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mean v
_

and variance σ2
v. Equation (1.2) implies that

the larger is ρ ,  the more persistent is the

technological shock (although the effect diminishes as

time goes by because 0 ≤ρ＜ 1). At each time t, the

history of technology {st, st－ 1, st－ 2, ... } is known to

public. Equation (1.3) is an expected value of lifetime

utility where the expectation is conditional on the

information available at t. The utility of consumption

ct in period t is given by equation (1.4). (1.4) implies

that the utility u(ct) is an increasing and concave

function of ct with constant intertemporal elasticity of

substitution between ct and ct＋ 1. At each time t, a

representative economic agent chooses {kt＋τ＋ 1, ct＋τ;

τ＝ 0, 1, 2, ... } to maximize the expected lifetime

utility (1.3) subject to the resource constraint (1.1) and

the evolution process (1.2) of the stochastic

technology, given {kt, st} as predetermined variables.

(The model is also described as a decentralized

economy as we did in the analysis of the dynamic

general equilibrium of (non-stochastic) Ramsey

model.)

２．The Analysis of Stochastic Dynamic
General Equilibrium.

The SDGE of the optimal growth model of section

1 is analyzed through the following steps.

１．Model.
The structure of the stochastic optimal growth model

is almost same as that of the discrete time Ramsey

model. (See Futamura (2013).) The only difference is

that the production technology is affected by a random

multiplicative shock. The model consists of the

following three equations. For each t＝ 0, 1, 2, ... ,

（1.1）

（1.2）

（1.3）

where

（1.4）

Equation (1.1) describes the resource constraint of

period t. The right-hand side of (1.1) consists of output

st kαt and capital (1 －δ)kt carried over to the next

period t＋ 1. δ is the depreciation rate. The left-hand

side of (1.1) describes the disposition of the resource

in t, consisting of consumption ct and the next period's

capital kt＋ 1. The production technology st is affected

by stochastic shock. Its evolution is described by

equation (1 .2). In (1 .2), vt is identically and

independently distributed (i.i.d) random variable with

The Fundamentals of Economic Dynamics and Policy Analyses:
Learning through Numerical Examples.

PartⅢ. Stochastic Dynamic General Equilibrium

Hiroshi Futamura

The objective of this paper is to present a simple stochastic optimal growth model (Ramsey model), and

calculate a stochastic dynamic general equilibrium (hereafter referred as a SDGE) of the model. (This part

draws an example from Farmer (1999).) Then, we demonstrate how to simulate the movements of economic

variables in the stochastic dynamic general equilibrium by using Matlab. The paper consists of 3 sections. A

stochastic optimal growth model is presented in section 1. The stochastic dynamic general equilibrium of the

model is calculated in section 2. The movements of economic variables in the stochastic dynamic general

equilibrium are simulated by using Matlab in section 3.
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(2.11)} as a triplet {c
_

, k
_

, s
_

} that satisfies the

following.

（2.12）

（2.13）

（2.14）

Equations (2.12), (2.13), and (2.14) are solved for the

steady sate {c
_
, k

_
, s
_
} as follows.

（2.15）

（2.16）

（2.17）

In addition, equation (2.12) is rewritten as follows.

（2.18）

Step 3. We approximate equations {(2.9), (2.10),

(2.11)} as a system of first-order linear stochastic

difference equations. The first-order linear

approximation of Ψ1(ct, ct＋ 1, kt＋ 1, st＋ 1) at the steady

state (c
_
, c

_
, k

_
, s
_
) is given by the following.

（2.19）

Notice, by definition, Ψ1(c
_
, c

_
, k

_
, s

_
)＝ 0 in equation

(2 .19). In (2.19), ∂Ψ
_
1/∂ct implies the partial

differentiation of Ψ1(ct, ct＋ 1, kt＋ 1, st＋ 1) with respect to

ct evaluated at the steady state {c
_
, c

_
, k

_
, s

_
}. Therefore,

this term is calculated as follows.

