主成分分析に基づく設計変数分類法と 実用的な船舶構造最適化システムに関する研究

(Classification method of design variables based on principal component analysis and practical optimization system for ship structures)

平川 真一

2014年3月

目次

第1章	緒論	1
1.1	研究の背景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2	研究の沿革 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	1.2.1 船舶の構造設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	1.2.2 船舶の構造最適化に関する研究・・・・・・・・・・・・・・・・・・・・・・	4
	1.2.3 部材寸法計算による構造最適化に関する研究 ・・・・・・・・・・・	5
	1.2.4 FEM 解析による構造最適化に関する研究 · · · · · · · · · · · · · · · · · · ·	6
	1.2.5 座屈・最終強度評価法の簡易化に関する研究 ・・・・・・・・・・・	8
1.3	研究の目的と論文の構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
笛っ辛	<u> おおまははに とて 株体 見 済ル</u>	11
55 4 早	- 部内 う 広計 昇に みる 構 迫 取 過 し ≪ ⇒	11
2.1		11
2.2		11
2.3		14
	2.3.1 150KDWT 油タンカーの構造最適化 · · · · · · · · · · · · · · · · · · ·	14
	2.3.2 300KDWT 油タンカーの構造最適化 · · · · · · · · · · · · · · · · · · ·	32
2.4	結言	35
第3章	制約条件を考慮した設計変数の分類法	37
3.1	緒言 ••••••••••••••••••••••••••••••••••••	37
3.2	主成分分析に基づく設計変数の分類法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	3.2.1 概要 ·····	37
	3.2.2 設計変数の制約条件に対する影響度 ・・・・・・・・・・・・・・・・・	38
	3.2.3 主成分分析 ·····	40
	3.2.4 設計変数の分類のための閾値 ・・・・・・・・・・・・・・・・・・・・・	41
3.3	簡易モデルによる提案手法の検証・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	3.3.1 検証モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	3.3.2 主成分分析結果 · · · · · · · · · · · · · · · · · · ·	43

	3.3.3	設計変数の分類例1・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
	3.3.4	設計変数の分類例 2 · · · · · · · · · · · · · · · · · ·	47
	3.3.5	設計変数の分類例 3 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	50
	3.3.6	構造最適設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
	3.3.7	解の収束に関する考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
3.4	300KI	DWT 油タンカーの構造最適化への提案手法の適用 ・・・・・・・・・・	55
3.5	結言 ·		59
第4章	座屈・	最終強度の簡易評価法	60
4.1	緒言·		60
4.2	$\operatorname{CSR} k$	こおける座屈・最終強度評価法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
	4.2.1	CSR-T で規定される座屈・最終強度評価法 · · · · · · · · · · · ·	60
	4.2.2	CSR-B で規定される座屈・最終強度評価法 ・・・・・・・・・・・	68
	4.2.3	CSR に適合した構造最適化における座屈・最終強度評価法の問題点	69
4.3	座屈強	渡簡易推定式 · · · · · · · · · · · · · · · · · · ·	70
	4.3.1	基礎理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
	4.3.2	面内圧縮荷重を受ける矩形平板の座屈強度 ・・・・・・・・・・・・	72
4.4	最終強	這度簡易推定式 · · · · · · · · · · · · · · · · · · ·	75
	4.4.1	防撓材方向の圧縮荷重下における最終強度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	75
	4.4.2	防撓材と直角方向の圧縮荷重下における最終強度・・・・・・・・・・	77
	4.4.3	最終強度相関関係式 ·····	78
	4.4.4	最終強度簡易推定式におけるパラメータ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
	4.4.5	最終強度簡易推定式と PULS のベンチマーク ・・・・・・・・・・・	81
4.5	最終強	渡簡易推定式の修正	92
	4.5.1	最終強度簡易推定式の修正方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
	4.5.2	修正係数と適用方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
	4.5.3	flat-bar 付防撓パネルの有効断面の修正 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
	4.5.4	修正後の最終強度簡易推定式と PULS のベンチマーク ・・・・・	98
4.6	結言·		110
第5章	FEM	解析による構造最適化	112
5.1	緒言·		112
5.2	$\operatorname{CSR} k$	こ適合した構造強度評価システム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
	5.2.1	システムの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113

