Assume t＝0. Which one of the following options {(a), (b), (c), (d)} is true about the 
relationship between A's saving rate sA/yA and B's saving rate sB/yB?
（a）　　
（b）　　
（c）　　
（d）　　None of {(a), (b), (c)}.

Answer: (　　　　　)

Question 4.  Assume that the sales tax rate is 100% (t＝1). Then, calculate the optimal consumption-
saving plan of A {c1A, c2A, sA} that maximizes A's utility uA subject to the first period budget constraint (2.2) 
and the second period budget constraint (2.3).

Answer: c1A＝ (　　　　　), c2A＝ (　　　　　), sA＝ (　　　　　).

Question 5.  Assume t＝1. Then, calculate the optimal consumption-saving plan of B {c1B, cB
A, sB} that 

maximizes B's utility uB subject to the first period budget constraint (2.5) and the second period budget 
constraint (2.6).

Answer: c1B＝ (　　　　　), c2B＝ (　　　　　), sB＝ (　　　　　).

Question 6. Assume t＝1. Which one of the following options {(a), (b), (c), (d)} is true about the 
relationship between A's saving rate sA/yA and B's saving rate sB/yB?
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（a）　　　
（b）　　　
（c）　　　
（d）　　　None of {(a), (b), (c)}.

Answer: (　　　　　)

Question 7.  Assume t＝1. Which one of the following options {(a), (b), (c), (d)} is true about the 
relationship between A's first period sales tax burden ratio t×c1A/yA and B's first period sales tax burden 
ratio t×c1B/yB?
（a）　　　
（b）　　　
（c）　　　
（d）　　　None of {(a), (b), (c)}.

Answer: (　　　　　)

Question 8.  Assume t＝1. Which one of the following options {(a), (b), (c), (d)} is true about the 
relationship between A's lifetime sales tax burden ratio (t×c1A＋ t×c2A)/yA and B's lifetime sales tax burden 
ratio (t×c1B＋ t×c2B)/yB?
（a）　　　
（b）　　　
（c）　　　
（d）　　　None of {(a), (b), (c)}.

Answer:  (　　　　　)

Question 9.  Apply above analyses to answer to the question that if sales tax is regressive to income. State 
explicitly the reason why sales tax has such properties in the answer.

Analyses: The above questions are analyzed as follows. The constrained utility optimization problem in 
general form is described as follows.

（2.7）  ; utility function.

（2.8）  ; first period budget constraint.

（2.9）  ; second period budget constraint.

In (2.7), (2.8), and (2.9), α＝0.5 and r＝0 by assumption. By using (2.8) and (2.9), the utility is expressed 
as a function of saving s as a sole control variable as follows.
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（2.10）

The first-order condition for the maximization of utility u with respect to saving s is du/ds＝0. The 
condition is solved for the optimal saving s*. The solution is

（2.11）

Then, by using (2.8) and (2.9), the optimal consumption plan {c1*, c2*} is solved as follows.

（2.12）

（2.13）

By (2.11), the saving rate s*/y is shown to be increasing in income y because

（2.14）

(2.14) implies

（2.15）

(Notice if c
_
＝0, then the saving rate is s*/y＝1/2 independent of income y.) Then, by using (2.12), the first 

period sales tax burden ratio t×c1/y is shown to be decreasing in income y because

（2.16）

By (2.15), (2.16) implies

（2.17）

(2.17) implies that "sales tax is regressive to income" if measured by the first period tax burden ratio.
　The lifetime sales tax burden ratio, however, reveals the different aspect of sales tax. By eliminating 
saving from (2.8) and (2.9), we have the following lifetime budget constraint.

（2.18）

The lifetime sales tax burden ratio, hence, is expressed as follows.

（2.19）

(2.19) implies that sales tax is neither regressive nor progressive to income if measured by lifetime sales 
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tax burden ratio. The reason why sales tax has such a property is easy to understand. The sales tax is 
equivalent to a proportional income tax. The burden ratio of proportional income tax, by definition, is same 
for all individuals regardless of income level. In the lifecycle model, the lifetime budget constraint (2.18) is 
rewritten as follows.

（2.20）

Therefore, an increase in sales tax ratio t causes real income y/(1＋t) to decrease. In fact, there is a 
proportional income tax rate θ that has the same effect as the sales tax has on income. Such a proportional 
income tax rate θ satisfies the following relationship.

