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Chapter 1

Introduction

In real data analysis, deciding the best model among a set of candi-
date models is an important problem. There have been a lot of literature
to consider such model selection problems from the various standpoints.
For example, a subset selection of explanatory variables in regression
models in order to predict the future data is often considered. It is com-
mon for a model selection method to measure the goodness of fit of the
model for the future data by the risk function based on the expected
Kullback-Leibler (KL) information (Kullback & Leibler, 1951). For ac-
tual use, we must estimate the risk function, which depends on unknown
parameters. The most famous estimator of the risk function is Akaike’s
information criterion (AIC) proposed by Akaike (1973, 1974). Since the
AIC can be simply defined as −2 × “the maximum log-likelihood” +2
× “the number of parameters”, the AIC is widely applied in chemomet-
rics, engineering, econometrics, psychometrics, and many other fields for
selecting appropriate models using a set of explanatory variables (for
details of statistical model selection, see e.g., Konishi, 1999; Burnham
& Anderson, 2002; Konishi & Kitagawa, 2008). The model having the
smallest AIC among the candidate models is regarded as the best model.

In addition, the order of the bias of the AIC to the risk function is
O(n−1), which indicates implicitly that the AIC sometimes has a non-
negligible bias to the risk function when the sample size n is not so large.
The AIC tends to underestimate the risk function and the bias of AIC is
apt to increase with the number of parameters in the model. Potentially,
the AIC has a tendency to choose the model that has more parame-
ters than the true model as the best model Shibata (1980). Combined
with these characteristics, the bias will cause a disadvantage whereby the
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model having the most parameters is easily chosen by the AIC among
the candidate models as the best model. Such problem is often resolved
by using a bias-corrected AIC (see e.g., Burnham & Anderson, 2002,
Chapter 2.4). A number of authors have investigated bias-corrected AIC
for various models. For example, Sugiura (1978) developed an unbiased
estimator of the risk function in linear regression models, which is the
UMVUE of the risk function reported by Davies, et al. (2006). Hurvich
& Tsai (1989) formally adjusted the bias of the AIC (called AICc) in
several models. In particular, the AICc is equivalent to Sugiura’s bias-
corrected AIC in the case of the linear regression model. Wong & Li
(1998) extended Hurvich and Tsai’s AICc to a wider model and veri-
fied that their AICc has a higher performance than the original AIC by
conducting numerical studies.

Unfortunately, except for the linear regression model, the AICc does
not completely reduce the bias of the AIC to O(n−2). As mentioned
previously, the goodness of fit of the model is measured by the risk func-
tion based on the expected KL information. Thus, obtaining a higher-
order asymptotic unbiased estimator of the risk function will allow us to
more accurately measure the goodness of fit of the model. This will fur-
ther facilitate the reasonable selection of variables. From this viewpoint,
Yanagihara, et al. (2003) and Kamo, et al. (2013) proposed the bias-
corrected AIC’s in the logistic model and the Poisson regression model,
respectively, each of which reduce the bias of the AIC to O(n−2) under
the assumption that the candidate model includes the true model. We
refer to the completely bias-corrected AIC to O(n−2) as the corrected
AIC (called CAIC). Frequently, the CAIC improves the performance of
the original AIC dramatically. This strongly suggests the usefulness of
the CAIC for real data analysis.

Nevertheless, the CAIC is rarely used in real data analysis because
the CAIC has been derived only in a few models. Moreover, since the
derivation of the bias is complicated, a great deal of practice is needed in
order to carry out the calculation of the CAIC if a researcher wants to use
the CAIC in a model in which the CAIC has not been derived. There-
fore, the application of the CAIC to real data analysis is not penetrated,
although the CAIC has better performance than the original AIC. If we
can obtain the CAIC in a small amount of time, the CAIC will become
a useful and user-friendly model selector.

In the former half of this paper, we attempt to expand the CAIC to
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two different models. One of the model considered is generalized linear
model (GLM), which is a broad model class proposed by Nelder & Wed-
derburn (1972), and another is the multinomial logistic regression model,
which is a generalization of the logistic regression model into multivari-
ate data. Hence, the multinomial logistic regression model is regarded
as a part of generalization of the GLM. The GLM can express a number
of statistical models by changing the distribution and the link function,
such as the normal linear regression model, the logistic regression model,
and the probit model, which are currently commonly used in a number of
applied fields (cf. Barnett & Nurmagambetov, 2010; Matas, et al., 2010;
Sánchez-Carneo, et al., 2011; Teste & Lieffers, 2011). On the other hand,
the multinomial logistic regression model is a regression model that gen-
eralizes a logistic regression by allowing more than two discrete response
variables. When categories are unordered, the multinomial logistic model
is one strategy often used. The multinomial logistic regression model has
been introduced in many textbooks for applied statistical analysis (see
e.g., Hosmer & Lemeshow, 2000, Chapter 8.1), and even now it is widely
used in many fields of applications for the prediction of probabilities of
different possible outcomes of categorically distributed response variables
by a set of explanatory variables (e.g., Briz & Ward, 2009; Choi, et al.,
2011; dell’Olio et al., 2011).

Generally, the CAIC can be obtained by removing the bias of the AIC
to the risk function from the AIC with the use of a consistent estimator
of the bias. The bias of the AIC to the risk function is then evaluated by
moments of the maximum likelihood estimator (MLE) of unknown pa-
rameters. Although such moments should be calculated for each specified
model, we emphasize that the moments do not remain in our formula-
tion of the CAIC since the moments are represented by the moments of
response variables. Practically speaking, the GLM and the multinomial
logistic regression model can be easily fitted to real data using the “glm”
and “vglm” function, respectively, in “R” (R Development Core Team,
2011) that is a free software environment for statistical computing and
graphics. Therefore, the CAIC is confirmed useful in real data analysis
since we can easily calculate the CAIC by using such software and the
model class we considered herein is wide and can be easily fitted to real
data.

In the latter of this paper, we consider the model selection problem
in the longitudinal data analyzed in biomedical and epidemiological re-
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searches, it is often the case that the responses within individuals are
dependent. The generalized estimating equation (GEE) approach was
developed by Liang & Zeger (1986) for estimating regression coefficients
in such correlated data; it is an expansion of the likelihood equation in
the GLM. Using a GEE relaxes the assumption of joint distribution for
the observations. We can use the GEE by only assuming a marginal dis-
tribution of each response and a working correlation structure, which is
allowed to include an unknown parameter. Furthermore, under certain
conditions, the GEE estimator is asymptotically normally distributed
and consistent even when the working correlation structure has been mis-
specified (Liang & Zeger, 1986). However, some studies have noted that
a misspecification of the working correlation structure may induce un-
desirable results. For instance, Crowder (Crowder, 1995) showed that a
misspecification of the working correlation structure may ruin the asymp-
totic normality of the GEE estimator, since the parameter of the working
correlation structure may not be minimized in the interior of the parame-
ter space. Fitzmaurice (Fitzmaurice, 1995) showed that a GEE estimator
is less efficient when an independent structure is assumed to the working
correlation matrix. Thus, it is important to adequately determine the
working correlation structure, although the primary use of the GEE ap-
proach is to estimate the regression parameter. Although we can estimate
the correct correlation structure by using an unstructured correlation ma-
trix, it is better not to use this as the working correlation matrix, since it
may increase the variance of the GEE estimator unless the response has
low dimensionality or the sample size is sufficiently large. Thus, we often
wish to obtain a correct and lower-dimensional correlation structure.

Recently, a number of papers have considered the selection of a work-
ing correlation structure. Besides the AIC we introduced above, there
are adequate criteria to select the best model. The Bayesian information
criterion (BIC) proposed by Schwarz (1978) are often used to select the
true model, due to the theoretical validity (Nishii, 1984; Shao, 1997).
The BIC is defined by replacing the penalty term of the AIC, which is
2 × “the number of parameters”, as “the logarithm of sample size” ×
“the number of parameters”. The BIC and the GIC (Nishii, 1984), which
is a generalization of the penalty term in the AIC and the BIC, can be
used to select the true model since their selection probabilities of the true
model goes to 1, which is called the consistency. However, we cannot use
the information criteria such as the AIC, the BIC and the GIC since the
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GEE approach does not assume the joint distribution of responses. Then,
Pan (2001) considered using the quasi-likelihood instead of the likelihood
and derived the quasi-likelihood under the independence model criterion
(QIC), which is an AIC-type criterion. These criteria may be used to
select a subset of explanatory variables rather than a working correlation
structure. The correlation information criterion (CIC) (Hin & Wang,
2009) was derived from the penalty term of the QIC, and this improves
the selection of the correlation structure. In addition, there have been
some methods proposed for selecting the best working correlation struc-
ture. Pan & Connett (2002) attempted to select the working correlation
structure that minimizes the mean squared prediction error estimated by
a resampling method. Hin, et al. (2007) proposed a criterion based on a
measurement between the true correlation and the candidate correlation
structure. Chen & Lazar (2012) used an empirical likelihood approach
to construct a model selection criterion. All of these works use different
ways to measure the difference between two matrices. Although there are
more studies that have considered the selection of the working correlation
structure, little attention has been paid to the theoretical properties of
these criteria.

Hence, we propose a GIC-type criterion that can be used to select
the true correlation structure. Furthermore, we attempt to determine
sufficient conditions for the GIC-type criterion to be consistent. Since
we do not assume a joint distribution, as discussed above, we need an
alternative measurement. Thus, we consider to use a loss function in-
stead of the likelihood. In this study, our criterion is constructed based
on Stein’s loss function (James & Stein, 1961), which is one of the fa-
mous loss function for matrices. Moreover, we can show the consistency
property of our criterion.

The remainder of the paper is organized as follows: In Chapter 2, we
propose the CAIC in the GLMs, which is based on the result of Imori,
et al. (2014). In Chapter 3, we propose the CAIC in the multinomial
logistic regression model, which is based on the result of Yanagihara, et al.
(2012). In Chapter 4, we propose the criterion in order to select the true
correlation structure and show the consistency of this criterion, which is
based on the result of Imori (2014). Technical details are provided in the
Appendix.
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Chapter 2

Simple Formula for
Calculating Bias-Corrected
AIC in Generalized Linear
Models

Chapter 2 is organized as follows: In Section 2.1, we consider a
stochastic expansion of the maximum likelihood estimator (MLE) in the
GLM. In Section 2.2, we propose a new information criterion by reducing
the bias of the AIC in the GLMs to O(n−2). In Section 2.3, we investigate
the performance of the proposed CAIC through numerical simulations.
Technical details are provided in Appendix A.1 and Appendix A.2.

2.1 Stochastic Expansion of the MLE in the GLM

The GLM considered herein is developed to allow us to fit regression
models for the response variables that follow a very general distribution
belonging to the exponential family, the probability density function of
which is given as follows:

f(y; θ, ϕ) = exp

{
θy − a(θ)

ϕ
+ b(y, ϕ)

}
, (2.1.1)

where a(·) and b(·) are known functions, the unknown parameter θ is
referred to as the natural location parameter, and ϕ is often referred to
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as the scale parameter. (For the details of the GLM, see, e.g., McCul-
lagh & Nelder, 1989; Meyers, et al., 2002). In the present section, we
assume that ϕ is known. The exponential family includes the normal,
binomial, Poisson, geometric, negative binomial, exponential, gamma,
and inverse normal distributions. Let the data consist of a sequence
{(yi,xi); i = 1, . . . , n}, where y1, . . . , yn are independent random vari-
ables referred to as response variables, and x1, . . . ,xn are p-dimensional
non-stochastic vectors referred to as explanatory variables. The expec-
tation of the response yi is related to the linear predictor ηi = x′

iβ by a
link function h(·), i.e., h(E[yi]) = h(µ(θi)) = ηi. For theoretical purposes,
we define u = (h ◦ µ)−1, i.e., θi = u(ηi). When h = µ−1, i.e., u is an
identity function, we say that h is the natural link function. For example,
the logistic regression model uses the natural link function. Finally, the
candidate model is expressed as

yi
Indep∼ f(yi; θi(β), ϕ),

where f(·) is given by (2.1.1). The p-dimensional unknown vector β can
be estimated by the maximum likelihood method. The joint probability
density function of y = (y1, . . . , yn)

′ is given by

f(y;β) =
n∏

i=1

f(yi; θi(β), ϕ) =
n∏

i=1

exp

{
θiyi − a(θi)

ϕ
+ b(yi, ϕ)

}
.

Hence, the log-likelihood function of the GLM is expressed as

ℓ(β;y) = log f(y;β) =
n∑

i=1

{
θiyi − a(θi)

ϕ
+ b(yi, ϕ)

}
.

Let β̂ be the MLE of β. Here, β̂ is given as the solution of the following
likelihood equation:

∂ℓ(β;y)

∂β
=

1

ϕ

n∑
i=1

(yi − ai1)ci1xi =
1

ϕ
X ′∆(y − µ) = 0p,

where

aij =
∂ja(θi)

∂θji
, cij =

∂jθi

∂ηji
,
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X = (x1, . . . ,xn)
′, ∆ = diag{c11, . . . , cn1}, µ = (a11, . . . , an1)

′, and 0p

is a p-dimensional vector of zeros. Note that a(θ) is a C∞-class function
and all of the orders of the moments of y exist in the interior Θ0 of the
natural parameter space Θ, and that aij is determined by the distribution
of the model and cij is determined by the link function. In using some of
the properties of the MLE, we have the following regularity assumptions
(see, e.g., Fahrmeir & Kaufmann, 1985):

(A1) : x′
iβ ∈ h(M), i = 1, . . . , n, for all β ∈ B,

(A2) : h is three times continuously differentiable,

(A3) : For all xi ∈ F , ci1 ̸= 0, i = 1, . . . , n,

(A4) : ∃n0 s.t. X ′X has full rank for n ≥ n0,

where B is an admissible open set in Rp for the parameter β, F is a
compact set for the regressors xi, and M denotes the image µ(Θ0). Con-
dition (A1) is necessary in order to obtain the GLM for all β. Condition
(A2) is necessary in order to calculate the bias. Conditions (A3) and
(A4) ensure that X ′∆V ∆X is positive definite for all β ∈ B, n ≥ n0,
where

V = ϕ diag{a12, . . . , an2}.