	5.2.2 FEM 解析モデル自動作成機能 · · · · · · · · · · · · · · · · · · ·	114
	5.2.3 荷重境界条件作成機能 · · · · · · · · · · · · · · · · · · ·	129
	5.2.4 構造強度評価機能 · · · · · · · · · · · · · · · · · · ·	133
	5.2.5 構造最適化支援機能 · · · · · · · · · · · · · · · · · · ·	139
5.3	構造強度評価システムの CSR への適合性検証 ・・・・・・・・・・・・・・・・・	139
	5.3.1 150KDWT 油タンカー · · · · · · · · · · · · · · · · · · ·	140
	5.3.2 300KDWT 油タンカー · · · · · · · · · · · · · · · · · · ·	147
	5.3.3 200KDWT ばら積貨物船 · · · · · · · · · · · · · · · · · · ·	156
	5.3.4 構造強度評価システムの CSR への適合性検証結果 ・・・・・・・・	161
5.4	FEM 解析による構造最適化 · · · · · · · · · · · · · · · · · · ·	161
	5.4.1 Hogging bending moment の船殻重量への影響把握 · · · · · · · · · · ·	162
	5.4.2 横桁の形状最適化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	162
	5.4.3 水平桁の形状最適化	164
5.5	結言	169
第6章	結論	172
6.1	結論 ••••••••••••••••••••••••••••••••••••	172
6 9	今後の課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	173
0.2		
0.2 参考文南	रो	175
^{0.2} 参考文南 謝辞	吠	175 183
^{0.2} 参考文南 謝辞 本研究に	式 こ関連した発表論文	175 183 184
0.2 参考文南 謝辞 本研究に 付録 A	式 こ関連した発表論文 最終強度簡易推定式と PULS のベンチマーク条件	175 183 184 185
0.2 参考文南 謝辞 本研究に 付録 A A.1	ば こ関連した発表論文 最終強度簡易推定式と PULS のベンチマーク条件 ベンチマークに使用した防撓パネルの部材寸法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	175 183 184 185 185
0.2 参考文南 謝辞 本研究に 付録 A A.1 A.2	は こ関連した発表論文 最終強度簡易推定式と PULS のベンチマーク条件 ベンチマークに使用した防撓パネルの部材寸法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	175 183 184 185 185 185
0.2 参考文南 謝辞 本研究に 付録 A A.1 A.2 付録 B	K よ よ よ よ よ よ よ よ た 発表論文 よ と PULSのベンチマーク条件 ベンチマークに使用した防撓パネルの部材寸法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 175 183 184 185 185 191 192
0.2 参考文南 謝辞 本研究に 付録 A A.1 A.2 付録 B 付録 C	武 ま ま お ま お ま ま ま ま ま た 発 表 論 文 ま た て し た 防 持 パ ネ ルの 部 材 寸 法 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	 175 183 184 185 185 191 192 207
0.2 参考文南 謝辞 本研究に 付録 A A.1 A.2 付録 B 付録 C C.1	t t	 175 183 184 185 191 192 207 207

図 目次

2.1	Rule calculation process using PSH-Rules	13
2.2	Proposed optimization system using PSH-Rules-Excel. · · · · · · · · · · · · · · · · · · ·	14
2.3	Design variable group of plates.	15
2.4	Design variable group of stiffeners.	15
2.5	History of hull structural weight arranged by the ratio to Case C. $\cdots \cdots$	29
2.6	Breakdown of construction cost.	31
2.7	Use ratio of material grades (min. cost of caseC)	31
2.8	Use ratio of material grades (min. weight of case C)	31
2.9	Design variable divided into groups.	33
2.10	History of hull steel weight ratio.	34
3.1	Classification of design variables based on principal component analysis. $\cdot \cdot$	37
3.2	Composition of constraint condition.	39
3.3	Design variables of box type ship (half model)	42
3.4	Loading conditions of box type ship (half model)	43
3.5	Eigenvector of design variables (plate and stiffener).	45
3.6	Division of design variables (1st order).	47
3.7	$\label{eq:constraint} \text{Division of design variables (2nd order; proposed optimal calculation model)}.$	47
3.8	Division of design variables (Case 1).	48
3.9	Division of design variables (Case 2).	49
3.10	Division of design variables (2nd order; Case 3)	50
3.11	Division of design variables (Case 3).	50
3.12	Optimal calculation models based on principal component analysis. \cdots	51
3.13	Optimal calculation models based on designer's consideration. $\cdots \cdots \cdots$	51
3.14	History of weight(1). \cdots	53
3.15	History of weight(2). \cdots	53
3.16	Design variable divided into groups (proposed model)	56
3.17	History of hull steel weight ratio.	57