（2.20）

The other derivatives in the right-hand side of (2.19)

are calculated in the same manner as follows.

（2.21）

Step 1. We derive a system of stochastic difference

equations with respect to {ct, kt＋ 1, st＋ 1 ; t＝ 0, 1, 2, ... }

such that these variables satisfy the SDGE conditions.

Equation (1.3) is rewritten as follows.

（2.1）

In equation (2.1), by (1.1),

（2.2）

（2.3）

（2.4）

Therefore, the maximization of (1.3) subject to (1.1),

given the exogenous forcing process (1.2), implies that

at each t＝ 0, 1, 2, ... , {ct, kt＋ 1} must satisfy the

following first-order condition.

（2.5）

Equation (1.4) is used to derive the second line of

(2.5). Equation (2.5) is a stochastic Euler equation.

Define

（2.6）

（2.7）

（2.8）

Then, at any t＝ 0, 1, 2, ... , given {kt, st}, {ct, kt＋ 1, st＋ 1}

must satisfy the following system of first-order nonlinear

stochastic difference equations.

（2.9）

（2.10）

（2.11）

Step 2. Define the steady state of {(2.9), (2.10),
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Equation (2.18) is used for the calculation of (2.21).

（2.22）

（2.23）

Define the deviation of variable x∈{ct, ct＋ 1, kt＋ 1, st＋ 1}

from its steady state as follows.

（2.24）

Then, equation (2.19) is rewritten as follows.

（2.25）

By (2.25), equation (2.9) implies the following

condition.

（2.26）

In equation (2.26),

（2.27）

（2.28）

Equation (2.26) is rewritten further as follows.

（2.29）

In equation (2.29),

（2.30）

（2.31）

（2.32）

are prediction errors. They are also said to be

''innovations''. When the expectations {Et[ĉt＋ 1], Et[k̂t＋ 1],

Et[ŝ t＋ 1]; t＝ 0, 1, 2, ... } are ''rationally'' formed, then

{w c
t＋ 1, w k

t＋ 1, w s
t＋ 1; t＝ 0, 1, 2, ... } are i.i.d. random

variables. In other words, they are ''white noises''. See

Sargent (1987).

The first-order linear approximation of Ψ2(ct, kt, kt＋ 1,

st) at the steady state {c
_

, k
_

, k
_

, s
_

} is given by the

following.

（2.33）

By following the same procedure we did above,

equation (2.33) is rewritten as follows.

（2.34）

In equation (2.34),

（2.35）

（2.36）

（2.37）

Equation (2.18) is used to obtain these expressions.

The first-order linear approximation of Ψ3(st, st＋ 1,

vt) at the steady state {s
_
, s
_
, v

_
} is expressed as follows.

（2.38）

By following the same procedure we did above, (2.38)

is rewritten as follows.

（2.39）

We summarize the above analysis as follows. At

each t＝ 0, 1, 2, ... , given the initial (predetermined)

variables {kt, st}, the SDGE sequence of capital and

consumption {kt＋ 1, ct ; t＝ 0, 1, 2, … } satisfy the

following system of first-order linear difference

equations.
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For the system of first-order linear difference

equations to have a unique SDGE sequence converging

(on average) to the steady state {c
_

, k
_

, s
_

}, the

characteristic roots of coefficient matrix A must be

such that two roots are larger than one in absolute

value (corresponding to the state variables {kt＋ 1, st＋ 1})

and the remaining root must be smaller than one in

absolute value (corresponding to the control variable

ct). If the three characteristic roots are distinct, then the

coefficient matrix A can be decomposed as follows.

（2.47）

In equation (2.47),

（2.48）

is a diagonal matrix of characteristic roots {λ1, λ2, λ3},

and

（2.49）

is a 3 × 3 matrix whose columns {Q1, Q2, Q3} are the

characteristic vectors corresponding to each

characteristic root. The characteristic roots are the

solutions to the following equation.