（2.21）

From (2.21), θ is calculated as

（2.22）

which is nothing but lifetime sales tax burden ratio (2.19). (The proportional income tax burden ratio is θy/y
＝θ. On the other hand, we can also express the lifetime sales tax burden ratio as {y－[y/(1＋t)]}/y because 
it causes the real income to decrease from y down to y/(1＋t). The lifetime sales tax burden ratio expressed 
in this way is equal to t/(1＋t).) By (2.22), if the sales tax rate is t＝1 (100%), then the corresponding 
proportional income tax rate is θ＝ t/(1＋t)＝0.5. If t＝0.1 (10%), then θ＝ t/(1＋t)＝0.1/1.1≅0.091.

Figure 2.1　Bequest between Generations

　If each individual receives bequest from parents in the first period, and leaves bequest to children in the 
second period, we can still find a sales tax system which makes it equivalent to proportional income tax so 
that the sales tax is neither regressive nor progressive yet. If there are intergenerational transfers (bequests), 
(2.8) and (2.9) are rewritten as follows.

（2.23）

（2.24）

In (2.23), α1 is a bequest received by the individual in the first period. In (2.24), α2 is a bequest left by the 
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individual in the second period. (See figure 2.1.) By eliminating the saving s from (2.23) and (2.24), we 
have the following lifetime budget constraint.

（2.25）

Therefore, for a "sales tax" imposed on {c1, c2, α2} at the same rate t, we can find a proportional "income 
tax" imposed on {y1, α1, y2} at the same rate θ which makes these two tax system equivalent.
　People often criticize sales tax for its regressiveness to income level. This criticism is based on the 
following observation. "Statistics show that the saving rate of rich people is higher than poor people. 
Therefore, the ratio of sales tax burden to income is higher for poor people than for rich people because the 
former must consume out of income more than the latter". As we saw in the above analyses, however, this 
conventional wisdom is not necessarily true. The lifetime sales tax burden ratio may be neither regressive 
nor progressive because it may be equivalent to proportional income tax. To judge the legitimacy of the 
criticism against sales tax based on its regressiveness, above analysis based on the theoretical model must 
be rendered to empirical data analysis. In this field of research, Crawford, Keen, and Smith (2010) reported 
a result against the regressivity of sales tax.

3． Exercise: The Effects of Pay-as-you-go Public Pension System on Economic 
Growth and Welfare.

　In this exercise, we are going to investigate the effects of pay-as-you-go public pension system on 
economic growth and welfare. For this purpose, we construct an overlapping generations model that 
incorporates public pension system. The structure of the model is described as follows. Let t＝0, 1, 2, ... 
denote the index for discrete time periods. At the beginning of each period t, Nt individuals are born. The 
growth rate of the cohort population is n as follows.

（3.1）

Each individual lives two periods. A representative individual born at the beginning of period t is "young" 
and is subject to the following young budget constraint.

（3.2）

The young individual inelastically supplies one unit labor and earn labor income wt×1 where wt is the 
wage rate. In addition, the young individual contributes premium xt to public pension system. Therefore, 
the right hand side of (3.2) is labor income net of public pension premium. The left hand side of (3.2) 
implies that the individual consumes ct

y and saves st＋1 to prepare for the consumption in the second period 
of her/his life. The young individual in period t becomes an old individual in the next period t＋1, and is 
subject to the following old budget constraint.

（3.3）

In the right hand side of (3.3), rt＋1 is the interest rate, and zt＋1 is pension to the old individual. The saving 
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in period t by young individual is employed as capital by firms in period t＋1 who pays the interest rate 
rt＋1 to each unit of capital. Therefore, (3.3) implies that the old individual consumes co

t＋1 her/his old income 
which consists of the principal st＋1 and  the interest income rt＋1 st＋1 that accrue to the saving, and pension zt＋1. 
The utility of the representative individual born at the beginning of period t is an increasing and concave 
function of young consumption ct

y and old consumption co
t＋1 defined as follows.

（3.4）

Given {wt, rt＋1, xt, zt＋1}, the individual chooses an optimal consumption-saving plan {ct
y, co

t＋1, st＋1} that 
maximizes utility ut subject to the young budget constraint (3.2) and the old budget constraint (3.3). (Notice 
if {xt＝0, zt＋1＝0 ; t＝0, 1, 2, ... }, then this overlapping generations model is same as the one analyzed in 
section 1.)

