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ABSTRACT 

 

The fundamental role that statistics has in today’s knowledge-based society is 

unquestionable. Given this, it is by no means surprising the incorporation of several 

statistical contents into the school mathematics curriculum at all levels—particularly at 

secondary school—by the recent curricular reforms that have been carried out in many 

countries. In the case of those statistical contents studied in secondary school 

mathematics—all of them related to the idea of variability—, they are likely to be the 

last exposure that many students will have to statistics, and then it is expected that a big 

proportion of those students will develop their statistical literacy skills, knowledge base, 

attitudes and beliefs about statistics from these courses. Thus, given the general 

agreement among specialists in the field of statistics education that acknowledgement, 

understanding, explanation, and quantification of the variability in data is fundamental to 

statistical literacy, and due to critical role played by secondary mathematics teachers in 

the promotion of statistical literacy among their students, it is natural the importance to 

conduct research on secondary mathematics teachers’ professional knowledge to teach 

variability-related concepts, as an important first step in making any future improvement 

in the teaching and learning of statistics at any school level. 

Despite all the aforementioned facts, there is a scarcity of studies focused on the 

professional knowledge entailed by teaching variability-related contents at secondary 
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school. This is particularly true in the case of Venezuela. In order to deal with this gap in 

the literature, a research having the following main objectives was performed: 

・ To propose a conceptual framework for statistical knowledge for 

teaching—henceforth SKT, the professional knowledge needed to carry out 

effectively the work of teaching statistics—, aiming to examine the professional 

competencies—i.e., professional knowledge and affective-motivational 

characteristics—held by secondary mathematics teachers to teach variability-related 

contents.  

 

・ To examine the knowledge base of SKT held particularly by Venezuelan in-service 

secondary school mathematics teachers, using a survey designed on the basis of the 

framework proposed in this research. 

 

In order to develop a conceptual framework for SKT, an extensive literature 

review was conducted at first, aimed to identify several components that are agreed to be 

potential indicators of teachers’ professional competencies for teaching statistics from 

the viewpoint of variability. From this review, eight traits were identified; two in the 

affective domain—conceptions of variability and statistics-related beliefs—, and six in 

the cognitive domain—statistical literacy, specialized content knowledge, horizon 

content knowledge, knowledge of content and students, knowledge of content and 

teaching, and knowledge of content and curriculum. Moreover, twelve indicators 



 

xx 
 

associated to the latter six traits—two per trait—were identified and listed, in order to 

provide a comprehensive assessment framework for teachers’ professional knowledge to 

teach variability-related ideas at secondary level. The consideration of not only six 

cognitive traits simultaneously, but also of teachers’ conceptions and personal beliefs on 

statistics teaching and learning—which have been highlighted to have an inextricable 

relation with teachers’ knowledge and curriculum implementation—, is an original 

feature of this framework, which cannot be found within any of the few frameworks of 

SKT proposed to date.  

Based on the conceptual framework previously outlined, a pen-and-paper 

instrument was developed. Such instrument, designed to be completed in one hour, was 

comprised of a task addressing—by comparing the histograms of two 

distributions—many variability-related ideas present in the secondary school 

mathematics curriculum. This task was accompanied by seven SKT-related questions, 

aimed to elicit and gather information about each one of the eight traits indicated 

previously. 

The next phase of the research was carrying out the survey on a purposive 

sample of 53 Venezuelan in-service secondary school mathematics teachers working in 

the metropolitan area of Caracas, who were asked to anonymously and voluntary fill in the 

designed questionnaire between July and September 2012. After carrying out the survey, a 

qualitative analysis of the collected answers was made, using as assessment framework 

the aforementioned twelve indicators related to SKT. This analysis provided a 
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comprehensive picture of the current state of Venezuelan secondary school mathematics 

teachers’ knowledge base on SKT, conceptions of variability, and beliefs about statistics 

teaching and learning. Moreover, the analysis of the gathered data revealed a number of 

strengths and weaknesses of the surveyed teachers to effectively teach variability-related 

concepts in the area of descriptive statistics, as well as interesting relations among and 

within the cognitive and affective-motivational characteristics considered in this study. 

In addition, specific issues regarding the secondary school mathematics curriculum—at 

both intended and implemented levels—were identified; theoretical, methodological, and 

practical implications of the study findings were discussed; and recommendations for the 

systematic improvement of the statistical knowledge base for teacher education and the 

professional development of mathematics teacher educators regarding statistics in 

Venezuela were offered, based on all the information that emerged out of the 

aforementioned data analysis. 

In its current form, the framework for SKT proposed here can provide a fair 

qualitative characterization of in-service secondary school mathematics teachers’ SKT 

related to the instruction of statistics, in particular, variability-related contents. However, 

this study has the following limitations: (1) the developed survey instrument only deals 

with variability-related contents in the area of descriptive statistics, leaving aside 

probability and sampling, the other important statistical areas considered in secondary 

school mathematics; (2) prospective teachers were not included in the present study. 
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CHAPTER 1: 

Introduction 

 

1.1  Rationale and research motivation 

 

In recent years, and aiming towards achieving statistical literacy (Gal, 2002), 

curricular reforms in many countries have included and emphasized the teaching of topics 

related to statistics at all school levels, particularly in the secondary school mathematics 

curriculum (e.g., Ministerio de Educación [ME], 1987, 1997; Centro Nacional para el 

Mejoramiento de la Enseñanza de la Ciencia y la Matemática [CENAMEC], 1991; 

National Council of Teachers of Mathematics [NCTM], 2000; American Statistical 

Association [ASA], 1991; American Association for the Advancement of Science [AAAS], 

1993; Australian Education Council, 1994; School Curriculum and Assessment Authority 

& Curriculum and Assessment Authority for Wales, 1996; United Kingdom Department 

for Education and Employment, 1999; Ministry of Education of New Zealand, 2007; 

Ministry of Education, Culture, Sports, Science and Technology of Japan [MEXT], 2008a, 

2008b, 2009). This responds to one of the main changes that has altered the modern world: 

the transformation of industrial economies and societies into knowledge- and 

information-based ones (Sagheb-Tehrani, 2006). Therefore, as we move towards an 

increasingly knowledge-based society (Gal, 2004; Willke, 2007), it is more important than 

ever for all citizens to be able to provide good evidence-based arguments, to critically 

evaluate data-based claims and arguments coming from different sources of information, 
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to make optimal decisions on the basis of statistical and probabilistic information about 

policies and practices in the socio-political, industry, medicine, workplace, and consumer 

arenas (Wild & Pfannkuch, 1999; Franklin & Garfield, 2006; Kader & Perry, 2006), and to 

explain, judge, and analyze information (Rumsey, 2002), in order to intelligently 

participate in many fields of today’s society (e.g., for businesspeople, physicians, 

politicians, lawyers) after the end of school, and ensure an increased influence on it 

(Watson & Callingham, 2003; Budgett & Pfankuch, 2007). All these skills—which are 

related to being statistically literate—are expected of citizens in information-laden 

societies, and are regarded in many countries as an expected outcome of compulsory 

schooling and as a necessary component of adults’ numeracy and literacy (Gal, 2002, 

2004). For that reason, promotion of statistical literacy has been recently sought by a 

number of school mathematics curricula worldwide, aiming at preparing students to 

encounter the needs of society when they complete their compulsory education (Watson & 

Callingham, 2003; Willke, 2007). 

 

In the case of Venezuela, topics on statistics and probability were introduced into 

elementary (i.e., in Grades 1-6) and lower secondary education (i.e., in Grades 7-9) in 

1985, while their introduction into upper secondary education (i.e., in Grades 10-11) 

occurred in 1972, year until which the study of such topics was left exclusively to 

university students (ME, 1972, 1987, 1997; CENAMEC, 1991). It is noticeable that 

variability—a property of a statistical object which accounts for its propensity to vary or 
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change—arise naturally in many different ways in all the statistical topics included in the 

Venezuelan secondary school mathematics curriculum, as it happens in the case of other 

countries’ curricula. This is not a surprise at all, since several researchers have regarded 

variability not only as a fundamental concept in statistics (e.g., Shaughnessy, 2007; 

Pfannkuch & Ben-Zvi, 2011; Gattuso & Ottaviani, 2011), but also as its raison d’être (e.g., 

Moore, 1990; Moore & Cobb, 1997; Shaughnessy & Ciancetta, 2001; Shaughnessy, 2007), 

with the acknowledgment and understanding of variability being fundamental for 

statistical literacy (Shaughnessy, 2008), particularly as the words “variable”, “variation” or 

“vary” are a part of everyday language (Watson, 2006), as it is the ability to think 

statistically about varying outcomes and phenomena to make decisions not only at the 

individual level, but also for society in general. Therefore, nowadays Venezuelan 

secondary mathematics teachers—as their counterparts in other countries—must instruct 

several variability-related ideas—such as the ones of graphical representations of data, 

measures of variation, distribution and sampling—, and such work demands from them 

specific professional knowledge, skills and habits of mind, without which the aims of the 

mathematics curriculum regarding statistics education cannot be achieved. 

 

1.2  Problem statement 

 

An important implication can be drawn from the above rationale: since 

mathematics teachers’ professional competence translates into gains in student 
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achievement (Ball & Cohen, 1999; Supovitz, 2001; Borko, 2004); secondary school 

mathematics teachers, not only in Venezuela but in all countries, need to be prepared to 

teach and facilitate discussions with students about the statistical contents included in the 

mathematics curriculum. That is, teachers must, among other things, be able to 

appropriately answer the statistical problems that they assign to their students; understand 

the importance of students spending time formulating questions and collecting data; and 

move beyond mere numerical calculation of statistical measures or construction of tables 

and graphs, in order to implement different instructionally viable models for teaching 

statistical ideas related to variability (Newton, Dietiker & Horvath, 2011). Hence, the 

professional competence and prowess held by secondary school teachers to efficiently 

teach statistics and foster statistical literacy represent an immediate concern in the teaching 

of statistics at school level, which is natural, since these teacher must be, at least, 

statistically literate in order to develop students’ statistical literacy, and professionally 

competent enough to provide them with knowledge, skills and habits of mind to 

understand, explain and use varying data and statistical information (Franklin et al., 2005). 

 

The scarce literature on Venezuelan statistics education clearly points out that 

students finish compulsory schooling without learning even the basic notions of statistics 

included in the mathematics curriculum, and hence without acquiring the basic statistical 

literacy skills expected by official documents. Salcedo (2008) analyzed the results in the 

area of statistics obtained by students in Grades 3, 6 and 9 in 1998 at the only attempt of 
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the National System of Measurement and Evaluation of Learning (known by its Spanish 

acronym as SINEA), as well as by students at Grade 11 in the 2006 Scholastic Aptitude 

Test, which was, until 2007, a national entrance examination to Venezuelan public 

universities. The results of SINEA indicate that less than 30% of the students at Grades 3, 

6 and 9 answered correctly the questions in the section “Data Organization and 

Representation”, which was comprised of items related to statistics and probability. 

Similarly, the results of the 2006 Scholastic Aptitude Test show that the percentage of 

correct answers in the questions related to statistics and probability ranged between 7.5% 

and 36.6%. Moreover, in both examinations, the results in the items related to statistics and 

probability were the lowest ones, when compared with the results in other mathematical 

strands such as “Numbers”, “Operations”, “Geometry” and “Measurements”. Salcedo 

(2008) then concluded that mathematics teachers, in case they are working with topics in 

the strand “Statistics and Probability”, could be dealing with them with didactical and 

mathematical mistakes and shortcomings, which interfere with students’ understanding. 

The findings reported by Salcedo (2008) are in agreement with those of Tapia (2011), who 

found in his research with Venezuelan university students that those new admitted in the 

different engineering undergraduate programs at Venezuelan universities—particularly at 

Universidad Nacional Experimental de los Llanos Ezequiel Zamora 

(UNELLEZ)—demonstrate a disturbing lack of basic knowledge on statistics, especially 

those related to descriptive statistics, which were supposed to be studied by them at 

elementary and secondary school. 
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In order to improve classroom instruction and student achievement, a key factor to 

consider are teachers’ professional competencies—i.e., professional knowledge and 

affective-motivational characteristics—, whose promotion is the central goal of 

mathematics teacher education and professional development (Ball & Cohen, 1999; Cohen 

& Hill, 2000; Corcoran, Shields, & Zucker, 1998; Darling-Hammond & McLaughlin, 

1995; Elmore, 1997; Little, 1993; National Commission on Teaching and America’s 

Future, 1996; Döhrmann, Kaiser & Blömeke, 2012). According to a number of researchers 

(e.g., Döhrmann et al., 2012; Tatto et al., 2012), “successful teaching depends on 

professional knowledge and teacher beliefs” (cf. Döhrmann et al., 2012, p. 327). This 

“professional knowledge”—which will be understood in the present study as subject 

matter knowledge (SMK) and pedagogical content knowledge (PCK) (cf. Ball, Thames & 

Phelps, 2008; Döhrmann et al., 2012)—represents an important part of the competence 

required of mathematics teachers for accomplishing an effective teaching and learning, as 

well as a fundamental criteria for effective teacher education.  

 

Nevertheless, in the case of statistics education, scarce studies can be found in the 

literature focused on both the professional knowledge entailed by teaching 

variability-related contents to help students achieve the aims of statistics education (cf. 

Shaughnessy, 2007), the beliefs held by in-service teachers on statistics teaching and 

learning of such contents (cf. Pierce & Chick, 2011), and the conceptions of variability that 

teachers hold (cf. Batanero, Garfield, Ottaviani & Truran, 2001; Canada, 2006a, 2006b; 

Peters, 2009; Gonzalez, 2011; Isoda & Gonzalez, 2012), which are closely related to the 



7 
 

previous two traits. This paucity of research in the aforementioned issues is particularly 

true in the case of Venezuela, country in which the few reported researches on statistics 

education to date have been centered on the statistical contents in the school curriculum 

(e.g., Salcedo, 2006) or on students’ knowledge about statistics and probability (e.g., León, 

2011), with no studies reported, to the knowledge of the present author, on teachers’ 

professional knowledge and beliefs related to the teaching of statistics at any school level. 

 

Thus, the problem this dissertation examines is the clarification of the current 

state of the professional knowledge base on statistics, conceptions of variability, and 

beliefs about teaching and learning of statistics, held by Venezuelan secondary school 

mathematics teachers. By knowledge base, I mean a "codified or codifiable aggregation" 

of knowledge, understanding, skills and disposition that teachers use to carry out their 

classroom responsibilities (Shulman, 1987, p. 4; Valli & Tom, 1988). This includes things 

we imagine "in the brain", but also includes skill (the ability to enact knowledge) and 

disposition (a propensity to act or not act on what one knows). A knowledge base for 

teaching categorizes knowledge and provides "a means of representing and communicating 

it" (Shulman, 1987, p. 4). 

 

Thus, in order to provide a truly comprehensive picture of the current state of the 

aforementioned traits in the case of Venezuelan secondary school mathematics teachers, it 

will be necessary to identify relevant dimensions of professional competencies for teaching 
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variability-related contents at secondary school level, and then to examine a sample of 

Venezuelan mathematics teachers looking for evidence of such dimensions. 

 

1.3  Purpose of the research 

 

Three key themes underpin the present research. The first is the increasing status 

of statistics in the secondary school mathematics curricula not only in Venezuela, but 

worldwide, which is clear from the recent inclusion of several statistical topics into them. 

This fact demands from mathematics teachers professional competencies that are 

necessary to carry out their complex and demanding role in achieving the goals of 

mathematics curriculum and promoting both statistical literacy and understanding of 

statistics in students. Second, the critical role that exposure to secondary school statistics 

plays in developing students’ knowledge base, attitudes and beliefs about statistics. For 

many students, the exposure to statistics at secondary school mathematics might be the last 

and only statistics formal program taken by future users of statistics. Moreover, for those 

students moving on to tertiary education, prior exposure to statistics in secondary school 

would prepare them for statistics in college and university, since most of the topics 

discussed in statistics courses at tertiary level are advanced versions of the contents of 

probability and statistics studied in secondary school. Third, a lack of research efforts and 

a shared understanding about the professional knowledge needed to teach statistics at 

secondary school level, not only in Venezuela, but worldwide, due to the little research 
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that has been done to address this topic, which results in a blurry picture about the current 

preparedness of our mathematics teachers to teach statistics at secondary school. In 

summary, the purpose of this research can be regarded as two-fold, with a theoretical as 

well as a theoretical-practical component, which are described as follows: 

 

(1) To propose a conceptual framework for statistical knowledge for 

teaching—henceforth SKT, the professional knowledge needed to carry out 

effectively the work of teaching statistics—, aiming to examine the professional 

knowledge, conceptions of variability, and statistics-related beliefs held by 

secondary school mathematics teachers to teach variability-related contents. 

 

(2) By using the framework for SKT proposed here, as well as a survey designed 

based on it, to examine qualitatively the knowledge base of SKT, conceptions of 

variability, and statistics-related beliefs held by Venezuelan in-service secondary 

school mathematics teachers, in order to clarify the current state of such traits in 

this group. 

 

1.4  Research questions 

 

In order to fulfill the purpose of this research, the following research questions 

were posed: 
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1. What is statistical knowledge for teaching, and what are the indicators that could 

serve to evaluate it in the case of teaching variability-related concepts? 

 

2. On the basis of the conceptualization of SKT adopted by this research, what is the 

knowledge base of SKT that Venezuelan secondary school mathematics teachers 

have to teach variability-related concepts? 

 

3. How do Venezuelan secondary school mathematics teachers conceptualize 

variability, and what beliefs about statistics, its teaching and learning, do they 

have?  

 

1.5  Significance of the present study 

 

Teachers must be conscious about the fact that secondary school statistics is 

especially important because it is expected that a big proportion of their students will form 

their knowledge base, attitudes and beliefs about statistics from secondary school 

mathematics courses. Thus, such courses serve a critical function, and obviously 

mathematics teachers have the potential to play a critical role in statistics education and the 

promotion of statistical literacy among secondary school students, which is fundamental 

for them to fully participate in todays’ knowledge-based society. Then, since the extent to 

which mathematics teachers are adequately prepared to teach statistics at secondary school 
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level is one of the major determinants to achieve the aims of the mathematics curriculum 

regarding statistics education, carrying out the present research is important, because the 

findings of this research will provide a valuable insight into the knowledge base of 

statistical knowledge for teaching of Venezuelan middle and high school teachers. 

Moreover, this research will provide valuable information about both how teachers 

conceptualize variability and think statistically when dealing with situations where 

variation and variability arise—such as interpretation and understanding of histograms, 

data manipulation, and interpretation of data distribution features, among others—, and 

how they believe that statistics can and should be learnt and taught, traits that are 

fundamental for the successful implementation of recent curricular reforms, and the 

teaching of statistics in ways that serve the present and future needs of students and the 

whole society in general. Then, this study helps to remedy a problem such as the evident 

absence of studies focusing on professional knowledge, conceptions of variability, and 

statistics-related beliefs of secondary school mathematics teachers that currently exists in 

the literature, which is particularly remarkable in the case of Venezuela. Moreover, by 

addressing the aforementioned research questions, the present study aims to unite research 

on teacher knowledge, research on teachers’ beliefs, research on secondary school teachers, 

and research on statistics education in the domain of variability-related contents, areas in 

which a noticeable lack of study have been acknowledged in the literature by several 

concerned authors and statistics educators. 
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In this regard, currently there is a very limited literature on the professional 

knowledge needed to teach statistics at school level, in particular at secondary one, not 

only at Venezuela but worldwide. This is shown by an analysis of research literature, for 

example papers published in the Journal of Mathematics Teacher Education, as well as in 

survey papers and handbooks concerning mathematics education, which pay little attention 

to the teaching of statistics (Batanero, Burrill & Reading, 2011). Hence, it is by no means 

surprising the urgent call for increasing research on these areas made by a number of 

concerned researchers, particularly for studies on teachers’ professional knowledge and 

practices while teaching variability (e.g., Sánchez, da Silva & Coutinho, 2011, p.219), as 

well as for teachers’ beliefs on statistics itself and on what aspects of statistics should be 

taught in schools and how (e.g., Pierce & Chick, 2011, p.160). These numerous calls for 

research that have been recently made, as well as the paucity of research in the 

aforementioned issues acknowledged by several researchers and statistics educators, 

provide clear evidence of the need and importance of conducting research on the 

aforementioned issues, which would, like the current one, provide insights into the 

professional knowledge base that our secondary school teachers have to teach several 

statistical contents in which variability can be appreciated. 

 

In addition, within the handful of models attempting to describe what content 

knowledge and pedagogical content knowledge is considered adequate and appropriate to 

teach statistics, it is evident how important—as well as complex—components that might 

influence or conform mathematics teachers’ professional knowledge to teach 
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statistics—such as teachers’ conceptions of variability, statistics-related beliefs and 

knowledge of content and curriculum, among others—have been left out of consideration. 

Therefore, one of the main contributions of this research is the proposition of a novel 

conceptual framework of SKT that takes into consideration many components that have 

been left out by previous models, as well as survey instrument designed from both an 

extensive literature review and the proposed eightfold framework for SKT, in which are 

investigated SKT—which is delved into 6 categories—, conceptions of variability, and 

beliefs about teaching and learning of statistics. Then, this research contributes to fill a 

significant gap in the statistics education literature, and provides a valuable tool to 

examine and qualitatively assess mathematics teachers’ competency and preparedness to 

teach statistical contents, particularly those related to variation and variability, a theme in 

which, to my knowledge, no research has been done in the case of Venezuela at any level 

of the educational system. This contribution is important as teachers’ competency to teach 

statistics would be reflected on areas such as their teacher content understanding, beliefs, 

and teacher practice.  

 

Professional knowledge in the preparation of teachers has been identified as a 

fundamental component of teacher education programs (Ball & McDiarmid, 1990). 

Therefore, even though this research focuses on in-service teachers, it may provide insight 

and have implications for policymakers, for those interested in improving teacher 

education, and for those who make decisions about the professional development of 
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Venezuelan teachers. Hence, the present study might be helpful to identify what topics in 

statistics and which instructional approaches need to be attended or included in pre-service 

and in-service teacher education programs, which would contribute to develop effective 

ways to train current and future teachers of statistics. All this, at the end, will result in an 

improvement of the professional development of pre-service and in-service Venezuelan 

teachers’ SKT, and hence in the quality of statistical teaching in Venezuela. 

 

Also, this research provides solid ground for researchers wishing to continue to 

detail the characteristics of how Venezuelan in-service middle and high school teachers 

give response to tasks where variation and variability in data plays a leading role. 

 

In summary, while this study does claim neither to unveil completely how 

Venezuelan secondary school mathematics teachers acknowledge variability in particular 

settings, nor what kind of training they need in order to build and improve their current 

knowledge about the surveyed contents, it does give insights about their statistical literacy, 

reasoning and thinking that can help advise research, teaching, and curriculum 

development in the areas of secondary school statistics, as well as in pre-service and 

in-service teacher education programs. 
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CHAPTER 2: 

Statistics Education in Venezuela 

 

2.1  Contextual Background of the Education System in Venezuela 

 

According to the Chapter III of the new Organic Law of Education—adopted in 

August 2009—, Venezuela’s traditional or mainstream education system is organized by 

the following levels and modalities (D’Amico & González, 2006; D’Amico, Loreto & 

Mendoza, 2011): 

 

 Initial education, serving children between birth and 5 years of age. The 

kindergarten stage, a three-year institution that begins at the age of three and 

continues until age five, is compulsory. 

 

 Elementary school, a six-year institution for children between 6 and 11 years of 

age. It is divided into First stage (Grades 1, 2 and 3), and Second stage (Grade 4, 5 

and 6). 

 

 Secondary school, a five or six-year institution for youngsters between 12 and 17 

years old. It is divided into two stages: the Basic (years 1, 2 and 3) and the 

Diversified (years 4–5 or 6) cycles. At the latter one, the student has the option to 

choose between one of the following three streams: Basic Sciences, Humanities 
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(each of them lasting 2 years), or Professional (the only one lasting three years). 

At the professional level, the student can get a technical qualification in one of the 

following six specialties: Industrial, Commerce and Administrative Services, 

Farming and Livestock, Social work, Arts, Security and Defense (D’Amico & 

González, 2006, pp.64-65). Right after graduation at the Professional stream, 

students usually have the functional and technical knowledge and skills to work in 

the chosen area. Students graduating from the Basic Sciences or Humanities 

streams will be able to pursue higher education. The secondary education diploma 

is awarded after finishing this level.  

 

 Higher education, which comprises university and technical college education. 

This stage serves youngsters from 18 years of age. Undergraduate studies at the 

government universities and technical colleges are free. 

 

The modalities refer to other areas of education, such as special education, 

education for the arts, vocational education, military education, adult education, and 

off-campus education. 

 

The main responsibility for this educational system rests in the hands of the 

Ministry of the People's Power for Education. Venezuela’s education system follows a 

national curriculum for all subjects and school levels, and the Ministry of the People's 

Power for Education is responsible, among other functions, for designing and changing 
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areas or subject matter in the curricula for each education level (Navarro & de la Cruz, 

1998, pp.133-134).  

 

This structure of the Venezuelan educational system has a philosophical 

underpinning in the Constitution of the Bolivarian Republic of Venezuela, aimed to 

promote endogenous and sustainable development, as well as to encourage Latin American 

and Caribbean integration, as it is stated in its Article 153. Moreover, in Venezuela, 

education is constitutionally understood to be a ‘public service’, which gives it a character 

of special interest to every citizen. In fact, according to the Articles 3, 102 and 103 of the 

Constitution of the Bolivarian Republic of Venezuela, education is a right ensured by the 

State, compulsory from initial education to the diversified secondary level, as well as free 

of charge in all government and local body educational institutions up to the undergraduate 

level (Constitución de la República Bolivariana de Venezuela [CRBV], 1999, pp.7, 38; 

D’Amico, Loreto & Mendoza, 2011, pp.92-93).  

 

The “shift system” is a representation of one of the nuances in the Venezuelan 

educational system. This practice, although incongruent with regular Western systems of 

education, is seen also in other countries such as Singapore, Puerto Rico, Brazil, Mexico, 

India, Jamaica, Turkey and Senegal (Bray, 2000), mainly to combat large class sizes. 

Venezuelan schools can operate in three different ways: morning shift, afternoon shift, or 

all-day shift. At the primary level, the vast majority of students are taught in all-day shift 

schools. Morning or afternoon shifts are circumscribed to secondary schools. In Venezuela, 
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a secondary school day is organized on a shift basis; that is, in separate morning and 

afternoon shifts. Therefore, it accommodates two different sets of students in one day. The 

first set attends school from early morning to midday—i.e., from 7 a.m. to 12:30 p.m—; 

while the other set attends from midday to late afternoon—i.e., from 12:30 p.m. to 6:00 

p.m—, normally with several breaks between lessons. Both sets of pupils use the same 

school facilities and amenities. However, they are often taught by different teachers. 

Spanish is the only language of main instruction in schools allowed by the Venezuelan 

Ministry of Education. 

 

In Venezuela, teacher salaries are low compared to salaries in other fields. A 

teacher fresh out of the university will perceive about US$470 working full-time for a 

public school. Furthermore, teachers do not get any salary or non-salary incentive by 

working in rural or remote areas. Because of these, and due to the “shift system” that 

characterizes Venezuelan educational system, many teachers work in more than one school, 

looking for augmenting their salary by attending one group in the morning and another in 

the afternoon. This means that novice teachers and teachers with few hours in one school 

are required to seek employment in multiple ones, managing their hours into morning and 

afternoon shifts at more than one location. Therefore, it is not rare to see a secondary 

school teacher working not only in more than one school, but also for different school 

systems—i.e., in the public state, municipal, and private school systems—, as well as in 

more than one school level—i.e., in lower and upper secondary school level. 
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In Venezuela, at elementary school, teachers teach most or all of the subjects, 

whereas at secondary school teachers are specialized in particular ones. Mathematics is a 

compulsory subject for Venezuelan students from elementary school through to secondary 

school. Mathematics teachers are trained to teach school mathematics in pre-service 

teacher programmes at universities and teacher colleges. 

 

2.2  Statistics Curriculum in Venezuela 

 

In Venezuela, statistics is taught as part of the mathematics curriculum at all 

levels, from elementary through Grade 11. Statistical contents are acknowledged in 

national curriculum documents as a single unit, for which—depending on the school 

level—conceptual, procedural and attitudinal contents, competencies and assessment 

indicators, and suggested assessment and methodological strategies, are outlined. A 

detailed description of how statistical contents are developed over elementary and 

secondary education in Venezuela follows. 

 

2.2.1  Statistics in the Venezuelan elementary school mathematics curriculum 

 

Topics on statistics and probability were introduced into the elementary school 

system in Venezuela for the first time in 1985, year before which the study of statistical 

topics was exclusive to students in the Diversified cycle of secondary school and in higher 

education. In the First stage of elementary school, statistical contents are studied as part of 
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the mathematical strand “Statistics and Probability”, one of the five strands comprising the 

mathematics curriculum at that level (the others are “Meeting the Numbers”, “Starting to 

Make Calculations”, “Geometrical Bodies and Shapes” and “How Do We Measure?”). In 

the Second stage of elementary school, statistical contents are again studied as part of the 

mathematical strand “Statistics and Probability”, one of the five strands comprising the 

mathematics curriculum at that level (the others are “Numbers”, “Operations”, “Geometry” 

and “Measurements”). 

 

The last reform to the elementary school mathematics curriculum, which was 

implemented in 1996, introduced some modifications pertinent to the study of statistics, 

particularly regarding to the arrangement of the contents. A comparison between the 

statistical contents present in the 1985 and 1996 curriculum designs is shown in Table 1. 

 

As it can be appreciated in Table 1, the elementary school curriculum is spiral, so 

statistical contents are revisited several times over the course of schooling at increasingly 

deep and complex levels of understanding and reasoning, in order to consolidate students’ 

knowledge, conceptual understanding and skills. 

 

2.2.1.1  Objectives and contents in the Venezuelan elementary school mathematics 

curriculum 

 

Venezuelan mathematics curriculum for elementary school outlines ten general 
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Table 1: Statistical contents as in the last two reforms to the Venezuelan elementary 

school mathematics curriculum  

Grade 1985 Reform 1996 Reform 

1 
Design and application of simple 
surveys, elaboration and interpretation 
of tables, bar graphs and pictograms. 

No changes from the 1985 Reform. 

2 
Design and application of simple 
surveys, elaboration and interpretation 
of tables, bar graphs and pictograms. 

Added to the contents in 1985 Reform: 
Notion of chance; impossible, sure, and 
probable events. 

3 
Design and application of surveys, 
elaboration and interpretation of tables, 
bar graphs and pictograms. 

Added to the contents in 1985 Reform: 
Notion of chance, random 
experimentation, elaboration and 
interpretation of tables with data from a 
random experimentation. 

4 
Design and application of surveys, 
elaboration and interpretation of tables, 
bar graphs and pictograms. 

Added to the contents in 1985 Reform: 
Finding of the mode in non-grouped 
data. 

5 

Arithmetic mean, mode, median. 
Notion of chance; impossible, sure, 
and probable events. Computation of 
probabilities based on classic 
definition. 

Removed from the contents in 1985 
Reform: Mode (moved to Grade 4) and 
median (moved to Grade 6). 

6 

Frequency distributions, elaboration 
and interpretation of tables, bar and 
circular graphs. 
Computation of probabilities based on 
the classic definition. 
Tree diagrams. 

Added to the contents in 1985 Reform: 
Elaboration and interpretation of 
histograms, computation of the 
arithmetic mean and the median; basic 
ideas about counting. 

 

objectives, within which one is explicitly related to the strand “Statistics and Probability”: 

“Based on the study of notions of statistics and probability, the student is able to interpret 

situations from the daily life” (ME, 1987, 1997). Moreover, for each grade, conceptual, 

procedural and attitudinal contents, as well as competencies and assessment indicators, are 

outlined. Since the focus of this research is the secondary education, these objectives are 

not included here for discussion. 
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2.2.1.2  Methodological guidelines provided by the Venezuelan elementary school 

mathematics curriculum 

 

For the First stage of elementary school, the current Venezuelan mathematics 

curriculum for elementary school does not provide any explicit methodological guidelines 

on how to teach the contents included in the strand “Statistics and Probability”. Then, 

since only a general objective; conceptual, procedural and attitudinal contents; and 

competencies and assessment indicators related to this strand are outlined, teachers have 

wide latitude for interpreting, instructionally deploying, and assessing such contents. In the 

case of the Second stage of elementary school, the current Venezuelan mathematics 

curriculum for elementary school provides some general orientations for teachers to 

implement it.  

 

Such orientations, while promoting a student-centred lecture environment, also 

asks teachers to foster in students not only arithmetic and spatial abilities, but also the 

capacity to look for, verify and order information; the ability to find a particular solution 

from different solving methods; embed the teaching of mathematics into situations with 

cultural and social interest to the students, as well as into the daily life of the students; and 

the incorporation of new technologies (i.e., calculators and computers) as tools for 

simplifying calculations, looking for patterns, and carrying out mathematical experiments. 
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2.2.2  Statistics in the Venezuelan secondary school mathematics curriculum 

 

The reform to the secondary school mathematics curriculum that took place at 

Venezuela in 1972 represents a milestone in the education system of the country: for first 

time, the study of topics on statistics and probability was introduced in the compulsory 

education. In that reform, which was influenced by the “New Math” movement, statistical 

topics and basic notions of probability were included in the Diversified cycle of secondary 

school. The next—and last—reform to the secondary school mathematics curriculum took 

place in 1990. Such reform make substantial changes to the arrangement and number of 

statistical topics studied in the Diversified cycle of secondary school. Regarding the Basic 

cycle of secondary school, it was considered as the Third stage of Elementary Education 

until 2009, when the new Organic Law of Education was enacted (D’Amico, Loreto & 

Mendoza, 2011). For that reason, the statistical contents studied at the first three years of 

secondary education in Venezuela are still those prescribed by the curricular reforms to the 

elementary school mathematics curriculum of 1985 and 1996. Table 2 shows the statistical 

contents after the last two curricular reforms to the Basic and Diversified cycles of 

secondary school. 

 

The mathematics curriculum for the Basic cycle of secondary education does not 

explicitly specify any particular mathematical strand, like it is done at elementary school 

level. Nevertheless, five content domains can be appreciated: “Numerical sets and 

Algebraic Expressions”, “Functions”, “Geometry”, “Statistics and Probability” and 
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Table 2: Statistical contents as in the last two reforms to the secondary school 

mathematics curriculum in Venezuela  
Grade 1985 Reform 1996 Reform 

7 

Grouping data in intervals. 
Frequency distribution, absolute and 
relative frequency.  
Elaboration and interpretation of 
absolute frequency histograms.  
To solve problems applying basic ideas 
of chance and probability.  
Tree diagrams.  

No changes from the 1985 Reform.

8 

Computation of the median and the 
mode of frequency distributions of 
grouped and non-grouped data.  
To solve problems using the median and 
the mode of a frequency distribution of 
grouped and non-grouped data.  
To identify independent events.  
Computation of the compound 
probability of independent events.  

No changes from the 1985 Reform.

9 

To solve problems applying basic 
notions of statistics (arithmetic mean and 
mode of grouped and non-grouped data). 
To solve problems applying basic 
notions of probability (chance, classic 
probability, tree diagrams). 

No changes from the 1985 Reform.

   
Grade 1972 Reform 1990 Reform 

10 

Random experiments. 
Statistical variable.  
Measurement scales. 
Sampling and population.  
Absolute and relative frequency. 
Frequency distribution of grouped data. 
Ogives and histograms. 
Measures of central tendency. 
Measures of variation. 

All topics on statistics from the 
1972 Reform were suppressed.  

11 

Probability, counting methods, 
combinatory methods, probability of 
co-occurrence of two independent 
events, conditional probability, 
application of Bayes’ rule. 

Added to the contents in 1985 
Reform: Applications of Newton’s 
binomial.  
Computation of the arithmetic 
mean, mode, median, range, 
variance, standard deviation, 
quartiles, deciles, percentiles. 
Normal curve. 
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“Introduction to Informatics”. At the Diversified cycle of secondary school, the 

mathematics curriculum divides into five units of instruction the topics to be studied at 

each grade. Then, mathematics contents in Grade 10 are organized into “Real Functions”, 

“Trigonometry”, “Vectors in the Plane”, “Set of Complex Numbers ℂ” and “Progressions 

(Number Sequences)”; while in Grade 11 mathematics contents are organized into “The ℝ3 

Vector Space”, “Polynomials”, “Inequalities”, “Geometry” and “Probability, Statistics and 

Combinatorial Theory”. 

 

As the mathematics curriculum for elementary school, this one is also spiral in 

nature, for which the statistical ideas are present in the secondary school mathematics 

curriculum are revisited from grade to grade in successively sophisticated ways rather than 

repetitively (Lappan et al., 1996), the emphasis being on developing and refining 

application and problem solving skills. 

 

2.2.2.1  Objectives and contents in the Venezuelan secondary school mathematics 

curriculum 

 

Venezuelan mathematics curriculum for the Basic cycle of secondary school 

outlines thirty-eight overall objectives, within which five are explicitly related to statistics 

and probability (ME, 1987, 1997). Moreover, in the current mathematics curriculum for 

the Basic cycle of secondary school, for each grade, each instructional content is related to 

an overall objective, followed by specific objectives, which can be appreciated in Table 3. 
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Table 3: Overall and specific objectives related to the statistical contents included in the 

current mathematics curriculum for the Basic cycle of secondary school in Venezuela 

Grade Overall Objective Specific Objectives 

7 

XI. To apply the concept of 
probability when posing and 
solving problems 

28. To solve problems in which basic 
notions of probability could be used. 
29. To represent events from a random event 
through tree diagrams. 

XII. To study basic notions 
of descriptive statistics. 

30.1. To group statistical data in class intervals.
30.2. To determine the absolute and absolute 
cumulative frequency in a collection of 
grouped data. 
31. To make absolute frequency histograms. 

8 

XIII. To study basic notions 
of compound probability. 

26.1. To identify when two events are 
independent. 
26.2. To compute the compound probability 
of independent events. 

XIV. To study basic notions 
of descriptive statistics. 

27.1. To compute the arithmetic mean and 
the mode of a distribution of grouped data. 
27.2. To solve problems in which the 
arithmetic mean and the mode of a 
distribution of grouped data could be used. 

9 

IX. To solve problems in 
which basic notions of 
statistics and probability 
could be used. 

24.1. To solve problems in which basic 
notions of statistics could be used. 
24.2. To solve problems in which basic 
notions of probability could be used. 

 

In the case of the Diversified cycle of secondary school, the current Venezuelan 

mathematics curriculum specifies at its beginning the overall objectives for each grade, 

with the specific objectives stated at the beginning of each unit. Table 4 shows the overall 

and specific objectives related to the teaching of statistics present in the current secondary 

school mathematics curriculum in Venezuela. 