（2.50）

By substituting b1 ＝ 1/ρ into A, (2.50) becomes as

follows.

（2.51）

Equation (2.51) implies one of the three characteristic

roots is

（2.52）

Obviously, this implies the stability of the sequence of

stochastic technology {st ; t ＝ 0, 1, 2, ... }. By

equation (2.51), the other two characteristic roots

satisfy the following quadratic equation.

（2.40）

（2.41）

In equations (2.40) and (2.41), the sequence of stochastic

production technology {ŝ t＋ 1 ; t＝ 0, 1, 2, ... } is

generated by the following equation.

（2.42）

Step 4. The above system of difference equations

{(2.40), (2.41), (2.42)} is solved as follows. Equations

(2.40), (2.41), and (2.42) are represented by the

following matrix form.

（2.43）

Equation (2.43) is rewritten as follows.

（2.44）

In equation (2.44),

（2.45）

（2.46）

二村先生  14.4.20 8:28 PM  ページ 92



－ 93 －

（2.53）

Denote the solutions to (2.53) as {λ1, λ2}. Then,

equation (2.53) implies the following.

（2.54）

（2.55）

Equations (2.54) and (2.55) together imply that both

roots are positive, one root is larger than one while the

other root is smaller than one. Denote the three

characteristic roots of the coefficient matrix A as

follows.

（2.56）

（2.57）

（2.58）

Then, the characteristic vectors {Q1, Q2, Q3} of each

characteristic root are obtained as solutions to the

following linear equations.

（2.59）

(The three linear equations of (2 .59) for three

variables {q1i, q2i, q3i} are not linearly independent.

When using Matlab to calculate a characteristic vector,

the program normalizes the length of the vector to be

one.) Transform the vector of variables {ĉ t, k̂ t, ŝ t} as

follows to construct a vector of variables {z1t, z2t, z3t}

that are linear combinations of {ĉ t, k̂ t, ŝ t}.

（2.60）

Equation (2.60) implies

（2.61）

Then, by multiplying Q － 1 on both sides of equation

(2.44), it is transformed as follows.

（2.62）

By (2.47) and (2.60), equation (2.62) is rewritten as

follows.

（2.63）

In equation (2.63),

（2.64）

Take the expectation on both sides of equation (2.63)

conditional on the information available at t. Then, we

have

（2.65）

because

（2.66）

By (2.48) equation (2.65) implies the following.

（2.67a）

（2.67b）

（2.67c）

We can iterate equation (2.67a) into the future periods

as follows.

（2.68）

Take the expectation on both sides of (2 .68)

conditional on the information available in t. Then, we

have the following.

（2.69）
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（2.78）

（2.79）

The SDGE sequence of consumption is generated by

the following.

（2.80）

In equations (2.78), (2.79), and (2.80), the variables

are measured as deviations from their steady state

values, i.e.,

（2.81）

（2.82）

（2.83）

（2.84）

In equation (2.84), {vt ; t ＝ 0, 1, 2, ... } is a sequence

of i.i.d. shocks.

３．Simulating for the SDGE.
In this section, we explain the simulation methods

for the SDGE of the stochastic optimal growth model,

and provide Matlab codes for implementing the

simulation.

3.1. Simulation Methods.

The SDGE of the stochastic optimal growth model

is simulated through the following steps.

Step 1. Specify the values of model parameters {α,

ß, δ, σ, ρ} and the initial values of state variables

{k0, s0}. As an example, we assign the following

values.

α＝ 0.3 ; the capital's share in the production

function.

ß＝ 0.9 ; the subjective discount factor of future

utilities.

δ＝ 0.1 ; the capital depreciation rate.

σ＝ 2 ; the elasticity of substitution between the

The second line is obtained by applying the law of

iterated expectations. (See Sargent (1987).) By (2.67a)

and (2.69), we have 

（2.70）

By repeating above process T times, we have

（2.71）

Because 0 ＜λ1＜ 1, as T→∞, we have

（2.72）

as a general solution to the stochastic difference

equation (2.67a). Denote

（2.73）

Then, by (2.72) and 

（2.74）

the first row of (2.74) is expressed as follows.