4.1	Buckling modes assumed in PULS (local buckling mode).	61
4.2	Buckling modes assumed in PULS (overall buckling mode). $\cdots \cdots \cdots \cdots$	61
4.3	Deflection-components of local buckling model assumed in PULS. $\cdots \cdots \cdots$	62
4.4	Initial deflection assumed in PULS.	63
4.5	Beam model to estimate reference pressure	64
4.6	Checking points for yielding (1)	65
4.7	Checking points for yielding (2)	65
4.8	Buckling assessment for longitudinal strength members.	67
4.9	Buckling assessment for transverse web frames.	67
4.10	Buckling assessment for transverse bulkhead.	68
4.11	Rectangular plate under longitudinal thrust.	72
4.12	Comparison of buckling strength of rectangular plate under bi-axial thrust	
	by PULS and formula (Case 1).	74
4.13	Comparison of buckling strength of rectangular plate under bi-axial thrust	
	by PULS and formula (Case 2). · · · · · · · · · · · · · · · · · · ·	75
4.14	Comparisons of ultimate strength of flat-bar under thrust by PULS and	
	Harada's formula	84
4.15	Comparisons of ultimate strength of flat-bar under combined thrust and	
	lateral pressure on positive side by PULS and Harada's formula $\ \cdots \cdots \cdots$	85
4.16	Comparisons of ultimate strength of flat-bar under combined thrust and	
	lateral pressure on negative side by PULS and Harada's formula $\cdots \cdots \cdots$	86
4.17	Comparisons of ultimate strength of angle-bar under thrust by PULS and	
	Harada's formula	87
4.18	Comparisons of ultimate strength of angle-bar under combined thrust and	
	lateral pressure on positive side by PULS and Harada's formula $\ \cdots \cdots \cdots$	88
4.19	Comparisons of ultimate strength of angle-bar under combined thrust and	
	lateral pressure on negative side by PULS and Harada's formula · · · · · ·	89
4.20	Comparisons of ultimate strength of tee-bar under thrust by PULS and	
	Harada's formula	90
4.21	Comparisons of ultimate strength of tee-bar under combined thrust and	
	lateral pressure on positive side by PULS and Harada's formula $\ \cdots \cdots \cdots$	91
4.22	Comparisons of ultimate strength of tee-bar under combined thrust and	
	lateral pressure on negative side by PULS and Harada's formula	92

4.23	Interaction curve of ultimate strength of stiffened plate under bi-axial
	thrust (flat-bar) · · · · · · · · · · · · · · · · · · ·
4.24	Deflection mode of plate and stiffener. 97
4.25	Comparisons of ultimate strength of flat-bar under thrust by PULS and
	modified Harada's formula · · · · · · · · · · · · · · · · · · ·
4.26	Comparisons of ultimate strength of flat-bar under combined thrust and
	lateral pressure on positive side by PULS and modified Harada's formula \cdot 101
4.27	Comparisons of ultimate strength of flat-bar under combined thrust and
	lateral pressure on negative side by PULS and modified Harada's formula \cdot 102
4.28	Comparisons of ultimate strength of angle-bar under thrust by PULS and
	modified Harada's formula · · · · · · · · · · · · · · · · · · ·
4.29	Comparisons of ultimate strength of angle-bar under combined thrust and
	lateral pressure on positive side by PULS and modified Harada's formula \cdot 104
4.30	Comparisons of ultimate strength of angle-bar under combined thrust and
	lateral pressure on negative side by PULS and modified Harada's formula \cdot 105
4.31	Comparisons of ultimate strength of tee-bar under thrust by PULS and
	modified Harada's formula $\cdots \cdots \cdots$
4.32	Comparisons of ultimate strength of tee-bar under combined thrust and
	lateral pressure on positive side by PULS and modified Harada's formula \cdot 107
4.33	Comparisons of ultimate strength of tee-bar under combined thrust and
	lateral pressure on negative side by PULS and modified Harada's formula \cdot 108
4.34	Correction coefficient of angle/tee-bar
5.1	Flow of strength assessment system 113
5.2	Sample of 2D template of longitudinal member
5.3	2D template of bilge transverse frame
5.4	Concept of Rubber element
5.5	Function of creating 3D geometry model 118
5.6	2D template of longitudinal member (tanker)
5.7	2D template of typical transverse frame (tanker). · · · · · · · · · · · · · · · 120
5.8	2D template of bilge transverse frame (tanker). · · · · · · · · · · · · · · · 121
5.9	2D template of horizontal girder (tanker). · · · · · · · · · · · · · · · · · · ·
5.10	2D template of longitudinal member (bulk carrier)
5.11	2D template of top side tank transverse frame (bulk carrier). · · · · · · · · 124

