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Air pollution has become a major concern due to its significant impacts on human’s health as well as human 
activities. Many researchers have notified the necessity of fundamental analysis to clarify the cause-effect 
mechanism of air quality and reflet it into countermeasures to academic researchers, environmental practitioners, 
stakeholders, as well as residents. In particular, policy makers at both central and local levels in developing 
countries are required to statistically analyze and interrete air quality monitoring data to take measures and to 
conduct preventive actions in order to reduce the impacts of the air pollution and ultimately control air quality. 
This study aimed to propose several methodologies to analyze and interprete air quality monitoring data in 
Surabaya City, Indonesia. 

The dissertation consisted of 7 chapters with the following contents. The overview of current situation, problem 
statements, research objectives and scopes, and outline of the dissertation were presented in Chapter 1. Chapter 2 
contained literature reviews related to air quality analysis and prediction models that have been developed in the 
air quality research fields. In this study, the air pollution concentrations of six indicators (NO, NO2, O3, SO2, CO 
and PM10) were continuously collected every 30 minutes for 20 months from February 1, 2001 to September 30, 
2002 at five different monitoring stations that had their specific land use patterns in Surabaya. Chapter 3 
described the profiles of the monitoring data, and besides, preliminary screening and complementing (missing 
value imputation) around 15% missing data were carried out. 

The following chapters are divided into two parts, those are the intepretation part from Chapters 4 to 5 and the 
prediction part on Chapter 6. Firstly Chapter 4 employed multilevel model to characterize air pollution behaviors 
in the city allowing the identification of spatial and temporal variations over the measurements. The result 
showed that temporal variation highly affected air pollutant concentration. Furthermore, there was an interaction 
among pollutants and meteorological factors that contributed to the fluctuation of the concentrations. However, 
it was noted that the spatial variation was small, indicating the the fluctuation and dynamic of concentrations 
were insignificant because within station factors not due to between station effect. 

Chapter 5 attempted to identify temporal patterns of the events in which pollutant concentrations exceeded the 
ambient threshold (permissible) levels. Since the observed disruption consisted of the complicated mixture of 
several different ones, Independent Component Analysis (ICA) was employed to decompose into unit 
distributions caused by emission sources such as traffic, industry and etc. The results could imply some possible 
policies specific to each monitoring station. By following the above outputs, this study conducted time series 
analysis with state-space model to find dynamically influencial factors on air pollutant concentration 
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distributions both using weekly time scale and annual longer time scale in particular cases of NO2 and PM10. The 
results provided not only the information of the dynamic factors but also temporal pattern.  
 
The short-term prediction of air quality may take another important role to persuade residents and policy makers 
to improve their preparedness and change their behavior timely. Therefore, Chapter 6 developed time series 
models: autoregression model with Bayesian Markov Switching (BMS) model and modified Bayesian Markov 
Switching (MBMS) model. It was found that MBMS model slightly improved the prediction power with the 
condition of training data set. Since this kind of model was site-specific, the performance of the model depended 
of data set on that particular location e.g., the fluctuation. If the training data set was less fluctuate, the Bayesian 
model performed better than autoregression model. In order to improve the prediction, we used AR and ARIMA 
models with optimum order (lag-concentrations). We also used longer time interval 4-hour instead of 1-hour. It 
was observed that the performance of AR and ARIMA with optimum lag information performed better than 
AR(1) and BMS models. Further, models using 4-hours data were better than models with 1-hour data. To 
further improve prediction, we tried to predict the true distribution of pollutant by extracting independent 
components. However, even though the results showed there was a room for improvement to predict distribution 
of pollutant especially using longer time interval data, the performance was not good. In order to improve the 
prediction by time series models, this study explored another prediction model that was Generalized Least 
Square (GLS) model by using original  meteorological variables and variables extracted from component 
analysis. It turned out that the GLS models with original variables would be useful for the short-term prediction 
of air quality.  
 
Finally, Chapter 7 explored and summarized some remarkable findings from this study. The author promoted 
some approaches to find possible policies that can be implemented in particular areas. This chapter also 
discussed some policies based on the assumption of feasibility of implementation. Finally the dissertation made 
a conclusion of the research and drawed some limitations and future directions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
備考 論文の要旨はＡ４判用紙を使用し，4,000字以内とする。ただし，英文の場合は1,500語以内と

する。 
Remark: The summary of the dissertation should be written on A4-size pages and should not exceed 4,000 

Japanese characters. When written in English, it should not exceed 1,500 words. 
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 Introduction Chapter 1
 
 
 
 
 
 

1.1 Background 

Air quality management is a crucial issue at the national and local levels to secure 
residential health and living environment. Many studies have been conducted over the past 
decades. The field of air quality study can be divided into several specific topics: i) technology 
development dealing with air pollutant, e.g. Painting for photocatalytic degradation of NOx gases 
from vehicles, ii) measurement and observation methods of air quality levels, iii) finding out 
pollutant sources and factors, and relationship among them, iv) figuring out cause-effect 
mechanism of air pollution, v) prediction of temporal changes in and spatial variation of air 
concentrations. However, all the issues still remain more challenging in developing countries, 
because of the lack of institutional, financial and technological limitations. In particular, the 
number of monitoring stations is limited, and long-term continuous monitoring is not working in 
many developing cities. Thus, the immature methodology of data collection, analysis and 
interpretation result in missing the timely and spatial countermeasures to mitigate and adapt the 
worsening air pollution. 

Environmental Agency in Surabaya City (i.e. a target city of this study) that is the second 
largest city with a population of three million in Indonesia has launched an operation of five 
monitoring stations since 2001. The installation was highly expected to promote a cleaner air 
quality. Air Pollutant Index (API) comprising 5 statuses of “Good”, “Moderate”, “Unhealthy”, 
“Very Unhealthy”, and “Dangerous” was calculated to alert the public shortly after detections. In 
fact, there were 18 warnings of “Unhealthy” statuses during 2001 and 2002. However, the warning 
information can provide only cross-sectional (real time) states of air pollutions but its temporal 
changes, despite the time series observation. Also the observed distribution of air concentration is a 
mixture of different distributions caused by different sources. It is complicated to isolate a specific 
policy from mixture distribution. Hence, it is a serious and unavoidable problem that policy makers 
and residents cannot cope with appropriate countermeasures and prepare the expected levels of air 
pollution in future. 

High rate of missing data is another detrimental problem in Surabaya. It makes us more 
difficult to ascertain causal factors and to predict the air quality at any certain time and location. 
Furthermore, policy makers were actually lacking in the point source information of air pollutions 
such as NOx, CO2, O3 and PM10. Actually, these incomplete monitoring data are not fully utilized 
by policy makers as well as researchers. There are two reasons for this fact. Firstly, the sensors of 
air quality often failed since 2003 two years after the operation. The extremely high missing rates 
made a fatal error to monitor the air quality. Secondly, because of this missing information, it was 
difficult for one to obtain such accurate inference about the situation of Surabaya.  

Regarding the prediction of air pollution, there is a concern of displaying the future 
pollutant concentration. The purpose of prediction is to make residents and policy makers act 
promptly by displaying the expected air pollutions. For example, if residents are notified about the 
NO2 concentrations at a particular location one or some hours later, users will be able to either 
choose another route or wear masks. In this case, a prediction model of air concentrations is 
required with higher accuracy. As far as author concerns, no studies have fully exploited the 
temporal patterns of air pollution to estimate the risk of breaching pollutant levels. 

Based on the background behind the data unavailability, it is urgently required to develop 
an approach to interpret and predict the future air concentrations to derive inferences to make 
policies based on a very poor data for a limited period.  
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1.2 Research Objectives 

This study aims at comprehensively finding factors that affect air pollutant concentration, 
and also estimating models that can predict the future’s concentrations under the constraint of 
limited available data. More specifically, this study  

i) examines significant temporal-spatial factors affecting air quality,  
ii) decomposes the observed temporal distribution of air concentrations into some 

independent source distributions, and furthermore  
iii) predicts the concentration of pollutants in the future using the limited data.  

There are few literatures arguing time-space analysis under the above mentioned constraint of data 
particularly in developing cities. Table 1.1 summarizes the research questions and objectives in 
chapters 4 to 6.  
 

Table 1.1 Research questions and objectives of analyzing and interpreting 
chapters in this study 

Ch Research questions Objectives 

4 1. General objectives: To obtain significant factors affect air pollutant levels both spatially 
and temporally 

2. Which day significantly affects air pollutant 
(day-by-day)? Is the difference significant? 

To overview the concentration 
difference among days 

3. What is spatial effect on the concentration? To obtain the influence of each zone on 
the pollutants concentrations 

To obtain whether spatial location 
affect sthe fluctuation (dynamic) of the 
concentrations 

4. Does concentration pattern differ between 
seasons?  

To obtain the effect of seasons on the 
concentrations 

Does the concentration increase significantly 
during the specified peak time in both morning 
and evening? 

To obtain how air concentrations 
change during morning and evening 
peak hours 

5. Will the addition of green space reduce the 
pollution levels? How land use patterns affect 
the pollutant levels? 

To obtain factors of green space in 
affecting the pollutant concentrations 
and how other land use pattern affect 
pollutant levels 

5 1. What is temporal peak time in each zone? 
 

To obtain temporal peak time frame 
where the pollutant levels reach the 
peak 

2. What is seasonal variation in each zone based 
on true distribution of pollutants? 

To obtain seasonal variation effect of 
pollutants 

3. Can we confirm temporal peak time frame 
obtained from previous chapter? 

To confirm temporal peak time frame  

4. What are the effects of meteorological factors 
toward the pollutant levels? 

To obtain dynamic change of 
meteorological parameters to pollutant 
levels 

6 Will time series model can predict more 
accurately than GLS model with exogenous 
variables 

To obtain best prediction model 
between time series approach and GLS 
models 
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1.3 Framework, Originality and Research Scope  

The framework of this dissertation can be shown in Figure 1.1. There are two parts of this 
study: one part is interpretation and another is prediction. The former interpretation part aims to 
understand factors affecting air quality to derive some potential policies to improve air quality. 
Better air quality is an ultimate goal to secure human health and quality of life. The latter part is a 
prediction part. Several types of models will be employed to predict the air concentrations.  

While there are many efforts to analyze and interpret the air monitoring data, this study has 
the following originality and uniqueness of methodology: 

 
1) Independent Component Analysis (ICA) can decompose a complicated mixture 

distribution of air concentration to some independent source distributions, 
2) State-space model can extract the temporal pattern of pollutants as well as detect the 

influential meteorological factors 
3) Combined time series models and ICA can predict the dynamic fluctuations of air 

concentrations in different land use locations. 
 
In air quality modeling, the spatial and temporal context becomes important because of its 

nature that varies across different locations and time. By combining these two factors together, it 
forms a so-called spatio-temporal model. The problem lies in its own characteristics and criterion 
that must be met. For instance, in the time series model, one should be careful dealing with missing 
data, because not all models can handle missing data. Therefore, before running into the model, a 
researcher should have dealt with missing data. Another concern about time series data is the 
linearity. Often, time series data is approach using non-linear model. A non-linear model is a very 
flexible model however it sacrifices the interpreting mode from a data. In terms of spatial, we 
cannot avoid that if we use this model, we need more data, spatially. In other words, a researcher 
should have many points spread out geographically. The minimum number of locations varies 
among researchers, but in general, it seems that minimum 30 points is plausible. Less than that, the 
concern about its validation will emerge.  

Due to the limitation of monitoring stations inherent in developing city Surabaya, this study 
can use only five stations, which are not enough to build a spatio-temporal model. Even though this 
study cannot fully employ a spatial analysis, but it can cover spatial factors into several chapters. In 
chapter 4, the study uses multilevel to find the effect of spatial location to the air pollutants 
concentrations. In chapter 6 we develop time series models to predict air quality and the 
distribution of air quality. The use of time series models because of its simplicity to forecast future 
values. Furthermore, we would like to predict the distribution pattern obtained from independent 
components with the aim to predict future distribution patterns. Furthermore, this section also tries 
to develop a prediction model with component analysis employing some spatial variables such as 
wind direction at each station. 
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Figure 1.1 Research framework of the study 

 

1.4 Outline of Dissertation  

There are three main types of air pollution studies: 1) generation and control of pollutants at 
the source, 2) transport, dispersion, and removal of gas species in the atmosphere, 3) impacts of 
pollutants to human beings, and 4) others likely air adsorption mechanism as a part of ecosystems. 
This study stands on the preliminary analysis related to the first and third scopes. The general goal 
of this study is thus to obtain insight how government should react to the possible event where 
concentrations exceeding the permissible level which will affect humans health.  

Figure 1.2 explains the position of this study. In all statistical learning, the author can 
observe that based on its goal, statistical model comprises of interpreting and prediction part.  

The first aim of this study is to characterize air pollution behaviors in the city allowing the 
identification of spatial and temporal variability towards the air quality measurements using 
multilevel model in Chapter 4. There are five monitoring stations, each represents their respective 
land use patterns; the multilevel model was used because its benefit of allowing estimates to vary 
across groups, in this case the monitoring stations. The result shows that temporal variation highly 
affects air pollutant concentration. Furthermore, there is interaction among pollutants and 
meteorological factors that contribute to the dynamic of the concentrations. However, it is noted 
that the spatial variation is small, indicating the fluctuation and dynamic of concentrations are 
because within station factors not due to between station effect. 

Our second aim in the Chapter 5 is to identify temporal pattern of peak time when the 
concentrations exceed the permissible level. The background is that, this study finds many events 
when concentration of pollutants (NO2 and PM10) exceeds the permissible level (ambient threshold 
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level). Therefore, it is mandatory to obtain 1) the main contributor of these events, and 2) when do 
these events likely happen. To answer those questions, this study takes these steps. It must be noted 
that the term “events” here means the condition where the pollutant levels exceed permissible level. 

 
Figure 1.2 Research Scope and Framework in the present study 

 
First, using assumption that these events are likely to happen during peak time, the author 

observes time frame using raw data in terms of the frequencies of events for each time interval. 
Conventional ordinary approach cannot obtain enough information about time frame for pollutants 
when the events are few. For this matter, the author employs a method called Independent 
Component Analysis (ICA) which is able to build components that are statistically independent. In 
these components, temporal peak time frame can be determined. This study combines the result of 
ICs (Independent Components) with wind direction and wind speed to estimate the emission 
sources by observing the maps. After these observations, the author discusses some policies that are 
specific to each site of monitoring stations which are displayed in the final chapter. To further 
analyze the effect of meteorological factors towards the pollutant’s concentration, the author  
employs a time series state-space approach to obtain dynamic meteorological factors in a case of 
trading zone in Chapter 5. This chapter also confirms the sub-pattern of air pollutants. There are 
five monitoring locations each represents its own zone. The author confirms and finds out the 
underlying states or sub-pattern for the pollutants in the trading zone.  

For air quality management, a prediction model is necessary and crucial. For this part, the 
author employs two different models each with different approach in Chapter 6. One is time series 
models and another is Generalized Least Square models. This study compares several steps of time 
series models. 
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The first one is the of lag-1 Auto Regression (AR) model with Bayesian approach model to 
predict several pollutants using mean hourly data. Second step is we try to improve the models by 
using time series models with optimum order of parameters. Third step we would like to obtain the 
effectiveness of using longer time interval data in this case 4-hour compared with if we use 1-hour 
data. We also attempt to predict longer time frame (1 week) using updating parameter algorithms.  

As one of the originality of this research, we attempt to predict the true distribution of air 
quality by predicting independent components (ICs) that may represent certain pattern on different 
locations. We attempt to predict these ICs using 1-hour and 4-hour data with time series models.  

 
Figure 1.3 Dissertation chapter structures  

 
In the prediction model with time series data, the author must take into account residual 

serial autocorrelation. Unfortunately in some studies, because of the complexity of the model they 
used, the correlation was ignored, therefore leading to a possible bias result. To take this into 
account, this study uses a Generalized Least model by taking into account residual serial 
autocorrelation. In the regression model, multi-collinearity is a non-negligible problem that a 
researcher should avoid because of the correlation of independent variables may distort the 
standard error and lead to a bias conclusion and estimation. Because of this, this study replaces the 
original variables that consist of meteorological variables and air pollutants with components 
extracted from two different approaches: Independent Component Analysis and Principal 
Component Analysis. These procedures were run and explained in subsequent section in Chapter 6. 

Chapter 7 focuses on clarification and explanation about possible policy implementation in 
the Surabaya City and also concluding remarks with future direction of research as well as 
limitation of the present study. The explanation above is expressed on the flowchart above.  
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 Literature Reviews Chapter 2
 
 
 
 
 
 
 

2.1 Air Quality towards Humans Health 

Our health highly depends with the quality of air we absorb. In the atmosphere, the major 
component of gases consist of nitrogen (N2 ~ 78%), oxygen (O2 ~ 20.95%), argon (Ar ~ 0.93%), 
carbon dioxide (CO2 ~ 0.04%), water vapor (H20 ~ 1%) and other gas traces. These trace gases 
influence our health and are responsible for atmospheric chemistry. Air quality is a jargon term 
defined as the condition of the air we absorb which is expressed in the unit of concentrations (most 
of the time ppm or ug/m3) of pollutants relative to the established threshold values. The air quality 
is subject to some other variables such as emissions, meteorology, and topography. The general 
definition of emissions is what is released into the atmosphere, whereas meteorology helps to 
determine what will happen to these emissions. 

Important aspects that we should care about emissions are the quantity or amount of 
pollutants emitted, then the type, the source of emission whether it is point or non-point source. 
Once the pollutants are in the atmospheric layer, it is up to weather factor (meteorology) what will 
happen to the emission. Emission’s movement is dominantly controlled by the weather 
(meteorological condition). There are several significant meteorological factors that affect the air 
quality they are solar radiation, wind (speed and direction), temperature, and humidity. However, 
the significance of these factors may differ across sites. Despite the complexity of atmospheric 
reaction to the air pollutants purification, in essence calm winds and the inversion will cause poor 
air quality. This condition is marked with some indicators such as the sun supplies low radiation, 
resulting in less warmth to the earth’s surface, and then the warmer air holds cold air near the 
ground whereas this warmer air serves as a lid or inversion layer,  and because of this layer, 
pollution from traffic, industries are trapped, resulting worse air quality. On the other hand, winds 
are responsible for transport and dispersion of pollutants. Topography has its role in the 
atmospheric reaction. It affects the wind direction and speed. For example, in the valleys, the 
temperatures are lower (cold) in the night which yields more inversion. 

Air quality management is an important matter in all places, including the Surabaya City. 
High concentrations of air pollutants may cause health effect and interfere with human activities. 
For that purpose, the city government had installed five monitoring stations in the location that 
represent the zone and land use patterns as described in the Chapter 3. However, the use of this 
monitoring station has been limited. Indeed there were many air quality studies that had been 
investigated, however the subject of these research are being widely spread e.g., carbon stocks, 
dispersion modeling using deterministic model, air quality from vehicular using deterministic 
approach. The titles which focus on the time series information (stochastic) were very limited. One 
research was conducted by Djuraidah (2007). She investigated and focused on a spatio-temporal 
model by using an additive model with linear mixed model approach. However, she did not discuss 
spatial limitation on which Surabaya only has five monitoring stations which is insufficient to 
produce reliable spatial model. Another study was conducted by Chamida (2004), she measured 
PM10 concentrations using air dispersion model with the inputs from the use of fuel vehicles, LPG, 
kerosene, traffic and domestic activities. However, a thorough comprehensive study has not been 
done, and this present study is aimed to pioneer such study on measuring air quality based on 
historical measurement values which has not been done so far. 

The monitoring stations capture the concentrations of several air pollutants; they are NO, 
NO2, O3, CO, PM10, and SO2. NO and NO2 are mostly known derived from combustion sources, 
and in most urban areas and cities, mobile source emission sources from gasoline and diesel 
vehicles are the one that are responsible for emitting these pollutants (O’Donoghue, et al., 2007; 
Gao, 2007; Wang, et al., 2009). The combination between NO and NO2 refer to NOx. These are 
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considered as anthropogenic sources. Vehicles are considered to be the most dominant contributor 
of anthropogenic VOC emission and NOx emissions, roughly responsible for 47% and 55% (Gao, 
2007). NO2 is also formed through the oxidation of NO, as primary pollutant (O’Donoghue, et al., 
2007). Parkhurst (2004) however noted that the emission of NO2 came most notably from bus, in 
the UK. 

Henderson et al. (2007) and Wang and Oliver Gao, (2011) stated that vehicles are also 
sources of particulate matter. The emissions from transportation roughly account for about 30% of 
the PM pollution in the US. Not like particulate matters, NO, and NO2, O3 is formed under the 
condition of warm temperatures with bright sunlight. VOCs are contributor of the O3 formation. 
Along with NO, VOC are precursors to secondary O3 formation and aerosols (Wang et al. 2009, 
Parkhurst, 2004). Incomplete fuel combustion as well as stationary source of pollution may 
produce and increase the concentration of CO (O’Donoghue, et al., 2007). 

These air pollutants; if their concentrations are high, or exceeding some certain values, it 
will affect human’s health. Not only human health that is affected but also social cost may incur 
(Wang et al., 2009). Parkhurst  (2004) further noted that NO2 heightened mortality in the UK and 
O3 is responsible of deaths and patients in hospital during the summer. Cesaroni et al. (2012) and  
O’Donoghue, et al. (2007) presented that these pollutants increase adult mortality due to natural 
diseases such as cardiovascular diseases, respiratory, and lung cancer. Cardiopulmonary is also 
included as the one that is caused by high concentration of NO and NO2 (Dijkema et al., 2011). 

2.2 Air Quality Studies 

Like other statistical studies, in broad, statistical model has been coped with two parts: 
interpretation and prediction. In the air quality field, there are many studies with both focusing on 
interpretation (Ramanathan and Feng, 2009; Gocheva-Ilieva et a l., 2013; Mamtimin and Meixner, 
2011; Jorquera, 2002) and prediction time series data. Interpretation of air quality means a lot to 
many sides, stakeholders and even policy makers on every scale whether it is local, cities, nations, 
and between nations. On broader scale, we observe many studies related to the global climate 
change caused by anthropogenic activities. Predicting is on the other hand, is much more 
“exclusive” and can be said as one particular niche in air quality subject. We can say that because 
predicting part lets research to focus on how to forecast or predict the pollutant’s concentrations 
ahead of time.  

There are so many methods are currently being either developed or extensively applied in 
researcher’s regional scale. The latter scale is our primary concern in the present study. In the 
statistical model, we can note that there two basic statistical model learning. One is supervised 
learning model, and the other one is unsupervised model. We do not limit ourselves to focus only 
in any of these methods instead we seek and use methods that may best achieve what we are 
targeting. Several chapters of this research has strived to obtain policy that can be implemented in 
order to reduce the risk of people get exposed to high concentration of pollutants. 

In terms of prediction model, many researchers investigated models that best predict future 
concentration of pollutants. Dou et al. (2012) implemented a multivariate state-space model to 
predict next day hourly O3 concentrations. Multivariate time series model is also used in the present 
study but with different goals set by authors. However, the use of multivariate time series state-
space has been limited. Chapter 5 describes the use of model and shows some examples of its use 
in the air quality field.  

Other popular model that has been extensively been developed and used is artificial neural 
network (ANN) (Gardner and Dorling, 1999; Chaloulakou, et al., 2012; Kukkonen, 2003; Arhami, 
et al., 2013; Cai et al., 2009; Corani, 2005). Chaloulakou, et al. (2012) applied ANN and multiple 
linear regression to predict PM10, the included previous information as input in the network. 
Kukkonen (2003) employed and tested five different neural network to predict NO2 and PM10, and 
he also compared the performance with other linear statistical model and a deterministic modeling 
system. 

A multilayer perceptron neural network (MLP) was performed by Gardner and Dorling 
(1999) in predicting NO, and NO2 for next hour and 24-hr ahead. Corani (2005) employed feed-
forward neural networks (FFNNs), pruned neural networks (PNNs), and lazy learning (LL) to 
predict current day concentration of O3 and PM10. 
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Besides ANN based model, a time series analysis were also performed by a number of 
researchers. For instance, Kumar and Jain (2009) used ARMA/ARIMA to predict NO, NO2, O3 and 
CO one day ahead. Gocheva-Ilieva et a l. (2013) investigated the performance of ARIMA in 
predicting NO, NO2, O3, and PM10. Moreover, Ibrahim et al. (2009) used and compared ARIMA 
and SARIMA in forecasting NO and CO. 

One particular note is that in Surabaya, studies of air quality using the above mentioned 
above is rare. Few studies only described the difference of pattern using simple statistical methods. 
As explained previously, the lack of study is caused by unattractiveness of data supply from 
monitoring stations. There are many missing rates of data, therefore often researchers face with 
many limitations. Furthermore, air quality studies are often directed to use deterministic models to 
either explain the phenomena or predict the concentration on unmonitored location. However, still, 
the application of prediction model of air quality are very limited if not say almost none because no 
complex statistical methods had been used to explore the pollutant data from monitoring stations. 

2.3 Investigating the Phenomena that Affects Air Quality 

Surabaya City, as second largest city in Indonesia, is vulnerable to severe air pollution.  It 
was reported by Chamida (2004) that there were 7, 11 and 2 days in 2001, 2002, and 2003 
respectively which were categorized as unhealthy days, mainly due to transportation sector 
(Chamida, 2006). These facts trigger the necessity to issue various environmental policies (e.g. 
Blue Sky Program) and had gained interest for air pollution control strategy. There were also few 
studies that incorporate stochastic method to develop relationship of air quality with vehicle 
volume, environment, social and psychology, and health (Purwanto, 2007; Irsyada, 2011; 
Rachmani N., 2007; Samino, 2010; Rahmawati, 2008). However, they only account for a segment 
of variables and did not include a set of factors that adequately represent contribution to the 
concentration. To the authors’ best knowledge, there is no studies have been done to 
comprehensively examine spatial and temporal variations and their effect to the concentrations of 
all air pollutants using monitoring data in this particular city.  

Many models have been developed to investigate factors affecting ambient air pollutant 
concentrations. Models such as multiple linear and non-linear regressions and time series technique 
have been used (Gardner and Dorling, 2005; Geladi, 1999). Nugroho et al. (2013) briefly explains 
some drawbacks of these models, for example, a non-linear relationship among variables, 
interaction between variables in the model structure are not easy to be described using simple linear 
regression models. A study by Samino (2010) calculated level of ambient air pollution in 
Gayungan and Gebang Putih stations in 2008 using linear regression. Because the author just used 
one-year data and classical linier regression, the method was not capable to include between 
stations variation, therefore an alternative model is required. 

At first step, we employ a multilevel model to explore factors affecting air quality. 
Multilevel models are a regression model with more than one level that has parameters on its own 
estimated from data (Gelman and Hill, 2007). We assumed if variation between-station is higher 
than within-station variation, then we can conclude that observed variations of air quality is mainly 
due to difference of locations/land-use.  

2.4 Temporal Pattern of Pollutants 

A part of important aspect when managing air quality is to identify points where the peak 
concentrations occur. When peak concentrations take place, there is a risk where the pollution 
levels may breach the permissible level. It is therefore crucial to obtain information about temporal 
peak time frame by identifying temporal pattern of pollutants on every location. Obtaining 
temporal pattern can be achieved via finding distribution of pollutant concentrations. There are 
several ways of achieving this. 

A simple descriptive statistical analytics can be employed to extract temporal pattern. 
However this approach may not sufficiently capture the true pattern of air quality. For example, if 
we average all data station, there is a possibility when the unique pattern associated to each 
location may disappear. Therefore it is essential to use a method that is able to capture the true 
distribution of pollutant on each location. One method is by using component analysis and a 
particular emerging method is Independent Component Analysis (ICA). 
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When using ICA to obtain temporal time frame, we would like to identify the hidden 
distribution of concentration on each zone. The ordinary component analysis can be found in many 
literatures in terms of air quality. However to some extent, the use of ICA competes with PCA. 
Abdul-Wahab et al. (2005) used principal component analysis (PCA) to model and investigate 
factors of ground-level ozone, and Al-Alawi et al. (2008) combined principal component 
regression with artificial neural network for forecasting ground-level ozone. Another example of 
PCA is to identify air quality factors from ceramic tile clusters (Minguillón et al., 2013). Pires et al. 
(2008a), Pires et al., (2008b) employed principal component to optimize air quality monitoring 
stations in Portugal.  However, there is a limit of PCA in these ordinary component analysis 
compared with ICA. 

Back and Weigend (1997) explained that ICA can reveal better on the underlying structure 
and information of the stock prices than PCA. Moreover, PCA provides an orthogonal 
representation of the data and maximizes the variance explained by the components, however, the 
interpretability of the second and higher components may be limited (Westra et al., 2010). Another 
fact, ICA is able to produce output that has very clear structure, e.g. clustered, because ICA focuses 
on non-Gaussian data. It is similar with the projection pursuit where it works on finding directions 
on which the projection of the data set show the most interesting distribution, where it is when the 
data has least Gaussian distribution. Hyvärinen and Oja (2000) showed that principal component 
analysis failed to do so, producing unclear structured output. 

ICA is an alternative approach to detect some components from mixed distribution. Thus, it 
is often used to analyze time series data (Cheung and Xu, 2001) in many research fields including 
finance (Lu et al., 2009), climate change (Westra et al., 2010), multimedia (Long et al., 2012), and 
air quality forecasting (Pires et al., 2008c). These literatures commonly concluded that ICA is 
helpful in filtering out noises contained in the data. Hence this study assumes that the independent 
patterns of pollutant’s concentrations obtained from ICA may detect noise-free temporal patterns 
between zones as well as maintaining independency in the case of Surabaya City.  

 

2.5 Prediction of air quality 

Air quality is one of the most complex phenomena to be forecasted because pollutant 
concentrations are a result of very complex interactions between meteorological factors and the 
influence of demographic and terrain factors as well as artificial sources of emission (e.g., vehicles 
and factories). Important pollutants that derive from vehicular activities are is nitrogen monoxide 
(NO), nitrogen dioxide (NO2), particulate matter (PM10), and carbon dioxide (CO). NO, and NO2 
(NOx) are gases that are highly correlated with transport activities because they are emitted from 
the majority of emissions from vehicles. NOx concentrations reflect the volume of vehicle 
activities and usually vary with traffic flows. Accordingly, the concentrations show temporal 
changes within a day. For example, the concentrations are higher during peak hours in the morning 
and the evening. To capture such temporal changes in a day, a time scale of hourly mean 
concentrations is useful from the perspective of short-term forecasting.  

There are various models for air quality prediction. But these may be divided into two big 
groups. One group is the time series by considering the air quality data itself like e.g., 
autoregression model or ARIMA model. Box-Jenkins time series models involve a statistical 
process that incorporates the influences of past values (autoregression - AR), error values (moving 
average - MA), and their combinations (autoregressive integrated moving average -ARIMA). Box-
Jenkins models are popular because of the ease of use and their capability in presenting both 
stationary and non-stationary data. 

Dong et al. (2009) presented another prediction approach for PM2.5 concentrations in the 
Chicago metropolitan area by building a hidden semi-Markov model. The trained model was 
shown to provide a good accuracy of prediction of PM2.5 concentrations. An example of the use of 
Bayesian approaches was also available. Dou et al. (2012) applied a Bayesian multivariate spatial 
prediction model to forecast next-day hourly ground-level O3 concentrations. They compared the 
Bayesian model with a model based on a state-space modeling approach and clarified that the 
Bayesian model is superior to the state-space modeling approach.  
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Stationary time series models are also widely used to predict air quality-related information. 
Lee et al. (2012) forecasted the Air Pollution Index (API) in Johor, Malaysia, using a seasonal 
ARIMA (SARIMA) model. The objective was to obtain best estimates for AR and MA parameters 
inside the SARIMA model for three monitoring stations in Johor. The model was concluded to be 
capable to predict and monitor air pollution index. Ibrahim et al. (2009) presented the use of a Box-
Jenkins ARIMA model to forecast monthly maximum 1-hour CO and NO2 concentrations in 
Malaysia. The purpose was to check the forecasted value with the permissible values, and analysis 
results showed that the predicted values will not exceed the permissible values from the regulations 
by either NAAQS or DOE Malaysia. Kumar and Jain (2009) also used ARMA/ARIMA models to 
forecast daily mean ambient air pollutants O3, CO, NO, and NO2 nearby roads at an urban area of 
Delhi, India. It was concluded that such models is suitable to the short-term forecasting for 
forewarning purposes. We observed that for the log-transformed NO, MAE and RMSE range from 
7.3 to 8.8 and from 10.6 to 10.9, respectively. 

It must be pointed out that the results in the above existing studies may be unique because 
different sets of data were used and therefore it is difficult to make direct comparisons in terms of 
model performance. Moreover, in case that a same model was employed to different data sets, 
worse results would be yielded if model parameters were not optimized for each data set. However, 
high values of prediction errors in terms of MAE and RMSE, as noted in some studies mentioned 
above, are also one of our motivations to developed better models that can improve prediction 
accuracy. Even though time series models are often applied to forecast air quality data (Sfetsos 
2002), they have their own disadvantages. Bayesian Markov Switching model with state transition 
is thus proposed. Ji et al. (2013) adopted a time series state transition model to forecast short-term 
wind speed. Unlike other time series models, the Markov Switching model is useful because it is 
able to capture occasional but recurrent regime shifts in a dynamic manner. This model is also able 
to incorporate nonlinearities associated with regime switching (Diebold et al. 1994; Martínez-
Beneito et al. 2008; Kim et al. 2013). 

The development of air quality forecasting model has attracted many attentions especially 
with the involvement of exogenous variables. One type of models is built based on artificial neural 
network (ANN) models (Kukkonen 2003; Corani 2005; Cai et al. 2009; Chaloulakou et al. 2012; 
Arhami et al. 2013) and the other type is based on Box-Jenkins time series models (Kumar and Jain 
2009; Lee et al. 2012). ANN models are based on connections between input layers, hidden layers, 
and output layers. The presence of hidden layers is useful to capture nonlinear relationships. The 
number of hidden layers must be predetermined to obtain optimum results. Basically, the point of 
applying ANN models to the forecasting is the use of training set. Training set should be large and 
representative otherwise it cannot be used to forecast new data. Such a feature is one of the 
advantages of ANN models.  

Kukkonen et al. (2003) also proposed several models to predict hourly concentrations of 
NO2 and PM10 in the central Helsinki. They compared five ANN models, a linear model, and a 
deterministic modeling system which combines a road network dispersion model and an urban 
dispersion model. They concluded that ANN models performed better than other models. Statistical 
evaluation results show that the R-squared (R2) values of the ANN models with multilayer 
perceptron range between 0.36 and 0.72 from the years 1996 to 1999. On the other hand, the R2 
values for the linear models range between 0.41 and 0.5. These results suggest the necessity of 
further improving the prediction models. However, a significant limitation should be emphasized 
because the forecasting by ANN models is very sensitive to data, which are collected from different 
points in time and different locations. Corani (2005) presented a modified ANN model to predict 
ozone (O3) and PM10 by integrating a feed-forward ANN model, a pruned ANN model, and a Lazy 
Learning model and confirmed its effectiveness. Sahu et al. (2011) developed a Bayesian 
hierarchical space-time model of ozone and revealed that it has higher model accuracy than the 
model without Bayesian approach. The model is able to predict ozone values a couple of hours 
ahead. Chaloulakou et al. (2012) proposed ANN models to predict daily average PM10 in Athens, 
Greece. Similar to previous studies, ANN models were confirmed to perform better than existing 
regression models, indicated by statistical error measure RMSE and episodic prediction ability. 
They further confirmed that ANN models that incorporating the influence of lagged PM10 has a 
higher accuracy than those without lagged PM10 information. ANN models were also employed by 
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Cai et al. (2009) in Guangzhou, China to predict hourly carbon monoxide (CO), NO2, PM, and 
ozone. Cai et al. (2009) also demonstrated that ANN models were able to yield accurate prediction 
up to 10 hours, outperforming multiple linear regression models and the California line source 
dispersion model. Arhami et al. (2013) applied ANN models to predict nitrogen oxides (NOx), 
NO2, NO, O3, CO, and PM10 in Tehran. High correlations were obtained between the calculated and 
measured pollutants. They further revealed that combining ANN models and Monte Carlo 
simulation approaches could improve prediction accuracy. We found that mean absolute error 
(MAE) and the root mean square error (RMSE) of the model for NO prediction are as follows: 
18.76 and 27.50, respectively, which are quite large even though the correlation coefficient shows a 
good agreement between predicted and observed values. 