（2.75）

Equation (2.75) is solved for ĉ t as follows.

（2.76）

By substituting (2.76) into (2.41), we have the

following first-order stochastic difference equation

with respect to k̂ t.

（2.77）

We can summarize the analysis of the SDGE as

follows. For t＝ 0, 1, 2, ... , given {k̂ 0, ŝ 0}, the SDGE

sequence of capital and stochastic technology {k̂ t＋ 1,

ŝ t＋ 1} is generated by the following system of first-

order linear stochastic difference equations.
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consumption in period t and the consumption in period

t ＋ 1.

ρ＝ 0.9 ; AR(1) coefficient of the sequence of

stochastic technology {st＋ 1 ; t＝ 0, 1, 2, ... }. See step

2 below for further explanations.

k0 ＝ 20 ; initial capital.

s0 ＝ 10 ; initial technology.

Step 2. Specify the stochastic distribution of the i.i.d.

shocks {vt ; t ＝ 0, 1, 2, ... } to the production

technology. The main objective of SDGE analyses is

to build a model economy that can generate variables

that fit well the actual economic data. (Then, we can

simulate the model to generate SDGE variables for

alternative parameter values, or to analyze the effects

of economic policies.) The choice of stochastic

distribution of the i.i.d. shocks, hence, is made to suit

this objective. Equation (1.2) implies that vt cannot be

negative because output cannot be negative. This is

one the restrictions imposed on vt. Take the natural-log

on both sides of (1 .2) to obtain the following

expression.

（3.1）

Equation (3.1) implies that ln st is subject to the first-

order auto-regressive process (AR(1)) with i.i.d. shock

ln vt. (See Enders (2009) for the introductory time

series analysis. Although (1.2) implies both (2.42) and

(3.1), (3.1) is an exact relationship, while (2.42) is a

linear approximation. In fact, (2.9) and (2.10) can be

log-linearized as well, consistent with (3.1), to yield a

system of stochastic first-order linear difference

equations with respect to {ln ct, ln kt, ln st}. (See

Campbell (1994). Taylor and Uhlig (1990) compares the

fitness of different approximation methods to the SDGE

models.) The AR(1) process is ''stable'' when |ρ|＜ 1.

While vt is restricted to be positive, ln vt can take values in

(－∞, ＋∞). (See figure 1.)

Assume ln vt is normally distributed with mean µ and

variance σ2, i.e.,

（3.2）

Then, vt is said to be a random variable generated by

the log-normal distribution with mean v
_

and variance

σ2
v where

（3.3）

（3.4）

(See Sydsaeter, Strom, and Berck (2011) for a

reference.) As an example we specify the mean µ and

the variance σ2 of ln vt as follows. First, assume that

the steady state s
_

of the stochastic technology st to be

10, i.e.,

（3.5）

(s
_
＝ 10 implies that the steady state value is equal to

the initial value s0 ＝ 10.) Because ρ＝ 0.9, equation

(2.14)implies that the mean of vt is

（3.6）

In addition, assume that the variance of vt is 5% of the

mean v
_
, i.e.,

（3.7）

Then, by (3.3) and (3.4), we can solve the following

simultaneous equations with respect to the mean µ and

the variance σ2 of ln vt.

（3.8）

（3.9）

The solutions are

Figure 1. The Graph of lnvt.
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and the corresponding characteristic vectors {Q1, Q2,

Q3} of the matrix A of coefficients where

（3.25）

They are calculated as follows.

（3.26）

（3.27）

（3.28）

Then, calculate the inverse matrix Γ of Q＝[Q1 Q2

Q3]. It is calculated as follows.