5.12	2D template of lower stool (bulk carrier)	125
5.13	2D template of corrugated bulkhead (bulk carrier).	126
5.14	Three cargo hold model of 200KDWT bulk carrier (shows only starboard	
	side of the full breadth model).	127
5.15	Three cargo hold model of 300KDWT tanker (shows only starboard side	
	of the full breadth model).	128
5.16	Three cargo hold model of 150KDWT tanker.	128
5.17	A result of changing design variable (HDB).	129
5.18	Tanker model which had defined load conditions.	130
5.19	Tanker model which had defined boundary conditions.	131
5.20	Comparison of stress in upper deck (tanker).	131
5.21	Comparison of stress in side shell (tanker).	132
5.22	Comparison of stress in inner bottom (bulk carrier).	132
5.23	Comparison of stress in side shell (bulk carrier). · · · · · · · · · · · · · · · · · · ·	133
5.24	Active yield utilization factor ratio (tanker).	135
5.25	Active yield utilization factor (bulk carrier).	136
5.26	Active buckling utilization factor ratio (tanker).	138
5.27	Active buckling utilization factor (bulk carrier).	138
5.28	Comparison of yield utilization factor ratio obtained by proposed system	
	and PSH-DSA (Transverse frame of 150KDWT tanker).	141
5.29	Comparison of yield utilization factor ratio obtained by proposed system	
	and PSH-DSA (Horizontal girder of 150KDWT tanker)	142
5.30	Comparison of buckling utilization factor ratio obtained by proposed sys-	
	tem and PSH-DSA (Transverse frame of 150KDWT tanker)(1). $\cdots \cdots \cdots$	143
5.31	Comparison of buckling utilization factor ratio obtained by proposed sys-	
	tem and PSH-DSA (Transverse frame of 150KDWT tanker)(2). $\cdots \cdots \cdots$	144
5.32	Comparison of buckling utilization factor ratio obtained by proposed sys-	
	tem and PSH-DSA (Transverse frame of 150KDWT tanker)(3). $\cdots \cdots \cdots$	145
5.33	Comparison of buckling utilization factor ratio obtained by proposed sys-	
	tem and PSH-DSA (Horizontal girder of 150KDWT tanker). $\cdots \cdots \cdots$	146
5.34	Comparison of yield utilization factor ratio obtained by proposed system	
	and PSH-DSA (Bottom shell of 300KDWT tanker).	148
5.35	Comparison of yield utilization factor ratio obtained by proposed system	
	and PSH-DSA (Side shell of 300KDWT tanker)	149