In addition from information above, linear and non-linear models have also been constantly 
developed, however, there was no significance difference noted between non-linear and linear 
models (Pires et al., 2008). Liu et al. (2008) used a forecasting model called Bayesian hierarchical 
technique (Liu et al., 2008) to predict CO, NOx, and dust fall . Pires et al., (2008) compared five 
linear models to predict daily mean of PM10 concentrations in one site in Oporto Metropolitan 
Area. However, spatial variability were not concerned on that study and the regression with 
variables obtained independent component analysis performed the worse. Cai et al. (2009) 
employed Artificial Neural Network (ANN) to predict CO, NO2, PM10 and O3 concentrations and 
the performance was better compared with multiple linear regression. Wind direction was 
considered as independent variables but they did not separate the effect of wind direction to each 
prediction of pollutant, moreover, serial error correlation due to time series model was not taken 
into account which might cause result bias. Arhami et al. (2013) also used ANN to predict 
pollutants, but they noted less accuracy for O3 prediction in Tehran, Iran. 

Time series model is an appropriate model which avoids the problems of geographical 
aspects. However, the trends observed in a pollution data presents serrial error autocorrelation 
which generates problems in interpretation, analysis, and prediction (Touloumi et al., 1994). Many 
researchers have performed the forecasting by regression technique but unfortunately they did not 
account for serial error autocorrelation. 

Moreover, in a regression analysis, the correlation between independent variables 
(multicollinearity) may pose a serious difficulty in the interpretation of which predictors are the 
most influential to the response variables (Abdul-wahab et al., 2005). One way to remove such 
multicollinearity is using component analysis method, in this case widely used a Principal 
Component Analysis (PCA), and the newly emerged one Independent Component Analysis (ICA). 
Even though these two methods have their own approach, the goal is similar is to build components 
that are statistically independent with each other. In regression analysis, this is particularly very 
useful and become good input as predictors in a regression model since they optimize spatial 
patterns and remove complexity due to multicollinearity (Abdul-wahab et al., 2005; Shao et al., 
2006). ICR and PCR have been widely used in particular for plant study (Shao et al., 2006), dam 
deformation study (Dai et al., 2013), air pollutants in subway (Kim et al., 2010), air quality 
management (Pires et al., 2008a, 2008b), and O3 prediction (Al-Alawi et al., 2008). 
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 Methodology, Data, and Locations Chapter 3
 
 
 
 
 

3.1 Introduction 

This chapter explains data used and obtained in the present study. Due to high missing rates 
of air pollutant concentrations because of sensor disorders, we focus on using data from 1st 
February 2001 to 30th September 2002. All information of pollutant concentrations were obtained 
from sensors (monitoring stations). These monitoring stations are explained in the next section 
below. 

3.2 Monitoring Stations 

In general, 80.72% of Surabaya is low land with elevation 3 – 8 m from LWS (Low Water 
Spring), the rest areas are hilly land (12.77%) on west and east of Surabaya (6.52%). The land 
slope ranges between 0-2% on lowland and 2-15% of shallow hilly lands. 

To monitor air quality, Surabaya City has installed 5 monitoring stations since 2000, 
operating started on 2001 though. They are in (Chamida, 2004):  
1. Yard of Achievement Park, Jl. Ketabang Kali (SUF 1), representation of Center of the City, 

housing, Office and Trading – Central Surabaya, located on Genteng District 
2. Yard of Village Chief Perak Timur, Jl. Selangor   (SUF 2) representation of housewares and 

industrial region – North Surabaya, located on Pabean Cantikan District. 
3. Yard of Assistance Major Office West Surabaya, Jl. Sukomanunggal (SUF 3) representation of 

housing region, rural region of – West Surabaya, located on Sukomanunggal District. 
4. Yard of Gayungan Subdistrict Office, Jl. Gayungan (SUF 4) represented housing region– near 

Surabaya Highway By Pass – Gempol – South Surabaya, located on Gayungan District. 
5. Yard of Convention Hall, Jl. Arief Rahman Hakim (SUF 5) represented housing region, campus, 

office region– east Surabaya, located on Sukolilo District. 
The locations are shown below (Figure 3.1): 

 
Figure 3.1 Surabaya map with location of five monitoring stations 

 
Figure 3.2 shows the pictures of monitoring stations on five locations: 
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(a) City center (b) Trading zone 

  
(c) Suburban (west side of Surabaya) (d) Near highway zone 

 

 

(e) Suburban (east side of Surabaya)  
Figure 3.2 Five monitoring stations at five locations 

 
Sensors are located 5 m above the ground with surrounding is dominated by plants. In this 

study we used strong assumption that the concentrations captured may represent the ambient level. 
We did not take into account the effect of the surroundings towards the quality of data. There are 
facilities and sensors with many capabilities inside these monitoring stations, those are: 
1. Sensor to capture air pollutants which consist of NO, NO2, O3, SO2, CO, and PM10. All 

concentration are in the form of ug/m3. 
2. Measurement system for meteorological information encompassing solar radiation (W/m2), 

wind speed (m/sec), and wind direction (in degrees). 
3. Sensors to measure temperatures (oC) and relative humidity (in %) 
4. Control system, sampling unit, reference gas supply, electricity supply system, and data 

transfer 
The sensors work continuously, automatically, and controlled by computer system. The 

control system can save the data for 21 days before the old data were replaced by the current 
information captured by the sensor. During the 21 days period, the data are transferred through 
online or carried out manually via USB to the monitoring laboratory. In the laboratory, the data and 
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the system are then be checked and be stated as a valid data. If there is malfunction of the system or 
if there is unclear output of concentration, then this situation must be clarified and data must be 
stated as valid or invalid data, and if necessary a system check and maintenance must be 
performed. The coordinates and elevation of each monitoring station is shown on Table 3.1. We 
denote the term of monitoring station in Sukomanunggal and Sukolilo as suburban1 and suburban2 
to differentiate between these two zones which we will use throughout the dissertation report. 

 
Table 3.1 Coordinates and elevation of each monitoring station 

Station Zone Coordinates Elevation (m) 
Ketabang Kali City center S 07'15'41.8" 

E 112'44'33,9" 
23 

Perak Trading S 07'20'17.1" 
E 112'42'59,9" 

13 

Sukomanunggal Suburban S 07'16'41.5' 
E 112'44'34.0" 

57 

Gayungsari Near highway S 07'20'17.4" 
E 112'42'59,6" 

63 

Sukolilo Suburban S 07"17'20.3" 
E 112'47'48,1" 

-9m 

 

3.3 Threshold (permissible) level of pollutant 

The information of the permissible level of air quality is used on Chapter 5. The 
permissible level or ambient threshold level for East Java Province including Surabaya that we use 
is based on Legislation from Governor of East Java Number 10 Year 2009. Table 3.2 shows the 
permissible level in the East Java Province related to the pollutants investigated in the present 
study. There was no threshold value for NO2. Note for NO2, we can use the national rule stating the 
permissible level for NO2 is 400 ug/Nm3 (1 hour measurement), 150 ug/m3 (24-h measurement), 
and 100 ug/m3 (1 year measurement). However, the rule for NO2 is taken from National 
Government Rule Number 41 Year 1999 about Air Pollution Prevention (in Bahasa: Peraturan 
Pemerintah Republik Indonesia Nomor 41 Tahun 1999 Tentang Pengendalian Pencemaran Udara). 
However, in the present study, for NO2, we use the tighter permissible level instead which is 92.5 
ug/m3. 

Table 3.2 Permissible (threshold) levels of five air pollutants captured by 
monitoring stations 

No Parameter Exposure 
Time 

Threshold 
Ambient Level 

Analysis Method Equipments 

1 Sulphur 
dioxide (SO2) 

24 hours ppm  
(262 ug/Nm3) 

Pararosanilin Spectrophotometer 
SO2 analyzer 

2 Carbon 
monoxide 
(CO) 

8 hours 20.00 ppm  
(22,600 ug/Nm3) 

NDIR CO analyzer 

3 Nitrogen 
oxides (NOx) 

24 hours 0.05 ppm  
(92.5 ug/Nm3) 

Saltzman, NDIR Spectrophotometer 
NO2 analyzer 

4 Oxidant (O3) 1 hour ppm  
(200 ug/Nm3) 

Neutral 
Buffer potassium 
Iodida 

Spectrophotometer 

5 Dust 24 hours 0.26 mg/Nm3 Gravimetric Hi-vol 
 

3.4 Missing Data 

The use of missing value imputation is because there are some missing values on the air 
quality concentration we have. Below is the descriptive statistics of the data. 
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Table 3.3 Proportion and missing values rate of parameters 
Variables Proportion Proportion (%) 
NO  - 15.61 
NO2  - 14.32 
O3 - 15.15 
SO2 - 15.26 
CO - 12.84 
PM10 - 19.29 
   
Season     
Dry 60.3% - 
Wet 39.7% - 
Day-To-Day     
Sunday 14.33% - 
Monday 14.33% - 
Tuesday 14.17% - 
Wednesday 14.17% - 
Thursday 14.33% - 
Friday 14.33% - 
Saturday 14.33% - 
Meteorological     
Wind speed - 5.5% 
Wind direction - 5.87% 
Humidity - 6.03% 
Solar radiation - 5.96% 
temperatures - 6% 
Variables   Mean (sd) 
NO - 13.19 (9.55) 
NO2  - 27.62 (10.03) 
O3 - 39.48 (31.03) 
SO2 - 23.41 (26.56) 
CO - 1.045 (0.93) 
PM10 - 62.50 (55.14) 

 
The missing values are around 15% for all air pollutants except for PM10, and for 

meteorological variables the missing rates are around 6%. To input these missing values, we use 
Expectation-Maximization Based (EMB) Algorithm (Honaker et al., 2011). All imputation 
processes were done on R platform using Amelia package (Amelia II). Amelia II assumes that the 
complete data are multivariate normal. 

 
    (   )          (1) 

 
D represents dataset consisting of observed and unobserved part, also D has multivariate 

normal distribution with µ is the mean vector and covariance matrix Σ. Since the program only 
observes observed data, Dobs, so we make an assumption that the data are missing at random 
(MAR). The assumption means that the pattern of missingness is based on Dobs, not the Dmiss 
(unobserved data). Let M to be the missingness matrix, with cells mij = 1 if dij Є Dmis and mij = 0 
otherwise. M is a matrix that indicates missingness in cells which then we can define the MAR 
assumption as 

 
p(M|D) = p(M|Dobs)        (2) 
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In this algorithm, we are concerned with the complete-data parameters, θ = (μ, Σ). We 
denote Dobs as observed data and M, the missingness matrix. The likelihood of the observed data is 
p(Dobs, M | θ). Using the MAR assumption, we can explain: 

 
p(Dobs, M|θ) = p(M|Dobs)p(Dobs|θ)      (3) 
 
As we only concern about inference on the complete data parameters, the likelihood is 
 
L(θ|Dobs) ~ p(Dobs|θ)        (4) 
 
Using the law of iterated expectations, we could rewrite as follows: 
 
p(Dobs|θ) = ∫ p(D|θ)dDmis    

   (5) 
 
with this likelihood and a flat prior on θ, we can see that the posterior is 
 
p(θ|Dobs) ~ p(Dobs|θ) = ∫ p(D|θ)dDmis      (6) 
 
Amelia uses EMB algorithm which combines original EM method with a bootstrap to pull 

draws from the posterior. For each draw, the code will bootstrap the samples and simulate 
estimation uncertainty, and then it continue running EM to obtain the mode of the posterior for the 
data which is bootstrapped. Once we get draws of the posterior of the complete-data parameters, 
imputations are done by drawing values of Dmis from its distribution condition on Dobs and the 
draws of θ, which is linear regression with parameters, calculated from θ. 

For imputation we use following scenarios as shown on Table 3.4 below. The use of both 
scenarios is to compare performance between partial dataset and full dataset in missing the value of 
air pollutants. Before the process we transform (square-root) skewed variables to at least approach 
data with normal distribution. In the process and examining the final result, we set up 5 imputation 
values and we allow interaction of time series and cross-section attributes, represented by Day 
(time attribute) and Station (cross-section), because it presented better input. We display the 
comparison results between if we use partial data set and if we use full data set on Figure 3.3, we 
can better see the difference between using partial data set and full data set on an extreme case in 
Station 5 (Figure 3.4). 

 
Table 3.4 Scenario of missing values imputation 

Item/Variables Scenario I Scenario II 
Day (representing temporal 
change with total 607 days) 

V V 

Station (representing spatial 
pattern: categorical variable) 

V V 

Meteorological   
Wind speed, wind direction, 
humidity, solar radiation, 
temperatures (5 variables) 

V V 

Seasons (categorical) - V 
Day-to-day (categorical) - V 

 
For further examine, we validate the imputation and compare the result based of the 

difference of variables inputted to input missing data. Figure 3.5 shows validation technique by 
comparing the inputted values over the confidence interval and the distribution between mean 
imputations and observed values for NO as example, we don’t show validation for other pollutants 
for simplicity. Relative density on full dataset data seems plausible than partial data, suggesting 
more variables are better for imputation process. Green confidence interval found on partial dataset 
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is fraction missing values of covariates, suggesting that the use of full dataset helps the impute 
values by providing more covariates.  

The output of the program is five different dataset of imputed values. We then run a linier 
regression and compare each set. The Table below is linier regression comparing between original 
dataset and dataset of NO with imputed values and we choose best R2. Analogously, we use same 
procedure for other pollutants and the results are not displayed in this report. 

At this step we have obtained full data consists of air pollutants (NO, NO2, O3, SO2, CO, 
and PM10) and meteorological factors (wind speed, wind direction, solar radiation, humidity, and 
temperatures). We then check the values and found values that are outside plausible ranges. First 
for air pollutants, we observe negative values for some air pollutants. For these, we omit those 
values and marked as NA. Second, for wind direction, some values are outside the range of 0-360 
degrees, so we made appropriate conversion so that the value is within the range by subtracting to 
360 if the imputed value is higher than 360 and adding with 360 if the values are negative. Third, 
we mark NA for imputed values of humidity if the values are above 100. After this check, we 
observe that the NA values are much less than before imputation. In this step, we re-run once again 
the EMB algorithm based on above procedure. Fortunately, after the second run, all values are 
filled and are within plausible ranges. From these data we generate longer time scale data: hourly, 
daily, and monthly, for use of analysis. 

 
Figure 3.3 Visual comparison of NO imputation in Station 2 using partial and 
full data set 
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Figure 3.4 Visual comparison of NO imputation in Station 5 using partial and 
full data set 

 
Figure 3.5 Validation NO imputation based on confidence interval and 
distribution of imputations and observed values 
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Table 3.5 Multiple and adjusted R2 of linier regression comparing different 
dataset of imputed values based on two scenarios: partial and full dataset 

Dataset Dataset Multiple R2 Adjusted R2 
Original full set   0.643 0.640 
Scenario I (partial) 
  
  
  
  

1 0.518 0.516 
2 0.521 0.519 
3 0.520 0.518 
4 0.503  0.502 
5 0.528 0.526 

Scenario II (full) 
  
  
  
  

1 0.525 0.522 
2 0.526 0.524 
3 0.521 0.519 
4 0.515 0.513 
5 0.519 0.516 

3.5 Data Aggregation 

We explain data aggregation in this section, but overall overview of data usage can be seen 
on Table 3.6 below. Data aggregation is important to determine suitable level for each pollutant. 
NO2 and CO are highly affected and contributed by traffic flow, therefore short interval is better to 
describe this type pollutant. Because of that it is expected that using 30-mins interval, we may 
obtain better description and performance from NO2 to derive any policy for this pollutant.  

 
Table 3.6 Data aggregation and pollutants used in each chapter of the study 
along with goals from each chapter 

Chapter Pollutants Aggregation Goal 
Chapter 4 Spatial and Temporal 
Factors of Air Quality in 
Surabaya City: an Analysis 
based on a Multilevel Model 

NO, NO2, 
O3, SO2, 
CO, and 
PM10 

30-mins 
 

To obtain factors influence of spatial 
(zones), temporal (day-to-day, 
season), and meteorological factors to 
the concentration of air pollutants 

  Monthly To obtain effect of land use to the air 
pollutants 

Chapter 5 Temporal Peak Time 
Frame and Dynamic Factors of 
Traffic Related Air Pollutants 

NO, NO2, 
O3, SO2, 
CO, and 
PM10 

30-mins, 4-week, 
and annual 

To obtain temporal peak timeframe 
where the concentration may reach 
the peak on all location of monitoring 
stations 
To obtain the dynamic changes of air 
quality and the effect of 
meteorological factors towards the 
pollutant levels 

  Daily and annual To obtain seasonal variation effect to 
the pollutants profile 

Chapter 6 Short-term 
Forecasting of Air Quality 
Concentrations Based on a 
Modified Bayesian Markov 
Switching Model 

NO, NO2, 
PM10, and 
CO 

Mean hourly data 
(1st February 2001 
to 14th February 
2001) 

To obtain best prediction model for 
next 24-h in advance 

Chapter 7 Prediction Model of 
Air Pollutant Levels using 
Linear Model with Component 
Analysis 

NO2, 
PM10, and 
O3 

30-mins data from 
March 2002 to 
April 2002 

To obtain best prediction model that 
taking into account: a) serial residual 
autocorrelation, b) variables extracted 
from component analysis (ICA and 
PCA) 

 
On the other hand, PM10 come from more complex activities, not only from transportation 

but also from other activities such as business related activities, government related activities, and 
school related activities. These activities are high on a certain time frame in the morning and high 
on a certain time frame in the evening or night session. This pattern occurs every day, therefore, 
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daily data aggregation may be best option for us to be able to better derive policies. Figure 3.6 
shows approximate proper data aggregation for each pollutant and Table 3.6 shows data 
aggregation used in the present study. 

 
Figure 3.6 Data aggregation for each pollutant 
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 Spatial and Temporal Factors of Air Quality in Surabaya Chapter 4
City: an Analysis based on a Multilevel Model 

 
 
 
 
 
 

4.1 Background 

There are many factors affect air quality, and if these factors are not well known, it is 
difficult for policy makers to formulate environmental policies which aim to reduce the risk of 
people get exposed to the pollution that may harm to human health.  

There are factors that known to affect pollutants concentrations actively such as 
meteorological factors, other pollutants. The characteristic of pollutants may differ across different 
sites or locations, depends on surrounding, and may also differ between days and seasons. The 
difference between spatial and temporal may affect what countermeasures are going to be taken 
from policy makers. For example, the concentrations in the city center will be different with in the 
trading zone due to different land use. In the trading zone, there are many business activities, and 
also there is a port harbor which leads to a very crowd traffic volume near this monitoring station. 
Since the characteristics between locations may differ, it is therefore the temporal pattern may also 
differ between days. Therefore, it is required to obtain how these differences affect the pollutant 
levels. 

Furthermore, the interaction of pollutants had been noted to relate each other. Each 
pollutant may increase or decrease the concentration of other pollutants. This kind of relationship is 
lack in particular in Surabaya. Therefore because of this background we conduct this study to 
investigate various factors that affect pollutant levels in Surabaya. To run and obtain the result, we 
will use data from monitoring station. Since there are data from five different stations, it is 
necessary to use models which allow variation between groups, in this case station. Therefore we 
chose multilevel model to explain the phenomena of air quality. 

The main objectives of this chapter are: 1) to overview the concentration difference 
between days, 2) to obtain the influence of each zone towards the pollutants concentrations, 3) to 
obtain whether spatial location affect the fluctuation (dynamic) of the concentrations, 4) to obtain 
the effect of seasons towards the concentrations, 5) to obtain how concentrations change during 
peak time both morning and evening session, 6) to obtain the role of green space in affecting the 
pollutant concentrations and how other land use pattern affect pollutant levels 

4.2 Data 

We investigate all pollutants that are monitored by the network taken from all five 
monitoring stations. The air pollutants are particulate matter 10 um (PM10), Sulphur dioxide (SO2), 
ozone (O3), nitrous oxide (NO), carbon monoxide (CO), and nitrogen dioxide (NO2). The 
supportive parameters are wind direction (in degrees, starting from north as 0 degrees), wind speed 
(m/s), humidity (%), temperature (degree Celsius), and global radiation (W/m2).  

We employ 30-mins interval data from 1 February 2001 to 30 September 2002. There are 
145,681 data obtained from each station. However, there are missing values as observed on Table 
4.1 below and missing value imputation using Expectation Maximization Based algorithm (EMB-
algorithm) available on a Amelia package on R open source software was run as explained in the 
previous chapter. To form a multivariate normal distribution of variables, NO data was square-root-
transformed. Other variables were also square root-transformed: O3, SO2, PM10, CO, and wind 
speed. After such an imputation, missing rates of data were reduced as shown in Table 4.1 below. 
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Table 4.1 Missing rates (percentage) of data availability before and after 
imputation 

Rate of missing values (%) NO NO2 O3 SO2 CO PM10 
Before imputation 15.61 14.32 15.15 15.26 12.84 19.3 
After imputation 1.75 2.14 0.0535 0.345 0.041 0.0316 

4.3 Multilevel model 

We develop a multilevel model with explanatory variables which is expressed as follows: 
 
yij = αj[i] + βxijj + ϵi     (1) 
 
where yij is measurable data of air quality in ug/m3 (either NO, NO2, O3, SO2, CO, and 

PM10) i at monitoring station j, αj[i] and βare unknown parameters that is to be estimated, xij 
indicates explanatory variables:  

1. dummy variables of spatial locations (city center as base, trading zone, suburban1, near 
highway zone, suburban2) 

2. Seasons (dry and wet seasons), where  dry season is set as base  (dry = 0) 
3. Day-to-day variation when Monday is set as base (Monday = 0) 
4. interaction between all pollutants and  
5. Meteorological factors that consist of wind direction (in degrees, 0 degree is north), 

wind speed (m/s), humidity (%), solar radiation (W/m2), and temperatures (in oC) 
6. Long holiday, defined as more than 3 days off consecutively.  
7. Peak morning time defined from 7am to 9am and peak evening time defined from 5pm 

to 7pm. 
 
j and ϵi represent random components indicating between-station variation and within-

station variation respectively. We excluded PM10 from interaction among pollutants as PM10 is inert 
gaseous particles where its deposition mainly due to physical properties. All estimation in this 
study were conducted using the R statistical software with lmer() function (a multilevel code in a 
package).   

4.4 Results and discussions 

4.4.1 Diurnal variation 

Figure 4.1 below shows weekly diurnal variation of each pollutant from Thursday to 
Wednesday, averagely taken from February 2001 to September 2002 using 30-mins interval data. 
As previously mentioned, 30-min interval shows most accurate description, and business and 
industry activities are diversified by week. The diurnal cycle of NO and NO2 is shaped like double 
waves, with morning peak is higher in magnitude then evening peak. The decrease of NO and NO2 
correlates with an increase in O3 (Han, 2011). The concentrations of NO increased from 5am to 
8am in all stations, however we also observe another increase, although not as high as in the 
morning on city center, trading, highway, and suburban1 (Sukomanunggal area) zones. These 
results are similar with diurnal concentration on Tianjin, China, as reported by Han (2011). 
Average weekly diurnal cycle for O3 were generally lower in trading zone, while higher in 
suburban area and city center. The concentration increased and reached its peak between 9.30-
1.30am in all locations, took place on mid-day, in agreement with Han (2011). The average 
concentration appeared to be higher on suburban1 (Sukomanunggal), similar with in Jakarta and 
Tianjin, China (Nugroho et al., 2013, and Han, 2011). 

Furthermore, we found that SO2 concentrations were generally lower in suburban area, 
while higher in city center and trading zone. The concentrations of CO increased and reached its 
peak between 6.30-8am in the morning and between 6-10pm in all stations. The average 
concentration of CO also showed seasonal variation. The concentrations of PM10 increased and 
reached its peak in around 5.30-8.30am, indicating peak flow of activities. The highest average of 
PM10 concentration was measured on highway zone.  
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(d) SO2  

 
(e) CO 

 
(f) PM10 

 
Figure 4.1 Weekly variation of average pollutants 

 
Average weekly diurnal cycle for PM10 was generally lower in suburban, while higher in 

highway. One note that must be addressed, even though there is temporal pattern we can capture, 
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however, these patterns over regions are alike and similar, leading to a suspect. The difference is 
only in terms of magnitude and considering the pollutants sources are unique for each location, 
which we expect different peak time interval, therefore we should identify and confirm further the 
temporal pattern using another method which will be described in the next chapter. 

4.4.2 Multilevel model results 

Table 4.2 shows the model result explaining all variables. In terms of spatial distribution, 
the estimate for O3 on highway zone is noticed to be the largest, being the city center with lowest 
estimate. The result is in agreement with Zhang and Oanh (2002) where O3 levels were observed to 
be high on areas except locations where the traffic is high and when there is a curbside on that 
particular location. Figure 4.2 shows traffic distribution over Surabaya City from motorbike, 
private car on year 2009, taken on June, from 5am to 9pm using Inverse Distance Weight (IDW) 
interpolation. It can be seen that high volume of vehicles concentrated on city center. This 
distribution is in agreement with O3 level along with the proportion of NO2 and NO where the 
estimate on suburban area is lower than city center and highway. Also, it shows tight correlation 
between NO2 and traffic volume, in particular motorbike and private car. Higher traffic volume in 
highway, city center, and suburban2 area resulted higher concentration of NO2. 

 
 

 

(a) (b) 
Figure 4.2 Traffic distribution with interpolation using IDW in Surabaya City 
of: (a) motorbike, (b) private car; y ordinal indicates vehicle volumes 

 
Regarding SO2, which is mainly from fuel-related combustion activities, tthe estimate is 

lowest in suburban1 with highest parameter on the trading zone which makes sense since the zone 
consists of dense industrial activities. On the other hand, the estimate of PM10 is found to be highest 
on trading zone, clearly indicates high volume of activities e.g., transport, industries. 

Based on the observation on day-to-day variation result, Sunday is found to have lowest 
estimate for NO and NO2 (estimate -2.006 for NO2, statistically significant, Table 4.2), indicating 
lower activities of transportation. Moreover, we did not see clear pattern with regard to SO2, 
however, we found that O3 on Sunday, Monday and Tuesday were lower compared other days, 
indicating a complex reaction in ozone formation that takes time. The estimate for PM10 on 
Monday is observed to be lowest, with no significant difference to other days. The concentration 
tended to increase over time (daily) for O3 and SO2, indicating the increase of atmospheric 
problems in the future, unless sustainable environmental policy is put into practice. The increase of 
O3 was in agreement with an increase of O3 in Jakarta (Nugroho et al., 2013). The negative 
estimate for NO and NO2 are relatively small and not significant. We note that there is an increase 
of concentration in wet season for NO, NO2, and O3, suggesting there was an increase of chance of 
smog occurs. The emission may come from a traffic behavior that is affected by local weather 
condition, e.g., rain. As expected for PM10, since they are inert particle, droplets in wet season 
helped in the deposition of PM10. 

Additional note is for negative AIC value of CO model result. AIC is calculated by using 
the following formula: 
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AIC = -2*Ln(L) +  2k 
 
where L is the maximized value of any Likelihood function defined for that particular 

model and k is the number of parameters in the model. If -2*Ln(L) +  2k is less than 0, it means 
that the log-likelihood at the maximum point is > 0 indicating that the likelihood at the maximum is 
> 1. Positive log-likelihood is not a problem and it is misconception that the log-likelihood has to 
be negative. This occurrence may happen if the likelihood is derived from a probability density that 
can reasonably exceed 1 which means that log-likelihood is positive, therefore the AIC and the 
deviance and are negative. 

 
 

Table 4.2 Estimation result of multilevel model using 30-mins data 
Parameter NO NO2  O3 SO2 CO PM10 
Fixed Part       
Intercept 2.9e-01 

(2.53) 
18.5 
(17.25) 

2.43 
(18.45) 

4.20 
(27.38)  

4.91e-02 
(2.82) 

1.47e+01 
(69.63) 

Spatial (D) with city center:0 
Trading 2.79e-01 

(13.66)  
-4.30 
(-22.44) 

3.44e-01 
(14.65) 

1.1e-01 
(1.04) 

-4.12e-02 
(-13.25) 

9.55e-01 
(31.60) 

suburban1  
(Sukomanunggal) 

-2.52e-01 
(-12.03)  

0.55 
(2.81) 

3.62e-01 
(15.02) 

-7.83e-01 
(-7.42) 

-1.36e-02 
(-4.28)  

5.9e-01 
(18.93) 

Highway 2.14e-01 
(10.40) 

0.13 
(0.67) 

4.66e-02 
(1.97) 

-1.02 
(-9.70)  

3.20e-02 
(10.24) 

1.10 
(36.10)  

Suburban2 (Sukolilo) 3.18e-01  
(14.94) 

-3.59 
(-17.97) 

1.06 
(43.50) 

-1.13 
(-10.73) 

5.04e-03 
(1.55) 

1.15e-01 
(3.70) 

Days (Dummy) with Monday: 0 
Sunday -2.02e-01 

(-15.90) 
-2.41 
(-20.20) 

-3.92e-02 
(-2.68) 

9.92e-02 
(6.56)  

4.2e-02 
(21.71) 

8.75e-02 
(3.68) 

Tuesday 6.54e-02 
(5.17) 

0.18 
(1.54) 

-8.85e-03 
(-0.61) 

-1.26e-02 
(-0.84) 

-1.14e-02 
(-5.92) 

2.63e-02 
(1.11) 

Wednesday 6.74e-02 
(5.30) 

1.05 
(8.83) 

6.50e-02 
(4.45) 

2.39e-03 
(0.16)  

-1.71e-02 
(-8.86)  

1.1e-01 
(4.61) 

Thursday 1.12e-01 
(8.84) 

1.26  
(10.53) 

1.73e-01 
(11.88) 

-4.59e-02 
(-3.05) 

-1.39e-02 
(-7.18) 

2.92e-01 
(12.28) 

Friday 9.65e-02 
(7.63) 

1.40 
(11.77) 

6.48e-02 
(4.46) 

-7.43e-02 
(-4.95) 

-1.48e-02 
(-7.71) 

1.65e-01 
(6.95) 

Saturday 8.81e-02 
(6.95) 

0.52  
(4.39) 

1.22e-01 
(8.35) 

-1.81e-02 
(-1.20) 

-6.75e-03 
(-3.50) 

2.25e-01 
(9.47) 

Day (temporal) -4.77e-04 
(-21.64) 

-0.004  
( -17.84) 

3.26e-04 
(12.86) 

3.31e-03 
(135.89)  

-1.06e-04 
(-31.64) 

-3.80e-04 
(-10.00) 

Seasonal (Dummy): 
Dry: 0; Wet: 1 

2.79e-01 
(33.40) 

0.25  
(3.17) 

4.28e-01 
(44.78) 

-6.56e-02 
(-6.61) 

-1.12e-02 
(-8.79) 

-5.70e-01 
(-36.88) 

Interaction:       
i) NO - 0.23 

(8.39) 
-4.85e-01 
(-159.90) 

2.85e-01 
(85.18) 

7.74e-02 
(203.32)  

- 

ii) NO2 2.60e-03 
(8.39) 

- 5.22e-03 
(14.63)  

4.08e-02 
(117.00) 

7.92e-03 
(192.33) 

- 

iii) O3  -3.67e-01 
(-159.90) 

0.35 
(14.63) 

- 1.53e-01 
(51.54) 

1.77e-02 
(46.38) 

- 

iv) SO2   2.03e-01 
(85.18) 

2.55 
(117.00) 

1.44e-01 
(51.54)  

- -8.72e-03 
(-23.42) 

- 

v) CO 3.35 
(203.32) 

30.16 
(192.33) 

1.01 
(46.38) 

-5.31e-01 
(-23.42) 

- - 

 
Meteorological: 

      

Wind Direction 2.6e-03 
(54.06) 

0.013 
(29.73) 

-8.56e-04 
(-15.33) 

1.11e-03 
(19.25) 

-3.12e-04 
(-42.61) 

4.99e-03 
(56.53) 

Wind Speed 1.21e-01 
(20.84) 

-0.76  
(-13.96) 

-2.08e-01 
(-31.17) 

-3.27e-01 
(-47.84) 

-4.04e-02 
(-46.09)  

-8.26e-01 
(-80.20) 
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Parameter NO NO2  O3 SO2 PM10 CO 
Global radiation 8.27e-04 

(43.51) 
-0.0045 
(-25.22) 

1.21e-03 
(55.78) 

1.96e-04 
(8.63)  

-1.30e-04 
(-45.22) 

-1.64e-04 
(-4.74) 

Humidity -5.41e-03 
(-11.42) 

-0.2 
(-46.71) 

-4.27e-02 
(-80.51) 

-6.80e-03 
(-12.12) 

3.13e-03 
(43.83) 

-2.70e-02 
(-32.00) 

Temperature 1.05e-02 
(3.50) 

-0.64  
(-22.92) 

2.12e-01 
(62.40) 

-6.87e-02 
(-19.33) 

1.19e-02 
(26.07)  

-1.93e-01 
(-35.14) 

Effect of long holiday (dummy: non-long holiday: 0)    
Long holiday 4.38e-02 

(2.57) 
-1.22 
(-7.64) 

2.02e-01 
(10.32) 

-2.79e-01 
(-13.87) 

-3.62e-03 
(-1.40) 

-9.54e-01 
(-30.31) 

Peak event (D) non-peak time:0 
Peak morning time -4.47e-01 

(-41.31) 
1.91  
(18.72) 

3.12e-01 
(24.96) 

6.05e-01 
(47.31) 

1.44e-01  
(89.88) 

2.11 
(113.89)  

Peak evening time -0.30 
(-24.15) 

3.64  
(31.36) 

-2.33e-01 
(-16.29) 

-2.25e-01 
(-15.24) 

4.82e-02 
(25.54) 

1.86e-01 
(8.04) 

Random Part       
Between Stations 0.000 0.013 0.000 0.006 3.54e-06  0.000  
Within Stations 1.356 119.261 1.791 1.906 0.031 4.941 
Model Performance      
AIC 370921  898812  403718  411042  -73444  542992  
BIC 371182  899073  403979  411304  -73183   543215  
-2 * Log likelihood -185433 -449379 -201832 -205494 36749 -271473 

(t-test in parentheses) 
 
Not only concentrations are affected by spatial and temporal, the interaction between 

pollutants has significant roles. Based on the interaction estimates, we summarize that using 
monthly timescale (Table 4.3), the increase of NO and NO2 concentration might lead to the 
decrease of O3 formation, although O3 is affected by ratio of NO and NO2. Interactions with NO for 
pollutants NO2, O3, SO2, and CO are statistically significant using 30-mins data. The positive 
dependency of O3 production on the solar radiation and the negative relationships with NO2 are due 
to the NO2 photolysis process (Monoura, 1999). O3 was also weakly affected by CO, which was in 
agreement with Monoura (1999). Judging interaction of SO2 with other pollutants, we can conclude 
that only CO has negative estimate to SO2 with estimate -5.31e-01 (statistically significant). It 
indicates that NO and O3 had significant interaction with SO2. Madhavi Latha and Highwood 
(2006) found that there was positive correlation between PM10 and SO2 concentrations over UK 
study area. SO2 had negative impact to the concentration of CO. 

Wind speed, global radiation and temperature had positive estimates for NO, indicating that 
the increase of those variables will increase the concentration. For NO2, except wind direction, 
wind speed, global radiation, humidity, and temperatures have negative impact. The increase of 
those four variables will decrease the concentration of NO2. O3 is negatively affected by wind 
speed and humidity with estimates, -2.077e-01 and -4.267e-02, respectively, all statistically 
significant. However, O3 is positively relevant with global radiation, which in agreement with 
Monoura (1999), and also positively correlated with temperature (Han, 2011).  