Moreover, we have the following additional conditions to assure strong
consistency and asymptotic normality of β̂, which can be derived by
slightly modifying the results reported by Fahrmeir & Kaufmann (1985):

(A5) : sequence {xi} lies in F with u(x′
iβ) ∈ Θ0, β ∈ B,

(A6) : lim infn→∞ λmin(X
′∆V ∆X/n) > 0,

(A7) : ∃c > 0, n1, λmin(X
′X) > cλmax(X

′X), n ≥ n1,

where λmin(A) and λmax(A) are the smallest and the largest eigenval-
ues of symmetric matrix A, respectively. According to Theorem 5 in
Fahrmeir & Kaufmann (1985), β̂ has strong consistency and asymptotic
normality under these conditions. Furthermore, from (A6),X ′∆V ∆X =
O(n), with n → ∞.

Based on the above conditions, β̂ can be formally expanded as follows:

β̂ = β +
1√
n
b1 +

1

n
b2 +

1

n
√
n
b3 +Op(n

−2). (2.1.2)
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Note that ∂ℓ(β̂;y)/∂β = 0p. By applying a Taylor expansion around

β̂ = β to this equation, the likelihood equation is expanded as follows:

0p =
1√
n
(g +G2b1) +

1

n

{
G2b2 +

1

2
G3(b1 ⊗ b1)

}
+

1

n
√
n

{
G2b3 +

1

2
G3(b1 ⊗ b2 + b2 ⊗ b1)

+
1

6
(Ip ⊗ b′1)G4(b1 ⊗ b1)

}
+Op(n

−2), (2.1.3)

where

g =
1√
n

∂ℓ(β;y)

∂β
=

1√
nϕ

n∑
i=1

(yi − ai1)ci1xi,

G2 =
1

n

∂2ℓ(β;y)

∂β∂β′ = − 1

nϕ

n∑
i=1

{ai2c2i1 − (yi − ai1)ci2}xix
′
i,

G3 =
1

n

(
∂

∂β′ ⊗
∂2

∂β∂β′

)
ℓ(β;y),

= − 1

nϕ

n∑
i=1

{ai3c3i1 + 3ai2ci1ci2 − (yi − ai1)ci3}(x′
i ⊗ xix

′
i),

G4 =
1

n

(
∂2

∂β∂β′ ⊗
∂2

∂β∂β′

)
ℓ(β;y)

= − 1

nϕ

n∑
i=1

{ai4c4i1 + 6ai3c
2
i1ci2 + 3ai2c

2
i2 + 4ai2ci1ci3

− (yi − ai1)ci4}(xix
′
i ⊗ xix

′
i).

Let us define Zj =
√
n(Gj − Mj), j = 2, 3, 4, where Mj = E[Gj], the

explicit forms of which are

M2 = − 1

nϕ

n∑
i=1

ai2c
2
i1xix

′
i,

M3 = − 1

nϕ

n∑
i=1

(ai3c
3
i1 + 3ai2ci1ci2)(x

′
i ⊗ xix

′
i),

M4 = − 1

nϕ

n∑
i=1

(ai4c
4
i1 + 6ai3c

2
i1ci2 + 3ai2c

2
i2 + 4ai2ci1ci3)(xix

′
i ⊗ xix

′
i).
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Thus, Zj, j = 2, 3, 4 can be expressed as

Z2 =
1√
nϕ

n∑
i=1

(yi − ai1)ci2xix
′
i,

Z3 =
1√
nϕ

n∑
i=1

(yi − ai1)ci3(x
′
i ⊗ xix

′
i),

Z4 =
1√
nϕ

n∑
i=1

(yi − ai1)ci4(xix
′
i ⊗ xix

′
i).

Based on the regularity assumptions, non-singularity of M2 is guaran-
teed. Furthermore, the regularity assumptions and conditions (A5), (A6)
and (A7) ensure the asymptotic normality of Zj. Hence, we can rewrite
(2.1.3) as

0p =
1√
n
(g +M2b1) +

1

n

{
M2b2 +

1

2
M3(b1 ⊗ b1) +Z2b1

}
+

1

n
√
n

{
M2b3 +

1

2
M3(b1 ⊗ b2 + b2 ⊗ b1)

+
1

6
(Ip ⊗ b′1)M4(b1 ⊗ b1) +Z2b2 +

1

2
Z3(b1 ⊗ b1)

}
+Op(n

−2).
(2.1.4)

Comparing the terms of the same order in both sides of (2.1.4), the
explicit forms of b1, b2, and b3 are obtained as follows:

b1 = −M−1
2 g,

b2 = −M−1
2

{
1

2
M3(b1 ⊗ b1) +Z2b1

}
,

b3 = −M−1
2

{
1

2
M3(b1 ⊗ b2 + b2 ⊗ b1) +

1

6
(Ip ⊗ b1)

′M4(b1 ⊗ b1)

+Z2b2 +
1

2
Z3(b1 ⊗ b1)

}
.
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2.2 Bias Correction of the AIC

The goodness of fit of the model is measured by the risk function
based on the expected KL information, as follows:

Risk = EyEy∗ [−2ℓ(β̂;y∗)],

where y∗ = (y∗1, . . . , y
∗
n)

′ is an n-dimensional random vector that is in-
dependent of y and has the same distribution as y. At the beginning
of this section, we derive the bias of −2ℓ(β̂;y) to Risk. Under ordinary
circumstances, calculation of the expectations of y under the specific dis-
tribution are needed in order to express the bias. However, based on the
characteristics of the exponential family, we can obtain the bias without
calculating the expectations of y under the specific distribution. The
explicit form of the bias can be expressed by several derivatives of the
log-likelihood function.

The bias when we estimate Risk by −2ℓ(β̂;y) is given as

B = Risk − Ey[−2ℓ(β̂;y)]

= EyEy∗ [2ℓ(β̂;y)− 2ℓ(β̂;y∗)]

=
2

ϕ

n∑
i=1

Ey[(yi − ai1)θ̂i]. (2.2.1)

By applying a Taylor expansion around β̂ = β to θ̂i = (h ◦µ)−1(x′
iβ̂), θ̂i

is expanded as

θ̂i = θi + (β̂ − β)′
∂θi
∂β

+
1

2
(β̂ − β)′

∂2θi
∂β∂β′ (β̂ − β)

+
1

6
(β̂ − β)′

{(
∂

∂β′ ⊗
∂2

∂β∂β′

)
θi

}
{(β̂ − β)⊗ (β̂ − β)}

+Op(n
−2).

(2.2.2)

Substituting the stochastic expansion of β̂ in (2.1.2) into (2.2.2) yields
the following:

θ̂i = θi +
1√
n
ci1x

′
ib1 +

1

n

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}
+

1

n
√
n

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}
+Op(n

−2).

(2.2.3)
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By combining (2.2.1) and (2.2.3), we obtain

B =
2

ϕ

n∑
i=1

E[(yi − ai1)θi] +
2√
nϕ

n∑
i=1

E[(yi − ai1)ci1x
′
ib1]

+
2

nϕ

n∑
i=1

E

[
(yi − ai1)

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}]
+

2

n
√
nϕ

n∑
i=1

E

[
(yi − ai1)

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}]
+O(n−2).

(2.2.4)

Recall that ai1 = ∂b(θi)/∂θi = E[yi]. This yields the first term of (2.2.4),
as follows:

2

ϕ

n∑
i=1

E[(yi − ai1)θi] = 0. (2.2.5)

Since E[gg′] = −M2, the second term of (2.2.4) can be calculated as

2√
nϕ

n∑
i=1

E[(yi − ai1)ci1x
′
ib1] = −2E[g′M−1

2 g] = 2p. (2.2.6)

The third term of (2.2.4) can be obtained as

2

nϕ

n∑
i=1

E

[
(yi − ai1)

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}]
=

3

n2ϕ

n∑
i=1

ai3c
2
i1ci2u

2
ii +

1

n3ϕ2

n∑
i,j

ai3c
3
i1(aj3c

3
j1 + 3aj2cj1cj2)u

3
ij

+O(n−2),

(2.2.7)

where
∑n

i,j refers to
∑n

i=1

∑n
j=1, and uij is the (i, j)th element of the

matrix U = XM−1
2 X ′, i.e.,

uij = x′
iM

−1
2 xj. (2.2.8)

12



Note that coefficient uij is determined by both the link function and the
distribution of the model. The derivation of (2.2.7) is shown in Appendix
A.1. Furthermore, the fourth term of (2.2.4) can be expanded as

2

n
√
nϕ

n∑
i=1

E

[
(yi − ai1)

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}]
= − 1

n2ϕ

n∑
i=1

(ai4c
4
i1 + 6ai3c

2
i1ci2 − ai2c

2
i2)u

2
ii

− 2

n3ϕ2

n∑
i,j

{(ai3c3i1)(aj3c3j1 + 3aj2cj1cj2) + 2(ai2ci1ci2)(aj2cj1cj2)}u3
ij

− 1

n3ϕ2

n∑
i,j

{(ai3c3i1)(aj3c3j1 + 3aj2cj1cj2) + 4(ai2ci1ci2)(aj2cj1cj2)}uiiuijujj

+O(n−2).
(2.2.9)

The detailed derivation of (2.2.9) is given in Appendix A.2.
Finally, by substituting (2.2.5), (2.2.6), (2.2.7), and (2.2.9) into (2.2.4),

we obtain the asymptotic expansion of B up to order n−1 as

B = 2p+
1

n
(w1 + w2) +O(n−2), (2.2.10)

where

w1 = − 1

nϕ

n∑
i=1

(ai4c
4
i1 + 3ai3c

2
i1ci2 − ai2c

2
i2)u

2
ii,

w2 = − 1

n2ϕ2

n∑
i,j

{
ai3c

3
i1(aj3c

3
j1 + 3aj2cj1cj2)

+ 4(ai2ci1ci2)(aj2cj1cj2)
}
(u3

ij + uiiuijujj).

(2.2.11)

By a simple calculation, we have ci1 = 1 and ci2 = 0 when the link
function is natural. Thus, if the model has the natural link function, w1

13



and w2 became simple, as follows:

w1 = − 1

nϕ

n∑
i=1

ai4u
2
ii,

w2 = − 1

n2ϕ2

n∑
i,j

ai3aj3(u
3
ij + uiiuijujj).

Equation (2.2.10) yields the following formula for the CAIC:

CAIC = AIC +
1

n
(ŵ1 + ŵ2),

where ŵ1 and ŵ2 are defined by replacing β in w1 and w2 with β̂. On
the other hand, if h is not the natural link function, we have to use
w1 and w2 in (2.2.11). Note that ŵ1 and ŵ2 depend only on several
derivatives. Therefore, we can comfortably obtain coefficients ŵ1 and ŵ2

using formula manipulation software.

2.3 Numerical Studies

In this section, we conduct numerical studies to show that the CAIC
is better than the original AIC. At the beginning of this section, we
examine the numerical studies for the frequencies of the model and the
prediction error of the best models selected by the criteria. We prepared
the eight candidate models M1, . . . ,M8 with n = 50 and 100. First, we
constructed an n × 8 explanatory variable matrix X = (x1, . . . ,xn)

′.
The first column of X is 1n, where 1n is an n-dimensional vector of ones,
and the remaining seven columns of X were defined by realizations of
independent dummy variables with binomial distribution B(1, 0.4). In
this simulation, we prepared two parameters β, as follows:

Case 1 : β = (0.7,−0.7)′, Case 2 : β = (0.1, 0.1, 0.3,−0.8)′.

We assume the following nested setting in our numerical studies in order
to simplify our simulation result. The explanatory variables matrix in the
jth model Mj consists of the first j columns of X, j = 1, . . . , 8. Thus, in
Case 1, the true model is the second model, and in Case 2, the true model
is the fourth model. We simulated 2,000 realizations of y = (y1, . . . , yn)

′

14



in the probit regression model, i.e., yi
Indep∼ B(1, pi), where pi = Φ(x′

iβ),
i = 1, . . . , n.

Tables 2.1 and 2.2 list the following properties.

(1) Selection-probability (freq.): the frequency of the model chosen by
minimizing the information criterion.

(2) Mean of the information criterion (mean): E[AIC] and E[CAIC],
which is estimated as the average of the AIC and CAIC, respec-
tively.

(3) Prediction error of the best model (PEB): the risk function of the
model selected by the information criterion as the best model, which
is defined as

PEB =
1

2000

2000∑
k=1

Ey∗ [−2ℓ(β̂Bk
;y∗)]

=
1

2000

2000∑
k=1

n∑
i=1

−2{pi log p̂(k)i + (1− pi)(1− log p̂
(k)
i )},

where y∗ is a future observation, β̂Bk
is the value of β̂ of the selected

model at the kth iteration, and p̂
(k)
i = Φ(x′

iβ̂Bk
).

The difference between the risk function and mean value of the infor-
mation criterion should be small since the information criterion is an
estimator of the risk function. The PEB is an important property be-
cause it is equivalent to the expected KL information between the true
model and the best model selected by the criteria.