 

Since objectives state the intended learning outcome to be demonstrated by the 

student after appropriate opportunities to learn (Krathwohl, 2002), it would be interesting  
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Table 4: Overall and specific objectives related to the statistical contents included in the 

current mathematics curriculum for the Diversified cycle of secondary school in Venezuela 

Grade Overall Objective Specific Objectives 

10 No topics on statistics and probability are included. 

11 

To learn fundamental 
notions of probability theory 
to allow students to model 
situations of uncertainty. 

5.1. Probability 
 The student will understand fundamental 

notions of probability theory.  
 The student will learn the concept of chance 

and will use it to model situations in which 
uncertainty or lack of knowledge are present.  

 The student will solve problems embedded in 
simple sample spaces, by using counting 
techniques and applying knowledge of 
combinatorial theory. 

5.2. Newton’s Binomial Theorem. 
 The student will learn the general formula of 

Newton’s Binomial Theorem and will apply it, 
as well as knowledge of combinatorial theory, 
to expand powers of a binomial. 

5.3. Numerical Methods. 
 The student will be able to describe, by the 

means of characteristic values, distributions of 
probability associated to experimental data. 

 

to check the verbs used in the entire Venezuelan mathematics curriculum for secondary 

school. Through careful consideration of action verbs, I believe it is possible to accurately 

interpret the instructional action intended by the word that was chosen precisely for the 

expectation. Moreover, verbs are used in many mathematics programs to inform teachers 

about all instructional and assessment decisions (van de Walle, 2004, p.13); that is, verbs 

tell the teacher whether the teaching requires direct instruction, student experimentation 

and discovery, or a demonstration of problem-solving strategies. Therefore, since the verbs 

in the curriculum standards indicate the level of critical thinking expected of students, an 
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analysis of verbs used in the Venezuelan secondary school mathematics curriculum will 

indicate what kinds of cognitive demands are stressed by them. In order to perform such 

analysis, the six hierarchical thinking levels in Benjamin Bloom’s cumulative hierarchical 

theoretically-based taxonomy framework in the cognitive domain (under the headings of: 

knowledge, comprehension, application, analysis, synthesis, and evaluation) will be used 

(Athanassiou, McNett & Harvey, 2003; Anderson, 2005; Heward, 2006). The verbs used to 

describe the cognitive demands in the Venezuelan secondary school mathematics 

curriculum, as well as the analysis of such verbs using Bloom’s taxonomy as assessment 

blueprint, are shown in Table 5. 

 

Table 5: Analysis of the verbs used in the Venezuelan secondary school mathematics 

curriculum, using revised Bloom’s taxonomy framework 

Level Verb Frequency Thinking level 

B
as

ic
 C

yc
le

 

Apply 
Pose  
Solve  
Study 
Use  
Represent  
Group  
Determine  
Make (a graph)  
Identify  
Compute  

1 
1 
5 
3 
5 
1 
1 
1 
1 
1 
2 

Application  
Synthesis 
Application  
Knowledge 
Application  
Application 
Analysis 
Evaluation  
Application 
Knowledge 
Application 

D
iv

er
si

fi
ed

 C
yc

le
 

Learn  
Model  
Understand  
Use  
Solve  
Apply  
Expand  
Describe  

3 
2 
1 
2 
1 
2 
1 
1 

Knowledge 
Synthesis 
Comprehension 
Application 
Application 
Application 
Application 
Comprehension 
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From the 35 verbs used in the overall and specific objectives present in the 

Venezuelan secondary school mathematics curriculum, 30 of them (85.7%) are action verbs 

from the lower thinking levels (knowledge, 20.0%; comprehension, 5.7%, and application, 

60.0%). This means that 85.7% of the cognitive demand that this standards place upon 

students are related to lower order thinking skills, which require from students to apply the 

knowledge ordinarily, which is not always associated with having high abilities. For those 

verbs with a cognitive demand related to higher order thinking skills, those related to 

“Synthesis” are the ones with higher frequency (analysis, 2.6%; synthesis, 5.7%; and 

evaluation, 2.6%). These skills, sometimes known as critical thinking skills, allow students 

to think convergently and divergently to investigate challenges and problems as well as to 

think in complex and creative ways (O'Tuel & Bullard, 1995). Then, since higher order 

learning is non-algorithmic, so there is no one pattern or procedure that must be followed 

(Resnick, 1987), and is characterized by open mindedness, the ability to explore alternative 

solutions is essential to thinking effectively (Tishman, Jay & Perkins, 1993), it is fair to say 

that, in regards to the learning of statistics, Venezuelan secondary school mathematics 

curriculum does not promote the critical thinking (stressed in the definition of statistical 

literacy), but focus on knowledge, comprehension and/or application instead. 

 

2.2.2.2  Methodological guidelines provided by the Venezuelan secondary school 

mathematics curriculum 

 

In the case of the Basic cycle of secondary school, the last two reforms to the 

current Venezuelan mathematics curriculum—in 1985 and 1996—mentioned quite detailed 



30 
 

methodological suggestions for teachers in a topic-by-topic basis. Such suggestions 

promote a student-centred lecture environment, as well as emphasize the significance of 

trying to improve students’ comprehension of statistics and probability contents by relating 

them to students’ own environmental and social context (Salcedo, 2006). The use of 

concrete materials and drawing upon students’ experiences as a starting point for teaching 

is suggested in both curriculums in order to promote more active participation in classroom 

activities. A summary of the suggested methodological strategies appearing in the current 

mathematics curriculum for the Basic cycle of secondary education, in relation to the 

objectives related to descriptive statistics, is shown in Table 6: 

 

Table 6: Summary of the statistics-related methodological strategies provided by the 

Venezuelan mathematics curriculum for the Basic cycle of secondary education 

Grade Suggested Methodological Strategies 

7 

a) Motivate the process of data organization. 
b) Propose data gathering to students. 
c) Organize data. 
d) Obtain rules for a better data organization. 
e) Organize data in class intervals. 
f) Determine the absolute cumulative frequency. 
g) Inform students that organizing data in class intervals with their 

respective frequencies is called “frequency distribution”. 
h) Guide the interpretation of data. 

8 

a) Review the concepts to be used (measures of central tendency). 
b) Obtain the midpoints of a frequency distribution. 
c) Determine the arithmetic mean for a grouped data set. 
d) Determine the mode of a distribution. 
e) Solve exercises and problems. 

9 

a) Solve problems regarding the environmental and social dimensions, in 
which measures of central tendency could be used. 

b) Solve problems regarding the environmental and social dimensions, in 
which notions of probability could be used. 

c) Solve problems using the reviewed contents in a) and b), in which the 
student justifies the used procedure and operations. 
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In the reform to the mathematics curriculum of 1985, the Ministry of Education 

also developed a teaching guide for the grades that are now known as Basic cycle of the 

secondary school. In such document, suggestions for introducing concepts and develop the 

expected skills in students are provided, which supplied strategies and guided practice for 

the teaching of a topic that was not taught before at that level in Venezuela. This document 

explicitly mentions, among others, some of the aspects that are sought to be reached 

through the study of mathematics at lower secondary level, such as (1) to guarantee 

students’ acquisition of knowledge, capabilities and skills needed to their incorporation to 

the working life, and (2) to give a relevant place to problem solving, particularly tackling 

problems with statements that arouse interest or curiosity in the students. Furthermore, this 

document also mentions that the teacher is expected to stimulate and strengthen children’s 

mathematics learning through practical experiences linked to knowledge about daily life, 

and in particular, environmental situations interesting to the students, through which they 

could appreciate and value nature and natural resources. Since this reform gave heavy 

emphasis on problem solving in the curriculum, it is natural that its teaching guide defined 

what a good problem is. According to this document, a good problem is one that has a 

real-life content, which formulation should start from the following criteria: 

 

− Pupils’ interests and activities. 

− Life style of the community, region and country. 

− Games and folklore. 

− Goals of the lower secondary school curriculum. 
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− Current national and international events. 

 

Then, here is more evident the student-centered nature of the Venezuelan 

mathematics curriculum for Basic cycle of secondary school.  

 

The 1990 reform to the Venezuelan mathematics curriculum for Diversified cycle 

of secondary school included a special section devoted to methodological suggestions for 

teachers. Despite being general suggestions, this represented a considerable improvement 

in the curriculum, in comparison to the previous reform undertaken in 1972, in which only 

a handful of activities were recommended to teachers for their use in the classroom. A 

summary of the suggested methodological strategies appearing in the current mathematics 

curriculum for the Diversified cycle of secondary education, in relation to the objectives 

related to descriptive statistics, can be appreciated in Table 7. 

 

Table 7: Summary of the statistics-related methodological strategies provided by the 

Venezuelan mathematics curriculum for the Diversified cycle of secondary education 

Grade Suggested Methodological Strategies 

10 No topics on statistics and probability are included. 

11 

− We suggest to the teacher to solve problems with statements that would 
be of particular appeal to students. 

− Finally, we recommend to present student with innovative problems 
related to the daily life, which motivate them to analyze situations in 
which statistics could provide new parameters for the interpretation of 
results. These problems will be particularly useful to the student if they 
are solved using school-related data, economical phenomena, population 
analysis, averages, production data, and so on. 
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2.3  Research on statistics education at secondary school level in Venezuela 

 

In the case of Venezuela, there is a paucity of research efforts investigating 

mathematics teachers’ professional competence—i.e., professional knowledge and 

affective-motivational characteristics—to teach statistics at any school level, despite the 

increasing international need for understanding on this issue. In fact, the few research 

attempts on this area in Venezuela have focused on investigating aspects of teachers’ 

content knowledge and teaching practice. In fact, among those few research efforts, there 

are some of them drawing conclusions about the current state of teaching and learning of 

statistics at school level in Venezuela by extrapolation from research on either individual 

perceptions of teacher preparation to teach statistics or students' performance and 

achievement in statistics at tertiary education. For example, León (2005), in her theoretical 

essay about statistical literacy and development of statistical thinking at school level, states 

that in Venezuela, in practice, the statistical contents included in the mathematics curricula 

are mostly dealt with in a mechanistic way, through the application of mathematical 

formulas, based on her experience as a teacher and teacher educator, with no data is given 

to support such a claim. According to her, Venezuelan mathematics teachers tend to 

conceive statistical literacy in a rather simplistic way, as the mere action of teaching 

repetitive calculations by well-defined procedures, instead of as a multifaceted set of skills 

that will prepare students to participate, understand and transform society; to be critical 

consumers of contextualized information; to be able to take a politically and socially 

compromised position in issues expressed in statistical terms; and to be able to understand 
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clearly the real world, the social order and the human behavior, in which variability and 

uncertainty are omnipresent components. This view of teaching statistics is what Garfield 

(1995) calls a “cookbook” fashion; that is, teaching statistics focusing on mechanics 

instead of the logic of applications.  

 

In a similar way to León (2005), Tapia (2011) reflects on the teaching of statistics 

at school level in Venezuela in his didactical proposal for a new way of teaching statistics 

at university level for students in the major of computer engineering. He highlights the fact 

that new students admitted in the different engineering undergraduate programs at 

Venezuelan universities—particularly at UNELLEZ—demonstrate a disturbing lack of 

basic knowledge on statistics, especially those related to descriptive statistics, which were 

supposed to be studied at elementary and secondary school. Based on this, Tapia affirms 

that in Venezuela, the teaching of statistics at elementary and secondary schools is limited 

to its mathematical aspects and carried out by professionals with a deterministic training, 

being this the reason why the random phenomena studied at school lack of importance and 

are covered only superficially or discarded at the end of the school year, resulting in 

students entering universities with a total lack of basic knowledge on statistics. 

 

The research efforts made in examining aspects of Venezuelan mathematics 

teachers’ professional competence to teach statistics at school level have been focused on 

the elementary school. In that regard, the studies carried out by Parra (1997), Sanoja 

(2012), and Sanoja and Ortíz (2013) were found. 
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Parra (1997), based upon her diagnosis of the situation of the teaching of statistics 

and probability at Second stage of elementary school (Grade 4, 5 and 6) in public and 

private institutions at the municipality of Maturín, Monagas State, concluded that teachers 

required to develop methodological strategies to achieve the goals of teaching statistics an 

probability at school, in particular to develop student’s thought processes such as 

observation, comprehension, analysis, classification and synthesis, among others, as well 

as a participative, reflexive and critical dynamics in the classroom. 

 

Sanoja (2012) carried out a study aimed to examine the process of teaching 

statistics in elementary school at Venezuela, focusing on aspects such as content 

knowledge, teaching planning and practice, and statistical thinking—in particular, on the 

different ways of thinking about data and its context in order to explore, properly analyze 

and understand them. To that end, lesson observation, interviews and surveys were carried 

out on all the teachers working at a government elementary school in Maracay, Aragua 

State. Sanoja concludes that teachers employ a traditional didactic approach, heavily 

influenced by the use of textbooks, which were found to show a trend of traditional 

didactics and even conceptual errors in some cases. In addition to this, teachers were found 

to lack of sound training in statistics and its teaching, which results in teachers teaching 

statistical contents as they see and understand them. This represents a problem, since there 

was evidence of misconceptions and difficulties regarding data visualization (basic 

concepts and data organization) and measures of central tendency (mean, median and 

mode). The surveyed teachers also expressed their interest in improving their teaching 
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practice in statistics instruction. 

 

Sanoja and Ortíz (2013) carried out a study to determine what statistical content 

knowledge was held by forty-eight teachers working at two government elementary 

schools in Maracay, Aragua State. Findings show evidence of misconceptions and 

difficulties in areas such as data visualization (basic concepts and data organization), 

measures of central tendency (mean, median and mode) and probability. In particular, the 

following shortcomings were observed: misconceptions regarding the concepts of variable 

and data; errors in associating particular kind of graphs with variables; difficulty reading 

and understanding line graphs and histograms; lack of understanding of the meaning of 

arithmetic mean, even though there was evidence that teachers knew how to compute it; 

lack of knowledge on how to calculate the median; mixing up the terms of mean and 

median; and lack of understanding of the meaning of possible event. Nevertheless, it 

should be emphasized that just as teachers showed some weaknesses in the use of some 

statistical concepts, they also showed some strengths, such as procedural mastery in 

constructing frequency distribution tables and double-entry frequency tables; mastery in 

constructing, reading and interpreting bar graphs; and mastery in the construction of 

pictograms. 

 

A pair of studies on examining some aspects of Venezuelan mathematics teachers’ 

professional competence to teach statistics at secondary school level was found. These 

were carried out by Salcedo (2008) and Santamaría and Sanoja (2013). 
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Salcedo (2008) surveyed forty-eight teachers working at the Basic and the 

Diversified cycles of secondary school at different institutions in the Venezuelan Capital 

District, in order to study some indicators of the current situation of teaching and learning 

of statistics at secondary school level in Venezuela. Results indicate that most of the 

surveyed teachers are not teaching the contents related to statistics and probability, and the 

few who do, ask students for a written report about definitions of statistical concepts. This 

observed practice of asking students to make written reports to cover the unit of statistics 

and probability might be considered as evidence that teachers attach little importance to 

the teaching of such contents, considering them as expendable contents rather than as 

literacy elements desirable to be attained by every citizen. Moreover, most of the surveyed 

teachers admitted the lack of training to work with these topics. Salcedo finishes his article 

making a call for research in the area of statistics education in Venezuela at all levels, in 

order to improve the quality of teaching and learning of statistics at all levels. 

 

Santamaría and Sanoja (2013) interviewed, observed the lessons of, and surveyed 

eight Grade 8 mathematics teachers at the "Priest Manuel Arocha" Bolivarian Secondary 

School in town of Tinaquillo, Cojedes State. From such study, they found out empirical 

evidence that, despite statistics being a fundamental strand in the Venezuelan mathematics 

curriculum, in practice statistics is a neglected topic by teachers, who do not adequately 

address statistical topics at classroom; lack of stimulating methodological strategies; 

overlook the statistical topics, basically because they are at the end of the textbooks; teach 

in a traditional way, giving priority to algebraic contents; and acknowledge to be unaware 
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of the statistical topics present in the mathematics curriculum. Despite all this, the 

surveyed teachers seems to realize that teaching statistics in a daily life context makes 

students to understand better both the statistical concepts and their own reality, so teachers 

acknowledge their own need to get training about statistics and its appropriate way of 

teaching. 

 

The brevity of research on Venezuelan mathematics teachers’ professional 

competence to teach statistics at secondary school level suggests that this is an area open to 

investigation in further studies, and highlights the need of a more solid foundation, 

providing in that way motivation for the present study. Therefore, on the basis of 

formulations and prior research findings reported in this chapter, the present study attempts 

to fill this void in research by theoretically and empirically examining this issue, with the 

purpose of shedding light on the characteristics of the knowledge base of SKT, 

conceptions of variability, and statistics-related beliefs held by Venezuelan in-service 

secondary school mathematics teachers. 
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CHAPTER 3: 

Literature Review 

 

In this section, the author examines research relevant to the present study, in 

particular, on the ideas of statistical literacy, variability, mathematics teachers’ professional 

competencies, and teachers’ statistical knowledge for teaching. The definition of statistical 

literacy, its characteristics as well as its societal and educational importance for all 

individuals in today’s knowledge-based society are briefly discussed. Several aspects 

related to the concept of variability, such as its definition, how it is measured or estimated, 

and how it is conceptualized by students and teachers according to previous researches, are 

also discussed. During the discussion of mathematics teachers’ professional competencies, 

it is presented a brief overview of research on the definition of this construct, as well as on 

the constructs of subject matter knowledge (SMK), pedagogical content knowledge (PCK), 

mathematical knowledge for teaching (MKT), and teachers’ beliefs. In addition, the author 

discusses the construct of statistical knowledge for teaching; particularly the models 

proposed to date that employ the constructs of SMK, PCK and MKT. Finally, specific 

gaps in statistics education research literature, along with areas in need of further attention 

in research, are considered. 

 

3.1  Statistical Literacy 

 

Moore (1998a) asked “What statistical ideas will educated people who are not 

specialists require in the twenty-first century? The answer of this question is the concern of 
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statistical literacy. A review of the statistics education literature shows that many statistics 

educators, researchers, national councils and education boards had listed the basic 

requirements, or learning objectives, which must be satisfied for someone who is 

statistically “literate.” For example, Watson (1997) identifies three stages as components 

of the "ultimate aim" of development of statistical literacy:  

 

1. the basic understanding of statistical terminology,  

2. the understanding of statistical language and concepts embedded in a context of 

wider social discussion, and  

3. the development of a questioning attitude which can apply more sophisticated 

concepts to contradict claims that are made without proper statistical foundation.  

 

For Moore (1998a, 2001), statistical literacy involves the application of the 

following “big ideas: 

 

− The omnipresence of variation, 

− Conclusions are uncertain,  

− Avoid inference from short-run irregularity,  

− Avoid inference from coincidence, 

− Beware the lurking variable,  

− Association is not causation,  

− Where did the data come from? and  
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− Observation versus experiment. 

 

Also Gal (2000) has identified characteristics of a scientific study that a consumer 

of information should be able to discuss at a basic level:  

 

− the type of study used,  

− the sample that was selected,  

− the measurements that were made,  

− the statistics that were generated from the data,  

− the graphs (visual displays) that were generated from the data,  

− any probability statements that were made based on the data,  

− claims that were made based on the data,  

− the amount of information that was provided to the consumer, and 

− the limitations of the study.  

 

Utts (2003) provides seven key statistical topics that statistics students should 

encounter and have been found “to be commonly misunderstood by citizens, including the 

journalists who present the statistical studies to the public” (p. 74). These are the 

following: 

 

1. understanding when a cause and effect relationship exists, 

2. the difference between statistical significance and practical significance, 
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3. the difference between not finding an effect and the power of the study,  

4. bias that can occur in surveys, 

5. understanding that coincidences are not so coincidental,  

6. understanding that conditional probability and its inverse are not equivalent, and  

7. knowing that normal is not equivalent to average. 

 

Note that a discussion of each of the items listed above by these authors begins by 

understanding the terminology and identifying each characteristic within the context of the 

problem. At the next level, the individual would be asked to describe the results of study 

by interpreting the results. Students may be asked to produce data on a similar study. Then 

they might be asked to evaluate the study (which involves critical thinking, as well as 

questioning the study at every phase). Finally, the student may be asked to communicate 

this information to peers. Some of these tasks require basic statistical literacy, and others 

require higher order knowledge skills, such as statistical reasoning and thinking.  

 

Additional lists of requirements or learning outcomes for statistical literacy had 

been provided by other researchers (e.g., Cobb, 1992; Moore, 1998a, 1998b; Garfield, 

1999). Each list seems to include two different types of learning outcomes for our students: 

having a basic foundational understanding of statistical terms, ideas, and techniques, and 

being able to function as an educated member of society in this age of information. 

 

As can be noticed in some of the perspectives of statistical literacy that different 
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authors points out, all of them are related to kinds of statistical skills which are needed by 

people in everyday life (e.g., Evans, 1992). Hence, the definition given by Gal (2004) 

nicely summarizes, in the authors’ opinion, the ideas about statistical literacy that were 

previously stated: 

 

“the term statistical literacy refers broadly to two interrelated components, 

primarily (a) people’s ability to interpret and critically evaluate statistical 

information, data-related arguments, or stochastic phenomena, which they may 

encounter in diverse contexts, and when relevant (b) their ability to discuss or 

communicate their reactions to such statistical information, such as their 

understanding of the meaning of the information, their opinions about the 

implications of this information, or their concerns regarding the acceptability of 

given conclusions. ” (ibid., p. 49, emphasis in original) 

 

Gal (2002, 2004) also emphasizes that the skills related to statistical literacy are 

based simultaneously on the interaction between a dispositional component (as personal 

experiences and beliefs) and a knowledge component (as statistical, mathematical, and 

context knowledge), as well as he highlighted the need for statistical literacy for all 

citizens who interpret statistics in various everyday situations. For example, he suggests 

that when people read statistics from media they have to make inferences, quite often in 

the presence of irrelevant or distracting information, and perhaps they also have to apply 

mathematical operations to data contained in graphs. Figure 1 illustrates Gal’s perspective 
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of statistical literacy. 

 

 

Figure 1: A framework for statistical literacy, according to Gal (2002, 2004) 

 

Figure 1 represents two ranges of elements which when combined can enable 

readers to understand statistical messages. On one side of the diagram there are knowledge 

elements which involve cognitive components of the statistical literacy (e.g., rational 

understanding of the data such as knowing how to decode and make calculations about it). 

On the other side dispositional elements are presented which comprise a range of 

‘non-cognitive’ aspects (e.g., a person who interprets a graph can have knowledge, 

experiences and beliefs which might differentiate his/her interpretation of the graph). 

According to Gal, statistical literacy is based on the interaction of the components which 

comprise each range of elements. Gal’s statistical literacy model underlines that the 

academic or formal schooling background is not the only determinant of use of statistical 

skills, as it was discussed in other studies (e.g., François, Monteiro, & Vanhoof, 2008). To 

develop statistical literacy, it may be necessary to work with learners in ways that go 

beyond instructional methods currently in use. To implement all knowledge bases 



45 
 

supporting statistical literacy, topics and skills that are normally not stressed at school may 

have to be addressed (Gal, 2004). 

 

It is becoming more widely recognized among the mathematics education 

community that in today’s knowledge-based society, no student should leave high school 

without engaging in the study of statistics. Statistical literacy is essential for all students, 

regardless of what occupation they may choose to pursue (Gal & Garfield, 1997). Statistics 

and statistical literacy play a key role in shaping policy in a democratic society (Wallman, 

1993). Several professional organizations had recognized the key role statistics play in our 

modern society; for example, in 2000 the National Council of Teachers of Mathematics 

recommended the promotion of teaching and learning of statistical topics, concepts and 

procedures across all the grades, so that “by the end of high school students have a sound 

knowledge of elementary statistics” (National Council of Teachers of Mathematics 

[NCTM], 2000, p. 48). 

 

The need for comprehensive statistical education at all grade levels and 

modernizing statistics education has been recognized, in the last two decades, in several 

countries around the world, like the United States, Australia, the United Kingdom, New 

Zealand, and Japan, among others (e.g., NCTM, 1989, 2000; American Statistical 

Association [ASA], 1991; American Association for the Advancement of Science [AAAS], 

1993; Australian Education Council, 1994; School Curriculum and Assessment Authority 

& Curriculum and Assessment Authority for Wales, 1996; United Kingdom Department 
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for Education and Employment, 1999; Ministry of Education of New Zealand, 2007; 

Ministry of Education, Culture, Sports, Science and Technology of Japan, 2008a, 2008b, 

2009). The common thread those reform efforts in statistics education has been the 

emphasis on statistical literacy and thinking (Cobb, 1992; Snee, 1993; Garfield, Hogg, 

Schau, & Whittinghill, 2002; Mathematical Association of America [MAA], 2004). 

Instructors of introductory level courses want their students to understand statistical terms, 

symbols, graphs, and fundamental ideas, which the Guidelines for Assessment and 

Instruction in Statistics Education reports’ authors consider to be statistical literacy. Along 

with statistical literacy, students in those courses should be able to understand the 

omnipresence of variability in statistics, and the quantification and explanation of 

variability (Guidelines for Assessment and Instruction in Statistics Education [GAISE], 

2005; Franklin et al., 2007). Therefore, in the late reforms of all the mathematics curricula 

in those countries, the lack of statistics and the overemphasis on measures of central 

tendency in such curricula pointed out by several researches (e.g., Shaughnessy, 1992; 

Shaughnessy, Watson, Moritz, & Reading, 1999) have been partially displaced by the 

incorporation of statistical objects in which variability can arise, such as data sets, samples, 

probabilistic experiments, statistical graphs, and distributions. This is in concordance with 

the general agreement in the research community, who report that the reform movement in 

statistic education would be more successful in achieving its objectives if it put more 

emphasis on helping students to build solid intuitions about variation and variability, as 

well as on its relevance to statistics (e.g., Shaughnessy, 1992; Ballman, 1997.) 
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3.2  Variability 

 

Some recent research has attempted to be more specific about the difference 

between variation and variability, since many research studies use these terms 

interchangeably, and assume them as having self-evident definitions. Reading and 

Shaughnessy (2004) distinguish the difference between the two terms as follows: 

 

“The term variability will be taken to mean the [varying] characteristic of the 

entity that is observable, and the term variation to mean the describing or 

measuring of that characteristic. Consequently, the following discourse, 

relating to “reasoning about variation,” will deal with the cognitive processes 

involved in describing the observed phenomenon in situations that exhibit 

variability, or the propensity for change” (p. 202). 

 

Hence, variation is a measurement that describes the dispersion of data points; that 

is, how data deviates, while variability is “the quality of nonuniformity of a class of 

entities” (Hopp & Spearman, 2001, p. 249); that is, the description of how much variation 

is present in the data, how spread out the data is.  

 

However, reasoning about variation and reasoning about variability are not always 

differentiated this way in the literature. So, think about variability includes several things 

such as reasoning about measures of variation, how they are used as a tool and why they 
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are used in certain contexts (Makar & Confrey, 2005).  

 

In statistics and statistical problem solving, the importance of the role of variability 

has been recognized and documented by statistics educators and researchers around the 

world, primarily because all the statistical objects—such as distributions, data sets, 

samples and statistical graphs, among others—vary and/or represents variability. For 

example, David S. Moore, the renowned statistician and former president of the 

International Association for Statistical Education (IASE) and the American Statistical 

Association (ASA), describes statistical thinking as recognizing the omnipresence of 

variability and considering appropriate ways to quantify and model the variability of data, 

and opines that the discipline of statistics arises from the need to deal with that 

omnipresence of variability in data (Moore, 1990). Cobb (1991), Moore (1992, 1997) and 

Snee (1993) reported that the idea of variability and its associated measures—such as 

standard deviation—are some of the core concepts presented in an introductory course in 

statistics; Pfannkuch (1997) thinks that variation is a critical issue throughout the statistical 

inquiry process, from posing a question to drawing conclusions; Wild and Pfannkuch 

(1999) considered variation and variability as the heart of their model of statistical 

thinking; according to Shaughnessy and Ciancetta (2001), variation and variability is the 

foundation of statistical thinking, and the very reason for the existence of the discipline of 

statistics; whereas Watson & Kelly (2002, p. 1) considered that “Variation is at the heart of 

all statistical investigation. If there were no variation in data sets, there would be no need 

for statistics”. Some of the studies focused on thinking and reasoning about variability had 



49 
 

recognized the importance of students’ conceptual understanding of variability as crucial to 

their development of increasingly sophisticated understandings in statistics (e.g., Chance, 

delMas, & Garfield, 2004; Garfield & Ben-Zvi, 2005; Reading & Reid, 2006; Leavy, 

2006; Franklin et al., 2007; Garfield & Ben-Zvi, 2008). 

 

3.3  Measures of Variation 

 

The measures of variation are such concerned with the distribution of values 

around the mean in data. Among them, the most commonly used are the range, 

interquartile range, standard deviation, and coefficient of variation. 

 

Range: The range is simply the difference between the highest and lowest value in the 

sample. The range has as advantage that is easy to calculate, it is easily understood by 

general audiences, and it can provide a very quick and general idea of dispersion. 

Unfortunately, it is particularly sensitive to the influence of outliers, lacks sensitivity to 

varying values between those extremes, and does not inform about the scores between the 

end points. 

 

Interquartile range: The interquartile range is the distance between the first quartile (the 

point in the distribution that 25% of the sample is below) and the third quartile (the point 

in the distribution that 75% of the sample is below).  
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The interquartile range has as advantage that is not sensitive to extreme scores, it is 

the only reasonable measure of variability with open-ended distributions, it can be 

appropriately applied with ordinal variables, unlike the standard deviation, and should be 

used with highly skewed distributions. Nevertheless, even though it is more stable and 

informative than the range, the interquartile range is a terminal statistic (that is, a statistic 

which usefulness in advanced descriptive and inferential procedures is very limited, so 

can't be used for further calculations and there is little else that can be done with additional 

analyses with this statistic), as well as it is unfamiliar to most people. 

 

Standard deviation: The standard deviation can be thought of as the average distance that 

values are from the mean of the distribution. The expressions to calculate the standard 

deviation for ungrouped (left) and grouped (right) data are given by the following 

formulas: 
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where n is the total number of objects or data points, xi is the i-th object or data point, and 

fi is the frequency that is associated with xi. 
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In the case of a normal distribution, when you know the standard deviation, it 

always turns out that approximately 68.26%, 95.46%, and 99.74% of the values lie within 

1, 2, and 3 standard deviations around the mean, respectively.  

 

The standard deviation has as advantage that is quite resistant to sampling 

variability, as well as is mathematically tractable. Nevertheless, it should not be used with 

highly skewed distributions, it is not a good index of variability with a few very extreme 

scores, and cannot be used with open-ended distributions. 

 

Coefficient of variation: The coefficient of variation is a dimensionless number that 

quantifies the degree of variability relative to the mean. The typical sample estimate is 

given as the ratio of the sample standard deviation to the mean. Sometimes, this result is 

multiplied by 100 so that the ratio is expressed in terms of a percentage. 

 

The coefficient of variation is useful when comparing the standard deviations of 

two variables with different units of measure. Nevertheless, when the mean of a variable is 

zero, the coefficient of variation cannot be calculated.  Even if the mean of a variable is 

not zero, but the variable contains both positive and negative values and the mean is close 

to zero, then the coefficient of variation can be misleading.  The coefficient of variation 

can be considered as a reasonable measure if the variable contains only positive values. 
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3.4  Conceptions of Variability 

 

After reviewing and carrying out himself several studies related to how students 

think about, understand, and acknowledge variation and variability in the presence of a 

number of statistical objects that can vary—such as data, samples and distributions—, 

Shaughnessy (2007) identified eight ways in which students conceptualize variability, 

which depend on the statistical context and the students’ own preferred strategies while 

working on statistical tasks involving variability.  

 

The framework proposed by Shaughnessy (2007) provides a comprehensive 

structure for looking at how people reason about variation and variability in several 

statistical contexts. This framework is also useful to provide insight into how teachers 

think about variation and variability (González & Isoda, 2010; González, 2011; Isoda & 

González, 2012), and it may provide ground to develop a better teaching practice about 

those concepts. First, teachers frequently possess similar reasoning to their students 

(Hammerman & Rubin, 2004; McClain, 2002; González, 2011; Isoda & González, 2012). 

Second, understanding students’ conceptions of variation and variability may help teachers 

to plan instruction (Makar & Confrey, 2005).  

 

The conceptions identified by Shaughnessy (2007) are the following: 
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Figure 3: Fruit juice consumption in the United 
States, gallons per capita, over time

Figure 2: Stacked dotplot representing the students' 
family size in an American Grade 4 class (adapted 
from Konold, Higgins, Russell, & Khalil, 2004) 

1. Variability in particular 

values, including extremes or 

outliers: In this conception, 

students focus their attention 

on particular data values in a 

graph or in a data set (Konold 

& Pollatsek, 2002; Shaughnessy, 2007). For example, when describing the 

graph of the size of the families of the students in a classroom (Figure 2), people 

who focus their attention in the mode (6 persons) or the outliers (18 persons) use 

this conception. 

 

2. Variability as change over time: In this conception, by using time as 

independent variable in graphs, students need to look for causes of variability in 

the dependent variable. This conception involves multivariate situations and 

may be a good starting point to introduce covariation (Nemirovsky, 1996; 

Moritz, 2004b; Shaughnessy, 2007). 

 

When analyzing data, the role of a 

student or a statistician is to be a “data 

detective”, to uncover the stories that are 

hidden in the data, to note the important 

signals in the data variability 
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(Shaughnessy, 2008). Such signals are particularly evident in data that are collected 

over time, such as the data on annual consumption of fruit juice collected by the U.S. 

Department of Agriculture, shown in Figure 3 (Shaughnessy, 2008). When asked 

what the overall pattern in the data was, and why the data might be varying, people 

use this conception about variability. 

 

3. Variability as whole range – the spread of all possible values: This 

conception involves the spread of an entire data set or distribution and is closely 

related to the concept of sample space in probability. In this conception students 

have begun to move away from seeing data only as individual values that vary, 

to recognizing that entire samples of data can also vary (Shaughnessy, Watson, 

Moritz, & Reading, 1999; Shaughnessy, 2007).  

 

For example, in the task known as “The Dice Problem” (Konold & Kazak, 2008), 

students were asked to select from the alternatives shown in the Figure 4 the distribution 

we would most likely get if we rolled two dice 1000 times and plotted the sums, 2-12. 

 

 

Figure 4: Five possible distributions for the sum of two dice (Konold & Kazak, 2008) 
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In order to choose the right option, people have to use this conception. People have to 

build an “expected distribution” by generating the elements in the sample space, arranging 

them as a distribution, and then see how well this “expected distribution” fits any of the 

given distributions. 

 

4. Variability as the likely range of a sample: This conception can lead to statistical 

tools for representing variability within or across samples such as box plots or 

frequency distributions. It can also lead to the concept of a sampling distribution 

when applied to the likely range of a distribution of means or other sample statistics. 

This conception of variability requires the concept of relative frequency and thus 

relies on proportional reasoning (Shaughnessy, Ciancetta，& Canada, 2003; Saldanha 

& Thompson, 2003; Reading & Shaughnessy, 2004; Shaughnessy, 2007). 

 

 

Figure 5: Part of an instructional activity to simulate multiple drawings of random samples 

from a population (Saldanha & Thompson, 2002) 

 

As example, let us analyze the instructional activity posed by Saldanha & Thompson 

(2002, 2003), which is shown in Figure 5. This instructional activity was designed to help 

students make sense of computer simulations of drawing many random samples from a 



56 
 

population. Simulation input (left) and output (right) windows were displayed in the 

classroom and the instructor posed questions designed to orchestrate reflective discussions 

about the simulations, for the purpose of answering a question like “what fraction of the 

time would you expect results like these?”. Then, students are intended to perform 

repeatedly sampling from a population with known parameters through computer 

simulation, record a statistic, and track the accumulation of statistics as they distribute 

themselves along a range of possibilities; hence student doing so are using this conception 

of variability. So, judgments about sampling outcomes can be made on the basis of relative 

frequency patterns that emerge in collections of outcomes of similar samples. These 

themes were intended to support students’ developing a distributional interpretation of 

sampling and likelihood. 

 

5. Variability as distance or difference from some fixed point: This conception 

involves an actual or a visual measurement, either from an endpoint value (as in a 

geometric distribution) or from some measure of center (usually the mean or median.) 

Here students are predominantly concerned with the variability of one data point at a 

time from a center rather than the variability of an entire distribution of data from a 

center (Moritz, 2004a; Shaughnessy, 2007).  

 

As an example, let’s see the following problem. In order to compare two samples of 

equal size of French fries of W Burger and M Burger, firstly we sort the fries by length in 

ascendant order. Secondly, we draw a line representing the mean for the fries of each 
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company, resulting in the following graph: 

 

 

Figure 6: Comparing two samples of French fries from W Burger and M Burger (adapted 

from Kōgō & Tominaga, 2007) 

 

In this case, the difference between means is only of 0.04 cm, so comparing 

means is not statistically significant. Moreover, we can compare, one by one, the deviation 

from the mean of the sorted fries, in order to determine in which case the potatoes’ length 

has more variability. Doing so, we are using this conception of variability. 

 

6. Variability as the sum of residuals: This conception of variability involves the 

calculation of residuals from some fixed value in order to measure the total variation 

of an entire distribution of data, and provides the foundation for such concepts as 

standard deviation and regression analysis (Petrosino, Lehrer, & Schauble., 2003; 

Shaughnessy, 2007). 

 

As an example of this conception, we can use again the problem of comparing 

two samples of French fries from the companies W Burger and M Burger. Suppose that 

students gathered data on the length of French fries for each company, and then they were 

asked to decide which company has the larger fries. As can be noticed in Figure 6, the 



58 
 

mean for both types of French fries is not satisfactory as a comparison basis, but we 

detected that the data of one type of fries is more inconsistent (i.e., heterogeneous in 

length) than the other. In order to measure the inconsistency (i.e., the variability), students 

can compare the variation for each type of French fries by computing the absolute value of 

the difference between each data item and the mean, in order to get the distance of each 

item from the mean, and the sum of these distances would measure the total spread around 

the mean. Therefore, dividing the total absolute deviation by the number of data items, this 

will give an average absolute deviation from the mean. 

 

Average Absolute Deviation = 
N

XX −Σ
 

 

This average absolute deviation gives the average distance of any data item from 

the mean and thus is a good measure of variation of the entire distribution of the data from 

W Burger and B Burger, more convenient that comparing means. 

 

7. Variation as covariation or association: This conception of variability involves the 

interaction of several variables, and how changes in one may correspond to (though 

not necessarily cause) changes in another (Batanero, Estepa, Godino, & Green, 1996; 

Moritz, 2004b; Shaughnessy, 2007).  

 

An example of this conception is the following task, posed by Moritz (2004b). 