The increase of NO, NO2, SO2, and PM10 is consistent with the increased frequency of 
stronger easterly winds. The decrease of O3 and CO is consistent with the increase frequency of 
stronger westerly winds. Estimates of daily average concentrations of all pollutants are 
significantly affected by temperature. We found out an increase of mean temperature over 20 
months of observations of all locations (not shown). It is therefore necessary to add green spaces to 
balance and attenuate temperature as related to urban heat island subject. Furthermore, the addition 
of green spaces will surely assist the reduction of emission (Table 4.3). To confirm the necessity of 
central government policy regarding long holiday, the estimation result of green spaces suggested a 
decrease of concentration during holiday (NO2), which fits our initial expectation. Usually in long 
holiday, people tend to have trip to outside the city, therefore causing an increase of traffic volume 
before the holiday and at the last day of holiday. The estimates for SO2 and PM10 are negative (-
0.278 and -0.887, statistically significant). The decrease of transport and industrial activities had 
positive contribution to the decrease of PM10 concentration. 
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Table 4.3 Estimation result of multilevel model using monthly interval data 
Parameter NO NO2  O3 SO2 CO PM10 
Fixed Part       
Intercept -1.18e-

01 
(-0.061) 

2.52e+01 
(1.20) 

9.79 
(3.26) 

-4.47e-01 
(-0.087) 

-8.21e-02 
(-0.29) 

1.76e+01 
(5.61) 

       
Land use       
Trade and services 1.42e-05 

(2.51) 
-1.20e-04 
(-1.93) 

7.92e-07 
(0.083) 

4.10e-05 
(2.76) 

3.74e-07 
(0.45) 

-2.81e-05 
(-3.02) 

Public facilities -4.01e-
07 
(-0.24) 

6.76e-07 
(0.04) 

-6.76e-07 
(-0.25) 

6.3e-07 
(0.14) 

6.24e-07 
(2.71) 

3.80e-07 
(0.14) 

Green spaces -3.21e-
06 
(-2.2)  

3.63e-05 
(2.29) 

3.61e-06 
(1.49) 

-1.39e-05 
(-3.77) 

-4.69e-07 
(-2.24) 

-5.88e-06 
(-2.85) 

Residences -3.17e-
06 
(-3.35) 

2.90e-05 
(2.77) 

-1.00e-06 
(-0.61) 

-5.47e-06 
(-2.10) 

2.3e-07 
(1.61) 

-9.37e-08 
(-0.062) 

Seasonal (Dummy): 
Dry: 0; Wet: 1 

2.08e-01 
(1.605) 

3.84 
(2.81) 

6.1e-01 
(2.98) 

-5.43e-01 
(-1.58) 

-2.88e-02 
(-1.55) 

2.14e-01 
(1.03) 

Interaction:       
i) NO - 2.02 

(1.75) 
-6.02e-01 
(-3.64) 

3.52e-01 
(1.23) 

7.38e-02 
(5.54) 

- 

ii) NO2 1.71e-02 
(1.75) 

- -1.91e-02 
(-1.18) 

9.14e-02 
(3.72) 

6.57e-03 
(5.3) 

- 

iii) O3 -2.24e-
01 
(-3.64) 

-8.42e-01 
( -1.18) 

- 7.75e-01 
(5.02) 

1.67e-02 
(1.8) 

- 

iv) SO2   4.99e-02 
(1.23) 

1.53 
(3.72) 

2.95e-01 
(5.02) 

- -1.76e-02 
(-3.19) 

- 

v) CO 3.60 
(5.54) 

3.78e+01 
(5.3) 

2.18 
(1.8) 

-6.05 
(-3.19) 

- - 

 
Meteorological: 

      

Wind Direction 9.57e-04 
(0.53) 

-3.97e-03 
(-0.20) 

-5.89e-05 
(-0.02) 

3.04e-03 
(0.63) 

-4.32e-04 
(-1.70) 

-5.69e-03 
(-1.86) 

Wind Speed -1.06e-
02 
(-0.14) 

2.12e-01 
(0.26) 

-2.86e-01 
(-2.39) 

-2.67e-01 
(-1.34) 

-9.66e-03 
(-0.9) 

1.53e-01 
(1.25)  

Global radiation 2.31e-03 
(2.33) 

2.54e-03 
(0.23) 

4.07e-03 
(2.53) 

-1.11e-02 
(-4.57) 

-1.72e-04 
(-1.19) 

1.60e-03 
(1.02) 

Humidity 3.3e-02 
(2.46) 

-7.54e-01 
(-5.96) 

-5.95e-02 
(-2.73) 

4.1e-02 
(1.12) 

5.97e-03 
(3.18) 

-5.5e-02 
(-3.46) 

Temperature -4.39e-
02 
(-0.78) 

-1.63e-01 
(-0.27) 

-3.92e-02 
(-0.42) 

2.16e-01 
(1.46) 

6.42e-03 
(0.8) 

-1.75e-01 
(-1.78) 

Random Part       
Between Stations 0.009  1.038 0.023 0.062 0.000 0.027 
Within Stations 0.066 7.765  0.176 0.464 0.001 0.207 
Performance Criterion      
AIC 201.5  602.3  284.4  365.5  -124.9  283.6  
BIC 245.8  646.5  328.6  409.8  -80.66   317.5  
-2 * Log likelihood -83.74 -284.1 -125.2 -165.8 79.47 -128.8 

(t-test in parentheses) 
 
In this model, we also investigate the distribution of concentration during peak time. The 

result is in agreement with our general assumption that the concentration during peak time are 
higher than non-peak time, even though we only observe the tendency of O3 increase only during 
morning peak time. The estimate of NO2 in the morning is positive (statistically significant). In the 
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evening, the estimate is also positive. Another observation regarding the effect of land use towards 
the concentration is we note that the concentration of ozone was negatively relevant with public 
facilities and residential (Table 4.3), vice versa for trade and services and green spaces. Zhang and 
Oanh (2002) mentioned that O3 concentrations tend to be lower on locations that are marked by 
high traffic volume and curbside, where O3 destruction is significant. The result indicates quite 
markable traffic on public facilities and residential land use. 

4.5 Conclusion 

This study analyzes factors that affecting concentrations of six air pollutants in Surabaya 
City: NO, NO2, O3, SO2, CO, and PM10 measured over 607 complete days from February 2001 to 
September 2002. Diurnal analysis figures show seasonal pattern of all air pollutants, we can 
observe a high concentration located on highway zone. The result from multilevel model shows 
that the air quality related to traffic volume (NO2) was generally lower in suburban area 
(Sukomanunggal) and the concentrations had positive correlation with traffic volume. We observe 
the traffic volume was relatively high on city center, highway, and suburban2 zones and from the 
model the estimates over these zones are high. Important note taken is traffic volume has positive 
relationship with traffic-related emission.  

We note that the difference between days had been significance for all pollutants, 
suggesting unique pattern and emission each day. Moreover, as expected, the concentration the 
traffic-related pollutant, NO2, was lower in Sunday but not in Saturday. This result suggests that 
Saturday may be regarded as another working day, particularly it is difficult to consider Saturday as 
part of weekends. Moreover, we observe high concentration of PM10 on Sunday, suggesting the 
source of PM10 on this day was dominated by other sources other than transport. 

The concentration is also noted to be different among zones, meaning that each zone has 
different concentration patterns and it is significant. The dynamic of pollutants was affected by the 
factors within station, it had nothing to do with other stations, as indicated by spatial variation in 
the model result. 

Interesting fact is noted from NO2 that during wet season, the concentrations tended to be 
higher than concentration during dry season. This may reflect changes of travel behavior, for 
example during wet season traffic is easily to be congested, therefore leading to more emission. As 
part of traffic management, it is important to identify the different concentrations occur during peak 
time hour. In this case, we found that the concentrations of pollutants are significantly higher 
during both peak morning time and peak evening time. Based on this result, we obtain information 
that during peak morning and evening time, the concentrations were significantly high, however we 
didn’t know the exact time frame as the peak time was predetermined before in the model. 
Secondly, the dynamic of meteorological variables cannot be fully explained using multilevel as it 
require further group definition. Therefore we explore these problems and investigate them in the 
next chapter. 

In one of our variables based on monthly data, we explored the effect of land use towards 
the concentrations. It was found that green spaces effectively reduce emission of traffic emission 
air quality. The other land uses did not significantly affect the concentration of pollutants. 

We observe high interactions among NO, NO2, and O3. Since there is a tendency for 
temporal increase of O3, not only policy related to vehicles must be issued due to the increase of 
traffic-related emission, but land use management is crucial. Adding green spaces is important to 
help reducing temperature in many spots. Additionally, NO2 concentrations tended to be higher if 
there are more spaces for trade and services. 
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 Temporal Peak Time Frame and Dynamic Factors of Traffic Chapter 5
Related Air Pollutants 

 
 
 
 
 
 

5.1 Introduction 

One important aspect of air quality management is to be able identifying crucial time point 
when there is a risk of environmental pollution occurring. The results from previous chapter have 
shown that during peak time, pollutant concentrations are higher than non-peak time. During this 
time interval, people are exposed to pollution on which there is a possibility that the pollution 
breach the permissible level and therefore pose dangerous effect to the human health. Therefore it 
is crucial as part of air quality management to identify temporal pattern on certain locations. Not 
only daily interval cycle must be obtained, the effect of seasons towards the concentration levels is 
also necessary to grasp insight of air quality phenomena from different seasons. 

It is therefore the goal of the present chapter consist of: 1) identifying the temporal peak 
time frame pattern of pollutants; 2) comparing and judging the effectiveness of the use of different 
time-scale and data aggregation to obtain seasonal variation and temporal patterns; 3) confirmation 
of temporal time frame during which the pollutant’s concentrations are high using a dynamic linear 
model; 4) determining the dynamics of pollutants and the effects of meteorological factors; 5) 
determining subpatterns of NO2 as a way to assess monitoring efficiency. Number 1 and 2 are 
carried out using ICA, whereas number 3 to 5 are accomplished using a state-space model. 
Moreover, the discussion of number 3 to 4 is limited to trading zone only, as we observe the 
highest possibility of policy implementation on this zone within short time.  

5.2 Data and monitoring stations 

In addition to information provided in Chapter 3, Table 5.1 shows the characteristics of 
zones where each monitoring stations locate. Figure 5.1 shows the situation around monitoring 
stations. 

 
Table 5.1 Monitoring stations and their coordinates 

Zone (Station) Land use Population 
size (ca) 

Topography Average 
wind 
speed 
(m/s) 

Dominant 
Wind 
direction 

City center 
(Ketabang Kali) 

Green space, parks, 
hotels, offices, 
houses, businesses 

64,400-65,296 Low land 1.850 East 

Trading (Perak) Green spaces, houses, 
offices, industries, 
gas station 

89,348-90,418 Low land, near 
coastal area 

2.161  Southeast to 
east  

Suburban 
(Sukomanunggal) 

Offices, few 
factories, houses, 
shopping malls 

85,012-86,421 Hilly land 3.373 East 

Near highway 
(Gayungsari) 

Religious building, 
businesses, houses 

83,644-85,012 Low land 2.181 Between east 
and southeast 

Suburban 
(Sukolilo) 

Convention halls, 
offices, universities, 
offices, houses 

75,021-77,362 Low land 4.144 East and 
southeast 
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(a) City center – Ketabang Kali (b) Trading - Perak 

  
(c) Suburban1 – Sukomanunggal (d) Near highway - Gayungsari 

 

 

(e) Suburban2 – Sukolilo  
Figure 5.1 Road map of the surrounding of monitoring stations. Background 
image is made available from OpenStreetMap (© OpenStreetMap contributors) 
available under the Open Database License. Red dot is the location of the sensor 
of monitoring station 

 
We employ 30-minute (min) intervals of NO2, PM10, O3, NO, CO and SO2 concentrations 

data from 1 February 2001 to 30 September 2002. These data are in the form of 30-min interval 
data. All missing data were imputed using EM algorithm (Honaker et al., 2011) run through an R 
program using the Amelia package. We averaged the data to form weekly diurnal information, 
which is 336 time steps (48 time steps each day multiplied by 7 days = 336 times). Therefore, time 
t herein refers to (t1, t2…, t336). The 336 values are derived by averaging a pollutant’s 
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concentrations over 607 days in the same time position, e.g., we averaged all values for the first 30 
mins followed by the next time plot. To obtain more results and compare the effectiveness of the 
time scale, we also tried using 30-min data but with a different time scale, that is, a 4-week-cycle 
data. In this way, instead of 336 time steps, we extended it to 1344 time steps. We also took a look 
towards a longer time scale using longer aggregation. We aggregated 30-mins of data into daily 
data for 2 years and ran ICA. We would like to see seasonal pattern and seasonal effects on the 
concentrations. However, we also wanted to see the effectiveness of using these different time 
scales and aggregation levels. The definition of effectiveness is when a particular result (from 
different time scales and aggregations) has given us the necessary answer about the temporal time 
frame pattern, whether it is daily or not.  

Data for ICA is original, whereas, for state-space models, all concentrations were square-
root transformed to reduce data long tails. We then focused on the use of the result using NO2 and 
PM10 data for sources estimation. Besides air quality, we used meteorological information, that is, 
wind direction and wind speed (m/s) to obtain from which direction the wind blew, when the 
concentrations exceeded the threshold value. We imputed any missing data using Expectation-
Maximization algorithm, as described in Chapter 3. 
 
 
 

 
 

 
 
 

 
Figure 5.2 Five monitoring stations in Surabaya City. The map in the trading 
zone is a modified image from an original image that was made available from 
OpenStreetMap (© OpenStreetMap contributors) available under the Open 
Database License. The blue dot is the location of the sensor of the monitoring 
station in the trading zone (Perak). 

 
To confirm the temporal time frame, we applied a state-space model, specifically to the 

trading zone data. The selection of this zone is related to its surroundings. Near the zone is a large 
road, suspected of being responsible for air pollution. This road connects the city to the harbor port, 
and, therefore, the majority of vehicles are from companies that utilize large vehicles. Since this 
road is dominated by trucking company vehicles, we can apply traffic-adjustment by limiting 
vehicle distribution specifically from companies. This approach seems to be more plausible than 
other zones that require a more complex approach and longer steps. Therefore, an additional goal 
of the use state-space model was to decide day variation by observing the dynamics of a temporal 
time frame. We would like to determine if policy is going to be implemented if it will be for every 
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day or for certain days, e.g., working days only. Figure 5.2 shows the monitoring station on the 
trading zone. 

In the second model, we square-root transformed all pollutants, which allowed us to meet 
our assumption of normally distributed observation errors. We also standardized the meteorological 
variables, such that the independent variables or covariates have an empirical mean of 0 and a 
variance of 1. 

5.3 Methodology 

5.3.1 ICA 

ICA can be considered an advanced method of PCA. The latter focuses on identifying 
components based on covariance and second-order statistics, while ICA uses higher-order statistics, 
which allow the algorithm to find components that are statistically independent (Westra et al., 
2009). The basic algorithm of ICA is explained by Figure 5.3. The mixtures (Figure 5.3a) are the 
original signals that wish to be decomposed. Figure 5.3b shows after decomposition by ICA, there 
four components resulted. 

 

 
 (a) (b) 

Figure 5.3 The mixtures of signals or raw data (a) and four independent 
components (b) after performing ICA, this example is taken from Malaroiu et 
al. (2000) 

 
The form of ICA consists of observation  matrix, X, which is derived through the mixing of 

an n-dimensional source matrix, S = (s1, …, sn)T, with a temporal dimension of t for every 
component s1, …, sn referred to ICs, with n independent components extracted. Assuming that the 
mixing is both linear and stationary, a typical ICA model is expressed as: 

 
X = SA         (1) 
 
where A is the mixing matrix of dimension n x n or n x m, where m ≤ n. The objective of 

ICA is to estimate A and S, knowing only the observations matrix X. This is achieved up to some 
scalar multiple of S, since any constant multiplying an independent component in equation can be 
cancelled by dividing the corresponding column of the mixing matrix A by the same constant. 

The independent components S in the model are found by searching matrix W, such that S 
= WX up to some indeterminacies. The FastICA algorithm is used for independent component 
analysis, using the iterative fixed-point algorithm for finding one unit, which is: 

 
 ̃     { (   )   (|   | )}   { (|   | )  |   |   (|   | )}   (2) 
where      

 ̃   

‖ ̃   ‖
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Getting the estimate of w, we can obtain an IC by S = WX. As part of the process is 
decorrelation of outputs w1x, … wnx after every iteration. Using FastICA algorithm, we can 
estimate A and S from observations X, where A = W-1. 

One note about ICA is that it is sensitive to the choice of n. It is a key parameter that must 
be determined prior to using ICA for interpretive applications. The process of finding components 
must undergo preprocessing stages, which are centering and whitening. Details are explained 
elsewhere (Hyvärinen and Oja, 2000). The process of parameter estimation is using maximum 
likelihood estimation. 

5.3.2 State-space Model 

A state-space model is used to model and estimate different temporal patterns and to 
estimate parameters, as well as to describe the process and observation variability. The temporal 
variability of a pollutant’s concentrations are represented by the process variability in the model. 
This variability is due to environmental stochasticity. Observational variation encompasses 
sampling error, measurement error, and other variability caused by meteorological factors that are 
forming complex atmospheric reactions. Sampling error occurs from only a portion of a population 
being sampled, while measurement error of concentrations may be due to inaccurate measurement 
(e.g., sensor sensitivity, sensor disorder, misspecification of instruments). 

State-space models have been used for many time series applications because of its ability 
to separate out two sources of variation, without the need for prior estimates of observation 
variance (Ward et al., 2010). In the multivariate time-series studies, the use of a state-space model 
for air quality studies has seen limited application. One example we found was the use of dynamic 
factor analysis to identify factors influencing PM2.5 in Southern Taiwan by Kuo et al. (2011). Some 
applications of a state-space model were on the subject of ecological studies (Ward et al., 2010). 
The majority of air quality studies had focused on non-state-space time series analysis, e.g., time 
series with and without exogenous variables (Aneiros-Pérez et al., 2004; Pollice and Lasinio, 
2010), and univariate time series. The Multivariate Autoregressive State-Space (MARSS) here is 
used to establish a multi-dimensional setting (Holmes, Ward, and Wills, 2012). 

 
In the MARSS framework, we follow the following formula for population or state process: 
 
                   (3) 
 
Whereas the observation process in the model is given below: 
 
                 (4) 
 
In the model, we use n to represent the number of monitoring sites, and m to represent 

latent, unknown states or substructure of the process. Xt denotes the vector of length m 
representing the fluctuation of NO2 concentrations, and    is also a vector with length m 
representing the process error in time t. We assume the process errors are uncorrelated in time, with 
a multivariate normal distribution with mean zero and variance-covariance matrix Q. When Q is a 
diagonal matrix, the trajectories of substructures are independent. Several concentration subpatterns 
may be correlated. Therefore, we set off-diagonal elements of Q to be non-zero in the models. 

   is the n-element vector of NO2 concentrations at the n monitoring sites at the time t.  We 
also used the n-element vector a to display mean bias between monitoring sites.    is a n-element 
vector that represents observation errors, which we also assumed to be serially uncorrelated in time, 
with distribution multivariate normal distribution, a mean of 0, and variance-covariance matrix as 
R. 

To obtain information about temporal variation, we employed a dynamic linear model 
(DLM), where the parameters in the regression model are treated as time-varying. In this model, 
the regression parameters are dynamic in that they “change” over time. For a single observation, 
the formula is: 
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             (5) 

 
where Ft is a column vector of regression variables at time t. The regression variables in the 

present study are wind direction, wind speed, solar radiation, humidity, and temperature.    is a 
column vector of regression parameters at time t and vt ~ N(0,r). The equation expresses the 
uniqueness of the predictor variables at every time t (i.e.,   {             }). To address the 
shortcoming of the above model as presented by Holmes et al. (2014), the following model was 
formulated: 

 
                  (6) 
 
Gt is the parameter matrix, and wt is a vector of process errors, in which wt ~ MVN(0,Q). 

The elements of Gt may be known and fixed a priori, or estimated from the data, or unknown. 
Although Gt is time-varying, we typically assume that it is time invariant. In the present study, for 
the square-root pollutant’s concentrations in time t: 

 
                          (   )   (7) 
 
with Ft consisting of (F1t, …, F5t), representing wind direction, wind speed, solar radiation, 

humidity, and temperatures, respectively, for one full week in time t. Both the intercept and slope 
are time-varying: 
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, and Q = 
diag(q1,…q6), we will get equation (6). By defining yt = pollutant’s concentrations, and Ft = 
(1,F1t,…., F5t)T, we can write out the state-space model as follows: 

 
            with         (   ); 
     

       with       (   );    (9) 
       (     ). 
 
The above equation is equivalent to the above formula (5) and (6), and, therefore, we can fit 

with the MARSS modeling framework set up. 

5.4 Pollutants Distribution using ICA and Emission Source Estimation 

During the period specified in the monitoring data, we identified events when the 
concentrations exceeded the environmental criteria. We first developed a hypothesis to help us 
make decisions or for making any data-driven verdicts. 

5.4.1 Hypothesis of temporal patterns for five locations 

To determine temporal pattern of pollutants, we can observe each weekly diurnal pattern 
and compare these between locations. Therefore, we establish hypotheses of the pollutant pattern 
for each zone because each zone may represent a unique profile. In the city center, since it is 
located in the midpoint of the city, surrounded not only by houses but also with government office 
activities, we can hypothesize that the pattern in this zone is related to working and school 
activities, indicated by peak hours in both morning and evening periods. It is logical that in this 
zone we mark two daily cycle peaks, during the week, with the possibility of lower value activity 
during weekends or on Sundays. 
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In the trading zone, we assume that the pattern is different from the city center because the 
majority of land use there involves fewer urban industries, business offices, and it is near the 
harbor, which is the second largest port harbor in Indonesia. Therefore, our hypotheses would be 
that there are several short intervals during the day that show peak concentration, indicating the 
movement of large vehicle volume that may be concentrated during those time intervals. The 
dominant emission source is estimated from a road that is heading toward the port harbor. In 
Suburban1, west of Surabaya, we assume that the pattern will be similar with Suburban2 due to 
similar locations. However, the monitoring station in Suburban1 is surrounded by highly dense 
residential dwellings. The location in Suburban2 is surrounded not only by houses but also by 
universities, business-related buildings, and offices. In these two regions, we hypothesize there is 
wider interval of high concentration of pollutants, especially NO2 which is related to traffic 
volume. 

Lastly, in the zone near the highway, we assume an earlier temporal peak time frame in the 
morning and late temporal peak time during the evening. Our hypothesis is based on a situation 
where the highway connects Surabaya to other neighboring cities. Therefore, when people go for 
work, the tendency would be for them to depart earlier in the morning and return later in the 
evening. Based on our description above, our preliminary conclusion is that these zones may have 
unique pollutant characteristics based on the land use that each monitoring stations represents. In 
the next section, we will analyze the course of pollutants when they breach the permissible level. 

5.4.2 Pollutions Exceeding Permissible Level (Ambient Criteria) 

In this section, we will focus on displaying events where a pollutant’s concentration has 
exceeded the permissible level during the prescribed duration (2001 to 2002). As shown in Figure 
5.4, there were many times when NO2 concentrations exceeded the ambient criterion (permissible 
level), which is 92.5 ug/m3 based on air pollution regulations in East Java. These concentrations 
were drawn from five monitoring stations in Surabaya City. Furthermore, we observed the times 
when PM10 concentration has exceeded the threshold ambient value of 260 ug/m3 as shown in 
Figure 5.5. The exceeding values of PM10 may came from a mixture from various sources. Figure 
5.6, Figure 5.7, and Figure 5.8 show the exceeding values of O3, SO2, and CO concentrations, 
respectively. We observed that the over-limit events were rare for SO2 and CO. Moreover, O3 is not 
a result of direct emissions. Instead, it is formed through a series of reactions between NO and 
NO2. The concentration of NO is represented by NO2. Therefore, we did not focus on NO. Figure 
5.4 to Figure 5.8 show the evidence of events where pollutants exceeded the regulatory threshold 
levels. 

Since our objective is to identify the temporal pattern of these events, we begin by utilizing 
the descriptive statistics from data by averaging two years’ of value forming one week of data. We 
can observe some patterns for all pollutants. For example, with NO2, we observe the frequency of 
events was high between 8am to 10am for all zones except the trading zone (Figure 5.9a). On the 
other hand, the time frame of events during the evening session was observed between 5pm to 9pm 
at the highway and the city center, whereas, an unclear pattern was found for the remaining zones. 
The patterns of other pollutants are displayed on Figure 5.9b-e. 

By observing these figures, the information that can be derived is quite limited. First of all, 
if we take NO2, for example, the temporal pattern is similar for four zones, except for the trading 
zone. This result violates our hypothesis and subject to further investigation. Furthermore, we also 
found a similar PM10 pattern for all zones. It is therefore difficult to obtain a distinct temporal 
pattern for each location. We also experienced difficulty in obtaining temporal patterns for NO, 
CO, and SO2 because the data is limited. The events for those parameters exceeding the threshold 
limit were few. Therefore, little information can be extracted from Figures 5.9c, d and e. In the next 
figure, we attempt to answer the following question, that is, what was the dominant day when these 
events occured? 
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(a) City center (b) Trading zone 

  
(c) Suburban1 (d) near highway 

 
 

 

(e) Suburban2  
Figure 5.4 30-mins interval NO2 concentrations from 2001-2002 at five 
monitoring stations 

 
In this section, we also want to determine on which day events largely occured. This is 

because if we want to propose regulation or policy, we need to know whether we should implement 
the policy for every day or just for certain days. Figure 5.10 shows the frequency of the events on 
particular days of a week. We can observe that for NO2, the most frequent event took place on 
Wednesday, followed by Thursday. It also shows lower risks over the weekends. On the other 
hand, the events took place more frequently on Sunday for PM10, suggesting activities other than 
transportation contributing to emissions. The other figures are self-explanatory. We should note 
that these figures are only able to explain a small part of temporal activities, as they can only show 
the days when the events happened over a two-year period.  
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(a) City center (b) Trading zone 

  
(c) Suburban1 (d) near highway 

 

 

(e) Suburban2  
Figure 5.5 30-min interval PM10 concentrations from 2001-2002 at five 
monitoring stations 

 
Figure 5.10 has been of value in determining specific days when events occured. We can 

see that events happened every day for both NO2 and PM10. In some zones, we observed low 
frequency, e.g., in the trading zone on Sunday (NO2), and in the city center on Monday for PM10. 
We observed similar cases with other parameters and zones. However, we noted that in the 
working days data, the events were lower than on weekends based on PM10 for all locations. 
Therefore, this may violate commonly held beliefs that weekends usually generate lower 
concentrations. Even though the activities contributing to PM10 may be higher during weekends, 
the difference between weekends and working days looked quite clear. Therefore, further 
investigation is required. 
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(a) City center (b) Trading zone 

 
 

(c) Suburban1 (d) near highway 

 

 

(e) Suburban2  
Figure 5.6 30-min interval of O3 concentrations from 2001-2002 on five 
monitoring stations 

 
For other parameters, such as O3 and CO, we noted that there were several days where the 

frequency was zero. For example, for O3, we observed that in the trading zone on Thursday, 
Wednesday, and Sunday, the frequency was very low or almost zero. This fact is interesting 
because during working days, the contribution of NO2 and NO is higher. Therefore, it seems logical 
that after a photochemical reaction, this should lead to increased O3 formation. This perplexing 
result also indicates the need for further investigation. 
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(a) City center (b) Trading zone 

  
(c) Suburban1 (d) near highway 

 

 

(e) Suburban2  
Figure 5.7 30-min intervals of CO concentrations from 2001-2002 on five 
monitoring stations 

 
If these results are going to be used to formulate any form of policy, they will be inadequate 

for the following reason. We know that for O3, NO, and SO2, there are several variables where the 
frequency was almost zero. If we should put forth a specific policy, we need to know whether the 
policy should be implemented every day or not, or whether the policy should only be implemented 
during working days only or not.  Then the levels of O3, NO2 and SO2 will not be helpful because 
zero frequency may bring about a decision that a policy be implemented for a particular day, when 
it may not be necessary. For example, NO, where we noted in Suburban2, its frequency was almost 
zero for most days (Figure 5.10d). If a policy for Suburban2 will be issued, a decision would be 
that the policy will only be implemented on Monday and Sunday because the frequency in these 
days are higher than other days, whereas, in fact, they may say different. This may not represent the 
true data because although the frequency was lower on these days, people will actually be exposed 
to a degree of risk on other days. 
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(a) City center (b) Trading zone 

  
(c) Suburban1 (d) near highway 

 

 

(e) Suburban2  
Figure 5.8 30-min intervals of SO2 concentrations from 2001-2002 on five 
monitoring stations 

 
 
In terms of NO2 and PM10, since there are many events on all days, we have no problem in 

judging that a policy can be implemented for all days because the frequency appears on all days, 
but for parameters where we don’t have the events, we may conclude the policy may not be 
implemented on that day, and this may be misleading the true fact. Therefore this kind of analysis 
is limited and we shall require another method to investigate seasonal variation daily into more 
details. 
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(a) NO2 (b) PM10  

  
(c) O3 (d) NO 

 

 

(f) SO2   
Figure 5.9 Frequency of pollutants exceeding threshold value over two years of 
air quality on five monitoring stations 

 
Both Figure 5.9 and Figure 5.10 help us understand the phenomena of pollutants. However, 

we have noted several things that need further investigation. First, Figure 5.9 violates our 
assumption of the pollutants’ patterns on all locations. The pattern on the figure clearly shows 
similarity, whereas, based on our hypothesis, each location should have its own unique pattern. 
Secondly, although Figure 5.10 shows that almost every day people are exposed to the risk of 
health problems due to the frequency of events for both NO2 and PM10, this is because there are 
facts to show when the events occur every day. Thus, we may conclude that there is a need to be 
mindful every day of these pollutants. Combining this with Figure 5.9, we can conclude that within 
a certain time frame, and on a daily basis, people were at risk. Therefore, if a policy is going to be 
implemented, it should be a daily policy. On the other hand, for O3, NO, and SO2, we found that 
there were days where the frequency is almost zero. If one concludes that on these days there was 
no risk, that assumption would be misleading and may prevent any action that will minimize health 
problem risk to people on the days where there are no frequencies observed. Based on these 
analyses, it is important and crucial to obtain true distributions for all locations which we are able 
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to observe not only temporal pattern (time frame) but also days where people may have an 
increased risk of getting exposed to high concentration of pollutants. 

 

  
(a) NO2 (b) PM10 

  
(c) O3 (d) NO 

 

 

(e) SO2  
Figure 5.10 Frequency between days of pollutants exceeding threshold value 
over two years of data on five monitoring stations 

 
For this reason, we need to explore further and obtain a true distribution of pollutants so 

that we are able to extract an accurate temporal time frame, with days on which there is a 
significant probability the events are likely to occur. First, we will try using an ordinary approach 
by using weekly raw data (Section 5.4.3) and by averaging the data over two years on a daily scale 
(Section 5.4.3) and weekly scale (Section 5.4.4). Another approach is that we use the approach of 
the Independent Component Analysis to form statistically independent components, which will 
help us explore patterns more thoroughly (Section 5.4.5). Temporal variation of the events can be 
explored based on ICA. Furthermore, it is important to identify why, from what direction these 
events (i.e., high values of pollutants) occur in order to discuss possible policy that can aid in an 
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improved air quality management system. However, based on the Figure 5.9, it is observed that 
only NO2 and PM10 that have most frequent of pollution breaching the permissible levels. 
Therefore, in the policy suggestion steps, we would focus and highlight to policies related to these 
two pollutants. In this study, we will also try to explain and investigate the source of pollution and 
the timeframe in which the events take place using ICA. The rest of paper will further explore this 
question. 

5.4.3 Diurnal variation of pollutant concentrations 

In order to identify and determine the general diurnal variations of pollutants, we first tried 
to capture the diurnal variation using raw data. In this attempt, we used NO2 and PM10 as an 
example. For NO2 and PM10 concentrations, we will first observe temporal patterns taken on a 
certain week as shown in Figure 5.11 (NO2) and Figure 5.12 (PM10). We also analyzed the 
variation using weekly-scale aggregated data taken from Figure 4.1 in the Section 4.4.1, and, 
finally, we compared the analysis with daily aggregation data (Figure 5.13). 

Based on Figure 5.11, we found it difficult to extract temporal peak time frame pattern 
clearly. However, to the best of our observation, we may see that in the morning, NO2 
concentrations rose between 6am to 9am in Ketabang Kali, except on Sunday, which is a holiday. 
During the evening session, we can observe that the concentration rose at around 3pm until about 
10pm. This result fits with travel behavior of people within the city. In Perak, we didn’t see an 
exceptional peak during the morning session, although we could see an increase after 3pm. 
However, these patterns over days were not clearly observed. In the Sukomanunggal region, the 
concentrations in the evening were relatively higher than in the morning, when the concentrations 
rose around 3pm until 10pm. In the Gayungsari site, near the highway, we can observe the pattern 
better than in the Sukolilo region. The timeframe during morning peak concentrations was between 
6am to 10am while during evening session, the peak was between 5pm to 11pm. We noted that the 
NO2 temporal patterns can be observed better than the profile of PM10 as shown on Figure 5.12. 
The temporal patterns highly fluctuated as a result of mixed sources of emission. Overall, the use of 
raw data to determine temporal peak time frame is not recommended. 

We tried to capture the temporal time frame and the uniqueness of each pattern using a 
weekly-scale view aggregated from two years of data to establish weekly cycle distribution. Figure 
4.1 in Chapter 4 shows weekly variation of six pollutants, and Section 4.4.1 describes the weekly 
diurnal cycle of all pollutants. However, we cannot distinguish temporal patterns between locations 
because the peak interval time, even though different in terms of magnitude (concentrations), is 
alike.  

To assist in deciding general time frames, where both concentrations may reach their peaks 
exceeding the ambient criteria, we shortened the time scale. Figure 5.13 shows the daily diurnal 
variations of NO2 and PM10 concentrations at five monitoring stations. The two-peaked distribution 
obtained is similar to those observed by Bigi and Harrison (2012) at a site in London, and Han 
(2011) in Tian Jin, China. In more detail, the NO2 concentrations in our case started to rise around 
6am and reached their peak at 7:30am, and then they declined. The time interval of peak 
concentrations for NO2 was between 6am to 9am. These patterns may be explained by travel 
behavior because the time intervals fitted closely with the morning peak school traffic. Moreover, 
in the evening, the concentrations started to rise again around 4:30pm, which was in parallel with 
working hours. In terms of PM10 diurnal variations, as in Figure 5.13b, the morning concentrations 
of PM10 increased from 6am, similar to those of NO2. They then reached their peaks at 7:30am and 
declined afterwards. The interval time of PM10 can be safely assumed to be between 6am to 9am, 
comparable with NO2, suggesting similar patterns. For the evening session, the concentrations 
started to increase at 4pm, similar to NO2 patterns, since 4pm was the end of working hours. 
Interestingly, unlike NO2, the concentrations reached their peaks at around 5:30pm, and they 
became relatively stable, although there was a decrease observed at the Perak site (trading zone), 
when after the concentration reached their peak, slightly declined. In other zones, the 
concentrations after the peak were relatively stable.  
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(a) City center (b) Trading 

  
(c) Suburban1 (d) Near highway 

 

 

(e) Suburban2  
Figure 5.11 Diurnal concentration over a week from 5th February to 11th 
February 2001 of NO2  

 
There are several conclusions that can be drawn from the results above. First, information 

using raw data as shown in Figure 5.11 and 5.12 are complicated. It is crucial to investigate and 
explore the temporal patterns of the concentrations more clearly. We observed data noises, and that 
the temporal patterns cannot be observed clearly, in particular for PM10, because of its fluctuation. 
The average diurnal concentration displays limited information (Figure 4.2 and Figure 5.13). The 
averaging process includes factors that may not represent the concentration clearly. As such, we 
can only draw conclusions of the different magnitudes between stations and timeframes of peak 
concentrations. The averaged value may distort the different patterns between stations. Therefore, 
we need a method that can capture the uniqueness of the temporal pattern of pollutants at each 
location, which is why ICA is useful to display such the desired patterns. 
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(a) City center (b) Trading 

  
(c) Suburban1 (d) Near highway 

 

 

e) Suburban2  
Figure 5.12 Diurnal concentration over a week from 5th February to 11th 
February 2001 of PM10  

 
For this reason, we shall employ an ICA method for weekly average distributions in order 

to identify: a) the different temporal patterns between days (working days and weekends), and b) 
the profile of interval times between peak concentrations at each station. These are done for all 
pollutants. ICA is better than PCA in terms of the output produced. Hyvärinen and Oja (2000) 
showed that principal component analysis failed to produce clear structured output. as produced by 
ICA, because ICA performs with non-Gaussian distribution data. The non-Gaussian data have 
better characteristics for data projection. When using ICA, it must be noted that we assume that 
there is no spatial correlation of concentrations between stations. Thus, the output solely identifies 
the similarity in the temporal patterns. Combined with wind direction and speed profile, we observe 
the possible cause of high concentrations. 
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(a) NO2  

 
(b) PM10 

  
Figure 5.13 Observed diurnal variations of pollutant’s concentration over five 
monitoring stations 

 

5.4.4 Temporal Distribution based on Independent Component Analysis 

In this section, we display the ICA results consisting of weight loadings of each component, 
and figures showing component units. From these figures, we identified temporal patterns, 
especially. We also determined the time frame when the component units are high. Note that if the 
weight loading has a negative value, it means that the negative component units in the figure will 
reflect to positive (higher) air pollutant concentrations. 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4  

 

(e) IC5 

Figure 5.14 Five independent component profiles from NO2 concentration over 
five monitoring stations; x-axis: time, y-axis: component value. The vertical line 
is the division indicating each day, starting from Thursday. 