Question 1.  Express the optimal consumption-saving plan {ct
y, co

t＋1, st＋1} as functions of {wt, rt＋1, xt, zt＋1}.

　In each period t, there are Nt firms. In period t, a representative firm, given the interest rate rt and the 
wage rate wt, demands capital kt

d and labor lt
d to maximize profit πt which is defined as follows.

（3.5）

In (3.5), yt is output produced by the following production function.

（3.6）

For simplicity, we assume there is no technological progress so that the technology level A in (3.6) is 
constant.

Question 2.  By solving the firm's profit maximization problem, express the interest rate rt and the wage 
rate wt as functions of capital kt

d and labor lt
d.

　Although there are three markets {output market, capital market, labor market}, if two out of three 
markets are in equilibrium, the remaining one is in equilibrium as well by Walras' law. Therefore, we focus 
on the equilibrium conditions for capital market and labor market in the following analyses. The capital 
market equilibrium condition in period t is 

（3.7）

The left hand side of (3.7) is the aggregate demand for capital by Nt firms, and the right hand side is the 
aggregate supply of capital by Nt－1 old individuals born in the previous period t－1. The labor market 
equilibrium condition in period t is

（3.8）

The left hand side of (3.8) is the aggregate demand for labor by Nt firms, and the right hand side is the 
aggregate supply of labor by Nt young individuals each inelastically supplies one unit labor.
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　The public pension is managed as a pay-as-you-go system. There is no fund. Therefore, the budget 
constraint of the pension system in each period t is

（3.9）

The right hand side of (3.9) is the total contribution by Nt young individuals each pays pension premium 
xt. The left hand side of (3.9) is the total pension payment to Nt－1 old individuals each receives zt. In the 
following analyses, assume that the pension is fixed at zt＝ z, and the pension premium xt is set to satisfy 
the budget constraint (3.9). By (3.1) and (3.9), this assumption implies that the pension premium is also 
constant at xt＝x where

（3.10）

Because 1＋n＝Nt /Nt－1 is the ratio of young individuals to old individuals, an increase (a decrease) in the 
cohort growth rate n causes the pension premium to decrease (increase), for there are more (less) young 
individuals to support old individuals in the pay-as-you-go public pension system. (See figure 3.1.)

Figure 3.1　Pay-as-you-go Public Pension System

Question 3.  Derive the dynamical system with respect to capital-labor ratio kt (the superscript "d" is 
omitted) in a dynamic general equilibrium of this overlapping generations model. (The dynamical system is 
same as the one derived in section 1 if there is no pension system so that {xt＝0, zt＋1＝0 ; t＝0, 1, 2, ... }.)

　By using the dynamical system with respect to kt derived in question 3, readers are asked to numerically 
simulate the dynamic general equilibrium and analyze the effects of demographic changes on the dynamic 
general equilibrium variables of overlapping generations model with pay-as-you-go public pension system. 
For this purpose, we set the parameter values and the values of initial conditions as follows;
α＝0.5 ; the weight of the utility of young consumption in the utility function (3.4). (The weight of the 
utility of old consumption in the utility function is 1－α＝0.5.)
β＝0.3 ; the weight of capital in the Cobb-Douglas production function (3.6).
k0＝5 ; initial capital-labor ratio.
A＝20 ; the technology level in (3.6).
N0＝100 ; initial cohort population.
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z＝2 ; pension per old individual.
　In the following analyses, readers are asked to calculate endogenous variables in the dynamic general 
equilibrium for three different cases with respect to the cohort growth rate n; {n＝0.2, n＝0, n＝－0.2}.

Question 4.  Assume n＝0.2 so that the cohort size enlarges. Calculate the sequence of capital-labor ratio 
{kt ; t＝0, 1, 2, ... , T＋1}, where T is the last period of calculation, in the dynamic general equilibrium by 
following the steps presented below.
Step 1. Readers will notice that the dynamical system derived in question 3 is a first-order nonlinear 
difference equation with respect to capital-labor ratio kt. Therefore, given the initial value k0＝5, 
readers may want to use programming software which is capable of solving the nonlinear equation with 
respect to k1. (For example, "Solve" or "FindRoot" command is used to solve nonlinear equations by 
MATHEMATICA. Or, Newton's algorithm by FORTRUN fits to the purpose as well.)
Step 2. Given k1 calculated in step 1, solve the same nonlinear equation for k2.
Step 3. repeat above steps to calculate the dynamic general equilibrium sequence of capital-labor ratio {kt ; 
t＝0, 1, 2, ... , T＋1}