Students are asked to interpret a scatter graph (see Figure 7). To express appropriate 
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acknowledgement of variation and correspondence in this task, responses needed to refer 

to both variables, indicate appropriate association direction, identify “noise” and “number 

of people”, and make appropriate use of comparative values such as “less” or “more.” Also, 

it is needed that students mention the imperfect nature of the covariation: “In most cases 

the higher the amount of noise the lower the amount of people with the exception of E.” 

 

Some students were doing a project on noise. 

They visited 6 different classrooms.  

They measured the level of noise in the class with a 

sound meter. 

They counted the number of people in the class. 

They used the numbers to draw this graph.  

Pretend you are talking to someone who cannot see the graph. Write a sentence to tell them what 

the graph shows. “The graph shows...” 

Figure 7: Task to assess verbal and numerical graph interpretation (Moritz, 2004) 

 

8. Variation as distribution: From this conception of variability, conceiving center, 

spread, and skewness as characteristics of a distribution, as well as considering 

theoretical probability distributions emerge to help make decisions about distributions 

of data, or about sampling distributions. This conception commonly arises when the 

variation between or among a set of distributions is compared (Bakker & Gravemeijer, 

2004; Shaughnessy, Ciancetta, Best & Noll, 2005; Shaughnessy, 2007). As an 

example of this conception, let’s consider the problem posed by Figure 8. 
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The following histogram represents random 

numbers between 0 and 9 generated by a 

computer. Match this histogram to the correct 

summary statistics. 

 (a) Mean: 6.1 Median: 3 Standard deviation: 8.91 

 (b) Mean: 4.1 Median: 4 Standard deviation: 2.81 

 (c) Mean: 6.8 Median: 6 Standard deviation: 4.22 

Figure 8: “Matching histogram to summary statistics” activity 

 

The variable in consideration (random numbers between 0 and 9) is a typical 

example of a uniform distribution. So, it will be very useful to consider the underlying 

theoretical probability distribution in this problem, in order to answer correctly. A uniform 

distribution is symmetric, so we expect that the mean and the median are the same or 

almost the same, and hence we discard option (a). Also, knowing that the standard 

deviation of a uniform distribution is given by the range divided by 12 , we can identify 

(b) as the correct answer. We can get the same answer by translating the data in the 

histogram into a frequency distribution table, and then calculate the summary statistics for 

grouped data, but it is a bothersome calculation. Instead, considering the theoretical 

probability distribution of this case, as well as some characteristics of a distribution such as 

symmetry and skewness, is an easier way to find the right answer for this kind of 

problems. 
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3.5  Mathematics teachers’ conceptions of variability 

 

Conceptions—defined by Sfard (1991, p. 3) as the set of internal representations 

and the corresponding associations that a mathematical concept evokes in the 

individual—can be seen as lenses through which people perceive and interpret phenomena 

(Pratt, 1992). Hence, it is not at all surprising that people act and react to specific 

phenomena influenced by their conceptions (Könings, Brand-Gruwel & van Merriënboer, 

2005). In particular, teachers’ conceptions about the subject matter have been proved to 

influence students’ approaches to learning and teachers’ approaches to teaching (Trigwell, 

Prosser & Waterhouse, 1999). 

 

Only in recent years some research works had been done on in-service teachers’ 

conceptions of variability (e.g., Makar & Confrey, 2004; Peters, 2009; González & Isoda, 

2010, González, 2011; Isoda & González, 2012). Makar and Confrey (2004), who 

examined four American secondary mathematics teachers in order to carry out a research 

on teachers’ statistical reasoning when comparing two data groups, found that the 

conceptions of variability held by those teachers affected the way how they described and 

chose to compare the characteristics of the each distribution, and how they interpreted 

variability within a group, as well as between groups. 

 

Peters (2009) examined 16 American high school Advanced Placement statistics 

teachers’ conceptions of variability. From the identified conceptions of variability, Peters 
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classified those teachers into three types: (a) those teachers focused on the design of the 

data and seeing variability as something that needs to be controlled; (b) those teachers 

focused on the data analysis and seeing variability as something that needs to be explored; 

and (c) those teachers focused on inference, seeing variability as something that needs to 

be modeled and expected. Additionally, Peters found that only five out of the 16 teachers 

in the study showed connected reasoning across the three types of conceptions. 

 

González (2010, 2011) and Isoda and González (2012) analyzed the answers 

given by 99, 65, and 78 Japanese in-service elementary, middle, and high school teachers, 

respectively, in response to a survey with questions involving data variability in several 

contexts, in order to explore, identify and characterize the conceptions of variability held 

by the teachers, and to provide insights into their content knowledge about several 

statistical contents related to the interpretation of variability in different situations. From 

the results, the researchers found that surveyed teachers exhibited the same eight types of 

conceptions of variability identified by recent research efforts in the case of students 

(Shaughnessy, 2007, pp. 984-985). Moreover, the researchers found that lower level 

teacher responses—i.e., those which evidence a weak statistical CCK—might be 

concerned with holding poor conceptions of variability—such as thinking of variability 

focusing in particular data values, such as outliers, extremes, or only with measures of 

central tendency—, whereas higher level teacher responses—i.e., those which evidence a 

strong statistical CCK—might be concerned with holding rich conceptions of 

variability—such as thinking of variability with an aggregate view of data and distribution, 
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or by focusing in both measures of central tendency and extremes in data while thinking of 

variability. Also, particular difficulties with variability-related concepts were spotted in the 

surveyed teachers at all levels, being one of them the interpretation of histograms and the 

translation of a histogram into other statistical objects. Teachers who exhibited this kind of 

difficulties often exhibited evidence of being also holding poor conceptions of variability. 

 

3.6  Mathematics teachers’ professional competencies 

 

After reviewing several definitions of the multi-faceted term ‘competence’ found 

in the literature, Carblis (2008) realized that many of such definitions incorporated the 

following five key terms: 

 

 the idea of capacity (or capability), which refers to the repertoire of skills and 

knowledge embedded in the competent person (cf. DeSeCo Project Report, 2002, p.7; 

Carblis, 2008, p.23), 

 

 the actions of selection and application: which are related to the ability of a person to 

determine which knowledge and skill(s) to select from his/her repertoire to apply in 

order to achieve particular outcomes (cf. Carblis, 2008, pp.23-24), 

 

 the notion of an attribute: which refers to the skills and knowledge brought by an 

individual as an input to any work situation (cf. Carblis, 2008, p.24), 
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 the specification of performance: which is related to the actions, behaviors, or sets of 

actions and behaviors that may be related to defined standards and contexts (cf. Carblis, 

2008, p.24), and 

 

 the condition of intent or purposiveness: this requires that, for competency to be 

demonstrated, purposive action must be undertaken. Therefore, instinctive or reflexive 

responses or unconscious behaviors cannot be seen to contribute to the evidence of 

competence (cf. Carblis, 2008, pp.24-25). 

 

Then, Carblis (2008) presented the following definition of ‘competence’, looking 

to engage all the aforementioned five key terms: “Competence or competency is the 

capacity or capability that underpins the selection and application of attributes through 

which specified performance is achieved by means of purposive actions” (ibid., p.29, 

emphasis in the original). 

 

A number of educational researchers (e.g., Kautto-Koivula, 1996; Carblis, 2008; 

Lindmeier, 2011; Döhrmann et al., 2012; Tatto et al., 2012) agree with the opinion that 

professional competencies involve at least two main domains: (1) proficiencies specific to 

the profession, discipline or organization (which include the discipline-specific knowledge 

base and technical skills considered essential in the profession, and the ability to solve the 

type of problems encountered within the profession), and (2) general characteristics of the 

competent individual (among which are beliefs, conceptions, motivation, attitudes and 
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values). This vision is well-summarized by Weinert (2001), according to whom 

professional competencies can be divided into cognitive and affective-motivational facets.  

 

Under this view, both the key role played by ‘knowledge’, ‘beliefs’ and 

‘conceptions’ in professional competencies, and the connection between ‘competence’, 

‘knowledge’, ‘beliefs’ and ‘conceptions’, are very clear, since the latter three attributes can 

be inferred from the competent performance, and facilitate the individual’s development 

and maintenance of professional competence. Since this separation of teachers’ 

professional competencies in cognitive and affective-motivational facets has the advantage 

that, as a result, their interplay could be investigated (Lindmeier, 2011, pp. 34-35; 

Blömeke & Delaney, 2012, p.227), this separation is very common in the literature. An 

example worthy to be mentioned here is the conceptual model of mathematics teachers’ 

professional competencies developed by the international teacher education study Teacher 

Education and Development Study in Mathematics (TEDS-M) (see Figure 9). 

 

 

Figure 9: Conceptual model of teachers’ professional competencies, according to 

Döhrmann et al. (2012) 
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In the context of the present study, the author takes the standpoint of researchers 

such as Döhrmann et al. (2012), Tatto et al. (2012), Kaiser & Blömeke (2013) and Goos 

(2013), who consider professional competencies as divided into teachers' professional 

knowledge in the cognitive facet, and professional beliefs in the affective-motivational 

facet. 

 

3.7  Mathematics Teachers’ Professional Knowledge: The MKT Model 

 

Several conceptualizations of teachers' mathematical knowledge entailed in 

teaching have been developed (for a thorough discussion on this issue, see Petrou & 

Goulding, 2011). Among those conceptualizations, the one developed by Deborah Ball and 

her team at University of Michigan not only has led to a broad consensus among the 

mathematics education community, but also has clarified the distinction between SMK and 

PCK by refining their previous conceptualizations in the literature, and has made 

significant progress in identifying the relationship between teacher knowledge and student 

achievement in mathematics. 

 

Ball et al. (2008) developed their practice-based theory of mathematical 

knowledge for teaching—henceforth MKT—based on the notion of pedagogical content 

knowledge by Shulman (1986), and focusing on both what teachers do as they teach 

mathematics, and what knowledge and skills teachers need in order to be able to teach 

mathematics effectively. Ball and her colleagues developed this framework by examining 
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ways in which the ideas proposed by Shulman (1986) could be operationalized in the 

particular case of mathematics education. As in Shulman (1986), Ball et al. (2008) 

proposed a model characterized by a clear emphasis in its conception of reflective practice 

on the content to be taught, placing the emphasis on the intellectual basis for teaching and 

on the transformation of SMK by teachers, instead on the traditionally emphasized subject 

matter content knowledge (Zeichner, 1994; Petrou & Goulding, 2011). 

 

 

Figure 10: Domains of MKT (Ball et al., 2008) 

 

This model describes MKT as being made up of two domains—SMK and PCK—, 

each of them structured in a tripartite form (Figure 10). Moreover, this model clarified the 

distinction between SMK and PCK, and refined their previous conceptualizations in the 

literature. 

 

According to Ball et al. (2008, pp. 400-401, 404), SMK can be divided into 

common content knowledge (CCK), specialized content knowledge (SCK), and horizon 

content knowledge (HCK). These cognitive constructs are briefly elaborated below: 
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− Common Content Knowledge (CCK): this construct refers to the mathematical 

knowledge and skills expected of any well-educated adult, which are commonly 

used in any setting, not necessarily the one of teaching. CCK is the “mathematics 

knowledge and skill used in settings other than teaching … [and thus are] not 

special to the work of teaching” (Ball et al., 2008). For example, the mathematics 

teacher, like every well-educated adult in other professions, needs to be able to 

use terms and notation correctly, to compute mathematical operations—such as 35 

✕ 25—accurately, to identify the power of 10 that is equal to 1, to name a 

number that lies between 1.1 and 1.11, to recognize that the square is a special 

type of rectangle or that the diagonals of a parallelogram are not always 

perpendicular (Hill & Ball, 2004; Ball et al., 2008). Despite being a necessary 

ingredient of teachers’ knowledge, CCK is considered by many researchers not 

sufficient for the work of teaching (Shulman, 1986, 1987, Ball et al., 2008; 

Döhrmann et al., 2012; Tatto et al., 2012; Kaiser & Blömeke, 2013). 

 

− Specialized Content Knowledge (SCK): this is the mathematical content 

knowledge specific to the work of teaching and needed in its practice, but not in 

the practice of other professions. This knowledge allows teachers to appraise 

students’ methods of solving problems, assess novel approaches that students 

propose, and determine whether these approaches are generalizable to other 

problems. It also supports teachers in identifying patterns of student error, 

explicating why certain algorithms work or make sense, explaining a 
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mathematical idea by selecting appropriate examples and representations, linking 

representations and models to their underlying meaning, evaluating students’ 

explanations and justifications, and choosing and developing workable definitions 

(Hill & Ball, 2004; Ball et al., 2008). For example, although a well-educated adult 

is expected to be able to divide two fractions, such individual is not expected to 

know if alternative algorithms are suitable for dividing fractions. However, a 

competent mathematics teacher could benefit from possessing such knowledge. 

 

− Horizon Content Knowledge (HCK): This construct is an awareness of the 

connections between both the present learner experience and instructional content 

with the key mathematical practices and major disciplinary ideas and structures 

that lie ahead, on the mathematical horizon. It engages those aspects of the 

mathematics that, while perhaps not contained in the curriculum, are nonetheless 

useful to pupils’ present learning, that illuminate and confer a comprehensible 

sense of the larger significance of what may be only partially revealed in the 

mathematics of the moment (Ball & Bass, 2009). Then, HCK comprises the larger 

perspective on mathematical ideas and practices that orient teachers to be 

sensitive to connections, and provides a broad view of mathematical ideas and 

practices. This may include the capacity to see ‘backwards,’ to how earlier 

encounters inform more complex ones, as well as how current ones will shape and 

interact with later ones. Moreover, it is also worthwhile to notice that HCK does 

not create an imperative to act in any particular mathematical direction, contrarily 
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to CCK and SCK. 

 

According to Ball & Bass (2009), HCK is constituted by the following four 

elements: (1) a sense of the mathematical environment surrounding the current 

“location” in instruction (e.g., factorization and modular arithmetic when teaching 

odd and even numbers); (2) major disciplinary ideas and structures (e.g., number 

systems and equations); (3) key mathematical practices (e.g., choosing 

representations, questioning and proving); and (4) core mathematical values and 

sensibilities (e.g., precision, consistency, connections, parsimony). 

 

Furthermore, Ball et al. (2008, pp. 392, 402) presented a refined division of PCK, 

comprised of knowledge of content and students (KCS), knowledge of content and teaching 

(KCT), and knowledge of content and curriculum (KCC). These cognitive constructs are 

briefly elaborated below: 

 

− Knowledge of Content and Students (KCS): this construct represents the teacher’s 

amalgamated knowledge on how students come to understand mathematics. KCS 

intertwines knowledge of mathematical notions with knowledge of how students 

think or come to understand these ideas. This type of knowledge renders teachers 

capable of anticipating plausible student thinking trajectories, predicting student 

difficulties when engaged with specific mathematical ideas or processes, and 

hearing and interpreting students’ thinking (Ball et al., 2008). Furthermore, being 
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aware of alternative conceptions—or “misconceptions”—students are likely to hold 

about a topic, as well as specific difficulties they may have with learning particular 

content, is part of KCS. Evidently, to efficiently engage in these activities, teachers 

need not only understand the content, but also be familiar with students’ 

mathematical thinking and common student misconceptions and errors. For 

example, knowing that students often consider 5.8 smaller than 5.67, because in the 

“world of whole numbers” 67 is larger than 8, helps the teacher easily recognize 

such errors in students’ work, understand their source, and design suitable 

interventions. 

 

− Knowledge of Content and Teaching (KCT): this construct refers to the knowledge 

on how to carry out the design of instruction in order to develop mathematical 

understanding in students. Then, KCT aids teachers in selecting and sequencing 

examples to gradually lead students to develop certain mathematical ideas or in 

considering the relative strengths and limitations of available representations and 

models. For example, being aware of the different models of subtraction—e.g., 

take-away and comparison—and division—i.e., partitive and measurement—, and 

more in order to know the limitations and the affordances of each, equips teachers 

with the roadmap necessary for structuring teaching in ways that support learning of 

such mathematical ideas. 

 

− Knowledge of Content and Curriculum (KCC): this construct refers to the 
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knowledge of “the full range of programs designed for the teaching of particular 

subjects and topics at a given level” (Shulman, 1986, p. 10); that is, to the 

knowledge that teachers have on how specific topics and concepts are offered in 

school curricula at a particular grade level, along with an understanding of the 

grade-wise relationships among them. Furthermore, KCS refers to both the goals 

and objectives for learning, as well as actual curricular materials to support students 

in meeting these goals and objectives. An example of KCC would be knowledge 

about what “topics and issues that have been and will be taught in the same subject 

area in the proceeding and later years” (Ball et al., 2008, p. 391). 

 

Despite all the praises bestowed upon this framework, some researchers (e.g., 

Petrou & Goulding, 2011, p.16) highlight that this model acknowledges the role of neither 

beliefs nor conceptions about the subject matter in teachers’ practices. This feature could 

be a drawback for the MKT model, since it is well documented in the literature that 

teachers’ beliefs and conceptions are important factors affecting the work of teaching (cf. 

Philipp, 2007; Sivunen & Pehkonen, 2009). 

 

3.8  Mathematics teachers’ beliefs regarding statistics 

 

In the literature, beliefs—defined by Philipp (2007) as “psychologically held 

understandings, premises, or prepositions about the world that are thought to be true” (p. 

259)—are regarded as lenses through which we view the world. Several researchers have 
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investigated the relation between teachers’ beliefs about subject matter, teaching and 

learning, and teaching practice. For example, Jones and Carter (2007) highlight the major 

role that teachers’ beliefs play in shaping their instructional practices; Keys and Bryan 

(2001) say that every aspect of teaching, including the instructional method, the course 

content, and the assessments, is influenced by teachers’ beliefs, which is in tune with 

Pajares (1992), who asserted that teachers' beliefs influence their perceptions and 

judgments, and therefore they affect teachers' behavior in the classrooms. The researches 

carried out by several researchers, such as Korthagen and Kessels (1999) and Hancock and 

Gallard (2004), show that beliefs influence teachers’ actions in the classroom. Finson, 

Thomas and Pedersen (2006) pointed out the relation between teachers' beliefs and 

teaching styles, agreeing in that way with Nespor (1987), who noted that, compared to 

knowledge, beliefs are stronger predictors of teaching behavior. Magnusson, Krajcik and 

Borko (1999) pointed out that, similarly to knowledge, teachers' beliefs serve as important 

resources, as well as constraints, in classroom teaching. Pepin (1999) acknowledged the 

relation between factors such as teachers' practice and their interpretations of the 

curriculum, their beliefs, and their understanding of students' learning processes. 

 

Despite of this large body of research about teachers’ beliefs about subject matter, 

only a few studies have addressed the particular case of statistics education, regardless of 

the calls for more research in this area made by Gal and Ginsburg (1994), Gal, Ginsburg 

and Schau (1997), and Batanero, Garfield, Ottaviani and Truran (2000), as well as the 

wake-up call provided by Shaughnessy (2007) and Pierce & Chick (2011). Among the few 
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studies on mathematics teachers’ beliefs about statistics, its teaching and learning, the one 

by Gal (2004) acknowledged the important role of beliefs in statistical literacy, by 

identifying them as a fundamental part of the dispositional elements that comprise it.  

 

Eichler’s (2011) half-year observation of four German teachers’ classroom 

practices provides strong evidence that mathematics teachers pursue their central beliefs 

when teaching statistics. Also, Eichler found a direct impact on the students’ beliefs about 

the relevance of statistics from teachers’ beliefs about putting emphases on real problems, 

real data sets and the role of context. 

 

Pierce and Chick (2011) highlight the influence of teachers’ beliefs on what 

aspects of statistics should be taught in schools and how, as well as on both the 

teaching/learning process and their students' relationship with statistics beyond the 

classroom, coinciding with the opinion of Estrada and Batanero (2008) in the last 

assertion. 

 

The results of all these researches are evidence of the vital role of mathematics 

teachers’ beliefs in every aspect of teaching statistical contents, including the instructional 

method and teaching approach, the course content, and the assessments. 

 

3.9  Mathematics teachers' statistical knowledge for teaching 

 

Mathematics and statistics share some common grounds, and there is considerable 
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overlapping and cooperation between the two disciplines—e.g., dealing with statistical 

concepts such as chance and data often demands making decisions by using mathematical 

reasoning skills, like those related to proportional reasoning (Watson & Nathan, 2010). 

Moreover, mathematics and statistics overlap not only content-wise and skill-wise, but also 

curriculum-wise, since statistics is typically offered within the school mathematics 

curricula (Hand, 1998; Moore & Cobb, 2000). Therefore, it is by no means surprising that 

the majority of the few conceptualizations of SKT reported in the literature to date have 

employed as a basis a framework for MKT. In this section, an overview of the 

conceptualizations of SKT developed by Groth (2007), Noll (2011) and Burgess 

(2011)—all of them based on the framework for MKT developed by Ball et al. (2008)—is 

presented.  

 

Groth (2007) developed a hypothetical framework to explain the SKT required for 

teaching statistics at high school level (Figure 11), borrowing and focusing on the 

constructs of CCK and SCK described by Ball et al. (2008), and merging and adapting 

them with the framework for statistical problem solving given in the Guidelines for 

Assessment and Instruction in Statistics Education (GAISE) Report (Franklin et al., 

2007)—i.e., formulating questions, collecting data, analyzing data, and interpreting 

results—, in order to make distinctions between the mathematical and nonmathematical 

knowledge needed for teaching statistics, characterize the work of teaching statistics, and 

differentiate it from the one of teaching mathematics. Key features in this framework are 

the exemplification of common and specialized knowledge needed to support students' 
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learning regarding each of the components of the GAISE framework, and the distinction of 

such cognitive constructs as mathematical and non-mathematical in nature. In his model, 

Groth acknowledges that some aspects of the common and specialized knowledge entailed 

by the teaching of statistics require a growing research base, particularly the specialized 

knowledge related to nonmathematical knowledge, which encompasses the pedagogical 

activities that take place in the classroom. Since this model is not based on any empirical 

research studies, Groth himself calls for more investigation on SKT—especially of the 

empirical kind—, arguing the necessity of such studies, the distinctive differences between 

the disciplines of mathematics and statistics, and the growing statistics education 

movement that has yet to address this topic. 

 

 
Figure 11: Framework of SKT (Groth, 2007, p.429) 

 

Noll (2011) investigated the SKT held by a volunteer sample of 68 American 

graduate teaching assistants’ (TAs) at 18 universities across the United States, using a 

task-based survey and a series of semi-structured interviews, and focusing on TAs’ 

knowledge about data distributions and empirical sampling distributions, as well as in their 

knowledge of student thinking about sampling concepts. In order to develop a framework 
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for SKT useful for describing the type and quality of knowledge that introductory college 

statistics TAs should have, Noll selected three of the components of MKT described in the 

conceptualization proposed by Ball et al. (2008) (i.e., CCK, SCK and KCS). Key features 

in this framework are the interpretations of CCK and SCK as statistical literacy and 

statistical thinking, respectively. The findings from Noll’s research indicate that these TAs, 

despite their considerable knowledge of theoretical probability distributions, had a limited 

SKT in all the three components of her framework, since such TAs experienced tensions 

when attempting to quantify expected statistical variability in an empirical sampling 

situation, had difficulty teaching certain topics—particularly conceptual ideas of 

variability—, and seemed lost when it came to making sense of students' work and 

interpretation about variability and other sampling-related concepts.  

 

In order to examine, through a classroom-based approach, the knowledge that 

elementary school teachers need to successfully implement the teaching of statistics 

through projects and investigations, Burgess (2011) developed a two-dimensional 

framework (Figure 12) comprised of four of the knowledge components described by Ball 

et al. (2008)—i.e., CCK, SCK, KCS and KCT—, and six out of eight components of Wild 

and Pfannkuch’s (1999) model for statistical thinking in empirical enquiry—i.e., 

transnumeration, variation, reasoning with models, and integration of statistical and 

contextual knowledge as fundamental types of statistical thinking in statistical problem 

solving, along with teachers' general thinking about two components in the statistics 

research process: the Problem-Plan-Data-Analysis-Conclusions investigative cycle, and 
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the Generate-Seek-Interpret-Criticize-Judge interrogative cycle. By using this model to 

analyze and report the teacher knowledge and classroom practice of different samples of 

elementary school teachers, Burgess identified the different types of knowledge that were 

either needed and used, or needed but not used, in the context of teaching experiences 

based on statistical investigations, finding that all aspects of knowledge included in his 

proposed model were needed in the classroom. Burgess also demonstrated how teachers’ 

SKT could be usefully benchmarked using the investigative cycle, found substantial 

differences between the practices of the studied teachers in their ability to take advantage 

of the learning opportunities of a task given by the researcher, and described how lack of 

appropriate statistical knowledge created missed opportunities in relation to the teaching 

and learning of statistics. 

 

 

Figure 12: Framework for SKT to teach statistics through investigations (Burgess, 2011, 

p.264) 

 

From this overview, it is clear that none of these previous efforts to conceptualize 

SKT have presented a framework considering all the six knowledge components proposed 

by Ball and her colleagues as necessary for teachers to be able to teach mathematics 
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effectively, which results in a blurry picture of the preparedness of our mathematics 

teachers to teach statistical contents at any school level. 

 

3.10  Research gaps and the present study 

 

Several studies in the field of mathematics education (e.g., Ball & Bass, 2000; 

Cobb, 2000) have shown that teachers’ knowledge is connected to what and how students 

learn and depends on the context in which it is used. Nevertheless, despite the crucial role 

that teacher knowledge plays in, among others, shaping the enacted curriculum, providing 

quality instruction, and developing students’ knowledge base, attitudes and beliefs about 

the subject matter, the literature on teacher knowledge has strongly indicated that there are 

deficits in the subject matter knowledge that teachers teach (e.g., Fennema & Franke, 

1992; Ma, 1999; González, 2011; Isoda & González, 2012). Moreover, the research efforts 

carried out by researchers like Shulman (1986, 1987) and Ball and her colleagues (e.g., 

Ball et al., 2008) have made significant strides in helping people in the mathematics 

education community understand that teachers’ subject matter knowledge (SMK) is just 

one domain, one dimension of knowledge that teachers need to know and master. The 

importance of pedagogical content knowledge (PCK) for effective mathematics teaching 

and learning, as well as a fundamental criterion for effective teacher education, has been 

highlighted by several researchers (e.g., Ball et al., 2008; Döhrmann et al., 2012). 

Moreover, a number of researchers share the opinion that “successful teaching depends on 

professional knowledge and teacher beliefs” (e.g., Döhrmann et al., 2012, p. 327). 
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Nevertheless, in the case of statistics education, scarce studies can be found in the 

literature focused on the SMK and PCK entailed by teaching variability-related contents to 

help students achieve the aims of statistics education (cf. Shaughnessy, 2007), as well as 

on the conceptions of variability that teachers hold (cf. Batanero, Garfield, Ottaviani & 

Truran, 2001; Canada, 2006a, 2006b; González, 2011; Isoda & González, 2012), and the 

beliefs held by in-service teachers on statistics teaching and learning of such contents (cf. 

Pierce & Chick, 2011; Eichler, 2008, 2011). Hence, it is by no means surprising the urgent 

call for increasing research on these areas made by a number of concerned researchers, 

particularly for studies on teachers’ professional knowledge and practices while teaching 

variability (e.g., Sánchez, da Silva & Coutinho, 2011, p.219), as well as for teachers’ 

beliefs on statistics itself and on what aspects of statistics should be taught in schools and 

how (e.g., Pierce & Chick, 2011, p.160). These numerous calls for research that have been 

recently made, as well as the paucity of research in the aforementioned issues 

acknowledged by several researchers and statistics educators, provide clear evidence of the 

need and importance of conducting research on the aforementioned issues, which would 

provide insights into the level of professional knowledge that our secondary school 

teachers have to teach several statistical contents in which variability can be appreciated. 

This is particularly true in the case of Venezuela, country in which the few reported 

researches on statistics education to date have been centered on the statistical contents in 

the school curriculum (e.g., Salcedo, 2006) or on students’ knowledge about statistics and 

probability (e.g., León, 2011), with no studies reported, to the knowledge of the present 

author, on teachers’ professional knowledge, conceptions of variability and beliefs related 
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to the teaching of statistics at any school level. In addition, from the review of literature on 

statistical knowledge for teaching made in this chapter, it is clear that none of these 

previous MKT-based efforts to conceptualize SKT have presented a framework 

considering all the six knowledge components proposed by Ball and her colleagues as 

necessary for teachers to be able to teach mathematics effectively, which results in a blurry 

picture of the preparedness of our mathematics teachers to teach statistical contents at any 

school level. One of the purposes of the current study is to remedy this situation and to 

provide researchers, teachers and students with a more comprehensive framework for SKT, 

as well as with a survey questionnaire that could provide a clear snapshot of the current 

state of the knowledge base of SKT held by mathematics teachers. 
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CHAPTER 4: 

Framework, Research Design, Methodology and Sample Characteristics 

 

4.1  Conceptualizing “Statistical Knowledge for Teaching” 

 

To develop a conceptual framework for the current study, a literature review 

relating to mathematics teachers’ knowledge was undertaken, particularly targeting 

previous researches that have set out to explore the cognitive demands of teaching 

mathematics and statistics; that is, the knowledge that can support teachers in their 

work—e.g., Shulman, 1986, 1987; Wilson, Shulman & Richert, 1987; Grossmann, 1990; 

Borko et al., 1992; Lampert & Ball, 1998; Ma, 1999; Ball & Bass, 2000, 2003a, 2003b, 

2009; Ball et al., 2001; Gal, 2002, 2004; delMas, 2002; An, Kulm & Wu, 2004; Ball et al., 

2005; Groth, 2007; Hill et al., 2007; Ferrini-Mundi, Floden, McCrory, Burrill & Sandow, 

2007; Garfield & Ben-Zvi, 2008; Petrou & Golding, 2011; Noll, 2011; Burgess, 2011; 

Godino et al., 2011; Callingham & Watson, 2011; Harradine, Batanero & Rossman, 2011; 

Reading & Canada, 2011; González, Espinel & Ainley, 2011; Eichler, 2011; Pierce & 

Chick, 2011. On the basis of the aforementioned literature review, several components that 

were thought to be potential indicators of mathematics teachers’ professional competencies 

for teaching statistics were identified and considered for analysis. Then, paying particular 

attention to the disciplinary demands of teaching statistics as a mathematics teacher, the 

following conjectures were raised as a result of such analysis: 
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(a) A model of SKT should be closely tied to a model of MKT: On the basis that the 

statistical contents studied at school are often taught as part of the mathematics 

curriculum by mathematics teachers, as well as due to the common grounds shared by 

mathematics and statistics, it is anticipated that a model of SKT should be closely tied 

to a model of MKT. Consequently, in this research is argued that all the six constructs 

necessary for having a solid MKT identified by Ball et al. (2008) in their framework 

would serve as a useful starting point to hypothesize what knowledge might be needed 

for teaching statistics effectively at secondary school. Therefore, in the present study it 

is assumed that, in order to effectively teach statistics at secondary school level, 

mathematics teachers should have a solid knowledge about the statistical ideas 

included in the mathematics curriculum and ability to perform tasks related to 

statistical literacy over such ideas—i.e., common content knowledge—; ability to 

determine the accuracy of common and non-standard solutions that could be given by 

students when solving statistical problems—i.e., specialized content knowledge—; 

understanding of the broader set of statistical ideas to which a particular concept 

connects—i.e., horizon content knowledge—; knowledge about how students think 

about the statistical ideas being taught in the mathematics curriculum—i.e., knowledge 

of content and students—; knowledge on how the statistical ideas they have to teach at 

a particular grade level are developed throughout the mathematics curriculum—i.e., 

knowledge of content and curriculum—; and capacity to plan and execute meaningful 

teaching of statistical ideas in the light of the previous cognitive traits—i.e., 

knowledge of content and teaching.  



84 
 

(b) The used MKT model has to be adapted in order to account for specific requirements 

of teaching statistics: Although mathematics and statistics share some common 

grounds, the two disciplines are different in several ways. Basically, mathematics and 

statistics are different in the ways that they use numbers. Mathematics has a 

deterministic nature, mostly dealing with numbers, their operations, generalizations 

and abstractions, in which problems have a single mathematical solution the most of 

the time. For statistics, which is stochastic in nature—i.e., deals with phenomena that 

have a variable nature, for which one could only specify either outcomes within 

certain operational limits or a probability distribution of possible outcomes, rather than 

fix on any particular outcome as certain (Davis, 1987; Good & Hardin, 2012)—, 

numbers are varying data embedded within a context (Cobb & Moore, 1997; Moore, 

1998b; Hand, 1998; Wild & Pfannkuch, 1999; Pfannkuch & Wild, 2000; delMas, 

2004; Begg et al., 2004; Gattuso & Ottaviani, 2011), and problems can have multiple 

answers, often with no right or wrong ones. Moreover, statistical literacy, statistical 

problem solving and decision-making depend on knowledge about the context and 

understanding, explaining, and quantifying the variability in data (Moore & Cobb, 

1997; Gal, 2004; Franklin et al., 2007). Then, when doing statistics, one must know 

the nature of data, and where and how they are produced, in order to proceed with the 

analysis and to draw some conclusions. Mathematics, on the contrary, may rely on 

context for motivation in the classroom, or as a source of research problems, but its 

main goal is abstracting, finding patterns and generalizing while putting aside the 

context, in order to grasp the model or the structure behind the numbers (Moore & 
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Cobb, 1997; Gattuso & Ottaviani, 2011). Therefore, having in mind that statistics is 

concerned with “reasoning about varying data and uncertainty” whereas mathematics 

is concerned with “reasoning with certainty” (Begg et al., 2004), it seems necessary to 

revise the MKT framework developed by Ball et al. (2008), in order to take into 

account these differences between mathematics and statistics—which are not 

accounted for in its current form—, and then meet particular requirements specific to 

the teaching of statistics. 

 

In the case of the conceptualization of MKT developed by Ball and her 

colleagues—the one used in this study—, CCK is defined as the mathematics 

knowledge that any well-educated adult—i.e., a person who has acquired the skills, 

attitudes, competencies and cultural traits that one would expect from anyone who 

went through compulsory education—should have acquired after finishing school 

education (Ball, Hill, & Bass, 2005), common to a wide variety of settings—i.e., the 

mathematical knowledge used in all mathematically intensive professions—and, 

therefore, not unique to teaching (Ball et al. 2008; Charalambous, 2010). CCK mostly 

consists in “simply calculating an answer or, more generally, correctly solving 

mathematics problems” (Ball et al., 2008, p.399). In the case of statistics education, 

the ability to correctly solve statistical problems is not enough to be regarded as 

having a minimum of statistical literacy skills. In addition to be able to correctly solve 

statistical problems, the acquisition of basic skills related to statistical literacy—e.g., 

identifying examples or instances of a statistical concept; describing graphs, 
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distributions, and relationships; rephrasing or translating statistical findings, 

interpreting the results of a statistical procedure, and acknowledging and measuring 

variability (delMas, 2002)—is also important, since it is regarded as a main goal of 

both statistics education and mathematics curricula at all educational levels (e.g., Gal, 

2004; Pfannkuch & Ben-Zvi, 2011), for which it is also expected from any 

well-educated adult after finishing compulsory education. For this reason, in the 

framework proposed here, CCK will be seen as statistical literacy, since the 

acquisition of its associated skills is expected from any individual after completing 

compulsory schooling. The rest of knowledge components in this framework are 

defined in the same way as in the model of MKT by Ball et al. (2008), but rephrased 

in some cases to meet the requirements of teaching statistics. 

 

(c) In order to conceptualize SKT, teachers’ beliefs about statistics, its teaching and 

learning must be considered: In the case of mathematics teachers who teach statistics 

at school, the relationship between beliefs and teachers’ classroom practice has been 

well articulated in the literature by some researchers (e.g., Gal, Ginsburg & Schau, 

1997; Pierce & Chick, 2008; Eichler, 2008). For example, teachers who believe in 

“group work” and “class discussion” appear to recognize that an interactive approach 

would best serve the purpose of engaging the students with statistical ideas (Chick & 

Pierce, 2008), while teachers who espoused the importance of real statistical problems 

or a theoretical foundation for statistics, actually used problems embedded in a 

real-life context or more routine tasks and traditional methods, respectively, to develop 
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statistical methods in class (Eichler, 2008). Moreover, beliefs are identified by Gal 

(2004) as one of the dispositional elements of statistical literacy—i.e., attitudinal 

aspects related to individuals’ ability to discuss or communicate their reactions to 

statistical information, their opinions about the implications of this information, or 

their concern regarding the acceptability of given conclusions” (Gal, 2004, p. 49). 

Since statistical literacy is regarded as CCK in the present conceptualization of SKT, 

in the present study teachers’ beliefs about statistics, its teaching and learning, are 

going to be regarded as a fundamental factor that influence a teacher’s statistical 

literacy and hence SKT, attempting in that way to obtain a much richer and broader 

picture of the competencies needed to teach statistics efficiently, as well as to 

overcome a common drawback in all the MKT-based frameworks of SKT reviewed 

previously. 

 

(d) Tasks designed to elicit teachers’ conceptions of variability would be helpful to 

provide indicators to measure SKT as defined in this study: Conceptions are defined as 

the whole cluster of internal representations and associations evoked by a particular 

concept (Sfard, 1991, p.3); that is, not necessarily the "official" form of such 

concept—what Furinghetti & Pehkonen (2002) call objective knowledge—, but rather 

the concept's personal and private counterpart in the mind of the actor who gives 

meaning to such notion—regarded in the literature as subjective knowledge 

(Furinghetti & Pehkonen, 2002)—, based on personal experiences and understanding. 

Therefore, conceptions can be considered as a "picture" held by an individual of a certain 
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concept, which might be, or asymptotically get closer to, the “official” concept that pertain 

to objective knowledge (Bereiter & Scardamalia, 1996; Pehkonen & Pietilä, 2003). Thus, 

how close a teacher’s conception of a particular concept is to its formal and academically 

accepted version plays an important role in teacher’s effectiveness, as the primary 

mediator between the subject matter and the learners (Thompson, 1984). In the case of 

mathematics teachers, as well as teachers in many other disciplines, conceptions about 

the subject matter have been proved to influence their own approaches to teaching, 

and consequently their students’ approaches to learning (e.g., Carpenter, Fennema & 

Peterson, 1986; Trigwell, Prosser & Waterhouse, 1999). In the case of statistics 

education, the few studies reported in the literature point out the relation between the 

conceptions of variability held by teachers, their subject matter knowledge in statistics, 

and their perception of data as an aggregate, as individual data values, or as a small 

group of individual data values (Peters, 2009; González, 2011; Isoda & González, 

2012). Moreover, the work carried out by González (2011) and Isoda and González 

(2012) provides empirical evidence that the use of tasks addressing variability and 

variability-related concepts is an effective method for eliciting, identifying, describing 

and assessing teacher’s conceptions of variability, as well as their statistical subject 

matter knowledge. On the basis of these facts, and because conceptions represent 

knowledge and beliefs working in tandem (Knuth, 2002), gaining insight into the teachers’ 

conceptions of variability is regarded as necessary in the model for SKT proposed in the 

present study. 
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Figure 13: Proposed conceptual model of teachers’ competencies to teach secondary 

school statistics 

 

The eight components identified by the aforementioned four conjectures, and 

associated to mathematics teachers’ professional competencies to teach efficiently 

statistics at school level, are summarized in the framework depicted in Figure 13. As can 

be appreciated in Figure 13, the cognitive facet of the conceptualization of SKT proposed 

here—depicted by gray-colored boxes—is six-fold, comprised of all the six subdomains of 

professional knowledge identified by Ball et al. (2008) in their model of MKT, with CCK 

understood as statistical literacy, in order to meet the case of teaching statistics. The 

affective facet of the model proposed here—depicted by white-colored boxes—is 

comprised of two components: teachers’ beliefs about statistics, its teaching and learning; 

and teachers’ conceptions of variability, since both beliefs and conceptions—the latter 

often explained in the literature as “conscious beliefs” (Sivunen & Pehkonen, 2009)—, 

have been regarded by a number of studies as factors influencing every aspect of teaching, 

including the instructional method and the course content (cf. Philipp, 2007). Despite the 

evident connection between conceptions of a particular concept and its “official” form, 

conceptions are going to be regarded in the present study as pertaining to the affective 

domain, due to them being the personal interpretation of the concept in issue, based on the 



90 
 

individual’s personal experiences and understanding (Sfard, 1991; Furinghetti & Pehkonen, 

2002; Pehkonen & Pietilä, 2003; Sivunen & Pehkonen. 2009). 