5.36	Comparison of yield utilization factor ratio obtained by proposed system
	and PSH-DSA (Longitudinal bulkhead of 300KDWT tanker). $\cdots\cdots\cdots$ 150
5.37	Comparison of yield utilization factor ratio obtained by proposed system
	and PSH-DSA (Side stringer of 300KDWT tanker). $\cdots \cdots \cdots \cdots 151$
5.38	Comparison of buckling utilization factor ratio obtained by proposed sys-
	tem and PSH-DSA (Bottom shell of 300KDWT tanker). $\cdots\cdots\cdots\cdots$ 152
5.39	Comparison of buckling utilization factor ratio obtained by proposed sys-
	tem and PSH-DSA (Side shell of 300KDWT tanker). $\cdots \cdots \cdots \cdots 153$
5.40	Comparison of buckling utilization factor ratio obtained by proposed sys-
	tem and PSH-DSA (Longitudinal bulkhead of 300KDWT tanker). $\cdots \cdots 154$
5.41	Comparison of buckling utilization factor ratio obtained by proposed sys-
	tem and PSH-DSA (Side stringer of 300KDWT tanker). $\cdots\cdots\cdots\cdots$ 155
5.42	Comparison of utilization factors obtained by proposed system and PSH-
	DSA (Bottom shell of 200KDWT bulk carrier). · · · · · · · · · · · · · · · 157
5.43	Comparison of utilization factors obtained by proposed system and PSH-
	DSA (Center line bottom girder of 200KDWT bulk carrier). $\cdots\cdots\cdots$ 158
5.44	Comparison of utilization factors obtained by proposed system and PSH-
	DSA (Bilge transverse frame of 200KDWT bulk carrier). $\cdots \cdots \cdots 159$
5.45	Comparison of utilization factors obtained by proposed system and PSH-
	DSA (Corrugated bulkhead of 200KDWT bulk carrier). $\cdots \cdots \cdots \cdots 160$
5.46	Design variables of shape optimization of transverse frame (300KDWT
	tanker)
5.47	Design variable of shape optimization of horizontal girder (300KDWT
	tanker)
5.48	Comparison of buckling utilization factor ratio obtained by proposed sys-
	tem (Horizontal girder of 300KDWT tanker). $\cdots \cdots \cdots$
5.49	Comparison of buckling utilization factor ratio obtained by proposed sys-
	tem (Transverse bulkhead plate of 300KDWT tanker). · · · · · · · · · 168
C.1	Modelling of an unstiffened panel with irregular geometry 208
C.2	Approximation of non rectangular elementary plate panels. $\cdots \cdots \cdots 209$
C.3	Approximation of trapezoidal elementary plate panels. $\cdots \cdots \cdots 210$
C.4	Approximation of right triangle
C.5	Measuring b of corrugated bulkheads. $\cdots \cdots \cdots$

表 目次

2.1	Calculation cases with different number of stiffeners in the group	16
2.2	Design variable of plate of Case C.	16
2.3	Design variable of stiffener of Case C.	16
2.4	Total number of transverse frames in one hold.	17
2.5	Constraint conditions in accordance with scantling requirements of CSR-T	
	(1)	18
2.6	Constraint conditions in accordance with scantling requirements of CSR-T	
	$(2). \cdots \cdots$	19
2.7	Multi-Island GA parameters.	27
2.8	Summary of optimization results.	28
2.9	Weight ratio of material grade used.	28
2.10	Average satisfactory rate of typical constraint condition.	29
2.11	Minimum satisfactory rate of typical constraint condition of Case C. \cdots	30
2.12	Summary of optimization results.	30
2.13	Average satisfactory rate of typical constraint condition (Case C). $\cdots \cdots \cdots$	32
2.14	Multi-Island GA parameters.	34
2.15	Summary of calculation conditions and CPU time.	35
3.1	Dimension of stiffeners.	43
3.2	Eigenvalue and cumulative contribution ratio of correlation matrix. \cdots	44
3.3	Division of design variables (1st order).	46
3.4	Division of design variables (2nd order)	47
3.5	Division of design variables (2nd order; Case 2)	49
3.6	Division of design variables (2nd order; Case 3)	49
3.7	Division of design variables (1st order; Case 3)	49
3.8	Multi-Island GA parameters.	52
3.9	Optimal results of design variables.	54
3.10	Convergency of the optimal solution (Proposed model and Case 5). \cdots	55