（3.29）

Step 5. Generate the SDGE sequence of capital and

stochastic technology {k̂ t＋ 1, ŝ t＋ 1 ; t＝ 0, 1, 2, ... } by

recursively updating equations {(2.78), (2.79)} given

the initial values { k̂ 0, ŝ 0}. At t ＝ 0, {k̂ 1, ŝ 1} is

calculated as follows.

（3.30）

（3.31）

Similarly, at t＝ 1, {k̂ 2, ŝ 2} is calculated as follows.

（3.32）

（3.33）

（3.10）

（3.11）

Next, generate an arbitrary number of random

variables from a normal distribution with mean 0.2108

and variance 0.0389, i.e.,

（3.12）

Finally, transform the random variables by

（3.13）

Step 3. Calculate the steady state {k
_
, c

_
, s
_
} as follows.

（3.14）

（3.15）

（3.16）

Then, calculate the initial deviations {k̂ 0, ŝ 0} from the

steady state as follows.

（3.17）

（3.18）

In addition calculate

（3.19）

Step 4. Calculate the coefficients of the SDGE

system of difference equations {(2.40), (2.41)}.

（3.20）

（3.21）

（3.22）

（3.23）

（3.24）

Then, calculate the characteristic roots {λ1, λ2, λ3}
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Repeat the process to generate {k̂ t＋ 1, ŝ t＋ 1 ; t＝ 0, 1,

2, ... }. Then, the SDGE sequence of consumption {ĉ t ;

t＝ 0, 1, 2, ... } is calculated from

（3.34）

Step 6. Calculate the SDGE sequence of capital and

consumption {k̂ t＋ 1, ĉ t ; t＝ 0, 1, 2, ... } by

（3.35）

（3.36）

3.2 Matlab Codes for Simulating the SDGE.

The following table 1 states the relationship

between the names of parameters and variables used in

the Matlab codes and those in the stochastic optimal

growth model of section 2.

Program 1.

(P1.1)  % Calculate eigen values and eigen vectors

of Ax;

(P1.2)  % Parameters and initial values;

(P1.3)  alphax＝ 0.3;

(P1.4)  betax＝ 0.9;

(P1.5)  deltax＝ 0.1;

(P1.6)  sigmax＝ 2;

(P1.7)  sxs＝ 10;

(P1.8)  rhox＝ 0.9;

(P1.9)  kx0 ＝ 20;

(P1.10) sx0 ＝ 10;

(P1.11) % Calculating steady state {cxs, kxs}.

(P1.12) kxs＝(alphax*betax*sxs/(1 - betax*(1 -

deltax)))^(1/(1 - alphax));

(P1.13) cxs＝ sxs*(kxs^alphax) - deltax*kxs;

(P1.14) % Coefficients {a1, a2, b1, b2, b3}.

(P1.15) a1 ＝((1 - alphax)/sigmax)*alphax*betax*

sxs*(kxs^(alphax - 1));

(P1.16) a2 ＝(1/sigmax)*alphax*betax*sxs*(kxs^

(alphax - 1));

(P1.17) b1 ＝ 1/betax;

(P1.18) b2 ＝(1/(alphax*betax))*(1 - betax*(1 -

deltax));

(P1.19) b3 ＝ sxs*(kxs^(alphax - 1)) - deltax;

(P1.20) % Eigen values and eigen vectors of Ax;

(P1.21) M1 ＝ zeros(3, 3);

(P1.22) M1(1, 1)＝-1;

(P1.23) M1(2, 1)＝-b3;

(P1.24) M1(2, 2)＝ b1;

(P1.25) M1(2, 3)＝ b2;

(P1.26) M1(3, 3)＝ rhox;

(P1.27) M2 ＝ zeros(3, 3);

(P1.28) M2(1, 1)＝-1;

(P1.29) M2(1, 2)＝-a1;

(P1.30) M2(1, 3)＝ a2;

(P1.31) M2(2, 2)＝ 1;

(P1.32) M2(3, 3)＝ 1;

Table 1．The relationship between the names of parameters and

variables used in the Matlab codes and those in the

stochastic optimal growth model of section 2.

