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Abstract 

The automation of machining processes has made great progress in the last several decades, and the 

future direction of machining technology development is the intellectualization. In this research, the 

term “machining” is constrained in the scope of conventional “metal cutting processes”, which 

specifically are turning, milling, drilling, sawing, planing, grinding, etc. There are 3 basic fundamental 

functional actions for machining processes which are monitoring, decision making and control. 

This dissertation concerns the monitoring of drilling process. The prediction of drill corner wear 

and the recognition of drilling conditions are both investigated. New features generation, extraction and 

selection methods, how are these features are affected by the drilling condition, and the result of the 

prediction of drill corner wear and recognition of drilling conditions are mainly discussed in this 

dissertation. 

In chapter 1, at first, related back ground is introduced, new ideas and methods are proposed, and 

the purpose of this work is announced, then the research design is explained, at last, the organization of 

the dissertation is summarized. 

In chapter 2, a state-of-the-art literature review on tool condition monitoring is offered. Different 

methodologies and technologies applied are categorized and compared. 

In chapter 3, the methodologies applied in this research are detailed. First the sensor system and the 

general experimental set up are introduced, and then the signal processing method and detailed feature 

generation procedure are discussed. After that the feature extraction method using wavelet packet 

transform is presented and then the feature selection methods are explicated. At last section the 

artificial neural network (ANN) model based regression and recognition approaches are specified. 

In chapter 4, how the generated and extracted features are affected by drilling condition parameters 

such as workpiece material, drill diameter, spindle speed, feed rate and the drill corner wear are 

revealed.  

In chapter 5, the prediction of drill wear and the recognition of drilling condition parameters are 

carried out. Two different features selection methods are applied, and one is using principal component 

analysis (PCA) for sub signals in each frequency band, the other is directly using ANN to select the 

major feature cluster and major frequency band. 

In chapter 6, conclusions are made.  

This dissertation examines the integrated procedure and methods for drilling process monitoring on 

the scopes of drill wear prediction and drilling conditions recognition. It is found that the dynamic 

features are more sensitive to the drilling status than static features, and they also contribute to the 

principal components more than static ones, but the change of drilling conditions leads to a more clear 

change of static features than dynamic ones. Good drill wear prediction and drilling condition 

recognition results are obtained. 
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Chapter 1   Introduction 

In this chapter, at first, related back ground is introduced, new ideas and methods are proposed, and 

the purpose of this work is announced, then the research design is explained, at last, the organization of 

the dissertation is summarized. 

In section 1, brief back ground of this research is provided. First, definitions and relations of 

manufacturing, machining, and drilling are carried out. Then the development of machining 

technologies is briefed and the concept, requirement and architecture of intelligent machining are 

presented. After that, review and summary of machining monitoring are specified. 

In section 2, new ideas of feature generation and extraction, and drill condition recognition 

diagnostic are presented, and the purpose of this research is pointed out. 

In section 3, the methodologies applied and the design of this research is explicated. 

In section 4, the organization of the dissertation is provided. 

1.1 Research Background 

1.1.1 Manufacturing, Machining and Drilling 

Manufacturing is a very heterogeneous collection of production activities which refer to a range 

from handicraft to high tech, but most commonly applied to industrial production, in which raw 

materials are transformed into finished goods on a large scale. The major processes of manufacturing 

according to the similarity of functions can be generally categorized as casting, molding, forming, 

machining, joining and assembling. 

Machining is the broad term used to describe the removal of material from a workpiece and is one 

of the most important manufacturing processes [1]. In manufacturing realm, machining is the removal 

of the unwanted material from the workpiece so as to obtain a finished product or part of the desired 

size, shape and surface quality. 

Machining is a part of the manufacture of many metal products, but it can also be used on materials 

such as metals, alloys, woods, plastics, ceramics, and composites. Moreover, recently, advanced 

machining techniques such as electrical discharge machining (EDM), electro-chemical erosion, laser 

cutting, and water jet cutting, have been developed to shape metal workpieces. However, in this work, 

the term machining is constrained in the scope of conventional metal cutting processes, which 

specifically are turning, milling, drilling, grinding, etc.  

Drilling is a cutting process that uses a drill bit to cut or enlarge a hole of circular cross-section in 

solid materials. Drilling is one of the most important metal cutting operations, which comprises a major 

part of all metal cutting operations [2]. 

Drilling is often carried out as one of the last steps in the manufacturing production of a part, thus 

high demands in terms of process reliability are therefore placed on the operation. And furthermore, 

comparing to other machining processes (such as turning and milling), drilling can be seen as more 

complicated in terms of the kinematics and dynamics, the process control, the chip removal and thereby 
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the dissipation of the cutting heat.  

Therefore, developments of technologies for drilling process are highly demanded. 

1.1.2 Intelligent Machining 

Machining has traditionally been one of the major operations within most manufacturing systems. 

However, machining processes are inherently complex, nonlinear, multivariate and often subjected to 

various unknown external disturbances. Therefore, traditionally, a machining process is usually 

performed by a skilled operator, who uses his decision-making capabilities based on the intuition and 

rules of thumb gained from experience.  

Since many new theories and methods have been contributed to machining science, many new 

technologies have been brought to machining industries. And given the importance of machining to 

most industries, machine tools have often led the way in the development of automation technology.  

Machine tool automation began in 1950s with the introduction of numerical control (NC) 

technology which opened doors in the early 1970s to computer numerical control (CNC) and direct 

numerical control (DNC) machining centers that enhanced product accuracy and uniformity. Latterly, 

machine tool dynamometers were used with machine tools to measure, monitor and control forces 

generated during machining processes which are closely related to product accuracy and surface 

integrity. The recent trend in machining is to add intelligence to the machining process to automate the 

machining processes[3]. 

Automation and intellectualization at the process level for machining operations and machine tools 

has been a focus of research attention in both academia and industry for several decades. Research in 

this area has carried strong expectations in the context of increased productivity, improved part quality, 

reduced costs, and relaxed part design constraints. 

An intelligent machining system can be compared with a human operator. A number of sensors 

provide feedback to the system in a way the sensory organs provide feedback to a human operator. And 

then the feedback is processed by an automated system based on a computer in real time like by the 

human brain, and also by which the appropriate decisions are made to react optimally to different 

conditions. For a human operator, the machining technique comes from training and practice; while for 

an intelligent machining system, the automation is based on the physics of machining processes. The 

physics of machining processes are usually converted in mathematical forms by models based on the 

data obtained from sensors. Modeling of machining processes for an intelligent machining system is 

usually accomplished by soft computing with artificial neural networks (ANN) or fuzzy sets which can 

generate approximate solutions of machining process physics.  

From human machining to intelligent machining, the machining paradigms can be categorized as: 

human machining, NC machining, monitored NC machining and intelligent machining in a sequence 

that the requirement of manual intervention decreases. 

There are 3 basic fundamental functional actions for machining processes which are monitoring, 

decision making and control. Table 1-1 shows the subjects of the actions for different machining 

paradigms, in which “H” means human and “M” means machine. 
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1.1.3 Machining Monitoring 

Generally, an intelligent machining system requires the capabilities for automatic monitoring, 

control and diagnostics of the machining processes. And the success of manufacturing process 

automation hinges primarily on the effectiveness of process monitoring and control systems [8]. 

Furthermore, the key issue for an unattended and automated machining system is the development of 

reliable and robust monitoring systems [9]. In many cases, the decision making is regarded as part of 

the machining monitoring for its strong relation to and heavy dependency on the machining monitoring. 

There have been many excellent reviews reported detailing the range of problems to be addressed in 

machining monitoring. First, a brief review of these reviews is presented, then based on which the 

research on machining monitoring is summarized in two dimensions, latitudinal and longitudinal. 

Tönshoff et al [10], in 1988, reviewed researches describing conventional and enhanced methods 

for the monitoring and control of machining processes with a limitation to cutting and grinding 

machine tools. The monitoring subjects related in this paper were machine, tool, process, cutting 

condition and workpiece. The components required by monitoring and control systems were sensor, 

signal conditioning, model and strategy as mentioned in this paper. And the requirements of future 

monitoring and control systems are worked out as “multi sensor” and “multi model”. 

Shiraishi published his great trilogy of critical reviews about in-process measurement, monitoring 

and control techniques in machining processes in 1988 and 1989, segmented by the different 

monitoring technologies for tools, workpiece and the cutting process and machine. In the first part [11], 

measurement technologies for tool wear and tool failure were described and categorized into direct and 

indirect methods. In the second part [12],  technologies for the quality assurance of machined products 

by in-process measurement was surveyed. The workpiece quality was represented by dimension, 

profile and surface roughness and the measuring methods were categorized as ones by mechanical, 

optical, pneumatic, ultrasonic electric and temperature detection ways. In the third part [13], Shiraishi 

reviewed the in-process techniques for cutting processes and machine tools in which the monitoring of 

cutting processes covered cutting force, chatter, tool chip, tool/work collision and identification of a 

cutting process and, the monitoring of machine tools involved driving systems, bearing and rotating 

systems and temperature control. 

Dornfeld [14], in 1994, reviewed research focused on the monitoring of the cutting process for the 

purpose of determining the state of the operation, in which the states included the condition of cutting 

tool, the formation and behavior of the chip, and factors affecting the workpiece such as chatter and 

part dimensions, and the subjects included sensors, signal processing and sensor fusion. And 

technologies such as acoustic emission, sensor fusion, autoregressive models, and neural networks 

were specially emphasized. 

Dong-Woo, Cho et al [15], in 1999, offered a review of the state of machining process monitoring 

research in South Korea, which concerned the monitoring of chatter, tool failure and wear, built-up 

edge, chip, and etc., with technologies such as sensor, signal processing and decision making 

algorithms. 

Liang, Steven Y. et al [8], in 2004, discussed the evolution of machining process monitoring and 

control technologies and conducted an in-depth review of the state-of-the-art of these technologies over 
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the then past decade. For machining process monitoring, important attributes in machining such as 

surface texture, dimensional accuracy, tool condition and chatter detection were included, and sensor 

fusion was specially discussed.  

Abellan-Nebot and Subirón [9], in 2009, reviewed the six key issues involved in the development 

of intelligent machining systems: (1) sensor systems applied to monitor machining processes, (2) signal 

processing techniques, (3) sensory features applied in modelling machining processes, (4) the sensory 

feature selection and extraction methods, (5) the design of experiments required to model a machining 

operation and (6) artificial intelligence techniques. 

Teti et al [16], in 2010, reviewed the past contributions and provided an marvelous, up-to-date, and 

yet the most comprehensive survey of sensor technologies, signal processing, and decision making 

strategies for process monitoring. At first, the history of sensorial perception and knowledge 

acquisition was presented followed by the survey of technologies about sensors and sensor systems for 

machining. And then, advanced signal processing methods and their application were detailed. And 

furthermore, the “monitoring scopes” was brought up to present the different goals of machining 

monitoring. After that, schemes, techniques and paradigms used to develop decision making support 

systems were reviewed and their relevant applications were presented. The industrial initiatives, 

experiences and applications of machining monitoring were also exemplified. At last, an outlook on 

future challenges and trends was made. 

Kovač and Mankova [17], in 2011, reviewed the past contributions in machining monitoring areas 

and provided an up-to-date comprehensive survey of methodology overview, sensor technologies, 

signal processing, decision making strategies for process monitoring and integrated workpiece quality 

evaluation, as well as tool wear measuring technique using vision system. Application examples 

including sensor systems were reported and future challenges and trends in sensor based machining 

operation monitoring were also presented. 

On the basis of the massive amounts of research and conspicuous number of papers, we could 

summarize the work on machining monitoring in a latitudinal dimension ---- scopes (what is 

monitored), and in a longitudinal dimension ---- technologies (how to monitor). 

The major monitoring scopes can be summarized as follows: machine tool state, tool conditions, 

workpiece quality, and process conditions, as shown in Table 1-2. 

Table 1-2 Major machining monitoring scopes 
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Among the monitoring scopes, tool condition monitoring holds a relatively major share, as shown 

in Figure 1-3, about 29% of the previous research concerned about tool monitoring. This data is 

calculated from the reviews discussed above with an average measure from 77 papers. 

1.1.4 Drilling Process Monitoring 

Drilling process monitoring is one of the most important parts among machining monitoring and it 

has raised quite a lot of interest among researchers and has consequently been studied in a number of 

research projects by a number of research organizations.  

Especially for tool condition monitoring in drilling, a great many methods and technologies has 

been invented and employed and many papers have been published. In Chapter 2, a state-of-the-art 

comprehensive literature review on tool condition monitoring in drilling will be presented, which 

covers all the methodologies and technologies mentioned above. 

1.2 New Ideas and the Purpose 

1.2.1 New Ideas of Feature Generation and Extraction, Drill Condition 

Recognition Diagnostic 

Ryo et al [18], used dynamic components of the resultant force of principal force and feed force to 

indicate the adhesion of tool-chip interface and predict the surface finish in turning successfully. Firstly, 

they transformed the measured 3 dimensional cutting forces from the machine coordinate (defined by 

feed direction, axis direction, radius direction and tool tip) into tool coordinate (defined by rake face, 

major flank, minor flank and tool tip) as shown in Figure 1-4. 

 
Figure 1-4 Machine coordinate and tool coordinate in turning [18] 

Then, on the tool rake face, the tool end edge direction (X1) and side edge direction (Y1) form a 

rectangular coordinate, with the converted feed force (F’X1) and the converted thrust force (F’Y1) match 

X1 and Y1 respectively, as shown in Figure 1-5. 

Therefore, the locus of the resultant force of F’X1 and F’Y1 in the rectangular coordinate will like that 

shown in Figure 1-5.  Then they defined the direction from the origin to the center point of the locus 

G(x1,y1) as the chip flow direction, and the perpendicular direction as the chip width direction. At last 

the assumption that the dynamic components (such as x, y, θ) can indicate the chip condition and 

consequently the workpiece surface quality even tool wear. 
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Figure 1-5 Evaluation method of fluctuation in the dynamic components [18] 

Ertunc and Loparo [19], exploited percentages of the number of data points inside the reference 

rectangle to track tool wear with a “phase plane method”. The phase plane method is based on plotting 

the data signals on the Cartesian plane (torque or spindle power on the x-axis and thrust or servo power 

on the y-axis) and determining the boundary values of a reference rectangle for the data obtained from 

drilling a hole with a sharp tool. As illustrated in Figure 1-6, the rectangle is intended to contain the 

steady state values of the data points, i.e. without the entry and exit parts of the force and power signals. 

 
Figure 1-6 Phase plane and reference rectangle [19] 

Inspired by these two researches, a conversion method which transforms the thrust force and torque 

into equivalent thrust force and principal force is proposed. Then a rectangular coordinate is employed 

with the equivalent thrust force as horizontal axis and the equivalent principal force as vertical axis. 

And then new features are generated based on the locus of the resultant force. Detailed methodology is 

illustrated in Chapter 3, 3.3 Feature Generation. 

Wu, Ya and Du, R. introduced a new method of feature extraction and feature assessment using a 

wavelet packet transform for monitoring of machining processes [20]. The procedures of this method 

proceed in the following sequences.  

Step 1, calculate the wavelet packet transform of the training samples;  

Step 2, select the principal component feature wavelet packets;  
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Step 3, reconstruct a time domain signal using the selected feature packets;  

Step 4, calculate features from the reconstructed signal (mean values and variance values). 

They improved this method and make it functional in [21]. Two more steps were added to make the 

method able to indicate the tool condition:  

Step 5, calculate the alarm thresholds; 

Step 6, calculate the average number of threshold crossing points. 

The above two works were scarce examples of the few works that used wavelet packets 

reconstruction to get leaner time domain signals to extract features. 