 
Table 5.2 Weight loadings for independent components of NO2 concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) -7.639  5.404 3.164 -0.357  0.041  
Trading (Perak) -3.741  4.546  0.949 2.912 0.044 
Suburban1 (Sukomanunggal) -6.693 1.561  5.428  0.096 1.050  
Near Highway (Gayungsari) -8.067  6.134  -0.685 1.584 0.439 
Suburban2 (Sukolilo) -2.817 6.237 -2.527 1.844 1.293 
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Table 5.3 NO2 temporal peak time frame extracted from Independent Components 
Sites IC1 IC2 IC3 IC4 IC5 

City Center 
(Ketabang Kali) 

Concentration is up 
between 530am to 
10am  
 

Concentration 
is up between 
6~7am to 
10am 

- - - 

Concentration is up 
between 330pm to 
12pm 

    

Trading (Perak) - - - Concentrati
on is up 
between 
9am-10am  

- 

- - - Peak 
concentratio
n around 
5pm except 
weekends 

- 

Suburban1 
(Sukomanunggal) 

Concentration is up 
between 530am to 
10am 

- Concentration 
is up steadily 
between 8am to 
11pm except 
for Sunday 

- - 

Concentration is up 
between 330pm to 
12pm 

- - - - 

Near Highway 
(Gayungsari) 

Concentration is up 
between 530am to 
10am 

Concentration 
is up between 
6am to 10am 

- - - 

Concentration is up 
again between 4pm 
to 12pm 

 - - - 

Suburban2 
(Sukolilo) 

- Concentration 
is up between 
6am to10am 

- - - 

 
NO2 emission comes from traffic-related sources. Therefore, the pattern formed by ICA 

(Figure 5.14) may partially explain the pattern of the traffic. Based on the weight loadings (Table 
5.2) of NO2, the city center pattern can be characterized by IC1 and IC2. The ICs that explain the 
remaining zones can be observed in Table 5.2. To assist in understanding the usefulness of ICA, 
and how we interpret the result from Figure 5.14, we extracted some important information in 
particular regarding the temporal pattern of air pollutant c oncentration. One specific feature that 
we can derive from the figure is that we can spot the increase in concentration temporally. So we 
can identify the time frame when the concentrations are high. Therefore, we focus on these 
particular time frames and propose what policy would be suitable for a particular zone based on the 
timeframe extracted in the last chapter (Chapter 7). In the IC1 and IC2, there are several patterns 
found. We found that the concentration was high between 5:30am to 10am (morning session), 
whereas, in the evening, the high concentrations occured between 3:30pm to 12pm. This 
information was found from IC1 (Figure 5.14a). However, based on Table 5.2, the city center 
pattern can also be found on IC2. From the IC2 figure (Figure 5.14b), we observed high 
concentrations between 6-7am to 10am. Since this time interval was between 5:30am to 10am, as 
noted from IC1, then we concluded the following. High concentrations of NO2 in the morning 
session were between 5:30am to 10am, whereas, during evening sessions, the high concentrations 
were found between 3:30pm to 12pm. The analysis for the remaining zones can be observed in 
Table 5.3.   
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.15 Five independent component profiles from PM10 concentration over 
five monitoring stations; x-axis: time (in 30 mins), y-axis: component value. 
The vertical line is the division indicating each day, starting from Thursday. 

 
Table 5.4 Weight loadings for independent components of PM10 concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) 6.710  -12.707  -6.150  -3.957  4.746 
Trading (Perak) 5.172  -13.136  -4.607  -5.537  -2.758 
Suburban1 (Sukomanunggal) 7.393 -5.861  -3.636  -7.238 3.165  
Near Highway (Gayungsari) 5.339  -18.657  -18.882  -8.043  6.011  
Suburban2 (Sukolilo) 1.027 -17.148 -7.234 -7.789 6.063 

 
Judging from all the derived information, there was the same daily pattern between the city 

center and the highway zone for both the morning session and evening session. The interval 
between the city center and the highway was similar with Suburban1, except there was an 
additional pattern observed, which occured from Monday to Saturday. The additional pattern was 
steady high concentrations between 8am to 11pm, suggesting there was an additional traffic flow 
captured in Suburban1. In the trading zone, the peak concentrations occured daily between 9am-
10am in the morning session. However, for the evening session, the pattern was only for workdays, 
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which was around 5pm when the concentration reached its peak. The results for the evening session 
indicated that traffic activities were less during weekends than on working days in the trading zone. 
In Suburban2, the daily pattern observed was only for the morning session between 6am to 10am. 

If we observe spatial differences, we may observe that in the city center the profile or 
concentration patterns mimic closely routine patterns, e.g., departures and returns, daily, that can be 
due to working or school activities. In the meantime, we observed tight intervals of high 
concentrations in the trading zone, suggesting there was a certain time frame where the traffic flow 
reached its peak, e.g., based on the Table 5.3, between 9-10am (morning) and around 5pm 
(evening). The profiles of the near highway zone and Suburban2 (Sukolilo) were similar to the 
pattern in the city center. However, we observed relatively stable high concentrations between 8am 
to 12pm in the Sukomanunggal (Suburban1) region, suggesting a long-term policy approach may 
be appropriate for this zone because the interval was very wide. 

Table 5.4 shows components and composition of each component in terms of PM10 
concentration whereas, Figure 5.15 displays the profile of each component. We also draw some 
important temporal value based on peak concentration for PM10 as shown in Table 5.5. Based on 
that information, we observed that there was a delay peak hour for PM10 than city center, as 
indicated by the IC1. Based from the IC1, the concentrations in the morning were high between 
7am to 11am, and, in the evening, the concentrations were high between 7pm to 1am. This pattern 
was also found in the trading zone, Suburban1, and near highway zone. 

In the Suburban1 zone, based on IC1 and IC4, the concentrations were high between 7am to 
11am in the morning session. Whereas, for the evening zone, the concentrations were high between 
7pm to 1am. However, we observed a peak component unit at 5:30pm. The situation in the 
morning between Suburban1 and near highway was similar because the interval time was also 
between 7am to 11am because these two zones shared the same IC, which was IC1. However, 
during the night, we observed the interval time was between 7pm until dawn, suggesting emission 
still occured until dawn. These emissions may come from activities that are not related to traffic but 
related to other activities such as business and entertainment. These suggested complex sources of 
PM10. As one of our concerns is policy formation from this information, we can combine the time 
interval extracted from NO2 and PM10 because PM10 emission is also from traffic. 

O3 formation highly depends on photochemical reactions in the atmospheric layer. 
Therefore, we may expect wide intervals of temporal peak time of concentrations. In the city 
center, IC1, IC3 and IC4 made up the composition. The remaining composition can be observed in 
Table 5.6. The component units for each IC are displayed in Figure 5.16.  

Based on information from those results, we note the following. In the city center, there 
was an increase of concentrations between 7:30 to 9:30am (IC1) before the concentrations go to a 
steady high (IC4). This pattern occured during workdays because during weekends we observe a 
lower pattern. A similar pattern was found in the trading zone, Suburban1, and the near highway 
zone, where the concentrations were relatively high between 9am to 5pm, and these occured during 
workdays only. However, in the Suburban2, the O3 concentrations tended to be relatively high 
between 1pm to 11pm except on the weekends (Table 5.7). 

Along with NO2, the reaction between NO and NO2 has an important role for O3 formation. 
High concentrations of O3 may interfere with visibility. For the NO pollutant, in the city center, 
where IC1, IC2 and IC4 represented the pattern in this zone (Table 5.8), we observed high 
concentrations in the morning between 1:30am to 7:30am whereas, in the evening, the 
concentrations were high between 5pm to 11pm (Figure 5.16). The pattern was highly different 
with NO2, suggesting possible different emission source types. In the trading zone, we gathered 
limited information because the patterns were not clear based on IC3 and IC4. For example, we 
only found a temporal time frame in the morning between 4:30am to 7am. Moreover, the 
concentrations were lower on Sunday.  

In the Suburban1 zone, the temporal peak time was not found, based on ICA, because there 
were no weight loadings observed for this particular zone (Table 5.8). In the highway zone, 
concentrations were high in the morning between 1:30am to 7:30am. However, based on IC2, the 
temporal time frame in the morning was from 5:30am to 7:30am. There was no information found 
for Suburban2 that can be extracted from ICA. 

 



55 

Table 5.5 PM10 temporal peak time frame extracted from Independent 
Components 

Sites IC1 IC2 IC3 IC4 IC5 
City Center 
(Ketabang Kali) 

Concentration is up 
between 7am to 
11am 

- - - Concentrations 
high between 
8am to 3pm 

Concentration is up 
between 7pm to 
1am 

- - - - 

Trading (Perak) Concentration is up 
between 7am to 
11am up 

- - - - 

Concentration is up 
between 7pm to 
1am 

- - - - 

Suburban1 
(Sukomanunggal) 

Concentration is up 
between 7am to 
11am up 

- - Concentration 
peak is around 
6:30-7am  in the 
morning except 
for weekends 

- 

Concentration is up 
between 7pm to 
1am 

- - Another 
concentration 
peak is around 
11am  in the 
morning, except 
for weekends 

- 

- - - Concentration 
peak in around 
5:30 pm on 
working days 

- 

Near Highway 
(Gayungsari) 

Concentration is up 
between 7am to 
11am 

Concentration 
is high 
between 6am 
to 9:30am 
except on 
Sunday 

Peak 
concentration 
around 6-
7am 

The peak 
concentration is 
on 6:30am and 
10:30am 

Concentration 
is down 
around 5pm 

Concentration is up 
between 7pm to 
1am 

- - - Concentrations 
high between 
8am to 3pm 

Suburban2 
(Sukolilo) 

- Concentration 
is high 
between 6am 
to 9:30am, 
except on 
Sunday 

- The peak 
concentration is 
on 6:30am and 
10:30-11 am 

Concentration 
is down 
around 5pm 

     Concentrations 
high between 
8am to 3pm 

 
 

Table 5.6 Weight loadings for independent components of O3 concentration 
Sites IC1 IC2 IC3 IC4 IC5 

City Center (Ketabang Kali) 5.254    -1.392    2.688    -21.327  -3.464   
Trading (Perak) 1.705    2.325   0.332    -17.590  -2.701   
Suburban1 (Sukomanunggal) 2.029    -1.313    2.997    -22.930  -4.922   
Near Highway (Gayungsari) 0.586    0.566    2.877    -20.940  -2.788   
Suburban2 (Sukolilo) 2.251 4.687 2.651 -16.470 -3.031 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.16 Five independent component profiles from O3 concentration over 
five monitoring stations; x-axis: time (in 30 mins), y-axis: component value. 
The vertical line is the division indicating each day, starting from Thursday. 
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Table 5.7 O3 temporal peak time frame extracted from Independent 
Components 

Sites IC1 IC2 IC3 IC4 IC5 
City Center 
(Ketabang Kali) 

Sharp increase 
between 
7:30am to 
9:30am 

- No apparent 
pattern but 
lower on 
Saturday and 
Sunday 
(lowest) 

High 
Concentrations 
between 9am 
to 5pm 

- 

Trading (Perak) - - - High 
concentrations 
between 9am 
to 5pm 

- 

Suburban1 
(Sukomanunggal) 

- - High 
concentrations 
between 9am 
to 5pm 
 
No apparent 
pattern but 
lower on 
Saturday and 
Sunday 
(lowest) 

- No clear 
pattern is 
found 

Near Highway 
(Gayungsari) 

- - No apparent 
pattern but 
lower on 
Saturday and 
Sunday 
(lowest) 

High 
concentrations 
between 9am 
to 5pm 

- 

Suburban2 
(Sukolilo) 

Concentrations 
are high 
between 1pm 
to 11pm 
(except on 
Sunday) 

Concentrations 
are high 
between 3pm 
to 11pm 

No apparent 
pattern but 
lower on 
Saturday and 
Sunday 
(lowest) 

- - 

 
 

Table 5.8 Weight loadings for independent components of NO concentration 
Sites IC1 IC2 IC3 IC4 IC5 

City Center (Ketabang Kali) -6.220  -4.773  -0.705  -1.017  -1.828  
Trading (Perak) -4.293  -2.611  -5.702   -1.776  -2.812  
Suburban1 (Sukomanunggal) -0.625  -3.332  0.599  -0.629   -0.914  
Near Highway (Gayungsari) -6.731  -5.095  -7.153  0.004  -8.205  
Suburban2 (Sukolilo) -2.508 -0.043 -2.284 -1.220 -3.582 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.17 Five independent component profiles from NO concentration over 
five monitoring stations; x-axis: time (in 30 mins), y-axis: component value. 
The vertical line is the division indicating each day, starting from Thursday. 
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Table 5.9 NO temporal peak time frame extracted from Independent 
Components 

Sites IC1 IC2 IC3 IC4 IC5 
City Center 
(Ketabang Kali) 

Concentrations 
are high 
between 
1:30am to 
7:30am 

Concentrations 
are high 
between 
5:30am to 
7:30am 

 Concentrations 
are relatively 
higher in 
morning and 
night, lower 
on Sunday. No 
apparent 
consistent 
pattern found 

 

 Concentrations 
are high 
between 8pm 
to 10pm 
(wider interval 
on  Sunday) 

Concentrations 
are high 
between 5pm 
to 11pm 
(lower unit on 
Sunday) 

   

Trading (Perak) - - Concentrations 
are up from 
4:30am to 7am 
(Sunday is the 
lowest) 

Concentrations 
are higher in 
morning and 
night, lower 
on Sunday. No 
apparent 
consistent 
pattern found 

 

Suburban1 
(Sukomanunggal) 

- - - - - 

Near Highway 
(Gayungsari) 

Concentrations 
are high 
between 
1:30am to 
7:30am 

Concentrations 
are high 
between 
5:30am to 
7:30am 

Concentrations 
are up from 
4:30am to 7am 
(Sunday is the 
lowest) 

Concentrations 
are higher in 
morning and 
night, lower 
on Sunday. No 
apparent 
consistent 
pattern found 

Concentrations 
up between 
6am to 9am 

Concentrations 
are high 
between 8pm 
to 10pm 
(wider interval 
on Sunday) 

Concentrations 
are high 
between 5pm 
to 11pm 
(lower unit on 
Sunday) 

   

Suburban2 
(Sukolilo) 

-     

 
 
Traffic also contributes towards the concentration of carbon monoxide (CO). In this 

section, we shall discuss the temporal pattern of CO. However, we observed that the magnitude of 
concentration for CO was small, and the fluctuation was relatively small as well when compared 
with NO2 and PM10. The concentration of CO in the city center may be represented by IC2 and IC4 
as indicated by the weight loadings in Table 5.10. In this zone, we only observed a distinct pattern 
on Thursday and Sunday. The concentrations on Thursday were high between 7am to 9am 
(morning) and between 12:30pm to 3:30pm and between 8:30pm to 10:30pm in the night (Figure 
5.18 and Table 5.12). On Saturday, the concentrations were high between 8pm to 11:30pm. 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.18 Five independent component profiles from CO concentration over 
five monitoring stations; x-axis: time (in 30 mins), y-axis: component value. 
The vertical line is the division indicating each day, starting from Thursday. 

 
Table 5.10 Weight loadings for independent components of CO concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) -0.052  -0.174  0.175   0.394   0.034   
Trading (Perak) -0.065  -0.059  0.189   0.256   0.192  
Suburban1 (Sukomanunggal) -0.025  -0.034  0.045   0.271   -0.017   
Near Highway (Gayungsari) -0.528  -0.018   0.287   0.432   0.134   
Suburban2 (Sukolilo) -0.065 0.010 0.243 0.164 0.091 
 
 
SO2 is released primarily from combustion of fossil fuels, that is, from both coal and oil. It 

is then oxidized during the transport to sulfur trioxide (SO3) in the troposphere. The SO3 will react 
with water vapor to form sulfuric acid. The sources of SO2 are different from each zone. Therefore, 
we would like to obtain a temporal pattern for SO2 from each zone. Our hypothesis was that there 
was a low contribution of SO2 in the city center and suburban area that may be indicated by short 
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intervals of SO2 concentration. In the meantime, we expected higher contributions of SO2 in the 
trading zone and highway zones due to industrial activities nearby.  

 
Table 5.11 CO temporal peak time frame extracted from Independent 
Components 

Sites IC1 IC2 IC3 IC4 IC5 
City Center 
(Ketabang Kali) 

- Thursday – 
high between 
12:30pm to 
3:30pm 

- High between 
7am to 9am 

- 

 - Thursday – 
high between 
8:30pm to 
10:30pm 

- High between 
5pm to 11pm 

- 

 - Saturday – 
high between 
8pm to 
11:30pm 

- - - 

Trading (Perak) - - - - High between 
5am to 7am 

Suburban1 
(Sukomanunggal) 

- - - - - 

Near Highway 
(Gayungsari) 

High 
concentrations 
on Sunday 
between 5am 
to 10am 

- Sharp 
increase 
between 7am 
to 9am 
(except 
Sunday) 

High between 
7am to 9am 

High between 
5am to 7am 

Suburban2 
(Sukolilo) 

- - Sharp 
increase 
between 7am 
to 9am 
(except 
Sunday) 

High between 
5pm to 11pm 

- 

 
Based on the ICA, the city center was represented by IC1 and IC5. The remaining ICs that 

explain each zone are shown in Table 5.12. These ICs may explain the different sources of SO2 for 
each zone. We observed a temporal pattern as follows, based on Figure 5.19. The temporal pattern 
results are found in Table 5.13.   

The SO2 pattern in the city center was characterized by high concentrations between 6am to 
9am and 5pm to 10pm, and there was one unique characteristic captured, that was, we observed 
high concentrations on Saturday between 8pm to 12pm, indicating other industrial activities within 
that zone. Interestingly, there was short interval of high concentrations between 5am to 7am. The 
temporal difference is obvious between the trading zone and city center. A similarity of SO2 occurs 
between the city center and Suburban1, which indicated a similar source pattern emission. Even 
though we can observe a similarity in the highway zone, we observed, based on other ICs, that the 
interval was extended between 5am to 9am, except on Sunday, when no pattern ws found, 
suggesting no industrial activities were taking place. In the evening, the temporal pattern was 
similar to the city center and Suburban1. The temporal pattern of Suburban2 was between 6am to 
9am, similar to the highway, city center, and Suburban1, except that in the city center and 
Suburban1, the concentrations were stable for all days, whereas for the highway zone and 
Suburban2, we noted the concentrations were low on Sunday. 

Therefore we concluded the following: The SO2 temporal pattern can be divided into three 
groups: city center and suburban1, near highway and suburban2, and trading zone. The shortest 
interval is in the trading zone. 
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Table 5.12 Weight loadings for independent components of SO2 concentration 
Sites IC1 IC2 IC3 IC4 IC5 

City Center (Ketabang Kali) 0.395   -0.171  0.040   -0.051  -0.174  
Trading (Perak) 0.256   -0.186  0.195  -0.065  -0.059 
Suburban1 (Sukomanunggal) 0.272   -0.041  -0.013   -0.025  -0.035 
Near Highway (Gayungsari) 0.434   -0.282  0.141   -0.527  -0.018   
Suburban2 (Sukolilo) 0.166 -0.241 0.094 -0.065 0.011 
  

 

(a) IC1 

 

(b) IC2 



66 

 

(c) IC3 

 

(d) IC4 

 

(e) IC5 

Figure 5.19 Five independent component profiles from SO2 concentration over 
five monitoring stations; x-axis: time (in 30 mins), y-axis: component value. 
The vertical line is the division indicating each day, starting from Thursday. 
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Table 5.13 SO2 temporal peak time frame extracted from Independent 
Components 

Sites IC1 IC2 IC3 IC4 IC5 
City Center 
(Ketabang Kali) 

High 
concentrations 
between 6am to 
9am 

- - - High 
concentration 
between 8pm 
to 12pm in 
Saturday 

High 
concentrations 
between 5pm to 
10pm 

- - - - 

Trading (Perak) - - Short interval 
of high 
concentrations 
5am to 7am 
(except for 
Sunday being 
lower) 

- - 

Suburban1 
(Sukomanunggal) 

High 
concentrations 
between 6am to 
9am 

- - - - 

High 
concentrations 
between 5pm to 
10pm 

- - - - 

Near Highway 
(Gayungsari) 

High 
concentrations 
between 6am to 
9am 

High 
concentrations 
between 6am 
to 9am 
(except 
Sunday) 

Short interval 
of high 
concentrations 
5am to 7am 
(except 
Sunday being 
lower) 

High 
concentrations 
between 5am 
to 11am only 
on Sunday 

- 

High 
concentrations 
between 5pm to 
10pm 

- - - - 

Suburban2 
(Sukolilo) 

- High 
concentrations 
between 6am 
to 9am 
(except 
Sunday) 

- - - 

 
For easier navigation and explanation we combine extracted components from Table 5.3 to 

5.13 into a single table as shown on Table 5.14 below. It is helpful to identify seasonal or daily 
cycle pattern of pollutants on each zone. For example NO2 in the suburban1, we found two 
patterns. First pattern was similar with pattern in the city center and near highway zone (morning 
and evening session), however the second pattern was unique. The second pattern shows additional 
source of emission which relatively high within wide interval between 8am to 11pm and this 
pattern occured from Monday to Saturday, indicating that the source of emission did not occur on 
Sunday. This information is weekly cycle and unique for this particular zone only. Comparing with 
NO2, the profile of PM10 is different. In the city center, there were two daily patterns observed. 
First pattern encompased interval on both morning (7am to 11am) and evening session (7pm to 
3pm), whereas the other pattern included interval time between 8am to 3pm. In the trading zone, 
the daily cycle pattern was also found, similar with city center. All in all, Table 5.15 shows how 
ICA is helpful to obtain weekly-cycle pattern every day which cannot be captured by other method. 



68 

Table 5.14 Temporal peak time frame from all pollutants drawn from Independent Component Analysis of each pollutant 
 

Parameters City Center (Ketabang 
Kali) 

Trading (Perak) Suburban1 
(Sukomanunggal) 

Near Highway (Gayungsari) Suburban2 (Sukolilo) 

NO2   5am to 10am 
 330pm to 12pm 

 9am~10am 
 around 5pm 

except 
weekends 

 530am to 10am 
 330pm to 12pm 
 up steadily between 

8am to 11pm except 
for Sunday 

 530am to 10am 
 330pm to 12pm 

 6am to10am 

PM10  7am to 11am 
 8am to 3pm 
 7pm to 1am 
 

 7am to 11am 
 7pm to 1am 
 

 7am to 11am 
 7pm to 1am 
 630am ~ 7am except 

weekend 
 11am except weekends 
 around 530 pm in 

working days 

 7am to 11am 
 7pm to 1am 
 6am to 930am except on Sunday 
 peak at 630am and 1030am 
 8am to 3pm 

 6am to 930am except on Sunday 
 Peak on 630am and 1030~11 am 
 down around 5pm 
 8am to 3pm 

O3  730am to 930am 
 lower in the weekends 
 9am to 5pm 

 9am to 5pm  9am to 5pm (working 
days) 

 No apparent trend but lower during 
weekends 

 9am to 5pm 

 1pm to 11pm (except in Sunday) 
 3pm to 11pm 
 Weekends is low 
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Table 5.14 Temporal peak time frame from all pollutants drawn from Independent Component Analysis of each pollutant (Cont’d) 
 

Parameters City Center (Ketabang 
Kali) 

Trading (Perak) Suburban1 
(Sukomanunggal) 

Near Highway (Gayungsari) Suburban2 (Sukolilo) 

NO  130am to 730am 
 lower in the Sunday 
 5pm to 11pm (lower 

unit in Sunday) 

 430am to 
7am  

 Sunday is the 
lowest 

-  130am to 9am 
 lower in the Sunday 
 5pm to 11pm (lower unit in Sunday) 

- 

CO  7am to 9am 
 5pm to 11pm 
 Thursday –1230pm to 

330pm 
 Thursday –830pm to 

1030pm 
 Saturday –8pm to 

1130pm 
 

 5am to 7am -  Sunday - 5am to 10am 
 7am to 9am (except Sunday) 
 7am to 9am 
 5am to 7am 

 7am to 9am (except Sunday) 
 5pm to 11pm 

SO2  6am to 9am 
 5pm to 10pm 
 8pm to 12pm in 

Saturday 

 5am to 7am 
(except 
Sunday) 

 6am to 9am 
 5pm to 10pm 

 6am to 9am 
 5pm to 10pm 
 6am to 9am (except Sunday) 
 5am to 7am (except Sunday) 
 5am to 11am only in Sunday 

 6am to 9am (except Sunday) 
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Table 5.15 Seasonal pattern on weekly cycle for all pollutant profiles 
 

 Zones Every day Only workdays Only 
weekends 

Monday to Saturday Certain days 

NO2 City center  530am to 10am 
 330pm to 12pm 

    

Trading zone 9am~10am 
 

 around 5pm except 
weekends 

   

Suburban1  530am to 10am 
 330pm to 12pm 

  8am to 11pm  

Near highway  530am to 10am 
 330pm to 12pm 

    

Suburban2 6am to10am     
PM10 City center  7am to 11am 

 8am to 3pm 
 7pm to 1am 

    

Trading zone  7am to 11am 
 7pm to 1am 

    

Suburban1  7am to 11am 
 7pm to 1am 

 630am ~ 7am  
 peak at 11am 
 peak at 530 pm 

   

Near highway  7am to 11am 
 7pm to 1am 
 peak at 630am and 

1030am 
 8am to 3pm 

  6am to 930am  

Suburban2  peak at 630am and 
1030am 

 8am to 3pm 

  6am to 930am  
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Table 5.15 Seasonal pattern on weekly cycle for all pollutant profiles (Cont’d) 
 

 Zones Every day Only workdays Only 
weekends 

Monday to Saturday Certain days 

O3 City center  730am to 930am 
 9am to 5pm 

 Lower 
concentrations 

  

Trading zone 9am to 5pm     
Suburban1 9am to 5pm  Lower 

concentrations 
  

Near highway 9am to 5pm  Lower 
concentrations 

  

Suburban2 3pm to 11pm  Lower 
concentrations 

1pm to 11pm  

NO City center  130am to 730am 
 530am to 730am 

   8pm to 10pm (wider interval 
in Sunday) 

 5pm to 11pm (lower in 
Sunday) 

 

Trading zone    430am to 7am (Sunday is the 
lowest) 

 

Suburban1      
Near highway  130am to 730am 

 530am to 730am 
 6am to 9am 

 

   8pm to 10pm (wider interval 
in Sunday) 

 5pm to 11pm (lower in 
Sunday) 

 430am to 7am (lower in 
Sunday) 

 

Suburban2      
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Table 5.15 Seasonal pattern on weekly cycle for all pollutant profiles (Cont’d) 
 

 Zones Every day Only workdays Only weekends Monday to Saturday Certain days 
CO City center  7am to 9am 

 5pm to 11pm 
    Thursday –1230pm to 

330pm 
 Thursday – high between 

830pm to 1030pm 
 Saturday – high between 

8pm to 1130pm 
Trading zone 5am to 7am     
Suburban1      
Near highway  5am to 7am 

 7am to 9am 
  7am to 9am (except Sunday) Sunday between 5am to 

10am 
Suburban2 5pm to 11pm   7am to 9am (except Sunday)  

SO2 City center  6am to 9am 
 5pm to 10pm 

   8pm to 12pm in Saturday 

Trading zone    5am to 7am (except Sunday being 
lower) 

 

Suburban1  6am to 9am 
 5pm to 10pm 

    

Near highway  6am to 9am 
 5pm to 10pm 

   5am to 7am (except Sunday) 
 6am to 9am (except Sunday) 

5am to 11am only in Sunday 

Suburban2    6am to 9am (except Sunday)  
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To fully explore the usefulness of the results obtained in this chapter, one can use the 
information to extract direct policies from each component. We display those results in Chapter 7. We 
composed policies by observing the temporal air pollutant concentration patterns and propose suitable 
transport-related policy. 

5.4.5 Estimation of Emission Sources 

In this section, we focus on NO2 and PM10, as it was shown that there are many events for both 
these pollutants when the concentrations exceed the permissible threshold level. City center (Ketabang 
Kali) station is located at the center of the city through which many vehicles pass. Figure 5.1a shows 
the map displaying the surroundings of the monitoring sensor in Ketabang Kali. The nearest protocol 
road, with this station, is Gubernur Suryo Street (St.) on the south (S) side, while the nearest normal 
road is Simpang Dukuh Road (Rd.) on the southwest (SW) side, A small road, Ketabang Kali Rd. is 
located on the north (N) side. Considering wind direction and speed, dominant pollutants came from 
the east (E) side (Figure 5.20a). When the NO2 concentration exceeded the ambient level, we noted 
that the wind largely came from the southeast-south (SE-S) side, as shown in Figure 5.21a. In this 
instance, the wind was dominantly coming from Gubernur Suryo St. It is a protocol road where many 
vehicles pass through, and where the building of the  Governor is located. Therefore, the concentration 
of pollution was mainly due to traffic flow. On the other hand, when the concentrations of PM10 were 
higher than the threshold value (260 ug/m3), dominant wind direction was from the SW-S side (Figure 
5.22a). The area on the SW-S side comprised of office buildings, a big shopping mall, and highly-
dense dwellings. These entities contributed greatly to PM10 contamination, along with emissions from 
traffic passing through on Gubernur Suryo St. and Simpang Dukuh Rd. Based on the facts above, the 
events where NO2 exceeded ambient level were mainly due to traffic flow. On the other hand, for 
PM10, the main causes were not only from traffic but also from business-oriented and residential 
emissions. 

The monitoring sensor, located in the trading zone, is in the Perak region on Johor Rd., which 
is on the north of Surabaya (Figure 5.1b). The wind mostly came from the direction between east (E) 
and southeast (SE) (Figure 5.20b). The dominant wind speed was observed to be between 0.5-2.1 
meters per second (m/s), a smaller portion with a speed between 2.1-3.6 m/s. When the concentrations 
of NO2 exceeded the threshold value (92.5 ug/m3), the wind was coming mostly from a SE direction, 
whereas a smaller portion came from the northwest (NW) and northwest-west (NW-W) (Figure 
5.21b). The wind speed was between 2.1-3.6 m/s for winds coming from the SE. The SE side of the 
site monitoring station has several protocol roads, residential areas, and large scale industries. Since 
NO2 is decidedly attributed to traffic emission, we observed that emissions came from roads on the SE 
side. Roads in this direction were Johor Rd., Indrapura St., and Kalimas Barat St. The largest street 
among those mentioned is Indrapura St. because vehicles heading to the north of Surabaya, including 
the neighboring city, Gresik, and the Tanjung Perak Port, must use this street, making it the main street 
with major traffic flow. When PM10 concentrations exceeded the ambient level (260 ug/m3), the 
dominant wind direction was from the S-SW side and the SW-W side (Figure 5.22b). The wind speed 
from the S-SW side was quite high, with the highest interval between 3.6-5.7 m/s, indicating that 
potential sources were quite far from the monitoring station. The area was comprised of houses and   
many business-related activities (restaurants, medical clinics, pharmacies, etc.), and a few small-scale 
industries. For the SW-W side, the wind speed was below 3.6 m/s, suggesting that potential sources 
were not far from the sensor. This area was dominated by a highly-dense residential area. However, 
from this direction as well, there is one large protocol road (Tanjung Perak Barat St.) with the final 
destination the Tanjung Perak Port. Therefore, in this zone, the sources of PM10 came mainly from 
traffic, residential, and business-related activities.  

The next station is the Sukomanunggal site, located in a suburban area on the west side of 
Surabaya (Figure 5.1c). Based on the period of this study, the wind flew from the E side, which was 
dominated by residential areas (Figure 5.20c). When the NO2 concentrations exceeded the threshold 
ambient value, the wind mostly came from the E side, as well (Figure 5.21c). In this direction, in front 
of the monitoring site, a busy street (Sukomanunggal Jaya Rd.) exists, with vehicles using that road to 
go through the west area of Surabaya. When concentrations were high, the wind speed was relatively 
slow. The highest winds were between 2.1-3.6 m/s. Therefore, we can conclude that the majority of 
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the cause of high levels of NO2 was from traffic flow. However, we observed somewhat different 
causes for PM10 concentrations. When the PM10 concentrations exceeded the threshold ambient level, 
the direction of the wind came largely from SW-W sites (Figure 5.22c), where on that particular 
location, there are offices, green fields, modern shopping malls, apartments, towers, and also housing 
areas. However, no factories exist in this zone. We observed very high wind speed intervals (5.7-8.8 
m/s) that carried PM10 pollutants to the sensor. 

The Gayungsari monitoring site is located in the south of Surabaya. The surroundings of this 
site are shown in Figure 5.1d. This monitoring site is located ~350m from the highway.  Thus, it refers 
to a zone near the highway. During the observation period, wind direction was mostly from the SE-E, 
where the location is dominated by a housing area. When the NO2 (Figure 5.21d) and PM10 (Figure 
5.22d) concentration exceeded the threshold level, the dominant wind direction came from the SW-W, 
where it lays near a highway connecting neighboring cities from and to Surabaya. This result is as 
expected, as NO2 and PM10 come mainly from traffic in this region. For PM10, there are times when 
the concentration exceeded the threshold ambient level when the wind speed was between 3.6-5.7 m/s, 
which was high.  

The monitoring site in Sukolilo is located east of Surabaya, a suburban area, and surrounded 
by a big convention hall, small hospital, houses, universities, and offices. Even though the location is 
in a suburban area, the surroundings of the sensor were not dominated by residential (houses) but 
instead by businesses and offices. If we look at the wind direction over the data-collection period, we 
observed that the wind came largely from the SE-E, where the wind speed was between 0.5-5.7 m/s. 
When the NO2 concentration exceeded the threshold level, the most dominant wind direction was from 
the SE-E, with the highest wind speed was observed when the exceeding concentrations were between 
3.6-5.7 m/s (Figure 5.21e). In this direction are offices as well as roads connecting to some 
universities, and where the Arief Rahman Hakim Rd. is the main road for these universities (Figure 
5.1e). There are also some residential areas on the east side of Surabaya. Opposite this, when PM10 
concentrations exceeded the threshold ambient level, wind direction came mostly from the S-W and 
partially from the SW direction (Figure 5.22e). There were 42 events recorded where PM10 
concentrations were higher than the threshold ambient level. The area from which the wind came 
consisted of houses, a small clinic, and universities. The wind speed was also up to the interval of 3.6-
5.7 m/s (S-W direction) and >11.1 m/s (SE direction), as shown by Figure 5.22e. 
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(a) City Center (b) Trading zone 

  
(c) Suburban1 (d) Near highway 

 

 

(e) Suburban2  
Figure 5.20 Historical wind direction and wind speed of captured by five 
monitoring stations 
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(a) City Center (b) Trading zone 

  
(c) Suburban1 (d) Near highway 

 

 

(e) Suburban2  
Figure 5.21 Historical wind direction and wind speed captured by five monitoring 
stations when the NO2 concentration exceeded threshold value 
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(a) City Center (b) Trading zone 

  
(c) Suburban1 (d) Near highway 

 
 

 

(e) Suburban2  
Figure 5.22 Historical wind direction and wind speed captured by five monitoring 
stations when the PM10 concentration exceeded threshold value. 
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5.4.6 Seasonal Temporal Distribution using 4 week-cycle and Annual Time Scale 

Among ways to interpret and study the phenomena of air quality by observing air quality data 
from monitoring stations, one crucial concern is how we select the best time-scale to obtain results that 
are meaningful. In the last section, we showed the results of ICA, using weekly-scale figures. In this 
section, we are showing results from 4-week-cycle data (Figure 5.23 to Figure 5.28) and annual 
information using daily-average concentrations (Figure 5.29 to Figure 5.30). The goal is to compare 
the results between different time scales, and to decide which one is the best to extract the needed 
information that is a temporal pattern. 

Firstly, we discuss the distribution found for NO2. One interesting pattern we found was the 
temporal pattern, which was increasing in the city center, not only for NO2 but also for all pollutants. 
This pattern was observed on Figure 5.23a (NO2), Figure 5.24a (PM10), Figure 5.25a (O3), Figure 
5.26b (NO), Figure 5.27b (CO), and Figure 5.28e (SO2). This pattern may explain why the pollutant 
levels were increasing following a 4-week cycle. A daily cycle was also found on IC2 (Figure 5.23b), 
which was similar in results. This is shown on IC1 NO2 in Figure 5.14a. The discussion will be similar 
to that previously shown, that is, in general, we observe two-peak waves within a day, and the pattern 
that concentrations were lower on Sunday. The main disadvantage of using monthly-scale air quality is 
that we cannot obtain distribution in the trading zone, near the highway zone, and for Suburban2. 
Furthermore, ICs are dominated by the city center pattern as shown by Table 5.16, leading to the 
conclusion that by using this time scale, we were not able to obtain important information for all sites 
and for all pollutants. 