From Tables 2.1 and 2.2, the model having the smallest risk (referred
to as the principle best model) coincides with the true model in all situ-
ations. We can see that the selection-probabilities and prediction errors
of the CAIC were improved in all situations in comparison with the AIC.

We simulated several other models and obtained similar results. Fur-
thermore, the mean value of the CAIC is an improved estimator of the
risk function when the differences between the risk function and mean
value of the AIC is non-negligible. We can see the above result from
Figures 2.1 and 2.2, which plot the risk function and mean value of the
AIC and CAIC for Case 1 and 2, respectively.
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Next, for the purpose of analyzing the GLM, we consider the data
reported in Brown (1980), who discussed an experiment in which 53
prostate cancer patients underwent surgery to examine their lymph nodes
for evidence of cancer. The response variable is the number of patients
with nodal involvement, and there were five predictor variables: X Ray,
Stage, Age, Acid, and Grade. We prepare all combinations of five vari-
ables as candidate models, i.e., 25 = 32 models. First, we assume that
the response variable yi is distributed according to B(1, pi), i = 1, . . . , n.
For the link function, we prepare two functions: the logistic link function
and the probit link function. In this analysis, we select the link functions
and variables simultaneously. Table 2.3 shows the selection-probability
of the model selected by minimizing the information criterion and the
estimated prediction error of the best model selected by the information
criterion. Note that we list only the selected models by the AIC or CAIC
in Table 2.3.
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Figure 2.1: Risk and average value of AIC and CAIC in Case 1

Figure 2.2: Risk and average value of AIC and CAIC in Case 2
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We divide the data into calibration sample data and validation sam-
ple data. The sample sizes of the calibration sample and the validation
sample were 43 and 10, respectively. The best subset of the variables
and the link function were selected by criteria derived from the calibra-
tion sample. The selection-probabilities were evaluated from only the
calibration sample. The prediction errors were estimated as follows. Let
dj = (d1j, . . . , dnj)

′ be an n-dimensional vector expressing a pattern to
leave out 10 data at the jth iteration, j = 1, . . . , 100, i.e., dij = 1 or 0
and

∑n
i=1 dij = 10, which are generated by using “sample” of the “R”

software. Moreover, we let β̂B,[−dj ] denote β̂[−dj ] of β of the best model

evaluated from the calibration sample, where β̂[−dj ] is given as

β̂[−dj ] = argmax
β

53∑
i=1

(1− dij) log f(yi;β).

Finally, the estimated PEB is given as

P̂EB =
43

100

100∑
j=1

1

10

53∑
i=1

dij{−2 log f(yi; β̂B,[−dj ])}.

Table 2.3 indicates that the models selected by the AIC were spread over
a wider area than those of the CAIC, although the model most selected
by the AIC is the same as that selected by the CAIC. In particular, the
selection probability of the model most selected by the CAIC is much
higher than that selected by the AIC. The estimated prediction error of
the CAIC was smaller than that of the AIC. Thus, the CAIC is thought
to have improved the accuracy of the original AIC.

Consequently, from Tables 2.1, 2.2, and 2.3, we recommend the use
of the CAIC rather than the AIC for selecting variables in the GLMs.
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Chapter 3

Bias-Corrected AIC for
Selecting Variables in
Multinomial Logistic
Regression Models

Chapter 3 is organized as follows. In Section 3.1, we give a stochastic
expansion of the MLE. In Section 3.2, the CAIC in the multinomial
logistic regression models is proposed. In Section 3.3, we verify that
the proposed CAIC has better performance than the AIC by conducting
numerical experiments. Technical details are provided in Appendix A.3
and Appendix A.4.

3.1 Stochastic Expansion of MLE

Suppose that the data consists of a sequence {(yi,xi); i = 1, . . . , n},
where y1, . . . ,ym are r-dimensional independent unordered discrete ran-
dom vectors, and x1, . . . ,xm are k-dimensional vectors of known con-
stants. Let β = (β1, . . . , βkr)

′ be a kr-dimensional unknown regres-
sion coefficient vector that is partitioned as β = (β′

1, . . . ,β
′
r)

′, where
βj is a k-dimensional vector denoted by βj = (β(j−1)k+1, . . . , βjk)

′. In
the multinomial logistic regression model, we assume that (yi0,y

′
i)
′ =

(yi0, yi1, . . . , yir)
′ is distributed according to the multinomial distribution

with the number of events ni (ni =
∑r

j=0 yij, n =
∑m

i=1 ni) and the cell
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probability vector (pi0(β),pi(β)
′)′, given by

pi0(β) =
1

1 +
∑r

j=1 exp(x
′
iβj)

, pi(β) = (pi1(β), . . . , pir(β))
′, (3.1.1)

where

pij(β) =
exp(x′

iβj)

1 +
∑r

k=1 exp(x
′
iβk)

, j = 1, . . . , r.

The MLE of β is obtained by maximizing the log-likelihood function. By
omitting the constant term, the log-likelihood function of the multinomial
logistic regression model in (3.1.1) is expressed as

ℓ(β) =
m∑
i=1

[
(yi ⊗ xi)

′β − ni log

{
1 +

r∑
j=1

exp(x′
iβj)

}]
.

Hence, the MLE of β is given by

β̂ = argmax
β

ℓ(β).

To evaluate a bias of the AIC to the risk function, a stochastic expansion
of β̂ is needed. The purpose of this section is to obtain the stochastic
expansion β̂ up to the order n−3/2. Two cases serve as a framework for
asymptotic approximations:

Case (i): nj’s are fixed, and m → ∞,

Case (ii): m is fixed, nj → ∞ and ρ−1
j = n/nj = O(1) for each j.

Although we only consider Case (i) in this paper, our formula can also
be applied to Case (ii).

Suppose that x1, . . . ,xm are members of an admissible compact set
F , i.e., x1, . . . ,xm ∈ F . To expand the MLE, we consider the following
regularity assumptions (see e.g., Fahrmeir & Kaufmann, 1985):

(B1) : β ∈ B, where B is a convex and open set in Rk,

(B2) : (Ir ⊗ xi)
′β ∈ Θ0, i = 1, 2, . . . , for all β ∈ B, where Θ0 is the

interior of the convex natural parameter space Θ ⊂ Rr,

(B3) : ∃m0 s.t.X
′X has the full rank form ≥ m0, whereX = (x1, . . . ,xm)

′.

22



Condition (B1) guarantees the uniqueness of the MLE if it exists. Condi-
tion (B2) is necessary to obtain the multinomial logistic regression model
for all β. Condition (B3) ensures that

∑m
i=1 niΣi(β) ⊗ xix

′
i is positive

definite for all β ∈ B, m ≥ m0, where

Σi(β) = diag{pi(β)} − pi(β)pi(β)
′. (3.1.2)

Moreover, we prepare the following additional conditions to assure weak
consistency and asymptotic normality of β̂, which can be derived by
slightly modifying the results in Fahrmeir & Kaufmann (1985):

(B4) : sequence {xi} lies in F with (Ir ⊗ xi)
′β ∈ Θ0, β ∈ B,

(B5) : lim infm→∞ λ(
∑m

i=1 niΣi(β)⊗ xix
′
i/n) > 0, where λ(A) indicates

the smallest eigenvalue of symmetric matrix A.

According to Corollary 1 in Fahrmeir & Kaufmann (1985), β̂ has weak
consistency and asymptotic normality under these conditions. Further-
more, from (B5),

∑m
i=1 niΣi(β) ⊗ xix

′
i = O(n) is satisfied. Under the

assumption that all conditions are satisfied, β̂ can be formally expanded
as follows:

β̂ = β +
1√
n
b1 +

1

n
b2 +

1

n
√
n
b3 +Op(n

−2), (3.1.3)

where b1, b2, and b3 are kr-dimensional random vectors. The purpose of
this section is achieved by specifying b1, b2, and b3.

Since the log-likelihood function ℓ(β) is a maximum at β = β̂, the

first derivative of ℓ(β) becomes 0kr at β = β̂, i.e.,

∂ℓ(β)

∂β

∣∣∣∣
β=β̂

=
m∑
i=1

[(yi ⊗ xi)− ni{pi(β̂)⊗ xi}] = 0kr, (3.1.4)

where 0kr is a kr-dimensional vector of zeros. To expand equation (3.1.4),
we prepare the following three matrices consisting of the second, third,
and fourth derivatives of −ℓ(β)/n:

G2(β) = − 1

n

∂2ℓ(β)

∂β∂β′ , G3(β) = − 1

n

(
∂

∂β′ ⊗
∂2

∂β∂β′

)
ℓ(β),

G4(β) = − 1

n

(
∂2

∂β∂β′ ⊗
∂2

∂β∂β′

)
ℓ(β).

23



The result of the first derivative of ℓ(β) in (3.1.4) implies the following
explicit forms of G2(β), G3(β), and G4(β) (details of the derivations
are given in Appendix A.3):

G2(β) =
m∑
i=1

ρi

{
∂pi(β)

∂β′

}
⊗ xi =

m∑
i=1

ρi{Σi(β)⊗ xix
′
i}, (3.1.5)

G3(β) =
m∑
i=1

ρi

{(
∂

∂β′ ⊗
∂

∂β′

)
pi(β)

}
⊗ xi =

m∑
i=1

ρi{∆3,i(β)⊗ xix
′
i},

(3.1.6)

G4(β) =
m∑
i=1

ρi

{(
∂2

∂β∂β′ ⊗
∂

∂β′

)
pi(β)

}
⊗ xi =

m∑
i=1

ρi{∆4,i(β)⊗ xix
′
i},

(3.1.7)

where ∆3,i(β) and ∆4,i(β) are kr × (kr)2 and (kr)2 × (kr)2 matrices,
respectively, which are defined by

∆3,i(β) =
r∑

a=1

pia(β)e
′
a ⊗ x′

i ⊗ qi,a(β)qi,a(β)
′ − pi(β)

′ ⊗ x′
i ⊗Σi(β),

∆4,i(β) =
r∑

a=1

pia(β)qi,a(β)qi,a(β)
′ ⊗ xix

′
i ⊗ {qi,a(β)qi,a(β)

′ − pi(β)pi(β)
′}

−Σi(β)⊗ xix
′
i ⊗ {Σi(β)− pi(β)pi(β)

′}

−
r∑
a,b

pia(β)pib(β)qi,a(β)qi,b(β)
′ ⊗ xix

′
i ⊗ (eae

′
b + ebe

′
a).

(3.1.8)

Here, ej is an r-dimensional jth coordinate unit vector whose jth element
is 1 and others are 0, qi,a(β) = ea − pi(β), and the notation

∑r
a1,...,aj

means
∑r

a1=1 · · ·
∑r

aj=1.

Applying a Taylor expansion around β̂ = β to equation (3.1.4) yields

1

n

m∑
i=1

[{yi − nipi(β)} ⊗ xi]

= G2(β)(β̂ − β) +
1

2
G3(β){(β̂ − β)⊗ (β̂ − β)}

+
1

6
{Ikr ⊗ (β̂ − β)′}G4(β){(β̂ − β)⊗ (β̂ − β)}+Op(n

−2).

(3.1.9)
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Notice that the order of the left-hand side of equation (3.1.9) is Op(n
−1/2).

By comparing the Op(n
−1/2), Op(n

−1), and Op(n
−3/2) terms after substi-

tuting (3.1.3) into (3.1.9), b1, b2, and b3 in (3.1.3) are specified as

b1 =
1√
n
G2(β)

−1

m∑
i=1

[{yi − nipi(β)} ⊗ xi],

b2 = −1

2
G2(β)

−1G3(β)(b1 ⊗ b1),

b3 = −1

2
G2(β)

−1

{
G3(β)(b1 ⊗ b2 + b2 ⊗ b1)

+
1

3
(Ikr ⊗ b′1)G4(β)(b1 ⊗ b1)

}
.

(3.1.10)

We use the stochastic expansion of β̂ with b1, b2, and b3 to evaluate
the bias of the AIC to the risk function. The stochastic expansion is
regarded as a special case of the general stochastic expansion of MLE,
e.g., in McCullagh & Cox (1986).

3.2 Main Result

Let L(β) be a loss function defined by

L(β) = E[−2ℓ(β)]

= −2
m∑
i=1

ni

[
(p∗

i ⊗ xi)
′ β − log

{
1 +

r∑
j=1

exp(x′
iβj)

}]
, (3.2.1)

where p∗
i is the cell probability vector of the true model. Then, the risk

function consisting of the predictive KL information is given by

Risk = E[L(β̂)]. (3.2.2)

In this section, we propose a CAIC that improves the bias of the AIC
to O(n−2) under the assumption that the candidate model includes the
true model. Notice that the crude AIC is defined by

AIC = −2ℓ(β̂) + 2kr. (3.2.3)
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Thus, it is sufficient to derive the bias of −2ℓ(β̂) to Risk for evaluating
the bias of the AIC. Also notice that p∗

i = p(β) holds when the candi-

date model includes the true model. Then, the bias of −2ℓ(β̂) to Risk
under the assumption that the candidate model includes the true model
is expanded as

B = Risk − E[−2ℓ(β̂)]

= 2
m∑
i=1

E[[{yi − nipi(β)} ⊗ xi]
′β̂]

= 2
√
nE[b′1G2(β)β̂]

= 2
√
nE[b′1G2(β)β] + 2E[b′1G2(β)b1] +

2√
n
E[b′1G2(β)b2]

+
2

n
E[b′1G2(β)b3] +O(n−2),

(3.2.4)

where matrices G2(β), G3(β), and G4(β) are given by (3.1.5), (3.1.6),
and (3.1.7), respectively, and kr-dimensional random vectors b1, b2, and
b3 are given by (3.1.10). In many cases of practical interest, a moment
of statistic can be expanded as a power series in n−1 (see e.g., Hall, 1992,
p. 46). Hence, the order of the remainder term of (3.2.4) is shown by
O(n−2), not O(n−3/2). Indeed, an n−3/2 term of the stochastic expan-

sion of
∑m

i=1[{yi − nipi(β)} ⊗ xi]
′β̂ in the bias can be expressed as a

fifth-order polynomial of elements of b1. Since b1 has an asymptotic
normality, the expectation of an odd-order polynomial of elements of b1
becomes O(n−1/2). Given this fact, the order of the remainder term of
the expansion in (3.2.4) is O(n−2).