*, ** ; The columns of matrix Q are rearranged in matrix Qx so that they correspond to the
characteristic roots {λ1, λ2, λ3}

alphax α a1 a1 vxs v
_

betax ß a2 a2 varvx σ2
v

deltax δ b1 b1 mux µ

sigmax σ b2 b2 varx σ2

sxs s
_

b3 b3 kxh k̂

rhox ρ Ax A sxh ŝ

kx0 k0 Q    * Q cxh ĉ

sx0 s0 L Λ kx k

kxs k
_

Qx  ** Q cx c

cxs c
_

Gx Γ
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Program 2.

(P2.1) % The first-order dynamical system with

respect to {kx(t), sx(t)}.

(P2.2) global vxs varvx;

(P2.3) % Parameters and initial values;

(P2.4) alphax＝ 0.3;

(P2.5) betax＝ 0.9;

(P2.6) deltax＝ 0.1;

(P2.7) sigmax＝ 2;

(P2.8) sxs＝ 10;

(P2.9) rhox＝ 0.9;

(P2.10) kx0 ＝ 20;

(P2.11) sx0 ＝ 10;

(P2.12) Tx＝ 100;

(P2.13) % Generating exogenous shocks to

technology.

(P2.14) vxs＝ sxs^(1 - rhox);

(P2.15) varvx＝ 0.05*vxs;

(P2.16) dist_ini＝ ones(2, 1);

(P2.17) dist＝ fsolve(@vdist, dist_ini);

(P2.18) mux＝ dist(1);

(P2.19) varx＝ dist(2);

(P2.20) Ex＝ zeros(Tx, 1);

(P2.21) Ex＝ mux ＋ (varx^0.5)*randn(Tx, 1);

(P2.22) % Shocks to technology.

(P2.23) vx＝ zeros(Tx, 1);

(P2.24) for t＝ 1 : Tx ;

(P2.25) vx(t)＝ exp(Ex(t));

(P2.26) end;

(P2.27) % Shocks to technology (Deviation from the

mean).

(P2.28) vxh＝ zeros(Tx, 1);

(P2.29) for t＝ 1 : Tx ;

(P2.30) vxh(t)＝(vx(t) - vxs)/vxs;

(P2.31) end;

(P2.32) % Calculating steady state {cxs, kxs}.

(P2.33) kxs＝(alphax*betax*sxs/(1 - betax*(1 -

deltax)))^(1/(1 - alphax));

(P2.34) cxs＝ sxs*(kxs^alphax) - deltax*kxs;

(P2.35) % Coefficients {a1, a2, b1, b2, b3}.

(P2.36) a1 ＝((1 - alphax)/sigmax)*alphax*betax*

sxs*(kxs^(alphax - 1));

(P2.37) a2 ＝(1/sigmax)*alphax*betax*sxs*(kxs^

(alphax - 1));

(P1.33) Ax＝ inv(M1)*M2;

(P1.34) [Q, L]＝ eig(Ax);

In Program 1, (P1.1) ~ (P.34) are labels to identify

each Matlab code. When you write Matlab programs,

you do not have to put these labels.

Program 1 calculates the characteristic roots and the

characteristic vectors of the coefficient matrix A. Lines

(P1.1) ~ (P1.10) assign the values of parameters {α＝

0.3, ß＝ 0.9, δ＝ 0.1, σ＝ 2, s
_
＝ 10, ρ＝ 0.9} and

the initial conditions {k0 ＝ 20, s0＝ 10 }. Lines (P.11)

~ (P1.13) calculate the steady state {k
_

, c
_

}. Lines

(P1.14) ~ (P1.19) calculate the coefficients {a1, a2, b1,

b2,  b 3}. Lines (P1 .20) ~ (P1.33) calculates the

coefficient matrix A.  In line (P1 .33), inv(M1)

calculates the inverse matrix of M1. Line (P1.34)

calculates the characteristic roots and the characteristic

vectors of the coefficient matrix A. In line (P1.34),

eig(Ax) returns two outputs that are specified by the

left-hand side [Q, L] where L is a matrix whose

diagonal elements consist of characteristic roots of Ax,

and Q is a matrix whose columns consist of

characteristic vectors coressponding to each

characteristic roots of Ax. Program 1 returns the

following output.