Figure 5.24 shows the ICA results for PM10. We found similar trends like NO2 (IC1), and we 
noted that there were spikes of PM10 concentration on week 2 and week 3, as shown by IC2 (Figure 
5.24b). We also noted several spikes for the city center and near highway zone on week 1 and week 4 
(IC5). The rest of the pollutants have similar patterns as shown by Figure 5.25 (O3), Figure 5.26 (NO), 
Figure 5.27 (CO), and Figure 5.28 (SO2). 
 

 

(a) IC1 
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(b) IC2 

 

(c) IC3 

 

(d) IC4 
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(e) IC5 

Figure 5.23 Five independent component profiles of NO2 concentration over five 
monitoring stations; x-axis: time (in 30-mins), divided into 4 segments which 
means 4-week cycle, y-axis: component value.  

 
 

Table 5.16 Weight loadings for independent components of 4-week cycle NO2 
concentration 
Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) 386.824   -4.146  9.589   15.055  23.649   
Trading (Perak) 0.550   -1.206  3.259   -5.529  2.684   
Suburban1 (Sukomanunggal) 0.076   -6.185   0.474   -2.439  6.275   
Near Highway (Gayungsari) 0.201   0.426   1.219  -7.587  7.322   
Suburban2 (Sukolilo) 0.499 1.371 -0.168 -7.592 1.249 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.24 Five independent component profiles of PM10 concentration over five 
monitoring stations; x-axis: time (in 30-mins), divided into 4 segments, which 
means a 4-week cycle, y-axis: component value. 

 
Table 5.17 Weight loadings for independent components of 4-week cycle PM10 
concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) -385.594  -9.892  -12.107  -34.523 20.220  
Trading (Perak) -1.771  -8.049   15.470   5.113  -2.317  
Suburban1 (Sukomanunggal) -1.579   2.611    8.388   12.548    -1.989  
Near Highway (Gayungsari) -2.025  4.330   24.050  4.194   -18.207  
Suburban2 (Sukolilo) -1.368 5.450 21.203 1.082 -1.798 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.25 Five independent component profiles of O3 concentration over five 
monitoring stations; x-axis: time (in 30-mins), divided into 4 segments, which 
means a 4-week cycle, y-axis: component value. 

 
     

Table 5.18 Weight loadings for independent components of 4-week cycle O3 
concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) 385.219    11.991   40.248   -18.765    4.257 
Trading (Perak) 0.498    -0.371   -0.616   0.885   -18.291 
Suburban1 (Sukomanunggal) 0.528    -5.209   -1.515 -2.974   -23.142  
Near Highway (Gayungsari) 0.905    -2.704  -4.557 -1.021    -20.893  
Suburban2 (Sukolilo) 0.495 -3.827 -1.656 4.979 -16.956 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.26 Five independent component profiles of NO concentration over five 
monitoring stations; x-axis: time (in 30-mins), divided into 4 segments, which 
means a 4-week cycle, y-axis: component value. 

 
Table 5.19 Weight loadings for independent components of 4-week cycle NO 
concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) 13.914  385.695   -31.884  20.743   11.258   
Trading (Perak) -7.831  0.359  -0.689  1.171  4.215   
Suburban1 (Sukomanunggal) -0.910  -0.042  -3.907  -1.242  1.242  
Near Highway (Gayungsari) -8.082  -0.155   -0.470   -2.208   11.619   
Suburban2 (Sukolilo) -2.014 0.018 0.008 2.309 4.315 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.27 Five independent component profiles of CO concentration over five 
monitoring stations; x-axis: time (in 30-mins), divided into 4 segments, which 
means a 4-week cycle, y-axis: component value. 

 
Table 5.20 Weight loadings for independent components of 4-week cycle CO 
concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) -17.541   387.413   8.486  2.736  7.228  
Trading (Perak) 0.215  0.039   -0.148  -0.048  -0.294  
Suburban1 (Sukomanunggal) -0.026   0.022   -0.004  -0.009  -0.296  
Near Highway (Gayungsari) 0.130   0.035   -0.215  -0.530  -0.495  
Suburban2 (Sukolilo) 0.074 0.032 -0.239 -0.058 -0.190 
 



89 

 

(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.28 Five independent component profiles of SO2 concentration over five 
monitoring stations; x-axis: time (in 30-mins), divided into 4 segments, which 
means a 4-week cycle, y-axis: component value. 

 
Table 5.21 Weight loadings for independent components of 4-week cycle SO2 
concentration 

Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) 7.095   1.602  41.971   -385.441   -12.203  
Trading (Perak) 4.730   -2.267   0.095  0.080   -2.687  
Suburban1 (Sukomanunggal) 4.952   1.584  -0.070  0.094  -2.151   
Near Highway (Gayungsari) 7.689   -5.161  -8.043   -0.416  4.739   
Suburban2 (Sukolilo) 6.535 -3.717 0.171 -0.019 3.186 
 
Overall, it is difficult to obtain significant information from 4-week-cycle data because: 1) the 

weight loadings were not distributed equally, and most ICs only explain the city center pattern (Table 
5.16-Table 5.21), and 2) the distribution pictures were difficult to interpret clearly. It is, therefore, 
clear that using this level of data may not be useful compared to using weekly-scale information. This 
is because the weekly-scale information is richer, and we can draw similar information if we use 
monthly-scale data. However, one particularly significant result, if we use monthly-scale data, is that 
we found a pattern where the concentrations of pollutants are, in fact, increasing following a 4-week 
cycle. Moreover, NO2 concentration tends to be higher during the wet season than during the dry 
season. 

 



91 

As mentioned above, we also explored the use of daily aggregated data to investigate the effect 
of season and how these differ among locations for 2 years of data. By using a 2-year period, we can 
also observe annual patterns. Based on the result of ICs components (Figures 5.29a-5.29b), we can 
summarize as follows. Based on IC1 (Figure 5.29a), we noted that there was sharp increase in the city 
center, trading zone, and Suburban1, west of Surabaya between January 2002 and March 2002. 
However, this was not seasonal. This event duration was taking place during the rainy season. From 
Figure 5.29b, in the city center, near the highway zone, and Suburban2 (east of Surabaya) based on 
weight loadings of IC2 (Table 5.22), there was a sharp increase observed in March 2001, then 
decreasing between April-July 2001, and increasing again starting in August 2002 through September 
2002. Furthermore, based on IC3 (Figure 5.29c), the tendency of concentration was high during 
August 2001 to December 2001 in these regions: the trading zone and the near highway zone. We 
observed quite lower trends between January 2002 and March 2002 on the Suburban1 and near the 
highway zone (Table 5.22), based on Figure 5.29d, representing the IC4 component. The last, seasonal 
declining trend in the trading zone and Suburban2 started between March and September. All these 
results indicated that during the dry season, NO2 concentrations decreased. This result is in agreement 
with results discussed in Chapter 4. The NO2 concentrations during the dry season tended to be lower 
than during the wet (rainy) season. 

Fluctuation with no apparent pattern for IC1 (Figure 5.30a) showed that this component 
represented the city center, trading zone, Suburban1, and near highway area (Table 5.23), suggesting a 
similar concentration pattern in terms of PM10 observed. Furthermore, we noted that there was a 
decrease during wet season (IC2, Figure 5.30), which is in agreement with the results of the multilevel 
model from Chapter 4. This is due to the washout process by rain (Vallero, 2008), as part of 
agglomeration and sedimentation of PM10. When the two particulates collide in the air, because of 
attractive surface forces, the two particles will adhere and attach to each other, therefore forming 
larger particles by agglomeration. The larger particles become, the greater their weight, and, therefore, 
are likely to fall to the ground. This pattern was apparent in the Suburban1 Sukomanunggal area 
(Table 5.23). 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.29 Five independent component profiles of daily average NO2  
concentration over five monitoring stations; x-axis: time (days), y-axis: component 
value. Season segment 1-59: wet, 59-242: dry. 242-424: wet, 424-607: dry 

 
Table 5.22 Weight loadings for independent components of daily average NO2 
concentration 
Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) 4.089   5.632   3.083   2.266  0.290  
Trading (Perak) 3.881   2.828   5.271   -0.276   -5.081  
Suburban1 (Sukomanunggal) 3.018  1.336   0.358   5.753   -0.506   
Near Highway (Gayungsari) -1.178   4.462   4.219   6.207   1.307  
Suburban2 (Sukolilo) 0.265 4.696 0.577 0.199 -3.668 
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(a) IC1 

 

(b) IC2 

 

(c) IC3 
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(d) IC4 

 

(e) IC5 

Figure 5.30 Five independent component profiles of daily average PM10  
concentration over five monitoring stations; x-axis: time (days), y-axis: component 
value. Season segment 1-59: wet, 59-242: dry. 242-424: wet, 424-607: dry 

 
Table 5.23 Weight loadings for independent components of daily average PM10 
concentration 
Sites IC1 IC2 IC3 IC4 IC5 
City Center (Ketabang Kali) -8.338  2.654   9.061  5.878   -3.130   
Trading (Perak) -8.055  0.473  14.554  0.122  2.359  
Suburban1 (Sukomanunggal) -7.324   11.704   10.884   -3.388   -4.329  
Near Highway (Gayungsari) -7.328   -4.421   13.617  -3.979   -12.201  
Suburban2 (Sukolilo) 1.252 1.657 12.694 4.220 -2.858 

 
Daily data collected over a two-year period is useful if we want to find seasonal patterns and 

how seasons affect air quality. Here we have shown how NO2 and PM10 change during dry and wet 
seasons. However, if we focus on determining the temporal pattern on a daily basis, using 30-mins 
data on a weekly-cycle as shown above, we find this better and adequate to capture all of the necessary 
information. 
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5.5 Dynamic of Pollutants and Meteorological Factors using State-Space model 

5.5.1 The Dynamic of Pollutants 

To observe and investigate the dynamic of pollutant’s concentration over five different zones, 
we employed dynamic linear models (DLMs) by treating the parameters in the regression model as 
time-varying. The function of the dynamic linear model is to obtain the dynamic of parameters, 
especially meteorological parameters, to the concentration of pollutants. In our first discussion, we 
discussed data taken from 30-minute aggregate data collected over two years. We define the dynamic 
by observing the fluctuation of regression parameters of each parameter. Furthermore, even though the 
unit scale may be different for each figure, we define fluctuation to be high if there is change in a scale 
of 1-10 in a figure. The changing below 1-point unit is not considered as highly dynamic even though 
there is the dynamic pattern. In this case, we only view and focus on the temporal time of the change. 

The estimated parameters for intercept and independent variables are shown in Figure 5.31 for 
NO2. We noted that the intercept was much more dynamic over time. Besides the intercept, the effect 
of temperatures was also very much dynamic, whereas the dynamic of other variables were very small. 
We may observe that the dynamic of NO2 concentrations were relatively low on Sunday. The patterns 
were similar with other days including Saturday. Figure 5.31 suggests that the magnitude of NO2 
concentrations was higher during the morning session than in the evening. If this phenomenon is going 
to be translated into policy, this indicates that the policy on the trading zone must take this fact into 
account. For example, the policy is time-sensitive, which means that its implementation in the morning 
session must be emphasized. 

In the trading zone, the activities include business-related activities and traffic. This zone is 
near the second biggest harbor port in Surabaya, called Tanjung Perak. Heavy logistics, as well as 
many passengers, occupy this port, thus making it the busiest port in Indonesia. Because of its status, 
transportation to that area becomes important, as the effects of traffic flow towards the port becomes 
extremely crowded, especially with large vehicles. One of the concerns is in minimizing the adverse 
effect of high pollution of NO2 emitted from these vehicles. By judging the figure, one can manage the 
flow of vehicles. We observed that during the time frame in the morning between 7am to 10pm, the 
intercept parameters were big during Monday until Saturday. If we are going to use this fact for policy 
implementation, we could propose limiting the entrance of big vehicles between those time frames.    

Another fact we can observe is that we noted the solar radiation seems to have smallest effect 
towards to NO2 concentration because of flat line observed. This is in agreement with the result of 
previous chapter for NO2 on Table 4.2 page 29. It is seen for NO2, the effect of solar radiation is 
smaller than other meteorological variables. 

The estimated parameters for intercept and independent variables for PM10 are shown in Figure 
5.32. We also noted that the intercept was much more dynamic over time than the slopes of 
independent variables. The effect of temperatures was also very much dynamic. One difference in the 
result was that the dynamic changing was relatively stable for all days. This result suggested that the 
proposal for a policy as described above should be recommended to be applied for all days, not just 
working days. The implementation is expected to reduce the risk of being exposed to high 
concentrations of both NO2 and PM10. 

Furthermore, we noted that all five meteorological variables seem to have much more dynamic 
effect than NO2. The direction of wind had big role to decide the PM10 concentrations. Moreover, the 
tendency of wind speed was, during working days, higher wind speed reflected in significant reduction 
of PM10. This tendency also applied for other meteorological parameters such as solar radiation, and 
humidity. This result was also in agreement with the result obtained from the multilevel model. An 
interesting finding about the use of state-space dynamic model was confirmed by the followings. If we 
observe the effect of the temperatures towards the PM10 concentration (Table 4.2 page 29), we see that 
the temperature has negative effect, meaning that higher temperature will likely reduce the 
concentrations. However, Figure 5.32f shows that only during daytime the increase of temperature will 
reduce the concentrations. During nighttime, the regression parameter become positive, therefore the 
increase of temperature will lead to the increase of PM10 concentrations. In this case, we have provided 
the usefulness of state-space dynamic model to capture the limitation of linear model on the previous 
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chapter. All these results are in agreement with the finding obtained by multilevel models with some 
additional discussion like shown above. 

 

 

(a) intercept 

 

(b) wind direction 

 

(c) wind speed 



98 

 

(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.31 Time series of estimated mean states of independent variables (thick 
lines). The black dot is the observation of square-root NO2 concentration in ug/m3. 
The first segment is Thursday. 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.32 PM10 Time series of estimated mean states of independent variables 
(thick lines). The black dot is the observation of square-root PM10 concentration in 
ug/m3. The first segment is Thursday. 

 
Figure 5.33 displays parameter estimates for O3. We can observe that the intercept parameter is 

not as dynamic as the intercept for NO2 and PM10. It is logical because O3 is formed due to a series of 
photochemical reactions combined with the association of solar radiation as shown by Figure 5.33d. 
There was a dynamic change in the solar radiation parameter estimate. During the night, the solar 
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radiation sensitivity factor was relatively low to accommodate the fact that at night there was no solar 
radiation, whereas, in the absence of radiation, the concentration of O3 persisted. This also shows that 
even though solar radiation is one factor affecting O3, it is not the most important. O3 is formed with 
the presence of precursors such as NO and NO2. This result also depicted the increase of O3 during 
morning due to the increase of NO2 and NO rate. 

As can be seen, the important factors for O3 had been solar radiation, humidity and 
temperatures. However, solar radiation was the one that has most influential factors. Humidity tended 
to decrease O3 concentrations, especially during working days. This is in agreement with the fact that 
when the presence of NO2 and NO is relatively higher, the O3 concentrations tends to be lower than if 
the opposite environment occurs, suggesting the reaction rate of O3 is complex. Furthermore, in the 
morning, the solar radiation will increase O3 levels. Therefore, it is important to highlight the 
importance of air quality management especially during morning session. On the other hand, higher 
temperature will lead to the increase of O3 levels, which is again in agreement with previous result. 
The effect of temperatures during working days slightly diminishes though. 

Figure 5.34 shows temporal dynamic factors for NO which is similar with O3 (Figure 5.32), 
and CO intercept (Figure 5.35) was not as dynamic as the intercept of NO2 and PM10 suggesting the 
lower effect may involve factors other than meteorological variables. However, additional information 
is needed. The estimate of intercept was lower on Sunday, similar to NO2. This similar pattern is 
because NO and NO2 came from a similar source, which is vehicular or transport related. In the 
meantime, the fluctuation of wind direction estimates explains that in the morning the wind direction 
had significant impact on the concentration of NO. The estimate of solar radiation is similar to NO2 
and PM10, explaining that solar radiation may reduce NO concentration, indicated by negative signs of 
estimates. Parameters, such as wind speed, solar radiation, humidity and temperatures, were not highly 
dynamic. The important parameter in this case is intercept, indicating the significance of other 
variables besides meteorological factors. 

The two-wave peaks as shown on Figure 5.34b shows that there is a certain direction of which 
contributed the most of the pollution. This direction may came from transportation and from previous 
observation, it can be estimated that these peaks were contributed from the road connecting between 
city center to the port harbor. From the results, there is one different noted between NO and NO2, that 
is wind speed. Although over time the parameter decreased, but it showed positive value, on the 
contrary the wind speed parameter for NO2 had negative value. This positive value indicated that 
higher wind speed may increase the concentration of NO. These results are also in agreement with the 
result from multilevel model. Solar radiation had negative impact towards the NO concentrations but 
on the opposite, the parameter estimate for humidity is positive, indicating higher humidity may 
contributed to the increase of NO concentrations. The results of humidity and temperatures effects 
toward NO were different with their effects towards NO2, suggesting different chemical properties as 
well as reaction in the atmospheric layer. 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.33 O3 Time series of estimated mean states of independent variables (thick 
lines). The black dot is an observation of square-root O3 concentration in ug/m3. 
The first segment is Thursday. 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 



105 

 

(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.34 NO Time series of estimated mean states of independent variables 
(thick lines). The black dot is an observation of square-root NO concentration in 
ug/m3. The first segment is Thursday. 

 
Figure 5.35 shows the dynamic of meteorological factors towards the CO concentrations. It 

can be shown that meteorological factors such as wind speed, solar radiation, humidity, and 
temperatures had small effect for CO concentrations because their fluctuation interval was small. 
However, we have noted several points as follows. Like NO, wind direction played big role in forming 
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the CO concentrations. In the morning the effect of wind direction was seen, showing an indication 
that traffic in the morning on Perak Barat and Perak Timur Rd was significant. Furthermore, the 
parameter for wind speed is negative, therefore leading to a conclusion that higher wind speed 
increased the concentration of CO. However, the effect of wind speed on Sunday had been low. The 
value of solar radiation parameter was small and stayed relatively flat, not as dynamic as intercept. 
Higher humidity tended to increase the CO concentrations. The result matches with the result from the 
multilevel model although the estimate from multilevel model is small but significant. The estimate of 
humidity on working days tended to be smaller than weekends. Therefore, during weekends, if the 
humidity was high, the CO concentrations were likely to be higher than working days as well. 

SO2 comes mainly from the combustion process, and one major source is from power plants. 
SO2 is also formed by a reaction between hydrogen sulfide (H2S) and Oxygen (O2). However, its 
oxidation is slow in a mixture of pure gases (Vallero, 2008), but the rate will increase because of light, 
which may explain Figure 5.36a. The intercept decreased as it approached mid-day. The rate of 
oxidation is also affected by NO2, oxidants, and metallic oxides. Metallic oxides serve as catalysts. 
Since this process is highly affected by the presence of other gases, the effect of meteorological factors 
seems not to be too dynamic. 

From the figure as well, we noted that humidity and temperatures were relatively dynamic 
suggesting their significant role towards the concentration of SO2. In the night, the parameter was 
higher than during day time. However, the positive sign shows that higher temperature and humidity 
may lead to the increase of SO2 levels.  
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.35 CO Time series of estimated mean states of independent variables 
(thick lines). The black dot is an observation of square-root CO concentration in 
ug/m3. The first segment is Thursday. 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.36 SO2 Time series of estimated mean states of independent variables 
(thick lines). The black dot is an observation of square-root SO2 concentration in 
ug/m3. The first segment is Thursday. 

 
Based on the evaluation above, we tried to find the “best” parameters for policy 

implementation. For that purpose, we determined and filtered pollutants that are emitted directly from 
the source (and also reactive), so that we can observe the temporal change more clearly. Therefore, we 
focused on NO2 and PM10 because both are emitted by the transport sector, which change in minutes 
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and in hours despite that PM10 sources are more complex. However, to promote and suggest a policy, 
we gained the benefit from the patterns obtained from these two pollutants in terms of pollutant 
profile. Based on the Figures 5.30 and 5.31, the temporal peak time frame on this zone that must be 
taken into account is between 7am to 10pm because the estimates are high during these hours. We 
must take this fact as indicating a daily pattern, not just considering working days. 

5.5.2 Seasonal Change dynamically of air quality 

To evaluate seasonally and dynamically changes in air quality, we used daily average data as 
displayed in Figure 5.37 (NO2) and Figure 5.38 (PM10). We observed that the dynamics of NO2 and 
PM10 concentration were high by season, for wind direction, and for wind speed. Wind direction 
highly affects both pollutants, especially during the dry season. In addition, as time goes by, we noted 
that the effect of wind speed increases with the following understanding: the longer the time runs, the 
more negative the estimated parameter for wind speed. This means the faster the wind speed, the better 
the self-purification of pollutants. In addition, regarding PM10, during the wet season, humidity helped 
to significantly reduce the pollutant concentration levels. This is in agreement with the theory of 
collision between particulate matter with droplets contained inside the air parcel, and then deposited 
on the ground. During the wet season, the concentration of NO2 tended to be higher, suggesting a 
change of travel behavior. Whereas for PM10, the concentrations tended to be lower during the rainy 
season. 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.37 Estimated meteorological parameter coefficients for NO2.The black dot 
is an observation of square-root NO2 concentration in ug/m3. Season segment 1-59: 
wet, 59-242: dry. 242-424: wet, 424-607: dry 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 



115 

 

(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.38 Estimated meteorological parameter coefficients for PM10. The black 
dot is an observation of square-root PM10 concentration in ug/m3. Season segment 
1-59: wet, 59-242: dry. 242-424: wet, 424-607: dry 

 
For O3, despite the not-so-dynamic parameter coefficients for intercept and wind direction, we 

observed a high dynamic of wind speed, especially in the wet season, which forms a plateau (Figure 
5.39). During this season, the higher wind speed causes the lower concentration of O3. This reaction 
occurs in the tropospheric layer indicating a complex purification process in the atmospheric layer. We 
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didn’t see such a pattern in the dry season. Therefore, we may conclude that there was a tendency that 
during the wet season the probability of O3 exceeding threshold value was lower than in the dry 
season. This result is in agreement with the result from multilevel model that during wet season higher 
wind speed will reduce the O3 levels. The effect of solar radiation appeared to decline over time, but 
during the wet season, we saw a slight decrease of the parameter. This means that there was tendency 
that higher solar radiation improved O3 in the atmospheric layer. Moreover, the humidity parameter 
was dynamic over time with tendency to increase. The power of pollutant purification was stronger 
during dry season than wet season, as indicated that during dry season the estimate was more negative.  

Overall, judging from annual data, we observed the significance of meteorological factors 
towards the concentration of O3. This was due to O3 production was highly dominated by a series of 
chemical reaction in the atmospheric layer, that was completely different from NO2 and PM10 which 
were emitted directly from the sources e.g., vehicles. 

Observing NO seasonally, the intercept was not too dynamic, and daily average wind direction 
affects daily average concentrations of NO (Figure 5.40). The effect of wind direction was higher 
during the dry season than in the wet season, indicating the factor of wind direction contributed more 
towards the concentration than during the wet season. In the meantime, the increasing wind speed will 
reduce the ambient concentration of NO, whereas humidity and temperatures affected the 
concentrations seasonally. The wet season contributed towards lower NO concentrations. On the other 
hand, Figure 5.41a shows that the intercept was not dynamic compared with wind speed, indicating 
that for CO, the role of wind speed was crucial. The faster wind speed had the largest the effect on CO 
purification. 

Seasonally, we noted that the wind speed parameter tended to reduce SO2 during the dry 
season (Figure 5.42). This means that in the dry season, the faster wind speed led to further reduction 
in pollution from SO2. There is no significant difference between seasons for solar radiation. However, 
we noted an increasing coefficient over time. Interestingly, the parameter estimate for temperature 
during the dry season was lower than during the wet season, which indicates that the tendency to 
reduce SO2 pollution was better in the dry season than during the wet season for the same temperature. 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.39 Estimated meteorological parameter coefficients for O3. The black dot 
is an observation of square-root O3 concentration in ug/m3. Season segment 1-59: 
wet, 59-242: dry. 242-424: wet, 424-607: dry 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.40 Estimated meteorological parameter coefficients for NO. The black dot 
is an observation of square-root NO concentration in ug/m3. Season segment 1-59: 
wet, 59-242: dry. 242-424: wet, 424-607: dry 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.41 Estimated meteorological parameter coefficients for CO. The black dot 
is an observation of square-root CO concentration in ug/m3. Season segment 1-59: 
wet, 59-242: dry. 242-424: wet, 424-607: dry 
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(a) intercept 

 

(b) wind direction 

 

(c) wind speed 
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(d) solar radiation 

 

(e) humidity 

 

(f) temperatures 

Figure 5.42 Estimated meteorological parameter coefficients for SO2. The black 
dot is an observation of square-root SO2 concentration in ug/m3. Season segment 1-
59: wet, 59-242: dry. 242-424: wet, 424-607: dry 

 
Overall, except for O3, the effect of meteorological factors towards the concentration was 

small although significant as shown by the dynamic changes of estimates. The results shown by state-
space models have been in agreement largely with the results obtained from multilevel model. 



125 

5.5.3 Pollutants Concentrations Subpatterns 

In the present study, one of our objectives is to evaluate several different concentration 
subpatterns concerning spatial pattern that determine the NO2 temporal pattern using state-space 
model. However, in order to obtain optimum set up and best subpattern composition we have set up 
several hypotheses. The hypotheses are: 

Uniform (m = 1): all NO2 concentrations are similar regardless of the site locations. There is 
only one single concentration trajectory, and all observation values are independent measurements of 
this trajectory. 

Zones (m = 4): Since monitoring station 3 and 5 are located on suburban area, we group them 
as one, representing one that resides in suburban area. Other monitoring sites are representative by 
them alone based on their zone: city center, trading zone, and near highway zone. 

Traffic (m = 3): We group station in city center and suburban sites become one because we 
assume that in the city center, the contribution of NO2 are mainly from traffic related to school and 
work of people from all directions. This behavior may be represented by people in the suburban areas. 
This pattern might be slightly different in the trading zone and near highway zone. In the trading zone, 
the traffics are dominantly affected by business activity hours. On the highway zone, we note that the 
increase starts earlier than other zones, due to the highway connects Surabaya City with other neighbor 
cities. 

Independent (m = 5): each monitoring site represents its own unique NO2 temporal patterns 
and the emission source of the pollutants is completely independent between one and another. 

To obtain best model based on several scenarios explained above, we tested several alternative 
for model input. We allow process variation to be equal or different across different concentration 
subpattern, and to be independent or correlated, represented in the matrix input Q. We also try several 
variation of observation variation, denoted as R, to be different of equal across subpattern.  

To estimate parameters and observe models, we used the Kalman Filter and EM algorithm 
explained by Shumway and Stoffer (2006), which is implemented in the package MARSS (Holmes, 
Ward, and Wills, 2012) which is run through R open source platform. To select best model for 
subpattern study, we use AICb, described as Akaike’s Information Criterion based on bootstrapping 
method (Cavanaugh and Shumway, 1997). This method uses bootstrapping to estimate the penalty 
term. Since in the present study we try variation of Z, we use AICb for model selection. The AICb 
values generated were used to judge the model with lower AICb value means that the model has more 
support over larger value. 

A time series state-space model framework is useful to determine the subpattern of pollutant’s 
concentrations among zones, and the correlation helps us infer which factors or mechanisms that 
causes the similarity in the patterns. In this section we focus on NO2 only as example of state-space 
model and also because of the analysis from previous chapter and due to the main focus is traffic-
related pollutant.   

In regard of NO2, the pattern of NO2 can be described as follows. We observed two-peaked 
cycle every day that reflected peak concentration of NO2 on those days. NO2 are mainly from traffic 
emission, and therefore it may indicate the traffic congestion level. During the congestion level, people 
are exposed to the risk of health problems due to high possibility of NO2 concentration exceeding the 
permissible level, 92.5 (ug/m3). It is therefore mandatory to observe daily as well as weekly pattern of 
high concentrations.  

In terms of policy related to the emission, we note that the presence of the monitoring stations 
is essential. Its existence is crucial for a number of vital reasons. By investigating the pattern of the 
concentration, in particular NO2, we can issue preventive action in the future. However, one of the 
problems regarding of policy related to monitoring stations is that one policy may be not feasible to be 
implemented to other zones. In this instance, the location of monitoring stations depends on the nature 
of each zone. There are five zones represented by each station e.g, city center, trading zone, suburban 
in the west side of Surabaya, near highway zone, and suburban area in the east side of Surabaya. Each 
has its own policy implication.  

By realizing the fact above, it is necessary to first doing preliminary study to obtain clear 
pattern of NO2 concentrations. In one of our hypotheses, we try a scenario where we assume that the 
pattern is global, by indicating m = 1 in the MARSS framework model. This set up means that the NO2 
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concentrations on those five zones are alike and similar. These may refer that the nature of fluctuation 
is similar, probably due to similar emission sources, or due to global atmospheric reaction because of 
the sensor location. If the model based on this scenario is chosen based on the selected AICb, then we 
could easily derive draft policy that can be implemented to all zones. Unfortunately this is not the case 
in this study.  

The best model to observe the NO2 concentrations subpattern across zones was obtained with 
m = 4, based on the zone characters (Table 5.24). The division of zones was based on the goal of the 
installation of the sensors. There were two sensors were installed in the suburban area, and the 
grouping of these two zones yielded the lowest value of AICb. We can conclude that the patterns of 
NO2 concentrations on these two zones are similar and alike. The best model allows each structure 
(group) to have a unique concentration fluctuation.  However, the best model for PM10 was obtained 
with m = 5 (Table 5.25) suggesting each profile represents unique pattern on each location. Also, the 
result suggested complex emission sources of PM10 that were unique on each station. 

 
Table 5.24 Model performance based on Akaike’s Information Criterion (AIC) b-
value from the five hypotheses for the NO2 concentration subpattern 

Scenario Parameters Hypotheses (m = number of subpattern) 
U Q R Atmospheric 

(m = 1) 
Zones (m 
= 4) 

Traffic 
(m = 3) 

Independent 
(m = 5) 

1 Same Same Same 2263.074 2930.414 2680.071 736.812 
2 Same Same Unique 1901.79 1408.759 1487.6 781.455 
3 Same Unique Same  2936.534 2671.132 710.183 
4 Same Unique Unique  1430.857 1460.005 681.419 
5 Unique Unique Same  2935.051 2670.7 698.003 
6 Unique Unique Unique  1437.114 1472.085 707.339 
7 Unique Same Unique  1499.306 1496.517 777.7477 
8 Unique Same Same  2938.922 2680.87 765.8606 
9 Same Correlated Same  2147.435 2191.231 -787.492 
10 Same Correlated Unique  194.7197 595.911 -815.400 
11 Unique Correlated Same  2165.386 2223.45 -786.765 
12 Unique Correlated Unique  202.8271 593.179 -797.328 

 
Table 5.25 Model performance based on Akaike’s Information Criterion (AIC) b-
value from the five hypotheses for the PM10 concentration subpattern 

 
Scenario Parameters Hypotheses (m = number of subpattern) 

U Q R Atmospheric 
(m = 1) 

Zones (m 
= 4) 

Traffic 
(m = 3) 

Independent 
(m = 5) 

1 Same Same Same 12544.17 12417.13 12223.34 11268.52 
2 Same Same Unique 11876.08 11572.64 11506.67 11134.42 
3 Same Unique Same  12433.46 12146.2 11053.97 
4 Same Unique Unique  11600.42 11509.95 11087.05 
5 Unique Unique Same  12423.16 12148.53 11105.4 
6 Unique Unique Unique  11621.89 11515.87 11127.08 
7 Unique Same Unique  11758.86 11659.17 11294.77 
8 Unique Same Same  12509.72 12228.82 11297.62 
9 Same Correlated Same  11762.24 11731.25 10300.2 
10 Same Correlated Unique  11012.24 11085.38 10292.33 
11 Unique Correlated Same  11928.71 11724.88 10304.19 
12 Unique Correlated Unique  11359.52 11086.51 10313.44 

 The best model obtained has unconstrained variance-covariance matrix Q for the process 
variation. Each concentration subpattern has different process variance whereas it also allows 
correlation in the temporal variation between subpatterns (Table 5.26 and Table 5.27). We can observe 
that among zones there are high correlations, and all of them are positive. 
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Table 5.26 Process variation and correlation among zones 
Subpattern Process 

variation (Q) 
Correlation (Q) 
City center Trading Suburban Near 

highway 
City center 0.093 1.000 0.787 0.781 0.861 
Trading zone 0.052 0.787 1.000 0.671 0.798 
Suburban 0.063 0.781 0.671 1.000 0.723 
Near highway 0.098 0.861 0.798 0.723 1.000 

 
Table 5.27 Process variation and correlation among zones 

Subpattern Process 
variation 
(Q) 

Correlation (Q) 
City center Trading Suburban1 Near 

highway 
Suburban2  

City center 22.525 1.000  0.611  0.614  0.751  0.778 
Trading zone 42.135 0.611  1.000  0.393  0.563  0.598 
Suburban1 22.158 0.614  0.393  1.000  0.484  0.497 
Near highway 78.542 0.751  0.563  0.484  1.000  0.754 
Suburban2 35.067 0.778  0.598  0.497  0.754  1.000 

 
The results show that NO2 concentrations subpattern consisted of 4 zones (m = 4) with a 

parameter set up unique concentration fluctuation, u, correlated and unconstrained  variance and 
covariance matrix, Q, and unique observation (measurement) variation error which means the 
variation is restricted to site-specific. The configuration result of Q allow us to derive conclusion that 
each subpattern of NO2 concentration has their own characteristic, however, the main limitation of this 
study was we may be able to see major usefulness of this distinctness (Figure 5.43). We only have five 
stations whereas the best model was with m = 4, therefore allowing other 3 (three) hidden states to be 
equal with the measurement value of NO2 concentration in city center, trading zone, and near highway 
zone. The power of the time-series state-space analysis will be more observable and useful if we have 
more sites to observe. However, this problem is common that developing countries are facing.   

 
(a) City center, trading zone, near highway zone 
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(b) suburban 

Figure 5.43 Maximum likelihood (ML) estimates. Note that the estimates in (a) are 
equal with actual NO2 measurement, whereas in (b) the continuous line represents 
the ML estimates with other lines as the actual NO2 measurement. The time 
interval starts from Thursday (0-48) in the x-axis 

 

5.6 Conclusions 

This study investigated the phenomena and the events where specific pollutants exceeded 
permissible levels during 2001-2002 in Surabaya. ICA has been very helpful in understanding the 
characteristics of pollutants. Its main usefulness is to draw daily and seasonal patterns from data of all 
pollutants. We were able to draw a seasonal pattern that occured every day, only workdays, only 
weekends, the Monday to Saturday pattern, and certain days-only pattern using ICA. By using ICA, 
we were also able to confirm the hypothesis we built up that each station may represent a unique daily 
pattern. Despite the fact that some timeframes occured on several locations, we still found pattern 
uniqueness between stations. The temporal patterns of pollutants, e.g., NO2 and PM10, that we found 
were characterized by similar temporal patterns in the morning for Ketabang Kali (city center) and 
Sukolilo (suburban), whereas we found a wider peak morning time interval in Gayungsari. In the 
region where it is near the highway, one can suspect an earlier rise of NO2 and PM10 concentration due 
to transport from/to and within Surabaya, leading to the conclusion that regions, which are passed by a 
highway may suffer an exposure to the high concentration of NO2 and PM10. In Perak (trading zone), 
the occurrence of morning peak time was delayed then in other zones, as the main driving force of 
transport activities were dominated by business and/or goods delivery. This fact was also true for the 
evening session. However, in the evening, the temporal pattern in the trading zone was similar to 
Suburban1, whereas on near highway zone, the peak concentration occured earlier than those two 
sites, showing a much segmented interval during which traffic was the highest. Besides what can be 
drawn from the present study, ICA can be further expanded into the air quality management system, 
such as evaluating the number of monitoring stations, as well as improving the prediction method. 

The use of daily average NO2 and PM10 concentration helped us to confirm seasonal effect on 
concentrations. We confirmed that for NO2, the concentrations during the dry season were higher than 
for the wet season. To the contrary, the PM10 concentrations during the dry season were lower than in 
the wet season. It clearly can be seen that the deposition of PM10 was much higher in the wet season. 
On the other hand, we estimated that the higher concentrations of NO2 during the wet season were 
probably due to travel behavior of people that causes more NO2 emission. 