Question 5.  Assume n＝0.2. Use the dynamic general equilibrium sequence of capital-labor ratio in 
question 4 to calculate the following dynamic general equilibrium variables; {rt, wt, ct

y, co
t＋1, ut, yt, Yt ; t＝

0, 1, 2, ... , T}, where Yt＝Nt yt is aggregate output. In addition, calculate the old consumption in the initial 
period t＝0 by

（3.11）

where s0＝ (1＋n) k0 by (3.7).

Question 6.  Assume n＝0 so that the cohort size is constant at {Nt＝100 ; t＝0, 1, 2, ... , T}. Apply the 
numerical simulation methods of question 4 and question 5 to calculate the dynamic general equilibrium 
sequence of capital-labor ratio {kt ; t＝0, 1, 2, ... , T＋1}, the sequence of variables in the dynamic general 
equilibrium {rt, wt, ct

y, co
t＋1, ut, yt, Yt ; t＝0, 1, 2, ... , T}, and c0o.

Question 7.  Assume n＝－0.2 so that the cohort size diminishes over time. Apply the numerical 
simulation methods of question 4 and question 5 to calculate the dynamic general equilibrium sequence of 
capital-labor ratio {kt ; t＝0, 1, 2, ... , T＋1}, the sequence of variables in the dynamic general equilibrium 
{rt, wt, ct

y, co
t＋1, ut, yt, Yt ; t＝0, 1, 2, ... , T}, and c0o.

Question 8.  Calculate the steady state values of capital-labor ratio kt＝kt＋1＝ks for the three cases 
with respect to cohort growth rate {n＝0.2, n＝0, n＝－0.2}. (Readers may achieve this by solving the 
dynamical system with respect to capital-labor ratio of question 3 where kt and kt＋1 are replaced with a 
constant ks.)

Question 9.  Draw and overlap the graphs of dynamic general equilibrium sequences of capital-labor ratio 
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{kt ; t＝0, 1, 2, ... , T＋1} for the three cases with respect to cohort growth rate {n＝0.2, n＝0, n＝－0.2} 
such that the horizontal axis measures time period t＝0, 1, 2, ... , T＋1, and the vertical axis measures 
capital-labor ratio kt.

Question 10.  Draw and overlap the graphs of dynamic general equilibrium sequences of utility {ut ; t＝
0, 1, 2, ... , T} for the three cases with respect to cohort growth rate {n＝0.2, n＝0, n＝－0.2} such that 
the horizontal axis measures time period t＝0, 1, 2, ... , T＋1, and the vertical axis measures utility ut. Use 
the graphs to summarize the effects of demographic changes on the utility of each cohort in the overlapping 
generations model with pay-as-you-go public pension system.

Analyses:  In this exercise, the optimal consumption-saving plan {ct
y*, co

t＋1*, st＋1*} of a representative 
individual born in period t is solved as follows.

（3.12）

（3.13）

（3.14）

where the interest rate rt is equal to the marginal product of capital and the wage rate wt is equal to the 
marginal product of labor.

（3.15）

（3.16）

In addition, the public pension premium x and the pension z satisfy

（3.17）

The maximized utility is

（3.18）

The welfare level of an old individual born in period t＝－1 is measured by her/his old consumption in 
period zero which is calculated by

（3.19）

where s0 satisfies

（3.20）

by the capital market equilibrium condition (3.7). The sequence of capital-labor ratio {kt ; t＝0, 1, 2, ... , T
＋1} in dynamic general equilibrium satisfies the following nonlinear first-order difference equation.
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（3.21）