Enlightened by these works, a new method to extract features using wavelet packet reconstruction 

is originated. However, unlike choosing the principal component packets by the energy of them in the 

frequency domain, all of the packets are reconstructed severally and from each band the features are 

extracted. The detailed feature extraction method is provided in Chapter 3, 3.4 Feature Extraction. 

Pattern recognition technologies have been widely used to recognize different tool wear states with 

cutting conditions and process features in machining monitoring, while in reverse, it was hardly used in 

the recognition of cutting conditions with tool wear states and process features. 

A neural network pattern recognition method is applied to classify and recognize the cutting 

conditions with process features and tool wear states in this work, to provide more information for the 

diagnostic in an intelligent machining system. 

This part of work is detailed in Chapter 5, 5.4 Drilling Conditions Recognition. 

1.2.2 Purpose and Configuration of the Research 

The use of multiple sensors to increase the capability of any intelligent system has received 

considerable attention in recent years. One of the several advantages of using multiple sensors is that it 

can improve ‘observability’. Given the goal of efficient and effective diagnostics and prognostics, 

sensor fusion is often the way to go. However, one should carefully test the hypothesis that additional 

sensors might lead to an improvement in the overall performance. In the absence of such a proof, 

sensor fusion should be avoided for it puts an extra burden on the model developer and could 

negatively affect the performance (in terms of both computational complexity and effectiveness).  

The guiding ideology of this research is to lean the system, to improve the reliability, by using 

fewer sensors but gaining more information. Therefore, the only sensor used in this research is a 

dynamometer which can provide the thrust force and torque generated during drilling. Nevertheless, 

many efforts have been made to obtain information as much as possible, such as new feature generation 

methods and the application of different feature selection methods. 

The purpose of this research is to clarify the new ideas and assumptions, therefore make 

contributions to the drilling monitoring, drilling automation and then intelligent drilling. 

The scope of this drilling monitoring research is restricted; first, the materials are several kinds of 

metals, then the tools used are common twist drills made of high speed steel (HSS), and the highest 

cutting speed is around 30 m/s, at last, the drilling depth is less than 3 times of the drill diameter. 
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1.3 Design of the Research 

1.3.1 Applied Technologies 

The new methods applied to fulfil sensor signal providing, feature generation, and feature 

extraction in this research have been briefly introduced above. Other technologies required for 

machining monitoring applied in this research are as follows. 

First, signal segmentation. The whole drilling process of a single workpiece can be divided into 3 

stages, according to the cutting edges position. The aimed segmentation is intercepted from the medial 

stage between entry stage and penetration stage, as illustrated in Chapter 3, 3.2 Signal Segmentation. 

For feature selection, both feature ranking and principal component analysis (PCA) are used and 

compared. They are introduced in details in Chapter 3, 3.5 Feature Selection. 

For decision making support system, an artificial neural network (ANN) is applied, and trained with 

back propagation algorithm, which is introduced in Chapter 3, 3.6 Decision-making support AI System. 

1.3.2 Experimental Design 

Before using the newly defined features to fulfill a specific monitoring task, the relations between 

the features and machining conditions should be investigated first. So, the primary task is to verify the 

existence of, then find out what are the relationships. 

The parameters used to represent the drilling conditions are workpiece material, drill diameter, 

spindle speed, feed rate, and drill wear. A series of experiments with different instances for one 

condition parameter but same constant value for the others are conducted. Then the relations are 

obtained and compared to those between conventional features and conditions.  

Concretely, workpiece materials used are cast iron, S45C, stainless steel and Titanium alloy; drill 

bit diameters are 7, 8, 9, 10 mm; spindle speed and feed rate are different for different workpiece 

materials and drill bit diameters but within a commonly used range. 

For collection data to train the neural network, totally 256 different instances are investigated, 

which covers each 4 different instances for workpiece materials, drill diameter, spindle speed and feed 

rate.  For each instance, drill wear is measured. 

1.4 Organization of the Dissertation 

The dissertation is organized as follows. 

Chapter 1 gives an introduction of this research, which contains background information, new ideas 

and purpose, what is the research about, how the research is designed, and what methods are applied.  

Chapter 2 offers a state-of-the-art literature review on tool condition monitoring in drilling. 

Different methodologies and technologies applied are categorized and compared. 

Chapter 3 discusses all of the methods related in this research. First in the sensor section, modeling 

of drilling process and forces and the applied piezoelectric dynamometer used are introduced. Then in 

the signal segmentation section, 3 stages of drilling process are defined and the method of obtaining the 

aimed segmentation is explained. And in the feature generation section, conversion method of thrust 

and torque is detailed, based on which the feature generation method is explicated. In the feature 
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extraction section, wavelet packet transform composition and reconstruction algorithms are interpreted. 

After that, in feature selection section, theories of feature importance ranking and principal component 

analysis (PCA) are explained. At last, the back propagation training algorithm for feed forward neural 

network learning is presented. 

Chapter 4 reveals the findings of the relations between the features and drilling conditions. The four 

drilling condition parameters are workpiece material, drill diameter, spindle speed and feed rate. The 

effect of drill corner wear to different features is also investigated. 

Chapter 5 presents the drill wear prediction and drilling condition recognition by using the 

methodologies. The feature selection is conducted by the PCA and direct use of BPNN. 

Finally, in chapter 6 conclusions are made. 
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Chapter 2   Literature Review 

In this chapter, a summary of the monitoring scopes, methods, signal analysis and diagnostic 

techniques for drilling process that have been tested and reported in the previous 45 literatures ([19]–

[63], sorted by time) are presented. Only indirect monitoring methods such as force, vibration, sound, 

temperature and current measurements are covered, i.e. direct monitoring methods based on vision, 

dimensional measurement etc. are not included.  

In the first section, monitoring scopes of drilling process are categorized into abnormal detection, 

wear states monitoring, and life prediction. And beneath them several sub categories are further created. 

Within these categories, it is known that drill breakage detection, drill wear degree classification and 

drill wear value estimation are the most attracted research scopes. 

In the second section, different signal analysis methods are classified as preprocessing, time domain 

analysis, frequency analysis and time-frequency analysis. Different feature acquiring methods are also 

included for different signal analysis methods. Special cases that without any signal analysis are 

particularly illustrated. 

In the last section, a detailed introduction of the usage of different decision-making support systems 

is presented, and the decision-making support systems are classified into 5 categories: threshold, 

statistical, fuzzy logic, neural network and Hidden Markov models. 

2.1 Monitoring Scopes 

Among all of the 45 papers, only one work ([41]) concerned about detecting the state of chip 

disposal in drilling, other 44 literatures are all about the monitoring of drill bit states, which are 

categorized into three major types here: abnormal detection, wear states monitoring, and life prediction. 

Detailed classification is shown in Table 2-1. 

Table 2-1 Classification of different monitoring scopes in previous literatures 

Categories Sub categories Literatures 

Abnormal 

detection 

Breakage/fracture [22], [23], [26], [31], [34], [36], [37], [39], [42], [59] 

Damage/worn [25], [54] 

Wear monitoring 

Wear type [23], [31], [44], [62] 

Wear degree 
[19]–[21], [24], [27], [29], [32], [33], [35], [38], [40], [45], 

[49], [52], [55], [61] 

Wear value [28], [30], [39], [46]–[48], [50], [51], [53], [57], [58], [60] 

Life prediction 

Holes to failure [43] 

Time to failure [56] 

Tool utilization [63] 

 

As shown in Table 2-1, 12 literatures are concerned about the abnormal detection in drilling, and 

they are divided in to 2 sub categories: breakage and damage. In [22], a new eddy current sensor was 
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used to measure torque at drill shank and analyzed the correlation between signal dynamics in 

frequency 400-500 Hz to the drill fracture. In [23], different feature of the forces were proved to have 

relations to different kinds of wears, which were chisel wear, flank wear and corner wear. The AE 

signal burst was used as a triggering signal to examine force change in [26], and it was described that if 

the force drops below the preset threshold then it was considered to be a tool failure. Both tool wear 

and failure were discussed in [31]. Li et al, applied different methods in real-time detection of drill 

breakage presented in [34], [36], [37], [39]. Normal and abnormal drill state signals were compared in 

[42], and neural networks were employed to classify them. The input impedance of the spindle motor 

was used as monitoring signature for detecting drill breakage in [59]. In [25] and [54], sensor signals 

from normal tools and damaged ones were compared. 

For wear monitoring, sub-scopes of wear type, wear degree and wear value are created according to 

the different focused wear properties. 

Locations and patterns of tool wear on a twist drill are shown in Figure 2-1. In [23], chisel wear, 

flank wear, crater wear and land wear were indicated by 4 levels: very little, small, medium and large 

or serious, and it was shown that the diversity in drill wear form lead to changes in both the cutting 

force and the torque. In [31], it was illustrated that chisel wear, corner wear, margin wear and flank 

wear have different power spectra in the vibration signals of transverse direction. In [44], effects of 

chisel wear, crater wear, flank wear, edge wear and corner wear to the vibration signals were 

investigated. And in [62], drills with irregular edge, worn cutting edge, worn outer corner and crater 

wear on edges were used to conducted experiments and the differences of AE signals were studied. 

 
Figure 2-1 Locations and patterns of tool wear on a twist drill [23] 

Literatures in wear degree sub category divided the drill wear into several degrees or different states 

by the wear width, area or drilled holes. Noori-Khajavi  and Komanduri  in [24], [27], [29], tried to 

classify the drill wear into 3 states defined by the corner wear area automatically. Wu et al defined the 

tool conditions in 4 sets, new, initial wear, normal wear and worn, by the average flank wear in [20], 

[21]. Li et al classified the tool conditions as initial wear, normal wear, acceptable wear, severe wear 

and failure in [32], [33] and [38], and as initial wear, acceptable wear and severe wear in [35]. Ertunc et 

al used run number of drill hole to divide the drill status into sharp, workable and dull. In [49], drill 
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health states were represented by good, medium and worn-out. Progressing tool wear in the total drill 

life was discussed together with the changes in the different process signals in [52]. Tool status were 

classified into sharp, workable and dull in [55], same as in [61]. 

In literatures categorized in wear value, specific drill wear values were presented and the works 

were dedicated to estimate or predict the wear values. Lin and Ting conducted tests using drills with 

0.1, 0.5 and 0.9 mm flank wear to obtain data to train a neural network in [28], [30]. A fuzzy and 

defuzzy  method was applied to estimate the tool wear in [39]. Dependence between tool flank wear 

and main forces and spindle power was found in [46]. Experiments using drills with various flank 

wears measured when drilled a certain number of holes were conducted to collect data in [47]. Panda et 

al obtained 49, 52, 52 and 64 data instances from experiments with different drill wear respectively in 

[48], [51], [53] and [60]. The effect of drill wear on the electrical power consumption was studied in 

[50]. The effect of drill flank wear to spindle current was researched in [57] and it was applied to 

predict drill wear with neural network in [58]. 

It should be noticed that researches in sub categories wear degree and wear value are different in 

the major objective. The former ones are aiming at recognized the drill wear status, which always 

classified into several levels according to the wear degree, usually by using fuzzy logic methods. The 

later ones are concentrated on estimating or predicting the exact current wear value, constantly by 

employing neural networks. 

Literature [43], [56] and [63] devote to predict the drill life with 3 different approaches, which are  

by means of achieving the relations between sensor signals and holes to failure, time to failure and 

utilization percentage respectively. 

2.2 Sensors/Sensor systems 

In the midst of 45 literatures, only one paper [43] did not use any sensor at all, with the cutting time 

that the tool has been used (sec) as the only information beside the cutting conditions. Others used one 

or more sensors without exception. The sensors applied in these researches can be categorized as 

power/current, force/torque, acoustic emission (AE), vibration and sound. Temperature is also an 

important condition parameter which can reflect drill wear state. However, it is much more difficult to 

deploy temperature sensor into a drilling system. So it is rarely used in previous researches and not 

involved here. The detailed sensor categories and their sub categories are listed in Table 2-2, with 

corresponding literatures referred. 

An eddy current sensor integrated in the drill shank was developed in [22], based on the principal 

that the strains will change the micro-magnetic properties. Hall current transducers are the most 

frequently used sensors for monitoring current signals in industrial environment. Electricity carried 

through a conductor will produce a magnetic field that varies with current, and a Hall sensor can be 

used to measure the current without interrupting the circuit. As which can be found in Table 2-2, Hall 

sensors were applied in many works. In advanced CNC machining systems, the current signal data of 

spindle drivers or feed servo motors can be acquired from the CNC control unit directly, and this 

method was adopted in [41], [46], [54]. There were some other kinds of sensors that can generate 

power consumption curves of motors were used in [19], [40], [55], and the output of these sensors was 
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in terms of horsepower (HP) or Watts. Sensors used in [42] and [50] were not specified. However, it 

could be speculated that a hall transducer and a power cell were used in the former and later system 

respectively. 

Table 2-2 Categories of sensors deployed in previous literatures 

Categories Sub categories Literatures 

Power/current 

Eddy current [22] 

Hall current transducer [21], [34]–[37], [39], [57]–[59], [63] 

Machine controller [41], [46], [54] 

Power cell [19], [40], [55] 

Unspecified [42], [50] 

Force/torque 

Thrust and torque [19], [23], [24], [27]–[30], [40], [45], [47]–[53], [60] 

Thrust [25], [26], [55], [61] 

Torque [59], [62] 

Others [24], [27], [29] 

Acoustic emission 
Breakage detection [26], [34], [37] 

Wear monitoring [32], [33], [52], [62], [63] 

Vibration 
On spindle [20], [23], [56] 

On workpiece [31], [38], [44], [60], [61] 

Sound Microphone [61] 

 

The force/torque sensors used in the previous works were all dynamometers based on the 

piezoelectric effect. Most of them monitored thrust force and torque simultaneously, but some of them 

monitored only thrust or only torque with other sensors, which were listed as follows. Thrust and 

vibration were monitored in [25]. Thrust and AE were monitored in [26]. Thrust and motor load were 

monitored in [55]. Thrust, sound and vibration were monitored in [61]. Torque and spindle current 

were monitored in [59]. Torque and AE were monitored in [62]. Strains in two orthogonal directions to 

the drill axis were monitored together with thrust and torque in [24], [27] and [29]. 

 
Figure 2-2 AE-RMS over the life of a 1.5 mm diameter twist drill [63] 
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Acoustic emission (AE) is generated during a variety of metal cutting processes. It is generated 

anytime during normal machining. However, there is a distinct difference among the amplitudes of AE 

signals obtained during fracture, chipping and normal machining. This fact made it possible to monitor 

tool fracture with an AE sensor, like that had been reached in [26], [34] and [37]. Moreover, the major 

advantage of using AE to monitor the tool condition is the frequency range of AE signal is much higher 

than the frequency of machine vibrations and environmental noises. The AE-RMS signal showed a 

very significant increase in magnitude during the final 20–40% of drill’s tool life, as shown in Figure 

2-2 from [63]. Thus the AE signals were also used to monitor the drill wear. 

All vibration sensors used in the literatures were piezoelectric sensors but one in [25], a laser 

vibrometer was applied to adjust the drill centering and vertical position. Since the laser vibrometer 

was not used to offer signal, it was not included in the vibration category. The installation position of a 

vibration sensor could be on the spindle box or on the workpiece or fixture, as listed in Table 2-2. 

However, the vibration direction also could be axial (feed direction) or transverse (radial direction). 

Unfortunately, only in [31] and [60], both two directions vibrations were explicitly accounted been 

monitored at the same time. It could be conjectured from the experimental set up illustrations or text 

descriptions that axial vibrations were monitored in [23], [38] and transverse one were monitored in 

[20], [44], [56]. Neither illustration or text description mentioned about the vibration direction in [61]. 

Besides the force and vibration measurements, machine sound data were also collected through a 

microphone placed in the direct vicinity of the workpiece in [61]. 