Q＝

0.3821 -0.2838 0.4397

0.9241 0.9589 0.8914

0 0 0.1098

L＝

1.1608 0 0

0 0.7753 0

0 0 1.1111

We rearrange the columns of Q so that the first

column corresponds to the characteristic vector Q '1 ＝

[-0.2838 0.9589 0] of the unstable characteristic root

λ1＝ 0.7753, the second column corresponds to the

characteristic vector Q '2 ＝[0.3821 0.9241 0] of the

stable characteristic root λ2＝ 1.1608, and the third

column corresponds to the characteristic vector Q '3 ＝

[0.4397 0.8914 0.1098] of the stable characteristic

root λ3＝ 1.11.
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(P2.38) b1 ＝ 1/betax;

(P2.39) b2 ＝(1/(alphax*betax))*(1 - betax*(1 -

deltax));

(P2.40) b3 ＝ sxs*(kxs^(alphax - 1)) - deltax;

(P2.41) % Eigen vector matrix.

(P2.42) Qx＝ zeros(3, 3);

(P2.43) Qx(1, 1)＝-0.2838;

(P2.44) Qx(1, 2)＝ 0.3821;

(P2.45) Qx(1, 3)＝ 0.4397;

(P2.46) Qx(2, 1)＝ 0.9584;

(P2.47) Qx(2, 2)＝ 0.9241;

(P2.48) Qx(2, 3)＝ 0.8914;

(P2.49) Qx(3, 1)＝ 0;

(P2.50) Qx(3, 2)＝ 0;

(P2.51) Qx(3, 3)＝ 0.1098;

(P2.52) Gx＝ inv(Qx);

(P2.53) % Deviations from the steady state.

(P2.54) kxh＝ zeros(Tx＋ 1, 1);

(P2.55) sxh＝ zeros(Tx＋ 1, 1);

(P2.56) kxh(1)＝(kx0 - kxs)/kxs;

(P2.57) sxh(1)＝(sx0 - sxs)/sxs;

(P2.58) for t＝ 1 : Tx ;

(P2.59) kxh(t ＋ 1)＝(b1 ＋ b3*(Gx(1, 2)/Gx(1,

1)))*kxh(t) ＋ (b2 ＋ b3*(Gx(1, 3)/Gx(1,

1)))*sxh(t);

(P2.60) sxh(t＋ 1)＝ rhox*sxh(t) ＋ vxh(t);

(P2.61) end;

(P2.62) cxh＝ zeros(Tx, 1);

(P2.63) for t＝ 1 : Tx ;

(P2.64) cxh(t)＝-(Gx(1, 2)/Gx(1, 1))*kxh(t) - (Gx(1,

3)/Gx(1, 1))*sxh(t);

(P2.65) end;

(P2.66) % SDGE sequence of capital and

consumption.

(P2.67) kx＝ zeros(Tx＋ 1, 1);

(P2.68) for t＝ 1 : Tx＋ 1;

(P2.69) kx(t)＝(kxh(t) ＋ 1)*kxs;

(P2.70) end;

(P2.71) cx＝ zeros(Tx, 1);

(P2.72) for t＝ 1 : Tx ;

(P2.73) cx(t)＝(cxh(t) ＋ 1)*cxs;

(P2.74) end;

Program 2 specifies the stochastic distribution of i.i.d.

shocks {vt ; t＝ 0, 1, 2, ... } and calculate the SDGE

sequence of capital and consumption {k̂ t＋ 1, ĉ t ; t＝ 0,

1, 2, ... }. In the program, time period t runs from 1 to

Tx＝ 100. In program 2, line (P2.2) specifies the

parameter names to be used in both main program and

sub-program (program 3 which will be presented

below). Lines (P2.3) ~ (P2.12), as in program 1, assign

the values of parameters and the initial conditions.