 

Evidence of each of the cognitive components identified by the proposed 

framework could be elicited through either open or closed questions, as it is suggested by 

the literature of mathematics teachers’ knowledge (e.g., Ball et al., 2008; Manizade & 

Mason, 2011; Döhrmann et al., 2012; Tatto et al., 2012). Regarding the affective facet, 

mathematics teachers’ conceptions of variability can be made explicit by answering tasks 

in which knowledge and understanding of variability-related ideas, as well as the ability to 

connect and represent them, are required (cf. González, 2011; Isoda & González, 2012). 

Furthermore, mathematics teachers’ beliefs about statistics, its teaching and learning, will 

emerge from examining the features of the lesson plans that teachers produce—such as the 

tasks chosen to consider a particular statistical idea, and the types of instructional 

strategies teachers planned to use during the lesson (e.g., Eichler, 2008, 2011; Pierce & 

Chick, 2011). 

 

Based on the aforementioned four conjectures, and following the identification of 

the eight dimensions of professional competencies for teaching variability-related contents 

depicted in Figure 13—namely the six cognitive subdomains of SKT, teachers’ beliefs 

about statistics teaching and learning, and teachers’ conceptions of variability—, twelve 

indicators associated to the cognitive facet of such competencies were selected from the 
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literature, in order to provide a comprehensive framework for conceptualizing SKT (see 

Table 8). 

 

Table 8: Set of indicators proposed to assess SKT 
A: INDICATORS RELATED TO CCK (STATISTICAL LITERACY):

1. Is the teacher able to give an appropriate and 

correct answer to the given task? 

2. Does the teacher consistently acknowledge 

variability and correctly interpret its meaning when 

answering the given task? 

B: INDICATORS RELATED TO SCK: 

1. Does the teacher show evidence of ability to 

determine the accuracy of common and 

non-standard arguments, methods and solutions 

that could be proposed to the given task by students 

(especially while recognizing whether a student’s 

answer is right or not)? 

2. Does the teacher show evidence of ability to 

analyze right and wrong solutions that could be 

given by students to the present task, by providing 

explanations about what reasoning and/or 

mathematical/statistical steps likely produced such 

responses, and why, in a clear, accurate and 

appropriate way? 

C: INDICATORS RELATED TO HCK: 

1. Does the teacher show evidence of having ability 

to identify whether a student response is interesting 

or significant, mathematically or statistically? 

2. Is the teacher able to identify the significant 

notions, practices or values related to the statistical 

ideas involved in the given task? 

D: INDICATORS RELATED TO KCS: 

1. Is the teacher able to anticipate students’ common

responses and difficulties on the given task? 

2. Does the teacher show evidence of knowing the 

most likely reasons for students’ common 

responses and difficulties in relation to the 

statistical concepts involved in the given task? 

E: INDICATORS RELATED TO KCT: 

1. In design of teaching, does the teacher show 

evidence of knowing what tasks, activities and 

strategies could be used to set up a productive 

whole-class discussion aimed at developing 

students’ understanding of the key statistical 

concepts involved in the given task, instead of 

focusing just in computation methods or general 

calculation techniques? 

2. Does the teacher show evidence of knowing how to 

sequence such tasks, activities and strategies, in 

order to develop students’ understanding of the key 

statistical concepts involved in the given task?  

F: INDICATORS RELATED TO KCC: 

1. Does the teacher show evidence of knowing at 

what grade levels and content areas students are 

typically taught about the statistical concepts 

involved in the given task? 

2. Does the designed lesson (or series of lessons) 

show evidence of teacher’s knowledge and support 

of the educational goals and intentions of the 

official curriculum documents in relation to the 

teaching of the statistical contents present in the 

given task, as well as statistics in general? 

 

The cognitive indicators in Table 8 were selected after a review of prior empirical 

studies—in particular, those developed by Deborah Ball and her team at University of 

Michigan (e.g., Ball et al., 2008; Hill, Ball & Schilling, 2008; Ball & Bass, 2009)—, which 
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revealed several key areas of concern regarding mathematics teachers’ professional 

knowledge in the case of statistics education. 

 

4.2  The survey instrument 

 

One of the primary purposes of this study was to achieve a rich and detailed 

understanding of secondary school mathematics teachers’ SKT from the viewpoint of 

variability. This goal implied building a conceptual model of teachers’ professional 

knowledge about variability-related concepts; that is, suggesting a framework for the 

examination of the professional knowledge that teachers need to be well-developed in 

order to achieve effective teaching, which was introduced in the previous section. The 

second primary purpose of this study was to investigate Venezuelan secondary school 

mathematics teachers’ knowledge base of SKT, which implies to use a data collection 

method, through which it would be possible to check whether or not teachers show 

evidence of the indicators identified in Table 8. In order to achieve this goal, a 

pen-and-paper survey instrument was designed, based on the conceptualization of SKT 

previously outlined. This instrument is comprised of one task addressing—through 

comparing the histograms of two distributions—many variability-related ideas present in 

the Venezuelan secondary school mathematics curriculum, and seven SKT-related 

questions aiming to elicit and gather information about each one of the eight components 

of teachers’ professional competencies to teach variability-related contents identified by 

this study. Each question was developed based on previous studies with similar aims 



93 
 

reported in the literature (e.g., Meletiou & Lee, 2003; Ball et al., 2008; Manizade & Mason, 

2011; Isoda & González, 2012), which were adapted to reflect the context of the selected 

task and the specific objectives of the present conceptual framework proposed by this 

study. 

 

4.3  Development process of the survey instrument 

 

Using the statistical contents present in the Venezuelan secondary school 

mathematics curriculum as a filter, the task entitled “Choosing the distribution with more 

variability” task—originally developed by Garfield, delMas and Chance (1999)—was 

chosen for the item posed in the survey instrument (Figure 14). The fact that most of the 

statistical contents in the Venezuelan secondary school mathematics curriculum are ideas 

related to descriptive statistics—in particular with the handling of grouped data, frequency 

distribution tables and histograms—was crucial in selecting such task. In fact, two of the 

methodological suggestions appearing throughout the teaching guide for the Basic cycle of 

the secondary school are to “Organize data in frequency distribution tables” and “Analyze 

data represented in absolute frequency histograms” (ME, 1987, pp. 55–56). In the case of 

the Diversified cycle of secondary education, the Venezuelan mathematics curriculum 

states as one of the goals of the unit “Probability, statistics and combinatorics” that “The 

student will be able to describe, by the means of characteristic values, distributions of 

probability associated to experimental data” (CENAMEC, 1991, pp.35–36), being these 

“characteristic values” the measures of central tendency, measures of 
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dispersion—specifically the range, standard deviation and variance—, quartiles, deciles 

and percentiles. Moreover, the study of histograms, frequency distributions, measures of 

central tendency and measures of variation, is revisited in a spiral way throughout the 

subject of mathematics during secondary school in Venezuela. 

 

Look at the histogram of the following two distributions:  

 

Which of the two distributions you think has more variability?  

(a) Distribution A              (b) Distribution B 

Why do you think this? 

Figure 14: Original version of the “Choosing distribution with more variability” task 

(Garfield et al., 1999) 

 

Other reasons for the selection of this task are listed below: 

− The chosen task requires comparing distributions with different sample sizes: the 

mistake of thinking that group comparison can be done only if both group sizes 

are equal is a common misconception that has been reported in the literature (e.g., 

Tempelaar, 2007; Wang, Wang & Chen, 2009). It is anticipated that, through using 

the chosen task, it would be possible to determine whether a respondent holds 

such misconception or not. 
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− The chosen task requires comparing a histogram having irregular bar heights 

with one showing a normal-like, symmetrical distribution: when comparing two 

histograms to say which data set has higher variability or spread, some researchers 

have reported that many students—and even in-service mathematics 

teachers—have indicated that the histogram with smaller range but irregular bar 

heights—such as that shown in Figure 14 as “Distribution A”—has more 

variability than a histogram showing a normal or symmetrical distribution with a 

larger range—such as the one shown in Figure 14 as “Distribution B”—(e.g., 

Garfield et al., 1999; Meletiou & Lee, 2003, 2005; Stylianou & Meletiou, 2006; 

Cooper & Shore, 2007; Kaplan, Fisher & Rogness, 2009; González, 2011; Isoda 

& González, 2012). It is anticipated that, through using the chosen task, it would 

be possible to determine whether a respondent thinks of variability as 

evenness—or lack thereof—of the heights of the bars in the vertical 

direction—which is a misconception—, or thinks of variability statistically, as 

spread in the horizontal direction or as how much the data differ from a measure 

of central tendency. 

 

− The chosen task has a lack of context or story behind the given data: the 

meta-data—i.e., the story behind the data, the meaning and the names of the 

variables, why and how data were collected and processed, and so on (Huber, 

1997)—, are just as important as the data themselves. Thus, the data cannot be 

fully understood without the story. The selection of this task dealing with data 
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without a story behind was on purpose, in order to see whether the respondents 

were able to acknowledge the need for data within a clear context, which would 

provide, during teaching, opportunities for students to be “data detectives” and 

then develop and share their reasoning about sources of variability in data 

(Shaughnessy & Pfannkuch, 2002; Shaughnessy, 2007, 2008). 

 

In addition to the aforementioned reasons to choose the task developed by 

Garfield, delMas and Chance (1999) for the present study, it is the fact that the chosen task 

has been reported in the literature as an effective means of investigating both students’ 

(e.g., Meletiou & Lee, 2003, 2005) and teachers’ (González, 2011; González & Isoda, 

2011; Isoda & González, 2012) statistical literacy skills and conceptions of variability in 

the context of histograms. For the present study, the original task by Garfield et al. (1999) 

was slightly modified, in order to facilitate the calculations that could be made by the 

respondents. The modifications to the original task by Garfield et al. (1999) (Figure 15) 

include the addition of horizontal gridlines to facilitate counting the frequency associated 

to each bar—which was a source of mistakes identified during the piloting phase—, as 

well as alterations in the value of the height of some bars in both histograms—in order to 

make both distributions to have an arithmetic mean equal to five and easy-to-get quartiles, 

which values can be determined directly from the frequency distribution tables. In the 

present research, the distributions were purposely made with the same arithmetic mean. 

The purpose behind this was to prevent respondents from making decisions based on a 

comparison of means, which is a common mistake made by students in this type of tasks 
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(cf. Shaughnessy, Ciancetta, Best & Canada, 2004). 

 

 

 

Figure 15: Calculation of the quartiles in the modified version of the “Choosing the 

distribution with more variability” task 

 

After the aforementioned modifications, the task was enriched with questions 

aiming to elicit all the facets of teachers’ professional competencies to teach 

variability-related contents previously identified by this study (Figure 16).  

  

75% of the data is 
below 6.5. Hence, 
Q3A = 6.5 

25% of the data is 
below 3.5. Hence, 
Q1B = 3.5 

75% of the data is 
below 6.5. Hence, 
Q3B = 6.5 
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ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(a) Answer this task in as many different ways as you can. Please, be sure to show every step of your 

solution process. 

(b) What are the important ideas that might be used to answer this task? 

(c) Suppose that, after posing this task to your students, three of them come up with the following 

answers: 

STUDENT 1: “Distribution A has more variability because it’s not symmetrical.” 

STUDENT 2: “Distribution A ranges from 3 to 14, while Distribution B ranges from 1 to 14. Then, 

Distribution B has more variability.” 

STUDENT 3: “The bars in Distribution A are clumped closer to the central bar than they are in 

Distribution B. Then, Distribution B has more variability.” 

Dealing with each student separately, please comment briefly on each of these answers, focusing on 

whether the answer is correct or not, why you think so, and what reasoning might have led students to 

produce each answer. 

(d) Suppose you pose this task to your students. What are the most likely responses (correct and 

incorrect), and difficulties you would expect from them? Briefly explain why you think so. 

(Regarding to the most likely answers that you might get from the students, please do not include 

those mentioned in part (c).) 

(e) Mathematically/statistically speaking, is any of the answers given by the students interesting or 

significant? If yes, briefly explain why and on what aspects. (Please, focus your response on whether 

there is a significant mathematical/statistical insight in the student’s answer, and whether there are 

forthcoming contents in future classroom subjects connected to the notions being said or implied in 

such answer.) 

(f) Briefly describe how the important ideas involved in the solving process of the given task are 

addressed in official curriculum documents across the different grade levels of schooling. 

(g) Suppose you want to plan a lesson (or a series of lessons) to introduce the meaning of variability in 

the setting of the given problem to your students. Briefly describe as many instructional strategies, 

activities and/or tasks as you can think of that would be appropriate to use for this purpose, and 

sequence them accordingly, explaining why you chose to put them in such a particular order. 

Figure 16: Final survey item: “Choosing the distribution with more variability” task 
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Besides Question (a), each of the questions included in Item 1 were developed 

from previous studies reported and validated in English on mathematics teachers’ 

knowledge (e.g., Ball et al., 2008; Li & Huang, 2008; Watson, Callingham & Donne, 2008; 

Ball & Bass, 2009; Brakoniecki, 2009; Watson, Callingham & Nathan, 2009; Kazemi et al., 

2010; Wassong & Biehler, 2010; Ball, 2011; Manizade & Mason, 2011; Beswick, 

Callingham & Watson, 2012; Döhrmann et al., 2012; Qinqiong & Stephens, 2013). A brief 

explanation on how each of the seven questions included in Item 1 was developed follows: 

 

− Question (a): the task chosen for this study can be answered in many ways: by 

comparing the ranges, the variances, the standard deviations, the interquartile 

ranges, or the mean absolute deviations from the mean; by transforming the given 

histograms into boxplots or ogives and comparing them; and even by comparing 

naked-eye estimations of the degree of data concentration around the modal class 

in each histogram. All these ways to solve the given task are expected to be taught 

during secondary school mathematics in Venezuela, as well as in other countries 

around the world (cf. Isoda & González, 2012). Nevertheless, in a previous study 

with Japanese in-service mathematics teachers (cf. González, 2011; Isoda & 

González, 2012), when teachers were prompted to answer the original version of 

this task—i.e., when teachers were asked “Which of the two distributions you 

think has more variability? Why do you think this?”—, 27 out of the 39 senior 

high school teachers who answered correctly justified choosing Distribution B 

based only on its larger range, with 10 teachers giving as an only reason the 
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concentration or dispersion of data around the mean, and only 3 teachers 

mentioning a measure of variation—specifically, the variance. In the case of 

junior high school, 23 out of the 26 teachers who answered correctly justified 

choosing Distribution B based only on its larger range, with only 1 teacher basing 

his choice on the concentration or dispersion of data around the mean, and only 2 

teachers mentioning a measure of variation—specifically, the standard deviation. 

Therefore, since it seems that teachers, when prompted to answer the chosen task 

in its original version, tend to answer by providing only one reason, being such 

reason the difference in range—which, although correct, is considered as a “lower 

level response” (Shaughnessy, 2008) or as an evidence of “simple recognition of 

variation” (Watson & Callingham, 2003). Therefore, instead of simply asking 

“Which of the two distributions you think has more variability? Why do you think 

this?”—which might conduct to answer tendencies like the ones reported by 

González (2011) and Isoda and González (2012)—, the author decided that the 

first question of Item 1 should be “Answer this task in as many different ways as 

you can”, trying in that way to elicit from teachers as many different reasons and 

justifications for their chosen response as possible. In that way, it is anticipated 

that a deeper insight into respondents’ CCK and conceptions of variability may 

emerge. 

 

− Question (b): In order to elicit mathematics teachers’ HCK in relation with 

particular ideas dealt with in a given task, previous researches on teachers’ 
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knowledge posed questions such as “Are there mathematically significant notions 

that underlie division of fractions?” (Ball, 2011); “What are the big statistical 

ideas in this problem?” (Watson et al., 2009); “Is this mathematically interesting?” 

and “Is this an important mathematical insight?” (Ball & Bass, 2009). Based on 

this, the author developed Question (b) as “What are the important ideas that 

might be used to answer this task?”, as an attempt to elicit from teachers as many 

statistical and mathematical ideas as possible.  

 

− Question (c): scripted answers from hypothetical students to a given task were 

regularly found in previous survey researches on teacher knowledge, with the 

purpose of eliciting mathematics teachers’ SCK through questions such as 

“Choose one of the inappropriate responses” (Beswick et al., 2012); “Ms. Wilson 

is not sure that both of their explanations are correct. What do you think? Why?” 

(Manizade & Mason, 2011); “Which of these is a mathematically accurate 

definition of ‘rectangle’?”, “Which of these can be used to represent 5
6
÷1

3
?”, “If so, 

why does it work?” (Ball, 2011); “What reasoning could produce each of these 

answers?”, “What mathematical steps likely produced each incorrect 

answer?”(Ball et al., 2009); “For each [answer]: Could this represent 3
4
? If yes, 

explain how it could represent 3
4
	∙ If no, explain why it could not represent 3

4
	∙” 

(Kazemi et al., 2010). Based on such questions, the author developed Question (c) 

as follows: “Dealing with each student separately, please comment briefly on each 

of these answers, focusing on whether the answer is correct or not, why you think 
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so, and what reasoning might have led students to produce each answer”. This 

question deals with three scripted answers to the given task provided by fictitious 

students (Figure 16). The answers given by Student 1 and 2 are examples of 

common misconceptions related to the estimation of variability that students 

frequently exhibit when comparing histograms (cf. Garfield et al., 1999; Meletiou 

& Lee, 2003, 2005; Cooper & Shore, 2007; Kaplan et al., 2009; González, 2011; 

Isoda & González, 2012). The response given by Student 3 exemplifies a right 

interpretation of the variability in the given histograms, done by a naked-eye 

estimation and comparison of the degree of data clustering around the modal class 

in both graphs. 

 

− Question (d): besides possessing the competencies assessed in the previous 

questions, teachers must also be able to anticipate what students are likely to think 

and what they will find confusing when dealing with a particular problem. This 

kind of knowledge—regarded in the literature as KCS (cf. Ball et al., 

2008)—includes teachers’ ability to anticipate what students are likely to do with 

a particular task or problem, and what they will find easy or difficult in it (Ball et 

al., 2008, p.401). In previous survey researches on teacher knowledge reported in 

the literature, KCS has been elicited through questions such as “What difficulties 

and/or common misconceptions related to this topic might the students have as 

they solve these problems? Explain your answers” (Manizade & Mason, 2011); 

“What responses would you expect from your students? Write down some 
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appropriate and inappropriate responses” (Beswick et al., 2012); “Please can you 

give an example of an appropriate response and an inappropriate response that 

your students might give. Can you explain why it is appropriate/inappropriate?” 

(Watson et al., 2009); “What kind of responses would you expect from your 

students? Write down some appropriate and inappropriate responses” (Watson et 

al., 2008); “Which of the following strategies would you expect to see some 

elementary school students using to find the answer of 8 ✕ 8?”, “What are the 

most likely reason(s) for this student confusion?”, “Which of the following is the 

most likely reason for these incorrect answers”, “Which version of the … problem 

below is likely to be the most challenging for students?” (LMT Project, 2008); 

and “What do students typically have difficulty with in learning about rectangles, 

and why?” (MTLT Project, 2011). With this in mind, the author developed 

Question (d) as “Suppose you pose this task to your students. What are the most 

likely responses (correct and incorrect), and difficulties you would expect from 

them? Briefly explain why you think so”, as an attempt to elicit teachers’ KCS 

regarding the chosen task for this study. 

 

− Question (e): another aspect of teachers’ HCK is the ability to identify interesting 

association relationships among a particular idea, practice, student’s answer or 

classroom value with larger mathematical ideas, structures, and principles, even 

across great expanses of regular curricular sequence (Ball & Bass, 2009). In 

previous researches, it has been reported that this attribute of HCK could be 
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elicited through questions such as “Is something being said or implied that could 

have mathematically problematic consequences later?”, “Is this an important 

mathematical insight?” (Ball & Bass, 2009); and “Is this mathematically 

significant or interesting?” (Ball, 2011). With such questions in mind, the author 

developed Question (e) as follows: “Mathematically/statistically speaking, is any 

of the answers given by the students interesting or significant? If yes, briefly 

explain why and on what aspects”.  

 

− Question (f): the literature on teacher knowledge regards as very important having 

teachers’ awareness on how the instructional contents being taught at a certain 

grade are developed during school education. This cognitive trait is a 

characteristic of KCC (Ball et al., 2008). In previous researches, this aspect of 

KCC was elicited through questions such as “Describe briefly how the key 

mathematical ideas or critical points presented in [this question] are addressed in 

official curriculum documents (e.g. VELS) for Year 6 or Year 7 depending on 

your school” (Qinqiong & Stephens, 2013); “Where would you place [this 

problem] in your school’s curriculum sequence?” (Watson et al., 2009); “At what 

grade level are students first introduced to rectangles?” (MTLT Project, 2011); 

“At what grade level are students typically taught to divide fractions?”, “How is 

the division of fractions related to division of whole numbers in the school 

curriculum?”, and “What are the models for fractions and for division with which 

students would be familiar?” (Ball, 2011). Based on such questions, the author 
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developed Question (f) as follows: “Briefly describe how the important ideas 

involved in the solving process of the given task are addressed in official 

curriculum documents across the different grade levels of schooling”. 

 

− Question (g): in order to collect data on the six cognitive traits identified by Ball 

and her colleagues, it is necessary to develop a question that can assess teachers’ 

skills related to KCT (Ball et al., 2008), the only kind of knowledge that has not 

yet been elicited through the questionnaire. In previous researches on teacher 

knowledge, this cognitive trait was elicited through questions such as “How 

would you explain/model/demonstrate this item to someone who did not 

understand?” (Mohr, 2006); “What opportunities would this problem provide for 

you teaching?”, “A student gave this answer. How would you move this student’s 

understanding forward?” (Watson et al., 2009); “How would/could you use this 

item in the classroom? For example, choose one of the inappropriate responses 

and explain how would you intervene” (Beswick et al., 2012); “How would/could 

you use this item in the classroom? For example, how would you intervene to 

address the inappropriate responses?” (Watson et al., 2008); “What instructional 

strategies and/or tasks would you use during the next instructional period? Why?”, 

“Which of these activities would be appropriate to include? Why, or why not? In 

what order should these activities be presented? Explain why you chose to put the 

activities in this particular order” (Manizade & Mason, 2011); “How would you 

sequence these figures to discuss the concept of a rectangle? What task would you 
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create using these figures (or others) to set up a productive discussion aimed at 

developing a definition? In a whole-class discussion, which one would be good to 

discuss first?” (MTLT Project, 2011); and “What sequence of problems would you 

use to begin work on division of fractions? In a whole-class discussion, what 

solution methods would you want presented, and in what order?” (Ball, 2011). 

Based on such questions, the author developed Question (g) as follows: “Suppose 

you want to plan a lesson (or a series of lessons) to introduce the meaning of 

variability in the setting of the given problem to your students. Briefly describe as 

many instructional strategies, activities and/or tasks as you can think of that would 

be appropriate to use for this purpose, and sequence them accordingly, explaining 

why you chose to put them in such a particular order”. By posing Question (g) in 

this way, two important aspects of KCT are explicitly accounted for: on one hand, 

mathematical knowledge of tasks and examples to start with and use to take 

students deeper into the content to be taught; on the other hand, knowledge on the 

design of instruction, in particular, on how to sequence particular content, tasks 

and examples, in order to achieve an effective instruction (Ball et al., 2008, 

p.401).  

 

In addition to eliciting information on respondents’ KCT-related skills, it is 

anticipated that Question (g) will also gather evidence on whether or not 

statistics-related curriculum goals are known and supported by teachers in their 

planned lessons, which is an aspect of teachers’ KCC (Ball et al., 2008, p.395).  



107 
 

Finally, as reported by previous researches in the field of statistics education (cf. 

Eichler, 2008, 2011; Pierce & Chick, 2011), teachers’ beliefs about statistics 

teaching and learning could be identified through examining the features of the 

lesson plans prepared by them. Therefore, it is anticipated that teachers’ answers 

to Question (g) will also provide valuable information about their statistics-related 

beliefs. 

 

Because all the original previous survey researches consulted to develop Item 1 

were reported in the literature in English, Questions (a) to (g) were also stated in English at 

the beginning. The reason of this was that, after developing the survey questions and 

before translating them into Spanish, a first English version of the instrument was 

examined by two Japanese mathematics educators, fluent in both English and Japanese and 

with previous experience in designing survey instruments as well, in order to establish the 

item’s content validity—i.e., in order to determine, based on their expert judgments, 

whether the content of the questions in Item 1 was consistent with what was being 

intended to be assessed. After confirming the validity of the proposed item, the resulting 

instrument and the indicator associated to it were presented to specialists in the area of 

teacher knowledge and statistics education, via email and personal meetings during an 

international conference in July of 2012. In particular, confirmation and feedback received 

from four members of the research group of Deborah Ball, who recognized and verified 

one-to-one correspondence between the developed questions and the proposed indicators, 

were very valuable to the present study, since the sixfold framework for mathematics 
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teachers’ knowledge for teaching proposed by such team (e.g., Ball et al., 2008) is used as 

a cornerstone in this research. 

 

During this phase, a few changes were made—regarding to wording—, but no 

significant content or structure changes were recommended by any of the specialists 

consulted, either in Japan or abroad. After this developmental stage of the survey 

instrument, the content validity of the questionnaire as a whole increased (Litwin, 1995; 

Manizade & Mason, 2011).  

 

After finishing the development of the survey instrument in English, the 

translation of the whole questionnaire into Spanish was carefully undertaken by the author. 

Special care was taken in the translation process in order to preserve the original meaning 

of the English items to the maximum, while trying to get as close as possible to our 

respondents’ point of view and the way they describe the world in their mother tongue, as 

questionnaire design specialists often recommend (cf. Harvatopoulos et al., 1992, p.53; 

Oppenheim, 1992, p.122; Litwin, 1995; Cea d'Ancona, 1996, p.263). To guarantee the 

appropriateness of the wording and technical accuracy, three Venezuelan mathematics 

educators—two of them professors of statistics and probability at undergraduate and 

graduate level—carried out a back-translation of a first draft of the Spanish version of the 

instrument, and discrepancies were discussed until agreement was obtained. Their 

comments or doubts about the content of different questions were taken into account while 

preparing the second and final version of the Spanish instrument. After that, these 
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mathematics educators piloted the resulting version of the survey instrument. The pilot 

responses allowed the author to see whether the participants would be able to understand 

correctly the questions, as well as to determine if the question responses would be 

analyzable. The responses given by the mathematics educators during the pilot stage 

showed good consistency among them. This is the foundation for internal consistency 

reliability, which is, in turn, the foundation for validity (DeVellis, 2003). So, through these 

stages of instrument development, peer review and pilot study were established content 

validity, criterion-related validity, construct validity (Creswell, 2005; Utts, 2005). Moreover, 

from the piloting, these mathematics educators agreed that a Venezuelan secondary school 

mathematics teacher should require around one hour in order to complete the survey. 

 

A mapping between the components of SKT that would be elicited by each 

question in Item 1, as well as the indicators associated to each cognitive aspect considered 

by this framework, is shown in Table 9. 

 

Table 9: Knowledge components of SKT elicited by each of the questions posed in Item 1 

Elicited knowledge component of SKT Related indicator of SKT Question

Common Content Knowledge (CCK, as Statistical Literacy)
A1 (a) 

A2 (a) 

Specialized Content Knowledge (SCK) 
B1 (c) 

B2 (c) 

Horizon Content Knowledge (HCK) 
C1 (e) 

C2 (b) 

Knowledge of Content and Students (KCS) 
D1 (d) 

D2 (d) 

Knowledge of Content and Teaching (KCT) 
E1 (g) 

E2 (g) 

Knowledge of Content and Curriculum (KCC) 
F1 (f) 

F2 (g) 
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In regard to the traits in the affective facet of the conceptual model for SKT 

proposed here—i.e., teachers’ conceptions of variability and beliefs about teaching and 

learning of statistics—, it is anticipated that teachers’ answers to Question (a) will provide 

enough information about how the respondents conceptualize variability, based on the fact 

that teachers’ conceptions of variability can be made explicit by answering tasks in which 

knowledge and understanding of variability-related ideas, as well as the ability to connect 

and represent them, are required (González, 2011; Isoda & González, 2012). These 

conceptions of variability that might be distinguished in teachers’ answers will be 

classified, at first, using the eight-type categorization proposed by Shaughnessy (2007, pp. 

984–985). In the case of teachers’ beliefs about statistics teaching and learning, the limited 

research on this topic (e.g., Eichler, 2008, 2011; Pierce & Chick, 2008, 2011) suggests that 

they could be identified through examining the features of the lesson plans that teachers 

produce, such as the tasks chosen to consider a particular statistical idea, and the types of 

instructional strategies teachers planned to use during the lesson. What teachers planned to 

do—which is related to the construct KCT, and hence with answers to Question (g)—will 

be analyzed using the four categories reflecting on teachers’ beliefs developed by Eichler 

(2011)—i.e., traditionalists, application preparers, everyday life preparers, and 

structuralists—, which will provide valuable information on the beliefs about the nature of 

statistics, as well as about the teaching and learning of statistics, held by the surveyed 

teachers. 
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4.4  Participants and survey implementation 

 

The survey was carried out anonymously and an informed consent form was 

obtained from all volunteer participants in the present study. The period of data collection 

was from July to September 2012. The survey was implemented with the support of a 

Venezuelan mathematics educator with previous contact with all the institutions in which 

the participants were working, due to her role as responsible of the supervision of teaching 

practice in one Faculty of Education at a private university in Caracas, Venezuela. Then, 

teachers participating in this study were contacted previous agreement with their respective 

institutions via the principal and the person responsible for the distribution and gathering 

of the survey instruments, who was present at the moment that teachers filled in the 

questionnaires. 

 

The data from the collected questionnaires were carefully examined to determine 

whether the completed response forms were usable for scoring and verification. From the 

60 initially collected questionnaires, 7 were excluded from the present study, since the 

respondents just provided demographic information, but did not answer any of the seven 

questions of the developed item. Therefore, the answers provided by 53 in-service 

secondary school mathematics teachers, working in the metropolitan area of Caracas, 

Venezuela, were examined in this study. The survey participants comprise a convenience 

sample in which participation was voluntary and anonymous. The age of the participants 

ranged from 21 to 71 years-old, with an average of 42.6 years-old. The classroom 
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experience of the participants ranged from 0 to 45 years, with an average of 16.4 years. 

Thirty-three of the participants (62.3%) were men, while twenty (37.7%) were women. 

 

Among the participant teachers, 19 were working at lower high school level—11 

(57.9%) men and 8 (42.1%) women, with age ranging from 21 to 56 years-old, with an 

average of 40.2 years-old, with a classroom experience ranging from 2 to 34 years, with an 

average of 14.9 years—, 15 at upper high school level—9 (60.0%) men and 6 (40.0%) 

women, with age ranging from 27 to 71 years-old, with an average of 46.3 years-old, with 

a classroom experience ranging from 5 to 45 years, with an average of 19.6 years—, and 

19 at both lower and upper high school levels—13 (68.4%) men and 6 (31.6%) women, 

with age ranging from 23 to 65 years-old, with an average of 42.3 years-old, with a 

classroom experience ranging from 0 to 42 years, with an average of 15.3 years. 

 

All this information is summarized in the following table: 

 

Table 10: Summary table of participants in this study 

 Number of teachers 
Gender 

Average Age 
Average years of 

experience Men Women 

Lower High School 
19 

(35.8%) 

11 

(20.8%) 

8 

(15.1%) 
40.2 14.9 

Upper High School 
15 

(28.4%) 

9 

(17.0%) 

6 

(11.3%) 
46.3 19.6 

Both Levels 
19 

(35.8%) 

13 

(24.5%) 

6 

(11.3%) 
42.3 15.3 

Total 
53 

(100%) 

33 

(62.3%) 

20 

(37.7%) 
42.6 16.4 
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CHAPTER 5: 

Results, Findings and Discussion 

 

The results presented in this section were obtained by undertaking a qualitative 

analysis of the collected answers given by the teachers in this study, focused on verifying 

whether the twelve SKT-related indicators previously depicted in Table 8 were observed in 

such answers. In general, this qualitative analysis provided a comprehensive picture of the 

current state of the surveyed Venezuelan secondary school mathematics teachers’ 

knowledge base on SKT, conceptions of variability, and beliefs about statistics teaching 

and learning. Based on the results and findings obtained from this study, a discussion on 

the eight dimensions of professional competencies for teaching variability-related contents 

identified here will be presented, followed by a data-based discussion of how such 

dimensions seem to be related. 

 

5.1.  Conceptual analysis and framework for the task posed in Item 1 

 

The task posed by Item 1 (based on the one developed by Garfield, delMas & 

Chance, 1999) was chosen, among other things, aiming at examining participant teachers’ 

statistical literacy and conceptions of variability by emphasizing comparison of 

distributions, statistical setting which is as “a fruitful arena for expanding teachers’ 

understanding of distribution and conceptions of variability” (Makar & Confrey, 2004, 
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p.371).  

 

ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(a) Answer this task in as many different ways as you can. Please, be sure to show every step of your 

solution process. 

Figure 17: Question (a) used in the present study 

 

Question (a)—see Figure 17—prompts teachers to provide as many appropriate 

answers to the given task as possible. In order to do that, teachers are expected to carry out 

the following types of cognitive processes: 

 

− Identify variability, as well as different aspects of the given data sets. 

 

− Describe and compare data sets. 

 

− Translate the given histograms into a mathematical symbolic (e.g., a frequency 

distribution table) or graphical (e.g., a boxplot or a frequency polygon) 

representation. 
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− Interpret data through the given histograms or any equivalent representation, in 

order to describe and analyze it. 

 

− Measure variability through the computation of measures of variation (e.g., mean 

absolute deviation, variance, and standard deviation), and interpret appropriately 

such statistics. 

 

− Understand the relation among measures of central tendency (e.g., mean and 

median) and measures of variation. 

 

− Understand the meaning of fundamental statistical concepts that could be used to 

answer the posed task. 

 

As several statistics educators point out (e.g., delMas, 2002; Shaughnessy, 2007; 

Garfield & Ben-Zvi, 2008), all the aforementioned cognitive processes are skills related to 

statistical literacy, and individuals who appropriately engage in such processes 

demonstrate being statistically literate. Moreover, through the answer provided to Question 

(a), it would be possible not only to gain insight into teachers’ content knowledge about 

several statistical ideas related to the interpretation of variability in the given situation, but 

also to identify teachers’ conceptions of variability in the particular context of histograms 

and comparing distributions (cf. González, 2011; González & Isoda, 2011; Isoda & 

González, 2012). Then, teachers’ responses to Question (a) are expected to provide enough 
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information to answer the following three questions, which were generated to assess the 

indicators of common content knowledge—which will be regarded here as statistical 

literacy—used in the current study: 

 

− Is the teacher able to give an appropriate and correct answer to the given task? 

(Indicator A-1): 

In order to answer this question appropriately, teachers must engage in one or 

more of the aforementioned cognitive processes. For example, a teacher may translate 

the given histograms into their corresponding frequency distribution tables, compute 

measures of variation in order to measure the variability in the data, and then describe 

and compare both data sets through the interpretation of the measures of variation 

calculated by him/her, in order to figure out which of the two histograms has more 

variability. 

 

− Does the teacher consistently identify and acknowledge variability and correctly 

interpret its meaning in the context of the given task? (Indicator A-2): 

Question (a) asks teachers to answer the given task in as many different ways as 

possible. Then, it is anticipated that all of them will show evidence of null, simple or 

sophisticated acknowledgment of the variability in the given data—e.g., responses 

concerned only with extremes and the interpretation of the range (simple 

acknowledgement of variability), or responses mentioning both middles and extremes 

in data, or even pointing out deviations of data from some fixed value, such as the 
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mean or median (sophisticated acknowledgement of variability)—, whereas some 

teachers are expected to answer from the perspective of misconceptions—i.e., judging 

variability by putting attention on the fluctuation of the bars, the symmetry of the 

distributions, the sample size, or the number of bars—, which is an incorrect 

interpretation and acknowledgment of the variability. So, while assessing Question (a), 

attention will be paid to how consistent and appropriate is the acknowledgement of 

variability in each of the methods used by the respondent. 

 

− What are the different ways in which teachers conceptualize variability when 

dealing with a task involving histograms and comparison of distributions? 

According to González (2011), González and Isoda (2011), and Isoda and 

González (2012), the answers given by the surveyed teachers to the posed task will 

provide evidence of the conceptions of variability held by them; that is, evidence on 

how teachers describe and conceptualize variability in the given setting. Using the 

categorization proposed by Shaughnessy (2007) as starting point, the following four 

conceptions of variability are expected to be identified from teachers’ answers 

(González, 2011; González & Isoda, 2011; Isoda & González, 2012): 

 

− Variability in particular values, including extremes or outliers: people holding 

this conception focus their attention on particular data value in a graph or a data 

set. 
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− Variability as distance or difference from some fixed point: people holding this 

conception think of variability as an actual or a visual measurement of the 

distance of each or some elements of a data set either from an endpoint value or 

from some measure of center. 

 

− Variability as the sum of residuals: people holding this conception think of 

variability as the measure of the total variation of an entire distribution of data via 

the calculation of residuals from some fixed value. 

 

− Variation as distribution: people holding this conception are able to consider 

many theoretical features of a distribution simultaneously when variability 

between or among a set of distributions is compared; that is, they perceive data as 

an aggregate. 

 

Thus, this task will provide teachers with opportunities to represent and examine 

many variability-related ideas, through which it will be possible to investigate how 

participants acknowledge and describe variability in this particular setting, and even 

whether teachers think about data as an aggregate—i.e., as an emergent entity (namely 

distribution) that has characteristics not visible in any of the individual elements in the 

aggregate (Mokros & Russell, 1995; Konold & Pollatsek, 2002). 