Constitutionally, the sound and AE are both vibrations. However, they are utilized to differentiate 

the vibrations by the frequency and amplitude properties. The duration of the AE bursts due to tool 

fracture is approximately 1 msec. So, at least 1 kHz sampling frequency is needed [26]. For example, a 

50 Hz high pass and a 1 MHz filter were applied to pre-process the AE signal in [34]. The sound 

frequency is between 20 Hz to 20 KHz usually and vibration frequency is commonly up to several 

hundred KHz. 

2.3 Signal Analysis 

On account of no sensor application in the work, [43] is not discussed in this section. 

In the other 44 literatures, signal processing and feature acquiring procedures were not exactly in 

the order or contained all that listed in Figure 1-2. And there are always very strong causal associations 

between the signal processing methods and the feature acquiring approaches. So, these two major 

methodologies are synthetically talked over in this section. 

First, the analog and digital preprocessing methods for sensor signals are discussed. 

Then, since the feature selection process can be rather involved and might utilize time-domain 

analysis methods, frequency domain analysis methods (such as FFT and STFT), as well as joint time-

frequency-domain analysis methods (such as wavelets), the signal analysis are particularly presented in 

time domain, frequency domain and time-frequency domain. 

2.3.1 Signal Pre-processing 

The analog signal from the sensor usually cannot be connected directly to the A/D converter but 
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needs pre-processing by a conditioner specific to the sensor (piezotron coupler, charge amplifier, etc.). 

For example, a typical procedure of analog AE signal pre-processing follows the pattern schematically 

shown in Figure 2-3 [16]. 

 
Figure 2-3 Typical analog preprocessing for AE signals [16] 

In some other cases, the filtering is completed after the signal has been digitalized. 

It is also known that generally a full drill process can be divided into 3 stages according to the drill 

tip position relative to the workpiece surface. And furthermore, the process parameters (such as thrust 

and torque) are also affected by the drill depth. Hence, signal segmentation is frequently conducted for 

signal analysis in drilling. 

 
Figure 2-4 Segmentation of the spindle power signal into ‘‘n’’ equidistant sections [63] 

An instance is shown as Figure 2-4 [63]. It depicts the spindle power recorded for two drilling 

cycles of a 1.5mm drill. The black curve was recorded from the 1st hole, the grey curve was from the 

601-th hole. It can be observed from the illustration that during the second half of the drilling cycle, the 

rise of the spindle power becomes much more significant. 

In recent common cases, analog preprocessing is in charge of the signal amplification, while digital 

preprocessing accomplishes other works like filtering, segmentation and conditioning etc., on the 

strength of much more powerful computers. 

2.3.2 Time Domain Analysis 

Time domain analysis, also termed as statistical analysis, can generate signal features such as 

average value, max value, RMS, variance etc. There are also some particularly defined features or 

signatures been used in the literatures. Different signal features obtained by time domain analysis are 

listed in Table 2-3. 

Since average, max, RMS, standard deviation and variance are frequently used; only kurtosis, 

skewness and energy are introduced here. And for the particularly defined features, the impedance and 

transient time are chosen to be explained here. 
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Table 2-3 Different time domain signal features in previous literatures 

General features 

Average/mean 
[23], [26]–[28], [30], [35], [40], [44], [47], [48], 

[50], [51], [53], [55], [59]–[61], [63] 

Max [26], [59], [61] 

RMS [57], [58], [61] 

Standard 

deviation/Variance 
[27], [44], [59], [61], [63] 

Kurtosis [31], [44] 

Skewness [44] 

Energy [23] 

Particularly defined 

features 

Impedance [59] 

MAMP, MVMP [62] 

Mechanistic approach 

features 
[45] 

Phase plane method 

features 
[19], [45] 

Transient time [45] 

 

Kurtosis and skewness of the vibration signal data monitored by an accelerometer were used to 

indicate different drill wear types in literature [44], as depicted  in Figure 2-5. 

 
Figure 2-5 The influence of drill wear to kurtosis and skewness of vibration signal data points [44] 

The information involved in the total energy of the signal has very limited connection with time. To 

avoid this weakness, a parameter called signal "short- time energy" which means the energy of a signal 

involved in a  particular time period was defined in [23]. 

The investigation results on the effectiveness of using the input “impedance” of the spindle motor 

as monitoring signature for detecting drill breakage in micro-drilling was reported in [59]. Figure 2-6 

illustrates the method conceptually. 
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Figure 2-6 The impedance conceptual model of a drilling system [59] 

As accounted in the paper, this input impedance is an inherent system property of these subsystems 

together and can be evaluated via literally dividing the effect variable (voltage or force) by the flow 

variable (current or velocity) at the point. Since this change of drilling condition is time varying, the 

electrical impedance also varies accordingly in time domain. To calculate the impedance, the voltage 

and current signals were acquired by Hall Effect probes, and dynamometer was installed to measure the 

drilling torque. 

 
Figure 2-7 Motor impedance signals of drilling processes using normal and breakage drills [59] 

The motor impedance signals for normal drilling and drilling with a drill breakage are shown in 

Figure 2-7. Differences can be found in this two scatter lines. 

The transient time was used as a parameter to monitor drill corner wear in [45]. As corner wear 

progresses, the point angle of drill reduces and the cutting lips lengthen because the tool loses its sharp 

edge. Consequently, the transient time, that is the time for entry of the tool into the workpiece, 

increases. 

As it is illustrated in Figure 2-8, the entry stage periods (defined as transient time) of the torque 

signals for a sharp drill and a corner worn drill is different. Thus, a threshold value of the transient time 

is set to stop the drilling process. 
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Figure 2-8 Torque signals for a sharp drill and a corner worn drill [45] 

2.3.3 Frequency Domain analysis 

Frequency domain analysis is used to inspect the dynamic components contained in the signals 

which cannot be detected by time domain analysis. Fast Fourier transform is the most frequently used 

method to get the spectra form of a signal. 

Drill fracture and the dynamic components in torque within a certain frequency band was found 

related in [22]. 

Power spectral density (PSD) was used as the frequency domain indicator in [24], [27] and [29].  

In physical world, the signal is usually a wave, such as an electromagnetic wave, random vibration, 

or an acoustic wave. The power spectral density (PSD) of the signal, when multiplied by the 

appropriate factor, describes the power contributed to the wave, by a frequency, per unit frequency. 

Power spectral density is commonly expressed in watts per hertz (W/Hz). Detailed continuous and 

discrete PSD calculation algorithms can be found in [27]. 

It was found in these papers that the change in PSD with respect to drill wear is very clear. 9 groups 

of data distributed into 3 sets, according to 3 different corner wear, were obtained by experiments. 

There was found much difference between the PSD curves of thrust, torque, axial vibration and 

transverse vibration signals for drilling processes with drills of different corner wears. And for those 

have the same corner wear, all the PSD plots are coincident. 

Moreover, it was found that the change of area under the PSD plots was considered instead of the 

power at one frequency, because integration decreases the error. The change in the area under the PSD 

plots of all four sensor signals was plotted against the total corner wear, and it was observed that the 

change of area under the PSD plots of three sensor signals, namely, thrust, torque, and strain in the X-

direction (transverse direction), showed good correlation with drill wear. 

Cepstrum analysis is used to identify a series of harmonics or side bands in the power spectrum and 

to estimate their relative strength in [31]. The cepstrum is defined as the inverse Fourier transform of 

the logarithm of the power spectrum [64].  

The cepstra calculated varied considerably from one hole to another. However, the cepstra 
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calculated for the signal measured during drill breakage showed consistently a peak at a quefrency 

related to the time of one spindle revolution. This phenomenon was observed in all drilling tests 

performed for detecting breakage in this investigation. Thus, monitoring the existence of a peak in the 

cepstra corresponding to the time of one spindle revolution can be used as an index for detecting drill 

breakage. 

Moreover, cepstra were calculated for each of the vibration signals measured in both Y (transverse) 

and Z (axial) directions, namely Py and Pz, respectively. Then the ratio between the cepstra in the Y 

and Z directions was then defined as cepstra ratio (Py/Pz). And it was found that the cepstra ratio can 

indicate the drill breakage effectively. 

Similar but different from [27], the area under the vibration spectrum was considered as a 

monitoring feature for drill wear, to avoid the effects of random variations in peak amplitudes (rather 

than using the variation of the peak at any one frequency). And a linear relation was found between the 

number of drilled holes to the area under the vibration spectrum. 

2.3.4 Time-Frequency Domain analysis 

The spectral analysis method is the most commonly used signal processing technique in tool 

breakage detection. But spectral analysis has a good resolution only in the frequency domain but a very 

bad resolution in the time domain. That is, some signal information in time domain is lost in the 

spectral analysis process. Even though the sensor signals detected during machining are essentially 

unstable, the FFT averages the frequency composition over the duration of the signal with fixed 

resolution of the entire frequency spectrum. Therefore, a time-frequency method which can give both 

good resolutions in time domain and frequency domain is highly demanded. 

Wavelet transform (WT) can extract more information in the time domain at different frequency 

bands, and it has been widely used in signal analysis of machining monitoring. The WT decomposes a 

signal through the wavelet scale function and scaled and shifted versions of the mother wavelet. 

Practically, it can be reduced to filtering the signal by high-pass and low-pass filters derived from the 

wavelet and the scaling function. The discrete wavelet transform (DWT) decomposes the signal into 

the scaling coefficients (approximations A) and the wavelet coefficients (details D) by convolution of 

the signal and impulse response of the low-pass and high-pass filters.  

Another type of WT is the wavelet packet transform (WPT) where both approximations and details 

are decomposed, generating many more frequency bands. This provides more opportunities to find 

useful signal features. On the other hand, for n levels of decomposition, the DWT produces 2n sets of 

coefficients. 

Both WT and WPT were frequently used in the previous works. Table 2-4 gives a summary of the 

application of WP and WPT signal analysis. Meanwhile, the feature acquiring methods for them both 

are separately listed with literatures applied. 
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Table 2-4 Summary of the application of WT and WPT in previous literatures 

Categories Sub categories Literatures 

Wavelet Transform 

(WT) 

RMS [32], [38] 

Envelope detection [34], [37] 

Encoding [25] 

Waveform [36], [39], [54] 

Wavelet Packet Transform 

(WPT) 

RMS [33], [58] 

Energy [20], [21] 

Statistical [20] 

Fisher  [56] 

Reconstruction  [20], [21] 

 

There is another time-frequency signal analysis method used in [42], called as the harmonic wavelet 

analysis, is also been discussed. 

2.3.4.1 Wavelet Transform (WT) 

The RMS (root mean square) values of the WT decomposed results for the AE and vibration signals 

were used as indices to estimate the tool state in [32] and [38]. 

The envelope detection method was used to determine if a maximum value of WP decomposed 

results is from tool breakage or noise in [34] and [37].  

 
Figure 2-9 The 2 flat regions of WT coefficients [25] 

6 encoded parameters of the wavelet coefficients (Ei; i=1…6) were used as inputs to the neural 

network in [25]. These 6 parameters were specially defined according to the particular 2 flat regions 

found in the WT coefficient plot as shown in Figure 2-9.  

For flat region 1, E1, E2 were defined as Equation 2-1 and Equation 2-2. 

                Equation 2-1 

          Equation 2-2 

     ,      and      represent the average, minimum and variance of the coefficient values with 

in flat region 1.  

And another parameter E3 was defined as the number of coefficient values which were out of the 
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band defined as(                  ). 

For flat region 2, E4, E5, E6 were defined in a similar way. 

In some papers, no features were acquired from the WT coefficients but only the waveform of the 

coefficients was investigated to offer a correlation to the drilling process. For instance, in [36] and [39], 

it was found that an obvious peak arise in the WP coefficients when drill breakage happens.  

In [54], the waveform of the WT coefficients was also investigated but with responding asymmetry 

values been defined. Figure 2-10 shows comparison of two consecutive pulses from WT coefficients of 

spindle power current signals with a normal drill in subfigure (a) and a damaged drill in subfigure (b). 

 
Figure 2-10 Waveforms of WT coefficients of spindle current signals for a normal and a damaged drill [54] 

The asymmetry value A is defined as Equation 2-3. 

    ∑ (       )
  

     Equation 2-3 

M means the number of values comprising a single pulse, and Ci means the WT coefficient values. 

2.3.4.2 Wavelet Packet Transform (WPT) 

The RMS values of WPT coefficients were calculated and applied as the features in [33] and [58]. 

And the feature values of different frequency bands were compared by the correlations to the drill wear. 

Then the features were selected according to the comparison results. 

The energy of the wavelet packets were used to rearrange the sequences of the different 

decomposed packets, on the basis of the higher the energy the more the importance. 
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Since the WPT coefficient values can also be treated statistically, the mean, variance, kurtosis, etc. 

values may also be used as features. The peak-to-valley value was used as a certain index to describe 

the characteristic of the data in [20]. 

It was pointed out in [56] that direct manipulation of a whole set of node energies is ineffective 

since the space normally has very high dimensionality, and the existence of undesired components 

makes the classification unnecessarily difficult. Thus, the Fisher’s criterion was applied to select the 

feature subsets. The criterion function is defined as Equation 2-4. 

    (   )  
|           |

 

     
       

   Equation 2-4 

where      ,       are the mean values of the k-th feature fk, for class i and j, and      
 ,      

  are the 

variance of the k-th feature fk for class i and j. 

The WPT decomposition and reconstruction were used in [20] and [21]. The feature wavelet 

packets were used to reconstruct the principal component of the signal, which is done by choosing the 

feature packets and setting the other packets to zero. The details of the WPT decomposition and 

reconstruction are presented in Chapter 3.  

The feature packets were chosen first as the first several packets by ranking with the packet energy. 

Then the effectiveness of the feature packets was evaluated based on the reconstructed signal. The 

assessment criterion was based on four indices:  

(1) the cross-correlation between the reconstructed signal and the original signal,  

(2) the cross-coherence between the reconstructed signal and the original signal,  

(3) the correlation of the difference between the reconstructed signal and the original signal,  

(4) the power spectrum of the difference between the reconstructed signal and the original signal. 

2.3.4.3 Harmonic Wavelet Analysis 

The harmonic wavelet analysis method applied in [44] and the features generated method were 

calculated as follows: 

1. The input f(t) time history of the vibration signal was represented in segments of 4096 data points. 

2. The DFFT (discrete FFT) algorithm was used to give the 2048 Fourier Coefficients F(w). 

3. The Fourier Coefficients were multiplied with a frequency form wavelet base function   
  and 

then Ci was obtained:         
 , i=0-2047. 

4. The IFFT (inverse FFT) of the generated series was computed to obtain   ( ), r = 0-2047. 

5. 16 averaged wavelet coefficients were extracted from the result of step 4 by grouping and 

averaging each adjacent 128 coefficients   ( ).  

The 16 averaged harmonic wavelet coefficients (HWCs) form a feature vector which served as an 

input pattern to the neural network. 

2.3.5 Without Signal Analysis 

The performance of any monitoring system can greatly depend on the quality of the features 

extracted during the feature extraction process. While ‘sophisticated’ features could make the task of 

the inference model easy, this often comes at the expense of time (for feature acquiring), computation-
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complexity, and cost. Thus, in some papers, the raw signal data (not more than simple preprocessing) 

was used directly, without a single feature been extracted. 

In [42], an unsupervised learning neural network was used to extract the “principal components” 

from the raw spindle power signal without prior definition of what these principal components are.  

In [49], hidden Markov models (HMMs) were employed for performing diagnostics and 

prognostics in drilling which almost eliminated the need for any feature extraction. The HMM training 

data sets were sampled from thrust force and torque from the time instant the drill bit penetrated the 

workpiece to the time instant the drill tip protruded out the other side of the workpiece. The data was 

collected until the drill bits reached a state of total physical failure. 