Given the initial capital-labor ratio k0, (3.21) is solved for k1. Then, given k1, (3.21) is again used to solve 
for k2. We repeat these steps to generate the sequence of capital-labor ratio in dynamic general equilibrium. 
Then, the result is used to calculate other endogenous variables in the dynamic general equilibrium. 
(Appendix shows the MATLAB codes for solving for the capital-labor ratio and other endogenous variables 
in the dynamic general equilibrium.)
　Figure 3.2 depicts the graphs of dynamic general equilibrium capital-labor ratio {kt ; t＝0, 1, 2, ... , T＋
1} for three cases with respect to cohort growth rate {n＝0.2, n＝0, n＝－0.2}. (The last period is set at 
T＝10.) In this exercise, the speed of capital accumulation is faster the smaller is the cohort growth rate 
n. By setting kt＝kt＋1＝ks in (3.21), we can also solve for the steady state capital-labor ratio ks. The steady 
state capital-labor ratio ks is also shown to be larger the smaller is the cohort growth rate n. (When n＝
0.2, ks＝10.8381. When n＝0, ks＝13.9066. When n＝－0.2, ks＝18.8441.) Figure 3.3 depicts the graphs 
of dynamic general equilibrium utility {ut ; t＝0, 1, 2, ... , T} for three cases with respect to cohort growth 
rate {n＝ 0.2, n＝ 0, n＝－0.2}. Because the cohort growth rate n is also the ratio of young individuals 
to old individuals Nt /Nt－1＝1＋n, when the pension per old individual z is fixed, the pension premium per 
young individual x＝ z/(1＋n) is larger the smaller is n. (There are less young individuals who support old 
individuals.) The smaller cohort growth rate, however, raises capita-labor ratio, and hence, raises output. 
Therefore, in this exercise, despite the higher pension premium imposition, the utility is higher the smaller 
is n as displayed by figure 3.3.

Figure 3.2　The Graph of Capital-Labor Ratio kt

alpha＝0.5, beta＝0.3, A＝20, z＝2, k(0)＝5.
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4．Computable Dynamic General Equilibrium Models.

　The overlapping generations model in section 1, where each individual lives two periods, can be 
generalized as follows.
　Suppose, each individual lives three periods. A representative individual born at the beginning of period 
t works, consumes, and saves in period t and period t＋1, and retires, consumes, and dissaves in period t＋2. 
For this individual, the budget constraints are expressed as follows.

（4.1）

（4.2）

（4.3）

(4.1) is "young" individual's budget constraint. ct
1 is young consumption, s1t＋1 is young saving, and wt

1 is 
young labor income. (4.2) is "middle" individual's budget constraint. c2t＋1 is middle consumption, s2t＋2 is 
middle saving, and w2t＋1 is middle labor income. (4.3) is "old" individual's budget constraint. c3t＋2 is old 
consumption. (See figure 4.1.) In the overlapping generations model consisting of individuals each lives 
three periods, there are three overlapping generations in each period t. For example, in period t, there are 
Nt－2 old individuals born two periods ago, Nt－1 middle individuals born the previous period, and Nt young 
individuals born this period. The aggregate demand for consumption Ct in period t is

（4.4）

The aggregate supply of labor Lt in period t is

Figure 3.3　The Graph of Utility ut

alpha＝0.5, beta＝0.3, A＝20, z＝2, k(0)＝5.
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（4.5）

The aggregate supply of capital St is

（4.6）

The definition of dynamic general equilibrium for this overlapping generations model with three periods 
lifecycles is same as that for overlapping generations model with two periods lifecycle. Each individual 
chooses optimal consumption-saving plan to maximize utility subject to budget constraints, each firm 
chooses factor demand to maximize profit, and every market clears.
　A modeler may choose the length of lifecycle, depending on her/his analytical objective, and may 
construct overlapping generations models. For example, one may construct an overlapping generations 
model where each individual lives 80 periods (years) so that there are 80 overlapping generations in each 
period t. 
　Samuelson (1958) and Diamond (1965) contributed the progress in early stages of overlapping 
generations model analyses. Auerbach and Kotlikoff (1987) initiated this "computable dynamic general 
equilibrium model" to analyze effects of economic policies which involve intergenerational transactions 
such as social security system, deficit finance, bequest, etc. Although the computation is complex, Auerbach 
and Kotlikoff and their followers have reported many important results that have significant influence on 
policy makers and policy making processes.

Figure 4.1　Overlapping Generations Model with Three Periods Lifecycles

References.

［ 1］Auerbach, A. J., and L. J. Kotlikoff, Dynamic Fiscal Policy, Cambridge University Press, 1987.
［ 2］Crawford, I., M. Keen, and S. Smith, "Value Added Tax and Excises". Chapter 4 of Dimensions of 

Tax Design, Mirrlees Review, Volume 1, Oxford University Press, pp. 275-422, 2010.
［ 3］ Diamond, P. A., "National Debt in a Neoclassical Growth Model." American Economic Review 55, 

pp. 1126-1150, 1965.
［ 4］ Futamura, H., "The Fundamentals of Economic Dynamics and Policy Analyses: Learning through 



－ 28 －

Numerical Examples. Part Ⅱ. Dynamic General Equilibrium." Hiroshima Economic Review, Vol. 36, 
No. 3, pp.29-60, 2013.