 

Based on the previous researches with this task or similar ones reported in the 
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literature (e.g., Garfield, delMas & Chance, 1999; Meletiou & Lee, 2003, 2005; Cooper & 

Shore, 2007) and refining the categorization proposed by González (2011), Isoda and 

González (2012) and  González (2013), among the answers that respondents could 

provide to this task, the following ones stand out:  

 

(1) Distribution A, giving no reason, just guessing, by arguing intuitive ideas, or based on 

a mistaken calculation: in this type of answer, the teacher not only mistakenly chooses 

Distribution A as the one with more variability without any justification, or supporting 

this choice on an idiosyncratic argument—such as “I think so”, “I suppose so”, “it is 

obvious”, “it is evident”—or a misinterpreted calculation.  

 

(2) Distribution A, based on a misinterpretation related to symmetry and/or a poor fit to a 

normal distribution: in the answers falling into this category, teachers show evidence 

of thinking of variability in terms of symmetry or degree of fit to a normal 

distribution—or lack thereof—, which are two misconceptions that disregard the 

connection between measures of central tendency and the variability of data dispersed 

around a center, and consider exclusively the aforementioned visual features of the 

histograms. Teachers in this category will be considered to be holding the conception 

labeled in this study as “Variability as visual cues in the graph”, since this way of 

thinking about variability is not accounted for by Shaughnessy’s (2007) framework 

(Shaughnessy, 2013, personal communication, July 19, 2013). 
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(3) Distribution A, based on arguments related to differences in the heights of the bars: 

this answer, which is very common in this kind of tasks—cf. Meletiou & Lee, 2003, 

2005; Cooper & Shore, 2007; González, 2011; Isoda & González, 2012, González, 

2013—, typically express the misconception that the histogram with more varied 

values—or less pattern—in the heights of the bars has a greater variability of its data 

set. Teachers with this misconception tend to think of symmetrical or quasi-normal 

distributions, as well as histograms in which the heights its bars were basically flat, as 

having less variability than its asymmetrical counterparts. Teachers in this category 

also hold the conception “Variability as visual cues in the graph”, since they disregard 

the actual data values, their spreads, and the measures of distance or difference, and 

mistakenly acknowledge variability as unevenness in the frequencies of a histogram, 

symmetry, or closeness (or lack thereof) of fit to a normal distribution. 

 

(4) Distribution B, giving no reason, just guessing, by arguing intuitive ideas, or by 

misinterpretation: there is the possibility of a teacher correctly selecting Distribution B 

as the one with more variability, but providing an idiosyncratic argument to support 

this choice, or by giving an argument based on the misconception of thinking of 

variability in terms of the largest span in the vertical axis—i.e., judging the variability 

of the data displayed in a histogram by the largest difference in height of its bars—, 

instead of looking at the horizontal spread of data around a measure of central 

tendency. This is a common mistake made by many students, and even by some of 

their teachers, at any school level. Then, teachers in this category have the tendency to 
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incorrectly think that a histogram with narrow tails and a high peak has greater 

variability than one with bars of more similar heights. Teachers providing answers of 

this kind seem to hold the conception named by Shaughnessy (2007, p.984) as 

“Variability in particular values, including extremes or outliers”, since while regarded 

variability as the largest span in frequency, these teachers focus their attention on 

particular data values in the graphs. 

 

(5) Distribution B, based on arguments related to simple recognition of variability: 

teachers in this category are those who not only choose the right distribution, but also 

provide an argument in which is simple recognition of variability is evidenced. 

Focusing on the range of the data, or giving answers concerned only with extremes in 

data without connecting them with a measure of central tendency, is what is meant by 

“simple recognition of variability”. Since teachers falling into this category focus their 

attention on particular data values in the histogram, they seem to hold the conception 

named by Shaughnessy (2007, p.984) as “Variability in particular values, including 

extremes or outliers”. 

 

(6) Distribution B, based on arguments related to sophisticated recognition of variability: 

teachers in this category are those who not only choose the right distribution, but also 

provide an argument in which is sophisticated recognition of variability is evidenced. 

Such “sophisticated recognition of variability is evidenced” is understood here as 

responses mentioning both middles and extremes in data, discussing the connections 
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between middles in data and the variability of data dispersed around a middle, or 

pointing out deviations of data from some fixed value, such as the mean or median. 

Depending on the case, teachers providing these kind of answers might hold the 

conceptions of variability identified by Shaughnessy (2007, pp.984–985) as 

"Variability as distance or difference from some fixed point", "Variability as the sum 

of residuals", or "Variation as distribution". 

 

5.2  Results and findings regarding Question (a) 

 

Table 11: Results obtained from participants’ answers to Question (a) – Frequency and percentage 
 

 Category 
Frequency (%) 

Lower High School

(19 teachers) 

Upper High School 

(15 teachers) 

Both Levels 

(19 teachers) 

Total 

(53 teachers)

C
at

eg
or

y 

A0: No response. 
2 

(10.5) 

2 

(13.2) 

1 

(5.3) 

5 

(9.4) 

A1: Distribution A, giving no reason, just guessing, by 

arguing intuitive ideas, or based on a mistaken 

calculation. 

1 

(5.3) 

1 

(6.7) 

1 

(5.3) 

3 

(5.7) 

A2: Distribution A, based on a misinterpretation related to 

symmetry and/or a poor fit to a normal distribution. 

1 

(5.3) 

1 

(6.7) 

3 

(15.8) 

5 

(9.4) 

A3: Distribution A, based on arguments related to 

differences in the heights of the bars (e.g., 

“Distribution A is bumpier”; “the number of 

different heights in A is higher than in B”). 

3 

(15.8) 

1 

(6.7) 

5 

(26.3) 

9 

(17.0)

A4: Distribution B, giving no reason, just guessing, by 

arguing intuitive ideas, or by misinterpretation (e.g., 

“B has a larger span in frequency than A”, “B 

because is symmetrical”). 

4 

(21.1) 

1 

(6.7) 

4 

(21.0) 

9 

(17.0)

A5: Distribution B, based on arguments related to simple 

recognition of variability (i.e., answers concerned only 

with extremes or the ranges of each distribution; e.g., 

“because it’s more spread out”). 

2 

(10.5) 

1 

(6.7) 

2 

(10.5) 

5 

(9.4) 

A6: Distribution B, based on arguments related to 

sophisticated recognition of variability (i.e., answers 

connecting both middles and extremes; e.g. “because 

the scores differ more from the center”). 

6 

(31.5) 

8 

(53.3) 

3 

(15.8) 

17 

(32.1)
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On the basis of the conceptual analysis and framework for the “Choosing the 

distribution with more variability” task previously described, an interpretation of teachers’ 

answers was carried out, which is summarized in Table 11. 

 

5.3  Results and findings regarding Question (b) 

ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(b) What are the important ideas that might be used to answer this task? 

Figure 18: Question (b) used in the present study 

 

Question (b)—see Figure 18—was posed in order to examine teachers’ ability to 

anticipate and make connections with major disciplinary ideas and structures related to the 

concepts involved with the solving of the posed task, as well as to investigate teachers’ 

ability to build bridges between the cognitive demands of this task and fundamental ideas, 

practices, values and sensibilities of the discipline, which are two of the main 

characteristics of the so-called horizon content knowledge (cf. Ball & Bass, 2009). 

Evidence of these skills is accounted for by Indicator C-2. 
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Forty-nine teachers—92.5% overall; 17 working at lower high school, 14 at upper 

high school, an 18 at both levels—answered to this question. A “bottom up” approach to 

coding (Coffey & Atkinson, 1996) was initially used by the researcher to analyze the 

collected data. This grounded form of analysis ensures that the themes or categories 

extracted were, in fact, grounded in the data and hence reflected the participants’ own 

knowledge base of HCK. The author reviewed all the given answers to Question (b) and 

identified answers that occurred frequently in the data. Such answers appearing to contain 

similar content were initially given the same code by the researcher, and each code was 

further analyzed to find true meanings within their text. A process of reduction and 

clustering of categories, which were refitted and refined, followed (Heath & Cowey, 2004). 

Summary groupings (or 'clusters') of themes that share common meaning emerged from 

this process were finally condensed into twelve theme clusters. A full description of the 

clusters that were identified from the collected data follows: 

 

B1 – Answers mentioning ideas for the construction of frequency distribution tables: this 

cluster includes all the answers in which appeared key terms such as “frequency 

distribution table”, “frequency”, “frequency distribution”, “absolute frequency”, “relative 

frequency”, “cumulative frequency”, “data values”, “class marks”, “class intervals”, and 

“class size”. 

 

B2 – Answers mentioning measures of central tendency: this cluster includes all the 

answers referring explicitly to either “measures of central tendency” or key terms such as 



125 
 

“mean”, “median”, “mode”, “mathematical expectation” and “expected value”. 

 

B3 – Answers mentioning measures of variation: this cluster includes all the answers 

referring explicitly to either “measures of variations” or key terms such as “variance”, 

“standard deviation”, “residuals”, “interquartile range”, “semi-quartile range”, “quartiles”, 

“percentiles”, “relative dispersion”, “coefficient of variation”, “mean deviation” and 

“kurtosis”. 

 

B4 – Answers mentioning specific mathematical operations: this clusters groups those 

answers referring to key terms such as “summation”, “addition”, “subtraction”, “division” 

and “numerical value”. 

 

B5 – Answers mentioning “distribution”: this cluster includes the answers referring to key 

terms such as “distribution” and “normal distribution”. 

 

B6 – Answers mentioning “range” or “mid-range”: this cluster includes the answers in 

which the key terms “range” and “mid-range” appear. 

 

B7 – Answers mentioning “spread” or “variability”: this cluster includes the answers 

referring to key terms “spread” and “variability”. 

 

B8 – Answers mentioning “population” or “sample”: this cluster includes the answers in 
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which the key terms “population”, “sample” and “sample size” appear. 

 

B9 – Answers mentioning “symmetry”: this cluster includes the answers in which the key 

terms “symmetry” and “asymmetry” appear. 

 

B10 – Answers mentioning “variable”: this cluster includes the answers in which key 

terms such as “variable”, “continuous variable”, “discrete variable”, “continuity” and 

“discontinuity” appear. 

 

B11 – Answers mentioning statistical graphs: this cluster groups the answers referring to 

key terms such as “graphs”, “histogram” and “bar graphs”. 

 

B12 – Answers mentioning data handling methods: this cluster groups the answers 

referring to key terms like “data collection”, “data grouping”, “data analysis” and “data 

inference”. 

 

After building up the aforementioned clusters, the information gathered from 

teachers’ answers can be summarized as follows: 
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Table 12: Results obtained from participants’ answers to Question (b) – Frequency and 

percentage 

  Category 

Frequency (%) 

Lower High School

(19 teachers) 

Upper High School 

(15 teachers) 

Both Levels 

(19 teachers) 

Total 

(53 teachers)

C
at

eg
or

y 

B0: No response. 
1 

(5.3) 

1 

(6.7) 

2 

(10.5) 

4 

(7.5) 

B1: Answers mentioning ideas for the construction of 

frequency distribution tables. 

11 

(57.9) 

8 

(53.3) 

7 

(36.8) 

26 

(49.1) 

B2: Answers mentioning measures of central tendency. 
9 

(47.4) 

13 

(86.7) 

14 

(73.7) 

36 

(67.9) 

B3: Answers mentioning measures of variation. 
6 

(31.5) 

11 

(73.3) 

7 

(36.8) 

24 

(45.3) 

B4: Answers mentioning specific mathematical operations.
0 

(0.0) 

2 

(13.2) 

0 

(0.0) 

2 

(3.8) 

B5: Answers mentioning “distribution”. 
4 

(21.0) 

1 

(6.7) 

2 

(10.5) 

7 

(13.2) 

B6: Answers mentioning “range” or “mid-range”. 
2 

(10.5) 

2 

(13.2) 

4 

(21.0) 

8 

(15.1) 

B7: Answers mentioning “spread” or “variability”. 
5 

(26.3) 

4 

(26.7) 

6 

(31.5) 

15 

(28.3) 

B8: Answers mentioning “population” or “sample”. 
0 

(0.0) 

0 

(0.0) 

4 

(21.0) 

4 

(7.5) 

B9: Answers mentioning “symmetry”. 
1 

(5.3) 

0 

(0.0) 

2 

(10.5) 

3 

(5.7) 

B10:Answers mentioning “variable”. 
1 

(5.3) 

1 

(6.7) 

2 

(10.5) 

4 

(7.5) 

B11:Answers mentioning statistical graphs. 
3 

(15.8) 

2 

(13.2) 

3 

(15.8) 

8 

(15.1) 

B12:Answers mentioning data handling methods. 
3 

(15.8) 

2 

(13.2) 

1 

(5.3) 

6 

(11.3) 

 

Participants were allowed to write down as many statistical ideas as they could 

identify to be associated with answering the posed task. Thus, a single response to 

Question (b) could be coded into one or more categories, and hence the percentages within 

each group of teachers sum to more than 100%. 
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5.4  Results and findings regarding Question (c) 

ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(c) Suppose that, after posing this task to your students, three of them come up with the following 

answers: 

STUDENT 1: “Distribution A has more variability because it’s not symmetrical.” 

STUDENT 2: “Distribution A ranges from 3 to 14, while Distribution B ranges from 1 to 14. Then, 

Distribution B has more variability.” 

STUDENT 3: “The bars in Distribution A are clumped closer to the central bar than they are in 

Distribution B. Then, Distribution B has more variability.” 

Dealing with each student separately, please comment briefly on each of these answers, focusing on 

whether the answer is correct or not, why you think so, and what reasoning might have led students 

to produce each answer. 

Figure 19: Question (c) used in the present study 

 

When teachers are examining the work done by students in their absence—e.g., 

when marking homework papers—, they are required to have some purely mathematical 

way of determining the accuracy or inaccuracy of students’ answers and judgments, based 

just on the provided numerical data or written explanations, as well as to be able to explain 

how the students arrived at their solutions, by providing the likely reasoning that led them 

to their answers. These abilities exemplify a pair of important aspects of the cognitive 

construct known as specialized content knowledge (SCK) (Ball et al., 2008; Ball & Bass, 
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2009), a kind of mathematical knowledge specific to the work of teaching, difficult to be 

articulated by other mathematically trained professionals who do not teach children. 

Therefore, by answering Question (c)—see Figure 19—, it is anticipated that teachers will 

provide evidence of their ability to determine the accuracy of common and non-standard 

arguments given by students—skill that is accounted for by Indicator B-1—, as well as of 

their ability to analyze right and wrong solutions given by students by means of providing 

appropriate explanations about what reasoning is likely behind such solutions, and 

why—skill that is accounted for by Indicator B-2. 

 

Question (c) was, then, posed in order to elicit respondents’ SCK in relation to the 

given task, by dealing with the answers to such task provided by three fictitious students. 

The answers given by Student 1 and 2 are examples of common misconceptions related to 

the estimation of variability that students frequently exhibit when comparing histograms. 

In the case of the answer given by Student 1, it reflects a misconception about the relation 

of variability and symmetry, in which histograms with bars distributed in a symmetrical 

pattern have a greater variability than those that do not. In the case of the answer provided 

by Student 2, it reflects a misconception in which variability is measured in terms of the 

largest span in the vertical axis—i.e., judging the variability of the data displayed in a 

histogram by the largest difference in height of its bars—, instead of considering spreads 

of data values or measures of distance or difference from a center. In contrast to these 

answers, the one given by Student 3 exemplifies an appropriate visual estimation and 
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interpretation of the variability in the given histograms, a right approach to estimate 

variability without making calculations or engaging in the process of transnumeration by 

assessing the degree of data clustering around the modal class. 

 

Twenty-eight teachers—52.8% overall; 13 working at lower high school, 7 at 

upper high school, an 9 at both levels—completely answered to this question; that is, 28 

teachers provided responses indicating whether the answers given by the three students 

were correct or not and why, as well as comments about the most likely reasoning behind 

such students’ answers (see Table 13). From the remaining 25 participants, eight did not 

answer this question, while seventeen teachers—32.1% overall; 5 working at lower high 

school, 6 at upper high school, an 6 at both levels—partially answered to this question; that 

is, 17 teachers failed to provide assessment on the correctness or incorrectness of all three 

students’ responses, or comment about the most likely reasoning behind such students’ 

answers (see Table 14). 

 

Table 13: Results obtained from participants who fully answered Question (c) – Frequency 

and percentage 

  Frequency (%) 

  Student 1 Student 2 Student 3 

  L.H. School 

(19 teachers) 

U.H. School 

(15 teachers) 

Both Levels 

(19 teachers) 

L.H. School 

(19 teachers)

U.H. School 

(15 teachers)

Both Levels 

(19 teachers)

L.H. School 

(19 teachers)

U.H. School 

(15 teachers) 
Both Levels 

(19 teachers) 

T
ea

ch
er

s’
 A

ss
es

sm
en

t 

C
or

re
ct

 

2 1 3 5 3 4 6 5 6 

In
co

rr
ec

t 

11 5 6 8 3 5 7 1 3 

 Total 28 (52.8%) 28 (52.8%) 28 (52.8%) 
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Table 14: Results obtained from participants who partially answered Question (c) – 

Frequency and percentage 

  Frequency (%) 

  Student 1 Student 2 Student 3 

  L.H. School 

(19 teachers) 

U.H. School 

(15 teachers) 

Both Levels 

(19 teachers) 

L.H. School 

(19 teachers)

U.H. School 

(15 teachers)

Both Levels 

(19 teachers)

L.H. School 

(19 teachers) 
U.H. School 

(15 teachers) 
Both Levels 

(19 teachers)

T
ea

ch
er

s’
 A

ss
es

sm
en

t 

C
or

re
ct

 

1 1 3 1 2 3 2 4 2 

In
co

rr
ec

t 

4 5 3 3 4 3 2 2 3 

 Total 17 (32.1%) 16 (30.2%) 15 (28.3%) 

 

5.5  Results and findings regarding Question (d) 

 

This question—see Figure 20—was posed with the purpose of finding out 

whether teachers know about students’ likely responses—both correct and incorrect 

ones—and potential difficulties when solving the given task, as well as the reasons behind 

such responses and difficulties. By focusing on these aspects, this question intends to gain 

insight into teachers’ knowledge of content and students, since the ability to anticipate 

students’ common responses and difficulties on a particular task is accounted for by 

Indicator D-1, and the ability to provide the most likely reasons for such students’ common 

responses and difficulties is accounted for by Indicator D-2. 
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ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(d) Suppose you pose this task to your students. What are the most likely responses (correct and 

incorrect), and difficulties you would expect from them? Briefly explain why you think so. 

(Regarding to the most likely answers that you might get from the students, please do not include 

those mentioned in part (c).) 

Figure 20: Question (d) used in the present study 

 

Question (d) was fully answered by 24 teachers—45.3% overall; 8 working at 

lower high school, 7 at upper high school, an 9 at both levels—; that is, 24 teachers 

provided responses indicating both students’ likely common answers—as well as the 

accuracy or inaccuracy of such responses—and potential difficulties on the given task. 

Moreover, 19 teachers—35.8% overall; 7 working at lower high school, 6 at upper high 

school, an 6 at both levels—partially answered to this question; that is, 19 teachers failed 

to provide students’ likely common answers to the given task, assessment on the 

correctness or incorrectness of such answers, or students’ potential difficulties on the given 

task. 

 

Participants were allowed to write down as many students’ likely answers and 

potential difficulties to the posed task as they could. Thus, a single response to Question 
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(d) could provide different kind of possible students’ answers to the posed task, which 

must be coded into categories, in order to make them more manageable for analysis and 

discussion. Therefore, a “bottom up” approach to coding (Coffey & Atkinson, 1996), 

followed by a process of reduction and clustering of the identified categories, which were 

refitted and refined (Heath & Cowey, 2004). A full description of the clusters of answers 

that were identified from the collected data follows: 

 

Table 15: Clusters of answers obtained from participants who provided most likely 

responses from students to the given task  

Most likely responses from students identified by teachers 
Choosing Distribution A as the one with more variability Choosing Distribution B as the one with more variability

 Distribution A because is more clustered. 

 Distribution A because has less data 

values/graphical content. 

 Distribution A because is more 

bumpy/asymmetric. 

 Distribution A because has heavier tails. 

 Distribution A because of miscalculation. 

 Distribution B because is more spread 

out/has a larger range. 

 Distribution B because has more 

bumps/different bar heights. 

 Distribution B because of measures of 

variation/being more clustered around a 

middle. 

 Distribution B because is 

symmetric/normal-like. 

 Distribution B because has more data 

values/bars. 

 Distribution B because has a larger span in 

frequency. 

 Distribution B because has a larger area. 

 

In addition to the answers identified above, some teachers thought of “Neither of 

them”—3 teachers—as well as “I don’t know”—2 teachers—as most likely answers from 

the students, which were considered as appropriate answers by the researcher. The most 

likely responses from students more frequently identified by teachers who fully answered 

Question (d) were “Distribution A because is more bumpy/asymmetric”—by 12 teachers 
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(22.6% overall)—; “Distribution B because has more data values/bars”—by  4 teachers 

(7.5% overall)—; “Distribution B because of measures of variation/being more clustered 

around a middle”—by  4 teachers (7.5% overall)—; and “Distribution B because is more 

spread out/has a larger range”—by 4 teachers (7.5% overall). Besides these likely 

responses from students identified by the respondents, neither of the remaining ones has a 

frequency of occurrence of more than 3 times.  

 

Among these 19 teachers who partially answered Question (d), 15 (28.3% overall) 

provided responses indicating students’ likely common answers to the posed task. The 

most likely responses from students more frequently identified by teachers who partially 

answered Question (d) were “Distribution A because is more bumpy/asymmetric”—by 9 

teachers (17.0% overall)—; and “I don’t know”—by 2 teachers (3.8% overall). Besides 

these likely responses from students identified by the respondents, neither of the remaining 

ones has a frequency of occurrence of more than 1 time.  

 

A similar process to the one carried out with the most likely responses from 

students identified by teachers was carried out to sort out the most likely difficulties for 

students pointed out by the participants. The result is shown in Table 16. 
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Table 16: Clusters of answers identified from participants who provided most likely 

difficulties for students in the given task 

Most likely difficulties for students identified by teachers 
 Lack of knowledge/understanding about the concepts/data handling/application. 

 Limited handling/lack of knowledge of basic calculations and formulas. 

 Low level/lack of reasoning/analysis skills. 

 Lack of familiarity with this kind of tasks. 

 Interpretation of data and graphs. 

 Construction of frequency distribution tables. 

 Confusing “variability” with “symmetry”. 

 Confusing “variability” with “clustering”. 

 Lack of interest. 

 Construction of graphs and histograms. 

 Translation of graphs into frequency distribution tables. 

 

The most likely difficulties from students more frequently identified by teachers 

who fully answered Question (d) were “Lack of knowledge/understanding about the 

concepts/data handling/application”—by 10 teachers (18.9% overall)—; and “Limited 

handling/lack of knowledge of basic calculations and formulas”—by 9 teachers (17.0% 

overall). Besides these likely difficulties that students might face identified by the 

respondents, neither of the remaining ones has a frequency of occurrence of more than 3 

times.  

 

Among these 19 teachers who partially answered Question (d), 14 (26.4% overall) 

provided responses indicating the most likely difficulties that students could experience 

when trying to solve the posed task. The most likely difficulties from students more 

frequently identified by teachers who partially answered Question (d) were “Interpretation 

of data and graphs”—by 5 teachers (9.4% overall)—; and “Limited handling/lack of 

knowledge of basic calculations and formulas”—by 5 teachers (9.4% overall). Besides 
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these likely difficulties students may encounter identified by the respondents, neither of the 

remaining ones has a frequency of occurrence of more than 2 times.  

 

5.6  Results and findings regarding Question (e) 

ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(e) Mathematically/statistically speaking, is any of the answers given by the students interesting or 

significant? If yes, briefly explain why and on what aspects. (Please, focus your response on 

whether there is a significant mathematical/statistical insight in the student’s answer, and whether 

there are forthcoming contents in future classroom subjects connected to the notions being said or 

implied in such answer.) 

Figure 21: Question (e) used in the present study 

 

According to Ball and Bass (2009), horizon content knowledge might guide 

teaching responsibilities and acts such as making judgments about mathematical 

importance, hearing mathematical significance in what students say, and catching 

mathematical distortions or possible precursors to future mathematical confusions or 

misrepresentations. The intention of Question (e)—see Figure 21—is to examine this 

aspect of teachers’ professional knowledge, since teachers’ answers are anticipated to 

provide information about their ability to identify whether a student response is interesting 
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or significant, mathematically or statistically speaking—skill that is accounted for by 

Indicator C-1. 

 

Forty-four teachers—83.0% overall, 17 working at lower high school, 13 at upper 

high school, and 14 at both levels—answered to this question. These teachers provided a 

series of answers regarding whether any of the answers given by the fictitious students 

were mathematically/statistically interesting or significant, ranging from “Neither of the 

answers were interesting or significant” to “All three answers were interesting or 

significant”. The following table shows the combination of answers given by the 

respondents to Question (e) about whether the responses given by the fictitious students in 

Question (c) were significant or not: 

 

Table 17: Results obtained from participants’ answers to Question (e) – Frequency and 

percentage 

 Category 

Frequency (%) 

Lower High School

(19 teachers) 

Upper High School

(15 teachers) 

Both Levels 

(19 teachers) 

Total 

(53 teachers)

S
tu

d
en

t A
n

sw
er

(s
) 

fo
u

n
d

  

S
ig

n
if

ic
an

t/
In

te
re

st
in

g 

Neither of the students’ responses. 
2 

(10.5) 

3 

(20.0) 

4 

(21.1) 

9 

(17.0) 

Only Student 1’s response. 
3 

(15.8) 

0 

(0.0) 

3 

(15.8) 

6 

(11.3) 

Only Student 2’s response. 
0 

(0.0) 

2 

(13.2) 

2 

(10.5) 

4 

(7.5) 

Only Student 3’s response. 
5 

(26.3) 

3 

(20.0) 

0 

(0.0) 

8 

(15.1) 

Student 1’s and Student 2’s responses. 
0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

Student 1’s and Student 3’s responses. 
0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

Student 2’s and Student 3’s responses. 
1 

(5.3) 

1 

(6.7) 

0 

(0.0) 

2 

(3.7) 

All the three students’ responses. 
6 

(31.6) 

4 

(26.7) 

5 

(26.3) 

15 

(28.3) 
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5.7  Results and findings regarding Question (f) 

 

Teachers must know at which grade levels and/or content areas particular topics in 

their field of expertise are typically taught. This is one characteristic of the so-called 

knowledge of content and curriculum, being one of its aspects knowledge about “topics 

and issues that have been and will be taught in the same subject area in the preceding and 

later years” (Ball et al., 2008, p. 391). Question (f)—see Figure 22—seeks to elicit 

evidence of the KCC held by the surveyed teachers, in relation to the statistical ideas 

present in the task posed in Item 1, since teachers’ answers are anticipated to provide 

information about their knowledge about how the statistical ideas included in the 

Venezuelan secondary school mathematics curriculum are developed throughout the 

compulsory education—knowledge that is accounted for by Indicator F-1. 

 

ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(f) Briefly describe how the important ideas involved in the solving process of the given task are 

addressed in official curriculum documents across the different grade levels of schooling. 

Figure 22: Question (f) used in the present study 
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Forty-five teachers—84.9% overall, 17 working at lower high school, 13 at upper 

high school, and 15 at both levels—answered to this question. The answers provided by 

these teachers were analyzed using a “bottom up” approach to coding (Coffey & Atkinson, 

1996), in order to ensure that the themes or categories extracted were, in fact, grounded in 

the data and hence reflected the participants’ own knowledge base of KCC. All the given 

answers to Question (f) were reviewed, and answers that occurred frequently in the data 

were identified. Such answers appearing to contain similar content were initially given the 

same code by the researcher, and each code was further analyzed to find true meanings 

within their text. A process of reduction and clustering of categories, which were refitted and 

refined, followed (Heath & Cowey, 2004). Summary groupings (or 'clusters') of themes that 

share common meaning emerged from this process were finally condensed into five theme 

clusters. A full description of the clusters that were identified during the coding process, as 

well as the breakdown of the collected data, is presented in the following table: 

 

Table 18: Results obtained from participants’ answers to Question (f) – Frequency and percentage 
 

 Category 

Frequency (%) 

Lower High School

(19 teachers) 

Upper High School

(15 teachers) 

Both Levels 

(19 teachers) 

Total 

(53 teachers)

C
at

eg
or

y 

F0: No response. 
2 

(10.5) 

2 

( 313.


) 

4 

(21.0) 

8 

(15.1) 

F1: I don’t know / I’m not familiar with the content/ I 

don’t teach statistics. 

8 

(42.1) 

6 

(40.0) 

6 

(31.6) 

20 

(37.7) 

F2: General answer, without specification of grade 

or grade level. 

4 

(21.0) 

0 

(0.0) 

3 

(15.8) 

7 

(13.2) 

F3: General answer, with specification of grade or 

grade level. 

1 

(5.3) 

2 

( 313.


) 

5 

(26.3) 

8 

(15.1) 

F4: Mention of specific topics, without specifying the 

grade or grade level. 

1 

(5.3) 

2 

( 313.


) 

1 

(5.3) 

4 

(7.6) 

F5: Mention of specific topics, specifying the grade 

or grade level. 

3 

(15.8) 

3 

(20.0) 

0 

(0.0) 

6 

(11.3) 
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5.8  Results and findings regarding Question (g) 

ITEM 1 

Please, read carefully the following task and answer the questions below: 

Choosing the distribution with more variability. Look at the histograms of the following two distributions: 

 

Which distribution (A or B) do you think has more variability? Briefly describe why you think this. 

(g) Suppose you want to plan a lesson (or a series of lessons) to introduce the meaning of variability in 

the setting of the given problem to your students. Briefly describe as many instructional strategies, 

activities and/or tasks as you can think of that would be appropriate to use for this purpose, and 

sequence them accordingly, explaining why you chose to put them in such a particular order. 

Figure 23: Question (g) used in the present study 

 

All the collected answers to Question (g)—see Figure 23—were examined for 

evidences in three specific dimensions. The first dimension was curricular features of the 

planned lessons. Planned lessons were specifically examined for evidence of knowledge, 

understanding and support of the objectives and methodological guidelines provided by 

official curriculum documents in Venezuela in relation to the teaching of statistics at 

secondary level. These knowledge and skills are features of the cognitive domain 

knowledge of content and curriculum (KCC).  

 

The second dimension was knowledge about different instructionally viable 

approaches for teaching statistical ideas from the viewpoint of variability, as well as 
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knowledge on how to deploy them effectively in the classroom. These knowledge and 

skills are features of the cognitive domain knowledge of content and teaching (KCT).  

 

The third dimension was beliefs about the nature of statistics and about teaching 

and learning statistics hold by the surveyed teachers. Beliefs are identified by Gal (2004) 

as one of the dispositional elements of statistical literacy, and comprise the 

affective-motivational facet of the framework for SKT proposed in the present study. 

 

Forty-four teachers—83.0% overall, 17 working at lower high school, 13 at upper 

high school, and 14 at both levels—answered to Question (g). However, due to the 

multidimensional and complex assessment that should be performed to analyze the 

collected data from Question (g), results and findings together will be presented and 

discussed in detail at the section “Discussion of results”. 

 

5.9  Discussion of results 

5.9.1  Discussion of results regarding Question (a) 

 

Even though all the numerical evidence that can be deduced from the given 

histograms (see Table 19), only 41.5% of the surveyed teachers (22/53) gave a correct 

response to the posed task; that is, only 41.5% of the surveyed teachers chose Distribution 

B as the one with more variability, and supported their selection on arguments based on 
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simple or sophisticated recognition of variability—i.e., teachers’ answers falling into 

categories A5 and A6, which represent those who chose Distribution B based on arguments 

related to simple or sophisticated recognition of variability, respectively. Among these 22 

teachers, 5 of them (9.4% overall) supported their answer with only the calculation and/or 

interpretation of the range—i.e., teachers’ answers falling into category A5. Those teachers 

whose answers were exclusively based on the range are the ones who do not exhibit an 

aggregate view of data and distribution, since they are rather concerned with the variability 

of just the endpoints of the data set without considering a measure of central tendency, 

which could be interpreted as a very simple acknowledgment of variability. The remaining 

17 teachers in this group—i.e., the ones falling into category A6—were those whose 

answers mention both middles and extremes in data, discuss the connections between 

middles in data and the variability of data dispersed around a measure of central tendency, 

or even point out deviations of data from some fixed value, such as the mean or median, 

could be placed at an even higher level, since they provide evidence of holding an 

aggregate view of data and distribution and evidenced a sophisticated recognition of 

variability. 

 

Table 19: Comparison of some measures of variation related to Distributions A and B 

Measure of Variation Distribution A Distribution B Variability 

Range 
6 (discrete) 

7 (continuous)

10 (discrete) 

11 (continuous)
A < B 

Variance 3.2 4.5 A < B 

Standard deviation 1.8 2.1 A < B 

Interquartile range 2.7 3 A < B 

Mean deviation 1.4 1.7 A < B 
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Within the group of teachers falling into category A6—i.e., teachers’ who chose 

Distribution B based on arguments related to sophisticated recognition of variability—, 11 

out of 17 (20.8% overall) provided more than one answering approach to the given task. 

Moreover, among the 17 teachers falling into category A6, 9 of them (17.0% overall) 

created frequency distribution tables in order to calculate measures of variation; 9 teachers 

(17.0% overall) supported their answer with a naked eye description, comparison and 

interpretation of the data clustering around the mean; 7 of them (13.2% overall) calculated 

and compared ranges as well as at least one measure of variation; 5 teachers (9.4% overall) 

calculated and compared the mean absolute deviations; 5 teachers (9.4% overall) 

calculated and compared the standard deviations; 3 teachers (5.7% overall) calculated and 

compared the variances; and 1 teacher (1.9% overall) calculated and compared the 

residuals from the mean . 

 

It is also noticeable that the group of teachers working only at upper high school 

level was the one with the highest proportion of correct answers in Question (a), with a 

60.0% (9/15) of responders within that group doing so, being the teachers working at both 

levels the group with the lowest proportion of correct answers in Question (a), with a 

26.3% (5/19) of responders within that group doing so. 

 

Within the teachers in category A6, there were 4 of them (7.5% overall) whom 

provided both correct and incorrect answering approaches to the given task. From those 

teachers, 3 (5.7% overall) made a comparison of measures of central tendency, whereas 1 
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teacher (1.9% overall) calculated and compared the maximum spans in frequency in both 

histograms, being neither of both methods a proper way to determine which distribution 

has more variability. Among those teachers, 2 of them calculated the median in an 

improper way, since in the case of grouped data there is a special formula to calculate such 

statistics, which these teachers did not use. 

 

It is worthwhile to highlight that 7 teachers (13.2% overall) whose answers fell 

into category A6 committed errors in the calculations of measures of variation made to 

support their answers. Three of these teachers (5.7% overall) made mistakes in the 

calculation of the ranges; 3 (5.7% overall) made mistakes in the calculation of the standard 

deviations; 2 (3.8% overall) made mistakes in the calculation of the variances; 1 (1.9% 

overall) made mistake in the calculation of the residuals from the mean; and 1 (1.9% 

overall) made mistake in the calculation of the mean absolute deviations. Nevertheless, 

despite all these errors, the arguments and interpretations made by these teachers were 

consistent with the numerical results obtained by them. A similar phenomenon was 

appreciated in a similar research carried out with Japanese secondary school mathematics 

teachers (cf. González, 2012, 2013a, 2013b).  

 

Under a third of the surveyed teachers (17/53) argued incorrectly that Distribution 

A is the one with more variability. These teachers are those whose answers fell into 

categories A1—respondents basing their choice on a mistaken calculation or without 

reason—, A2—respondents basing their choice on a misinterpretation related to symmetry 
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and/or a poor fit to a normal distribution—, and A3—respondents basing their choice on 

arguments related to differences in the heights of the bars. Among these teachers, 9 of 

them—7.0% overall, those teachers falling into category A3—supported their answer by 

giving arguments on differences in the heights of the bars, and by interpreting histograms 

by looking at the vertical axes when comparing the variability of the given histograms (e.g., 

providing answers like “Distribution A has more variability because it’s bumpier”; 

“Distribution A has more variability because it has more different heights than Distribution 

B”; “Distribution A has more variability because the heights of its bars fluctuate a lot”). It 

is noticeable that the group of teachers working at both lower and upper high school levels 

was the one with the highest proportion of answers in this category, with a 26.3% (5/19) of 

responders within that group doing so. 

 

There were 5 teachers (9.4% overall) falling into category A2, which accounts for 

those people who show evidence of thinking of variability in terms of symmetry or degree 

of fit to a normal distribution, a common misconception normally exhibited by students in 

this type of tasks. Again, the group of teachers working at both lower and upper high 

school levels was the one with the highest proportion of answers in this category, with a 

15.8% (3/19) of responders within that group doing so. 

 

It is worthwhile to highlight that, even among those teachers who correctly chose 

Distribution B, some argued a wrong justification—i.e., answers falling into category A4. 

So, we can see from the results in Table 11 that 17.0% (9/53) of the surveyed teachers 
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argued that Distribution B has more variability because “it’s close to a normal distribution, 

while Distribution A is like a truncated normal distribution, for that reason variability of 

Distribution A is smaller”, or “the difference in frequency between the highest bar and 

lowest bar of the histogram in Distribution B is bigger than in Distribution A”. Teachers 

who gave a response like the latter seem to judge the variability of the data displayed in a 

histogram by the fluctuation of the heights of its bars, in a similar way that people who 

chose Distribution A because “it’s bumpier” or “it’s shaky”—i.e., similarly to teachers 

falling into category A3. In that sense, teachers whose answers fell into category A4 may 

tend to incorrectly think that a histogram with narrow tails and a high peak has greater 

variability than a histogram with bars of more similar heights. These findings are similar to 

those reported in the statistics education literature, which point out that both students and 

mathematics teachers—the latter in a lesser degree—tend to compare values on the vertical 

axis, and to conclude that the variable which has “more varied values on Y”, “less pattern 

on Y” or “is more random on Y” has a larger variability, a common misconception in this 

kind of problems (Garfield et al., 1999; Meletiou, 2000; Meletiou & Lee, 2002, 2003, 

2005; Cooper & Shore, 2007; González, 2011; González & Isoda, 2011; Isoda & González, 

2012). 