 
Figure 2-11 A 10 state HMM superimposed onto the joint scatter plot [49] 

It is illustrated in Figure 2-11 that a particular HMM had 10 hidden states, hence the 10 ellipsoids. 

The location of the ellipse corresponded to the mean vector of the observable bivariate Gaussian 

density and the major and minor axes represented the Eigen vectors of the covariance matrix. 

2.4 Decision-making Support Systems 

There were many kinds of decision-making support systems applied in the previous works. 

However, the clustering, mapping and decision surface were seldom used and found not so efficient in 

[24] and [29], thus they were not of discussion here. 

The rest of them can be summarized as those listed in Table 2-5. 
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Table 2-5 Different decision-making support systems applied in previous literatures 

Categories Sub categories Literatures 

Threshold N/A [19]–[21], [23], [26], [31], [34], [54], [55] 

Statistical 
Mechanical models [28], [35], [47] 

Regression [56], [57] 

Fuzzy logic N/A [33], [39], [61] 

Neural network 

Supervised 

learning 

BPNN [30], [41], [44], [47], [48], [51], [57], [58], [60] 

RBNN [60] 

FNN [32], [38] 

FBPNN [53] 

OLL [43] 

Unsupervised learning [25], [42] 

Hidden Markov model N/A [19], [40], [45], [49], [55] 

 

2.4.1 Threshold 

The threshold method was proved to be very effective on basis of the well-selected features and 

well-grounded thresholds, thus it was widely used by researchers. 

A series of discriminants were applied to judge the drill wear states in [23]. The sampled thrust 

force and torque were checked through these criteria, and if a certain discriminant was satisfied, the 

corresponding drill state, such as worn chisel, worn flank, broken edge, etc., was detected. 

The AE signal burst was used as a triggering signal to examine force change in [26], and if the force 

drops below the preset threshold, it was considered to be a tool failure. 

The instantaneous Ratio of the Absolute Mean Value (RAMV) and the kurtosis (K) of the spindle 

current and vibration signals were calculated and tested by threshold values to trigger the examinations 

of further steps in [31]. The further examinations, such as the cepstra ratio and the area under the power 

spectrum were also based on threshold method. 

A judgment procedure was given in [20] to detected the states of drill wear. The features applied 

were the particularly defined peak-to-valley index and crest factor index of the reconstructed signals of 

vibration signals by WPT. 

The envelope detection method applied in [34] can also be regarded as a threshold method, for the 

envelope can also be taken as a threshold band. 

A decision fusion center algorithm (DFCA) was proposed in [19], which combines the outputs of 

other individual methods (the HMM methods, the phase plane method, the transient time method and 

torque model method) to make a global decision about the wear status of the drill. The produced global 

decision variable (U) was then finally used to make the decision of drill status. 

An alarm threshold band was established with the processing of spindle current signals in [21], then 

the feature values for the monitored moment was calculated and the decision making is done in two 

steps: (1) check the threshold crossing, (2) calculate the number of threshold crossing to determine 

whether an alarm shall be given. 
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The threshold method for the defined asymmetry value in [54] was accounted to be a possible way 

to make the drill change decision. 

Similar to [19], a DFCA and its threshold were used to determine the wear status of the tool during 

the drilling operations. 

2.4.2 Statistical 

There were two kinds of statistical methods for decision-making as shown in Table 2-5. One is 

mechanical model approach and the other is regression. They are both based on the regression theory 

but with the difference that the former one was built up by mechanical mechanisms and with 

machining parameters while the later one was a statistical fitting. 

Two models were employed in [28], which expressed thrust force and torque as functions of the 

feed rate, drill diameter and the flank wear. The spindle speed was ignored because the effect of cutting 

speed on the cutting force signals is relatively insignificant in the cases studied. 

Three similar yet different in the coefficients equations were established for both the spindle motor 

current and the feed motor current in [35]. The difference between them was the drill wear, which was 

0.2mm, 0.5mm and 0.8mm in the three equations respectively. Thus, these equations can be used to 

classify the drill wear state. 

The tool wear was directly expressed by an equation with thrust force, torque, spindle speed and 

torque in [47].  

A regression model of the spindle motor current was presented in [57], which related the spindle 

speed, feed-rate, drill diameter and average drill flank wear. 

In [56], prediction of degraded performance is accomplished using Auto-regressive Moving 

Average (ARMA) model by the degradation trend from the logistic regression module.  

2.4.3 Fuzzy logic 

A fuzzy clustering method (FCM) was applied in [33], which successfully classified the tool state 

by the RMS values of the selected wavelet packets of decomposed AE signals. 

Fuzzy classification and “defuzzification” were used in [39], to estimate the drill wear. The 

defuzzification is a mapping from a space of fuzzy values into that of the crispy universe, that is, the 

drill wear value can be estimated with the fuzzy coefficients. 

In [61], a tool wear condition monitoring technique based on a two-stage fuzzy logic scheme was 

presented. In the first stage, statistical parameters derived from thrust force, machine sound and 

vibration signals were used as inputs to fuzzy process; and the crisp output values of this process were 

then taken as the input parameters of the second stage. In the second stage, a Takagi–Sugeno fuzzy 

model was applied to generate an output, which was conclusively taken into a threshold function to 

assess the condition of the tool. 

2.4.4 Neural network 

There are three major learning paradigms for a neural network (NN), each corresponding to a 

particular abstract learning task. These are supervised learning, unsupervised learning and 

reinforcement learning. The former two were used in the previous literatures and discussed here. 
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Generally, a supervised learning NN is used for tasks like pattern recognition (also known as 

classification) and regression (also known as function approximation), while an unsupervised learning 

NN is used for tasks such as clustering, the estimation of statistical distributions, compression etc. 

Specifically in tool condition monitoring, the supervised learning NN is usually used for the 

estimations or prediction of the drill wear value while the unsupervised learning NN is commonly used 

for the classification of the different tool states. However, exceptions did exist in the previous works. 

2.4.4.1 Supervised learning neural network 

The back propagation algorithm was the most popular one in training the neural networks among 

supervised learning paradigms. 

The drill wear value was prediction in [30], [47], [48], [51], [57], [58], [60], with back propagation 

neural networks (BPNN). 

In [41], the output of the back propagation neural networks was used to indicate the chip disposal 

state, where a value below 0.5 mean a good state while a value over 0.5 indicate a bad state. 

In [44], the outputs of the back propagation neural networks were a vector of values which 

represented the possibility of being a certain kind of drill wear state. There were 6 values in the vector, 

and they represented the following states: sharp (new), chisel wear, crater wear, flank wear, edge 

fracture and corner wear. 

Hybrid model of the neural network and fuzzy logic called a fuzzy neural network (FNN) was 

applied in [32] and [38], which provided an output vector capable to indicate the tool states. 

There was another kind of combination of neural network and fuzzy logic which was applied in [53] 

called fuzzy back-propagation neural network (FBPNN). The fuzzy neuron is the basic element of a 

fuzzy back-propagation neural network. In the fuzzy neuron, both the input vector and the weight 

vector are represented by a triangular LR-type fuzzy number.  

The radial basis function network (RBFN) and back propagation neural network (BPNN) were 

compared in [60] and it was found that BPNN predicted the wear more accurately compared to RBFN 

but RBFN learnt the pattern much faster. 

A tailor-made feed forward network was proposed to predict tool life in terms of the number of 

holes to failure in [43], which was carried out by adopting the optimization layer by layer (OLL) 

method. 

2.4.4.2 Unsupervised learning neural network 

Adaptive resonance theory (ART2)-type neural networks (ART2NN) were applied in [25], to detect 

severe tool damage just before complete tip breakage occurs. Unsupervised ART2-type neural 

networks can monitor a signal based on previous experience and can update itself automatically while 

it is monitoring the signals. It works like this: when an ART2NN receives an input pattern, this pattern 

is compared to already known patterns, if the input pattern is matched with a known pattern in memory, 

the weights of the model are changed to update the category, and if the new pattern cannot be classified 

in a known category, it is coded and classified as a new category. 

A feature extractor based on unsupervised learning neural network was used in [42]. The details 

were not provided in the paper but it was described that the “feature extractor” can extract the 
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“principal components” from the raw signal without prior definition of what those principal 

components were. 

2.4.5 Hidden Markov model 

Hidden Markov models (HMMs) can be considered as a method of modeling pattern classes that 

consist of time-series data and then comparing patterns to recognize or classify new data.  

The force and power signals in the form of time series were used to build the HMM and to monitor 

the machining process in [40]. Two methods were proposed using HMMs for tool wear condition 

monitoring in drilling operations: the bargraph method and the multiple modeling method. These two 

methods were combined with a decision fusion center algorithm (DFCA) in [19]. Similar work was 

done in [45] and [55]. 

In [49], a method with employing hidden Markov models (HMMs) for carrying out both diagnostic 

and prognostic activities for metal cutting tools was presented. The method employed HMMs for 

modelling sensor signals emanating from the machining process and in turn, it was able to identify the 

health state of the cutting tool and even estimate the remaining useful life (RUL) of the cutting tool. 
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3.2 Signal Segmentation 

Forces increase when the cutting edges are not entirely inside the work piece, where the drill depth 

is less than 3 mm (taking an 8 mm diameter drill bit for example, its point height is about 2.4mm) from 

the workpiece surface which is called entry stage. The forces decrease in another case where the drill 

depth is around the workpiece thickness named penetration stage. The forces are relatively stable in the 

medial stage between the entry stage and the penetration stage as long as the drill depth is within 

certain limits.  

 
Figure 3-2 Three stage of the drill process and signal Segmentation 

The 3 stages of a drilling process with an 8 mm drill bit and a workpiece with 20 mm thickness are 

illustrated in Figure 3-2 (the upper signal is torque signal and the lower is thrust force signal). To 

obtain static & dynamic features under a relatively stable condition, data intercepted during the stage 

between the former two stages named medial stage is used for further analysis. Thus, the aimed 

segmentation is intercepted from the signals in the medial stage. 

3.3 Feature Generation 

As aforementioned in Chapter 1, the relations between the thrust force and torque contain useful 

information for drilling monitoring. However, the correlation has not been investigated and quantized. 

So, first in this section, the correlation between the thrust force and torque signals is investigated. 

Moreover, the features employed in these previous works were not sophisticated enough to obtain the 

essence hidden in the correlation. Thus, a novel method which generates new features by converting 

the thrust force and torque into a rectangular coordinate is presented in the following parts. 

3.3.1 The Relations between the Thrust Force and Torque Signals 

There are several frequently used and effective ways to evaluate the correlations between two 

signals applied here, which are the cross-correlation, correlation coefficient and coherence. The former 

two inspect the correlation in the time domain and the later one in the spectra. 



32 
 

The instance data segment is intercepted from the medial stage shown in Figure 3-2. The sampling 

frequency is 20 KHz and the data length is 4096 for each signal. 

3.3.1.1 Cross-correlation of thrust force and torque signals 

In signal processing, cross-correlation is a measure of similarity of two waveforms as a function of 

a time-lag applied to one of them. This is also known as a sliding dot product or sliding inner-product. 

The cross-correlation function provides a measure of similarity between one signal and a time delayed 

version of the other signal. 

Here we define one signal as  ( )  and the other as  ( ) , then the cross-correlation function 

      ( ) can be defined as[65] : 

       ( )  ∫  ( ) (   )  
  

  
  Equation 3-1 

  means the shift time of  ( ). 

For two discrete time signals, for instances, two sequences  ( ) and  ( ), the cross-correlation 

      ( ) can be defined as[66]: 

       ( )  ∑  ( ) (   ) 
                      Equation 3-2 

Here index   takes only integer values. In Equation 3-2,  ( ) is fixed and for positive values of  , 

the sequence  ( ) is shifted left by   units while for negative values of  , the sequence  ( ) is shifted 

right by   units. 

In our case here, the thrust force signal   ( ) and torque signal  ( ) both have a length 4096, thus 

the shift index   can be set in the range of [          ]. 

The cross-correlation result of thrust force and torque sequences is shown in Figure 3-3. 

 
Figure 3-3 The cross-correlation of original and DC removed sampled thrust force and torque 

The cross correlation values for the original sampled signals and that removed of average are both 
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calculated. It’s known from Figure 3-3 that when the shift value is zero, which means no shift for 

torque sequence, the cross correlation reaches its maximum value. It implies that high coherence of 

these two signals can be obtained without delay of any of them, i.e., a simultaneous change exists in 

these two signals. Thus, the calculation of correlation coefficient and coherence is carried out without 

time shift. 

3.3.1.2 The Cross-correlation Coefficient of Thrust Force and Torque 

The cross-correlation coefficient is also known as the product-moment coefficient of correlation or 

Pearson's correlation. The cross-correlation coefficient is a widely used measure of the correlation 

between two sections of two different but random variables.  

The cross-correlation coefficient of two sequences of random variables,  ( ) and  ( ), is denoted 

by           . The precise mathematical definition of cross-correlation coefficient of two random 

variable sequences is given by [67]: 

            
   (   )

√   (   )    (  )
  Equation 3-3 

where    (   ) means the covariance of  ( ) and  ( ), and    (   ) and    (   ) mean the 

autocovariance of  ( ) and  ( ). 

The covariance between  ( ) and  ( ) is defined as[68]: 

    (   )   [(   ( ))(   ( ))]  Equation 3-4 

where  ( ) is the expected value of x, also known as the mean of x. 

The cross-correlation coefficient of   ( ) and  ( ) is 0.5772, which means a high correlation 

between thrust force and torque. 

3.3.1.3 The Coherence of Thrust Force and Torque 

The spectral coherence is a statistic that can be used to examine the relation between two signals or 

data sets. The coherence (sometimes called magnitude-squared coherence) between two signals  ( ) 

and  ( ),  is a real-valued function that is defined as[69]: 

      ( )  
|      ( )|

 

     ( )     ( )
  Equation 3-5 

where       ( ) means the cross power spectral density of  ( ) and  ( ) at the frequency f, and 

     ( ) and      ( ) mean the power spectral density of  ( ) and  ( ) at the frequency f. 

Figure 3-4 shows the coherence values of thrust force and torque in different frequencies. It can be 

seen that the coherence values are around 0.6 along the frequencies which means a high relation 

between the thrust force and torque. 
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Figure 3-4 The coherence of thrust force and torque 

3.3.2 The Novel Feature Generation Method 

 
Figure 3-5 Twist drill geometry [70] 
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∑ √(      ̅̅ ̅)  (      ̅̅̅̅ )  

     Equation 3-11 

        
 

  
∑ √(         )  (         ) 

 
     Equation 3-12 

In Equation 3-11, n means the number of data points during the whole sampling period; while in 

Equation 3-12 m indicates the number of data points in the period of   . 

Intuitively, the concentration of the distribution of data points directly indicates the stability of the 

resultant force. Therefore, “Fr_ConvHullArea” is defined as the area of the convex hull of the 

discretely distributing data points as shown in Figure 3-8. 

3.3.3 The Features Grouping 

And according to the statistical methods, features listed in Table 3-1 are grouped into static features, 

and dynamic features. The static features comprise average and RMS features of the forces, and the 

dynamic features contain delta features, standard deviation features, velocity features and the geometry 

feature. 

Table 3-2 The grouping of different features 

Group Sub groups Features 

Static features 
Average    ̅̅ ̅,   ̅̅̅̅ ,  ̅,  ̅ 

RMS Ft_RMS, Fp_RMS, ρ_RMS, θ_RMS  

Dynamic features 

Delta  Ft, Fp, ρ, θ 

Standard deviation Ft_STDEV, Fp_STDEV, Fr_STDEV 

Velocity  Ft_Vel, Fp_Vel, Fr_Vel 

Geometry  Fr_ConvHullArea 

The detailed grouping is shown in Table 3-2. 