［ 5］ Samuelson, P. A., An Exact Consumption-Loan Model of Interest with or without the Social 
Contrivance of Money." Journal of Political Economy 66, pp.467-482, 1958.

Appendix. MATLAB Codes for Solving the Dynamic General Equilibrium Capital-Labor Ratio and Other 
Variables of Exercise in section 3..

(P1) % DGE capital-labor ratio in a OLG model
(P2) %  with Pay-as-you-go Public Pension System.
(P3) global alpha beta A z n kx;
(P4) % Parameter Values
(P5) alpha＝0.5;
(P6) beta＝0.3;
(P7) A＝20;
(P8) z＝2;
(P9) n＝0.2;
(P10) T＝11;
(P11) % Solving nonlinear first-order difference equation
(P12) % with respect to DGE capital-labor ratio k.
(P13) k＝zeros(T＋1, 1);
(P14) k(1)＝5;
(P15) for t＝1 : T;
(P16) kx＝k(t);
(P17) options＝optimset('Display', 'iter');
(P18) k(t＋1)＝ fzero(@olg_k, [4 20], options);
(P19) end;
(P20) % DGE Variables.
(P21) r＝zeros(T＋1, 1);
(P22) w＝zeros(T＋1, 1);
(P23) s＝zeros(T＋1, 1);
(P24) c_y＝zeros(T, 1);
(P25) c_o＝zeros(T＋1, 1);
(P26) u＝zeros(T, 1);
(P27) x＝z/(1＋n);
(P28) for t＝1 : T＋1 ;
(P29) r(t)＝beta*A*(k(t)^(beta-1));
(P30) w(t)＝ (1-beta)*A*(k(t)^beta);
(P31) end;
(P32) s(1)＝ (1＋n)*k(1);
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(P33) c_o(1)＝ (1＋r(1))*s(1)＋z;
(P34) for t＝1 : T ;
(P35) s(t＋1)＝ (1-alpha)*(w(t)-x) - (alpha*z/(1＋r(t＋1)));
(P36) c_y(t)＝w(t) - x - s(t＋1);
(P37) c_o(t＋1)＝ (1＋r(t＋1))*s(t＋1)＋z;
(P38) u(t)＝alpha*log(c_y(t))＋(1-alpha)*log(c_o(t＋1));
(P39) end;  
*************************************
(P40) function fk＝olg_k(ky)
(P41) global alpha beta A z n kx;
(P42) fk1＝ (1-alpha)*(1-beta)*A*(kx^beta);
(P43) fk2＝ (1-alpha)*z/(1＋n);
(P44) fk3＝alpha*z/(1＋beta*A*(ky^(beta-1)));
(P45) fk＝ky - (1/(1＋n))*(fk1 - fk2 - fk3);

 Lines (P1)~ (P39) are the main program. Lines (P40)~ (P45), named "olg_k.m", are sub-program which 
defines the function to be solved. (Omit the line names (P1)～ (P45) when editing the codes in MATLAB 
editor.) The lines that begin with "%" are statements. "global" in lines (P3) and (P41) specify the parameters 
and variables used for the main program and the sub-program. Lines (P11)~ (P19) solve recursively the 
nonlinear firs-order difference equation (3.21) with respect to the dynamic general equilibrium capital-labor 
ratio. For the options in "fzero" command, we specify the range of solution between 4 and 20. We know the 
initial value is k0＝5, and the steady state is ks＝10.838 when the cohort growth rate is n＝0.2. Because k0
＜ks, we also know that the sequence of dynamic general equilibrium capital-labor ratio is monotonically 
increasing and converging to the steady state. (Without this option, "fzero" command sometimes is unable 
to return the real-valued solution because the function to be solved might have complex-valued solution.) 
After solving for the dynamic general equilibrium capital-labor ratio, lines (P20)～ (P39) calculate other 
dynamic general equilibrium variables {rt, wt, st, ct

y, co
t＋1, ut, ; t＝0, 1, 2, ... , T}.