From elementary linear algebra and the definition of b2 in (3.1.10),
b′1G2(β)b2 in (3.2.4) is expressed by the function of b1 as

b′1G2(β)b2 = −1

2
b′1G3(β)(b1 ⊗ b1)

= −1

2
tr{G3(β)(b1 ⊗ b1b

′
1)}. (3.2.5)

Since the derivative is invariant to changes in the order of differentiation,
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we have

b′1G3(β)(b1 ⊗ b2) = b′1G3(β)(b2 ⊗ b1)

= b′2G3(β)(b1 ⊗ b1)

= (b1 ⊗ b1)
′G3(β)

′b2.

It follows from the above equations and the definition of b2 in (3.1.10)
that

b′1G3(β)(b1 ⊗ b2 + b2 ⊗ b1)

= 2(b1 ⊗ b1)
′G3(β)

′b2

= −(b1 ⊗ b1)
′G3(β)

′G2(β)
−1G3(β)(b1 ⊗ b1)

= −tr{G3(β)
′G2(β)

−1G3(β)(b1b
′
1 ⊗ b1b

′
1)}.

Thus, from the above result and the definition of b3 in (3.1.10), b′1G2(β)b3
in (3.2.4) is expressed by the function of b1 as

b′1G2b3 = −1

2
b′1G3(β)(b1 ⊗ b2 + b2 ⊗ b1)

− 1

6
b′1(Ikr ⊗ b′1)G4(β)(b1 ⊗ b1)

=
1

2
tr{G3(β)

′G2(β)
−1G3(β)(b1b

′
1 ⊗ b1b

′
1)}

− 1

6
tr{G4(β)(b1b

′
1 ⊗ b1b

′
1)}.

(3.2.6)

Hence, equations (3.2.5) and (3.2.6) indicate that the expansion of B in
(3.2.4) can be calculated until the fourth moment of b1.

Since b1 consists of a centralized yi, we can directly calculate the
expectations in (3.2.4) by centralized moments of y1, . . . ,ym. Then, all
combinations of multivariate moments of yi − nipi(β) are needed until
the fourth-order. However, it is troublesome to calculate the third- and
fourth-order multivariate moments of yi − nipi(β), because we have to
consider all combinations of the multivariate moments. For simplicity,
the relations between the moments of b1 and the expectations of the
derivatives of −ℓ(β) with respect to β are used instead of calculating the
multivariate moments of yi − nipi(β). It is easy to obtain E[b1] = 0kr

because E[yi] = nipi(β). From the result of the first derivative of ℓ(β)
in (3.1.4) and the definition of b1 in (3.1.10), we can see that

∂ℓ(β)

∂β
=

√
nG2(β)b1.
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Notice that E[∂ℓ(β)/∂β] = 0kr holds and G2(β), G3(β), and G4(β) are
constant matrices. By applying general formulas of expectations (A.4.5)
in Appendix A.4 to the case of the multinomial logistic regression model,
the following equations are obtained:

nG2(β) = nG2(β)E[b1b
′
1]G2(β),

nG3(β) = n
√
nG2(β)E[b

′
1 ⊗ b1b

′
1](G2(β)⊗G2(β)),

nG4(β) = n2{G2(β)⊗G2(β)}E[b1b′1 ⊗ b1b
′
1]{G2(β)⊗G2(β)}

− n2(Ik2r2 +Kkr){G2(β)⊗G2(β)}
− n2vec(G2(β))vec(G2(β))

′,

where vec(A) is an operator to transform a matrix to a vector by stacking
the first to the last column of A, i.e., vec(A) = (a′

1, . . . ,a
′
m)

′ when
A = (a1, . . . ,am) (see e.g., Harville, 1997, Chapter 16.2), and Km is the
m2 ×m2 vec-permutation matrix such that vec(B) = Kmvec(B

′) when
B is an m × m matrix (see e.g., Harville, 1997, Chapter 16.3). These
results lead us to the simple expression of moments of b1 as

E[b1b
′
1] = G2(β)

−1, (3.2.7)

E[b′1 ⊗ b1b
′
1] =

1√
n
G2(β)

−1G3(β){G2(β)
−1 ⊗G2(β)

−1}, (3.2.8)

E[b1b
′
1 ⊗ b1b

′
1] = (Ik2r2 +Kkr){G2(β)

−1 ⊗G2(β)
−1}

+ vec(G2(β)
−1)vec(G2(β)

−1)′ +O(n−1).
(3.2.9)

The result in (3.2.7) implies that

E[b′1G2(β)b1] = E[tr{G2(β)b1b
′
1}]

= tr{G2(β)G2(β)
−1}

= kr. (3.2.10)

Similarly, from (3.2.8) and (3.2.5), we have

E[b′1G2(β)b2]

= −1

2
E[tr{G3(β)

′(b′1 ⊗ b1b
′
1)}]

= − 1

2
√
n
tr[G3(β)

′G2(β)
−1G3(β){G2(β)

−1 ⊗G2(β)
−1}]. (3.2.11)
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Notice that G3(β)Kkr = G3(β) holds because the derivative is invariant
to changes in the order of differentiation. By using this fact and equation
(3.2.9), the expectation of the first part in (3.2.6) is given by

E[tr{G3(β)
′G2(β)

−1G3(β)(b1b
′
1 ⊗ b1b

′
1)}]

= tr[G3(β)
′G2(β)

−1G3(β)(Ik2r2 +Kkr){G2(β)
−1 ⊗G2(β)

−1}]
+ vec(G2(β)

−1)′G3(β)
′G2(β)

−1G3(β)vec(G2(β)
−1)

+O(n−1)

= 2tr[G3(β)
′G2(β)

−1G3(β){G−1
2 (β)⊗G−1

2 (β)}]
+ vec(G2(β)

−1)′G3(β)
′G2(β)

−1G3(β)vec(G2(β)
−1)

+O(n−1).

(3.2.12)

Moreover, since the derivative is invariant to changes in the order of
differentiation, we can see that G4(β)Kkr = G4(β) and

tr[G4(β){G2(β)
−1 ⊗G2(β)

−1}] = vec(G2(β)
−1)′G4(β)vec(G2(β)

−1).

By using the above relations and equation (3.2.9), the expectation of the
second part in (3.2.6) is given by

E[tr{G4(β)(b1b
′
1 ⊗ b1b

′
1)}]

= tr[G4(β)(Ik2r2 +Kkr){G2(β)
−1 ⊗G2(β)

−1}]
+ vec(G2(β)

−1)G4(β)vec(G2(β)
−1) +O(n−1)

= 3tr[G4(β){G2(β)
−1 ⊗G2(β)

−1}] +O(n−1). (3.2.13)

Hence, from equations (3.2.6), (3.2.12), and (3.2.13), we can see that

E[b′1G2b3]

= tr[G3(β)
′G2(β)

−1G3(β){G2(β)
−1 ⊗G2(β)

−1}]

+
1

2
vec(G2(β)

−1)′G3(β)
′G2(β)

−1G3(β)vec(G2(β)
−1)

− 1

2
tr[G4(β){G2(β)

−1 ⊗G2(β)
−1}] +O(n−1).

(3.2.14)

Consequently, by substituting E[b′1G2(β)β] = 0, and equations (3.2.10),

(3.2.11), and (3.2.14) into (3.2.4), the bias of −2ℓ(β̂) to Risk is expanded
as

B = 2kr +
1

n
{α1(β) + α2(β)− α3(β)}+O(n−2),
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where coefficients α1(β), α2(β), and α3(β) are given by

α1(β) = tr[G3(β)
′G2(β)

−1G3(β){G2(β)
−1 ⊗G2(β)

−1}],
α2(β) = vec(G2(β)

−1)′G3(β)
′G2(β)

−1G3(β)vec(G2(β)
−1),

α3(β) = tr[G4(β){G2(β)
−1 ⊗G2(β)

−1}].

The CAIC can then be defined by adding an estimated B to −2ℓ(β̂), i.e.,

CAIC = −2ℓ(β̂) + 2kr +
1

n
{α1(β̂) + α2(β̂)− α3(β̂)}. (3.2.15)

The CAIC improves the bias of the AIC to O(n−2), although the order of
the bias of the AIC is O(n−1), i.e., the following equations are satisfied:

Risk − E[AIC] = O(n−1), Risk − E[CAIC] = O(n−2),

where Risk is the risk function given by (3.2.2).

3.3 Numerical Studies

In this section, we conduct numerical studies to show that the CAIC
in (3.2.15) works better than the crude AIC in (3.2.3). To compare the
performances of the AIC and the CAIC, the following two properties are
considered:

(I) the selection probability: the frequency of the model chosen by
minimizing the information criterion.

(II) the prediction error of the best model (PEB): the risk function of
the best model chosen by the information criterion, which is defined
by

PEB = E[L(β̂B)],

where L(β) is the loss function given by (3.2.1) and β̂B is the MLE
of β under the best model.

These two properties were evaluated by a Monte Carlo simulation with
10,000 iterations. The information criterion with the higher selection
probability of the true model and the smaller prediction error of the best
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model is regarded as a high-performance model selector. In the basic
concept of the AIC, a good model selection method is one that chooses
the best model so that the prediction is improved. Hence, PEB is a more
important property than is the selection probability.

We prepared eight candidate models M1, . . . ,M8, with m = 20 and
50, ni = 5, i = 1, . . . ,m and r = 2. An m×8 matrix of explanatory vari-
ables X = (x1, . . . ,xm)

′ was constructed as follows. The first column of
X is 1m, where 1m is anm-dimensional vector of ones, and the remaining
seven columns of X were generated randomly from the binomial distri-
bution B(1, 0.5). Simulation data were generated from the multinomial
distribution with the true cell probability consisting of β∗ = (β∗

1
′,β∗

2
′)′.

In this simulation study, we prepared two β∗, as follows:

Case 1 :β∗
1 = (0, 0.2,−1.0, 0, 0, 0, 0, 0)′,

β∗
2 = (−0.1,−0.4, 1.2, 0, 0, 0, 0, 0)′,

Case 2 :β∗
1 = (−0.5, 0, 0, 0, 0, 0, 0, 0)′,

β∗
2 = (0.7, 0, 0, 0, 0, 0, 0, 0)′.

The matrix of explanatory variables in Mj consists of the first j columns
of X, j = 1, . . . , 8. Thus, the true model in Case 1 is M3, and the true
model in Case 2 is M1.

Table 3.1 shows the two properties (I) and (II). In the table, the
selection probability of the true model is marked in bold. From this
table, we can see that the selection probabilities and the prediction errors
of the CAIC were improved in comparison with those of the AIC in
all situations. We simulated several other models and obtained similar
results.
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Chapter 4

Consistent Selection of
Working Correlation
Structure in Generalized
Estimating Equations
Analysis Based on Stein’s
Loss Function

Chapter 4 is organized as follows: In Section 4.1, we introduce the
GEE; In Section 4.2, we propose a criterion for selecting the true cor-
relation structure; In Section 4.3, we derive its asymptotic behavior; In
Section 4.4, we demonstrate the performance of our criterion in finite
samples by presenting a numerical studies.

4.1 Generalized Estimating Equations

In this section, we introduce the GEE approach. For individuals i =
1, . . . , n, we have an m-dimensional response vector yi = (yi1, . . . , yim)

′

and an m×p explanatory variable matrix Xi = (xi1, . . . ,xim)
′. We allow

the components of yi to be correlated, but we assume that y1, . . . ,yn are
independent. Furthermore, we do not predetermine the distribution of
each yi. In the GEE approach, we assume the marginal density function
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of yij to be the GLM, i.e.,

f(yij; θij, ϕ) = exp

{
θijyij − a(θij)

ϕ
+ b(yij, ϕ)

}
,

where a(·) and b(·) are known functions, the unknown parameter θij is
referred to as the natural location parameter, and ϕ is referred to as
the unknown scale parameter. Suppose that θij ∈ Θ0, where Θ0 is the
interior of the natural parameter space Θ. In order to use some of the
properties of the MLE, we assume regularity assumptions; for details,
see Fahrmeir & Kaufmann (1985) and Chapter 2. The linear predictor
ηij = x′

ijβ is related to µij = E[yij] by a link function h(·), i.e., h(µij) =
ηij, where β is a p-dimensional unknown regression coefficient. From the
properties of the GLM, µij = ∂a(θij)/∂θij and Var[yij] = ϕ∂2a(θij)/∂θ

2
ij.

By using a working correlation matrix R, the covariance matrix of the
ith observation yi is assumed to be

Vi = ϕA
1/2
i RA

1/2
i , i = 1, . . . , n, (4.1.1)

whereAi = diag{∂2a(θi1)/∂θ
2
i1, . . . , ∂

2a(θim)/∂θ
2
im}. Examples of a work-

ing correlation structure are

Independent (Indep.) : R = Im,
Exchangeable (Ex.) : (R)jk = α,
AR− 1 : (R)jk = α|j−k|,
Unstructured (Unst.) : (R)jk = αjk,

(4.1.2)

where (R)jk denotes the (j, k)th element of R, and α and αjk are corre-
lation parameters. Note that R is symmetric and its diagonal elements
are all ones, since it is a correlation matrix. Using this notation, the
GEE is defined as follows.