3.4 Feature Extraction 

All of the features generated in Table 3-1 are time domain features. To examine their performances 

in frequency domain, reconstruct of the time domain signals is necessary. Wavelet packet transform 

decomposition and reconstruction are used to decompose the signal into series of sub-signals stand for 

different frequency bands. Then, with the reconstructed time domain sub-signals, the features can be 

extracted using the feature generation method aforementioned in 3.3.2. 

3.4.1 Fourier Transform and Wavelet Transform 

It is well known that an energy limited signal (i.e. a square integrable signal),  ( ) , can be 

decomposed by its Fourier transform  ( ) as: 

  ( )  
 

  
∫  ( )      

  

  
  Equation 3-13 

Where 
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  ( )  ∫  ( )       
  

  
  Equation 3-14 

Equation 3-14 is called the Fourier transform and Equation 3-13 is called the inverse Fourier 

transform. The Fourier transform implies that the signal  ( ) can be decomposed into a family of 

harmonics      and the weight coefficients  ( ), which represent the amplitude of the harmonics in 

 ( ). 

The wavelet transform is defined in a similar manner. However, instead of using the harmonics     , 

the wavelet transform uses wavelet bases: 

    ( )  
 

 
 (

   

 
)  Equation 3-15 

where s represents the frequency, t represents the time shift or ‘location’, and  ( ) is called a 

mother wavelet function. Accordingly, a signal  ( ) can be decomposed into[74]: 

  ( )  
 

  
∫ ∫   [ ( )]

 

 
 (

   

 
)

  

  

  

  
      Equation 3-16 

where    is a constant depending on the base function, and   [ ( )] is the wavelet transform 

defined as: 

   [ ( )]  ∫  ( )
 

 

  

  
 (

   

 
)    Equation 3-17 

Equation 3-16 is called the wavelet transform and Equation 3-17 is called the inverse wavelet 

transform (reconstruction). 

Wavelet transforms decompose a signal into various components at different time windows and 

frequency bands, and all of which form a surface in the time–frequency plane. The size of the time 

window is controlled by the translation while the length of the frequency band is controlled by the 

dilation. Hence, one can examine the signal at different time windows and frequency bands by 

controlling translation and dilation.  

3.4.2 Wavelet Packet Decomposition and Reconstruction (WPD&R) 

Wavelet packets are particular linear combinations of wavelets. They form bases that retain the 

orthogonality, smoothness and locational properties of their parent wavelets. The wavelet packet 

transform is the most generalized signal decomposition method. In wavelet analysis, a signal is 

decomposed into a low-frequency component known as approximate, and a high-frequency component 

known as detail. The approximate is then decomposed into a second level of approximation and detail, 

and this process is repeated. However, in wavelet packet analysis, the approximate as well as the detail 

parts can be decomposed. 

One of the most commonly used discrete wavelet transforms is the binary orthogonal wavelet 

transform. At j-th resolution, let   [ ( )] be the operator of the approximation of the signal f(t) and 

  [ ( )] represent the detail of the signal f(t) and it has been verified[75]: 
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   [ ( )]   ( )    ( )  Equation 3-18 

   [ ( )]   ( )    ( )  Equation 3-19 

where   ( )  are smooth scaling orthogonal bases,   ( )  are orthogonal wavelet bases and 

“*”denotes convolution. Furthermore,   ( )  and   ( )  are correlated through a pair of quadrature 

mirror filters h(t) and g(t) defined below: 

   ( )   ( )      ( )  Equation 3-20 

   ( )   ( )      ( )  Equation 3-21 

Therefore, the discrete binary wavelet transform is then obtained: 

   [ ( )]  ∑  (    )      [ ( )]  Equation 3-22 

   [ ( )]  ∑  (    )      [ ( )]  Equation 3-23 

where t=1,2,…, N; j=1,2,…,J and J=     . 

Let operators H and G be the convolution sum defined below: 

      ∑  (    )   Equation 3-24 

      ∑  (    )   Equation 3-25 

Then Equation 3-22 and Equation 3-23 could be: 

   [ ( )]        [ ( )]   Equation 3-26 

   [ ( )]        [ ( )]   Equation 3-27 

Equation 3-26 and Equation 3-27 are the approximation and detail of the j-1th approximation, for 

the j-1th detail, similar process can be drawn: 

   
    [ ( )]        [ ( )]   Equation 3-28 

   
    [ ( )]        [ ( )]   Equation 3-29 

Finally, let    ( ) be the ith packet on jth resolution, then, the wavelet packet transform can be 

computed by the recursive algorithm below: 

   
    ( )        

 ( )   Equation 3-30 

   
  ( )        

 ( )   Equation 3-31 

where, t=1, 2, . . . ,    ;  i=1, 2, . . . ,  ; j=1, 2, . . . , J, and J=log2 N. 
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Table 3-3 Wavelet packet transform decompose 

Resolution Signal/Packet 

0 f(t) 

1   
    

  

2   
    

    
    

  

3   
    

    
    

    
    

    
    

  

… … 

j   
  

 

Table 3-3 shows the decomposed packets    ( ) in a binary wavelet packet decomposition tree. 

The signal reconstruction formula of the wavelet packet transform is as follows: 

   
 ( )   [ ̅    

    ( )   ̅    
  ( )]  Equation 3-32 

The operators  ̅and  ̅ are the conjugate of H and G. 

The reconstructed sub-signals are extracted from different frequency bands. Table 3-4 shows the 

frequency bands of different sub-signals. The range values listed are the ratios which should multiply 

the sampling frequency to get the real bands. 

Table 3-4 Frequency bands of the decomposed sub-signals 

Resolution Frequency 

0 0-1 

1 0-1/2 1/2-1 

2 0-1/4 1/4-1/2 1/2-3/4 3/4-1 

3 0-1/8 1/8-2/8 2/8-3/8 3/8-1/2 1/2-5/8 5/8-3/4 3/4-7/8 7/8-1 

… … 

j For    , (i-1)*    - i*    

 

In this work, a 4 level resolution decomposition and reconstruction of the 20 KHz sampled signals 

are conducted, thus, the observation frequency band resolution is 625 Hz (20 KHz/2/16). 

3.5 Feature Selection 

3.5.1 The Necessity for Applying PCA 

For each two sampled channel time domain signals, 19 features are generated as discussed in 3.3.2. 

And 16 sub-signals are reconstructed with a 4 level WPD&R. Consequently, 304 features are obtained 

for each drilling instance. In general, different features extracted from multiple machining process 

instances can be regarded as a high-dimensional multivariate random matrix composed of several 

vectors formed by different extracted features. Here suppose that N example drilling processes are 

conducted and the signals are samples, then an N×304 matrix which contains 304 feature vectors is 

obtained after the feature extraction. It is not feasible to input the whole matrix to the prediction model 
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without any feature selection or dimensionality reduction procedure. Because some of them are 

abundant of useful information while a lot of them contain plentiful noises, and there are high relations 

between these feature vectors. Therefore, the feature selection process is quite essential. 

The objective of feature selection is to preserve as much of the relevant information as possible by 

removing redundant or irrelevant information in acquired sensory signals. The main feature selection 

technique is principal component analysis (PCA), which has been widely used in system identification 

and dimensionality reduction in dynamic systems[9]. By implementing PCA, the complexity of 

modelling processes can be reduced and new feature vectors can be reconstructed. PCA transforms a 

number of correlated sensory features into new uncorrelated features (or principal components), thus 

reducing the complexity of modelling processes. 

Shi and Gindy applied PCA to calculate the covariance matrix estimated by two directional cutting 

forces (the saw width and length direction, specifically) signals in broaching[76]. The eigenvectors and 

corresponding eigenvalue can be obtained. Coincidentally, the estimated eigenvectors and eigenvalues 

have obvious geometrical meaning and are appropriate for feature extraction. For an instance, the first 

and second eigenvalue corresponds to the length of the major axes and minor axes of scatter ellipse 

respectively. Additionally, the first eigenvector indicates the inclination angle of the major axes in the 

scatter ellipse. As a result, PCA is an efficient tool to extract the features from two perpendicular 

sensory signals in the form of scatter ellipse, i.e. the length (a/b) of the major/minor axes and 

inclination angle (β). The ellipse obtained by PCA is illustrated in Figure 3-9. 

 
Figure 3-9 Orbit diagram of cutting force signals in dual directions measured by integrated force [76] 

Unfortunately, the plot of Ft and Fp in the rectangular coordinate in our work doesn’t show a 

distribution area similar to an ellipse. Thus, the PCA is not used to calculate the length of the major 

axes and minor axes from Ft and Fp signals directly. However, the PCA principal did inspire the 

innovation of the feature generation method. Moreover, the PCA can effectively select the principal 

features from the feature matrix, though the expression would be different from that in two dimensional 

spaces. 
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3.5.2 The PCA Algorithm 

Principal component analysis (PCA) is a statistical procedure that uses orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components. The number of principal components is less than or 

equal to the number of original variables. This transformation is defined in such a way that the first 

principal component has the largest possible variance (that is, accounts for as much of the variability in 

the data as possible), and each succeeding component in turn has the highest variance possible under 

the constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components. Principal 

components are guaranteed to be independent if the data set is jointly normally distributed. PCA is 

sensitive to the relative scaling of the original variables. 

PCA is mathematically defined as an orthogonal linear transformation that transforms the data to a 

new coordinate system such that the greatest variance by some projection of the data comes to lie on 

the first coordinate (called the first principal component), the second greatest variance on the second 

coordinate, and so on[77]. 

The PCA algorithm is detailed in [78] as follows. 

Given the d-dimensional (here d = 304) feature vectors of M training samples, a data matrix 

              , where   
                 , can be constructed. The corresponding covariance 

matrix    is as follows: 

    ∑ (    ̅)(    ̅)  
     Equation 3-33 

where 

  ̅  
 

 
∑   

 
     Equation 3-34 

is the mean feature vector of all samples of X and T denotes the transportation. Accordingly, the 

corresponding eigenvalues of the matrix X can be obtained by solving the following equation: 

         Equation 3-35 

where   and   are the eigenvalue and the eigenvector of    respectively. 

From Equation 3-35, most d eigenvalues can be obtained. The eigenvalues are usually arranged in 

the descending order:           . And the corresponding eigenvector of   (         ) is 

denoted as   (         ). The j-th principal component feature of a sample pattern   , denoted as 

   , can be obtained by projecting    onto the direction of the eigenvector   : 

       
 (    ̅)  Equation 3-36 

The eigenvectors span a d-dimensional orthogonal space and the principal component (PC) 

representations can be obtained by projecting X onto the space. 

The capability of each PC representation can be evaluated based on its contribution to the machine 

condition classification. To effectively represent and classify machine conditions whereas reducing the 

computation load, only the most representative PCs are needed. One of the traditional selection 

methods is the accumulative contribution rate (ACR), which selects the first m PCs based on the 

eigenvalues. Following the notation above, ACR is defined as follows: 
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∑   

 
   

∑   
 
   

  Equation 3-37 

From a mathematical point of view,    indicates the percentage of the total variance in the original 

feature set vectors (FSVs) explained by the first m PCs. Using the ACR method with a specific 

threshold, the first m PCs are then chosen as the new feature vector.  

Denote    (         ) as the i-th PC representation of the signal samples, it is a vector with the 

same length as the j-th original FSV   (         ) . Based on the definition of correlation 

coefficient, the correlation between     and    can be computed by 

     |
  [     (   )][    (  )] 

√ (   ) √ (  )
|  Equation 3-38 

where  ( )  represents the mean and  ( )  represents the variance. The correlation vector    

[             ]  reflects the strength of the relationship between the     and the other statistical 

features. The bigger the correlation coefficient     is, the more similar the i-th PC is to the j-th 

statistical feature. 

In summary, the m principal components are selected to represent the d features generated from 

drilling process by a matrix transform defined in Equation 3-36, with a big shrink of the feature number 

but still possession of the information.  

3.6 Decision-making support AI System 

Artificial neural networks (ANNs) are computational models inspired by animals' central nervous 

systems (in particular the brain) that are capable of machine learning and pattern recognition. They are 

usually presented as systems of interconnected "neurons" that can compute values from inputs by 

feeding information through the network. 

A feed forward neural network (FFNN) is an artificial neural network where connections between 

the units do not form a directed cycle. The FFNN was the first and simplest type of artificial neural 

network devised. In this network, the information moves in only one direction, forward, from the input 

nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the 

network. 

Back propagation, an abbreviation for "backward propagation of errors", is a common method of 

training artificial neural networks. 

Here, an artificial feed forward backward propagation neural network (FFBPNN) is applied to 

support the decision-making in drilling monitoring. 
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3.6.3 The Pattern Recognition by BPNN 

While using BPNN for pattern recognition, the output number of the network is set the same as the 

pattern number, with each output corresponding to each right pattern. The value of the right pattern is 

set to 1 usually in a training target data set while values of others are set as zero. After the training 

process, test data is put into the network and output vector is obtained. The output value will be close to 

1 for the corresponding pattern and close to 0 for others. Then the recognition accuracy is further 

calculated. 

 
Figure 3-13 The application of BPNN for pattern recognition [82] 

BPNN were used to recognize different odors in [83] and [82]. Training data for different odor 

patterns acquired from different sensor signal features were used to train the BPNN. After training, an 

odor recognition test was performed. If output unit 1 reacted strongly, as shown in Figure 3-13, the 

odor was identified as odor 1. 

In this research, BPNN is used to recognize different drilling conditions. Training data obtained 

from experiments with different values for one drilling condition parameter while same value for others 

is used to train a BPNN, and from the recognition accuracy, the effect of the drilling condition 

parameter can be evaluated. 
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Chapter 4   Findings of the Relations between Features and 

Drilling Process 

In this chapter, the relations between the drilling process conditions and the features generated and 

extracted above are revealed. The drilling process conditions are expressed by several parameters, 

which are workpiece material, drill diameter, spindle speed, feed rate and the drill corner wear.  

To maintain the consistency between these different situations, all of the features are extracted from 

the first frequency band (equivalent sampling frequency 1.25 kHz) signals in this chapter if there is no 

specification. 

It also has been known that as the hole depth increases, the chips tend to cluster together and clog 

the flutes, causing increased forces, poor hole quality, elevated drill temperatures, and drill 

breakage[84]. Therefore the workpiece thickness is set at 15 mm, and the segmentations positions of 

the intercepted data are the same for all the conditions. 

Expect for the investigation of drill wear influence, new drills are used to conduct experiments to 

eliminate the effect of drill wear to different features. 

4.1 Workpiece Material 

In order to establish a comprehensive system which covers most frequent situations in common 

production activities, 4 different workpiece materials (cast iron, S45C, SUS304, Ti-alloy) were 

investigated in this paper. 

Table 4-1 Conditions for different workpiece materials 

Spindle Speed 400 rpm 

Feed Rate 0.08 mm/rev. 

Drill Bit Diameter 8 mm 

Workpiece Material cast iron, S45C, SUS304, Ti-alloy 

Workpiece Thickness 15 mm 

Lubrication Dry 

 

The drilling condition parameters of experiments for different workpiece materials are listed in 

Table 4-1. 

4.1.1 Static features 

4.1.1.1 Average features 

Figure 4-1 shows the relations between the workpiece materials and the Average features. As 

shown in the legend, Ft_m, Fp_m, ρ_m and θ_m represent   ̅̅ ̅,   ̅̅̅̅ ,  ̅ and  ̅ respectively. 
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Figure 4-1 The relations between the workpiece material and the average features 

The   ̅̅ ̅,   ̅̅̅̅ ,  ̅ increase for the different workpiece materials as shown in Figure 4-1, due to the 

increase of cutting difficulty.  ̅ increases comparing with cast iron and S45C, while decreases from 

S45C to Ti-alloy, which means that the cutting states for S45C, SUS304 and Ti-alloy are similar but 

differ to that of cast iron. 