 

Finally, it is noticeable that none of the surveyed teachers used a graphical 

approach—such as a cumulative frequency polygon—or the interquartile range to answer 

Question (a), even though these topics must be covered in the mathematics curriculum at 

Grade 9 and 11, respectively. 
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5.9.1.1  Regarding the fulfillment of Indicator A-1 

 

In order to fully meet this indicator, teachers must show evidence of being able to 

give an appropriate and correct answer to the given task. Therefore, let us examine the 

answers of the 22 surveyed teachers chose Distribution B as the one with more variability, 

and supported their selection on arguments based on simple or sophisticated recognition of 

variability—i.e., teachers’ answers falling into categories A5 and A6. In the group of 

teachers whose answers fell within the category A6, there were 4 of them (7.5% overall) 

who provided both correct and incorrect answering approaches to the given task. Moreover, 

7 teachers within category A6—13.2% overall, with two of them in the group of teachers 

who mixed correct and incorrect answering approaches—committed errors in the 

calculations of measures of variation made to support their answers. These teachers cannot 

be considered as satisfactorily meeting Indicator A-1. Therefore, taking away these 9 

teachers from the collective who provided a correct answer while supporting it on 

arguments based on simple or sophisticated recognition of variability, we have that just 22 

– 9 = 13 teachers—24.5% overall%, 4 working at lower high school, 6 at upper high 

school, an 3 at both levels—appear to have fully met the assessment criteria of Indicator 

A-1. 

 

5.9.1.2  Regarding the fulfillment of Indicator A-2 

 

In order to fully meet this indicator, teachers must show evidence of being able to 
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consistently identify and acknowledge variability and correctly interpret its meaning in the 

setting of the given task. Since appropriate acknowledgement of variability is required to 

satisfy the assessment criteria of this indicator, we need to analyze the answers given by all 

the teachers whose answers fell into categories A5 and A6—i.e., the answers given by 

those respondents who chose Distribution B as the one with more variability, and 

supported their selection on arguments based on simple or sophisticated recognition of 

variability. It is worthy to bring back to mind the fact that, despite 7 teachers (13.2% 

overall) whose answers fell into category A6 committing errors in the calculations of 

measures of variation made to support their answers, the arguments and interpretations 

made by them were consistent with the numerical results obtained by them. So, they 

demonstrated a sophisticated recognition of variability and correctly interpret its meaning, 

despite the computation errors in which they incurred. On the contrary, the 4 teachers 

(7.5% overall) belonging to category A6 who provided both correct and incorrect 

answering approaches to the given task were not consistent in the interpretation of the 

meaning of variability in the given task. Thus, 22 – 4 = 18 teachers—34.0% overall, 7 

working at lower high school, 7 at upper high school, an 4 at both levels—appear to have 

fully met the assessment criteria of Indicator A-2. 

 

5.9.1.3  Regarding conceptions of variability held by the surveyed teachers 

 

According to previous researches (González, 2011; González & Isoda, 2011; 
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Isoda & González, 2012), the answers given by the surveyed teachers to the posed task 

will provide evidence of the conceptions of variability held by them. In the case of the task 

selected for this study, four of the conceptions identified by Shaughnessy 

(2007)—"Variability in particular values, including extremes or outliers", "Variability as 

distance or difference from some fixed point", "Variability as the sum of residuals" and 

"Variation as distribution"—, as well as one conception that is unaccounted for by his 

framework—which has been labeled as “Variability as visual cues in the graph” in the 

current study—might be identified from teachers’ answers to Question (a). Each of these 

conceptions is linked to one or more particular category in Table 11. 

 

Teachers whose answers focus on individual data values, such as the extremes of 

the distribution to calculate the range, typify the conception type of Variability in 

particular values. Those who answered Question (a) by only calculating the range of the 

given distributions—i.e., those answers falling into category A5—are a good example of 

teachers holding this conception. Also, teachers who focused on the minimum and 

maximum values in frequency, regarding variability as the largest span in 

frequency—answers that are accounted for into category A4—, held this type of 

conception. In the present study, 5 teachers (9.4% overall) seemed to be harboring the 

conception that only the range accounts for the variability—i.e., those falling into category 

A5—, while 5 out of 9 (9.4% overall) of the teachers falling into category A4 seemed to be 

harboring the conception that variability in a histogram is measured by the largest span in 

frequency. Therefore, 10 teachers (18.8% overall) in the present study seem to hold the 
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conception that Shaughnessy (2007) labeled as Variability in particular values. 

 

Teachers who seem to think of variability as either a visual measurement of the 

distance of each or some elements of a dataset from some measure of center—e.g., those 

who answered that Distribution B has more variability because is the one with the bars 

clumped closer to the mean—, or an actual measurement from the endpoints to some 

measure of center—e.g., those who answered that Distribution B has more variability 

because it deviates ±5 units from the mean, while Distribution A just deviates ±3 units—, 

show evidence of holding the conception known as Variability as distance or difference 

from some fixed point. In the present study, answers evidencing this conception of 

variability are accounted for into category A6. Thus, the 9 teachers (17.0% overall) who 

chose Distribution B and supported their answer with a naked eye description, comparison 

and interpretation of the data clustering around the mean, seem to be holding this kind of 

conception. 

 

Teachers who provided a measure of the variability of the given distributions 

through what Petrosino, Lehrer and Schauble (2003) called “difference scores” 

(p.155)—i.e., deviation-based metrics such as the mean absolute deviation, sum of 

residuals or averages of the absolute value differences from a measure of center (Petrosino 

et al., 2003; Lehrer & Kim, 2009)—, seem to be thinking of variability as a collective 

amount that a distribution is “off” from some measure of central tendency. These 

“difference scores” maintain emphasis on the case-to-aggregate relation, as opposed to 
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other indicators of spread, which tend to obscure this relationship (Petrosino et al., 2003, 

p.155). People with this kind of thinking show evidence of harboring the conception 

labeled by Shaughnessy (2007) as Variability as the sum of residuals. Teachers whose 

answers show evidence of this conception are accounted for into category A6. Then, the 5 

respondents (9.4% overall) who calculated and compared the mean absolute deviations, as 

well as the only teacher (1.9% overall) who calculated and compared the residuals from 

the mean, seem to be harboring this conception of variability. Therefore, 6 teachers (11.3% 

overall) in the present study seem to hold the conception that Shaughnessy (2007) labeled 

as Variability as the sum of residuals. 

 

Teachers whose answers involve transnumeration (i.e., changing representations 

of data to increase understanding and identify different aspects) and use of theoretical 

properties of the histograms to calculate numerically the measures of central tendency and 

variation associated to each distribution in order to make their decision—answers 

accounted for into category A6—, show evidence of holding the conception known as 

Variation as distribution. Then, the teachers who created frequency distribution tables 

from the histograms in order to calculate measures of variation—i.e., those subjects who 

changed from a graphic to tabular representation, in order to then change such tabular 

representation into a computational/algorithmic representation—, as well as those who 

calculated and compared the standard deviations and variances, seem to be holding this 

conception of variability. Therefore, 10 teachers (18.8% overall) in the present study seem 

to hold the conception that Shaughnessy (2007) labeled as Variation as distribution. 
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Teachers whose responses revealed misconceptions such as thinking of variability 

in terms of symmetry or degree of fit—or lack thereof—to a normal distribution—answers 

accounted for into categories A2 and A4—, or thinking of symmetrical or quasi-normal 

distributions as having less—answers accounted for into category A3—or more—answers 

accounted for into category A4—variability than its asymmetrical counterparts, show 

evidence of holding the conception that we will label here as Variability as visual cues in 

the graph. Then, the 5 teachers (9.4% overall) whose answers fell into category A2, the 9 

teachers (17.0% overall) whose answers fell into category A3, as well as the 3 out of 9 of 

the teachers (5.7% overall) whose answers fell into category A4, seem to be holding this 

conception of variability. Therefore, 17 teachers (32.1% overall) in the present study seem 

to hold the so-called conception Variability as visual cues in the graph. 

 

Unlike teachers either giving an idiosyncratic answer or holding the conceptions 

known as Variability in particular values and Variability as visual cues in the graph, the 

rest of the surveyed teachers seem to exhibit an aggregate view of data and distribution, 

since they seem to be predominantly concerned with the variability of an entire data 

distribution from a center while considering several theoretical features of the given data 

(cf. Shaughnessy, 2007, p.985). 

 

5.9.2  Discussion of results regarding Question (b) 

 

Based on an adaptation of Heymann’s (2003) criteria for fundamental ideas in 
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mathematics and Heitele’s (1975) criteria for fundamental ideas in stochastics, Burrill and 

Biehler (2011) suggest that fundamental concepts in statistics should meet the following 

four criteria: (1) share some commonality within the different perceptions or ways of 

thinking about teaching statistics; (2) be able to connect the discipline to other experiences 

in the world and to aspects of culture; (3) illustrate the structure of the discipline perhaps 

clarifying specific characteristics and features important in the discipline, and (4) allow for 

deepened understanding across time as students mature in their knowledge of statistics 

(pp.60-63). Using these four criteria, Burrill and Biehler (2011) identified the following 

seven concepts as fundamental ideas in statistics, critical for teachers to know and convey 

in their instruction (pp.62-63): 

 

1. Data: including types of data, ways of collecting data, measurement, respecting 

that data are numbers with a context. 

 

2. Variation: identifying and measuring variability to predict, explain, or control.  

 

3. Distribution: including notions of tendencies and spread, which are foundational 

for reasoning about statistical variables from empirical distributions, random 

variables from theoretical distributions, and summaries in sampling distributions. 

 

4. Representation: graphical or other representations that reveal stories in the data 

including the notion of transnumeration. 
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5. Association and modelling relations between two variables: nature of the 

relationships among statistical variables for categorical and numerical data, 

including regression for modelling statistical associations. 

 

6. Probability models for data-generating processes: modelling hypothetical 

structural relationships generated from theory, simulations, or large data set 

approximations, quantifying the variability in data including long-term stability. 

 

7. Sampling and inference: the relation between samples and the population and the 

essence of deciding what to believe from how data are collected to drawing 

conclusions with some degree of certainty. 

 

The twelve clusters of themes that emerged from the processes of “bottom up” 

coding (Coffey & Atkinson, 1996) and the subsequent reduction and clustering of 

categories (Heath & Cowey, 2004) used by the researcher to analyze, refit and refine the 

collected data, are going to be allocated within one of the seven fundamental ideas in 

statistics identified by Burrill and Biehler (2011). Those teachers providing in their 

answers ideas that could be paired to any of the statistical ideas identified by Burrill and 

Biehler (2011) are going to be classified under Husserl’s (1962, 1997) notions of inner and 

outer horizons. According to Husserl’s (1962, 1997), when we perceive an object, it is 

possible to have other perceptions of that object according to its type. When we perceive 

something as a house, there is a horizon of perceptions involving other sides of it. The 
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objectual horizon is a correlate of such horizonal acts. Besides the inner horizon of an 

object (the body of contents that specify, more or less determinately, the object’s 

unperceived features, which includes possible further properties of the object, such as the 

size or color of the back side of an object of vision; e.g., he size or color of the other sides 

of the house), there is also an outer horizon of this object, consisting in the body of 

contents which includes possible further relations of the object to other objects, such as the 

relation of an object of vision to objects behind it, say, objects that are not currently visible 

(e.g., relations of this house to the trees and the other houses surrounding it) (Husserl, 

1962; Husserl, 1987; Smith, 2007, p. 434). 

 

The process of pairing of categories from the aforementioned “bottom up” coding 

process with those seven fundamental ideas in statistics identified by Burrill and Biehler 

(2011) produced the results that are summarized in Table 20. 

 

As it can be seen in Table 20, clusters of category B4—i.e., those answers 

mentioning specific mathematical operations—does not have a match to a certain 

fundamental statistical idea, since the ideas in this theme clusters are, in some sense, 

non-statistical responses focused on basic arithmetic operations. Regarding the ideas in 

theme cluster B9—which are focused on visual cues in the graph instead of actual data 

values, spreads of data values, or measures of distance or difference—despite they being 

not useful to deal with or solve the given task, they were paired to the fundamental ideas 

“Distribution” and “Probability models for data-generating processes”, since “symmetry”  
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Table 20: Results obtained from pairing the categories that emerged from the “bottom up” coding process with the seven fundamental ideas in 

statistics identified by Burrill and Biehler (2011) 
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and “asymmetry” are features that should be grasped in order to understand distributions 

like the normal (Batanero et al., 2004; Garfield & Ben-Zvi, 2008, p.149), make sense of 

particular statistics—like relative position of the mean, median and mode—for symmetric 

and asymmetric distributions (Konold & Pollatsek, 2004, p.188; Batanero et al., 2004, 

p.260; Garfield & Ben-Zvi, 2008, p.195), and detect outliers in data distributions (Konold 

& Pollatsek, 2004, p.188). Moreover, probabilistic models—such as uniform and 

normal—are described in terms of symmetry and symmetrical shapes—e.g., bell-shaped or 

rectangular—(Garfield & Ben-Zvi, 2008, p.186). 

 

It is worthwhile to point out that, even among those answers with a match to a 

certain fundamental statistical idea of those identified by Burril and Biehler (2011), there 

are keywords provided by 10 teachers (18.9% overall) that are not useful—from the 

standpoint of the researcher—to deal with or solve the given task; that is, keywords that 

are unproductive in regard to the interpretation of variability. These keywords are “normal 

distribution”—answer provided by 3 teachers whose responses fell into theme cluster 

B5—; “symmetry” and “asymmetry”—answers provided by 3 teachers whose responses 

fell into theme cluster B9—; “bar graph”—answer provided by 2 teachers whose responses 

fell into theme cluster B11—; and “population” and “sample”—answers provided by 3 

teachers whose responses fell into theme cluster B8. From these 10 teachers, only one 

(1.9% overall) just provided an unproductive keyword as answer, while the other nine also 

provided keywords useful to the solving of the posed task. Moreover, those respondents 

who provided the terms “normal distribution” and “bar graph” as answers, as well as all 
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the teachers whose responses fell into theme cluster B9—8 teachers in total (15.1% 

overall)—, might be harboring statistical misconceptions regarding the given task. In the 

case of the 6 teachers (11.3% overall) mentioning the keywords “normal distribution”, 

“symmetry” and “asymmetry”, they seem to be thinking of variability in terms of 

symmetry or degree of fit—or lack thereof—to a normal distribution, misconceptions that 

have been reported in the statistics education literature by several investigators (Garfield et 

al., 1999; Meletiou, 2000; Meletiou & Lee, 2002, 2003, 2005; Cooper & Shore, 2007; 

González, 2011; González & Isoda, 2011; Isoda & González, 2012). People holding these 

misconceptions tend to disregard the connection between measures of central tendency and 

the variability of data dispersed around a center, and focus their attention exclusively on 

visual features of the distributions. Thus, these teachers seem to hold the so-called 

conception Variability as visual cues in the graph. In fact, analyzing the answers provided 

by these teachers in Question (a), 4 out of 6 (7.5% overall) showed evidence of holding the 

conception Variability as visual cues in the graph. 

 

In the case of the 2 teachers (3.8% overall) mentioning the keyword “bar graph”, 

they seem to be confusing bar graphs and histograms, which means that they do not 

appreciate the data reduction involved in the latter, in moving from raw data to frequencies 

of occurrence of different values or groups of values. This confusion might be the reason 

because of which these teachers did not provided any answer to Question (a). Confusing 

bar graphs and histograms is a misinterpretation that has been reported in the literature in 

the case of school students (e.g., Cohen, Smith, Chechile, Burns & Tsai, 1996; Bright & 
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Friel, 1998; Bakker et al., 2002; Bakker et al., 2005; delMas, Garfield & Ooms, 2005; 

Cooper & Shore, 2008), university students (e.g., Meletiou, 2000; Meletiou & Lee, 2002, 

2003; Meletiou & Stylianou, 2003), prospective teachers (Espinel, Bruno & Plasencia, 

2008), in-service school mathematics teachers (Tiefenbruck, 2007; González, 2011; Isoda 

& González, 2012), and even professionals in disciplines outside of education, such as 

archaeologists (Banning, 2000), medical researchers (Kelly, Sloane & Whittaker, 1997), 

and authors in wildlife journals (Tacha, Warde & Burnham, 1982). 

 

Back to Husserl’s interpretation of horizon, an object’s inner horizon is composed 

of specific features of the object itself and includes the attributes of the object that lie in 

the periphery of our focus; that is, the particular features of the object are those that 

encompass its inner horizon (Zazkis & Mamolo, 2011). Therefore, since the focus of the 

posed task is to compare the variability of a pair of histograms in order to determine which 

of them has a larger one, then attributes such as frequency, absolute frequency, class 

intervals, class size—reported in the theme cluster B1—; spread, variability—reported in 

the theme cluster B7—; sample size—reported in the theme cluster B8—; graphs and 

histograms—reported in the theme cluster B11—, become “out of focus” and thus exist as 

aspects of the inner horizon. In contrast, an object’s outer horizon represents the “greater 

world” in which such an object exists. The outer horizon is independent of focus and 

consists of the generalities which are exemplified in the particular object; that is, the 

features that are connected to the object and that embed it in a greater structure are those 

that encompass its outer horizon (Zazkis & Mamolo, 2011). Thus, in the case of our posed 
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task, statistical objects such as frequency distribution tables, measures of central tendency 

and variation, as well as data handling methods, exist as aspects of the outer horizon. 

 

5.9.2.1  Regarding the fulfillment of Indicator C-2 

 

In order to fully meet this indicator, teachers must show evidence of being able to 

build bridges between the cognitive demands of the posed task and fundamental ideas, 

practices, values and sensibilities of the discipline of statistics. These assessment criteria 

represent two of the main characteristics of the so-called horizon content knowledge (cf. 

Ball & Bass, 2009). It is worthy to remember that the ideas included in category B4 do not 

have a match to a certain fundamental statistical idea. Also, there were teachers that, 

despite providing answers which were paired to a certain fundamental statistical idea, 

raised ideas regarded as not useful to deal with or solve the given task, or ideas that could 

be considered as evidence of possible misconceptions held by the respondents. With this in 

mind, teachers whose answers fell into theme clusters B4—which does not have a match to 

a certain fundamental statistical idea—, and B9—which is comprised of statistical ideas 

that are not useful to deal with or solve the given task—, were excluded of consideration of 

meeting the assessment criteria of Indicator C-2. Similarly, those 10 teachers who 

provided as answers keywords considered by the researcher not useful to deal with or 

solve the given task—i.e., those teachers who raised keywords that are unproductive in 

regard to the interpretation of variability—, were also disregarded as to be satisfactorily 

meeting Indicator C-2. Therefore, from the 49 respondents to Question (b)—17 working at 
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lower high school, 14 at upper high school, and 18 at both levels—, the five teachers 

categorized in theme clusters B4 and B9 should be disregarded, as well as all the teachers 

who provided keywords considered not useful to deal with or solve the given task. Since 

some teachers 4 teachers belong to more than one of these clusters, at the end 12 teachers 

must be disregarded from the initial 49 respondents. Therefore, 37 teachers who answered 

Question (b)—69.8% overall, 13 working at lower high school, 12 at upper high school, an 

12 at both levels—appear to have fully met the assessment criteria of Indicator C-2. 

 

5.9.3  Discussion of results regarding Question (c) 

 

Among the 28 teachers who completely answered Question (c), only 8 teachers 

(15.1% overall; 4 working at lower high school, 2 at upper high school, an 2 at both levels) 

consistently exhibited ability to correctly judge the accuracy of the answers given by the 

fictitious Students 1, 2 and 3. All these teachers not only correctly judged the accuracy of 

the answers given by the fictitious students in Question (c), but also made appropriate 

observations for each case about why they thought so, and provided accurate comments 

about the most likely reasoning behind each student’ answer. It is worthy to highlight that, 

from these 8 teachers, just 1 did not provided a response to Question (a) exhibiting simple 

or sophisticated recognition of variability—i.e., only 1 teacher did not provided an answer 

falling into categories A5 and A6. This teacher—who provided an answer falling into 

category A4—was the one who, despite correctly selecting Distribution B as the one with 
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more variability, supported such choice by arguing that “Distribution B has more 

variability because is symmetric”. Thus, this teacher seems to think of variability in terms 

of symmetry: the greater the degree of symmetry of a histogram, the greater is its 

variability, which is contrary to the common understanding that the histogram with lesser 

pattern in the heights of the bars or the more asymmetric one has a greater variability of its 

data set. This way of thinking of variability expresses a misconception that might be found 

commonly in students and—in a lesser extent—teachers, which has been well-reported in 

the literature (Meletiou & Lee, 2003, 2005; Cooper & Shore, 2007; González, 2011; Isoda 

& González, 2012, González, 2013a, 2013b). Among the remaining 7 teachers, 5 provided 

answers falling into category A6, and 2 provided answers falling into category A5. 

 

Among the 17 teachers who partially answered Question (c), all the 17 provided 

assessment on the correctness or incorrectness of Student 1’s response, 12 provided some 

explanation about why that answers was correct or incorrect, and 11 gave a comment about 

the most likely reasoning behind such student’ answer, with 8 of them giving their 

judgment about whether the answer was correct or not, why they think so, and what 

reasoning might have led student to produce the given answer. Regarding Student 2, 16 

teachers provided assessment on the correctness or incorrectness of Student 2’s response, 

11 provided some explanation about why that answers was correct or incorrect, and 7 gave 

a comment about the most likely reasoning behind such student’ answer, with 4 of them 

giving their judgment about whether the answer was correct or not, why they think so, and 

what reasoning might have led student to produce the given answer. Finally, regarding 
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Student 3, 15 teachers provided assessment on the correctness or incorrectness of Student 

1’s response, 12 provided some explanation about why that answers was correct or 

incorrect, and 6 gave a comment about the most likely reasoning behind such student’ 

answer, with just 3 of them giving their judgment about whether the answer was correct or 

not, why they think so, and what reasoning might have led student to produce the given 

answer. Table 21 presents a breakdown of the teachers who partially answered Question 

(c) by school level. 

 

Among the 17 teachers who partially answered Question (c) but provided 

assessment on the correctness or incorrectness of Student 1’s response, 12 (22.6% overall; 

4 working at lower high school, 5 at upper high school, an 3 at both levels) correctly 

judged the accuracy of the answers given by the fictitious Student 1; that is, 12 teachers 

assessed Student 1’s response as incorrect. Among this group of teachers, 7 (13.2% 

overall; 2 working at lower high school, 3 at upper high school, and 2 at both levels) also 

provided an explanation about why they considered such answer as incorrect, with all 

these 7 teachers giving appropriate explanations. Moreover, among these 7 teachers, 6 

gave comments about the most likely reasoning behind Student 1’s answer, with all of 

them providing appropriate explanations. The 5 teachers (9.4% overall; 1 working at lower 

high school, 1 at upper high school, and 3 at both levels) who assessed Student 1’s 

response as correct seem to think of variability in terms of symmetry, regarding the 

histogram with the greater the degree of symmetry as the one with lees variability, which 

is in line with the common understanding that the histogram with lesser pattern in the 
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Table 21: Breakdown of the teachers who partially answered Question (c) by school level 

– Frequency of occurrence 
  Frequency (%) 

  Student 1 Student 2 Student 3 

  L.H. School 

(19 teachers) 

U.H. School 

(15 teachers)

Both Levels 

(19 teachers)

L.H. School 

(19 teachers)

U.H. School 

(15 teachers)

Both Levels 

(19 teachers)

L.H. School 

(19 teachers) 
U.H. School 

(15 teachers) 
Both Levels 

(19 teachers)
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response and an 

explanation 
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the accuracy of 
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explanation 

about why so, as 

well as a 
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reasoning behind 

such response 

2 3 3 0 2 2 0 2 1 
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heights of the bars or the more asymmetric one has a greater variability of its data set, a 

misconception that might be found commonly in students and—in a lesser 

extent—teachers, which has been well-reported in the literature (Meletiou & Lee, 2003, 

2005; Cooper & Shore, 2007; González, 2011; Isoda & González, 2012, González, 2013a, 

2013b). In fact, by cross-referencing the answers given by these 5 teachers regarding 

Student 1 with their answers to Question (a), we can see that 1 teacher did not answer it, 

one gave an answer falling into category A1, one gave an answer falling into category A2, 

and 2 gave answers falling into category A3, which indicates that most of these teachers 

seem to be harboring the conception “Variability as visual cues in the graph”, since they 

disregard the actual data values, their spreads, and the measures of distance or difference, 

and mistakenly acknowledge variability as unevenness in the frequencies of a histogram or 

lack of symmetry. 

 

Among the 16 teachers who partially answered Question (c) but provided 

assessment on the correctness or incorrectness of Student 2’s response, 10 (18.9% overall; 

3 working at lower high school, 4 at upper high school, an 3 at both levels) correctly 

judged the accuracy of the answers given by the fictitious Student 2; that is, 10 teachers 

assessed Student 2’s response as incorrect. Among this group of teachers, 8 (15.1% 

overall; 2 working at lower high school, 3 at upper high school, and 3 at both levels) also 

provided an explanation about why they considered such answer as incorrect, with all 

these 7 teachers giving appropriate explanations. The one who did not provide an 

appropriate explanation—a teacher working at both levels—wrote that “Variability is not 
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so much about the distribution limits, as about the shape how the data are distributed”. 

This explanation is in line with the choices made regarding Student 1, in which the same 

teacher assessed that answer as correct, as well as in Question (a), in which this teacher 

chose Distribution A as the one with more variability, which appears to be evidence of the 

conception “Variability as visual cues in the graph”. 

 

Among these 7 teachers who gave appropriate explanations about the accuracy of 

Student 2’s response, 2 gave comments about the most likely reasoning behind Student 2’s 

answer, with all of them providing appropriate explanations. Moreover, the 6 teachers 

(11.3% overall; 1 working at lower high school, 2 at upper high school, and 3 at both 

levels) who assessed Student 1’s response as correct seem to think of variability in terms 

of the span in the vertical axis—i.e., judging the variability of the data displayed in a 

histogram by the largest difference in height of its bars—, instead of looking at the 

horizontal spread of data around a measure of central tendency. This is a common mistake 

made by many students, and even by some of their teachers, at any school level (Isoda & 

Gonzalez, 2012). In fact, by cross-referencing the answers given by these 6 teachers 

regarding Student 2 with their answers to Question (a), we can see that 3 gave answers 

falling into category A4, 2 gave answers falling into category A6, and 1 gave an answer 

falling into category A2, which indicates that most of these teachers considered 

Distribution B as the one with more variability, but 3 of them evidencing in Question (a) 

misinterpretation of how to appropriately measure variability. 
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Among the 15 teachers who partially answered Question (c) but provided 

assessment on the correctness or incorrectness of Student 3’s response, 8 (15.1% overall; 2 

working at lower high school, 4 at upper high school, an 2 at both levels) correctly judged 

the accuracy of the answers given by the fictitious Student 3; that is, 8 teachers assessed 

Student 3’s response as correct. Among this group of teachers, 5 (9.4% overall; 1 working 

at lower high school, 3 at upper high school, and 1 at both levels) also provided an 

explanation about why they considered such answer as correct, with all of them giving 

appropriate explanations. Among these 5 teachers who gave appropriate explanations 

about the accuracy of Student 3’s response, just 2 gave comments about the most likely 

reasoning behind Student 3’s answer, with all of them providing appropriate explanations. 

 

All the 7 teachers (13.2% overall; 2 working at lower high school, 2 at upper high 

school, and 3 at both levels) who assessed Student 3’s response as incorrect, provided 

explanations about why they thought so. From such explanations, it seems that these 

teachers think of variability in terms of neither the degree of clustering nor dispersion in 

data. In fact, these teachers provided explanations such as “the definition of variability 

doesn’t support this statement”, “this student doesn’t know that symmetry qualifies as 

variability”, “this fact doesn’t constitute sufficient reason to make any conclusion”, and 

“it’s like the same argument given by Student 1”. This lack of understanding was 

evidenced by the teachers’ inability to adequately choose the distribution with more 

variability in Question (a). Indeed, all these 7 teachers were unable to answer correctly 

Question (a): 2 of these teachers gave answers falling into category A4, 2 gave answers 
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falling into category A3, 1 gave an answer falling into category A2, 1 gave an answer 

falling into category A1, and 1 did not answer. This indicates that these 7 teachers have 

problems understanding variability as the degree of clustering or deviation from an 

expected value or a measure of central tendency. 

 

5.9.3.1  Regarding the fulfillment of Indicator B-1 

 

In order to fully meet this indicator, teachers must show evidence of being able to 

examining the work done by three fictitious students in their absence, and correctly 

determine whether their answers to the given task are right or not, based just on the 

provided numerical data and written explanations. Since only 8 teachers (15.1% overall; 4 

working at lower high school, 2 at upper high school, an 2 at both levels) consistently 

exhibited ability to correctly judge the accuracy of the answers given by the fictitious 

Students 1, 2 and 3, as well as made appropriate observations for each case about why they 

thought so, Indicator B-1 seems to be fully satisfied only by these eight teachers. Those 

teachers who mixed correct and incorrect assessments to the answers given by Students 1, 

2 and 3 were not regarded as meeting the assessment criteria of this indicator. 

 

5.9.3.2  Regarding the fulfillment of Indicator B-2 

 

In order to fully meet this indicator, teachers must show evidence of being able to 

explain how students arrived at their solutions by providing the likely reasoning that led 
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them to their answers. This explanation is done in students’ absence, and is based just on 

the provided numerical data and written explanations. All the 8 teachers who fully 

answered Question (c) and appeared to fully satisfy Indicator B-1, also provided 

appropriate comments about the most likely reasoning behind each student’ answer. Thus, 

Indicator B-2 seems to be fully met—again—only by these eigth teachers (15.1% overall; 

4 working at lower high school, 2 at upper high school, an 2 at both levels). 

 

5.9.4  Discussion of results regarding Question (d) 

 

In order to assess teachers’ answers to Question (d), the likely common responses 

suggested by them were examined simultaneously with the accuracy or inaccuracy 

attributed to such responses as well as the reasons pointed out by them. So, in order to 

consider a teacher’s answer as correct, these aspects were examined together for 

consistency. The potential difficulties on the given task suggested by the teachers were 

examined for appropriateness.  

 

Among these 24 teachers who fully answered Question (d), 13—24.5% overall; 4 

working at lower high school, 5 at upper high school, and 4 at both levels—consistently 

provided responses indicating both students’ likely common answers to the given task, 

right assessment of the accuracy or inaccuracy of such answers, and appropriate reasons 

for such assessment. It is worthy to highlight here the fact that, if the likely common 
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responses suggested by the respondents were examined in conjunction with just their 

assessment of accuracy or inaccuracy, from the 24 teachers who fully answered Question 

(d), 17 of them—32.1% overall; 5 working at lower high school, 7 at upper high school, 

and 5 at both levels—would have given appropriate answers to this question. Among the 

15 teachers who partially answered Question (d) and provided responses indicating 

students’ likely common answers to the posed task, 5—9.4% overall; 1 working at lower 

high school, and 4 at upper high school levels—consistently provided responses indicating 

both students’ likely common answers to the given task, right assessment of the accuracy 

or inaccuracy of such answers, and appropriate reasons for such assessment. This fact 

might be interpreted as the surveyed teachers having difficulty in the assessment of the 

accuracy or inaccuracy of the most likely responses from students identified by them. In 

fact, looking at the teachers who did not provide consistent answers regarding the likely 

responses that could be expected from students, all of them assessed their provided 

responses as being correct or incorrect when, in reality, were the opposite. As an example, 

all the teachers indicating that Distribution A was the one with more variability, as well as 

those who chose Distribution B evidencing misconceptions or misinterpretations about 

variability, such as “Distribution B because has more bumps/different bar heights”, 

“Distribution B because is symmetric/normal-like”, “Distribution B because has more data 

values/bars”, “Distribution B because has a larger span in frequency”, or “Distribution B 

because has a larger area”. Moreover, some of these answers reveal conceptions of 

variability that were not shown in Question (a), such as thinking of variability as a sample 

size. 
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By cross-referencing the ill-assessed answers given by these 13 teachers—i.e., by 

the 11 teachers who fully answered Question (d) but did not provided consistent answers, 

as well as 2 of the teachers who partially answered Question (d) but provided a wrong 

assessment about the accuracy of their responses—, with their answers to Question (a), we 

can see that 10 teachers (18.9% overall) gave answers evidencing misconceptions or 

misinterpretation of variability—i.e., 10 teachers gave answers to Question (a) falling into 

categories A2 (3 teachers), A3 (5 teachers), and A4 (2 teachers)—, with 3 teachers 

evidencing simple or sophisticated recognition of variability—2 teachers gave answers to 

Question (a) falling into category A5, and 1 into category A6. 

 

Regarding the possible difficulties which students may face in solving the posed 

task, all those provided by the 24 teachers who fully answered Question (d), as well as by 

the 14 teachers who partially answered Question (d) and provided responses indicating 

students’ likely common answers to the posed task, were assessed as appropriate answers. 

The fact that all the teachers who provided likely difficulties that students may encounter 

while dealing with the posed task were able to do it correctly, it might be interpreted as 

teachers having easier to appropriately identify the difficulties associated to a particular 

problem. 

 

5.9.4.1  Regarding the fulfillment of Indicator D-1 

 

In order to fully meet this indicator, teachers must show evidence of ability to 
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appropriately anticipate students’ common responses and difficulties on the task posed in 

the survey instrument. In the present study, a teacher is going to be regarded as exhibiting 

such ability if he or she (1) provides in his or her responses what could be 

considered—from the standpoint of the researcher—students’ likely common answers and 

potential difficulties in answering the posed task and, at the same time, (2) correctly 

determine the accuracy or inaccuracy of such answers. Therefore, the 17 teachers who 

fully answered Question (d) and provided both likely common responses and potential 

difficulties to the given task, as well as a correct assessment of accuracy or inaccuracy of 

such answers—32.1% overall; 5 working at lower high school, 7 at upper high school, and 

5 at both levels—appear to have fully met Indicator D-1. It is worthy to mention here that 

the ability to provide the most likely reasons for such students’ common responses and 

difficulties is accounted for by Indicator D-2. 

 

Notice the fact that, from the 24 teachers who fully answered Question (d) at the 

beginning, 7—13.2% overall; 3 working at lower high school, and 4 at both levels—failed 

to provide a right assessment of the accuracy or inaccuracy of students’ likely common 

answers to the posed task given by them. This could be an indicator of the difficulty of 

mastering this skill for the surveyed teachers. Also, could be interpreted as a signal that the 

teacher is harboring some statistical misconception, since 6 out of 7 of these teachers gave 

answers to Question (a) evidencing misconceptions or misinterpretation of variability—i.e., 

6 of these teachers gave answers to Question (a) falling into categories A2 (2 teachers) and 

A3 (4 teachers)—, with 1 teacher providing an answer falling into category A6. 
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5.9.4.2  Regarding the fulfillment of Indicator D-2 

 

In order to fully meet this indicator, teachers must show evidence of ability to 

provide the most likely reasons for students’ most likely responses and difficulties on the 

task posed in the survey instrument, a cognitive skill related to the construct knowledge of 

content and students (KCS).  

 

In order to regard a teacher as fully meeting the assessment criteria of this 

indicator, the teacher must have provided (1) appropriate likely common responses and 

difficulties expected from the students, (2) a correct assessment of the accuracy or 

inaccuracy attributed to such responses, and (3) appropriate reasons for such assessment. 

Therefore, in the present study, the 13 teachers who fully answered Question (d) and 

consistently provided responses indicating both students’ likely common answers to the 

given task, right assessment of the accuracy or inaccuracy of such answers, and 

appropriate reasons for such assessment—24.5% overall; 4 working at lower high school, 

5 at upper high school, and 4 at both levels—are those who appear to have fully satisfied 

Indicator D-2. 

 

Again, in a similar fashion that occurred in the case of Indicator D-1, it is 

noticeable the fact that, from the 24 teachers who fully answered Question (d) at the 

beginning, 11—20.8% overall; 4 working at lower high school, 2 working at upper high 

school, and 5 at both levels—failed to provide appropriate reasons for the assessment of 



174 
 

the accuracy or inaccuracy of students’ likely common answers to the posed task given by 

them. This could be an indicator of the difficulty of mastering this skill for the surveyed 

teachers. Also, could be interpreted as a signal that the teacher is harboring some statistical 

misconception, since 8 out of 11 of these teachers gave answers to Question (a) evidencing 

misconceptions or misinterpretation of variability—i.e., 8 of these 11 teachers gave 

answers to Question (a) falling into categories A2 (3 teachers), A3 (4 teachers), and A4 (1 

teacher)—, with 2 teachers giving answers to Question (a) falling into category A5, and 1 

into category A6. 

 

5.9.5  Discussion of results regarding Question (e) 

 

In order to analyze the collected data, a “bottom up” approach to coding (Coffey 

& Atkinson, 1996) was initially used by the researcher. From this analytic approach 

ensures that the themes or categories extracted were, in fact, grounded in the data and 

hence reflected the participants’ own knowledge base of HCK. The author reviewed all the 

given answers to Question (e) and identified answers that occurred frequently in the data. 

Such answers appearing to contain similar content were initially given the same code by 

the researcher, and each code was further analyzed to find true meanings within their text. 

A process of reduction and clustering of categories, which were refitted and refined, 

followed (Heath & Cowey, 2004). Summary groupings (or 'clusters') of themes that share 

common meaning emerged from this process were finally condensed into twelve theme 
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clusters. A full description of the clusters that were identified from the collected data 

follows: 

 

E0: No response. 

 

E1: Responses like “Neither of the students’ answers is important nor significant”. 

 

E2: Answers selecting one or more students, providing a vague or no reason: teachers in 

this cluster only named one or more students, or all of them—e.g., those who gave answers 

like “Any student answer is important”—, but providing no reason, or an extremely vague, 

irrelevant and meaningless one, for backing up such a choice. 

 

E3: Answers reflecting a wrong interpretation or misconception of variability from the 

teacher: teachers in this cluster provided answers validating some of the misconceptions 

showed by Students 1 and 2. 

 

E4: Answers evidencing just the identification of mathematical distortions or possible 

precursors to later mathematical confusion or misrepresentation: According to Ball and 

Bass (2009, p.6), one of the characteristics of HCK is the awareness of seeds of 

misconceptions in students’ comments and responses. Teachers in this cluster, evidencing 

misconceptions themselves, will be considered as having a weak HCK base. 
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E5: Answers evidencing teacher’s recognition and evaluation of mathematical 

opportunities: According to Ball and Bass (2009, p.6), teachers’ ability to afford teaching 

opportunities beyond the problem at hand, in order to develop a foundation for big ideas in 

the discipline, is one of the characteristics of HCK. Therefore, a teacher would need to 

decide whether the implications from a student argument are worth pursuing, in particular 

when the argument used by the student is unrelated to the learning goals of the lesson and 

is outside the mathematics curriculum. Nevertheless, this characteristic is not a must, since 

HCK does not create an imperative to act in any particular mathematical direction (Ball & 

Bass, 2009, p.10). 

 

E6: Answers pervading a sense of the mathematical environment surrounding the current 

“location” in instruction: According to Ball and Bass (2009), one of the constituting 

elements of HCK is teachers’ sense of the mathematical environment surrounding the 

current “location” in instruction (e.g., frequency distribution tables and measures of central 

tendency and variation when teaching histograms). This element of HCK might be 

matched with what Husserl identifies as “inner horizon”, which focuses solely on the 

immediate present, a “horizon” that includes a core of absolute presence as well as the 

just-was and just-coming surrounding the immediate now (Rodemeyer, 2010). 