In the present study, we also estimated sources of pollution, in particular for NO2 and PM10, 
based on wind speed and wind direction information. In the city center, traffic contributed the most to 
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the area where NO2 concentrations exceeded the ambient threshold level, whereas activities from 
offices, industries, and the most important building, that is, a shopping mall, were responsible for the 
high PM10 concentrations. In the trading zone, the cause of NO2 events were due to traffic in the SE 
direction, where there are several protocol roads heading to the Tanjung Perak harbor port, while 
sources that contributed to high concentration of PM10 were from houses, religion-related buildings, 
and traffic in the Tanjung Perak Barat St. area. One option to minimize the events of high 
concentration is by managing the time frame when motorcycles, big vehicles (trucks, container trucks) 
may pass, to better manage the distribution of vehicles. In Sukomanunggal, the source of NO2 events 
was traffic flow, and the source of PM10 events were from activities of offices, a shopping mall, and a 
resident tower. In the near highway zone (Gayungsari) site, the time interval of the events of PM10 
exceeded the ambient threshold level had more variation. In this location, the source of pollution came 
from traffic on the highway. Chapter 7 summarizes recommended action based on these results. 

To confirm temporal time frame patterns and investigate the effects of meteorological 
variables, we employed a state-space approach on the trading zone. We were able to confirm and 
extract the important time frames during which pollutant concentrations may be high and potentially 
that during these time frames it is likely that the concentrations may breach the permissible level. 
Determining the timeframe is one important factor that can be kept into the basket to support policy 
makers in deciding policies to reduce the impact of pollutants. In this case, we focused on NO2 and 
PM10 in the trading zone, as they are the most dynamic pollutants as well as the fact that they are 
emitted from transport-related activities. Moreover, the implementation of short-term policy may be 
improved in this zone compared with other zones because within this zone, we may propose a policy 
to regulate company’s big vehicles, which are heading to the harbor port of Tanjung Perak in 
Surabaya. The time interval between 7am to 10am was selected as the most important time interval, 
during which we will recommend that at these times, a planned distribution of vehicles be 
implemented, e.g., we suggest limiting the volume of those big vehicles (trucks) on the road near the 
sensor, heading to the harbor port. We discussed this on Chapter 7. By imposing such a policy, it is 
expected that the peak concentration of pollutants will be lower, and will therefore reduce the events 
when NO2 concentrations exceed the permissible level. This action is required to minimize the adverse 
effect on human health and the environment. The results reported suggest that the model was practical 
and provides an alternative way to explain the pattern of air pollutants better than from using the 
conventional approach. 

By using a dynamic linear model, we found that other factors may have a bigger influence than 
meteorological variables, as indicated by a more dynamic sensitivity factor of the intercept variable, as 
shown by NO2, PM10, CO, and SO2. Besides that, some meteorological factors had the most significant 
contribution to each pollutant. For example, with NO2, solar radiation appeared to have less dynamic 
compared with other variables, whereas for PM10, we noted all meteorological factors were dynamic, 
indicating contributions of concentration fluctuation. The dynamics of meteorological factors were 
helpful in understanding the phenomena of air quality, and we had shown the application of time series 
state-space to achieve such a goal.  

We were also able to specify temporally the effect of season on the concentration of pollutants 
by observing dynamically changing meteorological parameters for both short-term and mid-term, 
using a daily average. For example, with NO2, the patterns found during the wet season indicated the 
change of travel or driving pattern that causes the NO2 concentrations to be high in this particular 
zone. From these results, we obtained data showing that wind direction and wind speed had important 
roles in the concentration of pollutants. We noted that the faster wind speed, the faster the rate of 
emission reduction. Moreover, humidity had a contribution to the formation of pollutants. 

This study tries to explore the use of time series state-space model to identify subpattern of 
NO2 concentration in Surabaya. We have identified that the patterns of NO2 concentration represented 
the location of which these sensors (monitoring stations) reside. The monitoring stations in the two 
suburban areas were found to form a certain subpattern so that under this configuration the best state-
space model was formulated. Therefore we can conclude that each of the remaining zones best 
represent characteristics of emission source of each zone. In the trading zone, the subpattern may 
indicate uniqueness of the subpattern among other zones. 
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 Prediction of Air Quality Concentrations Based on Time Series Chapter 6
Models and Generalized Least Square Models 

 
 
 
 
 
 

6.1 Introduction 

One part of exploiting the usefulness of monitoring data is we can use the data to predict future 
concentrations. The purpose in prediction is to estimate next pollutant levels so that this information 
may be shared to the users for preventive actions. These preventive actions are necessary to avoid 
people get exposed to the risk of pollutants which may exceed the permissible level. Pollution on 
which it exceeds the permissible level will affect human health. Not only human health but also 
ecosystem is affected by pollution. To increase awareness of such events, information of future 
concentration is crucial and vital. 

There are several types of prediction model. One is time series model and other type is model 
that includes exogenous variables. One example of ordinary time series model is autoregression. 
However, many types of time series model have been developed, as explained in Chapter 2. The 
challenges emerge when sometimes some air quality data cannot be predicted very well with only time 
series model due to the nature of air quality, instead it requires additional exogenous variables (e.g., 
meteorological variables) that may highly represent the variation of concentrations. Therefore, it is one 
of major motivation why the prediction model is done in the present study. 

To compare the performance between time series model and model with exogenous variables 
we investigated several models. For time series model, we tested and compared several models: 
autoregression, Bayesian Markov Switching model, Modified Bayesian Switching model, as well as 
ARIMA to predict pollutant’s concentrations and true distribution air quality (independent 
components). These time series models that predict pollutant concentrations were compared with 
models utilizing exogenous variables. For this purpose, we employed a Generalized Least Square 
(GLS) model because this model allows can handle time series residual autocorrelation. However, 
sometimes on air quality data, there is multicollinearity among variables. Moreover, there are noises 
inside the variables. Because of multicollinearity and noises we employed Principal Component 
Analysis (PCA) and Independent Component Analysis (ICA) to obtain variables that are relatively 
clean from noises and multicollinearity. Therefore, in this chapter we aimed to investigate time series 
models and GLS models. 

6.2 Materials and Data 

In this chapter we presented two different concepts of prediction models each using different 
time scale. However, the performance is comparable since the difference of time scale is not big, 
between hourly data and 30-mins data. The details of data and validation are described in the 
following session. 

6.2.1 Data for Time series models 

We utilized hourly mean NO, NO2, PM10, and CO square-root concentrations data, taken from 
four stations on Surabaya City, starting from 1st February 2001 to 15th February 2001 (15 days). 
Hourly mean concentrations were considered sufficient to capture temporal changes due to the 
influence of traffic flows in four stations. Figure 6.1 displays daily diurnal NO, NO2, PM10 and CO 
concentrations, averaged of 607 days starting from 1st February 2001. It can be observed that peak 
concentrations were achieved between 6:00 am (i.e., 360 mins from 0:00 am) to 8:00 am (i.e., 480 
mins). On the other hand, in the evening, the peak concentrations were observed between 6:00 pm (i.e., 
1080 mins) and midnight; however the concentrations did not appear obviously as in the morning 
peak. 
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(a) NO 

 

(b) NO2  

 

(c) PM10  

 

(d) CO 

Figure 6.1 Daily diurnal pollutants concentrations (square-root) on four stations 
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The data sets used are from Station one, located at Ketabang Kali (the city center), Station two 
– Perak (trading zone), Station three – Sukomanunggal (suburban area), and Station four – Gayungsari 
(highway zone). We utilized an Expectation-Maximization based algorithm to impute missing values 
as described in the Chapter 3. 

Next 24-hr ahead hourly NO, NO2, PM10, and CO concentrations were predicted based on the 
information of previous hourly concentrations. The resulting data sets for parameter estimation and 
evaluation are shown in Table 6.1. Each of data set consists of 336 samples of hourly mean data for 
parameter estimation, and 24 samples for evaluating the differences between observed and predicted 
values. To clarify the influence of sample size, we also compared the performance of a model using 
more data with 720 observations. Figure 6.2 shows 336 data of hourly mean data, starting from 1 
February 2001 for all four locations after transformation for NO concentrations (as example). 
Figure 6.3 illustrates the differences of data used for parameter estimation and evaluation (forecasting) 
at the Gayungsari station. Table 6.2 shows statistical properties of transformed data at each station. We 
can observe that the mean value was found to be the lowest at Sukomanunggal, which makes sense 
because the station is located at a suburban area. Furthermore, the characteristics at Perak and 
Gayungsari stations are similar in terms of standard deviations, although the range is bigger in 
Gayungsari. 

 
Table 6.1 Data for parameter estimation, evaluation and forecasting for each station 

Monitoring Station 
Data for 
parameter 
estimation 

Data for 
evaluation and 
forecasting 

Ketabang Kali (city center) 336 24 
Perak (trading zone) 336 24 
Sukomanunggal (suburban area) 336 24 
Gayungsari (highway zone) 336 24 
Ketabang Kali – B 720 744 

 
In this part, not only we used mean-hourly, but also 4-hour data to obtain best time interval for 

prediction. Furthermore, to improve the models, we aimed to predict true distribution of air quality 
instead of pollutant’s concentrations. The true distribution patterns were extracted from ICA method. 

6.2.2 Data for GLS models 

We made use of 30-mins interval concentrations of NO, NO2, O3, SO2, CO, and PM10 as well 
as meteorological factors that consist of wind direction, wind speed (m/s), solar gradiation (W/m2), 
humidity (%), and temperatures (oC) as independent variables. For wind direction we created eight 
variables representing direction as dummy variables. They are north, northeast, east, southeast, east, 
south, southwest, west, and northwest, with north as base reference. These variable values were 
different for each station, thus creating more 35 wind direction variables for model input. 

We attempted to predict next-30mins ahead of NO2, PM10, and O3 using GLS model using the 
data taken from March 2002 to April 2002, with total 14635 observations (five stations), as training 
set, while the test set, which was not used for parameter estimation, was taken from May 2002. Table 
6.2 shows shows each mean value, standard deviation, and median of each pollutant concentrations (in 
ug/m3) from five stations in Surabaya. It can be seen that average emission that is related to traffic 
(NO2) was high in city center and low in suburban2 on the east side of Surabaya. With regards of 
PM10, high average concentration was found on suburban1 on west side of Surabaya. Interestingly, 
mean value of O3 concentration was high on highway zone suggesting high reaction rate between NO 
and NO2. 
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Table 6.2 Descriptive statistics of levels of pollutants in Surabaya from five 
monitoring stations (ug/m3) 

 Description City Center Trading Suburban1  Near Highway Suburban2 
NO2 Min 1.603 0.335 1.175 0.48 0.055 

Max 12.309 11.577 10.013 16.024 8.538 
Mean 5.487 4.745 4.85 5.266 4.151 
Standard Deviation 1.518 1.703 1.503 1.758 1.62 

PM10 Min 0.656 0.1 0.317 0.541 0.117 
Max 17.38 48.799 17.689 48.99 14.979 
Mean 7.137 7.673 7.857 7.488 6.79 
Standard Deviation 2.437 2.768 2.527 3.122 2.38 

O3 Min 1.558 0.042 0.01 0.042 0.174 
Max 15.612 13.613 13.976 26.088 14.453 
Mean 6.067 6.305 5.614 4.372 6.864 
Standard Deviation 1.984 1.579 1.941 2.21 2.232 

 
A GLSs were then fitted, with square-root transformed of each pollutant (NO2, O3, or PM10) as 

the dependent variable. The explanatory variables were functions of 30-mins interval of pollutant 
levels: NO2, NO, O3, SO2, CO, PM10, wind speed, solar gradiation, humidity, temperatures, status of 
day (weekends, workdays as base reference), peak time of morning and afternoon session (non-peak 
time as base reference with peak time morning is between 6:30am to 9am and in the evening between 
4:30pm to 7pm), holidays, spatial covariates of zones: trading, suburban1, highway, suburban2, with 
city center as base reference, and wind direction. All air pollutants and wind speed were all square-
root transformed as standard procedures to stabilize the variance. Each dependent variable was 
predicted by the interaction of other pollutants one-step backward (last 30-mins concentration). The 
three pollutants were considered in three separate GLS models because of their substantial correlation. 
On a second and third model, the variables of six air pollutants and four meteorological factors were 
replaced by components extracted from an ICA and PCA. Total there were 10 ICs and 10 PCs were 
obtained and used as predictor variabels along with other independent variables as described above. 

6.3 Time series models 

Here, three models will be described, including a first-order autoregressive model (AR(1)), a 
Bayesian Markov Switching (BMS) model, and a modified BMS (MBMS) model. In the AR(1) 
model, the current pollutant’s concentrations were calculated by using a constant parameter and a prior 
information of concentrations (here, the concentration observed one hour ago is used to compute the 
current concentrations). In the BMS model, we assumed that time series data can be divided into two 
types, each of which shared similar data pattern related to the relationship between a prior 
concentration and the current concentration. The two types were captured by two latent states. In other 
words, a state refers to a series of data with similar attributes or patterns. When a state is built along 
with its parameters, values can be fitted. The parameters inside a state consist of a constant parameter 
and a parameter describing a prior information of concentration, which is defined in the AR(1) model. 
The MBMS model attempts to make full use of forecasting errors obtained in the BMS model in order 
to improve the forecasting ability, where the errors the BMS model are divided into different intervals. 
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(a) City center 

 

(b) Trading zone 

 

(c) Suburban1 

 

(d) Near highway 

Figure 6.2  Hourly mean NO concentrations on four sites 
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Figure 6.3 Data for parameter estimation and evaluation in near highway station (as 
example) 
 
Table 6.3 Statistical properties of hourly NO, NO2, PM10, and CO concentrations 
Parame-
ters 

Statistical measures 
(ug/m3) Ketabang Kali Perak Sukomanu

nggal Gayungsari 

NO Minimum 0.556 0.648 0.323 0.958 
Maximum 11.60 13.35 8.966 13.80 
Mean 4.154 4.630 2.607 4.154 
Standard deviation 2.218 1.913 1.389  1.860 

NO2 Minimum 2.339 1.921 0.173  0.667 
Maximum 9.879 9.819 8.642  9.879 
Mean 4.974  4.924  3.614  4.241 
Standard deviation 1.392  1.369  1.603 1.396 

PM10 Minimum 1.103  2.451  0.075 3.014 
Maximum 16.899  16.586  28.768  37.884 
Mean 6.497 7.440 6.363  7.809 
Standard deviation 1.716  1.956 3.271  3.626 

CO Minimum 0.462 0.204  0.229 0.480 
Maximum 2.668  2.467 1.960  2.493 
Mean 0.992  0.930  0.767  0.927 
Standard deviation 0.328 0.309 0.256  0.322 

6.3.1 A first-order autoregressive (AR) model 

Concentrations of air pollutants are often related to previous concentrations, often explained as 
lagged data. In other words, data in the present may be closely linked with those in the past. Therefore 
we explored the use of a simple time series model with lag-1. We used a first-order autoregressive 
(AR(1)) as a start off to fit and model NO concentrations. AR model has been widely applied because 
of its fast and robust implementation. Autoregressive model of order p, AR(p=1) has the form: 

 
     ∑       

 
            (1) 

 
Where α = μ(1-  ), therefore the equation used in this study become 
 
    (   )  ∑       

 
           (2) 
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where   indicates the ith unknown autoregressive parameter,   is the intercept term,   is the 
mean term, and    is an error term. Each AR term corresponds to the use of a lagged concentration in 
the equation. The term autoregressive refers to the fact that the model computes the current 
concentration values yt as a function of past concentration values yt-1, yt-2,… yt-p. 

6.3.2 Autoregressive Integrated Moving Average (ARIMA) model 

ARIMA is a combination of two processes AR and MA (moving average). AR has been 
explained previously, however in this step we determine the AR(p) where the p indicates the number 
of lag or previous steps needed to forecast the current value. The moving average of the order q, as 
shortened with MA(q) assumes the white noise wt up to lags q are integrated linearly to build observed 
data. A time series ARMA(p,q) model can be represented as (Shumway and Stoffer, 2006; Kumar and 
Jain, 2009): 

 
                                        (3) 
 
with     0,     0, and   

   0 and the parameters p and q refer to the autoregressive and the 
moving average orders. Unless state otherwise, {             }  is a Gaussian white noise 
sequence. The ARIMA(p,d,q) is used when applying the stationary differenced time series where d 
denotes the order of differencing of the data. The estimation of ARIMA coefficients (   ) for time 
series data can be determined using conditional-sum-of-squares to find starting values followed by 
maximum likelihood (Hyndman et al., 2014).   

In constructing an ARIMA(p,d,q) model both autocorrelation function (ACF) and partial 
autocorrelation function (PACF) might be useful. However, we used objectively defined criterions 
such as AIC, AICc, and BIC. These information are statistical model fit measures and applied in the 
algorithm inside a package forecast (Hyndman et al., 2014) run under R platform. 

6.3.3 A Bayesian markov switching model  

Here, we build a BMS model based on the autoregressive lag-1 concept, where each state 
constitutes a parameter explaining the effect of lag-1 concentration. Consider the following equation: 

 
      

    
               (4) 

 
where St refers to a state (1…k), and et follows a normal distribution with zero mean and 

variance    

 . The intercept    
 represents switching states with respect to state St. And k states lead to k 

values for    
 and    

 .      represents lagged NO concentration with β coefficient corresponding to 
each state k.  

The transition of states for a markov switching regime is stochastic, where dynamics of the 
switching process is known and driven by the following transition matrix and pij refers to the 
probability of a switch from state i to state j. 

 

[

       

   
       

]         (5) 

 
where i and j indicates states 1,…, k. 
 
This study only considers two states (k = 2) and equation (3) is re-written as, 
 
                for state 1      (6) 
                for state 2      (7) 
 
where: 
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   (    
 ) for state 1        (7) 

   (    
 ) for state 2        (8) 

 
The probability of a switch from state 1 to state 2 between time t-1 and t is given by p12. 

Analoguely, the probability of staying on state 2 is determined by p22. The model is estimated based on 
the standard maximum likelihood method (Perlin, 2010).  The log-likelihood of the model is given by: 

 
     ∑    (

 

√    
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   (   )

   )) 
        (9) 

 
where X is variable composed of integer 1 to form intercept value (μ) and NO concentration 

(yt). For equation (7), if all of the states were known, the values of St are available, the estimating 
parameters is straightforward, by maximizing equation (9) as a function of parameters   ,   ,   

 ,   
 . 

In case of a markov switching model where the states are unknown, we use the following equation: 
 
     ∑    ∑ ( (  |      )  (    )) 

   
 
       (10) 

 
where  (  |      ) indicates the likelihood function for state j conditional on a parameter 

set ( ). Equation (10) is a weighted average of likelihood functions for all the states, where   (   
 ) describes the weight. The weights are determined by state probabilities. When these probabilities 
are not observed, we make inferences on the probabilities based on the available information, using 
Hamilton’s filter. Detailed calculation steps are given by Perlin (2010). Consider      as the matrix of 
information (intercept with value of 1 and concentration) at time t-1, we can estimate   (    ).We 
set up an initial guess for the starting probabilities   (    ) for j = 1, 2 at  t = 0. The unconditional 
probabilities of S0 are given by: 
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       (12) 

 
Prior probabilities of each state given information on t – 1 is: 
   
  (    |    )  ∑    (  (      |    ))

 
       (13) 

 
pji is a transition probability from state j to state i. In this study, we assume that the transition 

probability between states is 0.2, which indicates p11 = p22 = 0.22, and p12 = p21 = 0.8. The first value of 
equation (  (      |    )) in Equation (13) is obtained from equation (11) and (12). The value of 
  (    |    ) in (13) will be used as input in the equation (14). 

 
Posterior probability of each state is updated using new information from time t using Bayes’ 

rule: 
 
  (    |  )  

 (  |         )  (    |    )

∑  (  |         )  (    |    ) 
   

     (14) 

 
The value of   (    |  ) in the equation (14) will be used as input (  (      |    )) in 

the equation (13). Repeating the above process for all observations, one can obtain the resulting log-
likelihood function. The value of   (    |  )  from equation (15) come from   (    |  ) 
equation (14). 
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As seen above, the BMS model has flexibility in handling processes driven by heterogeneous 
states of the world. Details of the models are explained in existing literature (e.g., Goldfeld and 
Quantd, 2005; Perlin, 2010). 

6.3.4 A modified Bayesian Markov Switching Model  

Here, we build an MBMS model, which concept was originally proposed by Ji et al. (2013) for 
the case of wind speed. First, we run the above BMS model with lag-1 information coefficient and 
calculate the fitted values by the model to all observations on the training data set. Second, we obtain 
forecasting errors by subtracting the fitted values from the observed values. Third, we divide these 
forecasting errors into four states (denoted by m), each of which indicates a particular interval of 
forecasting error. We adopt four states, following the suggestion by Ji et al. (2013), but with different 
interval values. It must be noted that the states here differ with the states in the BMS model. The term 
states here represent intervals which are built to improve forecasting errors. In this case,  

 
   [ ̃   ̃  ],  ̃    ̂    ,  ̃    ̂        (16) 
 
where,  ̂  is a vector of forecasted values from the BMS model, Mi is a vector of minimum 

forecasting errors in state i, and Ni is a vector of maximum forecasting error in state i. 
As stated, there are four states, which consists of two states represent positive errors and other 

two states represent negative errors. We collect minimum and maximum value of errors and divide 
these to half. Forecasted errors belong to State 1 if the error is between 0 and ½ min(et), with et is the 
error from the training data set. Analogously, State 2, denoted by    is for interval  et < ½ min(et), 
further    for interval 0 > et ≥ ½ max(et), and finally    for interval et > ½ max(et). Min and max 
refers to the minimum and maximum value of errors in the training data set. We determine the states 
of forecasted value by calculating the error between fitted values from BMS model with observation 
value from the last position.  

Finally, we revise the forecasted values based on the following equation, where  ̂  is the 
revised value. 

 
 ̂     

 

 
(       )     

 

 
(     )     (17) 

 
 ̂  is a vector of forecasted values from the BMS model, Mi is a vector of minimum forecasting 

errors in state i, and Ni is a vector of maximum forecasting error in state i. 
 

6.4 GLS Models 

6.4.1 Generalized Least Square 

We employed a Generalized Least Squares (GLS) model to formula the mixed linear effect of 
predictor variables towards the concentration of pollutants, following the equation: 

 
               (18) 
 
Where y is n x 1 response variable (pollutant) and X is an n x p matrix, β is a p x 1 vector of 

estimated parameters, and ε is n x 1 vector of errors. With the assumption that     (      ), we can 
estimate ordinary least square estimator of β: 

 
     (   )             (19) 
 
With covariance matrix 
 
 (    )    (   )          (20) 
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When the error covariance Σ positive-definite and symmetric and its diagonal entries Σ 
correspond to non-constant error variances, and nonzero off-diagonal entries are associated with 
correlated errors, we can estimate the log-likelihood of the model, given that Σ is known: 

 
      ( )   

 

 
    (    )  

 

 
(    ) (    )    (21) 

 
The function is maximized by the GLS estimator of β: 
 
     (      )               (22) 
 
With covariance matrix: 
 
 (    )  (      )          (23) 
 
However, in the application, the matrix of Σ is not known and therefore must be estimated 

from the data with the regression coefficients, β. In time series data, though, there is a concern of error 
correlation. Assuming that all errors have same expectation and same variance, the covariance of two 
errors depends on their separation s in time: 

 
 (       )   (       )            (24) 
 
Where   is the error autocorrelation at lag s. The error-covariance matrix will become: 
 

    

[
 
 
 
 

     

     

     
 

    

    

    

   
              ]

 
 
 
 

         (25) 

 
For stationary time-series, we apply first-order auto-regressive process, AR(1) for 

autocorrelated regression errors: 
 
 
                    (26) 
 
Under this model, the    is assumed to be Gaussian white noise,          ,      , and 

     
 (    )⁄ , along with the time run, the error autocorrelations    will decay exponentially as 

s increases to 0. A GLS model is run through a gls command under nlme library package within R 
open source software. 

6.4.2 Independent Component Analysis 

In ICA, the input variables are regarded as linear combinations of latent variables which are 
considered independent and non-Gaussian. Along with Principal component analysis (PCA), ICA is 
considered linear representation models. ICA establishes independent components from original 
variables. The concept of ICA is regarded to be able in explaining more for variable relationship 
because independence is a high-order statistic that is in favor over orthogonality (Shao et al., 2006). 
Multilevel IC regression forms relationship between response variable (y) and the ICs from ICA along 
with other explanatory variables (e.g., days in week, season) 

ICA uses higher-order statistic to obtain statistically independent components (Westra et al., 
2009). A typical ICA model is expressed as: 

 
X = SA          (27) 
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X is observation  matrix, derived through the mixing of an n-dimensional source matrix, S = 
(s1, …, sn)T, with temporal dimension of l, referred to ICs, with n is independent components extracted. 
A is the mixing matrix of dimension n x n or m x n where m ≤ n. The objective of ICA is to estimate A 
and S, knowing only the observations matrix X. The present study uses FastICA algorithm to estimate 
A and S from observations X (Hyvärinen and Oja, 2000). The S components will be used as input 
variables in multilevel model. A fastICA function within R program was used to obtain ICs. 

For forecasting purpose, the following formula was used to obtain ICs for input to the 
prediction model: 

 
XA-1 = S          (28) 
 
X is lag-1 independent variables while A is the inverse of loading matrix obtained from 

training set data.  

6.4.3 Principal Component Analysis  

PCA creates principal components (PCs) that are orthogonal and uncorrelated and linear 
combinations of the original variables. The first PC is the one that has the largest portion of original 
data variability. A varimax rotation is commonly used to obtain rotated factor weight loadings that 
represent effect of each each variable in one particular PC. MPC regression examines a relationship 
between the output variable (y) and the PCs obtained from explanatory variables (air pollutants: NO, 
NO2, O3, SO2, CO, and PM10,  and meteorological factors: wind speed, solar gradiation, humidity, and 
temperatures). The estimation procedure is given in the following equations: 

 
     ∑       

 
           (29) 

 
Where PCij is the PC score for ith component and j-th object. The loading weight is 

represented by wik for k-th variable variable on the i-th component, and xkj is the standardized value of 
k-th variable for the j-th observation (Verbeke et al., 1984). A PCA is run using prcomp function 
within R open source program. To obtain PCs for prediction purposes, the xkj were simply lag-1 
independent variables. 

6.4.4 Evaluation indicators 

We implemented the forecasting and consequently we can obtain a fitted value Ft for each 
observation. Here we calculate the following three types of evaluation indicators for the forecasting: 
mean error (ME), mean absolute error (MAE), and root mean square error (RMSE). MAE calculates 
the average magnitude of the errors in a set of fitted values without considering direction. On the other 
hand, RMSE measures the average magnitude of the error. The MAE and RMSE can be used together 
to diagnose the variation of errors in a set of fitted or predicted values. The greater the difference 
between RMSE and MAE is the greater the variance in the individual errors in the sample. Lower 
values of ME, MAE, and RMSE are better. In addition, we also compute R2 (or R-squared). 

6.5 Results and Discussion for time series models 

Each model is evaluated by first focusing on its internal validity and then its external validity. 
The internal validity indicates how each model fits data used to estimate it, i.e., the model accuracy 
itself. The external validity refers to the forecasting ability of each model, i.e., it reveals how well the 
model can forecast data that are not used to estimate it.  

6.5.1 Internal validity: Model accuracy 

Table 6.4 shows the estimation results of AR(1) model for air quality on all locations, all 
coefficients appear to be statistically significant.  
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Table 6.4 Estimation results of AR(1) models for all air quality parameters: NO, 
NO2, PM10, and CO 
Parameter Monitoring station Mean Lag-1 coefficient 
NO City center A 4.024 (12.39) 0.759 (21.26) 

Trading 0.693 (17.733) 4.606 (18.974) 
Suburban1 0.456 (9.295) 2.622 (21.159) 
Near highway 0.749 (20.738) 4.053 (15.257) 
City center B 0.7615 (31.408) 3.5875 (16.766) 

NO2 City center A 0.842 (27.662) 5.053 (19.268) 
Trading 0.680 (17.077) 4.906 (27.971) 
Suburban1 0.584 (13.162) 3.5573 (20.193) 
Near highway 0.678 (16.970) 4.248 (24.660) 
City center B 0.827 (38.753) 5.002 (31.508) 

PM10 City center A 0.772 (21.245) 6.585 (24.719) 
Trading 0.647 (15.624) 7.442 (32.532) 
Suburban1 0.475 (9.919) 6.3715 (21.403) 
Near highway 0.615 (14.389) 7.8094 (19.421) 
City center B 0.772 (31.836) 6.586 (37.984) 

CO City center A 0.860 (30.249) 1.006 (15.371) 
Trading 0.685 (17.327) 0.932 (24.178) 
Suburban1 0.607 (13.955) 0.7704 (27.365) 
Near highway 0.726 (19.521) 0.9275 (21.291) 
City center B 0.829 (39.338) 0.989 (25.390) 

Note: t-value is shown inside bracket for each parameter. 
 

Table 6.5 Estimation results of BMS models for all parameters NO, NO2, PM10, and CO 

Paramater Stations State 1 State 2 
Intercept Lag-1 

coefficient 
Intercept Lag-1 coefficient 

NO City center A 0.938 (4.119) 0.841 (13.820) 0.938 (4.119) 0.685 (11.261) 
Trading 1.335 (4.711) 0.799 (11.707) 1.335 (4.711) 0.622 (9.107) 
Suburban1 1.264 (6.127) 0.690 (7.395) 1.264 (6.127) 0.355 (3.804) 
Near highway 1.591 (8.96) 0.537 (14.531) -0.115 (-0.648) 1.111 (30.052) 
City center B 0.812 (5.892) 0.885 (21.974) 0.812 (5.892) 0.663 (16.453) 

NO2 City center A 1.127 (5.700) 0.756 (20.495) 0.592 (2.998) 0.895 (24.260) 
Trading 2.311 (10.187) 0.530 (12.072) 0.624 (2.752) 0.867 (19.744) 
Suburban1 1.609 (7.305) 0.639 (9.417) 1.225 (5.561) 0.562 (8.292) 
Near highway 1.967 (9.269) 0.505 (11.209) 0.50 (2.356) 0.917 (20.354) 
City center B 1.178 (8.688) 0.749 (29.309) 0.603 (4.449) 0.891 (34.903) 

PM10 City center A 3.430 14.495) 0.456 (13.255) -0.880 (-3.717) 1.146 (33.297) 
Trading 3.411 (8.620) 0.495 (10.342) 1.444 (3.650) 0.857 (17.906) 
Suburban1 5.192 13.055) 0.167 (2.980) 0.585 (1.471) 0.936 (16.682) 
Near highway 2.567 (3.517) 0.807 (7.779) 2.567 (3.517) 0.534 (5.148) 
City center B 3.153 18.583) 0.503 (20.610) -0.570 (-3.359) 1.102 (45.179) 

CO City center A 0.273 (8.203) 0.681 (22.354) -0.036 (-1.087) 1.083 (35.536) 
Trading 0.428 (9.566) 0.484 (11.383) 0.10 (2.233) 0.956 (22.476) 
Suburban1 0.416 10.295) 0.422 (8.895) 0.138 (3.411) 0.861 (18.161) 
Near highway 0.416 10.502) 0.521 (13.158) -0.020 (-0.512) 1.061 (26.799) 
City center B 0.326 (13.701) 0.625 (28.554) -0.017 (-0.728) 1.064 (48.613) 

Note: t-value is shown inside bracket for each parameter 
 
Our final model is the MBMS model, where we attempted to improve the forecasting by 

incorporating the information of forecasting errors from the BMS model. We divided forecasting 
errors from the BMS model into four states (intervals) (Figure 6.4a – e, and Figure 6.5a – e for 
increased sample size), representing each parameter NO, NO2, PM10, and CO in City center site, other 
sites are not shown.    stands for interval 1/2 min(et) ≤ et < 0,    for interval  et < ½ min(et),    for 
interval 0 > et ≥ ½ max(et), and finally    for interval et > ½ max(et). Min and max refers to the 
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minimum and maximum value of errors. The state intervals for all stations for all quality parameters 
are shown below in Table 6.6.  

 
Table 6.6 Min and Max Errors of BMS model for city center, trading zone, 
Suburban1, near highway, and Suburban2 stations for all quality parameters 

Parameters States 
( ) 

City center A Trading zone Suburban1 
Max: 
Mi 

Min: Ni Max: 
Mi 

Min: Ni Max: 
Mi 

Min: Ni 

NO    -0.135 -2.666 -0.029 -2.982 -0.027 -1.88 
   -2.696 -5.352 -3.007 -5.998 -1.903 -3.760 
   2.684 0.071 3.371 0.003 2.308 0.037 
   5.671 3.05 7.224 4.093 4.883 2.756 

NO2    -0.0002 -1.318 -0.007 -2.420 -0.0002 -2.140 
   -1.341 -2.662 -2.503 -4.920 -2.191 -4.353 
   2.180 0.003 2.433 0.004 2.076 0.022 
   4.466 2.247 4.898 2.538 4.189 2.102 

PM10    -0.016 -3.003 -0.0006 -2.063 -0.001 -3.069 
   -3.164 -6.053 -2.195 -4.302 -3.094 -6.159 
   5.293 0.006 4.667 0.013 11.233 0.031 
   10.590 6.984 9.833 5.307 22.534 11.424 

CO    -0.001 -0.281 -0.001 -0.310 -0.001 -0.245 
   -0.285 -0.563 -0.315 -0.625 -0.246 -0.491 
   0.871 0.002 0.796 0.004 0.618 0.001 
   1.813 0.950 1.633 0.893 1.241 0.621 

 
Table 6.6 Min and Max Errors of BMS model for Trading zone, Suburban1, and 
Near highway stations for all quality parameters (Contd)  

Parameters States 
( ) 

Near highway City center B 
Max: Mi Min: Ni Max: Mi Min: Ni 

NO    -0.007 -1.255 -0.007 -3.260 
   -1.266 -2.524 -3.269 -6.526 
   5.159 0.005 2.250 0.030 
   10.361 5.221 4.587 2.469 

NO2    -0.009 -1.652 -0.004 -1.304 
   -1.659 -3.308 -1.328 -2.641 
   2.947 0.004 2.214 0.010 
   5.904 3.061 4.458 2.231 

PM10    -0.179 -5.129 -0.003 -2.790 
   -5.150 -10.293 -2.969 -5.791 
   9.504 0.304 5.263 0.007 
   24.581 14.886 10.560 5.498 

CO    -0.002 -0.193 -0.001 -0.270 
   -0.195 -0.388 -0.274 -0.546 
   0.783 0.003 0.881 0.001 
   1.624 0.918 1.798 0.909 

 
Based on internal validation in City center we can conclude the followings. BMS didn’t 

perform well in terms of all performance indicators for all sites. For instance in City center site for 
sample size 336 hours, the ME, MAE, and RMSE are -1.932, 2.606, and 2.923, showing higher bias 
compared with AR(1), however, the R2 improves. The ME, MAE, and RMSE for AR(1) are -0.076, 
1.799, and 2.174, respectively. However, MBMS produced better result than both AR(1) and BMS, as 
indicated by the ME, MAE, and RMSE. The R2 also improves to almost 90% (Table 6.7). In terms of 
the effect of the increased sample size, the ME, MAE, and RMSE of models using 720 data were 
higher than fewer sample size for BMS. This indicated that the increase of sample size did not help the 
internal validation performance for NO. We also noted consistent performance of MBMS which is 
better than AR(1). 
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Table 6.7 Model performances of internal validation based ME, MAE, and RMSE 
values for all site locations for all quality parameters 

Parameter Stations Model ME MAE RMSE R2 
NO City center A AR(1) -0.076 1.799 2.174  0.032 

BMS -1.932 2.606 2.923 0.035 
MBMS 0.046 0.627 0.729  0.899 

Trading zone AR(1) -0.019 1.464 1.898 0.047 
BMS -2.027 2.453 2.814  0.061 
MBMS -0.049 0.783 0.906  0.81 

Suburban1 AR(1) -0.031 1.084 1.371 0.015 
BMS -1.496 1.756 2.026 0.032 
MBMS -0.058 0.471 0.552 0.859 

Near highway AR(1)  -0.036  1.365 1.841  0.123 
BMS 0.579 1.328  1.945  0.003 
MBMS -0.570  0.980  1.274 0.700 

City center B AR(1) -0.055 1.645 2.089 0.022 
BMS -3.519 3.772 4.108 0.028 
MBMS 0.039 0.647 0.794 0.863 

NO2 City center A AR(1) -0.158 1.086 1.353 0.044 
BMS 0.291 1.085 1.402 0.017 
MBMS -0.066 0.480 0.571  0.85 

Trading zone AR(1) -0.019 1.097 1.413 0.007 
BMS -0.031 1.100 1.415 0.003 
MBMS -0.038 0.645 0.738 0.767 

Suburban1 AR(1) -0.030 1.328 1.656 0.007 
BMS -0.916 1.556 1.897  0.009 
MBMS -0.034 0.520 0.609 0.878 

Near highway AR(1)  -0.020 1.103 1.389 0.008 
BMS 0.251 1.112 1.414  0.003 
MBMS -0.136 0.590 0.717 0.79 

City center B AR(1) -0.068 1.047 1.283 0.019 
BMS 0.250 1.040 1.317 0.008 
MBMS -0.046 0.454 0.548 0.841 

PM10 City center A AR(1) -0.170 1.213 1.668 0.030 
BMS 0.127 1.218 1.711 0.007 
MBMS -0.457 1.207 1.404 0.667 

Trading zone AR(1) -0.015 1.404 1.945 0.020 
BMS 0.675 1.494 2.062 0.009 
MBMS -0.557 1.086 1.283 0.714 

Suburban1 AR(1) -0.012 1.858 3.270 0.001 
BMS 0.124 1.829 3.273 0.0001 
MBMS -1.340 2.172 2.909 0.638 

Near highway AR(1)  0.005 2.124 3.629  0.018 
BMS -5.389 6.133 6.602  0.047 
MBMS 0.229 1.303 1.570  0.846 

City center B AR(1) -0.078 1.189 1.630  0.014 
BMS 0.178  1.182  1.658 0.004 
MBMS -0.455  1.160  1.374 0.646 

 
Observing the performance of BMS on other sites, the performances were observed to be 

worse than AR(1). However, it was able to improve the R2 from the AR(1) model. Additional action 
by involving prediction error didn’t help the performance as well, in terms of RMSE, with additional 
information that the MBMS also increased the R2 values, which means that the forecasted values had 
more capability in explaining the variance of the observation values compared with AR(1) and BMS. 
However, we observed that in terms of ME, the performance of MBMS were underperformed by 
AR(1) model.  
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The coefficients of AR(1) for NO2 are shown on Table 6.4, while the estimation parameters for 
BMS model are shown on Table 6.5. All coefficients were statistically significant. Table 6.6 shows the 
forecasting error intervals which were used to forecast NO2. For NO2, BMS model did not perform 
better than AR(1) for all site locations in terms of RMSE. Moreover, the model only improved the R2 
in the Suburban1 site. In regards to ME and MAE, the BMS model also shows that its performance 
was slightly under the performance of AR(1) model. In terms of RMSE, similar results with NO were 
obtained. The performances (ME, MAE, and RMSE) of MBMS were better for all sites compared with 
AR(1), the model also improved the R2 significantly. Another fact we observed was that increasing 
sample size did not boost improvement of the validation. As for PM10, estimation parameters for PM10 
data for AR(1), BMS model are shown on Table 6.4 and Table 6.5, while the intervals for MBMS 
model are shown on Table 6.6. Based on all performance indicators, the performances of AR(1) were 
better than BMS and MBMS model. However, the MBMS model also improved the R2.  