Rate of the hull weight of each structural part
Satisfactory rate of required plate thickness (org.)
Satisfactory rate of required plate thickness (prop.)
Scantling of rectangular plate. 74
Benchmark cases of Harada's formula
Dimensions of stiffened panel and lateral pressure
Benchmark cases of modified Harada's formula
Maximum Permissible Stresses (CSR-T)
Assessment method of buckling and ultimate strength for tanker. $\cdots \cdots 137$
Evaluation result of influence on hull steel weight of hogging bending mo-
ment
Shape optimization results of transverse frame (300KDWT tanker). $\cdots 165$
Shape optimization results of horizontal girder (300KDWT tanker). \cdots 165
Scantling of stiffened panels (Flat-bar)
Scantling of stiffened panels (Angle-bar)
Scantling of stiffened panels (Tee-bar)(1). $\cdots \cdots \cdots$
Scantling of stiffened panels (Tee-bar)(2). $\cdots \cdots \cdots$
Scantling of stiffened panels (Tee-bar)(3). $\cdots \cdots \cdots$
Scantling of stiffened panels (Tee-bar)(4). $\cdots \cdots \cdots$
Calculation condition for benchmark 191
Correction coefficient(flat-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = MS$) · · · · · · · · · · · · 195
Correction coefficient (angle/tee-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = MS$) $\cdots \cdots 194$
Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{HT32}) \cdots 195$
Correction coefficient (angle/tee-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{HT32}) \cdots 196$
Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT36}, \sigma_{Ys} = \text{HT36}) \cdots 197$
Correction coefficient (angle/tee-bar; $\sigma_{Yp} = \text{HT36}, \sigma_{Ys} = \text{HT36}) \cdots 198$
Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT36}, \sigma_{Ys} = \text{HT32}) \cdots 198$
Correction coefficient(angle/tee-bar; $\sigma_{Yp} = \text{HT36}, \sigma_{Ys} = \text{HT32}) \cdots 200$
Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{MS}) \cdots 201$
Correction coefficient(angle/tee-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{MS}) \cdots 202$
Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{HT36}) \cdots 203$

B.12 Correction coefficient(angle/tee-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{HT36}) \cdots 2$	204
B.13 Correction coefficient(flat-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = HT32$) · · · · · · · · · · · · · · · · · · ·	205
B.14 Correction coefficient (angle/tee-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = HT32$) · · · · · · · · 2	206

第1章 緒論

1.1 研究の背景

近年,地球温暖化問題に対する社会的関心の高まりから,地球温暖化ガス (Green House Gas; GHG) の削減が急務となっており,国際海運においても GHG 削減スキームを 2011 年7月の国際海事機関 (International Maritime Organization; IMO) の海洋環境保護委員 会 (MEPC62) において採択するなど GHG 排出削減に向けた規制強化が進められている [18].また,船舶からの GHG 排出を規制するための指標として,概念的に式 (1.1) で表されるエネルギー効率設計指標 (Energy Efficiency Design Index; EEDI) 等が導入され,これ らを用いた省エネ性能の見える化と規制値への適合評価が行われることになった [19][80]. EEDI は,規定されたある一定の条件下において,1トンの貨物を1マイル運ぶ際に排出 される CO₂ のグラム数として定義され,船舶のエネルギー効率のポテンシャルを表す.また,EEDI の規制値は,建造契約日と完工日に応じて段階的に厳しい値になることが決定 しており,2025年1月1日から適用される Phase3 においては参照値からの削減率 30% が 予定されている. EEDI の更なる削減を実現するためには,省エネに関わる各方面の技術開発が必要になるが,船舶構造に関しては,同船型での載貨重量 (DWT)の増加,すなわち,船殻重量の低減に対する圧力が一層強まることが予想される.

一方,船舶を設計するための規則強化も進められている. 1999年のエリカ号,2002年の プレステージ号といった重大海洋汚染事故が発生し,これらの事故を契機として,IMOが 船舶構造の安全性に関する法制化に乗り出すべきとの機運が高まった. 2003年5月のIMO 第77回海上安全委員会 (MSC77)において,新造船の船舶構造の安全基準を定める目標指 向型構造基準 (Goal Based Standards; GBS)を制定することが合意され,2004年5月の MSC78から本格的な審議が開始された. 2010年5月のMSC87において,2016年7月1日 以降に建造契約が結ばれる油タンカー及びばら積み貨物船を対象とする船級協会等の構造 規則等に対して GBS 適合を強制化する SOLAS 条約改正及び GBS の機能要件等を定めた 決議が採択された[17]. このような状況下で,国際船級協会連合 (International Association of Classification Societies; IACS) は,2003年6月のIACS 第47回理事会において,従来 の船舶構造強度に関する部分的な IACS 統一規則 (Unifed Requirements; UR) を超えて, 油タンカー及びばら積み貨物船の船舶構造の安全基準全てをカバーする IACS として初め ての包括的な共通構造規則 (Common Structural Rules; CSR) を開発することを決定した. その後,2005年12月の IACS 第52回理事会において CSR が採択され,2006年4月1日に 施行された.しかしながら,CSR が油タンカー版 (CSR-T) とばら積み貨物船版 (CSR-B) に分かれていることに対して,船種によらず共通して取り扱うことのできる技術的項目に ついては統一すべきとの関連業界からのコメントを受けて,IACS は2008年より両規則の 調和作業を行ってきた.上述した IMO の動きと連動して,IACS による調和 CSR の開発 作業が進められており [81],2015年7月1日に発効されることが決定された.