 

E7: Answers mentioning major disciplinary ideas and structures: Another constituting 

element of HCK is teachers’ understanding of relationships between specific advanced 

mathematics and specific ideas arising in the content being taught and learned in school 
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(Ball & Bass, 2009; Jakobsen et al., 2012). So, teachers in this cluster are those whose 

answers show evidence of seeing connections between students’ arguments and topics that 

arise in later mathematics.  

 

E8: Answers mentioning key mathematical/statistical practices: According to Ball and 

Bass (2009), awareness of key mathematical practices—such as choosing representations, 

questioning, argumentation, using definitions, and proving—is one of the constituting 

elements of HCK. Then, teachers in this cluster are those whose answers show evidence of 

such awareness. 

 

E9: Answers mentioning core mathematical values and sensibilities: According to Ball and 

Bass (2009), awareness of core values and sensibilities in the mathematical field—such as 

precision, care with mathematical language consistency, parsimony, and coherence—is one 

of the constituting elements of HCK. Then, teachers in this cluster are those whose 

answers show evidence of such awareness. 

 

E10: Answers evidencing teacher making connections with other disciplines: According to 

Montes et al. (2012) and Martínez et al. (2011), knowledge of connections with other 

disciplines—i.e., awareness about how a topic can be related to other content, outside the 

immediate curriculum, with different aims and not directly related to the content being 

taught—could be considered as a part of HCK. Thus, teachers in this cluster are those 

whose answers show evidence of them making connections between different areas of 
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content, and even concepts or procedures. 

 

After building up the aforementioned clusters, the information gathered from 

teachers’ answers were summarized in Table 22. 

 

Table 22: Results obtained from participants’ answers to Question (e) – Frequency and 

percentage 

  Category 

Frequency (%) 

Lower High School

(19 teachers) 

Upper High School 

(15 teachers) 

Both Levels 

(19 teachers) 

Total 

(53 teachers)

C
at

eg
or

y 

E0: No response. 
2 

(10.5) 

2 

(13.2) 

5 

(26.3) 

9 

(17.0) 

E1: Responses like “Neither of the students’ answers is 

important nor significant”. 

3 

(15.8) 

4 

(26.7) 

4 

(21.0) 

11 

(20.8) 

E2: Answers selecting one or more students, providing a 

vague or no reason. 

0 

(0.0) 

3 

(20.0) 

2 

(10.5) 

5 

(9.4) 

E3: Answers reflecting a wrong interpretation or 

misconception of variability from the teacher. 

1 

(5.3) 

3 

(20.0) 

1 

(5.3) 

5 

(9.4) 

E4: Answers evidencing just the identification of 

mathematical distortions or possible precursors to 

later mathematical confusion or misrepresentation. 

4 

(21.0) 

1 

(6.7) 

2 

(10.5) 

7 

(13.2) 

E5: Answers evidencing teacher’s recognition and 

evaluation of mathematical opportunities. 

3 

(15.8) 

0 

(0.0) 

2 

(10.5) 

5 

(9.4) 

E6: Answers pervading a sense of the mathematical 

environment surrounding the current “location” in 

instruction. 

3 

(15.8) 

4 

(26.7) 

2 

(10.5) 

9 

(17.0) 

E7: Answers mentioning major disciplinary ideas and 

structures.  

3 

(15.8) 

0 

(0.0) 

0 

(0.0) 

3 

(5.7) 

E8: Answers mentioning key mathematical/statistical 

practices. 

3 

(15.8) 

1 

(6.7) 

2 

(10.5) 

6 

(11.3) 

E9: Answers mentioning core mathematical values and 

sensibilities. 

0 

(0.0) 

0 

(0.0) 

1 

(5.3) 

1 

(1.9) 

E10:Answers evidencing teacher making connections with 

other disciplines. 

0 

(0.0) 

0 

(0.0) 

2 

(10.5) 

2 

(3.8) 

 

Participants were allowed to write down as many statistical ideas as they could 
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identify to be associated with answering the posed task. Thus, a single response to 

Question (b) could be coded into one or more categories, and hence the percentages within 

each group of teachers sum to more than 100%. 

 

In Table 22, clusters E4 to E10 describe some characteristics of the knowledge 

base of HCK (Ball & Bass, 2009). Therefore, from such table, it is possible to determine 

what features of HCK are the most exhibited by the surveyed teachers. 24 out of the 44 

respondents to Question (e)—45.3% overall—provided answers falling exclusively into 

clusters E4 to E10. The answer clusters that were distinguished the most among teachers’ 

answers were the E6—by 9 teachers, 17.0% overall—, the E4—by 7 teachers, 13.2% 

overall—, the E8—by 6 teachers, 11.3% overall—, and the E5—by 5 teachers, 9.4% 

overall.  

 

Teachers whose responses to Question (e) fell into answer cluster E4 showed 

evidence of awareness of particular seeds of misconceptions in the comments made by the 

fictitious students in Question (c). The majority of such answers point out the 

misinterpretation made by Student 1, who appears to think of symmetry—or lack 

thereof—as variability. 

 

Teachers whose responses fell into answer cluster E5 evidenced ability to identify 

teaching opportunities from a student argument, in order to further develop fundamental 

statistical ideas. These teachers seized students’ comments as an opportunity to “clarify 
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and correct students’ misconceptions” and “clarify concepts involved in the task that can 

be easily confused by students”. 

 

Teachers whose responses fell into answer cluster E6 evidenced awareness of the 

mathematical environment surrounding the current “location” in instruction of the 

statistical ideas involved in the posed task, such as frequency distribution tables, 

histograms and measures of central tendency and variation. This awareness—which can be 

paired with Husserl’s “inner horizon”, because represents the core of absolute presence as 

well as the just-was and just-coming surrounding the immediate now—, was expressed by 

the respondents in answers such as “Student 1 should make associations with basic 

statistical concepts, like measures of central tendency and measures of variation”, “Student 

3 perceives concepts like mode and measures of central tendency”, “Student 3 seem to 

know the meaning of mean and spread”, and “only Student 3’s answer is interesting, 

because is the only one who associates middles with dispersion”. 

 

Teachers whose responses fell into answer cluster E8 evidenced awareness of key 

mathematical and statistical practices, such as associating data clustering to variability, 

associating variability to data spread, identifying properties of the normal distribution and 

bell-shaped distributions, translate graphical information into tabular or numerical formats, 

and measure variability with regard to the mean or other measure of central tendency. 
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5.9.5.1  Regarding the fulfillment of Indicator C-1 

 

In order to fully meet this indicator, teachers must show evidence of ability to 

identify whether a student response to the given task is interesting or significant, from a 

mathematical or statistical standpoint. This significance could be due to several reasons, 

which are compiled within in the answer clusters E4 to E10. Therefore, the 24 teachers 

who provided responses to Question (e) only falling into answer clusters E4 to E10 would 

be considered to meet this indicator satisfactorily; that is, 24 respondents—45.3% overall, 

13 working at lower high school, 3 at upper high school, and 8 at both levels—provided 

evidence of being able to identify importance or significance in students’ comments from 

the standpoint of ability to identify mathematical distortions or possible precursors to later 

mathematical confusion or misrepresentation, to recognize and evaluate mathematical 

opportunities, to demonstrate sense of the mathematical and statistical environment 

surrounding the current “location” in instruction, to recognize major disciplinary ideas and 

structures, to recognize key mathematical/statistical practices, to acknowledge core 

mathematical values and sensibilities, and to make connections with other disciplines. All 

these skills, as it was explained before, are associated to the cognitive construct labeled by 

Ball and Bass (2009) as horizon content knowledge. 

 

5.9.6  Discussion of results regarding Question (f) 

 

Teachers must know at which grade levels—and even in which content 
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areas—particular topics are typically taught. This is one characteristic of the so-called 

knowledge of content and curriculum (KCC), being one of its aspects knowledge about 

“topics and issues that have been and will be taught in the same subject area in the 

preceding and later years” (Ball et al., 2008, p. 391). According to Ponte (2011, pp. 300–

301), KCC is one of the main poles on which the professional knowledge required for 

teaching statistics stands, as well as a fundamental aspect related to lesson planning. Thus, 

Question (f) seeks to elicit evidence of the KCC held by the surveyed teachers, in relation 

to the statistical ideas present in the posed task in Item 1. 

 

In the present study, 45 of the participants (84.9% overall) answered this question. 

The collected answers were categorized into the groups shown in Table 18. Teachers 

whose answers fell into category F1 are those who admitted either unfamiliarity with how 

statistical contents are addressed in official curriculum documents across the different 

grade levels of schooling, or not teaching any statistical content. Unfortunately, this group 

represents the majority of surveyed teachers, with 37.7% (20/53) of them in this category.  

 

Category F2 collects those answers in which teachers gave general answers, 

without mentioning a specific grade or grade level. For example, teachers who made 

mention of “methods to identify trends in data” or “analysis of graphs”, without pointing 

out which specific methods or graphs they were referring to, or at what grade level such 

contents are supposed to be taught. 13.2% (7/53) of the surveyed teachers’ answers fell 

into this category. Similarly to teachers in category F2, those in category F3 gave general 
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answers, but they made mention of a specific grade or grade level. 15.1% (8/53) of the 

surveyed teachers’ answers fell into this category. 

 

Category F4 consists of all those answers in which teachers made mention of 

specific statistical topics listed in the Venezuelan mathematics curriculum, without 

mentioning a specific grade or grade level. For example, teachers who specified “to 

determine the absolute and relative frequencies of a data set”, “to create a frequency 

distribution table from unsorted data”, or “to define and calculate the mean, mean 

deviation and variance”, but did not mention at what grade level such contents are 

supposed to be taught. Just 7.6% (4/53) of the surveyed teachers’ answers fell into this 

category. Teachers in category F5 also mentioned specific statistical topics, but contrarily 

to those in category F4, they pointed out at what grade or grade level such topics are 

supposed to be taught. Only 11.3% (6/53) of the participants in the present study fell into 

this category. 

 

It was noticeable that only 3 (5.7%) of the surveyed teachers made explicit 

mention of embedding the study of particular statistical ideas in a daily-life context, which 

is vital to internalize in the students that statistics helps solve everyday problems and tasks 

(cf. Gattuso & Ottaviani, 2011, pp. 122–123, 129), and also recurrently stated in the 

Venezuelan mathematics curricula at all school levels (ME, 1987, 1997; CENAMEC, 

1991). This fact might be a hint of the majority of the participants in this study being 

“traditionalists” (Eichler, 2011)—i.e., teachers who believe that statistics teaching should 
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emphasize theory and students’ acquisition of algorithmic skills, and are less concerned 

about applications.  

 

5.9.6.1  Regarding the fulfillment of Indicator F-1 

 

In order to fully meet this indicator, teachers must show evidence of knowledge 

about both the specific statistical concepts in the mathematics curriculum, and the grade 

levels and/or content areas at which students are typically taught such concepts. In the 

present study, teachers whose answers fell into the category F5 while answering Question 

(f) are going to be considered as the only ones satisfying these conditions. Therefore, 

based on the gathered data, it would be fair to say that only 6 teachers in this 

study—11.3% overall, 3 working at lower high school, and 3 at upper high school 

level—appear to have fully met Indicator F-1. However, those teachers in categories F3 

and F4 showed evidence of partial fulfillment of this indicator, since they evidenced 

knowledge of either specific statistical topics present in the Venezuelan mathematics 

curriculum or the grade level in which such contents are supposed to be taught. 

 

5.9.7  Discussion of results regarding Question (g) 

 

5.9.7.1  Regarding Knowledge of Content and Curriculum (KCC) 

 

According to Ponte (2011, pp. 300–301), knowledge of the curriculum—including, 

among others, knowledge about its purposes—is not only one of the main pillars on which 
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the professional knowledge required for teaching statistics may be standing, but also a 

fundamental aspect related to lesson planning. Therefore, Question (g) was posed with the 

purpose of examining surveyed teachers’ designed lessons, seeking for evidence of 

whether or not statistics-related curriculum goals are known, understood and supported by 

them. By means of collecting such evidence, it would be possible to determine whether or 

not the standards of KCC reflected by the Indicator F-2 appear to be satisfactorily met by 

the respondents to this question. 

 

In order to determine whether respondents know, understand and support 

statistics-related curriculum goals and intentions, it is necessary to clarify what those goals 

and intentions are. In Venezuela, Mathematics is a compulsory subject at all grades, in 

which “Statistics and Probability” is one of the five strands comprising the mathematics 

curriculum at any school level (ME, 1972, 1987, 1997; CENAMEC, 1991). "To study 

basic notions of descriptive statistics", as well as "To solve problems in which basic 

notions of statistics and probability could be used" are overall objectives related to the 

statistical contents included in the current mathematics curriculum for the Basic cycle of 

secondary school in Venezuela (ME, 1987, 1997). In the case of the Diversified cycle of 

secondary school, "...to allow students to model situations of uncertainty" is the overall 

objective related to the teaching of statistics at that level. Moreover, from the analysis of 

the verbs used in the Venezuelan secondary school mathematics curricula carried out in 

Chapter 2, it is clear that teachers must emphasize, while teaching statistics, the application 
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of statistical ideas, the acquisition of knowledge and skills and, to a lesser extent, the 

comprehension of such ideas. 

 

In the methodological guidelines provided by the Venezuelan secondary school 

mathematics curriculum, teachers are encouraged to promote a student-centred lecture 

environment; emphasize the significance of trying to improve students’ comprehension of 

statistical contents by relating them to students’ own environmental and social context; and 

use concrete materials and draw upon students’ experiences and interests as a starting point 

for teaching statistical ideas, in order to promote an active participation in classroom 

activities (ME, 1972, 1987, 1997; CENAMEC, 1991; Salcedo, 2006). These guidelines are 

very clear in the teaching guide for the Basic cycle of the secondary school, developed 

after the 1985 curricular reform by the Venezuelan Ministry of Education. This document 

explicitly mentions that teachers are expected to stimulate and strengthen children’s 

statistical learning through practical experiences linked to knowledge about daily life, and 

in particular, to environmental situations interesting to the students, through which they 

could appreciate and value nature and natural resources. Therefore, the lesson designed by 

the surveyed teachers when answering Question (g) will be examined for evidence of 

knowledge and support of the aforementioned objectives and methodological guidelines 

provided by curriculum documents in regard to the teaching of statistics at secondary level, 

which will provide evidence of whether teachers’ designed lessons successfully meet 

Indicator F-2. 
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Forty-four teachers—83.0% overall, 17 working at lower high school, 13 at upper 

high school, and 14 at both levels—answered to Question (g). As stated before, these 

answers were examined for curricular features of the planned lessons, specifically for 

evidence of knowledge, understanding and support of the objectives and methodological 

guidelines provided by official curriculum documents in Venezuela in relation to the 

teaching of statistics at secondary level. Knowledge and support of the overall objectives 

related to the teaching of statistics at the Basic cycle of secondary education—i.e., "To 

study basic notions of descriptive statistics" and "To solve problems in which basic notions 

of statistics and probability could be used"—seem to be evident in all the 31 answers of 

teachers working at lower secondary level. This could be due to the general way in which 

such objectives are formulated. In the case of the Diversified cycle of secondary education, 

it is worthy to mention that the only overall objective related to the teaching of statistics 

and probability—i.e., "...to allow students to model situations of uncertainty"—is even 

more general in nature, since working with different types of data representations and  

summaries, as well as commenting on features of data, are tasks considered essential 

building blocks of statistical models (MacGillivray & Pereira-Mendoza, 2011, p.116). 

Thus, it seems to be evident in all the 27 answers of teachers working at upper secondary 

level knowledge and support of this overall objective. 

 

One clear methodological suggestion at both the Basic and Diversified cycle of 

secondary education in Venezuela is the study of statistical contents through practical 

experiences linked to knowledge about daily life—in particular, environmental situations 
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interesting to the students—, life style of the community, region and country, and current 

national and international events. Therefore, statistical problems posed in the classroom 

most deal with school-related data, economical phenomena, population analysis, averages, 

production data, and so on (ME, 1972, 1987, 1997; CENAMEC, 1991). Examining 

teachers’ answers to Question (g), it is possible to appreciate that 12 teachers working at 

lower high school (22.6% overall), 6 teachers working at upper high school (11.3% 

overall), and 8 teachers working at both levels (15.1% overall) seem to provide answers in 

which the designed lessons make strong connections to daily life, particularly by using 

relevant examples for the students. Among the daily life situations posed in the designed 

lessons by the teachers mentioned above were the following: TV commercials, daily fruit 

consumption, favorite foods among students, students' ways to commute between their 

current residence and school location, by-country medal tables in a particular sport at 

London Olympics, number of newborns, salaries for different professions, students' scores 

in a particular subject, favorite TV programs, favorite kind of music, work flow in a bank 

branch, students' height and students' age. The “practical experiences” suggested by the 

official curriculum documents were circumscribed to surveys inside and outside the 

classroom, as well as the conduction of real experiments by the students in the classroom, 

such as measuring their own height.  

 

5.9.7.2  Regarding the fulfillment of Indicator F-2 

 

In order to fully meet this indicator, teachers’ planned lessons should show 
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evidence of teachers’ knowledge and support of the objectives and methodological 

guidelines provided by official curriculum documents in Venezuela in relation to the 

teaching of statistics at secondary level. Since both overall and specific objectives related 

to the Statistics and Probability strand emphasize the application of statistical ideas, the 

acquisition of knowledge and skills and, to a lesser extent, the comprehension of such 

ideas, all the answers seem to support such objectives. However, making strong 

connections to daily life, as well as carrying out practical experiences linked to knowledge 

about daily life, environmental situations, life style of the community, region and country, 

and current national and international events, are explicitly encouraged in the 

methodological suggestions for teachers throughout secondary school, as well as in the 

guidelines included in the teaching guide for the Basic cycle of the secondary school. 

Therefore, the gathered data was also examined for evidence of support of such 

suggestions and guidelines. As a result, 26 teachers—49.1% overall, 12 working at lower 

high school, 6 at upper high school, and 8 at both levels—were those whose planned 

lessons seem to be student-centred ones, carrying out and supporting overall and specific 

objectives of the secondary school mathematics curriculum, and hence fully meeting 

Indicator F-2. It is worthy to highlight the fact that teachers working in upper high school 

level planned lessons more teacher-centred than those working exclusively at lower 

secondary school. These teachers emphasized the instruction of concepts, the posing and 

individual solving of problems, and the assignation of exercises for practice. 
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5.9.7.3  Regarding Knowledge of Content and Teaching (KCT) 

 

According to Ball et al. (2008), KCT could be evidenced through knowledge 

about different instructionally viable models for teaching a particular idea, as well as 

through knowledge on how to deploy them effectively. Question (g) was also posed with 

the purpose of eliciting evidence of these two indicators associated to KCT—which are 

identified in the present study as Indicators E-1 and E-2, respectively. 

 

Forty-four teachers—83.0% overall, 17 working at lower high school, 13 at upper 

high school, and 14 at both levels—answered to Question (g).  

 

In order to determine the presence of Indicators E-1 and E-2, in teachers’ answers, 

a criterion-referenced assessment rubric was designed, based on the characteristics of 

effective classroom activities to promote students’ understanding of variability compiled 

by Garfield and Ben-Zvi (2008), as well as in the statistical habits of mind required from 

teachers to teach fundamental statistical ideas listed by Burrill and Biehler (2011, 

p.66)—i.e., using real data, building intuitions, beginning with a graph, exploring alternate 

representations of data, investigating and exploring before introducing formulas, and using 

projects and experiments to engage students in doing statistics (see Table 23). 
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Table 23: Assessment rubric for evaluating the KCT dimension from teachers’ responses 
to Question (g) 

Assessment Criteria regarding Indicator E-1

• To describe and represent 

variability with numerical 

measures when looking at one or 

more data sets (Garfield & 

Ben-Zvi, 2008, pp.207-208). 

Yes  No

   

• To refer to more than one 

representation of the data (such as 

frequency distribution tables and 

boxplots) to lead to better 

interpretations (ibid., p.207). 

Yes  No

   

• To promote discussion on how 

measures of central tendency and 

measures of variation are revealed in 

data sets and graphical 

representations of data (ibid., p.212).

Yes  No

   

• To pose activities involving 

comparisons of groups, instead of 

graphing, summarizing, and 

interpreting data for a single group 

(ibid., p.216).  

Yes  No

   

• To promote discussion on what 

factors make the measures of 

variation to be larger or smaller 

(ibid., p.209). 

Yes  No

   

• To promote whole-class 

discussions on why we need 

measures of variation in addition 

to measures of central tendency 

(ibid., p.214). 

Yes  No

   

• To pose examples and activities 

involving real-world contexts or 

embedded in real-world situations, 

or to provide students with real 

data that make sense to them or for 

which they express very high 

interest (ibid., p.328). 

Yes  No

   

 

Assessment Criteria regarding Indicator E-2

• To start the lesson with the 

process of gathering data from 

students (by using questions like 

“in which month of the year 

were you born?”) or by 

presenting them with some 

simple data, and then 

representing and interpreting 

such data (Garfield & Ben-Zvi, 

2008, pp.135-137). 

Yes  No

   

• To describe and compare the 

variability informally at first (e.g., 

by describing verbally how the 

data is spread out), and then 

formally, through measures of 

variation (ibid., p.208). 

Yes  No

   

• After starting to examine the 

given or collected data, to make 

students discuss about possible 

reasons (sources) for the 

variability in such data (ibid., 

p.211). 

Yes  No

   

• In a wrap-up discussion, to make 

students revisit what boxplots or 

each measure of variation tells 

and how these relate to measures 

of center and shape of 

distribution (ibid., p.234). 

Yes  No

   

 

 

The researcher examined the lessons planned as answers to Question (g) in order 

to identify in them the presence of the general pedagogical features in Table 23. In that 
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way, it would be possible to determine to which extent each of the planned lessons use 

effective classroom activities to promote students’ understanding of variability, and 

sequence them in an effective fashion. Tables 24 and 25 summarize the results of the 

aforementioned examination to all the planned lessons provided by the teachers: 

 

Table 24: Assessment rubric for evaluating the KCT dimension related to Indicator E-1 

from teachers’ responses to Question (g) 
 

 Category 

Frequency (%) 

Lower High School

(19 teachers) 

Upper High School 

(15 teachers) 

Both Levels 

(19 teachers) 

Total 

(53 teachers)

A
ss

es
sm

en
t 

C
ri

te
ri

a 
re

ga
rd

in
g 

In
di

ca
to

r 
E

-1
 

E-1.1: To describe and represent variability with 

numerical measures when looking at one or 

more data sets. 

8 

(42.1) 

6 

(40.0) 

5 

(26.3) 

19 

(35.8) 

E-1.2: To refer to more than one representation of the 

data to lead to better interpretations. 

10 

(52.6) 

7 

(46.7) 

8 

(42.1) 

25 

(47.2) 

E-1.3: To promote discussion on how measures of 

central tendency and measures of variation 

are revealed in data sets and graphical 

representations of data. 

7 

(36.8) 

4 

(26.7) 

3 

(15.8) 

14 

(26.4) 

E-1.4: To pose activities involving comparisons of 

groups, instead of graphing, summarizing, 

and interpreting data for a single group. 

5 

(26.3) 

3 

(20.0) 

2 

(10.5) 

10 

(18.9) 

E-1.5: To promote discussion on what factors make 

the measures of variation to be larger or 

smaller. 

4 

(21.1) 

3 

(20.0) 

3 

(15.8) 

10 

(18.9) 

E-1.6: To promote whole-class discussions on why 

we need measures of variation in addition to 

measures of central tendency. 

2 

(10.5) 

2 

(13.3) 

0 

(0.0) 

4 

(7.5) 

E-1.7: To pose examples and activities involving 

real-world contexts or embedded in 

real-world situations, or to provide students 

with real data that make sense to them or for 

which they express very high interest. 

12 

(63.2) 

6 

(40.0) 

8 

(42.1) 

26 

(49.1) 
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Table 25: Assessment rubric for evaluating the KCT dimension related to Indicator E-2 

from teachers’ responses to Question (g) 
 

 Category 

Frequency (%) 

Lower High School

(19 teachers) 

Upper High School

(15 teachers) 

Both Levels 

(19 teachers) 

Total 

(53 teachers)

A
ss

es
sm

en
t 

C
ri

te
ri

a 
re

ga
rd

in
g 

In
d

ic
at

or
 E

-2
 

E-2.1: To start the lesson with the process of 

gathering data from students or by 

presenting them with some simple data, and 

then representing and interpreting such data.

11 

(57.9) 

5 

(33.3) 

7 

(36.8) 

23 

(43.4) 

E-2.2: To describe and compare the variability 

informally at first, and then formally, 

through measures of variation. 

4 

(21.1) 

1 

(6.7) 

1 

(5.3) 

6 

(11.3) 

E-2.3: After starting to examine the given or 

collected data, to make students discuss 

about possible reasons for the variability in 

such data. 

6 

(31.6) 

4 

(26.7) 

4 

(21.1) 

14 

(26.4) 

E-2.4: In a wrap-up discussion, to make students 

revisit what boxplots or each measure of 

variation tells and how these relate to 

measures of center and shape of 

distribution. 

3 

(15.8) 

0 

(0.0) 

0 

(0.0) 

3 

(5.7) 

 

Some of the results shown in Tables 24 and 25 were already expected. For 

example, in Table 24, the fact that 26 teachers—49.1% overall, 12 working at lower high 

school, 6 teachers working at upper high school, and 8 teachers working at both 

levels—met the seventh criterion regarding Indicator E-1—i.e., the assessment criterion 

for posing examples and activities involving real-world contexts or real data—was 

expected from the previous examination for curricular features of the planned lessons. In 

fact, the same 26 teachers were those who provide answers in which the designed lessons 

make strong connections to daily life, particularly by using relevant examples for the 

students and providing them with real data gathering experiences, which is in accord with 

the methodological suggestions in the Venezuelan secondary school mathematics 
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curriculum at all grades.  

 

According to Ball et al (2008, p.401), how teachers sequence particular content 

for instruction is one of the features of the cognitive domain knowledge of content and 

teaching (KCT). By the means of examining the planned lessons looking for the 

assessment criteria in Table 25, the presence of these four aspects of effective instructional 

sequence for the teaching of variability-related ideas that facilitates student acquisition of 

statistical literacy skills will be determined. 

 

In addition, an aspect worthy of attention is the fact that some misconceptions 

held by the surveyed teachers not only emerged in their planned lessons, but also had a 

strong influence in the content to be taught. For example, 2 teachers—3.8% overall, 

working at both secondary school levels—planned lessons in which the focus was to study 

symmetry and asymmetry, and to relate those concepts to the one of variability. Both 

teachers pointed out before, when answering Question (a), that Distribution A was the one 

with more variability—one of them with an answer falling into category A2, and the other 

into category A3—, which may suggest the strong relation among CCK—or lack 

thereof—and KCT, particularly the planning facet. 

 

5.9.7.4  Regarding the fulfillment of Indicator E-1 

 

Due to the multidimensionality of the assessment criteria related to Indicator E-1, 
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as well as to the complex qualitative information that could be obtained from teachers’ 

answers to Question (g), the examination to determine whether or not a teacher meets 

Indicator E-1 will be undertaken criterion by criterion; that is, dimension by dimension. 

The features of each criterion will be provided, and the implications of fulfilling each 

criterion will be discussed. In that way, it would be possible to determine qualitatively to 

which extent each of the planned lessons uses effective classroom activities to promote 

students’ understanding of variability. 

 

The most used activity suggested by these teachers for collecting real data was the 

survey—by 13 teachers (24.5% overall), 6 working at lower high school, 3 working at 

upper high school, and 4 working at both levels—, followed by providing students with 

sets of real data—by 4 teachers (7.5% overall), 3 working at lower high school, and 1 

working at both levels—, and carrying out in-class experiments involving repeated 

measurements and random trials—by 3 teachers (5.7% overall), 2 working at lower high 

school, and 1 working at upper high school level. 

 

Another interesting fact from Table 24 is having 25 teachers—47.2% overall, 10 

working at lower high school, 7 working at upper high school, and 8 working at both 

levels—meeting the second criterion regarding Indicator E-1, related to multiple 

representations of data. Such multiple representations are fundamental to increase 

understanding about the data on study (Burril & Biehler, 2011, p.58), as well as a basic 

step to transnumeration—i.e., to the process of changing representations of data to identify 
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different aspects of the same data. Among the remaining of the respondents who did not 

met this criterion, it was common asking students to calculate measures of central 

tendency or variation directly from a given problem, graph or data set, without engaging in 

transnumeration.  

 

The fact that only 19 teachers—35.8% overall, 8 working at lower high school, 6 

working at upper high school, and 5 working at both levels—met the first criterion 

regarding Indicator E-1, is also worthy to be highlighted. Many of the respondents to this 

question planned very shallow lessons, in which they just specified the elements 

“Concepts”, “Examples”, “Exercises”, and “Practice problems” and shuffled them. Those 

who planned more in-detail lessons and did not met this criterion, typically posed activities 

asking students to create and interpret graphs without saying how, or just proposed to pose 

problems to students. 

 

One of the main concerns that arise from Table 24 is the low proportion of 

teachers meeting the third, fourth, fifth and sixth criteria regarding Indicator E-1. 

Regarding criterion E-1-3, the discussion of both measures of central tendency and 

measures of variation is fundamental for data analysis, particularly when comparing 

groups, in which examining the differences in the medians, means, modes and measures of 

spread is a critical step (Gattuso & Ottaviani, 2011, p.128). Regarding criterion E-1-4, 

comparison of two distributions is one of the basic tasks in the exploratory data analysis 

that must be presented in teaching statistical ideas at any school level (Jacobbe & Carvalho, 
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2011, p.21), and these comparison must include considerations of both measures of central 

tendency and measures of variation in order to properly describe and acknowledge 

variability (Canada & Ciancetta, 2007; Reading & Canada, 2011). Regarding criterion 

E-1-5, lack of understanding which factors makes measures of variation smaller or larger 

could turn the lesson in a mere act of calculate such measures and, in the case of 

comparison of distribution, select the one with smaller or larger numerical value, 

depending of the question made. Regarding criterion E-1-6, the promotion of whole-class 

discussions about why measures of variation are needed in addition to measures of central 

tendency is crucial, since it is one of the ways to avoid misconceptions in students such as 

focusing merely in middles or visual cues of the distributions. Therefore, the low 

proportion of secondary school mathematics teachers planning lessons considering these 

statistical habits of mind might be interpreted as a major practical concern for teacher 

education in Venezuela. 

 

5.9.7.5  Regarding the fulfillment of Indicator E-2 

 

Again, due to the multidimensionality of the assessment criteria related to 

Indicator E-2, as well as to the complex qualitative information that could be obtained 

from teachers’ answers to Question (g), the examination to determine whether or not a 

teacher meets Indicator E-2 will be undertaken criterion by criterion. The features of each 

criterion will be provided, and the implications of fulfilling each criterion will be discussed. 

In that way, it would be possible to determine qualitatively to which extent the 
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instructional activities in each one of the planned lessons are effectively sequenced for a 

better student learning and understanding of variability. 

 

As can be seen in Table 25, the instructional aspect that appeared the most in the 

lessons planned by the respondents was the one assessed by first criterion regarding 

Indicator E-2. 23 teachers—43.4% overall, 11 working at lower high school, 5 working at 

upper high school, and 7 working at both levels—met this criterion. This means that these 

23 teachers posed lessons using a constructivist approach, posing activities in which 

students have to either engage in the process of gathering real data, or organize and 

interpret sets of real data provided by the teacher. Moreover, activities such as collecting 

sample data is one of the specific statistical practices identified by Wild and Pfannkuch 

(1999), together with randomization, tabulation and transnumeration, data reduction, and 

using statistical models. However, it is worthy to highlight that just 14 teachers—26.4% 

overall, 6 working at lower high school, 4 working at upper high school, and 4 working at 

both levels—met the third criterion regarding Indicator E-2. This means that even though 

just over 40% of the surveyed teachers planned lessons starting with statistical practices 

such as gathering real data or engaging in trasnumeration from sets of real data, just over a 

quarter of the surveyed teachers examined the reasons or sources of the variability in the 

data they were studying. According to Shaughnessy (2007, 2008) and Shaughnessy and 

Pfannkuch (2002), engaging students in discussions about the sources of variation in data 

provides them opportunities to be “data detectives” and to develop their statistical literacy 

skills and share their reasoning in a data-based fashion. In this way, students would be able 
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to uncover the stories that are hidden in the data. This is fundamental for the understanding 

of variability, since the heart of any statistical story is usually contained in the variability 

in the data (Shaughnessy, 2008). 

 

It is worthy to highlight the low proportion of planned lessons meeting the second 

and fourth criteria regarding Indicator E-2. Regarding the criterion E-2-2, lessons which 

met this criterion are those that foster the statistical habits of mind of building intuitions 

and exploring data before introducing formulas, which are highly expected from teachers 

when they teach fundamental statistical ideas (Burrill & Biehler, 2011, p.66). Moreover, 

deriving logical conclusions from data—whether formally or informally—is accompanied 

by the need to provide persuasive arguments based on data analysis, which promotes 

students’ argumentation and statistical literacy skills (Pfannkuch & Ben-Zvi, 2011, p.329). 

 

Regarding the criterion E-2-4, this low proportion of lessons meeting this criterion 

identifies a characteristic of Venezuelan mathematics lessons: the almost total absence of 

wrap-up discussions involving students. In the collected data, the stage “Conclusion” in a 

lesson is particularly characterized by teachers assigning homework or practice problems 

after students engaged in solving particular tasks. It is interesting the fact that the 3 

teachers whose lessons met this criterion are working in lower secondary level, and none 

of the teachers working at upper secondary school satisfying the criterion. 
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5.9.7.6  Regarding teachers’ statistics-related beliefs 

 

According to Eichler (2008, 2011) and Pierce and Chick (2011), teachers’ beliefs 

about statistics teaching and learning could be identified through examining the features of 

the lesson plans prepared by them. Some of these features are the tasks chosen to consider 

a particular statistical idea, and the types of instructional strategies teachers planned to use 

during the lesson. What teachers planned to do—which is related to the construct KCT, 

and hence with answers to Question (g)—will be analyzed using the four categories 

reflecting on teachers’ beliefs developed by Eichler (2011)—i.e., traditionalists, 

application preparers, everyday life preparers, and structuralists—, which will provide 

valuable information on teachers’ beliefs about the nature of statistics, as well as about the 

teaching and learning of statistics. 

 

Eichler (2008, 2011) identifies four categories of teachers, depending on the 

beliefs they seem to hold after analyzing their lessons. Traditionalists are those teachers 

who appear to be more concerned about students gaining algorithmic skills, and less about 

context and applications. Application preparers are those teachers focused on teaching 

theory and algorithms wanting to promote interplay between theory and application, so 

students could use such theory and algorithms to solve real-world problems. Everyday life 

preparers are teachers who teach through applications, in order to develop abilities to 

address real stochastic problems. Finally, structuralists are those teachers who examine 
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applications but as a starting point for exemplifying mathematical theory and abstract 

systems; that is, structuralists encourage students' understanding of the abstract system of 

mathematics or statistics in a process of abstraction, starting from applications (Eichler, 

2008, 2011; Girnat & Eichler, 2011). 

 

None of the participants in the current sample of surveyed teachers was 

categorized as structuralist, since all the respondents started their planned lessons 

explaining theory, providing students with an overview of the concepts to use during class, 

engaging students in different statistical practices, or posing problems. The lessons 

planned by application preparers and everyday-life preparers must consider the solving of 

real-world problems. The difference between both types of teachers are the way the start 

their lessons: application preparers seem to believe that the effective way to teach 

statistics consists in teaching theory and algorithms at first, and then apply such knowledge 

to solve real-world problems. On the contrary, everyday-life preparers seem to believe that 

an effective lesson must start using a realistic situation and, while examining it, statistical 

methods should be developed, in order to develop both  students’ ability to cope with real 

stochastic problems and students’ ability to criticize decision-making processes and 

situations in real life. In the collected data, 26 teachers—49.1% overall, 12 working at 

lower high school, 6 teachers working at upper high school, and 8 teachers working at both 

levels—posed examples and activities involving real-world contexts or real data. Teachers 

who started with explanations of theory and algorithms are those that Eichler calls 

application preparers, whereas those who started from an application or the consideration 
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of a real life situation are those that Eichler calls everyday-life preparers. After examining 

the collected data, it was determined that 8 teachers—15.1% overall, 2 working at lower 

high school, 2 teachers working at upper high school, and 4 teachers working at both 

levels—could be regarded as application preparers, while 18 teachers—34.0% overall, 10 

working at lower high school, 4 teachers working at upper high school, and 4 teachers 

working at both levels—could be considered as everyday-life preparers. The remaining 

respondents to Question (g)—i.e., 18 teachers, 34.0% overall, 5 working at lower high 

school, 7 teachers working at upper high school, and 6 teachers working at both 

levels—could be regarded as traditionalists, teachers who seem to believe that the goal of 

teaching statistics is students’ acquisition of algorithmic skills and procedures, 

disregarding context and applications. This neglect of the relevance of the role of context 

in statistics raises particular concern, since many statistics educators—e.g., Shaughnessy, 

2007; Eichler, 2011—have regarded the role of context as one of the main aspects of 

teaching statistics. 
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CHAPTER 6: 

Conclusions 

 

In this concluding chapter will be highlighted the central findings on Venezuelan 

secondary school mathematics teachers’ professional knowledge and affective 

characteristics for teaching variability-related concepts. This chapter is presented in five 

sections. In the first section, the author summarizes all the previous chapters, providing a 

compact and general view of the present study. In the second section, the author discusses 

the central findings of this research study, and provides answer to the research questions 

addressed in the current study. In third section, the author discusses the study’s 

contributions and implications. In fourth section, the author discusses the study’s 

limitations. In the fifth section, the author concludes the chapter with a discussion that 

points to potential relevant future research. 

 

6.1  Chapter abstracts 

 

In this dissertation, the construct of statistical knowledge for teaching (SKT) is 

explored, in particular, for the case of Venezuelan secondary school mathematics teachers. 

In Chapter 1, I provide the rationale, background, motivation and purpose for the present 

study, as well as describe how the study fills a critical gap in the understanding of the 

professional knowledge and affective-motivational characteristics required from 
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mathematics teachers to accomplish an effective teaching and learning of statistical 

ideas—in particular those related to variability—at secondary school level. The inclusion 

and emphasis of topics related to statistics at all school levels, particularly in the secondary 

one, is pointed out, as well as the acquisition and development of statistical literacy skills 

by students as an educational goal not only in Venezuelan mathematics curriculum, but 

worldwide. Such skills have nowadays an increasing societal importance, since they make 

able to the citizen who possesses them to intelligently participate in many fields of today’s 

knowledge-based society after the end of compulsory school. Therefore, these 

skills—many of which are based on a proper acknowledgement and understanding of the 

statistical idea of variability—must be developed particularly at secondary school level, 

since secondary school might be either the last exposure to statistics that many future users 

of statistics might have, or the stepping stone to advanced contents for those students 

moving on to tertiary education. It is for this reason that secondary school mathematics 

teachers, now more than ever, require to have specific professional knowledge, skills and 

habits of mind, without which the aims of the mathematics curriculum regarding statistics 

education cannot be achieved. Mainly from this, as well as from the paucity in research on 

professional knowledge for teach statistics at school level, stems the need for making 

research on SKT.  