Definition 4.1.1. The GEE for β with a working correlation matrix R
is defined as follows:

n∑
i=1

D′
iV

−1
i (yi − µi) = 0p, (4.1.3)

whereDi = Ai∆iXi, ∆i = diag{∂u(ηi1)/∂ηi1, . . . , ∂u(ηim)/∂ηi1}, u(ηij) =
θij, and Vi was defined in (4.1.1).
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Denote β̂(R) as a GEE estimator with R, which is given by solving
(4.1.3) with respect to β. In actual use, unless R is a constant matrix, we
need to estimate R. Let α be a correlation parameter constructing R,
i.e., R = R(α). There are several methods for estimating α; see Wang
& Carey (2003). In Section 4.4, we estimate α by using a moment-based
method.

4.2 Selection of Working Correlation Structure

In order to select the true correlation structure, let M be a set of
working correlation structures. For instance, the elements of M are some
particular working correlation structures introduced in (4.1.2). Examples
with (4.1.2) are illustrated in Section 4.4. We assume M to involve at
least one correct correlation structure. Let R∗ be the true correlation
matrix. For theoretical purposes, we divide M into an over-fitted set
M+ and an under-fitted set M−, i.e.,

M+ = {R ∈ M|∃α ∈ K s.t. R(α) = R∗},

where K is the parameter space, which is the compact set and M− =
M∖M+. For all R ∈ M+, we assume that α ∈ K0 where R(α) = R∗
and K0 is the interior of K. Let the true correlation structure be R0,
which has the fewest number of parameters among M+.

Let µ̂i, Âi, and ϕ̂ be estimators of µi, Ai, and ϕ, respectively. For
selecting R0 from M, we define the following discrepancy function that
is based on Stein’s loss function:

SLn(R) = n log det(R) + ntr(R̂UR
−1), (4.2.1)

where

(R̂U)jk =

{
ϕ̂−1

∑n
i=1 ε̂ij ε̂ik/n, j ̸= k,

1, j = k,

ε̂i = (ε̂i1, . . . , ε̂im)
′ = Â

−1/2
i (yi − µ̂i).

(4.2.2)

The adequacy of using SLn(·) for R0 has been determined. It is known
that for any correlation matrix R,

log det(R) + tr(R−1R∗) ≥ log det(R∗) +m
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holds with equality if and only if R = R∗. Stein’s loss function is almost
the same as −2 × the Gaussian log-likelihood. Crowder (1985); Wang &
Carey (2003) considered using the Gaussian log-likelihood for estimating
the unknown parameter.

Recall that one of our aims is to derive a GIC-type criterion. The
GIC is defined as −2 × the maximum log-likelihood + the number of
parameters × the tuning parameter. By using (4.2.1) instead of the
likelihood for yi, a GIC-type criterion is constructed.

Definition 4.2.1. For a working correlation structure R = R(α) ∈ M,
the GIC-type criterion is

GICγn(R) = SLn(R̂) + qγn, (4.2.3)

where R̂ = R(α̂), α̂ is an estimator of α, q is the number of elements
in α, and γn is a tuning parameter.

Note that in the definitions of (4.2.1) and (4.2.3), we have not specified

the working correlation structure for estimating the GEE estimator β̂ or
the way in which to estimate ϕ̂ and α̂.

By minimizing the GIC, the best working correlation structure is
obtained.

Definition 4.2.2. The best correlation structure selected by the GIC
proposed in (4.2.3) is

Rbest = argmin
R∈M

{GICγn(R)}.

Note that Rbest depends on the data as well as the way in which ϕ
and α are estimated.

4.3 Properties of Criteria

In this section, we show the consistency of the GIC proposed in
(4.2.3). Suppose that the mean structure has been correctly specified.
The proof can then be obtained in a way similar to that in Nishii (1984).
The following assumptions are sufficient conditions for the consistency of
the GIC:

(C1) For all R ∈ M, β̂ − β = Op(n
−1/2) and ϕ̂− ϕ = Op(n

−1/2).
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(C2) u(ηij) is continuously differentiable.

(C3) For all R ∈ M+, α̂−α = Op(n
−1/2) and R(·) is differentiable

function at α, where α satisfies R(α) = R∗.

Note that if we consider β̂ = β̂(Im) and

ϕ̂ =
1

nm− p

n∑
i=1

ε̂′iε̂i, (4.3.1)

where ε̂i is defined in (4.2.2), then it follows from Liang & Zeger (1986)
that the condition (C1) is established under the condition (C2). Under
the conditions (C1)-(C3), an evaluation of the selection probability for
an over-fitted correlation structure is obtained.

Theorem 4.3.1. Under the conditions (C1)-(C3), for all R ∈ M+ ∖
{R0}, when γn → ∞,

lim
n→∞

Pr(Rbest = R) = 0.

Proof of Theorem 4.3.1. Denote q and q∗ as the number of elements of
correlation parameter for R and R0, respectively. From Definition 4.2.2,
the selection probability of R is

Pr(Rbest = R) ≤ Pr{GICγn(R0) > GICγn(R)}
= Pr{SLn(R̂0)− SLn(R̂) > (q − q∗)γn}. (4.3.2)

We evaluate SLn(R̂0) and SLn(R̂). Under the conditions (C1)-(C3), for
all R ∈ M+, it is established from the Taylor theorem that

n1/2|(R̂)jk − (R∗)jk| = n1/2|(R(α̂))jk − (R∗)jk|
≤ n1/2|∂(R(α̃))jk/∂α||α̂−α|,

where R(α) = R∗ and α̃ is a q-dimensional vector between α̂ and α.
Hence, it follows from α̂−α = Op(n

−1/2) that

R̂−R∗ = Op(n
−1/2). (4.3.3)

On the contrary, let

R∗
U =

1

nϕ

n∑
i=1

A
−1/2
i (yi − µi)(yi − µi)

′A
−1/2
i .
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Since all elements of R∗
U are a differentiable function of β and |β̂−β| =

Op(n
−1/2), it follows from a Taylor theorem that

R̂U −R∗
U = Op(n

−1/2).

Note that in Θ0, a(θ) is a C∞-class function and all of the orders of
the moments of yij exist and are bounded for all n under the regularity
assumptions Fahrmeir & Kaufmann (1985). Additionally, these assure
that the maximum eigenvalue of A−1

i is upper bounded. Therefore, since
the variance of

√
n|(R∗

U)jk − (R∗)jk| is also upper bounded. Hence, by
applying the Chebyshev inequality, for all δ > 0, there exists a positive
constant C such that

Pr{
√
n|(R∗

U)jk − (R∗)jk| ≥ δ} ≤ C,

where 1 ≤ j, k ≤ m. From this result

R∗
U = R∗ +Op(n

−1/2).

Hence,

R̂U = R∗ +Op(n
−1/2). (4.3.4)

From (4.3.3) and (4.3.4), Ω̂ = R̂
−1/2
U R̂R̂

−1/2
U − Im = Op(n

−1/2). Hence,

for all ℓ = 1, . . . ,m, λℓ(Ω̂) = Op(n
−1/2), where λℓ(A) is the ℓth smallest

eigenvalue ofA for any matrixA. Hence, by applying a Taylor expansion,
for all ℓ = 1, . . . ,m,

log{1 + λℓ(Ω̂)} = λℓ(Ω̂)− 1

2
λℓ(Ω̂)2 +Op(n

−3/2),

{1 + λℓ(Ω̂)}−1 = 1− λℓ(Ω̂) + λℓ(Ω̂)2 +Op(n
−3/2).

Hence,

log det(Im + Ω̂) =
m∑
ℓ=1

log{1 + λℓ(Ω̂)}

= tr(Ω̂)− 1

2
tr(Ω̂2) +Op(n

−3/2),

tr{(Im + Ω̂)−1} =
m∑
ℓ=1

{1 + λℓ(Ω̂)}−1

= m− tr(Ω̂) + tr(Ω̂2) +Op(n
−3/2).
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By substituting above results into (4.2.1),

SLn(R̂) = n log det(R̂) + ntr(R̂UR̂
−1)

= n log det(R̂U) + n log det(R̂R̂−1
U ) + ntr{(Im + Ω̂)−1}

= n log det(R̂U) + n log det(Im + Ω̂) + ntr{(Im + Ω̂)−1}
= n log det(R̂U) + nm+ ntr(Ω̂2)/2 +Op(n

−1/2)

= n log det(R̂U) + nm+Op(1). (4.3.5)

It follows from (4.3.5) that SLn(R̂0) − SLn(R̂) = Op(1). Note that
the definition of R0 implies that q − q∗ > 0 holds. By substituting these
results into (4.3.2), since γn → ∞ as n → ∞, then

lim
n→∞

Pr(Rbest = R) = 0.

A similar result can be shown for the under-fitted structure.

Theorem 4.3.2. Under the conditions (C1)-(C3), for all R ∈ M−,
when γn/n → 0,

lim
n→∞

Pr(Rbest = R) = 0.

Proof of Theorem 4.3.2. As in (4.3.2), the selection probability of
R ∈ M− is evaluated by

Pr(Rbest = R) ≤ Pr

{
1

n
SLn(R̂0)−

1

n
SLn(R̂) >

(q − q∗)γn
n

}
,

where q and q∗ are the number of elements in R ∈ M− and R0, respec-
tively. SLn(R̂0)/n− SLn(R̂)/n can be separated by using

ρ(A) = − log det(A) + tr(A)−m
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as follows:

1

n
SLn(R̂0)−

1

n
SLn(R̂)

= − log det(R̂−1
0 ) + tr(R̂UR̂

−1
0 ) + log det(R̂−1)− tr(R̂UR̂

−1)

= −{log det(R̂UR̂
−1
0 )− tr(R̂UR̂

−1
0 ) +m}

+ {log det(R∗R̂
−1)− tr(R∗R̂

−1) +m}
+ {log det(R̂UR

−1
∗ )− tr(R̂UR

−1
∗ ) +m}

− tr{(R̂UR
−1
∗ − Im)(R∗R̂

−1 − Im)}
= ρ(R̂UR̂

−1
0 )− ρ(R∗R̂

−1)− ρ(R̂UR
−1
∗ )

− tr{(R̂UR
−1
∗ − Im)(R∗R̂

−1 − Im)}.
(4.3.6)

It follows from R̂U → R∗ and R̂0 → R∗ in probability under the condi-
tions (C1)-(C3) that

ρ(R̂UR̂
−1
0 ) = op(1), ρ(R̂UR

−1
∗ ) = op(1). (4.3.7)

Let c = infα∈K ρ(R∗R(α)−1). If c = 0, from the compactness of K,
there exists a sequence {αℓ|ℓ = 1, 2, . . .} such that αℓ → α∗ ∈ K which
satisfies ρ(R(αℓ)

−1R∗) → 0. Since ρ(A) is a continuous function on
AL = {A|ρ(A) ≤ L} for all L > 0, R(α∗) = R∗ holds which contradicts
that R ∈ M−. Hence, c > 0 is established.

Here, for all A,B ∈ AL, and t ∈ [0, 1]

tρ(A) + (1− t)ρ(B)− ρ(tA+ (1− t)B)

= log det{tAB−1 + (1− t)Im} − log det(tAB−1)

=
m∑
ℓ=1

[log{tλℓ(AB−1) + (1− t)} − log{tλℓ(AB−1)}] ≥ 0.

The last inequality is established from the fact that the logarithm is
concave. Hence, ρ(tA+(1− t)B) ≤ tρ(A)+ (1− t)ρ(B) ≤ L holds, and
then tA+ (1− t)B ∈ AL. Therefore, AL is a convex set.

Let A[t] = Im + t(R̂−1R∗ − Im). Then, ρ(A[0]) = ρ(Im) = 0 and

ρ(A[1]) = ρ(R̂−1R∗) ≥ c. Since for all L > 0, AL is the convex set and
ρ(·) is continuous on AL, there exists t ∈ [0, 1] such that ρ(A[t]) = c. It
follows from the convexness of

g(t) = ρ(A[t]) + tr{(R̂UR
−1
∗ − Im)(A[t] − Im)}
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that

ρ(R∗R̂
−1) + tr{(R̂UR

−1
∗ − Im)(R∗R̂

−1 − Im)}

=
g(1)− g(0)

1− 0
≥ g(t)− g(0)

t− 0
≥ g(t)

= c+ tr{(R̂UR
−1
∗ − Im)(A[t] − Im)}

≥ c−
√

tr{(R̂UR
−1
∗ − Im)2}tr{(A[t] − Im)2}

≥ c−
√

tr{(R̂UR
−1
∗ − Im)2}b (4.3.8)

where

b = max{tr{(A− Im)
2}|ρ(A) = c} > 0.

Denote E as the event that {tr{(R̂UR
−1
∗ − Im)

2} < c2/(4b)} and Ec as
the complement of E. Under the event E, from (4.3.8), it is established
that

ρ(R∗R̂
−1) + tr{(R̂UR

−1
∗ − Im)(R∗R̂

−1 − Im)}
≥ c− c/2 = c/2.

(4.3.9)

On the other hand, we can see that

Pr{−ρ(R∗R̂
−1)− tr{(R̂UR

−1
∗ − Im)(R∗R̂

−1 − Im)} < −c/2}
= Pr{ρ(R∗R̂

−1) + tr{(R̂UR
−1
∗ − Im)(R∗R̂

−1 − Im)} > c/2}
= 1− Pr{ρ(R∗R̂

−1) + tr{(R̂UR
−1
∗ − Im)(R∗R̂

−1 − Im)} ≤ c/2}
= 1− Pr({ρ(R∗R̂

−1) + tr{(R̂UR
−1
∗ − Im)(R∗R̂

−1 − Im)} ≤ c/2} ∩ E)

− Pr({ρ(R∗R̂
−1) + tr{(R̂UR

−1
∗ − Im)(R∗R̂

−1 − Im)} ≤ c/2} ∩ Ec).