CSR 及び調和 CSR は,基本的には安全性の高い船舶の建造を目的としているため,従 来の船級規則によって建造された船舶よりも強固になり,船殻重量は 10% 近く増加するこ とが報告されている [82].また,CSR は非常に複雑化しているため,CSR に適合した構 造設計では,船級協会から提供される設計ツール(船級ソフト)を用いることが不可欠と なっている.そのため,従来と比べると設計工数が非常に増大していることが問題となっ ているが,設計者は限られた設計期間内に CSR に適合した設計をすることだけで手一杯に なり,設計作業のブラックボックス化による思考停止や工学的センスの醸成阻害等も懸念 されている [67].

受注環境に目を向けると,韓国や中国では過剰な設備投資によって船舶建造能力を急速 に拡大しており,それに起因する船腹の供給過多は熾烈な受注競争及び低価格競争を引き 起こしている.その一方で,鉄鋼資源の需給不均衡によって,鋼材費に代表される材料費 は高止まりの傾向が伺える.

このように,船舶の受注・設計・建造を取り巻く国際環境は非常に厳しくなっているた め,造船会社は各種規制や規則に適合した上で,客先の要求を満足する高性能かつ高品質 な船舶を迅速に設計して市場投入する必要に迫られているが,コスト競争力を高めるため には,より一層の努力が必要である.すなわち,構造設計に対しては,各種規制や規則に 適合したより低コストな船舶構造を迅速に設計することが求められている.一般的に,船 価は製造原価(材料費,加工費,経費)と経営原価(販売間接費,本社費,営業外費用)及 び利益から構成され[71],その大部分は製造原価が占める.そのため,各種規制や規則に 適合したより低コストな船舶構造をいかに設計するかという問題は,制約条件を満足した 上で製造原価をいかに抑えるかという設計最適化問題に帰着する.

 $\mathbf{2}$

1.2 研究の沿革

1.2.1 船舶の構造設計

船舶の構造設計は船体中央部から始まり,後部の機関室や船首部へと展開されるのが一般 的であり [72],構造全体の設計の良し悪しは,中央部の設計の良し悪しに大きく依存する. また,船殻重量全体に占める中央部の割合が大きいことから,中央部構造の設計は非常に 重要である. CSR に適合した構造設計では,船体中央部の部材寸法は規則算式による部材 寸法計算と有限要素法 (Finite Element Method; FEM) 解析によって決定される [20][21]. CSR に適合した構造設計の一般的な流れを以下に示す.

- 1. 客先要求や港湾条件等に基づき,排水量,載貨重量,船速,喫水等の設計条件を仮 決定する.
- 2. 船の長さ,幅,深さ等の主要目を仮決定する.
- 3. 二重底高さ,二重船側幅,ロンジスペース,トランススペース,ホールド長さ,デッ キキャンバー,ビルジ半径等の一般構造配置を仮決定する.
- 4. トリム・スタビリティ・縦強度計算を行い、喫水や縦曲げ荷重を求める.
- 5. 部材寸法計算を行い, 試行錯誤しながら CSR 要求を満足する設計値を決定する.
- 6. FEM 解析を行い,試行錯誤しながら CSR 要求を満足する設計値を決定する.
- 7. 船殻重量,溶接長,塗装面積等を基に建造原価を見積もる.
- 8. 上記手順を繰り返し実行して,全ての設計条件や規則要求を満たし,建造原価を最 小化する船舶構造を決定する.

上記手順 8. は, 究極的には船舶構造を最適化することを意味するが, それを実現するためには, 以下の課題がある.