 

After formulating the Problem Statement in Chapter 1—i.e., the clarification of 

the current state of the professional knowledge base on statistics, conceptions of variability, 

and beliefs about teaching and learning of statistics, held by Venezuelan secondary school 
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mathematics teachers—, the twofold Purpose of the Research is described, and three 

Research Questions to be answered are posed, in order to fulfill the purpose of the current 

study. Such questions are the following: 

 

1. What is statistical knowledge for teaching, and what are the indicators that could 

serve to evaluate it in the case of teaching variability-related concepts? 

 

2. On the basis of the conceptualization of SKT adopted by this research, what is the 

knowledge base of SKT that Venezuelan secondary school mathematics teachers 

have to teach variability-related concepts? 

 

3. How do Venezuelan secondary school mathematics teachers conceptualize 

variability, and what beliefs about statistics, its teaching and learning, do they 

have?  

 

Chapter 1 finishes describing particular aspects of the significance of the present 

study, such as, among others, academically contributing in a field in which there is a duly 

noted lack of studies focusing on professional statistical knowledge, conceptions of 

variability, and statistics-related beliefs of secondary school mathematics teachers from the 

viewpoint of variability, lack which is particularly remarkable in the case of Venezuela. 

 

In Chapter 2, I provide a review of the structure of the Venezuelan educational 



206 
 

system, an extensive description of the statistics curriculum in Venezuela at both 

elementary and secondary school levels, as well as a summary of the researches carried out 

to date on Venezuelan mathematics teachers’ professional competence to teach statistics at 

compulsory school. Regarding the Venezuelan educational system, it is described each of 

the four levels in which the mainstream education system is organized: initial education, 

elementary school, secondary school, and higher education. Thereafter, I explain about the 

statistics curriculum in Venezuela, making clear the fact that statistics is taught as part of 

the mathematics curriculum at all levels of compulsory education, which includes 

secondary school. In fact, statistical contents are acknowledged in national curriculum 

documents as a single unit, with the strand “Statistics and Probability” being present 

throughout all compulsory education. In Venezuela, the study of statistics at compulsory 

school started in 1972, when the reform to the secondary school mathematics curriculum 

included, for first time, the study of topics on statistics and probability at school level, 

specifically at Grades 10 and 11. Before this year, the study of statistical topics was 

exclusive to students enrolled in higher education. The inclusion of notions of statistics 

and probability in elementary school occurred years later, in 1985. After the last reforms to 

the school mathematics curricula in Venezuela, only at Grade 10 topics on statistics are not 

studied. In Chapter 2, the statistical contents from Grade 1 to Grade 11, the overall and 

specific objectives, as well as the methodological guidelines outlined in the Venezuelan 

mathematics curriculum for both elementary and secondary schools are explained in detail. 

Also, an analysis of the verbs used in the Venezuelan secondary school mathematics 

curriculum, using the six hierarchical thinking levels in Benjamin Bloom’s cumulative 
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hierarchical theoretically-based revised taxonomy framework in the cognitive domain, is 

carried out, in order to indicate the level of critical thinking expected of students, as well 

as to describe the cognitive demands in the Venezuelan secondary school mathematics 

curriculum in relation to the teaching and learning of statistics. Chapter 2 finishes with an 

overview of the few research efforts on investigating Venezuelan mathematics teachers’ 

professional knowledge and affective-motivational characteristics to teach statistics at 

compulsory school level, most of which have been focused on the elementary school, or 

draw conclusions about the current state of teaching and learning of statistics at school 

level in Venezuela by extrapolation from research on either individual perceptions of 

teacher preparation to teach statistics, or students' performance and achievement in 

statistics at tertiary education. 

 

In Chapter 3, I provide a review of the literature and frameworks relevant to the 

current research. At first, a review of the literature on statistical literacy is undertaken. 

From such review, the characteristics as well as societal and educational importance of 

statistical literacy for all individuals in today’s knowledge-based society are clearly 

identified. Thereafter, I explain about the statistical idea of variability, its definition, its 

importance in the field of statistics—since it is regarded as the raison d’être of the 

discipline—, how it is measured or estimated, and how is conceptualized by students and 

teachers according to previous researches, particularly using the categorization of 

conceptions of variability developed by Shaughnessy (2007). A review of the literature on 

mathematics teachers’ professional competencies follows, during which it is presented a 



208 
 

brief overview of research on the definition of this construct, as well as on the constructs 

of subject matter knowledge (SMK), pedagogical content knowledge (PCK), mathematical 

knowledge for teaching (MKT) —developed by Ball et al. (2008)—, and teachers’ beliefs. 

In addition, the construct of statistical knowledge for teaching (SKT) is also discussed, as 

well as the few theoretical models of SKT proposed to date that employ the cognitive 

constructs of SMK, PCK and MKT to conceptualize it, which were developed by Groth 

(2007), Burgess (2011), and Noll (2011). From this discussion, specific gaps in statistics 

education research literature are identified, as well as particular areas in need of further 

attention in research, which the current research attempts to deal with. In particular, the 

one that none of those MKT-based frameworks of SKT takes into account either all the six 

components identified by Ball et al. (2008), the role of beliefs in teachers’ professional 

practice, or the conceptions of variability held by the teachers, which could result in an 

inaccurate picture of their preparedness to teach statistical contents related to variability at 

any school level. 

 

In Chapter 4, I provide a conceptual analysis and framework for mathematics 

teachers’ statistical knowledge for teaching, focused on the acknowledgement and 

understanding of variability as a fundamental idea in statistics. In this framework, the 

construct of statistical literacy is an essential feature that serves to frame my discussion of 

SKT. Particular aspects of statistical literacy provide a picture of the knowledge base of 

common content knowledge necessary for effective teachers, who have need to know how 

to correctly solve the problems they pose to students and to appropriately understand the 
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variability arising in a statistical problem. Indeed, a sound grounding in statistical literacy 

is a necessary condition for having a robust SKT, but it is not sufficient. I would have to 

add in knowledge on how statistical ideas are developed throughout the courses of 

study—i.e., knowledge of content and curriculum—, knowledge of students’ thinking 

statistically—i.e., knowledge of content and students—, capacity to plan and execute 

meaningful teaching in the light of the previous two cognitive traits—i.e., knowledge of 

content and teaching—, understanding of the broader set of statistical ideas to which a 

particular concept connects—i.e., horizon content knowledge—, and ability to determine 

the accuracy of common and non-standard solutions that could be given by students when 

solving statistical problems—i.e., specialized content knowledge. These six traits, 

alongside teachers’ beliefs and conceptions of variability, comprise the conceptual 

framework for SKT proposed in the present study. The identification of these eight traits 

from an extensive literature review is followed by the selection, also from the literature, of 

twelve indicators associated to each cognitive trait, in order to provide a comprehensive 

framework for conceptualizing SKT. 

 

After introducing the aforementioned framework and its indicators, I also talk 

about how this framework can be used to assess the knowledge base of SKT held by 

Venezuelan secondary school mathematics teachers. I provide a discussion of my research 

methodology, study design, and analysis procedures. A general overview of my data 

collection methods and rationale for those methods is provided, alongside with a detailed 

discussion on how the research instrument used in this study was designed. Emphasis is 
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put on the fact that most of the statistical contents in the Venezuelan secondary school 

mathematics curriculum are ideas related to descriptive statistics, reason because of which 

the selected task to be posed in the research instrument—“Choosing the distribution with 

more variability” task, originally developed by Garfield et al. (1999)—was one dealing 

with many ideas in such domain. Some of those ideas are histograms, frequency 

distributions, measures of central tendency and measures of variation, which are revisited 

in a spiral way throughout the subject of mathematics at secondary school in Venezuela. 

For the present study, the selected task was slightly modified in order to facilitate the 

calculations that could be made by the respondents, and was also enriched with seven 

questions, aiming to elicit all the eight facets of teachers’ professional competencies to 

teach variability-related contents previously identified by the framework for SKT proposed 

here. 

 

Chapter 5 shows the results of carrying out the survey instrument in a sample of 

53 Venezuelan secondary school mathematics teachers, who work in the metropolitan area 

of Caracas, the capital city of Venezuela. Furthermore, a detailed discussion of such results 

on each of the seven questions accompanying the “Choosing the distribution with more 

variability” task is undertaken. In such discussion, I analyze the collected data in light of 

the model for SKT proposed in the present study, and discuss the six types of knowledge, 

as well as teachers’ conceptions of variability and statistics-related beliefs, the surveyed 

teachers in this study demonstrated.  
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As for the analysis, all questions in the survey instrument were examined to 

determine whether or not each one of the twelve indicators previously identified was met. 

Furthermore, as a result of this analytic approach of assessment, valuable qualitative 

information about the cognitive traits comprising the framework for SKT proposed here 

was gathered. In order to carry out such analysis, and depending on the question being 

analyzed as well as on the assessment criteria related to meeting each indicator, different 

theoretical frameworks were used, many assessment rubrics were developed and 

implemented, and grounded form of analytic approach to coding were repeatedly 

undertaken. After this analytical discussion looking for evidence of whether or not each of 

the 12 SKT-related indicators was met, it was collected enough qualitative information 

describing the knowledge base of SKT held by the participants in this study; that is, this 

analysis provided a truly comprehensive picture of the current state of the surveyed 

Venezuelan secondary school mathematics teachers’ knowledge base on SKT, conceptions 

of variability, and beliefs about statistics teaching and learning. 

 

This current chapter, Chapter 6, examines and discusses the links between the 

broad aims of the research as derived from the Literature Review, the results and 

discussion from Chapters 3 and 4, the specific research questions, and the contribution that 

this thesis has made to the research field. Implications are drawn from the research and 

discussed, with regard to the current state of teacher knowledge for teaching statistics at 

secondary school from the viewpoint of variability. Also, suggestions for future research 

concerning, among others, practicing and pre-service teachers, teacher educators and 
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curriculum developers, are outlined. 

 

6.2  Answers to research questions 

 

In this section, each one of the research questions will be addressed in relation to 

the conclusions that can be drawn from the present study. 

 

6.2.1  Answer to the First Research Question: What is statistical knowledge for 

teaching, and what are the indicators that could serve to evaluate it in the case of teaching 

variability-related concepts? 

 

In Chapter 4, and on the basis of an exhaustive literature review, it was proposed a 

conceptual framework for describing several components that were thought to be potential 

indicators of teachers’ professional competencies for teaching statistics from the viewpoint 

of variability. This framework was built by fusing the constructs of statistical literacy and 

mathematical knowledge for teaching with current research on statistical knowledge for 

teaching, conceptions of variability and teachers’ beliefs about statistics teaching and 

learning (e.g., Gal, 2002; Ball et al., 2008; Ball & Bass, 2009; Shaughnessy, 2007; Eichler, 

2008, 2011; González, 2011; Isoda & González, 2012). The visual representation from this 

framework is shown again in Figure 24.  
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Figure 24: Proposed conceptual model of teachers’ competencies to teach secondary 

school statistics 

 

The model proposed here is a two-faceted one, with one cognitive and one 

affective facet. The cognitive facet of the framework proposed here is sixfold, comprised 

of all the six subdomains of professional knowledge identified by Ball et al. (2008) in their 

model of mathematical knowledge for teaching—i.e., common content knowledge, 

specialized content knowledge, horizon content knowledge, knowledge of content and 

students, knowledge of content and teaching, and knowledge of content and curriculum—, 

with CCK understood as statistical literacy in order to meet the case of teaching statistics. 

This facet is the one that represents SKT—i.e., the professional knowledge needed to carry 

out effectively the work of teaching statistics. The affective facet of the model proposed 

here is comprised of two components: teachers’ beliefs about statistics, its teaching and 

learning; and teachers’ conceptions of variability. Although the focus of this research is to 

examine SKT, the affective-motivational traits are considered as well, since numerous 

studies have highlighted the inextricable relation between teachers’ knowledge, 

conceptions and beliefs about the subject matter (e.g., Putnam & Borko, 2000; Pajares, 

1992; Knuth, 2002), as well as the important role played by teachers’ conceptions and 

personal beliefs in the implementation of a curriculum (e.g., Duschl & Wright, 1989; Ball 
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& Cohen 1996; Trigwell, Prosser & Waterhouse, 1999). 

 

In order to apply the proposed framework for SKT to exploratory analysis of 

empirical data, specific indicators of each component in the framework were needed to 

identify features of these framework components and their relations. Then, twelve 

indicators associated to the cognitive facet of such competencies were selected from the 

literature, in order to provide a comprehensive framework for conceptualizing SKT. Those 

indicators are shown again in Table 26. 

 

Table 26: Set of indicators proposed to assess SKT 
A: INDICATORS RELATED TO CCK (STATISTICAL LITERACY):

1. Is the teacher able to give an appropriate and 

correct answer to the given task? 

2. Does the teacher consistently acknowledge 

variability and correctly interpret its meaning when 

answering the given task? 

B: INDICATORS RELATED TO SCK: 

1. Does the teacher show evidence of ability to 

determine the accuracy of common and 

non-standard arguments, methods and solutions 

that could be proposed to the given task by students 

(especially while recognizing whether a student’s 

answer is right or not)? 

2. Does the teacher show evidence of ability to 

analyze right and wrong solutions that could be 

given by students to the present task, by providing 

explanations about what reasoning and/or 

mathematical/statistical steps likely produced such 

responses, and why, in a clear, accurate and 

appropriate way? 

C: INDICATORS RELATED TO HCK: 

1. Does the teacher show evidence of having ability 

to identify whether a student response is interesting 

or significant, mathematically or statistically? 

2. Is the teacher able to identify the significant 

notions, practices or values related to the statistical 

ideas involved in the given task? 

D: INDICATORS RELATED TO KCS: 

1. Is the teacher able to anticipate students’ common

responses and difficulties on the given task? 

2. Does the teacher show evidence of knowing the 

most likely reasons for students’ common 

responses and difficulties in relation to the 

statistical concepts involved in the given task? 

E: INDICATORS RELATED TO KCT: 

1. In design of teaching, does the teacher show 

evidence of knowing what tasks, activities and 

strategies could be used to set up a productive 

whole-class discussion aimed at developing 

students’ understanding of the key statistical 

concepts involved in the given task, instead of 

focusing just in computation methods or general 

calculation techniques? 

2. Does the teacher show evidence of knowing how to 

sequence such tasks, activities and strategies, in 

order to develop students’ understanding of the key 

statistical concepts involved in the given task?  

F: INDICATORS RELATED TO KCC: 

1. Does the teacher show evidence of knowing at 

what grade levels and content areas students are 

typically taught about the statistical concepts 

involved in the given task? 

2. Does the designed lesson (or series of lessons) 

show evidence of teacher’s knowledge and support 

of the educational goals and intentions of the 

official curriculum documents in relation to the 

teaching of the statistical contents present in the 

given task, as well as statistics in general? 
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6.2.2  Answer to the Second Research Question: On the basis of the conceptualization 

of SKT adopted by this research, what is the knowledge base of SKT that Venezuelan 

secondary school mathematics teachers have to teach variability-related concepts? 

 

The present research set out to explore Venezuelan secondary school mathematics 

teachers’ knowledge base of SKT, which led to this research question. In an attempt to find 

answer to it, the researcher drew upon the eight dimensions of professional competencies 

for teaching variability-related contents identified by this study, the twelve indicators of 

SKT previously outlined, and an exhaustive review of the statistic education literature, to 

develop a survey instrument with the purpose of eliciting and gathering information about 

each one of the aforementioned eight components of teachers’ professional competencies 

to teach variability-related contents. Each question was developed based on previous 

studies with similar aims reported in the literature (e.g., Meletiou & Lee, 2003; Ball et al., 

2008; Manizade & Mason, 2011; Isoda & González, 2012), which were adapted to reflect 

the setting of the selected task and the specific objectives of the present conceptual 

framework proposed by this study. The survey was circumscribed to statistical ideas in the 

field of descriptive statistics, a restriction mainly motivated by the fact that most of the 

statistical contents in the Venezuelan secondary school mathematics curriculum are ideas 

related to such field. 

 

The collected data from the survey and the findings presented and discussed in 

Chapters 5 provide a snapshot of the current state of Venezuelan secondary school 
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mathematics teachers’ knowledge base of SKT in relation to variability-related contents. 

After a qualitative analysis of the answers given by the participants in this study, looking 

for evidence of whether or not each of the 12 SKT-related indicators was met, it was 

collected valuable information on the knowledge base of SKT, conceptions of variability, 

and beliefs about statistics teaching and learning held by the participants in this study. The 

results and main findings regarding surveyed teachers’ knowledge base on SKT are 

summarized to certain extent in Table 27. 

 

Table 27: Summary of the results on surveyed teachers meeting the indicators associated 

to SKT proposed in this study 

Elicited Knowledge 

Component of SKT 

Indicator 

Associated to SKT

# of teachers 

meeting the 

indicator 

% of teachers 

meeting the 

indicator 

Common Content 

Knowledge (CCK)    

(as Statistical Literacy) 

A-1 13 24.5% 

A-2 18 34.0% 

Specialized Content 

Knowledge (SCK) 

B-1 8 15.1% 

B-2 8 15.1% 

Horizon Content 

Knowledge (HCK) 

C-1 24 45.3% 

C-2 37 69.8% 

Knowledge of Content 

and Students (KCS) 

D-1 17 32.1% 

D-2 13 24.5% 

Knowledge of Content 

and Teaching (KCT) 

E-1 Refer to Table 24 

E-2 Refer to Table 25 

Knowledge of Content 

and Curriculum (KCC) 

F-1 6 11.3% 

F-2 26 49.1% 

 

Also, significant connections among the six components within the cognitive facet, 
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as well as among cognitive and affective components, are revealed, as well as the 

co-existence of simple or sophisticated recognition of variability with statistical 

misconceptions and algorithmic and procedural limitations. Despite the latter, it could be 

said, generally speaking, that teachers who showed evidence of paying attention to both 

middles and spread in Question (a) did quite well in the rest of the survey, unlike those 

teachers who evidenced holding misconceptions in their answers to the same question. A 

summary of the results from each question in the survey, as well as some conclusions that 

could be drawn from them, follows. Such conclusions were formulated on the basis of the 

proportion of surveyed teachers who fully met each of the twelve SKT- related indicators 

previously identified. 

 

From the survey responses to Question (a), it could be said that, in the statistical 

setting explored, Venezuelan secondary school mathematics teachers’ common content 

knowledge, statistical literacy skills, and conceptions of variability need to be improved, 

and even built in some cases. This comes from several facts: just 13 out of 53 

teachers—24.5% overall—provided a correct answer without committing any calculation 

mistake and supported it on arguments based on simple or sophisticated recognition of 

variability; the low proportion of surveyed teachers considering in their answers the 

connections between middles in data and the variability of data dispersed around a 

middle—almost 19% overall in the best case—; and the high proportion of teachers who 

provided a wrong answer and evidenced statistical misconceptions—26 teachers either 

selecting the wrong distribution or choosing the right one for the wrong reasons, and 17 
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teachers conceptualizing variability as visual cues in the graph. 

 

From the survey responses to Question (b), it could be said that a sizable 

proportion of surveyed teachers—i.e., 37 teachers, 69.8% overall—showed evidence of 

being able to establishing connections between the cognitive demands of the posed task 

and fundamental ideas, practices, values and sensibilities of the discipline of statistics; that 

is, evidenced a solid horizon content knowledge. The majority of these teachers indicated 

statistical ideas and practices related to the construction of frequency distribution tables 

and the calculation of measures of central tendency and variation. 

 

From the survey responses to Question (c) arises a clear example of the strong 

relation between common content knowledge, high-level conceptions of variability, and 

specialized content knowledge. Only 8 of the surveyed teachers—15.1% 

overall—consistently exhibited ability to correctly judge the accuracy of the answers given 

by three fictitious students. These teachers were the only ones in the present study who 

correctly judged the accuracy of the answers given by the fictitious students in Question 

(c), but also made appropriate observations for each case about why they thought so, and 

provided accurate comments about the most likely reasoning behind each student’ answer. 

Moreover, 7 out of 8 of these teachers provided right responses to Question (a) exhibiting 

simple or sophisticated recognition of variability. 

 

From the survey responses to Question (d), the weak knowledge base of 
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knowledge of content and students held by the surveyed teachers is revealed. Just 13 

teachers—24.5% overall—were able to simultaneously provide appropriate likely common 

responses and difficulties expected from the students, a correct assessment of the accuracy 

or inaccuracy attributed to such responses, and appropriate reasons for such assessment. 

Harboring some statistical misconceptions, as well as failing to provide a right assessment 

of the accuracy or inaccuracy of students’ likely common answers given by them, seem to 

be the main problems among the surveyed teachers in this question. 

 

Survey responses to Question (e) shed light on another feature of the knowledge 

base of SKT held by the surveyed teachers: their ability to identify whether a student 

response to the given task is interesting or significant, from a mathematical or statistical 

standpoint, while evidencing skills associated to the cognitive construct horizon content 

knowledge. Some of those skills are identifying seeds of misconceptions or 

misrepresentations in the comments made by the students; recognizing mathematical 

opportunities; demonstrating sense of the mathematical and statistical environment 

surrounding the current “location” in instruction; recognizing major disciplinary ideas, 

structures and practices; acknowledging core mathematical and statistical values and 

sensibilities; and making connections with other disciplines. In the present study, only 24 

respondents—45.3% overall—provided evidence of such skills. 

 

From the survey responses to Question (f), the weak knowledge base of 

knowledge of content and curriculum held by the surveyed teachers is left exposed. 
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Among the 45 teachers who provided an answer to Question (f), only 6 of them—11.3% 

overall—evidenced knowledge about both the specific statistical concepts in the 

mathematics curriculum, and the grade levels and/or content areas at which students are 

typically taught such concepts. 

 

From the survey responses to Question (g), it was possible to gather valuable 

information about the surveyed teachers’ knowledge base in knowledge of content and 

curriculum (KCC) and knowledge of content and teaching (KCT), as well as about their 

beliefs on statistics teaching and learning. Regarding KCC, 26 teachers—49.1% 

overall—were those whose planned lessons seem to be student-centred ones, showing 

evidence of teachers’ knowledge and support of the objectives and methodological 

guidelines provided by official curriculum documents in Venezuela in relation to the 

teaching of statistics at secondary level. Regarding KCT, on the basis of the 

multidimensional assessment rubric designed to examine the planned lessons provided by 

the surveyed teachers, it could be said, among other things, that 26 of them—49.1% 

overall—planned to pose examples and activities involving real-world contexts or real 

data; 13 teachers—24.5% overall—planned surveys inside and outside the classroom as 

collecting real data activities; 25 teachers—47.2% overall—planned using multiple 

representations of data during their lessons; only 19 teachers—35.8% overall—explicitly 

planned to measure variability during their lessons; just 4 teachers—7.5% 

overall—planned lessons promoting whole-class discussions about the need of measures of 

variation in addition to measures of central tendency; and 23 teachers—43.4% 
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overall—planned to pose lessons starting with activities in which students have to either 

engage in the process of gathering real data, or organize and interpret sets of real data 

provided by the teacher. Finally, regarding teachers’ beliefs on statistics teaching and 

learning, it seems that the majority of the surveyed teachers believe that teaching statistics 

must emphasize the acquisition of algorithmic skills and procedures. On the one hand, 

some of those teachers seem to believe that it is possible to teach statistics is a 

teacher-centred way, and paying no attention to context and applications—the so-called 

traditionalists, who represent, overall, 34.0% of the surveyed teachers—; on the other 

hand, some of them seem to believe that the effective way to teach statistics consists in 

teaching theory and algorithms at first, and then apply such knowledge to solve real-world 

problems—the so-called application preparers, who also represent, overall, 34.0% of the 

surveyed teachers. 

 

From the analysis of the collected data, many interrelations between the eight 

components of mathematics teachers’ professional competencies to teach efficiently 

statistics identified by this study seem to be taking place. For example, from the 6 teachers 

who made reference to “symmetry” and “asymmetry” in Question (b), 4 failed in 

answering correctly Question (a)—showed evidence of holding the conception Variability 

as visual cues in the graph—; all failed Questions (c) and (d); and 4 designed lessons 

focused on “symmetry”, “asymmetry” and “normality”. This seems to indicate a relation 

between holding a particular statistical misconception—i.e., thinking of variability in terms 

of symmetry, or lack thereof—and the cognitive constructs CCK, SCK, HCK, KCS and 
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KCT. 7 out of 8 of the teachers who fully met Indicators B-1 and B-2—related to Question 

(c), posed to gather information on SCK—, exhibited simple or sophisticated conceptions 

of variability in Question (a), which implies to fully meet Indicator A-2—i.e., to be able to 

consistently identify and acknowledge variability and correctly interpret its meaning in the 

setting of the given task. Thus, this result seems to indicate a relation between holding 

simple or sophisticated conceptions of variability and the cognitive constructs CCK and 

SCK. 10 out of the 13 teachers who provided a wrong assessment about the accuracy of 

their responses in Question (d)—posed to gather information on KCS—, also gave 

answers evidencing misconceptions in Question (a). Therefore, it seems to be a relation 

between holding statistical misconceptions and the cognitive constructs CCK and KCS. 

All these relations that seem to emerge from the analysis of the collected data may be 

further examined by future research projects, in order to improve our understanding of 

such intertwinements and guide further inquiry. 

 

It is worthy to highlight the fact that the present study represents a research effort 

to clarify the current situation of teaching statistics at secondary school in Venezuela, 

focusing of the statistical knowledge for teaching, conceptions of variability, and 

statistics-related beliefs held by mathematics teachers. Thus, this study is, to a certain 

extent, a research on the current situation of the Venezuelan secondary school mathematics 

curriculum at intended and implemented levels. However, from the findings of this study, 

it is clear some aspects of “what should be” the statistics education in Venezuela, in 

particular, from which implications for improving the intended and implemented 
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secondary school mathematics curriculum could be drawn. Such implications are discussed 

in the section “Implications”, at the end of this chapter. 

 

6.2.3  Answer to the Third Research Question: How do Venezuelan secondary school 

mathematics teachers conceptualize variability, and what beliefs about statistics, its 

teaching and learning, do they have? 

González (2011) and Isoda and González (2012) have shown empirically that 

mathematics teachers’ conceptions of variability can be made explicit by solving tasks in 

which knowledge and understanding of variability-related ideas, as well as the ability to 

connect and represent them, are required. Based on this fact, it is anticipated that teachers’ 

answers to Question (a) will provide enough information about how the respondents 

conceptualize variability, since such cognitive demands and skills are required to answer 

correctly the task posed in the survey questionnaire. These conceptions of variability that 

might be distinguished in teachers’ answers were classified, at first, using the eight-type 

categorization proposed by Shaughnessy (2007, pp. 984–985). Later, since not all the 

responses from teachers fitted into one of those 8 descriptions of variability—in particular, 

those from teachers providing responses focused on visual cues in the graph—, different 

conceptions of variability to those identified by Shaughnessy (2007) were found.  

 

In summary, the ways in which Venezuelan secondary school mathematics 

teachers seem to conceptualize variability, when dealing with a task in the particular 

context of histograms and comparing distributions, are the following: 
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Variability in particular values: This conception is characterized by the person focusing on 

individual data values, such as the extremes of the distribution to calculate the range. In the 

present study, 10 teachers—18.8% overall, 4 working at lower high school, 1 at upper high 

school, and 5 at both levels—seem to be holding this conception. 

 

Variability as distance or difference from some fixed point: Teachers who seem to think of 

variability as either a visual measurement of the distance of each or some elements of a 

dataset from some measure of center, or an actual measurement from the endpoints to 

some measure of center, show evidence of holding this conception. In the present study, 9 

teachers—17.0% overall, 4 working at lower high school, 4 at upper high school, and 1 at 

both levels—seem to be holding this kind of conception. 

 

Variability as the sum of residuals: Teachers who measured variability through 

deviation-based metrics, such as the mean absolute deviation, sum of residuals or averages 

of the absolute value differences from a measure of center, show evidence of harboring 

this conception. In the present study, 6 teachers—11.3% overall, 1 working at lower high 

school, 4 at upper high school, and 1 at both levels—seem to be holding this conception. 

 

Variation as distribution: Teachers whose answers involve transnumeration, as well as use 

of theoretical properties of the histograms to calculate numerically the measures of central 

tendency and variation, show evidence of holding this conception. Then, 10 teachers in the 

present study—18.8% overall, 2 working at lower high school, 6 at upper high school, and 
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2 at both levels—seem to hold this conception. 

 

Variability as visual cues in the graph: Teachers whose responses revealed misconceptions 

such as thinking of variability in terms of symmetry or degree of fit—or lack thereof—to a 

normal distribution, or thinking of symmetrical or quasi-normal distributions as having 

less or more variability than its asymmetrical counterparts, show evidence of holding the 

conception. In the present study, 17 teachers—32.1% overall, 4 working at lower high 

school, 3 at upper high school, and 10 at both levels—seem to hold this conception. 

 

In the case of teachers’ beliefs about statistics teaching and learning, they were 

identified from particular features of the lesson plans that teachers produce (cf. Eichler, 

2008, 2011; Pierce & Chick, 2011). Therefore, answers to Question (g) were analyzed in 

order to identify the four categories reflecting on teachers’ beliefs developed by Eichler 

(2011)—i.e., traditionalists, application preparers, everyday life preparers, and 

structuralists. As result, none of the participants in the present study was categorized as a 

structuralist; 8 teachers—15.1% overall, 2 working at lower high school, 2 teachers 

working at upper high school, and 4 teachers working at both levels—could be regarded as 

application preparers; 18 teachers—34.0% overall, 10 working at lower high school, 4 

teachers working at upper high school, and 4 teachers working at both levels—could be 

considered as everyday-life preparers; and 18 teachers—34.0% overall, 5 working at lower 

high school, 7 teachers working at upper high school, and 6 teachers working at both 

levels—could be regarded as traditionalists. 
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6.3  Implications 

 

The results of the present study have wide implications for classroom 

implementation, teacher education and teacher training in the teaching of statistics at 

secondary school level in Venezuela. First and foremost, the intended curriculum might 

require some obvious modifications. As pointed out during the analysis of the verbs used 

in the entire Venezuelan mathematics curriculum for secondary school in Chapter 2—see 

Table 5—, Venezuelan secondary school mathematics curriculum does not seem to 

promote critical thinking—which is stressed in the definition of statistical literacy—, and 

focus on knowledge, comprehension and/or application instead of higher order thinking 

skills. These skills, sometimes regarded in the literature as critical thinking skills, allow 

students to think convergently and divergently to investigate challenges and problems, as 

well as to think in complex and creative ways rather than in a linear fashion (O’Tuel & 

Bullard, 1995; Resnick, 1987; Tishman et al., 1993; Garfield & Ben-Zvi, 2008). 

Furthermore, it was found that, even though there are many instructional contents related 

to statistics in the Diversified cycle of secondary school in Venezuela—see Table 4—, 

there is no overall objective related to the learning of such contents, but only to the 

probability-related ones. 

 

In addition to the intended curriculum issues, Venezuelan teachers’ knowledge 

base of statistical knowledge for teaching may not be adequate. More importantly, from 

the results obtained here one can conclude that teachers may not have the techniques, the 
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required conceptions, the affective grounds, or a suitable instructional approach to use for 

effective teaching of statistics, specifically those contents where variability may arise. For 

this reason, an effort is needed to thoroughly teach statistics to future teachers, and to give 

to practicing teachers the tools—both cognitive and affective—required to teach 

successfully the statistical contents included in the Venezuelan secondary school 

mathematics curriculum, according to the recommendations and research findings reported 

in the specialized literature on statistics education. Such conscious effort involves, first and 

foremost, shifting teachers’ attention to the variability instead of to measures of central 

tendency and the shape of the graph, fact that was corroborated in the results obtained 

through the implementation of the survey questionnaire. Also, it might be required to 

provide Venezuelan prospective and in-service mathematics teachers with a solid cognitive 

and pedagogical grounding in the statistical topics they must teach at school. In order to do 

that, teacher training programs must stress statistical contents, especially those where 

variability arises, with the purpose of equipping teachers with effective instructional 

strategies and sophisticated conceptions of variability to teach statistics effectively.  

 

The active and directive role played by the teacher in the classroom is the most 

important characteristic of the direct instruction, since teacher “tells, shows, models, 

demonstrates, teaches the skills to be learned” (Baumann, 1988, p.714). So, teacher 

education programs might have be in an urgent need to inculcate in teachers awareness, 

skills and understanding of variability and other fundamental statistical ideas, in order to 

build and improve teachers’ statistical literacy skills, such as data analysis strategies, data 
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representation and critical thinking. Without such awareness, conceptions, and skills, the 

teaching of statistics in Venezuela at school level is unlikely to fully develop its potential, 

and the mathematics curriculum may not be achieved successfully. 

 

In addition to the aforementioned implications, future research projects may further 

examine many of the relations between the eight components of mathematics teachers’ 

professional competencies to teach efficiently statistics identified by this study that seem 

to emerge from the analysis of the collected data. Such future studies will contribute to 

improve our current understanding of such intertwinements, and would guide further 

inquiry. 

 

6.4  Limitations 

 

A possible limitation of the present investigation might be found in the 

implementation of the survey. Such implementation was limited to junior and senior high 

schools in the metropolitan area of Caracas, the capital city of Venezuela, and hence the 

obtained results and drawn conclusions may not represent the true characteristics of the 

whole population of Venezuelan middle and high school teachers. Another limitation was 

that participation was voluntary, which could have affected the total number of participants 

in the present research.  

 

Other possible constraint of the study was the surveyed contents, because of the 
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possible unfamiliarity with statistics of some respondents or possible participants. As 

discussed in Chapter 2, a research carried out by Salcedo (2008) over secondary school 

mathematics teachers working in the Venezuelan Capital District, shows that most of the 

participants were not teaching contents related to statistics and probability, and the few 

who did, tended to ask students for a written report about definitions of statistical concepts. 

Furthermore, most of the teachers in Salcedo’s study admitted the lack of training to work 

with statistical topics. This likely unfamiliarity with the contents, as well as teachers’ 

perceived lack of preparation to teach statistics, might affect survey results and 

participation rate, since when being asked to fill out a survey, the respondent’s decision 

will be positive when he or she considers a survey a pleasant activity (survey enjoyment), 

which produces useful (survey value) and reliable (survey reliability) results and when the 

perceived cost of cooperation in the interview (time and cognitive efforts = survey cost) 

and impact on privacy (survey privacy) are minimal (Loosveldt & Storms, 2008). So, even 

though the impact on privacy is minimal for the current survey instrument, the survey cost 

would be high for some teachers, since statistics is a topic that seems to be avoided by 

many Venezuelan teachers, and a lot of them may have felt uncomfortable participating in 

this research, generating a minimal survey enjoyment and consequently avoiding taking 

the survey or incompletely filling it in. 

 

Another limitation could be that, to the knowledge of the researcher, there are no 

previous studies in Venezuela which tried to answer the research questions posed by the 

present study, so the results presented here cannot be largely corroborated by triangulation 
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with results from other research efforts done in the country, even though some results were 

corroborated with previous researches in other countries, but targeted to different 

populations. As is used here, triangulation is a process that can be used to judge and 

enhance the reliability of research findings by seeking a convergence of results using 

multiple methods, investigators, data sources, or theoretical lenses (Green, Caracelli, & 

Graham, 1989; Tashakkori & Teddlie, 1998). However, results in this study may be used 

with reasonable reliability (as done above) to explore how Venezuelan in-service 

secondary school mathematics teachers acknowledge variability in a setting of comparing 

distributions of data, what kind of beliefs towards teaching and learning of statistics they 

might hold, and what knowledge base of statistical knowledge for teaching, or lack thereof, 

they might have about the instruction of statistical contents related to variability in data. 

 

The fact that this study is based on one researcher’s interpretations of data collected 

from survey questionnaires might represent a limitation. Other interpretations may be 

possible. 

 

Finally, maybe the biggest limitation of the present study was not interviewing the 

participants—or a sub-sample of them—after carrying out the survey. This would have 

allowed going deeper into the understanding of some traits identified in the framework for 

SKT proposed here. 
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6.5  Suggestions for future research 

 

There are many directions for future research that could enable a greater 

understanding of Venezuelan secondary school mathematics teachers’ knowledge base of 

statistical knowledge for teaching, and what features of their statistical knowledge for 

teaching, conceptions of variability and statistics-related beliefs could result in gains in 

student achievement. A natural next step for this research would be to organize and 

conduct a seminar or teaching experiment using the same task chosen for the present 

research, in order to study the effects of such an experience on teachers’ SKT. A possible 

way could be a comparison study between seminar participants and non-participants and 

their students’ achievement. By conducting this comparative study, it could be possible to 

determine whether the seminar or teaching experiment was effective in improving 

mathematics teachers’ SKT, and, subsequently, their students’ statistical knowledge and 

skills related to statistical literacy. 

 

Even though this study has provided some valuable insights into how Venezuelan 

secondary school mathematics teachers acknowledge, think, describe and teach 

variability-related contents, we still need to learn a lot more about this area. One limitation 

of the study is that it was focused on Venezuelan in-service mathematics teachers in 

Caracas, which have been reported as having a loose grounding in statistics as well as a 

negative self-perception of their competence to teach statistics at secondary school level 

(Salcedo, 2008). Similar studies might be carried out in the future over different 
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groups—such as pre-service teachers and elementary school mathematics teachers—in 

order to broaden the investigation of Venezuelan mathematics teachers’ SKT at other 

school levels. Also, a similar study targeting in-service teachers at other cities and towns 

across Venezuela could be conducted. 

 

This research also gained insight into Venezuelan in-service secondary school 

mathematics teachers’ knowledge base of statistical knowledge for teaching, or lack 

thereof, about several intertwined variability-related ideas in the particular setting of 

comparing distributions of data. Future researches may use the results obtained in this 

study to find ways to create learning environments that facilitate deeper understanding of 

variability in the given setting, as well as of those statistical ideas in which surveyed 

teachers exhibited difficulties, lack of knowledge or misconceptions. Also, future research 

efforts may investigate ways that could help teachers—and even students—develop 

sophisticated conceptions of variability, and use them appropriately depending on the 

statistical context. 

 

Finally, due to the strong correlation between beliefs and values (cf. Sjöberg & 

Winroth, 1986; Philipp, 2007), a future implementation of the present study might target 

the values held by in-service teachers in relation to the teaching and learning of statistics. 
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