4.1.1.2 RMS features 

Figure 4-2 illustrates the relations between the workpiece materials and the RMS features, where 

Ft_RMS, Fp_RMS, ρ_RMS and θ_RMS represent the RMS values of the sampled Ft, Fp, ρ and θ 

sequences. 

 
Figure 4-2 The relations between the workpiece material and the RMS features 

It is shown that the RMS features of the forces increase as the workpiece material changes, and still 

there is an obvious difference between the cast iron and others. The trends of the RMS features are very 

close to those of the average features, while different to that of the delta features, due to their different 
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statistical algorithm. In Figure 4-2, no drop is found as that in Figure 4-3. 

4.1.2 Dynamic Features 

4.1.2.1 Delta features 

 
Figure 4-3 The relations between the workpiece material and the delta features 

In Figure 4-3, Ft_Delta, Fp_Delta, ρ_Delta and θ_Delta mean Ft, Fp, ρ. θ respectively. The 

feature values for S45C, SUS304 and Ti-alloy are close and much larger than those of the cast iron. 

And there is a drop of the delta features for SUS304 which can be noticed. 

4.1.2.2 Standard deviation features 

Figure 4-4 illustrates the relations between the workpiece materials and the standard deviation 

values of the equivalent thrust force, principal force and their resultant force. 

 
Figure 4-4 The relations between the workpiece material and the standard deviation features 

It can be seen that the standard deviation values of the principal force and the resultant force is 
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larger than those of the thrust force, which implies the principal force affords the major deviation in the 

resultant force. 

4.1.2.3 Velocity features 

The relations between the workpiece materials and the velocity features are shown in Figure 4-5. 

 
Figure 4-5 The relations between the workpiece material and the velocity features 

The velocity features show a quite difference to other features, as it can be seen, the velocity 

features for S45C to Ti-alloy decrease instead of increase, which means that a big variation is not the 

determinant of a big velocity feature. The data for comparison is shown in Figure 4-6. Here the 

sampling frequency is set as 2000 Hz to downsize the data volume. 

 
Figure 4-6 The sampled Fp values for S45C and Ti-alloy 

The upper value line is the sampled data of the Fp with Ti-alloy while the lower one is that of S45C 

in Figure 4-6, and the features are obtained from this data in this section. It can be observed that the 

upper line has a larger variation range than the lower one, which implies larger delta features, and also 
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as discussed before, the RMS and standard deviation of the Ti-alloy data are larger than S45C. 

According to the definition of the velocity feature of Fp, it is calculated by the quotient of a certain 

value and the sampling time. The sampling time here is 8 seconds and the certain value is defined as 

the sum of the abstract values of the difference between the current sampled value and the next 

sampled value. If the difference between the adjacent two data points is very large for the whole 

sampled data sequences, it means that the fluctuation frequency is near the sampling frequency. And 

furthermore, if the data has a larger fluctuation magnitude for the lower frequencies, then its velocity 

feature will be smaller, and vice versa. 

 
Figure 4-7 The frequency domain of the Fp for S45C and Ti-alloy in frequency range (0-250Hz) 

 
Figure 4-8 The frequency domain of the Fp for S45C and Ti-alloy in frequency range (250-1000Hz) 

The frequency domain plots of Fp for S45C and Ti-alloy are shown in Figure 4-7 and Figure 4-8, 

where the former one contains the data in frequency range of 0-250 Hz while the later one illustrates 

that in frequency range of 250-1000 Hz. It can be observed that in the lower frequency range, the data 

has higher magnitudes for Ti-alloy, and in the higher frequency range the data has higher magnitudes 
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for S45C. Thus it is known that the velocity features involve the frequency information of the data. 

4.1.2.4 The Fr_ConvHullArea 

Figure 4-9 demonstrates the relation between the workpiece material and the geometry feature, i.e., 

Fr_ConvHullArea. 

 
Figure 4-9 The relation between the workpiece material and the geometry feature 

Similar to the delta features, there is a decrease of the value for SUS304.  Like the velocity features, 

the convex hull area of the scatter points is also not decided by the statistical properties of the data. 

Data with high variation can have a low convex hull area for different distribution geometry. 

4.1.3 Analysis 

A radar chart method was proposed in [85] to calculate the Difficult-to-Cut Rating (DTCR). The 

mechanical properties, tensile strength, hardness and elongation, the thermal properties, thermal 

conductivity and specific heat capacity, and the physical property, density, were taken into account in 

plotting the radar chart. The radar chart is composed of four axes, which indicate the hardness (H), the 

tensile strength (T.S.), the elongation (El) and the thermal parameter (T.P.). The thermal parameter is 

defined in Equation 4-1. 

      (   )      Equation 4-1 

In Equation 4-1, K means the thermal conductivity, ρ indicates the density and c represents the 

specific heat capacity. 

The cast iron used in this research is FC-250, and the Ti-alloy used is Ti-6Al-4V. Relevant 

properties of different materials are shown in Table 4-2. And by the same method, the DCTR value 

0.33 for cast iron can be calculated. Therefore, the sequence for these four materials in the increase of 

difficulty is cast iron, S45C, SUS304 and Ti-alloy. 
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Table 4-2 Relevant material properties 

              Materials 

Properties  
Cast iron S45C SUS304 Ti-alloy 

H 180 200 150 300 

T.S. (MPa) 250 600 630 1000 

El (%) 1 20 40 12 

T.P. 0.00206 0.00215 0.00419 0.00789 

DTCR 0.33 1.00 2.06 2.80 

 

The feature values generally increase as workpiece material changes from cast iron to Ti-alloy. 

However, for some features, the value change patterns are different, which are determined by all of the 

properties in a comprehensive way. The radar chart of the properties for the four materials is shown in 

Figure 4-10, which shows the differences of properties more clearly. 

 
Figure 4-10 Radar chart of the material properties 

4.2 Drill Diameter 

Drills with 4 different diameters were used to obtain data under conditions shown in Table 4-3. 

Table 4-3 Experimental Conditions for different drill diameters 

Spindle Speed 800 rpm 

Feed Rate 0.08 mm/rev. 

Drill Bit Diameter 7, 8, 9, 10 mm 

Workpiece Material S45C 

Workpiece Thickness 15 mm 

Lubrication Dry 
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4.2.1 Static Features 

4.2.1.1 Average features 

As shown in Figure 4-11,   ̅̅̅̅  and   ̅ increase as the drill diameter increases.   ̅̅ ̅ for diameter 7,8,9 

are similar and for 10 is much larger. The average features of the resultant force  ̅  decreases for 

diameter 7,8,9 but increases for 10. 

 
Figure 4-11 The relations between drill diameter and the average features 

The increase of the average values of forces,   ̅̅ ̅,   ̅̅̅̅  and   ̅, is due to the increase of drill diameter, 

which needs more power to make. The  ̅ has a decrease trend as the drill diameter increases from 7-9 

mm, but increases from 9-10 mm, which is caused by the significant increase of   ̅̅ ̅. 

4.2.1.2 RMS features 

Similar changes can be found as average features for the RMS features shown in Figure 4-12. 

 
Figure 4-12 The relations between drill diameter and the RMS features 
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It shows that RMS features of forces increase as drill diameter increases. The increase of Fp_RMS 

is bigger than that of Ft_RMS during the drill diameter increases from 7-9 mm, and it is smaller from 9-

10 mm, which causes the change of the changing trend for θ_RMS. 

4.2.2 Dynamic Features 

4.2.2.1 Delta Features 

Figure 4-13 illustrates the relations between drill diameter and the delta features. It shows that Fp, 

ρ. θ increase from 7-9 and decrease a little at 10 mm. Ft increases slightly from about 200N to 

around 300N. 

 
Figure 4-13 The relations between drill diameter and the delta features 

4.2.2.2 Standard Deviation Features 

 
Figure 4-14 The relations between drill diameter and the standard deviation features 
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times of that of Ft, and it means that drill diameter effects Fp more than Ft. 

4.2.2.3 Velocity Features 

Figure 4-15 shows that the 3 velocity features all increase as the drill diameter increases. And the 

increase between 9 and 10 is much more than that between 7, 8 and 9. 

 
Figure 4-15 The relations between drill diameter and the velocity features 

It can be found that the velocity features of the forces are affected by the drill diameter in a same 

manner, and thus they can be used to indicate the drill diameter with high accuracy. 

4.2.2.4 The Fr_ConvHullArea 

 
Figure 4-16 The relation between drill diameter and the Fr_ConvHullArea 

Drill diameter has a strong effect to the Fr_ConvHullArea as shown in Figure 4-16. The 
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0

0.5

1

1.5

2

2.5

3

3.5

4

7 8 9 10

V
el

oc
ity

 fe
at

ur
es

 (N
/s

) x 
10

00
0 

Drill diameter (mm) 

Ft_Vel

Fp_Vel

Fr_Vel

0

2

4

6

8

10

12

14

7 8 9 10

Fr
_C

on
vH

ul
lA

re
a 

x 
10

00
0 

Drill diameter (mm) 



58 
 

which implying a good supplement for the indicating of drill diameter. 

4.3 Spindle Speed 

    Table 4-4 shows the conditions for experiments with different spindle speed. Because HSS drill 

is employed in this study, the range of spindle speed is not very wide. 

Table 4-4 Conditions for experiments with different spindle speed 

Spindle Speed 400, 600, 800, 1000  rpm 

Feed Rate 0.2 mm/rev. 

Drill Bit Diameter 8 mm 

Workpiece Material S45C 

Workpiece Thickness 15 mm 

Lubrication Dry 

 

4.3.1 Static Features 

4.3.1.1 Average features 

 
Figure 4-17 The relations between spindle speed and the average features 

As shown in Figure 4-17, the average features decrease as spindle speed increases, this is due to 

more heat is generate at higher spindle speed which soften the workpiece. 
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4.3.1.2 RMS Features 

 
Figure 4-18 The relations between spindle speed and the RMS features 

The spindle speed also has little influence to the RMS features as demonstrated in Figure 4-18. The 

RMS values of forces change in a range of 200N and the RMS value of θ changes about 3°. 

4.3.2 Dynamic Features 

4.3.2.1 Delta Features 

 
Figure 4-19 The relations between spindle speed and the delta features 

The spindle speed has little effect to the delta features as shown in Figure 4-19. The Ft_Delta 

almost remains the same and, Fp_Delta and ρ_Delta vary within the range of 100N. θ_Delta changes 

slightly from about 13° to 18°. 
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4.3.2.2 Standard Deviation Features 

 
Figure 4-20 The relations between spindle speed and the standard deviation features 

Little changes of the standard deviation features have also been found in Figure 4-20, where 

Ft_STDEV, Fp_STDEV and Fr_STDEV change about 5N. 

4.3.2.3 Velocity Features 

 
Figure 4-21 The relations between spindle speed and the velocity features 

The velocity features are almost the same in spite of the increase of spindle speed as illustrated in 

Figure 4-21. 
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4.3.2.4 The Fr_ConvHullArea 

 
Figure 4-22 The relations between spindle speed and the Fr_ConvHullArea 

Finally, for the Fr_ConvHullArea, again no much difference is found for different spindle speed as 

shown in Figure 4-22. 

4.4 Feed Rate 

Table 4-5 shows the conditions for experiments with different feed rate. 

Figure 4-23 illustrates the rectangular coordinate plot of Ft to Fp with different feed rate. 

Table 4-5 Conditions for experiments with different feed rate 

Spindle Speed 745 rpm 

Feed Rate 0.05, 0.1, 0.2, 0.3, 0.4 mm/rev. 

Drill Bit Diameter 8 mm 

Workpiece Material S45C 

Workpiece Thickness 15 mm 

Lubrication Dry 
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Figure 4-23 The rectangular coordinate plot of Ft to Fp with different feed rate 

It is a very clear distribution of the resultant force trajectories as plotted in Figure 4-23. It shows 

that along with the increase of feed rate, both the position and distribution of the trajectories change.  

And it’s also been noticed that the center points of trajectories of the resultant force keep in line, 

indicating a certain ratio between   ̅̅ ̅ and   ̅̅̅̅ . The ratio value 0.59 can be calculated by linear fitting 

under conditions listed in Table 4-5. 

4.4.1 Static Features 

4.4.1.1 Average features 

 
Figure 4-24 The relations between feed rate and the average features 

It shows that the average values of forces increase linearly as feed rate increases, and the average θ 

decreases which means the increase of   ̅̅̅̅  is more than that of   ̅̅ ̅. 

30

35

40

45

50

55

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 θ
 (°

) 

A
ve

ra
ge

 fo
rc

es
 (N

) 

Feed rate (mm/rev.) 

Ft_m Fp_m
ρ_m θ_m 



63 
 

4.4.1.2 RMS Features 

Figure 4-25 shows the relation between the RMS features and feed rate. 

 
Figure 4-25 The relations between feed rate and the RMS features 

Similar to the average features, the RMS values of the forces increase linearly and the RMS of θ 

decrease. 

4.4.2 Dynamic Features 

4.4.2.1 Delta Features 

 
Figure 4-26 The relations between feed rate and the delta features 
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mm/rev., which means there is a limitation of delta features to indicate the feed rate while it is very low. 

4.4.2.2 Standard Deviation Features 

 
Figure 4-27 The relations between feed rate and the standard deviation features 

Similar to delta features, the standard deviation of Ft changes a little while those of Ft and Fr 

change a lot from 0.2 mm/rev. to 0.4 mm/rev. 

4.4.2.3 Velocity Features 

 
Figure 4-28 The relations between feed rate and the velocity features 

The lower feed rate cannot affect the velocity features very much as shown in Figure 4-28. Fp_Vel 

and Fr_Vel change a little with feed rate from 0.05 to 0.2 mm/rev., however they increase over 60% 

when feed rate increases from 0.2 to 0.4 mm/rev. 
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4.4.2.4 The Fr_ConvHullArea 

 
Figure 4-29 The relations between feed rate and the Fr_ConvHullArea 

Similar result of the effect from feed rate to Fr_ConvHullArea can be found in Figure 4-29. The 

difference between ConvHullArea with feed rate from 0.05 to 0.2 mm/rev. is low but with feed rate 

from 0.2 to 0.4 mm/rev. is very high, where the value when feed rate is 0.4 mm/rev is almost four times. 

of the value when feed rate is 0.2 mm/rev. 

4.4.3 Investigation of the Effect of Feed Rate 

In the above results, the average features of the forces show a good correlation to the feed rate in 

the whole range, while the dynamic features, such as delta features, standard deviation features, do not 

have a good correlation to lower feed rate (0.05-0.2 mm/rev. here). The reason is probably the stability 

of the drilling processes is limited with lower feed rates. 

To investigate this phenomenon, new parameters concerned with the cutting status are necessary. 

During a drilling operation, the chips are formed along the cutting lip and moved up following the 

drill helix angle. The drill geometry has a complicated effect on the cutting forces [86].  

Tarng and Li [87], [88] developed a simple method to predict chatter limit in drilling. In this model, 

the uncut chip thickness was decomposed into two components: a mean value and a variable chip 

thickness. The chip thickness was the input to the cutting process (described by a transfer function) 

yielding the thrust force. The thrust force excited the machine tool (also described by a transfer 

function), which causes vibration affecting the chip thickness. 

A 3D chip formation model [89] was presented to describe the interaction between the cutter and 

the workpiece. The model predicted the dynamic forces and chatter limit well. 