 
Table 6.6 Model performances of internal validation based ME, MAE, and RMSE 
values for all site locations for all quality parameters (Contd) 

Parameter Stations Model ME MAE RMSE R2 
CO City center A AR(1) -0.032 0.231 0.311 0.091 

BMS 0.124 0.229 0.343 0.034 
MBMS -0.105 0.193 0.236 0.659 

Trading zone AR(1) -0.004 0.229 0.306 0.046 
BMS 0.100 0.235 0.323 0.018 
MBMS -0.080 0.164 0.203 0.729 

Suburban1 AR(1) -0.006 0.199 0.255 0.009 
BMS 0.045 0.195 0.259 0.003 
MBMS -0.047 0.117 0.146 0.760 

Near highway AR(1)  -0.002 0.244 0.321  0.004 
BMS 0.057  0.238 0.327 0.000 
MBMS -0.067 0.130 0.172  0.790 

City center B AR(1) -0.015 0.224 0.311 0.037 
BMS 0.106 0.217 0.332 0.014 
MBMS -0.114 0.189  0.236  0.691 

 
For CO, based on the performance indicators of each model, as shown on Table 6.7, it can be 

seen that the performance of MBMS outperformed BMS and AR(1) model for RMSE, MAE, and R2. 
For example in Trading zone, we observed that the MAE and RMSE of MBMS model were 0.203, and 
0.854, respectively, while for AR(1) were 0.229, and 0.309, respectively. MBMS model worked very 
well for interval validation for this parameter with slight improvement from AR(1) model. We also 
found that there was no difference between increasing sample size with original data sets, suggesting 
that the parameters estimation were not highly affected by the sample size. 

 

 

(a) NO 
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(b) NO2  

 

(c) PM10  

 

(d) CO 

Figure 6.4 Observed values, fitted values and residuals from the BMS model at 
City center (city center) station 
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(a) NO 

 

(b) NO2  

 

(c) PM10  
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(d) CO 

Figure 6.5  Observed values, fitted values and residuals from the BMS model at 
City center station (city center) for increased sample size 

6.5.2 External validity: Forecasting ability 

Figure 6.6 – 6.9 show the observation values starting from Hour 300 to Hour 360 with the 
forecasted values from hour 337 to 360, we forecasted 24-h values of NO, NO2, PM10, and CO squared 
concentrations. The performance for each model based on several performance criteria are shown on 
Table 6.7 for all air quality parameters NO, NO2, PM10, and CO. 

We noted that the performance of BMS model was better than AR(1) in City center based on 
ME, MAE, and RMSE (-0.401, 1.085, and 1.451, respectively). The BMS model in this site also 
improved R2. Similar performance in terms of ME was also observed on near highway, however, its 
RMSE was worse than AR(1) although the R2 improved. Overall, we observed that the performance of 
BMS model was not better than AR(1) in terms of RMSE. In terms of MBMS model, we only found 
that this model only performed well in city center site based on ME and RMSE. Its performances were 
even worse compared with Trading zone and Suburban1 in terms of RMSE. This indicated the model 
suffered from high fluctuation of the concentration on Trading zone and Suburban1. Moreover, we 
noted that increasing sample size for parameter estimation did not help improving the performance. 
However, one particular note was that the MBMS model was able to enhance the R2 index because it 
incorporated the addition of prediction error intervals. Interesting fact was the BMS model performed 
well in City center and slight worse result in Near highway, meaning if the concentrations are not very 
high fluctuations, the performance is similar with AR(1). 

For NO2, based on RMSE, the performances of BMS were better for these sites: City center, 
Trading zone, and Suburban1 compared with AR(1). However, the performances of BMS only better 
than AR(1) only in City center and Suburban1, based on ME. In Trading zone, the ME was slightly 
higher than AR(1). Another observation for MBMS model was that the performance of MBMS model 
was better on these sites: Suburban1 and Near highway based on ME, MAE, and RMSE. This result 
suggested that the performance was highly affected by the pattern of concentrations used to estimate 
parameters. The difference of performance of each site suggests that each site poses different air 
quality patterns. We also note that the increased sample size could not improve the performance of the 
forecasted values. 
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Table 6.8 Model performances of external validation based ME, MAE, and RMSE 
values for all site locations 

Parameter Stations Model ME MAE RMSE R2 
NO City center A AR(1) -0.542 1.621 2.040  0.093 

BMS -0.401  1.085 1.451  0.546 
MBMS -0.297  1.569  1.926 0.661 

Trading zone AR(1) -0.357 1.005 1.219 0.062 
BMS -2.023 2.082 2.359 0.033 
MBMS -0.518 1.060 1.318 0.033 

Suburban1 AR(1) -0.420 1.029 1.178  0.006 
BMS -1.885 1.938 2.186  0.0002 
MBMS -3.058 3.058  3.252  0.0002 

Near highway AR(1)  -0.235  0.903  1.037  0.271 
BMS 0.212 0.927 1.094 0.311 
MBMS 0.843 1.093 1.365 0.311 

City center B AR(1) 0.289 1.604 1.907 0.102 
BMS -2.123 2.289  2.674  0.219 
MBMS -0.490  1.522  1.698 0.219 

NO2 City center A AR(1) -0.666 0.939 1.133 0.341 
BMS -0.217 0.802 0.969 0.257 
MBMS -1.309  1.410 1.614  0.257 

Trading zone AR(1) 0.045  1.076  1.30 0.058 
BMS 0.063  1.067  1.287  0.061 
MBMS -1.155  1.494 1.728  0.061 

Suburban1 AR(1) 9.591 12.189 15.473 0.158 
BMS 8.350 11.667 14.977 0.174 
MBMS 5.205 10.596 13.478  0.174 

Near highway AR(1)  18.827 18.904 21.939  0.036 
BMS 19.587 19.587  22.532  0.058 
MBMS 15.105 15.698 18.767 0.058 

City center B AR(1) 17.995 18.505 22.539 0.142 
BMS 20.523 20.693 24.012  0.083 
MBMS 17.179 17.709  21.224  0.083 

PM10 City center A AR(1) 0.363 0.625 0.800 0.060 
BMS 0.884 0.933 1.074 0.124 
MBMS -1.766 1.766 1.868 0.124 

Trading zone AR(1) 0.568 1.650 1.908  0.021 
BMS 1.183 1.872 2.182 0.031 
MBMS 2.215 2.403 2.876 0.031 

Suburban1 AR(1) -0.719 1.289 1.650  0.001 
BMS -0.510  1.186 1.549  0.004 
MBMS -6.143 6.143 6.314  0.004 

Near highway AR(1)  -0.315 0.897 1.019  0.0004 
BMS -4.946 4.946 5.128 0.005 
MBMS -2.291 2.357 2.662 0.005 

City center B AR(1) 0.177 1.292 1.717  0.190 
BMS 0.632 1.383  1.919 0.055 
MBMS -2.004 2.396 2.701  0.055 

 
On the other hand, for PM10, it appears that the BMS model didn’t perform quite well. Its 

performance only better than AR(1) in Suburban1 with ME, MAE, and RMSE are -0.510, 1.186, 
1.549, respectively. The forecasted values were overestimated. The addition of interval values from 
testing data also did not improve the performance. Its performance was worse on all sites. This result 
shows that the performance of the model was highly affected by the character of the testing data, 
which for PM10, the testing data behaviors were not in favor for forecasting. The increase of sample 
size did not aid the performance as well. 
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Different performance was observed for CO, where the BMS model was better than AR(1) 
model in these sites: City center, Suburban1, and Near highway in terms of ME, MAE, and RMSE. 
The ME, MAE, RMSE on Suburban1 for both BMS mode are -0.039, 0.193, 0.236, respectively, and 
for AR(1) model were -0.099, 0.213, and 0.255 respectively. Interestingly, overall, the MBMS for CO 
did not perform well, its performance were generally worse than AR(1) and BMS model. Increasing 
sample size did not help the forecast either. 

 
Table 6.7 Model performances of external validation based ME, MAE, and RMSE 
values for all site locations (Contd) 

CO City center A AR(1) -0.103 0.126 0.151  0.561 
BMS 0.0124 0.114 0.136 0.449 
MBMS -0.424 0.424 0.445 0.449 

Trading zone AR(1) -0.013 0.232 0.287  0.207 
BMS 0.090 0.256 0.303  0.158 
MBMS -0.309 0.337 0.423  0.158 

Suburban1 AR(1) -0.099 0.213 0.255 0.005 
BMS -0.039 0.193 0.236 0.006 
MBMS -0.349 0.367 0.419 0.006 

Near highway AR(1)  -0.079 0.132 0.151 0.248 
BMS -0.031 0.124 0.140 0.207 
MBMS 0.067 0.118 0.152 0.207 

City center B AR(1) 0.015 0.189  0.236 0.024 
BMS 0.176 0.214  0.286 0.011 
MBMS -0.266 0.303 0.348  0.011 

   
Short term training data set used for parameters estimation may have high fluctuation, so we 

hope that increasing sample size would help in producing more reliable parameters. However, the 
results showed that the performances of BMS model and MBMS model using parameters estimated 
from increased sample size were relatively not better than AR(1). This may be due to that over the 
period of the sample size, the concentrations remained fluctuate based on their daily diurnal pattern, 
therefore this result strengthen the previous finding that reliable parameters would be obtained for sites 
where the concentrations are not so fluctuate. Determining the level of fluctuation level would be 
outside the scope of the present exploration. 

Based on the findings above, the BMS model and MBMS model show a promising if the 
training data set used to estimate parameters do not highly fluctuate. This condition might be good for 
sites that the traffic flow between hours are not so big difference, e.g., predicting air quality in 
suburban areas where the traffic flow is not so fluctuates compared with trading zone, may produce 
better performance compared with other AR(1) model. 
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(a) City center 

 

(b) Trading zone 

 

(c) Suburban1 
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(d) Near highway zone 

 

(e) City center B 

Figure 6.6 Forecasting by AR(1), BMS, and MBMS models for NO on all sites 
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(a) City center A 

 

(b) Trading zone 

 

(c) Suburban1 
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(d) Near highway zone 

 

(e) City center B 

Figure 6.7 Forecasting by AR(1), BMS, and MBMS models for NO2 on all sites  
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(a) City center A 

 

(b) Trading zone 

 

(c) Suburban1 
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(d) Near highway zone 

 

(e) City center B 

 
Figure 6.8 Forecasting by AR(1), BMS, and MBMS models for PM10 on all sites 

 

Because of poor performance of time series models demonstrated in the present chapter, there 
are possible solutions to improve the performance. One way is to determine and check for optimum 
previous concentration that has most effect towards the current concentration. Another attempt can 
also be made by using different time interval instead of 1-hour data e.g., 4-hrs or daily.  
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(a) City center A 

 

(b) Trading zone 

 

(c) Suburban1 
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(d) Near highway zone 

 

(e) City center B 

Figure 6.9 Forecasting by AR(1), BMS, and MBMS models for CO on all sites 
 

6.6 Time Series Model with Optimum Order of Parameters 

In this section we focus on the use of ARIMA and AR models. Before each attempt, we 
determined optimum orders for ARIMA and AR by using auto.arima function on forecast package run 
under R platform (Hyndman et al., 2014). Table 6.9 below shows the performance result of internal 
validation and Table 6.10 shows the performance result of forecasting obtained from ARIMA and AR 
models with their optimum order. Figure 6.10 shows forecasting graphics for NO2 on all four 
locations. 

We have observed R2 for internal validation which are ranging between 0.4 up to 0.76 for NO2. 
The R2 are much better than the previous AR(1) and BMS models we used. In the same time, the 
performances of internal validation of PM10 were also better than the previous models as explained in 
the previous section.  

The results for NO2 are we have seen improvement in the forecasting performance. For 
example in the city center, after including optimum order of lag-23 concentration, the R2 of AR 
becomes 0.398, whereas for ARIMA the R2 is 0.235. We observed another increase of R2 in the 
suburban1 and near highway zone. Especially for near highway zone, only AR with 24-lag 
concentrations yields significant improvement with R2 0.259, ARIMA didn’t improve the 
performance. On the other hand, even though there was improvement of PM10 forecasting accuracy but 
the R2 did not improve by using ARIMA and AR with the optimum order.  
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Table 6.9 Internal validation of time series models with optimum order parameters 
on all sites 

Pollutants Zone Model ME MAE RMSE R2 R 
NO2 City center ARIMA(2,1,1) -0.015 0.127 0.168 0.708 0.842 

AR(23) -0.014 0.115 0.151 0.765 0.875 
Trading ARIMA(3,1,3) -0.067 0.897 1.155 0.454 0.674 

AR(2) -0.007 0.914 1.172 0.432 0.657 
Suburban1 ARIMA(1,1,2) -0.067 0.897 1.155 0.454 0.674 

AR(2) -0.007 0.914 1.172 0.432 0.657 
Near highway ARIMA(2,1,1) -0.065 0.765 0.994 0.488 0.698 

AR(24) -0.039 0.722 0.925 0.553 0.743 
PM10 City center ARIMA(4,1,4) -0.004 0.163 0.225 0.552 0.743 

AR(3) -0.005 0.165 0.224 0.555 0.745 
Trading ARIMA(1,1,2) -0.001 0.191 0.26 0.482 0.694 

AR(2) -0.001 0.191 0.259 0.485 0.696 
Suburban1 ARIMA(2,1,5) -0.001 0.301 0.468 0.263 0.513 

AR(19) -0.007 0.288 0.427 0.386 0.621 
Near highway ARIMA(1,1,2) 0 0.248 0.389 0.473 0.687 

AR(23) -0.013 0.24 0.341 0.594 0.771 
 
Table 6.10 External validation of time series models with optimum order 
parameters on all sites 

  
 

ME MAE RMSE R2 R 
NO2 City center ARIMA(2,1,1) -0.059 0.186 0.227 0.235 0.485 

AR(23) -0.059 0.126 0.159 0.398 0.631 
Trading ARIMA(3,1,3) -0.261 1.062 1.239 0.051 0.225 

AR(2) -0.483 1.175 1.362 0.045 0.212 
Suburban1 ARIMA(1,1,2) -0.063 1.189 1.426 0.203 0.45 

AR(2) -0.273 1.245 1.481 0.284 0.533 
Near 
highway 

ARIMA(2,1,1) 0.631 1.04 1.284 0.064 0.253 
AR(24) 0.436 0.868 1.089 0.259 0.509 

PM10 City center ARIMA(4,1,4) 0.105 0.134 0.166 0.078 0.28 
AR(3) 0.081 0.12 0.156 0.036 0.189 

Trading ARIMA(1,1,2) 0.066 0.282 0.353 0.084 0.29 
AR(2) 0.065 0.283 0.353 0.092 0.303 

Suburban1 ARIMA(2,1,5) 0.079 0.266 0.331 0.081 0.284 
AR(19) 0.169 0.281 0.347 0.085 0.291 

Near highway ARIMA(1,1,2) -0.015 0.152 0.176 0 0.003 
AR(23) -0.051 0.154 0.184 0.028 0.167 

 
Compared with previous results with only lag-1 information, the results obtained using 

optimum orders improved a lot. This means that the determination of parameters should be based on 
which lag information is important that affect current concentrations. In Surabaya case, the time series 
models with optimum order did not have good performance to predict PM10, as shown by R2. Even 
though the R2 is better than lag-1 models, it seems the dynamic of PM10 cannot be captured very well. 
Therefore, Surabaya Government should focus on the development of NO2 prediction model using 
time series.  

In general, PM10 emitted from mixed sources that contribute towards the fluctuation. 
Therefore, in regions where the land uses are not so diverse, time series models may be applied. 
Further, to improve these models, we attempted to use longer time interval data to obtain better 
performance results as well as to determine optimum time interval for time series models application.  
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(a) City center 

 
(b) Trading zone 

 
(c) Suburban1 
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(d) Near highway 

Figure 6.10 Forecasting by ARIMA and AR for NO2 concentration on four stations 
 

6.7 Results and Discussions of Time Series Models for Air Quality Data using 4 hours interval 
data 

In this section we used 4 hours data as initial attempt to use longer time interval for prediction. 
In the future direction we will expand time interval to obtain best time interval for Surabaya 
application. This way, we want to prove that longer time interval may produce better performance 
results. Table 6.11 shows the internal validation and compared with previous results, they show 
significant improvement for both NO2 and PM10. Moreover, external validation (Table 6.12) also 
shows better performance from 4 hours data than if we use one hour data. 

 
Table 6.11 Internal validation of ARIMA and AR using 4 hours data for NO2 and 
PM10  

 
Parameters Zones Models ME MAE RMSE R2 R 
NO2 City center ARIMA(1,1,4) -0.025 0.158 0.198 0.501 0.708 

AR(11) -0.018 0.099 0.126 0.787 0.887 
Trading ARIMA(2,1,3) -0.011 0.154 0.19 0.485 0.697 

AR(9) -0.011 0.13 0.167 0.592 0.769 
Suburban1 ARIMA(2,1,2) -0.019 0.199 0.25 0.477 0.691 

AR(7) -0.022 0.183 0.224 0.572 0.756 
Highway ARIMA(2,1,3) -0.021 0.175 0.225 0.356 0.597 

AR(6) -0.015 0.189 0.236 0.277 0.526 
PM10 City center ARIMA(1,1,1) -0.026 0.172 0.226 0.408 0.639 

AR(4) -0.012 0.172 0.222 0.382 0.618 
Trading ARIMA(1,0,0) -0.002 0.186 0.254 0.293 0.541 

AR(1) -0.002 0.186 0.254 0.293 0.541 
Suburban1 ARIMA(1,0,0) -0.001 0.278 0.427 0.11 0.332 

AR(4) -0.01 0.28 0.405 0.198 0.445 
Highway ARIMA(1,1,4) -0.03 0.265 0.346 0.463 0.68 

AR(6) -0.03 0.26 0.346 0.433 0.658 
 
There are several conclusions can be drawn below. First, changing the interval data improves 

the forecasting result, therefore it is recommended in the future direction to obtain best time interval 
for time series application. Second, there was no consistent result of the performance. For instance, for 
NO2 best model for city center is AR while for highway is ARIMA. However, we found that the 
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models consistently produced better result for city center and highway for NO2. This might be due to 
there was a certain pattern fixed in these areas related to working and school activities therefore the 
patterns might be clearer than other two zones. Therefore in the practical purposes for Surabaya, time 
series models might be useful to predict NO2 concentrations in city center and highway. For PM10, we 
did not find consistent result with previous models, however for 4 hours data, the prediction in the 
trading was good.  

In this section, we have shown the prediction model for next 24-hrs ahead. We would like to 
extend the prediction up to one (1) week. The common problem with time series models is when we 
predict future values, the future values will eventually converge to its mean value because of its 
stationarity characteristic. Therefore the accuracy of longer term prediction is significantly reduced. 
The power of longer term prediction significantly is reduced because we use exactly same parameters 
to predict future values or concentrations. As example for this case we use 14 days training data and 
we predict next-24 hrs, when we try to predict the second day up to one week, we still use same 
parameters that were obtained from previous original 14 days training data and therefore the power of 
the prediction will decrease.   

In this case we attempted to improve such limitation by using updating approach to predict up 
to next 7 days. The concept is we predict next 24-hrs using previous 14-days training data and for the 
next day we repeat again the algorithm using the forecasted values of the 24-hrs data plus previous 13-
days training data, we will obtain new regression parameters with new optimum of ARIMA and AR 
models. These new parameters are used to forecast the second day. This algorithm will be repeated 
again until we obtain concentrations for consecutive 7 days which will be discussed in the next 
section. 

 
Table 6.12 External validation of ARIMA and AR using 4 hours data for NO2 and 
PM10  

 
Parameters Zones Models ME MAE RMSE R2 R 
NO2 City center ARIMA(1,1,4) -0.022 0.119 0.136 0.2 0.447 

AR(11) -0.085 0.1 0.121 0.757 0.87 
Trading ARIMA(2,1,3) -0.107 0.143 0.184 0 0.007 

AR(9) -0.094 0.136 0.185 0.002 0.049 
Suburban1 ARIMA(2,1,2) 0.106 0.228 0.278 0.024 0.153 

AR(7) -0.003 0.219 0.232 0.225 0.474 
Highway ARIMA(2,1,3) 0.131 0.131 0.151 0.81 0.9 

AR(6) 0.088 0.137 0.169 0.215 0.464 
PM10 City center ARIMA(1,1,4) 0.105 0.105 0.123 0.063 0.251 

AR(11) 0.096 0.096 0.115 0.137 0.37 
Trading ARIMA(1,0,0) 0.101 0.146 0.18 0.588 0.767 

AR(1) 0.101 0.146 0.18 0.588 0.767 
Suburban1 ARIMA(1,0,0) 0.071 0.219 0.223 0.136 0.369 

AR(4) 0.172 0.24 0.266 0.044 0.211 
Highway ARIMA(1,1,4) 0.011 0.107 0.114 0.214 0.462 

AR(6) -0.048 0.107 0.132 0.049 0.222 
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(a) City center 

 
(b) Trading zone 

 
(c) Suburban1 
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(d) Near highway 

Figure 6.11 Forecasting by ARIMA and AR for 4-hour NO2 concentration on four stations 
 

6.8 Result and Discussions for Updated Algorithms Time Series Models 

In this section we employed the updating algorithm of time series models as explained in the 
previous section. Figure 6.12 below shows the forecasted values between models using updating 
algorithms and models without updating algorithms.  

 
Figure 6.12 Forecasting by updating algorithm of ARIMA and AR compared with 
ordinary ARIMA(2,1,1) and AR(23) for NO2 in the city center 

 
Internal validation (Table 6.13) shows that the performance of the models in particular the 

updated time series models were quite good as indicated by R2 scores which are higher than 0.5. The 
updated autoregression (AR) model had better R2 than the updated ARIMA model. The seven values 
of internal validation from each updated model show that we check the accuracy once the parameters 
were updated seven times. The R2 of internal validation fluctuated. The remaining two rows inside the 
Table 6.14 show the performance of time series models without the updating process. The results were 
comparable between the updated time series models and non-updated models. However, for long term 
in this case one week, the updated models yielded better performance than models without updating 
(Table 6.14). The results show that the updating models with updated parameters with training data set 
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with the inclusion of forecasted values performed better than without the updating algorithm, although 
we have to improve the model because the R2 are low. 

 
Table 6.13 Internal validation of updated ARIMA and AR in the city center for 
NO2  

Models ME MAE RMSE R2 R 
Updated ARIMA -0.015 0.127 0.168 0.708 0.842 

-0.01 0.118 0.155 0.669 0.818 
0.003 0.112 0.151 0.648 0.805 
0.006 0.105 0.139 0.653 0.808 
0.009 0.097 0.131 0.672 0.82 
0.011 0.096 0.132 0.613 0.783 
0.014 0.09 0.126 0.601 0.775 

Updated AR -0.014 0.115 0.151 0.765 0.875 
-0.006 0.102 0.137 0.743 0.862 
-0.004 0.094 0.131 0.735 0.858 
-0.003 0.083 0.118 0.752 0.867 
-0.002 0.076 0.112 0.76 0.872 
-0.002 0.07 0.106 0.749 0.865 
0 0.063 0.101 0.74 0.86 

ARIMA(2,1,1) -0.015 0.127 0.168 0.708 0.842 
AR(23) -0.014 0.115 0.151 0.765 0.875 

 
Table 6.14 External validation of updated ARIMA and AR in the city center for NO2 

Models ME MAE RMSE R2 R 
Updated ARIMA -0.053 0.19 0.244 0.025 0.157 
Updated AR -0.083 0.189 0.244 0.018 0.133 
ARIMA(2,1,1) -0.068 0.191 0.244 0.01 0.101 
AR(23) -0.137 0.212 0.269 0.008 0.089 

 

6.9 Results and Discussion of Time Series Models to Predict True Distribution of Air Quality  

6.9.1 Prediction of ICs using 1-hour NO2 data 

On the previous results, we have discussed that the forecasting result performances were not 
good might be because of the fluctuation of air quality, in this case because of emission of air quality 
that came from mixed sources. So in this section we want to improve the quality of prediction by using 
Independent Component data. For this purpose, we used NO2 as example. Our hypothesis was since 
the ICs were statistically independent patterns therefore they may represented the true distribution of 
air quality, therefore it was expected to obtain better performance results. Not only that, the true 
distribution information from ICs may represented the pattern of each location e.g., transport, business 
activities. Therefore, in this case indirectly we predicted the transport or business-related activities 
pattern. To obtain conclusions we attempted predicting ICs using NO2 because NO2 is primarily 
emitted from vehicles. The tranport character between zones differed, so these different patterns 
captured by IC represented different activities of each zone. 

 
Table 6.15 Weght loadings of ICA for NO2 using 1-hour data 

Zones IC1 IC2 IC3 IC4 
City center 13.904  -3.859  -3.472   1.065   
Trading zone 11.987   -3.797  6.732   0.304    
Suburban1 4.323   -11.338  -0.429  0.960  
Near highway 7.783 -2.880 -1.615 -9.064 
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Table 6.16 Internal validation of ARIMA and AR for each ICs on 1-hour NO2 data 
IC Models ME MAE RMSE R2 R 
IC1 ARIMA(2,1,1) -0.057 0.478 0.66 0.593 0.77 

AR(23) -0.047 0.443 0.604 0.655 0.809 
IC2 ARIMA(1,1,1) 0.039 0.653 0.881 0.239 0.489 

AR(2) 0 0.655 0.897 0.206 0.454 
IC3 ARIMA(2,1,1) 0.083 0.655 0.903 0.151 0.389 

AR(2) 0.006 0.644 0.907 0.128 0.357 
IC4 ARIMA(2,0,1) -0.001 0.63 0.894 0.185 0.43 

AR(2) -0.002 0.631 0.898 0.179 0.423 
 
The weight loadings are shown in the Table 6.15. Internal validation (Table 6.16) shows high 

goodness of fit in terms of R2 for IC1. IC1 represented pattern in city center and trading zone. 
Unfortunately, the forecasting performances (Table 6.17) were not good. As shown by Figure 6.13, the 
prediction was not able to provide accurate future distribution related to traffic pattern in the city 
center and trading zone as depicted weight loadings. This results show several things. Firstly we 
expected that the use of true distribution of air quality will be better than using air quality data. 
However, the results show the opposite. The R2 for all ICs are lower than 0.5. This might be due to the 
fluctuation of IC components as shown in the Figure 6.13. The distribution of ICs highly fluctuated. 
To overcome this, we attempted to use longer time interval which might produce better prediction 
results.  

 
Table 6.17 External validation of ARIMA and AR for each ICs on 1-hour NO2 data 

IC Models ME MAE RMSE R2 R 
IC1 ARIMA(2,1,1) -0.126 0.48 0.594 0.076 0.276 

AR(23) -0.27 0.467 0.602 0.103 0.321 
IC2 ARIMA(1,1,1) -0.153 0.735 0.943 0.059 0.242 

AR(2) -0.011 0.763 0.939 0.101 0.318 
IC3 ARIMA(2,1,1) -0.081 1.029 1.309 0.002 0.045 

AR(2) 0.343 1.044 1.352 0 0.005 
IC4 ARIMA(2,0,1) -0.734 0.885 1.124 0.089 0.298 

AR(2) -0.75 0.899 1.145 0.023 0.153 
 

 
(a) IC1 



166 

 
(b) IC2 

 
(c) IC3 

 
(d) IC4 

Figure 6.13 Forecasting ICs by ARIMA and AR using 1-hour NO2 data 
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6.9.2 Prediction of ICs using 4-hour NO2 data 

The weight loadings from ICA suggested that IC1 represented highway zones whereas city 
center was represented by IC2, as shown in Table 6.18. The internal validation shows few 
improvement compared with 1-hour data. Showing that the use of 4-hour data improved the model 
performances. Furthermore, there was also improvement over the prediction power as shown in the 
Table 6.20 which was in agreement with improvement of internal validation (Table 6.19). However, 
these performances were not better than if we use air quality data.  

 
Table 6.18 Weght loadings of ICA for NO2 using 4-hour data 

Zones IC1 IC2 IC3 IC4 
City center 2.663  -11.714  -3.937  -2.571  
Trading zone -0.847  -9.657  -0.328  -6.257  
Suburban1 -0.836   -4.665  -6.626  -4.863  
Near highway 5.503 -5.464 -0.978 -5.824 

 
Table 6.19 Internal validation of ARIMA and AR for each ICs on 4-hour NO2 data 

IC Models ME MAE RMSE R2 R 
IC1 ARIMA(2,0,2) 0.002 0.613 0.865 0.282 0.531 

AR(4) 0.083 0.494 0.674 0.572 0.756 
IC2 ARIMA(0,1,1) 0.002 0.613 0.865 0.282 0.531 

AR(12) 0.083 0.494 0.674 0.572 0.756 
IC3 ARIMA(2,1,2) 0.1 0.649 0.855 0.304 0.551 

AR(6) 0.056 0.61 0.786 0.399 0.631 
IC4 ARIMA(0,0,1) 0.017 0.732 0.936 0.137 0.371 

AR(1) -0.002 0.756 0.969 0.043 0.207 
 

Table 6.20 External validation of ARIMA and AR for each ICs on 4-hour NO2 data 
IC Models ME MAE RMSE R2 R 
IC1 ARIMA(2,0,2) 0.725 0.725 0.804 0.136 0.369 

AR(4) 0.574 0.574 0.626 0.19 0.436 
IC2 ARIMA(0,1,1) 0.725 0.725 0.804 0.136 0.369 

AR(12) 0.574 0.574 0.626 0.19 0.436 
IC3 ARIMA(2,1,2) -0.463 0.795 0.916 0.002 0.046 

AR(6) -0.408 0.671 0.84 0.138 0.371 
IC4 ARIMA(0,0,1) -0.433 0.697 0.807 0.383 0.619 

AR(1) -0.861 0.916 1.147 0.012 0.111 
 

 
(a) IC1 
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(b) IC2 

 
(c) IC3 

 
(d) IC4 

Figure 6.14 Forecasting ICs by ARIMA and AR using 4-hour NO2 data 
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6.10 Results and Discussions for GLS models 

From some previous results, it seemed that the prediction for air quality could not rely solely 
based on the intrinsic nature of the concentrations itself. In this case the inclusion of exogenous 
variables such as meteorological factors was hypothesized to significantly improve the prediction 
accuracy and this has became our motivation to conduct GLS models.  

The correlation analysis of the raw concentration between pollutants and meteorological 
factors were displayed in Table 6.21. The Pearson correlation reported that there was a linear 
correlation between the predicted pollutant concentrations and the independent variables. To evaluate 
correlation coefficients, the significance value was calculated with a significance level of 0.05, marked 
by values in bold. 

 
Table 6.21 Pearson correlation of air pollutants and meteorological factors over 
five zones of monitoring stations 

 NO NO2 O3 SO2 PM10 CO WS Grad Hum Temp 
NO 1.00   0.68  -0.67   0.54   0.49   0.94  -0.73  -0.70   0.70  -0.69 
NO2 0.68   1.00  -0.50   0.41   0.60   0.80  -0.66  -0.66  0.51  -0.50 
O3 -0.67  -0.50   1.00  -0.23  -0.50  -0.60   0.68   0.82  -0.90   0.90 
SO2 0.54   0.41  -0.23   1.00   0.18   0.51  -0.47  -0.30   0.26  -0.24 
PM10 0.49   0.60  -0.50   0.18   1.00   0.59  -0.61  -0.55   0.55  -0.55 
CO 0.94   0.80  -0.60   0.51   0.59   1.00  -0.75  -0.72   0.67  -0.66 
WS -0.73  -0.66   0.68  -0.47  -0.61  -0.75   1.00   0.64  -0.78   0.75 
Grad -0.70  -0.66   0.82  -0.30  -0.55  -0.72   0.64   1.00  -0.89   0.89 
Hum 0.70   0.51  -0.90   0.26   0.55   0.67  -0.78  -0.89   1.00  -1.00 
Temp -0.69  -0.50   0.90  -0.24  -0.55  -0.66   0.75   0.89  -1.00   1.00 

 
It was noted that NO, CO, wind speed, solar gradiation had strong correlation with 

concentrations of NO2. NO and CO has positive correlation while wind speed and solar gradiation had 
negative correlation. Higher wind speed and solar radiation allows for gas purification in the lower 
layer of atmosphere. It was noted that NO, wind speed, solar gradiation, humidity, and temperatures  
had statistically significant correlation values with O3. This was due to that the presence of O3 are 
highly due to chemical reaction in the atmospheric layer. The negative correlation of NO and O3 
indicated that higher NO concentration along with NO2 reaction caused O3 depletion This fact is in 
agreement with the result drawn from Chapter 4. On the other hand, wind speed and solar radiation 
had positive correlation with O3 despite of opposite coefficient for humidity, lower humidity tended to 
increase O3 presence. Since PM10 is an inert gas particle, there was no significant variables which 
affect the concentration of PM10 although different results were indicated by Pires et al. (2008). 