Thereby, it follows from (4.3.9) that

Pr{−ρ(R∗R̂
−1)− tr{(R̂UR

−1
∗ − Im)(R∗R̂

−1 − Im)} < −c/2}
≥ 1− Pr(Ec) → 1,

(4.3.10)

where the last convergence is established from R̂U → R∗ in probability.
From (4.3.6), (4.3.7), (4.3.10), and (q−q∗)γn/n → 0, for all R ∈ M−,

lim
n→∞

Pr(Rbest = R) = 0.
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From these theorems, a sufficient condition for the consistency of our
criterion is obtained.

Theorem 4.3.3. Suppose γn → ∞ and γn/n → 0. Under the conditions
(C1)-(C3),

lim
n→∞

Pr(Rbest = R0) = 1

holds.

Proof of Theorem 4.3.3. The probability of the true correlation struc-
ture selection is divided into two parts, as follows:

Pr(Rbest = R0) = 1− Pr(Rbest ̸= R0)

≥ 1−
∑

R∈M∖{R0}

Pr(Rbest = R)

≥ 1−
∑

R∈M+∖{R0}

Pr(Rbest = R)−
∑

R∈M−

Pr(Rbest = R).

From Theorem 4.3.1 and Theorem 4.3.2, it follows that

lim
n→∞

Pr(Rbest = R0) = 1.

4.4 Numerical Studies

In this section, we present numerical studies to illustrate the perfor-
mance of our criterion in a finite sample situation. We prepared γn = 2,
2 log log n and log n, respectively, as the AIC-type, the Hannan & Quinn’s
IC(HQIC)-type proposed in Hannan & Quinn (1979), and the BIC-type
tuning parameters for the GIC proposed in (4.2.3). For convenience, the
GICs with γn = 2, 2 log log n and log n are called the AIC, the HQIC
and the BIC, respectively. We compared some properties of the AIC, the
HQIC and the BIC with those of the QIC and the CIC. The QIC and
the CIC for the working correlation structure R are defined as follows:

QIC(R) = ϕ̂−1

n∑
i=1

m∑
j=1

L(µ̂ij; yij) + 2tr(V̂sΣ̂I),

CIC(R) = tr(V̂sΣ̂I),
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where µ̂ij is the estimator of µij, L(µij; yij) = yij log µij+(1−yij) log(1−
µij),

Vs = Σ−1
R

{
n∑

i=1

D′
iV

−1
i (yi − µi)(yi − µi)

′V −1
i Di

}
Σ−1

R ,

ΣR =
n∑

i=1

D′
iV

−1
i Di, ΣI = ϕ−1

n∑
i=1

D′
iA

−1
i Di,

where V̂s and Σ̂I are estimators of Vs and ΣI obtained by substituting
the GEE estimator β̂(R) and α̂ into β and α, respectively, and Vi is
defined in (4.1.1). Note that the CIC is the same as half of the second

term in the QIC. Throughout this section, we assumed β̂ = β̂(Im) and

that ϕ̂ is as given in (4.3.1), for calculating the GIC.
We prepared four candidate models, each with 50, 100, 200, 500 and

1,000 samples. For each sample, we had a four-dimensional response vec-
tor yi = (yi1, . . . , yi4)

′ and a 4×2 explanatory matrixXi = (xi1, . . . ,xi4)
′.

Let xij = (1, xij)
′, and assume that the xij were independent and identi-

cally distributed as the uniform distribution U(−1, 1). We assumed that
yij was distributed as B(1, pij) according to a logistic regression model,
i.e., pij = 1/{1 + exp(−x′

ijβ)} and β = (1,−1)′. A set of candidate cor-
relation structures M was considered in the following case, introduced
in (4.1.2):

M = {“Indep.”, “Ex.”, “AR− 1”, “Unst.”}.

In all simulations, we assumed that the true correlation structure of yi

was an element of M, as defined below:

Indep. : R0 = I4,

Ex. : R0 = I4/2 + 141
′
4/2, where 14 = (1, 1, 1, 1)′,

AR-1 : (R0)jk = 2−|j−k|,

Unst. : R0 = H
−1/2
d HH

−1/2
d , where H = (hij)1≤i,j≤4 = W ′W +

I4, (W )jk
i.i.d.∼ U(−1, 1) and Hd = diag{h11, . . . , h44}.

The correlation parameterα was estimated for each candidate correlation
structure by using the following moment-based method:

Ex. : α̂ =
2

nm(m− 1)

n∑
i=1

∑
j>k

ε̂ij ε̂ik,
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AR-1 : α̂ =
1

n(m− 1)

n∑
i=1

m−1∑
j=1

ε̂ij ε̂i,j+1,

Unst. : α̂jk =
1

n

n∑
i=1

ε̂ij ε̂ik.

Note that the conditions (C1)-(C3) held in this simulation setting. The
BIC satisfied the assumptions of Theorem 4.3.3 but the AIC satisfies only
the assumption of Theorem 4.3.2. For the situations described above, we
simulated 1,000 repetitions.

In the numerical studies, we considered three measurements to evalu-
ate the criteria: the selection probability of the true structure, the predic-
tive mean squared error (PMSE), and the average value of the variance

of β̂ (VAR) with the best correlation structure selected by each criterion.
The definitions of the PMSE and VAR are

PMSE :
1

1000

1000∑
ℓ=1

n∑
i=1

{µ̂(ℓ)
i,best − µi}′V −1

i {µ̂(ℓ)
i,best − µi},

VAR :
1

1000

1000∑
ℓ=1

∣∣∣∣β̂(ℓ)
best −

1

1000

1000∑
ℓ=1

β̂
(ℓ)
best

∣∣∣∣2,
where µ̂

(ℓ)
i,best and β̂

(ℓ)
best are the estimators of µi = E[yi], and β is from

the best correlation structure in the ℓth iteration.
Tables 4.1-4.4 listed the results of the selection probability and the

ratios of the PMSE and VAR to the values of the BIC. From Tables
4.1-4.4, we could look the consistency of the BIC, and we saw that on
many occasions, the QIC and CIC did not select the true correlation
structure frequently. In all cases except “Unstructured” with n = 50
and n = 100, the BIC performed better than other criteria. When the
sample size was small, the improvements from the BIC were especially
good. In the “Unstructured” case, the AIC, the HQIC and the CIC
performed better than the BIC. This result implied that the penalty
term of the BIC was too big to select the “Unstructured” correlation
structure when the sample size was not large in comparison with the true
correlation parameter. The QIC and the CIC might have a tendency to
select the over-fitted structure rather than the true structure. Based on
these results, we recommend using the BIC to select the true correlation
structure when the sample size is large. However, if the sample size is
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Table 4.1: Selection probability, predictive mean square error, and variance of
β̂ when the true correlation structure is “Independent”

n IC Indep. Ex. AR-1 Unst. PMSE VAR

50 AIC 704 138 109 49 1.00 1.00
HQIC 824 91 66 19 1.00 1.00
BIC 924 44 30 2 1.00 1.00
CIC 39 50 52 859 1.05 1.06
QIC 121 103 124 652 1.01 1.01

100 AIC 714 120 123 43 1.00 1.00
HQIC 858 66 72 4 1.00 1.00
BIC 941 31 28 0 1.00 1.00
CIC 57 64 56 823 1.03 1.04
QIC 124 125 113 638 1.01 1.01

200 AIC 719 123 112 46 1.00 1.00
HQIC 870 62 65 3 1.00 1.00
BIC 956 21 23 0 1.00 1.00
CIC 54 49 56 841 1.01 1.01
QIC 116 106 130 648 1.00 1.01

500 AIC 716 119 124 41 1.00 1.01
HQIC 907 43 49 1 1.00 1.00
BIC 976 9 15 0 1.00 1.00
CIC 49 55 59 837 1.01 1.01
QIC 116 109 125 650 1.01 1.01

1000 AIC 727 103 119 51 1.00 1.00
HQIC 914 42 44 0 1.00 1.00
BIC 983 9 8 0 1.00 1.00
CIC 52 58 42 848 1.00 1.00
QIC 115 121 112 652 1.00 1.00

Note: The selection probability of the true structure is marked in bold.
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Table 4.2: Selection probability, predictive mean square error, and variance of
β̂ when the true correlation structure is “Exchangeable”

n IC Indep. Ex. AR-1 Unst. PMSE VAR

50 AIC 0 680 39 281 1.02 1.01
HQIC 0 826 46 128 1.01 1.00
BIC 0 908 54 38 1.00 1.00
CIC 0 103 25 872 1.02 1.00
QIC 134 253 78 535 1.12 1.26

100 AIC 0 727 1 272 1.01 1.01
HQIC 0 899 8 93 1.01 1.01
BIC 0 974 9 17 1.00 1.00
CIC 0 121 8 871 1.02 1.02
QIC 112 291 69 528 1.14 1.21

200 AIC 0 703 0 297 1.00 1.00
HQIC 0 930 0 70 1.00 1.00
BIC 0 992 0 8 1.00 1.00
CIC 0 117 0 883 1.00 1.00
QIC 120 307 52 521 1.13 1.20

500 AIC 0 726 0 274 1.00 1.00
HQIC 0 959 0 41 1.00 1.00
BIC 0 1000 0 0 1.00 1.00
CIC 0 107 0 893 1.00 1.00
QIC 107 339 46 508 1.12 1.18

1000 AIC 0 731 0 269 1.00 1.00
HQIC 0 968 0 32 1.00 1.00
BIC 0 1000 0 0 1.00 1.00
CIC 0 136 0 864 1.00 1.00
QIC 131 336 56 477 1.17 1.25

Note: The selection probability of the true structure is marked in bold.
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Table 4.3: Selection probability, predictive mean square error, and variance of
β̂ when the true correlation structure is “AR-1”

n IC Indep. Ex. AR-1 Unst. PMSE VAR

50 AIC 0 32 756 212 1.02 1.02
HQIC 0 38 883 79 1.01 1.01
BIC 0 38 940 22 1.00 1.00
CIC 0 13 118 869 1.04 1.05
QIC 105 126 264 505 1.15 1.24

100 AIC 0 3 802 195 1.01 1.01
HQIC 0 7 938 55 1.00 1.00
BIC 0 9 985 6 1.00 1.00
CIC 0 4 129 867 1.01 1.01
QIC 87 125 289 499 1.14 1.22

200 AIC 0 0 797 203 1.01 1.01
HQIC 0 0 951 49 1.00 1.00
BIC 0 0 997 3 1.00 1.00
CIC 0 0 123 877 1.01 1.01
QIC 78 140 307 475 1.12 1.19

500 AIC 0 0 803 197 1.00 1.00
HQIC 0 0 977 23 1.00 1.00
BIC 0 0 1000 0 1.00 1.00
CIC 0 0 120 880 1.00 1.00
QIC 81 152 296 471 1.11 1.17

1000 AIC 0 0 810 190 1.00 1.00
HQIC 0 0 985 15 1.00 1.00
BIC 0 0 1000 0 1.00 1.00
CIC 0 0 147 853 1.00 1.00
QIC 83 141 326 450 1.11 1.18

Note: The selection probability of the true structure is marked in bold.
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Table 4.4: Selection probability, predictive mean square error, and variance of
β̂ when the true correlation structure is “Unstructured”

n IC Indep. Ex. AR-1 Unst. PMSE VAR

50 AIC 41 1 51 907 0.93 0.91
HQIC 113 4 98 785 0.95 0.94
BIC 326 3 179 492 1.00 1.00
CIC 0 1 2 997 0.93 0.92
QIC 31 21 167 781 0.99 1.00

100 AIC 0 0 4 996 0.99 0.99
HQIC 10 0 13 977 0.99 0.99
BIC 52 1 64 883 1.00 1.00
CIC 0 0 0 1000 0.99 0.99
QIC 24 16 163 797 1.06 1.04

200 AIC 0 0 0 1000 1.00 1.00
HQIC 0 0 0 1000 1.00 1.00
BIC 0 0 1 999 1.00 1.00
CIC 0 0 0 1000 1.00 1.00
QIC 13 8 174 805 1.08 1.06

500 AIC 0 0 0 1000 1.00 1.00
HQIC 0 0 0 1000 1.00 1.00
BIC 0 0 0 1000 1.00 1.00
CIC 0 0 0 1000 1.00 1.00
QIC 7 4 157 832 1.07 1.06

1000 AIC 0 0 0 1000 1.00 1.00
HQIC 0 0 0 1000 1.00 1.00
BIC 0 0 0 1000 1.00 1.00
CIC 0 0 0 1000 1.00 1.00
QIC 9 5 164 822 1.08 1.06

Note: The selection probability of the true structure is marked in bold.
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not large, we recommend using the AIC or the HQIC for a conservative
selection.
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Chapter 5

Conclusions and Discussions

In this paper, we proposed three model selection criteria in models
related to the GLMs, from two different perspectives, i.e., bias-correction
and consistency of the model selection. In the former of the present pa-
per, we derived a simple formula for calculating the CAIC in the GLM
and the multinomial logistic regression model. The proposed CAIC im-
proves the bias of the AIC to O(n−2), although the order of the bias of
the AIC is O(n−1). Furthermore, both models are widely used in the real
data analysis. The GLM can express a number of statistical models by
changing the distribution and the link function and can be easily fitted
to the real data using the function “glm” in the “R” software, which
implements some distributions and link functions. On the contrary, by
using the function “vglm” in the “R” software, the estimation results in
the multinomial logistic regression model can be obtained without diffi-
culty. Hence, the researcher can easily obtain the CAIC using formula
manipulation software, even if a researcher wants to use the CAIC in a
model for which an example CAIC has not yet been derived. Thereby,
the proposed CAIC is confirmed to be useful in real data analysis.