Therefore, chip thickness is measured to investigate the drilling status. 
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Figure 4-30 Average and variation of the chip thickness with different feed rate 

Figure 4-30 shows the average and variation of the chip thickness with different feed rate. The 

rhombus markers mean the average values of the chip thickness and the error bars represent their 

variation ranges. It can be observed that there is a linear relation exiting between the feed rate and chip 

thickness; however, the variation ranges of the chip thickness do not increase linearly with the feed rate. 

The variations range of the chip thickness for feed rate from 0.05 to 0.4 mm/rev. are 55, 55, 60, 87, 

and 100 um respectively. When the feed rate is within 0.05-0.2 mm/rev, the chip thickness variation 

ranges are approximate, which means the drilling status with feed rate at 0.05 and 0.1 is not very good 

and therefore result in similar dynamic features. 

An unstable drilling process would also lead to bad hole quality, due to the unexpected scratch to 

the hole sidewall by the anomalous chips. Thus the hole sidewall roughness is measured to reflect the 

drilling status. 

 
Figure 4-31 Hole side wall roughness for different feed rate 

As shown in Figure 4-31, the hole sidewall roughness for the one with 0.05 mm/rev. feed rate is 
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4.5.1 Static Features 

4.5.1.1 Average features 

 
Figure 4-33 The relations between drill corner wear and average features of forces 

As shown in Figure 4-33, as drill corner wear increase, the average features of the forces have 

increase trends, and as shown in Figure 4-34, the average value of θ decreases. However, there are big 

irregular values especially for Ft. The average Ft reaches the maximum value when the accumulated 

drill depth is 1.45m, where it is far from the maximum drill corner wear. Moreover, along with the 

increase of drill corner wear, the average features have increase about 25%, 35%, 30% for forces and 

decreases about 10% for the θ. Therefore, the corner wear does not have a strong effect to average 

features. 

 
Figure 4-34 The relations between drill corner wear and static, delta and RMS features of θ 
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4.5.1.2 RMS Features 

 
Figure 4-35 The relations between drill corner wear and RMS features of forces 

The changing patterns of the RMS features are similar to that of average features as shown in 

Figure 4-35. The increase rates are low and there is no clear 3 stages in coincide with the drill corner 

wear, which are the initial state, the steady increase stage and the severe increase stage. 

4.5.2 Dynamic Features 

4.5.2.1 Delta Features 

 
Figure 4-36 The relations between drill corner wear and delta features of forces 

The delta features of forces increase as drill corner wear increases as shown in Figure 4-36. 

Especially for Fp and Fr, they increase 500% to the original value when the drill corner wear reaches 

1.01 mm. and they show a typical 3 stages increase according to the 3 stages of wear state. 

The delta feature of θ, that is θ_Delta shown in Figure 4-34, increases a little bit and the largest 
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change takes place at the last two instances where drill wear almost doubles. 

4.5.2.2 Standard Deviation Features 

 
Figure 4-37 The relations between drill corner wear and standard deviation features of forces 

The standard deviation features of Ft does not show a good relation to drill corner wear, however 

those of Fp and Fr increase in pace with the corner wear with a big increase rate and clear 3 stages just 

like the drill corner wear does. 

4.5.2.3 Velocity Features 

 
Figure 4-38 The relations between drill corner wear and velocity features of forces 

The drill corner wear affects velocity features, but without great increases in the third stage as 

shown in Figure 4-38. 
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4.5.2.4 The Fr_ConvHullArea 

 
Figure 4-39 The relations between drill corner wear and Fr_ConvHullArea 

The changing pattern of Fr_ConvHullArea stays close to that of drill corner wear as shown in 

Figure 4-39. However there exist some irregular values when the drill corner wear is small. Therefore, 

Fr_ConvHullArea and velocity features would be good complement for each other. 

4.6 Summary 

In this chapter, the relations between drilling conditions and the features are discussed, it can be 

found that different conditions have different effects to different features, and further the following 

summaries can be made. 

 As the workpiece getting more difficult to cut, the values of the features generally increase except 

for the velocity features. The reason is that the velocity features have a certain concern to the 

magnitude difference at various frequencies. 

The bigger the drill diameter, the higher the feature values has been found, and commonly the 

features of Fp and Fr are more sensitive than Ft. 

Spindle speed does not have much influence to the features comparing to other condition 

parameters, and a slight decrease of the cutting forces can be detected due to the increased heat 

generation speed which softens the workpiece. 

The feed rate has significant effects to the features, and it not only changes the location but also the 

distribution patterns of the resultant force trajectories. It has been discovered that the average and RMS 

features increase linearly to the feed rate. And other features have clear distinguishing values when the 

feed rate is high but similar values when it is low. Further investigation has evinced that the cutting 

status is not so good which causes fluid chip thickness and low sidewall roughness. 

Drill wear is another major cause of the variety of the features. Forces are getting higher when drill 

wear proceeds, and the dynamic features are more sensitive to the drill wear.  

In the most circumstances, the change of drilling conditions leads to a more clear change of static 

features than dynamic features. Whilst the dynamic features are more sensitive to the status or the 
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stability of the drilling process, such as that discussed in 4.4.3 and the drill wear status presented in 

4.5.2. 

And for the static features, the average ones and the RMS ones are very similar in the values and 

the variation forms, thus, some of them can be eliminated for remove of redundancy. 
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Chapter 5   Drill Wear Prediction and Drilling Conditions 

Recognition 

In this chapter, based on the methodologies discussed in Chapter 3 and the relations found in 

Chapter 4, the prediction of drill wear and the recognition of drilling condition parameters are carried 

out. The purpose of the work in this chapter is to predict the drill wear in a wide range of different 

drilling conditions by training the neural network with condition parameters and carefully selected 

features which are obtained from specially designed experiments. 

5.1 Data Preparation 

As discussed in Chapter 4, workpiece material, drill diameter, spindle speed and feed rate are all 

capable of making changes to the features, some effective at the static and some the dynamic. And 

these 4 condition parameters are the most various ones in the producing activities. Totally 256 

instances of experimental patterns, under 4 different values for each of the 4 condition parameters, are 

conducted and investigated, to obtain the training data.  

Table 5-1 Condition parameter values for 256 data patterns 

Drill 

diameter 

(mm) 

Cast iron & S45C SUS304 & Ti-alloy 

Feed rate 

(mm/rev.) 

Spindle speed 

(rpm) 

Feed rate 

(mm/rev.) 

Spindle speed 

(rpm) 

7 

0.05 400,600,800,1000 0.06 200,300,400,500 

0.08 400,600,800,1000 0.08 200,300,400,500 

0.12 400,600,800,1000 0.10 200,300,400,500 

0.15 400,600,800,1000 0.12 200,300,400,500 

8 

0.05 400,600,800,1000 0.06 200,300,400,500 

0.08 400,600,800,1000 0.08 200,300,400,500 

0.12 400,600,800,1000 0.10 200,300,400,500 

0.15 400,600,800,1000 0.12 200,300,400,500 

9 

0.05 400,600,800,1000 0.06 200,300,400,500 

0.08 400,600,800,1000 0.08 200,300,400,500 

0.12 400,600,800,1000 0.10 200,300,400,500 

0.15 400,600,800,1000 0.12 200,300,400,500 

10 

0.05 400,600,800,1000 0.06 200,300,400,500 

0.08 400,600,800,1000 0.08 200,300,400,500 

0.12 400,600,800,1000 0.10 200,300,400,500 

0.15 400,600,800,1000 0.12 200,300,400,500 

 

The detailed condition parameter values are shown in Table 5-1. Uncoated high speed steel (HSS) 
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drill bits with diameters of 7, 8, 9, 10 mm are used for all of the 4 workpiece materials. Experimental 

condition parameters for cast iron and S45C are the same and those for SUS304 and Ti-alloy are the 

same, to simplify the experiments within the drill bit endurance. 

Drill corner wear is measured in the same way illustrated in 4.5, before and after the drilling test, 

and the average value is adopted as the feature of drill corner wear in the data base. 

Workpieces are manufactured into suitable shape with the thickness of 20 mm. 

As discussed above, 19 features are generated from the forces, which are converted from the 

sampled thrust and torque, and after the feature extraction by a 4-level-16-bands WPT decomposition 

and reconstruction, 304 monitored features are obtained. Together with the 4 condition parameters and 

the drill corner wear, 309 features for 256 instances constitute the knowledge data base. 

5.2 Drill Wear prediction with Feature Selected by PCA 

In this section, the feature selection procedure for all of the frequency bands is presented, and the 

evaluation of the influence of drilling conditions is also carried out. 

5.2.1 Feature selection by PCA 

It is not proper to use all of the 304 features to conduct PCA, because there is a limit of the 

observations-to-variables ratio (or subject-to-item ratio in some other circumstances) of PCA to get a 

better result. 

It was found that[91], in general, minimum sample sizes appear to be smaller for higher levels of 

communality; minimum sample sizes appear to be smaller for higher ratios of the number of variables 

to the number of factors; and when the variables-to-factors ratio exceeds 6, the minimum sample size 

begins to stabilize regardless of the number of factors or the level of communality. And there was 

another study[92] which examined whether sample size or subject-to-item ratio is more important in 

predicting important outcomes in PCA, and the results indicated an interaction between the two, where 

the best outcomes occur in analyses where large sample sizes and high ratios are present. 

So the feature selection is conducted for all of the frequency bands one by one. The first frequency 

band for instance, the principal components of the 19 features are obtained by PCA with the 256 

samples of 19 variables matrix which has a subject-to-item ratio 13.47; and then, similar algorithm is 

applied for the rest 15 frequency bands. 

5.2.1.1 Investigation of the first frequency band 

The data matrix X comprises of d=19 dimensions and sample size M=256 is used to conduct the 

PCA. That is,                 
 , and                     . 

The scale difference of value of the raw features is very big, and some of them even do not have the 

same physical unit. Thus the standardizing of the features values is necessary before the PCA. The 

standardization method can turn the columns in the matrix to vectors with zero mean and standard 

deviation of 1, as used in [93] and [94], which is: 
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  (                      )  Equation 5-1 

where, 
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     Equation 5-2 
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∑ (      ̅)

    
   ]

   

  Equation 5-3 

After that, the eigenvalue vector  , defined in Equation 3-35, and accumulative contribution rate 

(ACR), defined in Equation 3-37, can be calculated. 

Table 5-2 The eigenvalues and ACR for 256×19 data matrix 

N.O. (i)    ACR N.O. (i)    ACR 

1 12.34297416 64.96% 11 0.010261049 99.98% 

2 3.190998499 81.76% 12 0.003245495 100.00% 

3 1.698378168 90.70% 13 0.00051437 100.00% 

4 1.046581874 96.20% 14 0.000215103 100.00% 

5 0.372173257 98.16% 15 7.14041E-05 100.00% 

6 0.163824956 99.03% 16 5.20157E-05 100.00% 

7 0.085789731 99.48% 17 3.24073E-06 100.00% 

8 0.044020871 99.71% 18 1.17217E-07 100.00% 

9 0.023501537 99.83% 19 2.61778E-08 100.00% 

10 0.017394129 99.92%    

 

The eigenvalues vector and ACR for the 256×19 data matrix of the feature selection is listed in 

Table 5-2. The accumulative contribution rates for the 19 features are shown in Figure 5-1. It shows 

that the first 3 principal components get an ACR of over 90%, thus, they are chosen as the 3 new PCs. 

 
Figure 5-1 The accumulative contribution rate for the 19 principal components 
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And furthermore, the first 3 eigenvectors, as defined in Equation 3-31, can be used to examine the 

relations between the different features and the new PCs, i.e., the contributions of different features to 

the PCs. 

 
Figure 5-2 The first 3 eigenvectors from features to PCs 

Figure 5-2 shows the values of the first 3 eigenvectors, plotted from features to the PCs. It can be 

observed that for the first PC, i.e., PC1, the values are close for most of the features, which means the 

first PC has fair relations to most of the features. And for PC2, values of the static features are negative 

ones, while of the dynamic ones are positive, and this means that PC2 contains more information of the 

dynamic components of the data. For PC3, high values locate at features related to θ, and that means 

their relation is stronger than that between others as compensation. 

5.2.1.2 Investigation of feature selection in all frequency bands 

The number of the PCs for all of the 16 frequency bands and the corresponding ACR are listed in 

Table 5-3. 

Table 5-3 Number of the PCs and ACR for all of the 16 frequency bands 

Frequency 

band 

Number of 

PCs 
ACR 

Frequency 

band 

Number of 

PCs 
ACR 

1 3 90.70% 9 3 93.43% 

2 3 92.37% 10 2 85.27% 

3 3 87.35% 11 3 92.53% 

4 3 89.99% 12 3 92.21% 

5 3 89.45% 13 3 88.23% 

6 3 90.59% 14 3 88.51% 

7 3 93.33% 15 3 89.75% 

8 3 91.59% 16 3 85.53% 

 

The threshold of the ACR is set as 85%. And it can be obtained that except for the 10th frequency 

band, 3 PCs are selected to represent the original features. Therefore, the feature number is reduced to 

47 from 304, and the reduction rate is 84.5%. 
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With the eigenvectors for each of the PC of all the frequency bands, the feature data matrix then can 

be transferred into a 256×47 matrix, which contains 256 samples for 47 PCs of the original features. 

Together with the 4 condition parameters, 51 inputs are generated for the training of the neural network. 

5.2.2 Training with features selected by PCA 

5.2.2.1 The initiation of the BPNN 

The performance of a BPNN model depends on the number of hidden layers, the number of neurons 

in the respective hidden layers, the learning rate, and momentum coefficient[90]. Therefore, the 

initiation of the BPNN should be explicated. 

The BPNN employed here is a 3 layered feed forward neural network, with only one hidden layer 

and 20 neurons in the hidden layer. Hyperbolic tangent sigmoid transfer function is adopted as the 

transfer function in the hidden layer while linear function is applied in the output layer. 

The BPNN training method applied is the Levenberg-Marquardt algorithm (LMA) as presented in 

[95]. The LMA was originally designed to serve as an intermediate optimization algorithm between the 

Gauss–Newton (GN) method and gradient descent algorithm, and address the limitations of each of 

those techniques. 

The increment of weights ∆w can be obtained by Equation 5-4 as presented in [96]. 

 ∆  [      ]       Equation 5-4 

Where J is the Jacobian matrix, µ is the learning rate which is to be updated using the β depending 

on the outcome. In particular, µ is multiplied by decay rate β (0<β<1). 

The input data sets are normalized into the range of [-1, 1] by Equation 5-5. 

  ( )    
      

         
    Equation 5-5 

Where x is the actual value vector,      is the maximum value of x,      is the minimum value of 

x, and f(x) is the normalized value corresponding to x. 

Among all of the 256 samples, 70% of them are randomly selected to train the BPNN, 15% are used 

for validation, and 15% are for testing. 

The training objective is the minimization of mean square error (MSE) with the LMA, the MSE is 

defined as[97]:  

     
 

 
∑ (     

 )  
   Equation 5-6 

where N is the total number of training datasets,    is the target output of the i-th dataset i.e. 

experimental output of the i-th dataset, and   
  is the output from the ANN model on the m-th iteration 

when the i-th dataset is considered as the network input. 

5.2.2.2 The prediction result 

The scatter plot of the predicted corner wear to measured corner wear is illustrated in Figure 5-3. 

The MSE of the prediction result is 2.22×10-4. 

Linear regressions of the training data set, validation data set and testing data set are also calculated 
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for evaluation respectively. As it can be seen that the R2 values of the regressions are 0.9424, 0.9222 

and 0.909. And the R2 value for the whole data set is 0.9156. 

 

 
Figure 5-3 The prediction result with features selected by PCA 

5.3 Drill Wear Prediction Directly with the BPNN 

Another way to evaluate the influences of different features is directly using the BPNN. This 

method proceeds in three steps:  

First, group the 19 features into different clusters, and use the features in each cluster and acquired 

from the full frequency band to training the BPNN, and then obtain the major cluster;  

Second, use the data of major cluster features of different frequency bands to train the BPNN, and 

then get the major frequency band;  

At last, use the data of the major cluster features in the major frequency band to train the BPNN, 

and the final evaluation is done by the importance ranking. 