The performance of GLS model with original variables perform the best compared with ICR 
and PCR model for both internal validation (Table 6.22) and forecasting (Table 6.23) for NO2. 
Observing the performance for other pollutants, we also found that the performance of ICR was the 
worst than PCR and GLS model. Specifically for O3 prediction, we did not obtain comparable 
performance as those measured by Al-Alawi et al. (2008) which the use of PCR alone yielded R2 of 
0.965, assuming we care less of interval concentration of O3 they used. However, if we compare the 
performance of ICR and PCR in the training set (internal validation), ICR performed better than PCR 
for O3 and PM10 on two stations. This result may indicate better component extraction due to the 
nature of ICA process. Unfortunately, the performance of ICR in the forecasting was worse than PCR 
for all pollutants. These facts show the failure of the component analysis method in producing reliable 
surrogate variables for the model. 
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Table 6.22 Internal validation of each model for NO2  
 Station Model ME MAE RMSE R2 R 
NO2 1 (city 

center) 
1 4e-04 0.2837 0.3658 0.9616 0.9806 
2 9e-04 0.898 1.1459 0.5105 0.7145 
3 0.0037 1.0758 1.4043 0.1454 0.3813 

5 
(Suburban2) 

1 0.0218 0.4742 0.6437 0.8004 0.8946 
2 6.5139 6.5139 6.6138 0.4242 0.6513 
3 -0.2096 0.9462 1.2221 0.3496 0.5913 

O3 1 (city 
center) 

1 -2.69e-05 0.4805  0.7194  0.8784  0.9372 
2 -0.0026  1.3244  1.7039  0.3515  0.5928 
3 -0.5805  1.4303  1.8094  0.017  0.1305 

5 
(Suburban2) 

1 0.7941  2.2566  2.7951  0.0057  0.0752 
2 0.7941  1.9074  2.3769  0.0134  0.1156 
3 -1.9166  2.125  2.59  1e-04  0.0113 

PM10 1 (city 
center) 

1 -6e-06  0.8834  1.2582  0.7333  0.8563 
2 0.0021  1.6785  2.1769  0.2104  0.4587 
3 -1.6428  1.9041  2.2173  0.0745  0.2729 

5 
(Suburban2) 

1 -0.3453  2.247  2.8887  0.0286  0.1691 
2 -0.3444  1.901  2.3991  0.0376  0.1939 
3 -2.979  3.0094  3.4115  0.0247  0.1572 

 
Observing the result of different stations, we may observe that the performance of ICR was 

worse than PCR in station 1 (city center) in terms of RMSE. On the other hand, in station 5 
(suburban2), the difference of RMSE was not far. This may indicate the sensitivity of performance 
result highly depend how ICs perform component extraction from the training data set. This may 
impose a risk where if the particular station has concentrations which highly fluctuate with much 
noises, this may affect the components extracted, thus affect the prediction severely.  

The following factors may contribute to the errors of the models such as: a) errors in data itself 
(monitoring), b) high fluctuation of concentrations due to short interval time concentrations, c) a linear 
equation may not be enough to capture the true air quality because of complexity and uncertain system 
of urban air management.  

 
Table 6.23 Performance of forecasted values in Station 1 and 5 for each model for 
NO2  
 Station Model ME MAE RMSE R2 R 
NO2 1 (city 

center) 
1 0.0218  0.4742  0.6437  0.8004  0.8946 
2 6.5139  6.5139  6.6138  0.4242  0.6513 
3 -0.2096  0.9462  1.2221  0.3496  0.5913 

5 
(Suburban2) 

1 -0.1832  0.8289  1.0918  0.5970 0.7727 
2 0.3821  1.5033  2.0011  0.3327  0.5768 
3 -0.9825  1.8511  2.1211  0.2680 0.5177 

O3 1 (city 
center) 

1 -0.0677  0.4036  0.5672  0.8808  0.9385 
2 9.2849  9.2849  9.3918  0.2048  0.4526 
3 -0.3659  1.0223  1.2504  0.6392  0.7995 

5 
(Suburban2) 

1 -0.0211  0.5824  0.8565  0.7999  0.8944 
2 1.2297  2.1845  2.6100 0.6235  0.7896 
3 -0.4503  1.7747  2.3098  0.5733  0.7572 

PM10 1 (city 
center) 

1 0.1512  0.6419  0.8424  0.8641  0.9296 
2 -16.8202  16.8202  16.9453  0.1155  0.3398 
3 -0.2522  1.554  2.0382  0.1509  0.3885 

5 
(Suburban2) 

1 -0.085  0.8059  1.1339  0.8440 0.9187 
2 1.0435  2.1603  3.3041  0.6695  0.8183 
3 -0.9003  2.5138  3.0339  0.4394  0.6629 
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Table 6.24 shows parameter estimates for the GLS model with NO2, O3, and PM10 The 

independent variables were the original square-root transformed variables. For NO2, among other 
independent variables, besides lag-1 NO2, the concentrations of PM10 and CO had been the most 
important predictor for NO2, which on the opposite, CO also had high contributions to the 
concentration of PM10. On the other hand, statistically significant as expected, the contribution 
between NO and NO2 to the forecasting O3 concentrations was noticed to be significant.  

Furthermore, the increase of wind speed helped mixing process of NO2, PM10, and O3 while on 
the opposite, higher temperature was likely to increase the concentrations. Besides for O3, solar 
radiation negatively affected the predicted concentrations of NO2 and PM10. The congestion level of 
traffic during peak time affected the emission of NO2, and as a result, the concentrations during peak 
times were higher than non-peak time, in particular during morning session, also for PM10 and O3. In 
the evening time, the concentrations of O3 tended to be lower than non-peak time. The concentrations 
were also lower during holidays and weekends for NO2 and PM10, but the opposite for O3, indicating 
photochemical reaction of among contributor gases. 

Observing the spatial location, it is interesting that the NO2 concentrations were found to be 
higher in suburban1 area (Sukomanunggal, west side of Surabaya) than city center. However, that 
particular location was highly-densed residentials that emit larger than other zones. Only in east of 
Surabaya (suburban2), the NO2 concentrations were lower than other zones. In the trading zone, the 
predicted PM10 concentration was higher in suburban1 (Sukomanunggal) than other zones while we 
noted higher estimate for O3 in east side of Surabaya, Sukolilo region, as indicated by suburban2 
variable. 

The inclusion of wind direction had been proven to be helpful not only for predicting one-step 
ahead concentrations, but also to identify and estimate possible sources of emission by judging from 
where the wind dominantly flew. In city center, the direction of southeast was dominant contributor of 
NO2 emission because on this direction, there is a big crowded road which includes a governor office. 
For trading zone, suburban1, highway, and suburban2, the dominant contributors were from northwest, 
north, southwest, and south, respectively.  

The poorer performance of the use of component analysis may become future direction from 
the current study. One possible problem from component analysis was important values inside the data 
which were removed by ICA and PCA process. Another possibility is the 10 components extracted 
from the process may include unnecessary pattern that describe the nature of the data. If the latter is 
main issue, we should select components that are important based on weight loadings and component 
figures. 
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Table 6.24 Parameter estimates of NO2, PM10, and O3 with lag-1 independent 
variables 

Variables NO2 PM10 O3 
Intercept 1.656 (4.020) -2.025 (-2.895) 0.872 (1.763) 
Pollutants    
NO -0.006 (-0.916) 0.051 (4.731) -0.0397 (-5.275)  
NO2 0.685 (94.990) 0.020 (1.642) 0.041 (4.775)  
O3 0.005 (0.845) 0.004 (0.455) 0.744 (107.64) 
SO2 -0.0017 (-0.380)  -0.009 (-1.178) 0.004 (0.852)  
PM10 -0.015 (-3.819) 0.628 (93.013) 0.001 (0.198) 
CO 0.298 (7.205) 0.601 (8.521) 0.125 (2.532) 
Meteorological 
Wind Speed -0.096 (-4.615) -0.366 (-10.352) -0.052 (-2.064)  
Solar Gradiation -0.001 (-11.375) -0.0005 (-5.440) 0.0002 (3.012)  
Humidity -0.006 (-3.502) 0.008 (3.041) -0.005 (-2.450) 
Temperatures 0.013 (1.221) 0.120 (6.674) 0.027 (2.092) 
Peak session time (non-peak time as base) 
Peak morning 0.268 (10.473) 0.110 (2.506) 0.546 (18.086) 
Peak afternoon 0.257 (9.404) -0.015 (-0.325) -0.218 (-6.724) 
Holidays (non-holiday as 
base) 

-0.157 (-5.912) -0.298 (-6.448) 0.010 (0.335) 

Weekends (workdays as 
base) 

-0.012 (-0.689) 0.062 (2.099) 0.014 (0.719) 

Zones (city center as base) 
Trading 0.290 (3.543) 0.793 (5.670) 0.100 (1.031) 
Suburban1 0.263 (3.312) 1.094 (8.073) -0.055 (-0.581) 
Highway 0.240 (2.843) -0.037 (-0.258) -0.409 (-4.05) 
Suburban2 -0.157 (-1.216) 0.977 (4.543) 

 
0.253 (1.582) 

Wind direction (north as base for each station) 
Northeast1 -0.213 (-2.651) -0.235 (-1.731) -0.003 (-0.036) 
East1 -0.131 (-1.931) -0.310 (-2.678) -0.070 (-0.862) 
Southeast1 0.242  (2.929) 0.208 (1.483) 0.085 (0.859)  
South1 0.452 (6.073) 1.015 (7.995) 0.025 (0.282) 
Southwest1 0.298 (2.933) 0.360 (2.106) -0.020 (-0.162) 
West1 0.123 (1.644) 0.450 (3.518) 0.030 (0.339) 
Northwest1 0.328 (3.924) 0.198 (1.402) -0.061 (-0.605) 
Northeast2 -0.493 (-6.690) -0.465 (-3.705) 0.079 (0.903) 
East2 -0.731 (-10.169) -0.662 (-5.372) 0.004 (0.044)  
Southeast2 -0.709 (-9.142) -0.589 (-4.435) 0.028 (0.305)  
South2 -0.100 (-1.192) -0.032 (-0.228) -0.099 (-0.990)  
Southwest2 -0.039 (-0.536) 0.440 (3.511) -0.045 (-0.512) 
West2 -0.211 (-2.810) -0.045 (-0.353) -0.069 (-0.776) 
Northwest2 0.254 (2.890) 0.051 (0.340) 0.096 (0.915)  
Northeast3 -0.164 (-2.052) -0.347 (-2.556) -0.112 (-1.158) 
East3 -0.330 (-5.392) -0.649 (-6.170) -0.002 (-0.026) 
Southeast3 -0.154 (-1.768) -0.454 (-3.054) -0.026 (-0.247) 
South3 -0.023 (-0.315) 0.425 (3.399) -0.108 (-1.228) 
Southwest3 -0.302 (-4.772) 0.291 (2.687) 0.110 (1.47) 
West3 -0.672 (-9.153) -0.178 (-1.425) 0.100 (1.136) 
Northwest3 -0.111 (-1.273) -0.320 (-2.157) 0.281 (2.674) 
Northeast4 -0.135 (-1.443) -0.068 (-0.430) 0.064 (0.563) 
East4 -0.347 (-4.785) -0.061 (-0.493) 0.016 (0.186) 
Southeast4 -0.473 (-6.034) -0.272 (-2.042) -0.063 (-0.670) 
South4 -0.123 (-1.437) 0.656 (4.531) 0.038 (0.366)  
Southwest4 0.031 (0.396) 0.841 (6.257) 0.037 (0.388) 
West4 -0.043 (-0.586) 1.121 (9.024) 0.002 (0.028) 
Northwest4 -0.171 (-1.974) 0.162 (1.114) 0.077 (0.736) 
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Variables NO2 PM10 O3 
Northeast5 -0.031 (-0.231) -0.362 (-1.629) -0.335 (-1.999) 
East5 -0.034 (-0.282) -0.217 (-1.075) -0.042 (-0.275)  
Southeast5 -0.012  (-0.098) -0.307 (-1.546) -0.031 (-0.203) 
South5 0.126 (1.043) -0.175 (-0.875) 0.108 (0.714) 
Southwest5 0.023 (0.187) -0.460 (-2.283) 0.202 (1.323) 
West5 0.018 (0.145) -0.165 (-0.796) 0.084 (0.536) 
Northwest5 -0.042 (-0.298) -0.556 (-2.427) 0.149 (0.853) 
    
AR(1) parameter estimates -0.224 -0.140 -0.364 
    
AIC 44441.81 58558.89 52075.29 
BIC 44866.7 58983.79  52500.19  
Log likelihood -22164.9 -29223.44 -25981.65 

t-value is listed inside bracket 
 

6.11 Conclusions 

Time series data analysis in particular for forecasting air quality concentration is important 
especially for city where there has been a limited capability of monitoring stations that is able to 
capture the concentrations reliably. In Surabaya City, there are five monitoring stations, however, the 
data suffers from missing values, and therefore it is mandatory to have in hand an effective method to 
forecast 24-h data ahead of air quality. In this study, we attempted to forecast NO, NO2, PM10, and CO 
as these are traffic-related gases, associated with the fact of the sharp increase annually of vehicles in 
Surabaya. 

We compared and incorporated three time series model which were autoregressive model, 
denoted as AR(1), a Bayesian Markov Switching Model, denoted as BMS, and a modified Bayesian 
Markov Switching Model that incorporated the addition of error intervals to the prediction from BMS 
model. Judging to the forecasting result, we could not obtain clear performance pattern for BMS and 
MBMS model. For instance, for NO, the BMS model was better on City center, however, for NO2, the 
BMS model showed better performance than AR(1) in City center, Trading zone, and Suburban1. For 
PM10 and CO, the BMS model appeared to be better than AR(1) in Suburban1 (PM10), and City center, 
Suburban1, and Near highway (CO). This result indicates that the forecasting is highly affected by the 
training data set which was used to estimate parameters. Moreover, BMS model suffered if the training 
data set highly fluctuates.  

The MBMS model which we expect to improve the performance did not appear to help the 
forecasted values. For all sites and all air quality parameters, the model’s performances were not better 
than AR(1), only on several sites this model showed better performance. For example, for NO, MBMS 
model was best on City center, while for NO2, its performances were better on Suburban1 and near 
highway. The error intervals which resulted from the errors from the training data set highly affected 
the forecasting, because of the fluctuation and the range of the training data set, the error intervals 
might become huge, and therefore will enhance the magnitude of the forecast revision, either become 
highly positive (overestimate), or become highly negative (underestimate), which further cause high 
bias. The low performance of time series model led us to improve time series model using optimum 
order of parameters for AR and tried additional time series model ARIMA. 

We observed that the time series models using optimum order of parameters significantly 
improved the forecasting results both internal validation and for forecasted values. However, we did 
not see improved forecasting accuracy for PM10 indicating that the time series models were not able to 
predict PM10 concentrations. We attempted to increase the power of prediction by increasing the time 
interval 4-hours. However, only in the trading zone the prediction power of PM10 concentration 
improved. This suggested that time series model can be applied for NO2 in the case of Surabaya, its 
application is useful for city center and near highway zone.  

Based on above results, we concluded two things. First, the use of time series will be useful if 
the data source is not complicated. In this case, the model performance is good in the city center and 
highway because the pattern represents traffic from working and/school pattern. The use of time series 
models to sites where the emission sources are mixed is not recommended. Second, the use of longer 
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time interval improves prediction power, especially NO2. However, in the future we will attempt to 
use longer time interval with different aim of prediciton. One way to improve the model is by using 
independent component variables. We tried by using both 1-hour and 4-hour data. Unfortunately, the 
models did not improve the accuracy of prediction. In this case, it is recommended to use air quality 
data instead of independent components. The use of air quality highly depends on the character of sites. 
Time series models suit the best with sites where the emission sources are not so mixed. 

One particular problem to time series models is the forecasted values will converge to its mean 
value because of stationarity. For this purpose, we tried using updating algorithm to predict longer 
time frame in this case one week-ahead concentrations. When applying the updating algorithm for 
NO2 in the city center we found that the R2 of updated time series models were good. It also improved 
forecasting accuracy however, the R2 remain low indicating such models cannot be applied to predict 
longer time scale forecasting values. Furthermore the inclusion of exogenous variables might 
significantly improve the forecasted values. 

Linear models with original variables, ICs, and PCs extracted from six pollutants (NO, NO2, 
O3, SO2, CO, PM10 and meteorological factors (wind speed, solar gradiation, humidity and 
temperatures) were employed to predict 30-mins ahead of NO2, PM10, and O3. In addition, we included 
serial error correlation computation in the model for better model accuracy. As expected, the presence 
of NO had positive correlation with NO2, aside with CO, wind speed and solar gradiation. 
Furthermore, it was shown that meteorological factors had high role in the formation of O3. Faster 
wind speed reduced the concentration of NO2 while on the opposite increased the concentration of O3. 
This pattern was also found for humidity. Since PM10 is relatively inert particle gas with less than 
10um, using the 30-mins data we obtained, no significant correlation was found with other variables. 

During the test step, indicated by internal validation on two zones used for validation, the 
residual errors from GLS regression were generally lower than ICR and PCR for all pollutants 
observed (NO2, PM10, and O3). Removing the correlation among variables by using predictor variables 
from ICA and PCA did not improve the performance in the forecasting step. This means the 
components obtained from these two methods may also remove the necessary pattern of the temporal 
patterns that affect the prediction.  

Using 30-mins interval concentrations of NO2, PM10, and O3, we have indicated the effect of 
other pollutants effect and meteorological factors. The ultimate benefit on using such short interval 
data is we can exploit the benefit of wind direction instead of taking average if the data were hourly or 
even daily. Among meteorological factors, we found that the direction of wind highly affected 
pollutants concentrations, and therefore it is necessary to separate these variables according to their 
monitoring station location. Holidays and weekends had important role for prediction because the 
traffic-related emissions tended to be lower during holidays and weekends, due to lower traffic flow. A 
similar approach in the present study could be extended by incorporating days within week to the data 
from other stations on other cities to establish a prediction. The information will be very helpful for 
decision makers in polishing environmental policy related to air quality and human’s health. 

Overall in the prediction model, we found that the conventional GLS model with original 
variable was sufficient to capture and predict future value of pollutant levels. Further in the future 
direction, we aim to develop more robust time series model by improving the parameter estimation 
step. For instance, for the time series model we could decide best lag concentration that may effect 
current concentration and for variables from component analysis, we could pre-filter components by 
picking the best components leading to less variables to be incorporated inside the GLS model. 
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 Conclusions, Policy Suggestions, Future Direction, and Chapter 7
Limitations 

 
 
 
 
 

7.1 Summary Findings 

This study focuses on exploiting the use of monitoring data to understand the phenomena as 
well as to predict the air quality levels in a develoing city. First the study aims to obtain factors 
spatially and temporally that affect pollutant concentrations by using multilevel model. Based on the 
study, the author summarizes the remarkable findings in chapter 4 as follows:  
1. Day-to-day variation and meteorological factors were significant determinants of the air quality. 

The concentration profiles differed each day because of different magnitude of emission.  
2. The fluctuation of air pollutants concentration was mainly contributed by the dynamic changes 

within station. The variation of different spatial locations was not significant due to the limited 
number of stations as indicated by the small variation between stations. However, it can be noted 
that the difference of pollutant concentrations was significant, leading to a conclusion the 
concentration profile was unique for each station because the emission sources were different each 
other. 

3. Observing the difference between seasons, pollutant concentrations tended to be lower in wet 
season than in dry season for pollutants SO2, CO, and PM10. However, for pollutants that were 
directly emitted by vehicles e.g., NO and NO2, the concentrations during wet season were 
relatively higher. Since NO and NO2 are derived mainly from vehicles, therefore the increase of 
concentration may be caused by higher car emissions. This higher emission may be triggered by 
factors such as more traffic congestion occured in wet season or changes of on road users 
behavior. 

4. This study examined the concentration profile on each specified time interval each day when peak 
concentrations were achieved. It was confirmed that during both morning and evening peak time, 
the concentrations were significantly higher than non-peak time.  

5. By using longer time frame data, it was found that adding more green spaces had been useful to 
reduce the traffic related emission e.g., NO and PM10.  

 
As a summary of chaper 4, the author extracted an important conclusion and future resposible work. 
Firstly, it was concluded that the concentrations were significantly different across sites due to 
different emission sources and land use patterns. This means the concentrations were unique on each 
location. Secondly, it was required to find out a specific temporal pattern or temporal peak time frame 
in each location.  

Based on the summary, in chapter 5, the author employed ICA that can decompose the 
compricated mixture discribution into some sourse distributions. Furthermore, state-space model 
allows us to better understand how meteorological factors affect the dynamic changes in pollutant 
concentrations. It was found that ICA is very helpful to identify an unique pattern in each location as 
well as discriminative peak events of pollutants concentrations. In the case of NO2 mainly emitted 
from vehicles, the study observed similar a distribution pattern among city center, suburban1, and near 
highway zone. This pattern may reflect commuting and/or business activities during morning (530am 
to 10am) and evening peak time (330pm to 12pm). For pollutants that were emitted by more complex 
sources e.g., PM10, the temporal patterns between different locations were relatively more varied than 
NO2.  

The emission type of pollutants (NO2 and PM10) in each location was observed by 
investigating one by one monitoring station and matching them with wind speed and wind direction. 
Overall, the concentration of NO2 primarily was estimated to come from roads and streets. On the 
other hand, PM10 contributors may came from more varied sources e.g., business related buildings, 
apartments, and government buildings. Therefore, it is crucial for any researchers to first identify the 
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statistically dominant wind direction and what pollutants are most associated with the direction of the 
wind, then we can obtain the estimated cause of pollution. The observation of the effect of seasons can 
also be captured by ICA. It is shown that there were different source patterns of pollutants between dry 
and wet season in particular for NO2 and PM10. The concentration of NO2 tended to increase on wet 
season whereas the concentration of PM10 tended to be lower on dry season.  

ICA can be used to interpret the phenomena of air quality. Also this study demostrated the use 
of ICA for predicting pollutant levels. ICA is proven to determine temporal peak time frame, 
especially for patterns which are unique for each location or stations because its patterns as a function 
of time. The concentration between stations may differ because the pollutant levels depend on the 
nature of emission sources. For short time scale, ICA is useful to determine daily cycle, even for 
weekly and annual cycle. For annual cycle, this study can observe the effect of seasons to the 
pollutant’s concentrations. For prediction purposes, components resulted from ICA, on which these 
components are statistically independent one another, there are risks posed. If we include IC 
components into prediction models, there is a possibility some important noises contained within air 
quality data are removed because of ICA process which reduce the reliability and accuracy of 
predicted values. One solution is to reduce variables or selecting components which deemed to be 
representative or which has dominant variant among variables. If ICA produces 10 components, the 
author can select components used for the models if the patterns are clear by observing weight 
loadings and component figures. Overall, the future usage of ICA is wide in particular in air quality 
management. 

From ICA, it was found that there were two time peaks (morning and evening) in which the 
pollutants concentrations were high. However, the peak concentrations in the morning were significant 
than in the evening. We obtained this conclusion from the result obtained by using time series state-
space model, specifically for trading zone. Furthermore, the effect of meteorological factors had been 
important towards the pollutant levels, however the magnitude was smaller than other factors as 
indicated by the dynamic of intercept estimate parameter. The intercept parameter of O3 was 
particularly not too dynamic as the effect of meteorological factors played an important role for O3 
formation which strengthened the fact that O3 is formed by a series of reaction between precursor 
gases in the atmospheric layer. 

Prediction cannot be set apart from air quality management because of its ultimate benefit 
showing the prediction of air quality to expect public will react to this information. The purpose is to 
increase awareness of people and to reduce the risk of exposed to the pollution especially when the 
pollution breaches the permissible level. In Chapter 6 this study used two different approaches, the 
first approach was time series models and the second approach was a linear model, GLS model.  

In the time series models, the author employed several steps. At the first step, this study 
compared three different models of autoregressions to Bayesian approach model. The results showed 
the models did not have good prediction power to predict future values of air quality. Therefore in the 
second step, the author employed time series models AR and ARIMA with optimum order or 
parameters (lag concentrations). Even though the performance was better than models from the first 
step, we found that the models had a higher prediction power only in the city center and near highway 
zone for NO2. Therefore the author can conclude that applying time series models are good for sites 
with not so mixed emission sources, for instance in this case the time series models had better 
performance for NO2 only, not for PM10. Furthermore, the increase of time interval training data to 4-
hours had successfully improved the prediction power of the models. However, future works was 
necessary to find out best time interval data for the prediction. 

Because of partially lower performances of the prediction models, the study attempted to 
predict true distribution pattern obtained from ICA based on 1-hour and 4-hour NO2 data. However, 
the results were not better than if we use raw NO2 data. This might be due to the dynamic flactuation 
of independent components. Therefore we concluded that the application of time series models are 
better for site with the emission sources which are not so mixed and complicated. Furthermore, the use 
of longer interval data such 4-hour will improve the accuracy of predicted values.  

The use of time series models have been known of the simplicity. However, we obtained worst 
result of PM10 that might be due to the mixed source of emission sources and the dynamic factors that 
affect PM10. Therefore we attempted to include additional variables to predict air quality by using 
GLS.  In the GLS model we include meteorological variables e.g., wind direction and wind speed. We 
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compared the performance of conventional model with GLS models with the variables extracted from 
component analysis. The variation of pollutants can be well explained by the inclusion of 
meteorological variables. However, the addition of variables from component analysis (ICA and PCA) 
did not improve the accuracy. Therefore, using a conventional GLS model with original variables was 
sufficient to predict future pollutants concentrations. The development of time series model in the 
future has been challenging yet attractive due to the limitation of data obtained from sensors. 

 

7.2 Policy Suggestions 

7.2.1 Spatial Policy for each zone 

It is noted that the fluctuation of pollutants concentration highly depends on the dynamic 
within monitoring station. The spatial variability or here we refer to how each monitoring station 
affect the concentration of other station. In the case of Surabaya City, this kind of effect is minimal as 
suggested in Chapter 4. Therefore, this study focus on developing policy on each case by case, each 
location to location. However, it must be noted that based on our previous description that NO2 and 
PM10 have the most event when their concentrations breach the permissible level, therefore we focus 
and highlight the recommendations based on the results from these two pollutants.  

City center is marked with high traffic volume because it is located in central area of Surabaya. 
Its location is near with city government office. Not only is that, the location’s surroundings full with 
residential and business activities. The location of the sensor is next to the big river crossing the 
Surabaya City. There were many sessions when the concentration of NO2 and PM10 exceeded the 
permissible levels. To prevent or at least to reduce the possibility of the worse events, we propose a 
policy, specifically for this zone.  Based on the analysis from Chapter 4 and Chapter 5, the peak 
concentration of NO2 occurs between 6am to 10am in the morning and between 330pm to 10pm. 
These are resulted mainly from traffic flow, whereas for PM10, the peak concentration occurs between 
7am to 11am and in the evening there is a wider interval between 330pm to 12pm. In this zone, our 
recommendation is a long term one. A reduction of private car usage must be done by promoting 
shifting to public transport as much as possible. Policy maker could also consider limiting vehicles 
passing Gubernur Suryo Road on 6am to 10am. The limitation of vehicles may be done in form of 
restricting big vehicles, or the implementation of 3-in-1 route. The purpose is to reduce traffic flow. 
However, the implementation may pose high difficulty since the road is the main road where such 
segmentation may sacrifice people’s mobility. The transportation in this road is complex from school 
activities, working activities, to leisure activities. This type is significantly different with that in the 
trading zone where the emission source is mainly from a street connecting to a harbor which policy 
maker can manage with the involvement of many stakeholders and company users. 

In the trading zone, the rise of concentrations started from 9pm until 2~3am, which are due to 
traffic flow vehicles from/to Tanjung Perak Harbor as well as residential and business related 
activities. Therefore, the plausible policy suggestion is to manage the distribution of vehicles passing 
the Perak Timur and Perak Barat Road. Based on the study taken from Chapter 4 and 5, what we could 
propose is to set restriction between 7am to 10am for big vehicles from companies. This policy is for 
every day. The implementation of such policy will be hard initially, but despite letting people 
especially in the north of Surabaya, it is one that inevitably must be done. Alternative policy such as 
car free day or limiting access of small vehicles such as motorbikes or paratransit will not be effective 
because in this zone, there are many business, offices related activities. There are also medical clinic 
and hospitals. Therefore, our only option now is to limit the distribution of big vehicles. For this policy 
implementation, government should coordinate with companies and the ship companies to allow for 
any adjustment for this scenario. The details of this scenario are outside the scope of this study. 
However, one could initiate environmental cost-benefit because of the implementation of this 
proposal. 

Sukomanunggal region is located in the west part of Surabaya, we denote as suburban1 in the 
model. Specifically for this region, to prevent and reduce the events when pollutants, in particular NO2 
and PM10 exceeding threshold level, planting more trees is one option that policymaker should 
consider. However, we also realize that spaces may not be sufficient enough to allow for emission 
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reduction, therefore adding more routes or public transportation are still required in reducing the 
emission from private cars. 

Another complex source is observed in the Gayungsari monitoring station where this site is 
near with highway. The pollution level is highly related to the traffic in this highway because it 
connects Surabaya Cities with other neighbor sister cities such as Gresik, Porong, Sidoarjo. In order to 
reduce emission in this area, we must impose a longer term policy which is asking people’s awareness 
to install catalytic converter into the car’s exhaust. This is proven way to reduce the ambient 
concentration. However, the executive of the government, in this case the province government, 
should also consider in building more feasible, comfortable public transport between Surabaya to 
those cities. Even it requires commitment due to its long term implementation, the shift to public 
transport is the most effective way to reduce pollution, when suppressing the vehicle ownership may 
be viewed to be difficult. The policy of public transport shift is also recommended to be applied in 
Sukolilo monitoring station (suburban) on east side of Surabaya. Another recommendation as part of 
air quality management in the highway zone is to install display, often referred as visual message 
signboards (VMS) in each gate of highway. The display will show the current pollutants concentration 
as well as congestion level on each segment. Currently, there are several signs of traffic level e.g., 
congestion, smooth, within some segments in the highway. If another display of pollutant level could 
be added, at least two objectives for people can be achieved. First, when the event of both pollutants 
NO2 or PM10 exceeding the threshold level, the display will warn users and the highway users are 
expected to take preventive action e.g., taking alternative exit. Furthermore, to reduce health impacts 
users may wear mask or do other preventive treatment. This is part of changing travel and user’s 
behavior. Observing into a wider scale, users are expected to shift into public transport or with a 
comprehensive program, government should touch the awareness of car owners to install catalytic 
converter into their car or at least routinely check for emission values.  

The pollutant level shown in the display itself may be obtained from previous values or by 
using predicted values on which in the present study we propose several methods. Indirectly this 
policy may encourage users and increase awareness of air pollution. For this, the display should at 
least show the concentration and the preventive action suggested e.g., to wear mask, or take other exit. 

In the Sukolilo (suburban2) site, possible sources of the events were from traffic from/to which 
passed Arief Rahman Hakim Rd. To reduce further pollutants, it is mandatory to promote the use of 
public transport to this area. Providing adequate public transport will reduce the use of private 
vehicles, especially in the peak time between 7am-9am in the morning and around 6pm in the evening. 
A short term policy such as route adjustment may also be considered. 

The tables below contain all possible direct policies that were derived from the temporal 
variation listed above. The content of the table below (Table 7.1) are self-explanatory based on 
observation of Table 5.14. From all temporal time frames on which the NO2 and PM10 concentrations 
are high, we try to list possible direct policies that can be implemented. However, the candidate of 
policies are short listed and based on assumption that NO2 pollution is a result of transportation and 
PM10 pollution come from more mixed sources. A more integrated approach even though they seem 
cliché is still important to be displayed and proposed. 



179 

Table 7.1 Possible Direct Policies based on extracted components 
Sites Short term Long term 
City Center 
(Ketabang Kali) 

1) Restriction of vehicles passing Gubernur Suryo Road from 6am to 10am e.g., no 
big vehicles are allowed (truck) 
2) Staggered business hour 
3) Traffic route changes 

Modal shift from private to public 
transportation by improving the public 
transport services 
 

Trading (Perak) 1) Add more green spaces 
2) Restriction of vehicles passing Perak Barat and Perak Timur Rd. from 7am to 
10am 
3) Restriction of vehicles passing Perak Barat and Perak Timur Rd. around 5pm 
every week days 

Modal shift from private to public 
transportation by improving the public 
transport services 
 

Suburban1 
(Sukomanunggal) 

1) Adding more green spaces 
2) Staggered business hours of some shopping malls  
 

Modal shift from private to public 
transportation by improving the public 
transport services 
 

Near highway 
(Gayungsari) 

Providing air pollutant information on visual message signboards (VMS) to 
recommend drivers to change their route and wear the masks 
 
 

Expansion of public transport networks to 
neighbor cities 

Suburban2 
(Sukolilo) 

Proving air pollutant information on displays to recommend drivers to change their 
route 
 

Modal shift from private to public 
transportation by improving the public 
transport services 
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7.2.2 Implementing the Prediction of Air Quality 

In the present study we have explored the several methods to predict air pollutants. We 
have shown that the best model is not always the complex one as shown on Chapter 6. We tried to 
implement two states in differentiating the pattern of pollutants concentration using Bayesian 
Markov Switching approach. However, the results are in favor for simple AR(1) model. This 
actually suggests that the concentration of pollutants in Surabaya City, especially for 1-hour 
interval data, follows a perfect stationary assumption which leads better result in this model. AR(1) 
can be used in the future by any researchers to train newer data set and use the estimates to forecast 
up to next 24-h ahead. 

In general, we recommend the use of time series models for site that does not have complex 
land use. Time series models for predicting NO2 shows good performance than other pollutants 
such as PM10. Furthermore, using long term interval data for training data is encouraged.  

Since the air quality concentration follows a spatio-temporal pattern, many models are used 
to predict these gases. However, we still found them which are not taking into account time series 
serial autocorrelation for better prediction. Therefore we use Generalized Least Squared model by 
taking into account residual serial autocorrelation. In this scenario we include the spatial 
meteorological variables including the effect of wind direction. We observe all air quality spatio-
temporal model should include wind direction because the significant contribution of emission is 
unique for each location. We found this variable to be highly important in predicting the 
concentrations. Further finding includes the conclusion of not using independent variables 
extracted from component analysis. In the present study we show that it is better to use original 
variables (after transformation) instead of using variables from component analysis. Component 
analysis produces components that are statistically independent each other and the assumption is 
that these components represent true pattern of air pollutants. However, since the results in the 
present study are not in favor of using the variables from both PCA and ICA, we conclude that we 
must be very cautious when we use these methods as there is high change that they also remove 
significant patterns intrinsically within the fluctuation of the air pollutants concentration.  

7.3 Limitation of Study 

This section explains some limitations of the study. There are two major limitations of data 
availability and prediction models. Firstly, regarding the data source this study originally wishes to 
investigate spatio-temporal model, however Surabaya City does not have adequate monitoring 
stations. Therefore this study limits its discussion on temporal prediction. The furthest we can go is 
to develop a model with spatial indicators as independent variables. Secondly, we suffers missing 
data information. There are high rate of missing because of sensor disorder. In fact, we do not have 
at least 50% incomplete data from year 2003 to 2009. Therefore the author was forced to  
concentrate only two year data between year 2001 and year 2002. There is also a concern about the 
height of sensors which is 5 m above the ground. This fact must be taken into account for the 
quality of data. 

Regards on the findings from the models, the author attempted to figure out emission 
sources for pollutants. However, it was difficult to justify the results with evidence. This is because 
such data for validation is not exist and beyond the scope of this study. It is therefore necessary to 
focus in the future to collect databases of emission sources as well traffic volume to validate the 
results obtained in the present study. 

In addition for research and model limitation, the author suffers from poor performance of 
prediction model. Not only because of the highly dynamic of the data nature but also because of 
selecting the indicators such as time interval and lag of concentrations. This study did not deal with 
these two points due to the data quality again. In other words, the results of this study highly 
depends on the specific condition of Surabaya. Therefre, it is noted that the conclusions from this 
study are not generalized to other developing cities, but should be shared as a lesson. 
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7.4 Future Directions 

There are two main points of our future directions based on our limitations above. Firstly 
regarding the limitation of data source, more detail studies on spatial model will be started off with 
different data sources such as remote sensing mode. It is known that we can obtain information of 
NO2 pollutants from MODIS (Moderate Resolution Imaging Spectroradiometer) image. Therefore, 
the author will study the step of acquiring image of MODIS and thorough investigation using 
MODIS as a tool to obtain information about air pollutants over the region of Surabaya. 

The second future direction is to strengthen and deepen the methods to predict future 
concentration of air pollutants, in particular for O3, because O3 doesn’t come from direct emission 
instead it is resulted from a series of atmospheric reactions. There are many time series methods 
that can be applied which will be our next concern. 

Our third direction is to combine the air quality research with: 1) transportation mode 
policy, in particular in Surabaya City, 2) co-benefit analysis, and 3) social and quality of life. More 
temporal aggregation will be considered into model application and development. Furthermore, we 
will develop more model e.g., state-space model. 

Regarding to the limitation of study, the author would extend to investigate the effect of lag 
concentrations influence for prediction accuracy, and to explore the performances from different 
time intervals. As for GLS models with component analysis, tit is required to optimize the selection 
of variables from component analysis to be included in the GLS models. These works will improve 
overall performance of forecasted values. 
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