For using the CAIC, we deal primarily with variable selection. How-
ever, in the simulation of the real data analysis in Section 2.3, we also
considered the selection of the link function in the GLM. If we choose the
link function by minimizing the original AIC, the optimal link function
is determined only by maximizing the log-likelihood function. On the
other hand, if we use the CAIC to select the link function, the optimal
link function is not determined only by maximizing the log-likelihood
function. Thus, using the CAIC will allow us to select an appropriate
link function in the GLM. These results will be able to be expanded to
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a multivariate data of the GLM based on the derivation of the CAIC in
the multinomial logistic regression model

The numerical studies revealed that the CAIC was better than the
original AIC. In all situations of the simulation studies, the CAIC im-
proved the crude AIC in the sense of making a high selection probability
of the true model and a small prediction error of the best model chosen
by the information criterion. However, the improvements were smaller
when the sample size was large. This is natural because the CAIC is
proposed when the sample size is small so that the bias of the AIC is
corrected. Needless to say, the AIC and the CAIC are asymptotically
equivalent. Hence, the difference between two criteria becomes small
when the sample size is increased. Nevertheless, in Section 2.3 and 3.3,
we can see that a clear difference exists in the performances of the CAIC
and the AIC . This difference indicates that the CAIC is valuable even
when the sample size is not so small. Consequently, we recommend using
the CAIC instead of the AIC for selecting the best model.

In the latter of the present paper, for selecting the true correlation
matrix in the GEE frameworks, we proposed a GIC-type criterion based
on Stein′s loss function, which is the discrepancy between the true cor-
relation structure and a working correlation structure, and we derived
sufficient conditions to establish its consistency. The GEE is an expan-
sion of the GLM into the dependent data.

Since the consistency of our criterion is shown from the property
of Stein′s loss function and the n1/2-consistency of β̂ and α̂, we will
be able to expand this class of criteria and its consistency to general
semi-parametric frameworks. Moreover, it may be possible to show that
the criterion based on other loss functions (such as the quadratic loss
function) has the consistency property.

Through the simulation results, we confirmed that the proposed cri-
terion with γn = log n often selects the true correlation structure in
large sample situations. Furthermore, this selection method improves
the PMSE and the variance of β̂, which are of primary interest in the
GEE frameworks. However, when the true correlation structure is “Un-
structured” and n is not sufficiently large, the BIC-type criterion did not
work well in the simulation. This may arise from that the number of
the correlation parameter for “Unstructured” is too many with respect
to the sample size.

In order to solve this problem, we consider two approaches. One is
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to consider this situation as a high-dimensional setting, i.e., we allow
the number of correlation parameters to be as large as the sample size.
This indicates that the dimension of the responses m is assumed to be
large as same as the sample size n. Another approach is to construct a
risk function based on Stein′s loss function and to derive a bias-corrected
criterion, as was done in Sugiura (1978); Hurvich & Tsai (1989); Imori,
et al. (2014), and Sections 2 and 3. We expect that these approaches
will yield more adequate criteria or assumptions for selecting the true
correlation structure.

Furthermore, the primary aim of using the GEE is to estimate the
regression coefficients. Then, to consider a subset selection of explanatory
variables is important, and we had already proposed several adequate
criteria to select the best subset of explanatory variables (see, e.g., Imori,
2013; Inatsu & Imori, 2013). However, the properties of these criteria
such as efficiency and optimality (Shibata, 1980; Shao, 1997) have been
not shown yet. Moreover, by generalizing penalty term of these criteria,
we will be able to derive a criterion which has a consistency of the true
subset, which is like as the result shown in Section 4.3. We will consider
above problems in the future.
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Chapter A

Appendix

A.1 Derivation of the Third Term of (2.2.4)

In order to calculate the moments of b1 and Z2, we rewrite the third
term of (2.2.4) using b1, Z2, and M3 as

2

nϕ

n∑
i=1

E

[
(yi − ai1)

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}]
=

1√
n
E[b′1M3(b1 ⊗ b1)] +

3√
n
E[b′1Z2b1],

(A.1.1)

where aij = ∂ja(θi)/∂θ
j
i , cij = ∂jθi/∂η

j
i . Let φb1(t) be the characteristic

function of the distribution of b1, defined as

φb1(t) = E[exp(it′b1)] = E

[
exp

{
n∑

j=1

i(yj − aj1)sj

}]
,

sj = − 1√
nϕ

cj1t
′M−1

2 xj,

where t = (t1, . . . , tp)
′. Note that E[exp{i(y − µ)s}] is the characteristic

function of y − µ, which is expressed as

E[exp{i(y − µ)s}] = exp

{
b(θ + isϕ)− b(θ)

ϕ
− iµs

}
.
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Therefore, we have

φb1(t) = exp

[
n∑

j=1

{
b(θj + isjϕ)− b(θj)

ϕ
− iaj1sj

}]
.

Based on the property of the random variable with mean zero, the third
moment is equivalent to the third cumulant. Since |sj| = O(n−1/2),
logφb1(t) can be expanded as

logφb1(t) =
n∑

j=1

{
b(θj + isjϕ)− b(θj)

ϕ
− iaj1sj

}

=
1

ϕ

n∑
j=1

{
1

2
aj2(isjϕ)

2 +
1

6
aj3(isjϕ)

3 +
1

24
aj4(isjϕ)

4

}
+O(n−3/2).

Thus, the third cumulant of b1 = (b11, . . . , b1p)
′ is computed through the

derivative of logφb1(t), i.e.,

E[b1α1b1α2b1α3 ] = i−3 ∂
3 logφb1(t)

∂tα1∂tα2∂tα3

∣∣∣∣
t=0

= ϕ2

n∑
j=1

aj3
∂sj
∂tα1

∂sj
∂tα2

∂sj
∂tα3

+O(n−3/2).

Note that

∂sj
∂tαl

= − 1√
nϕ

cj1e
′
αl
M−1

2 xj,

where ej is the p-dimensional vector, the jth element of which is 1 and
the other elements of which are 0. Thus, using the Equation (2.2.8), we
obtain

1√
n
E[b′1M3(b1 ⊗ b1)]

=
1

n3ϕ

n∑
i,j

aj3c
3
j1(ai3c

3
i1 + 3ai2ci1ci2)u

3
ij +O(n−2).

(A.1.2)

Let φb1,Z2(t,T1) denote the characteristic function of the joint distri-
bution for b1 and Z2 as

φb1,Z2(t,T1) = exp

[
n∑

j=1

{
b(θj + ivjϕ)− b(θj)

ϕ
− iaj1vj

}]
,
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where (T1)ij = t
(1)
ij , i, j = 1, . . . , p and

vj =
1√
nϕ

(−cj1t
′M−1

2 xj + cj2x
′
jT1xj).

In the same manner as in the calculation of log ϕb1(t), we have

logφb1,Z2(t,T1)

=
n∑

j=1

{
b(θj + ivjϕ)− b(θj)

ϕ
− iaj1vj

}

=
1

ϕ

n∑
j=1

{
1

2
aj2(ivjϕ)

2 +
1

6
aj3(ivjϕ)

3 +
1

24
aj4(ivjϕ)

4

}
+O(n−3/2).

Note that

∂vk
∂ti

= − 1√
nϕ

ck1e
′
iM

−1
2 xk,

∂vk

∂t
(1)
ij

=
1√
nϕ

ck2(e
′
ixk)(e

′
jxk).

Hence, we obtain

1√
n
E[b1Z2b1] =

1

n2ϕ

n∑
i=1

ai3c
2
i1ci2u

2
ii +O(n−2). (A.1.3)

Substituting (A.1.2) and (A.1.3) into (A.1.1), the third term of (2.2.4) is
given by (2.2.7).

A.2 Derivation of the Fourth Term of (2.2.4)

In order to use the asymptotic properties, we express the fourth term
of (2.2.4) in terms of b1, Z2, Z3 M2 M3, and M4 as

2

n
√
nϕ

n∑
i=1

E

[
(yi − ai1)

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}]
= − 1

n
E[(b1 ⊗ b1)

′M ′
3M

−1
2 M3(b1 ⊗ b1)] +

1

3n
E[(b1 ⊗ b1)

′M4(b1 ⊗ b1)]

− 3

n
E[(b1 ⊗ b1)

′M ′
3M

−1
2 Z2b1]−

4

n
E[b′1Z2M

−1
2 Z2b1]

+
4

3n
E[b′1Z3(b1 ⊗ b1)].

(A.2.1)
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Let φb1,Z2,Z3(·) denote the characteristic function of the joint distribution
for b1, Z2, and Z3 defined by

φb1,Z2,Z3(t,T2,T3) = exp

[
n∑

j=1

{
b(θj + irjϕ)− b(θj)

ϕ
− iaj1rj

}]
,

where (T2)ij = t
(2)
ij , i, j = 1, . . . , p, (T3)ijk = t

(3)
ijk, i, j, k = 1, . . . , p and

rj =
1√
nϕ

{−cj1t
′M−1

2 xj + cj2x
′
jT2xj + cj3x

′
jT3(xj ⊗ xj)}.

In order to simplify the calculations, we define the following notation:

τkj =
(iϕajkrj)

k

ϕk!
,

κij =
n∑

α=1

∂2τ2α
∂ti∂tj

= − 1

nϕ

n∑
m=1

am2c
2
m1(e

′
iM

−1
2 xm)(e

′
jM

−1
2 xm), (A.2.2)

κi,kl =
n∑

α=1

∂2τ2α

∂ti∂t
(2)
jk

=
1

nϕ

n∑
m=1

am2cm1cm2(e
′
iM

−1
2 xm)(e

′
kxm)(e

′
lxm), (A.2.3)

κik,jl =
n∑

α=1

∂2τ2α

∂t
(2)
ik ∂t

(2)
jl

= − 1

nϕ

n∑
m=1

am2c
2
m2(e

′
ixm)(e

′
kxm)(e

′
jxm)(e

′
lxm), (A.2.4)

κi,ijk =
n∑

α=1

∂2τ2α

∂ti∂t
(3)
ijk

=
1

nϕ

n∑
m=1

am2cm1cm3(e
′
iM

−1
2 xm)(e

′
ixm)(e

′
jxm)(e

′
kxm). (A.2.5)
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By using the derivations of φb1,Z2,Z3 , the first term of (A.2.1) is given by

E[(b1 ⊗ b1)
′M ′

3M
−1
2 M3(b1 ⊗ b1)]

=

p∑
i,j,k,l

(M ′
3M

−1
2 M3)ijklE[bi1bj1bk1bl1]

=

p∑
i,j,k,l

(M ′
3M

−1
2 M3)ijkl

∂4φb1,Z2,Z3(t,T2,T3)

∂ti∂tj∂tk∂tl

∣∣∣∣
t=0p,T2=O,T3=O

.

By applying a Taylor expansion, we obtain

∂4

∂ti∂tj∂tk∂tl
exp

[
n∑

j=1

{
b(θj + irjϕ)− b(θj)

ϕ
− iaj1rj

}]∣∣∣∣∣
t=0p,T2=O,T3=O

=
∂4

∂ti∂tj∂tk∂tl
exp

{
n∑

j=1

(τ2j + τ3j + τ4j) +O(n−3/2)

}∣∣∣∣∣
t=0p,T2=O,T3=O

=

{
κijκkl + κikκjl + κjkκil +

n∑
α=1

∂4τ4α
∂ti∂tj∂tk∂tl

+O(n−2/3)

}
exp{1 +O(n−3/2)}.

Note that |rj| = O(n−1/2) and

∂4τ4α
∂ti∂tj∂tk∂tl

=
n∑

α=1

ϕ3aα4
∂rα
∂ti

∂rα
∂tj

∂rα
∂tk

∂rα
∂tl

= O(n−1).

Hence, the first term of (A.2.1) is expressed as

E[(b1 ⊗ b1)
′M ′

3M
−1
2 M3(b1 ⊗ b1)]

=

p∑
i,j,k,l

(M ′
3M

−1
2 M3)ijkl(κijκkl + κikκjl + κjkκil) +O(n−1). (A.2.6)

By substituting (A.2.2) into (A.2.6), we obtain

E[(b1 ⊗ b1)
′M ′

3M
−1
2 M3(b1 ⊗ b1)]

=
1

n2ϕ2

n∑
i,j

(ai2c
3
i1 + 3ai2ci1ci2)(aj2c

3
j1 + 3aj2cj1cj2)

× (uiiuijujj + 2u3
ij) +O(n−1).

(A.2.7)
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The remaining terms of (A.2.1), as well as the first term of (A.2.1),
will be calculated. The second term of (A.2.1) is similarly obtained from
(A.2.7) as follows:

E[(b1 ⊗ b1)
′M4(b1 ⊗ b1)]

= − 3

nϕ

n∑
i=1

(ai4c
4
i1 + 6ai3c

2
i1ci2 + 3ai2c

2
i2 + 4ai2ci1ci3)u

2
ii +O(n−1).

(A.2.8)

Next, we calculate the third term of (A.2.1). The third term of (A.2.1)
is expressed as follows:

E[(b1 ⊗ b1)
′M ′

3M
−1
2 Z2b1]

=

p∑
i,j,k,l

(M ′
3M

−1
2 )ijkE[b1ib1jb1lZ2,kl]

=

p∑
i,j,k,l

(M ′
3M

−1
2 )ijk(κijκl,kl + κikκj,kl + κjkκi,kl) +O(n−1).