5.3.1 Finding the major cluster 

The 19 features are divided into 3 clusters differing in the dynamic features as shown in Table 5-4. 

As discussed in Chapter 4, the static features can indicate the drilling conditions well, thus they are 

added to the 3 clusters simultaneously. Meanwhile, the average features and RMS ones are very close 
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to each other, thus only the average one are used here. And for the dynamic features, in cluster 1, are 

delta features, and in cluster 2 are standard deviation features, and in cluster 3, they are totally newly 

defined in this work. 

Table 5-4 Clustering of the 19 features for evaluation 

 Static features Dynamic features 

Cluster 1 

  ̅̅ ̅,   ̅̅̅̅ ,  ̅,  ̅ 

Ft, Fp, ρ, θ 

Cluster 2 Ft_STDEV, Fp_STDEV, Fr_STDEV 

Cluster 3 Ft_Vel, Fp_Vel, Fr_Vel, Fr_ConvHullArea 

 

A training data set, for cluster 1 with 4 static and 4 dynamic making together an 8 features and 4 

condition parameters for 256 samples, is generated, and similarly, 7 and 8 features and 4 condition 

parameters for cluster 2 and 3. 

The BPNN initiation for these 3 clusters are the same, and same to the one used in 5.2.2, with the 

only exception that the preliminary values of the weights are all set to zero to maintain consistency.  

Table 5-5 The prediction performances for 3 clusters 

 Cluster1 Cluster2 Cluster3 

MSE 1.00E-03 0.0011 8.00E-04 

R2 0.6237 0.5776 0.6834 

 

The BPNN prediction performances for 3 clusters are list in Table 5-5. It is known that the cluster 3 

features can predict corner wear more accurate than other features under the current conditions. 

5.3.2 Finding the major frequency band 

Since cluster 3 features perform better, they are selected to extract features in different frequency 

bands. For 16 frequency bands, the cluster 3 features are calculated, and for all of the 256 samples. For 

each frequency bands, 8 features and 4 condition parameters of 256 instances are applied as inputs, and 

the measured corner wear is adopted as the targets as before. 

 
Figure 5-4 Prediction performance of cluster 3 features in different frequency bands 
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Figure 5-4 shows the prediction performance of the cluster 3 features in different frequency bands. 

Since the smaller the MSE value the better the performance, the MSE axis is reversed for easy 

comprehension. With the cluster 3 features in frequency band 6, the highest R2 and lowest MSE can be 

obtained.  

To investigate the reason for the good performance of frequency band 6, the PCA calculations of 

the dynamic features in cluster 3 in different frequency bands are conducted. The 4 dynamic features 

are Ft_Vel, Fp_Vel, Fr_Vel and Fr_ConvHullArea. For each of them, 16 features are extracted from the 

16 frequency bands, and repeated for 256 examples. A 16 dimensional 256 samples matrix is then 

obtain for each of the 4 dynamic features. 

 
Figure 5-5 The values in the first eigenvector from dynamic features to PC1 

As shown in Figure 5-5, the values in the first eigenvectors of the 4 PCA calculation results for 4 

dynamic features, which mean the contributions of features in different frequency bands to PC1 (the 

first PC), vary between different features. And it can be observed that the values from frequency band 6 

features to PC1 are higher than other frequency bands for all of the 4 dynamic features. 

5.3.3 Comprehensive evaluation 

Features in cluster 3 of frequency band 3 are selected to train the BPNN, since they make a 

comprehensive better performance. The initial values of weights are random values instead of zeros in 

this occasion and the hidden layer neuron number is still 20. The best values of 20 patterns of training 

are selected for illustration. 

The prediction result is shown in Figure 5-6. The MSE of the result is 3.6×10-4 and the linear 

regression R2 is 0.8648 for all of the 256 instances. And the evaluation values for training, validation 

and testing data sets are shown in Figure 5-6. 
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consisting of I inputs, H hidden neurons and 1 single output. 

  (   )            (   )            ( )  Equation 5-7 

  (   )  
 (   )

∑  (   )
 
   

  Equation 5-8 

    ∑  (   )
 
     Equation 5-9 

    
  

∑   
 
   

  Equation 5-10 

In Equation 5-7,           (   )  means the weight of input i to hidden neuron h and 

          ( ) indicates the weight of hidden neuron h to the output. The P, Q and S are process 

variables and    is the relative importance of the input i. 

 
Figure 5-6 The prediction result by directly using BPNN 
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        ) is shown in Figure 5-7.  
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discussed above. It is also been noticed that the relative importance values of features generated from 

Ft are lower than that of Fp, which can be explained by the less sensitivity of them to the drill corner 

wear. 

 
Figure 5-7 Relative importance of different features and condition parameters 

5.4 Drilling Conditions Recognition 

The BPNN can also be used to recognize the drilling conditions with the features extracted from the 

monitored signals. Comparing the recognition result with the actual condition parameters is useful for 

diagnostics of the drilling status. For instance, if the recognized pattern by the well trained BPNN is far 

from the set up pattern, then some unexpected anomaly might be taking place. 

In this section, examples of training BPNN for drilling condition pattern recognition are presented. 

The data used is the same as that for drilling wear prediction. The training processes are conducted 

with features selected by PCA as well as by the direct use of BPNN similar to the prediction processes. 

Four condition parameters are involved here, which are workpiece material, drill diameter, spindle 

speed and feed rate. However, the pattern numbers of them are not the same, due to the experimental 

set up differences shown in Table 5-1.  

The BPNN employed in this section is also a 3 layered feed forward network with 20 neurons in the 

hidden layer. The input numbers and output number are different and decided by the feature numbers 

and pattern numbers. The initial values of the connection weights are all set as zero for consistency. 

The different recognition results are compared and discussed. 

It should be noted that, the highest drill corner wear of the drill bits used for experiments is about 

0.3 mm, which is regarded as medium wear in most practical situations. Therefore, drill corner wear is 

not concerned in the recognition operations. 
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5.4.1 Workpiece material 

As listed in Table 5-1, four kinds of workpieces are used, thus four patterns or classes are pre-

generated as the targets. The target data is then actually a 256×4 matrix, whose 256 rows mean the 256 

pattern samples and 4 columns represent 4 workpiece materials respectively. If the workpiece material 

used is cast iron, then the first column would be valued as 1 and the other 3 as zeros, and the rest can be 

done in the same manner. The outputs of the BPNN accordingly compose a 256×4 matrix, with each 

row as the recognition result corresponding to each input data. 

5.4.1.1 With features selected by PCA 

As discussed above, 47 features are selected from the 304 features extracted from 16 frequency 

bands. These 47 features and the other 3 drilling condition parameters for 256 samples compose a 

256×50 matrix, i.e. the training knowledge data base. 

Figure 5-8 illustrates the recognition results for workpiece material patterns with features by PCA. 

 
Figure 5-8 The recognition result for workpiece materials with features selected by PCA 

In Figure 5-8, the rows are 4 possible output patterns and the 4 columns represent 4 target classes. 

For each, the output of the BPNN could be any of the 4 classes resulting in the plus one value in the 
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entirely been recognized, and the top row shows that no other training sample data leads to a mistaken 

output of cast iron. This is reasonable as discussed in 4.1, the feature values of data sampled from 

processes with cast iron as workpiece material are much different from others. 

The second left column has a 98.4% successful rate, which calculated by 1 of the 64 error rate. And 

in the second top row, some column has nonzero values meaning some other target pattern is 
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improperly recognized as S45C. 

The medial column shows the result for instances with SUS304 as workpiece material. It is 

demonstrated that 2 of them are mistakenly regarded as Ti-alloy and 3 as S45C, and resulting in a 7.8% 

error rate. 

The fourth column provides the result for Ti-alloy. It is shown that 2 of the 64 instances are 

wrongly deemed as SUS304. 

Values in the diagonal grids represent the numbers of correct results, apparently the bigger the 

better. Overall a recognition rate, as high as 96.9%, is obtained. 

5.4.1.2 With cluster 3 features in frequency band 6 

Since the cluster 3 features in frequency band 6 are capable to predict drill corner wear well, they 

are selected as inputs to train the recognition BPNN. The training data comprises of 256 samples of the 

other 3 condition parameters and the 8 features in cluster 3, in a form of 256×11 matrix. The target data 

is the same as that applied in 5.4.1.1. 

The recognition result for workpiece materials with features of cluster 3 in frequency band 6 is 

illustrated in Figure 5-9. 

 
Figure 5-9 The recognition result for workpiece materials with features of cluster 3 

Just like the result shown in the first left column and top row of Figure 5-8, the recognition of cast 

iron is completely successful. The second left column has a 100% successful rate, which means that all 

of the 64 instances with S45C as workpiece material are precisely recognized. The medial column 

shows the result for instances with SUS304 as workpiece material. It is demonstrated that 4 of them are 

mistakenly regarded as Ti-alloy and 2 as S45C. The fourth column provides result of Ti-alloy, as it is 

shown that 4 are wrongly deemed as SUS304 and 1 as S45C. 

And the overall recognition rate is 95.7%, close to the PCA one. 
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5.4.2 Drill diameter 

As listed in Table 5-1, drill bits with four different drill diameters are used in the experiments, thus, 

like the workpiece material, four patterns or classes of the targets are produced. 

The diameter 7 mm is represented as (1, 0, 0, 0) in the data matrix, and similar rules for 8, 9 and 10 

mm ones. 

5.4.2.1 Training the BPNN with PCA selected features 

The training data is a matrix of 256 samples for 47 PC features and 3 condition parameters. The 

result is shown in Figure 5-10. 

 
Figure 5-10 Recognition result of drill diameter with PCA selected features 
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features.  

 
Figure 5-11 Recognition result of drill diameter with cluster 3 features 

5.4.3 Spindle speed 

Seven different spindle speeds are involved in the experiments which makes the target data a 256×7 

matrix. Similarly the BPNN are trained with features both selected by PCA and in cluster 3. 

5.4.3.1 With PCA selected features 

 
Figure 5-12 Recognition result of spindle speed with PCA selected features 
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As demonstrated in Figure 5-12, 89.5% of the 256 instances are correctly recognized. The largest 

error occurs in the last column, where 28.1% of the instances of 1000 rpm spindle speed are mistaken. 

7 of them are regarded as 800 rpm pattern and 2 as 600 rpm pattern, which is mainly due to the tiny 

difference between the force features as discussed in 4.3.  The difference between the features gets 

smaller from 800 rpm to 1000 rpm than that from 400 rpm to 800 rpm. 

5.4.3.2 With cluster 3 features 

The result trained with the cluster 3 features in demonstrated in Figure 5-13. 

 
Figure 5-13 Recognition result of spindle speed with cluster 3 features 
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The good distinguish result between 0.05 and 0.06 mm/rev. patterns is that the workpiece material can 

be a strong indicator since they were separately. 

 
Figure 5-14 Recognition result of feed rate with PCA selected features 

The situation for 0.08 and 0.1 mm/rev. patterns are much more severe, with 67.2% and 62.5% 

recognition rate obtained respectively.  

5.4.4.2 With cluster 3 features 

 
Figure 5-15 Recognition result of feed rate with cluster 3 features 
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The result is improved by using the cluster 3 features as demonstrated in Figure 5-15. It shows that 

the total precision rate is 87.1%, with big promotes for both 0.08 and 0.1 mm/rev. patterns. And the 

correct rates remain 100% for 0.05 and 0.15 mm/rev. patterns. 

 
Figure 5-16 The relative importance of different features in the BPNN for feed rate recognition 

The melioration of the recognition rate is on account of the contribution of static features. As 

demonstrated in Figure 5-16, the relative importance of the average features is higher than those of the 

dynamic ones.  

It is also necessary to notice that the relative importance of workpiece materials is very high, which 

means the distribution of the feed rate patterns is not equal to different workpiece materials, and it 

should be avoided in further works. 

5.5 Summary 

In this chapter, the prediction of the drill corner wear and the recognition of the drilling condition 

parameters are carried out based on the data acquired from experiments under a wide range. The 

principal components analysis (PCA) is applied to select the principal components (PCs) from the 

features generated and extracted from the signals sampled during drilling, and then the PCs are taken as 

new features and are used for drill wear prediction and condition recognition. Another approach which 

employed BPNN directly is used to find the most effective features, which first find the best feature 

cluster and then excavate the best frequency band. 

The first PC has similar correlations to both the static and dynamic features, while the second and 

third PCs are more relevant to the dynamic features. The static features are important because they 

indicate the drilling conditions well and for the dynamic features, the drilling status. 

For each frequency band, 2 or 3 PCs are selected to represent the 19 features and for all of the 

frequency bands, 47 PCs are selected from the 304 features.  

The 19 features are chosen and grouped into 3 clusters, and it is found that the cluster 3 features, 

which comprised of the average, velocity and geometry features, are more effective. And furthermore, 

the cluster 3 features in frequency band 6 have higher variance leading to better prediction result. 
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The relative importance, calculated from the weights in the BPNN, of each selected feature show 

that the dynamic features play a more important role than the static features for cluster 3. 

The cluster 3 features are found more effective in recognizing the drilling conditions which strongly 

related to static features, than the PCA selected ones. Such as for the recognition of feed rate, it is 

discovered that static features have higher relative importance in the neural network. But for spindle 

speed, with the PCA selected PCs, the result is better for spindle speed affecting the frequency 

performance of the force signals. 
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Chapter 6   Conclusion 

This dissertation has described an integrated procedure for drilling process monitoring on the 

scopes of drill wear prediction and drilling conditions recognition. A novel conversion approach based 

on the sampled thrust force and torque signals has been presented, producing new forces and capturing 

information of their correlation. The equivalent thrust force (Ft), equivalent principal force (Fp) and 

their resultant force (Fr) are obtained from a rectangular coordinate. Various features of these forces 

are generated with different calculation algorithms, among which the velocity of the force value change 

and geometry measure of the distributed resultant force trajectory is specially defined. The features are 

grouped and the effects of drilling condition parameters are evaluated to all of the features in each 

group. Experiments are conducted under a wide range of conditions to build a big enough data base for 

the training of neural networks devoting to the drill wear prediction and drilling condition monitoring. 

The PCA method and the direct using BPNN method are applied to select principal or important 

features. The features are evaluated by their effectiveness and importance in the artificial neural 

network models. 

It is found that, the change of drilling conditions leads to a more clear change of static features than 

dynamic features, whilst the dynamic features are more sensitive to the status or the stability of the 

drilling process. And it’s also been noticed that the velocity features have a certain concern to the 

frequency information of the force time series signals and the geometry feature keeps pace with the 

increase of drill corner wear more conformably. 

The PCA of the data shows that the first principal component (PC) has similar correlations to both 

the static and dynamic features, while the second and third PCs are more relevant to the dynamic 

features. The high variation of the static features is caused by the diverse drilling conditions and for the 

dynamic features is different drilling status. 

The direct use of BPNN indicates that with the feature cluster consist of average, velocity and 

geometry features higher prediction accuracy can be obtained. And with the help of PCA, it is 

explained that in the frequency band which has the most correlation to the PC features are more 

effective. 

The relative importance method reveals that, in the prediction of drill corner wear, dynamic features, 

especially the newly defined features, have more effect, while for the drilling condition recognition, the 

static features are more contributory. 

However, there are some disadvantages in this research. First the highest drill corner wear of the 

drill bits used in the experiments is not adequate, which limits the accuracy and the practicability of the 

method. Second, the drilling condition parameters overlap in some occasions, which affect the fairness 

of the evaluation. 
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