Lines (P2 .13) ~ (P2 .31) specify the stochastic

distribution of the i.i.d. shocks {ln vt ; t＝ 0, 1, 2, ... }.

Lines (P2.14) and (P2.15) assign values of the mean v
_

and the variance σ2
v. (As mentioned before, the value

of σ2
v is assumed to be 5% of v

_
.) Line (P2.17) calls

sub-program vdist (program 3) which specifies the

simultaneous equations to be solved with respect to

{µ, σ2} given the initial condition dist_ini. Line

(P2.21) generates a vector whose elements are i.i.d

random variables drawn from N(µ, σ2). In line

(P2.21), randn(Tx, 1) generates a Tx × 1 vector whose

elements are drawn from N(0, 1). Lines (P2.22) ~

(P2.26) transform the vector of i.i.d. shocks {ln vt ; t＝

0, 1, 2, ... } into {vt ; t＝ 0, 1, 2, ... }. Lines (P2.27) ~

(P2.31) generate a vector whose elements are i.i.d.

shocks {v̂t＝(vt－ v
_
)/v

_
; t＝ 0, 1, 2, ... } expressed as

deviations from mean. Lines (P2.32) ~ (P2.34)

calculate the steady state values {k
_
, c

_
} of capital and

consumption. Lines (P2.35) ~ (P2.40) calculate the

coefficients {a1, a2, b1, b2, b3}. Lines (P2.41) ~ (P2.51)

specify the matrix Q＝[Q1 Q2 Q3] consisting of the

characteristic vectors of coefficient matrix A, and line

(P2.52) calculate the inverse matrix Γ≡ Q － 1. Lines

(P2.53) ~ (P2.61) iterate the system of stochastic first-

order difference equations to genrate the sequence of

SDGE capital and stochastic technology {k̂ t＋ 1, ŝ t＋ 1 ;

t＝ 0, 1, 2, ... } expressed as deviations from the

steady state {k
_
, s

_
} given the initial condition {k̂ 0, ŝ 0}

specified in lines (P2.56) and (P2.57). Lines (P2.62) ~

(P2.65) calculate the sequence of SDGE consumption

{ĉ t ; t＝ 0, 1, 2, ... } expressed as deviations from the

steady state c
_
. Lines (P2.66) ~ (P2.74) transform {k̂ t＋ 1,

ŝ t＋ 1 ; t＝ 0, 1, 2, ... } into the levels {kt＋ 1, st＋ 1 ; t＝ 0,

1, 2, ... }.
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representative household) in SDGE. See King,

Plosser, and Rebelo (1988) and King and Rebelo

(1990) for further discussions.
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Program 3.

(P3.1) % Subroutine to solve for the mean and

variance of log-normal distribution.

(P3.2) function Fx＝ vdist(dist)

(P3.3) global vxs varvx;

(P3.4) Fx＝ ones(2, 1);

(P3.5) Fx(1)＝ exp(dist(1)＋ dist(2)/2) - vxs;

(P3.6) Fx(2)＝ exp(2*dist(1)＋ dist(2))*(exp

(dist(2)) - 1) - varvx;

Program 3, as mentioned before, specifies simultaneous

equations to be solved for the mean µ and the variance

σ2 of the i.i.d. shock ln vt.

The outputs of program 2 are summarized by figure 2

and figure 3. Figure 2 depicts the graph of capital {kt＋ 1 ;

t＝ 0, 1, 2, ... }, and figure 3 depicts the graph of

consumption {ct ; t＝ 0, 1, 2, ... } in the SDGE.

Figure 2. The Graph of kt.

Figure 3. The Graph of ct.

We may incorporate economic policies into the

stochastic optimal growth model to analyze the effects

of economic policies on the endogenous variables and

social welfare (measured by the utility of a
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