Expression (A.2.3) implies that

E[(b1 ⊗ b1)
′M ′

3M
−1
2 Z2b1]

= − 1

n2ϕ2

n∑
i,j

(ai3c
3
i1 + 3ai2ci1ci2)(aj2cj1cj2)(uiiuijujj + 2u3

ij) +O(n−1).

(A.2.9)

The fourth term of (A.2.1) is as follows:

E[b′1Z2M
−1
2 Z2b1]

=

p∑
i,j,k,l

(M−1
2 )jk(κilκik,jl + κi,ijκl,kl + κi,klκl,ij) +O(n−1).

(A.2.10)

It follows from (A.2.4) and (A.2.10) that

E[b′1Z2M
−1
2 Z2b1]

=
1

n2ϕ2

n∑
i,j

(ai2ci1ci2)(aj2cj1cj2)(uiiuijujj + u3
ij)

− 1

nϕ

n∑
i=1

ai2c
2
i2uii +O(n−1).

(A.2.11)
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Finally, we calculate the fifth term of (A.2.1). Note that

E[b′1Z3(b1 ⊗ b1)]

=

p∑
i,j,k

E[Z3,ijkb1ib1jb1k]

=

p∑
i,j,k

(κijκk,ijk + κikκj,ijk + κjkκi,ijk) +O(n−1). (A.2.12)

Substituting (A.2.5) into (A.2.12) yields

E[b′1Z3(b1 ⊗ b1)] =
3

n

n∑
i=1

ai2ci1ci3u
2
ii +O(n−1). (A.2.13)

Consequently, from (A.2.7), (A.2.8), (A.2.9), (A.2.11), and (A.2.13), we
obtain the fourth term of (2.2.4) as (2.2.9).

A.3 Explicit Forms of (3.1.5), (3.1.6) and (3.1.7)

In this section, for simplicity, we write Σi(β), pi(β), and pij(β) as
Σi, pi, and pij, respectively. Notice that

∂pi

∂β′
j

= pij(ej − pi)x
′
i, j = 1, . . . , r,

where ej is the jth coordinate unit vector, which is used in equation
(3.1.8). This result and equation (3.1.2) imply that

∂pi

∂β′ = (pi1(e1 − pi)x
′
i, . . . , pir(er − pi)x

′
i) = Σi ⊗ x′

i.

Substituting the above result into the definition of G2(β) yields equation
(3.1.5). Furthermore, from the definitions of G3(β) and G4(β), we can
see that ∆3,i(β) and ∆4,i(β) in (3.1.6) and (3.1.7), respectively, satisfy

∆3,i(β) =
∂

∂β′ ⊗Σi, ∆4,i(β) =
∂2

∂β∂β′ ⊗Σi.
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Notice that the (a, b)th element of Σi is piaδab − piapib, where δab is the
Kronecker delta, i.e., δaa = 1 and δab = 0 for a ̸= b. This equation leads
us to other expressions of ∆3,i(β) and ∆4,i(β), as follows:

∆3,i(β) =
r∑
a,b

∂

∂β′ (piaδab − piapib)⊗ eae
′
b,

∆4,i(β) =
r∑
a,b

∂2

∂β∂β′ (piaδab − piapib)⊗ eae
′
b.

(A.3.1)

Derivatives of pia are calculated as

∂pia
∂β

= pia(ea − pi)⊗ xi,

∂2pia
∂β∂β′ = pia(ea − pi)(ea − pi)

′ ⊗ xixi − piaΣi ⊗ xix
′
i

= pia{(ea − pi)(ea − pi)
′ −Σi} ⊗ xixi,

∂2piapib
∂β∂β′ = pib

∂2pia
∂β∂β′ +

∂pib
∂β

∂pia
∂β′ +

∂pia
∂β

∂pib
∂β′ + pia

∂2pib
∂β∂β′

= piapib{(ea + eb − 2pi)(ea + eb − 2pi)
′ − 2Σi} ⊗ xix

′
i.

By substituting the above derivatives into (A.3.1), we have

∆3,i(β) =
r∑
a,b

(δabpiaq
′
i,a − piapibq

′
i,a − piapibq

′
i,b)⊗ x′

i ⊗ eae
′
b

=
r∑
a,b

pia{(δab − pib)q
′
i,a − pibq

′
i,b} ⊗ x′

i ⊗ eae
′
b

=
r∑

a=1

pia(ea ⊗ xi)
′ ⊗ qi,aq

′
i,a − (pi ⊗ xi)

′ ⊗Σi,
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and

∆4,i(β) =
r∑
a,b

pia[δab(qi,aq
′
i,a −Σi)

− pib{(qi,a + qi,b)(qi,a + qi,b)
′ − 2Σi}]⊗ xix

′
i ⊗ eae

′
b

=
r∑

a=1

piaqi,aq
′
i,a ⊗ xix

′
i ⊗ (qi,aq

′
i,a − pip

′
i)

−Σi ⊗ xix
′
i ⊗ (Σi − pip

′
i)

−
r∑
a,b

piapibqi,aq
′
i,b ⊗ xix

′
i ⊗ (eae

′
b + ebe

′
a),

where qi,a = ea − pi. The above two equations indicate that explicit
forms of G3(β) and G4(β) are given in (3.1.6) and (3.1.7), respectively.

A.4 Expectations of Derivatives of the Negative Log-
Likelihood Function

In this section, we derive general formulas of the expectations of
derivatives of the negative log-likelihood function. Let f(u|θ) be a
joint probability density function of u specified by q-dimensional pa-
rameter vector θ, and L(θ) be a negative log-likelihood function defined
by L(θ) = − log f(u|θ). Suppose that

ḟa1···aj =
∂j

∂θa1 · · · ∂θaj
f(u|θ), L̇a1···aj =

∂j

∂θa1 · · · ∂θaj
L(θ).

By carrying out tedious calculations, we have

L̇a = − ḟa
f
, L̇ab = L̇aL̇b −

ḟab
f
, L̇abc = −L̇aL̇bL̇c +

∑
[3]

L̇aL̇bc −
ḟabc
f

,

L̇abcd = L̇aL̇bL̇cL̇d −
∑
[6]

L̇aL̇bL̇cd +
∑
[3]

L̇abL̇cd +
∑
[4]

L̇aL̇bcd −
ḟabcd
f

,

(A.4.1)

where we simplify f(u|θ) as f , and
∑

[j] is the summation of a total of

j terms of different combinations, e.g.,
∑

[3] L̇abL̇cd = L̇abL̇cd + L̇acL̇bd +
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L̇adL̇bc. It follows from
∫
fdu = 1 that

E

[
ḟa1···aj
f

]
=

∫
ḟa1···ajdu

=

∫
∂j

∂θa1 · · · ∂θaj
fdu

=
∂j

∂θa1 · · · ∂θaj

∫
fdu = 0.

(A.4.2)

The above equation can be satisfied when u is continuous. Even when
u is discrete, we can obtain the same result by replacing the integration
with a summation. Equations (A.4.1) and (A.4.2) imply that

E[L̇a] = 0, E[L̇ab] = E[L̇aL̇b], E[L̇abc] = −E[L̇aL̇bL̇c] +
∑
[3]

E[L̇aL̇bc],

E[L̇abcd] = E[L̇aL̇bL̇cL̇d]−
∑
[6]

E[L̇aL̇bL̇cd] +
∑
[3]

E[L̇abL̇cd] +
∑
[4]

E[L̇aL̇bcd].

(A.4.3)

Let us consider a vector of the first derivatives, and matrices of the
second, third, and fourth derivatives, which are defined as

g(θ) = −∂ℓ(θ)

∂θ
,

H(θ) = −∂2ℓ(θ)

∂θ∂θ′ ,

C(θ) = −
(

∂

∂θ′ ⊗
∂2

∂θ∂θ′

)
ℓ(θ),

Q(θ) = −
(

∂2

∂θ∂θ′ ⊗
∂2

∂θ∂θ′

)
ℓ(θ).

From the expectations in (A.4.3), we obtain E[H(θ)], E[C(θ)], and
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E[Q(θ)] as

E[H(θ)] = E[g(θ)g(θ)′],

E[C(θ)] = −E[g(θ)′ ⊗ g(θ)g(θ)′] + E[g(θ)′ ⊗H(θ)]

+ E[H(θ)⊗ g(θ)′] + E[g(θ)vec(H(θ))′],

E[Q(θ)] = E[g(θ)g(θ)′ ⊗ g(θ)g(θ)′]

− (Iq2 +Kq)E[g(θ)g(θ)
′ ⊗H(θ)](Iq2 +Kq)

− E[vec(g(θ)g(θ)′)vec(H(θ))′]− E[vec(H(θ))vec(g(θ)g(θ)′)′]

+ (Iq2 +Kq)E[H(θ)⊗H(θ)] + E[vec(H(θ))vec(H(θ))′]

+ E[g(θ)⊗C(θ)](Iq2 +Kq) + (Iq2 +Kq)E[g(θ)
′ ⊗C(θ)′].

(A.4.4)

Recall that E[g(θ)] = 0q holds. Furthermore, we note that C(θ) and
Q(θ) are constant when H(θ) is constant. Hence, when H(θ) is con-
stant, H(θ), C(θ), and Q(θ) in (A.4.4) become simpler, as follows:

H(θ) = E[g(θ)g(θ)′], C(θ) = −E[g(θ)′ ⊗ g(θ)g(θ)′],

Q(θ) = E[g(θ)g(θ)′ ⊗ g(θ)g(θ)′]− (Iq2 +Kq){H(θ)⊗H(θ)}
− vec(H(θ))vec(H(θ))′.

(A.4.5)
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F., López-Labrador, F. X., Moya, A., Ramon, M. M. & Castro, J.
A. (2010). Relating the Liver Damage with Hepatitis C Virus Poly-
morphism in Core Region and Human Variables in HIV-1-Coinfected
Patients. Infect. Genet. Evol., 10, 1252–1261.

McCullagh, P. & Cox, D. R. (1986). Invariants and likelihood ratio statis-
tics, Ann. Statist., 14, 1419–1430.

67



McCullagh, P. & Nelder, J. A. (1989). Generalized linear models, 2nd
edition. Chapman and Hall, London.

Meyers, R. H., Montgomery, D. C. & Vining, G. G. (2002). General-
ized Linear Models with Applications in Engineering and the Sciences.
Wiley Interscience, Canada.

Nelder, J. A. & Wedderburn, W. M. (1972). Generalized Linear Models.
J. R. Statist. Soc. A., 135, 370–384.

Nishii, R. (1984). Asymptotic properties of criteria for selection of vari-
ables in multiple regression. Ann. Statist., 12, 758–765.

Pan, W. (2001). Akaike’s information criterion in generalized estimating
equations. Biometrics., 57, 120–125.

Pan, W. & Connett, J. E. (2002). Selecting the working correlation struc-
ture in generalized estimating equations with application to the lung
health study. Statist. Sinica, 12, 475–490.

R Development Core Team (2011). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vi-
enna, Austria. URL http://www.R-project.org/.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist.,
6, 461–464.

Shao, J. (1997). An asymptotic theory for linear model selection. Statist.
Sinica, 7, 221–264.

Shibata, R. (1980). Asymptotically Efficient Selection of the Order of
the Model for Estimating Parameters of a Linear Process. Ann. Math.
Statist., 8, 147–164.

Sugiura, N. (1978). Further Analysis of the Data by Akaike’s Information
Criterion and the Finite Corrections. Commun. Statist. -Theory Meth.,
7, 1, 13–26.

Sánchez-Carneo, N., Couñago, E., Rodrigues-Perez, D. & Freire, J.
(2011). Exploiting Oceanographic Satellite Data to Study the Small
Scale Coastal Dynamics in a NE Atlantic Open Embayment. J. Ma-
rine Syst., 87, 123–132.

68



Teste, F. P. & Lieffers, V. J. (2011). Snow Damage in Lodgepole Pine
Stands Brought into Thinning and Fertilization Regimes. Forest Ecol.
Manag., 261, 2094–2104.

Wang, Y.-G. & Carey, V. (2003). Working correlation structure misspec-
ification, estimation and covariate design: Implications for generalized
estimating equations performance. Biometrika, 90, 29–41.

Wong, C. S. & Li, W. K. (1998). A Note on the Corrected Akaike Infor-
mation Criterion for Threshold Autoregressive Models. J. Time Ser.
Anal., 19, 113–124.

Yanagihara, H., Kamo, K., Imori, S. & Satoh, K. (2012). Bias-Corrected
AIC for Selecting Variables in Multinomial Logistic Regression Models.
Linear Algebra Appl., 436, 4329–4341.

Yanagihara, H., Sekiguchi, R. & Fujikoshi, Y. (2003). Bias Correction of
AIC in Logistic Regression Models. J. Statist. Plann. Inference, 115,
349–360.

69


	Introduction
	Simple Formula for Calculating Bias-Corrected AIC in Generalized Linear Models
	Stochastic Expansion of the MLE in the GLM
	Bias Correction of the AIC
	Numerical Studies

	Bias-Corrected AIC for Selecting Variables in Multinomial Logistic Regression Models
	Stochastic Expansion of MLE
	Main Result
	Numerical Studies

	Consistent Selection of Working Correlation Structure in Generalized Estimating Equations Analysis Based on Stein's Loss Function
	Generalized Estimating Equations
	Selection of Working Correlation Structure
	Properties of Criteria
	Numerical Studies

	Conclusions and Discussions
	Appendix
	Derivation of the Third Term of (2.2.4)
	Derivation of the Fourth Term of (2.2.4)
	Explicit Forms of (3.1.5), (3.1.6) and (3.1.7)
	Expectations of Derivatives of the Negative Log-Likelihood Function