- 1.1 節で述べたように CSR は非常に複雑化しており,上記手順 5. と 6. の作業に非常 に時間がかかるため,限られた設計期間内にこの手順を何度も繰り返し実行すること が困難である.
- 設計者の経験や勘に基づく試行錯誤が含まれているため、設計した船舶構造が数理的 に最適化されている保証はない。

したがって,通常行われる構造設計において,最終的に設計した船舶構造は,限られた 設計期間内に検討した中での最良構造を選択しているにすぎないと推察される.構造最適 化の観点における上記手順 5. と 6. の課題を具体的に分析する.

上記手順5.の部材寸法計算による構造最適化には、以下の課題がある.

- CSR で規定される部材寸法計算プロセスが非常に複雑なため船級ソフトに頼らざる を得ない.
- 計算条件設定から結果評価までの一連のプロセスの自動化が必要であるが、船級ソフトを用いる場合は手作業を多く含むため自動化が困難である。
- 一連のプロセスの自動化を実現できたとしても、設計変数の数が多くなるとそれらの
 総組合せ数が膨大になるため、実用的な時間で最適解を求めることが困難である.
- 実用的な時間で最適解を求めるために、従来の設計や製造の観点から設計変数の数を 抑制する場合があるが、それが最適解の品質を悪化させる.

上記手順 6.の FEM 解析による構造最適化には、以下の課題がある.

- CSR で規定される FEM 解析プロセスが非常に複雑なため船級ソフトに頼らざるを 得ない.
- 解析条件設定から結果評価までの一連のプロセスの自動化が必要であるが、船級ソフトを用いる場合は手作業を多く含み、一部のプロセスがブラックボックス化されているため自動化が非常に困難である。
- FEM 解析モデルは図面等から手作業で作成するのが一般的であり,最適化プロセスの中でパラメトリックにモデルを自動作成することが非常に困難である.
- 一連のプロセスに時間がかかるため構造最適化に FEM 解析を直接組込むことは現実 的ではない.

1.2.2 船舶の構造最適化に関する研究

船舶の構造最適化に関する研究は, 1960年代の Evans[9] や Moe ら [32], Nowacki ら [34] の研究を起点に拡がりを見せており, Rigo[39] によって多くの文献が分野ごとに整理され ている. Rigo[39] が整理した分野には,設計思想,経済性評価手法,構造解析手法,船舶 の構造最適化手法等があり,これらの内,船舶の構造最適化手法に着目する.例えば,船 舶の構造最適化の重要なステップとして,Hughes ら [14][15] の研究が挙げられている.ま た,ISSC(International Ship and Offshore Structures Congress) が,設計手法や最適化の 発展に関して,例えば,Catley ら [5][6], Moan ら [31] の研究を報告していることにも触れ ている.他の主要な船舶の構造最適化に関する研究として,例えば,Lyons[28],Hung[16], Nobukawa ら [33] の研究が紹介され,これらの研究の多くが,数学的な最適化手法と強度 や変形を評価するための解析手法を用いていることが特徴的であると指摘している.一方, 少数であるが,製造コストを目的関数とした研究も紹介されており,例えば,Southern[44], Winkle ら [49], Ennis ら [8] の研究がそれに該当する. 寸法最適化 [38][40] や形状最適化 [1] もこの分野に含まれており,特に 1980 年代には FEM 解析が強度評価の標準的な手法 として用いられ始めた [14][15][52]. また,遺伝的アルゴリズム (Genetic Algorithm; GA) の出現により,それを用いた構造最適化が活発になっている [11][36]. 他にも多目的最適化 [42][43] や位相最適化 [2] 等研究対象は多岐に渡り,船舶の構造最適化に関する既往研究は 枚挙に遑ない.

近年,1.1 節で述べた背景の下,同分野の研究は益々盛んに行われており,様々な研究成 果が報告されているだけでなく,その内容はより高度で実用的になっている.それらの中 でも,船級規則算式による部材寸法計算を用いた船体中央横断面の最適設計に関する研究 蓄積は多い.また,FEM 解析による構造最適化や迅速化に関する研究も着実に進められて いる.これらの既往研究を精査して,その概要と問題点をそれぞれ1.2.3 項及び1.2.4 項で 述べる.ところで,船級規則を適用した構造最適化を行う場合,座屈・最終強度評価の簡 易化・自動化が不可欠であり,座屈・最終強度を陽表示の評価式で評価できることが理想 的である.しかしながら,CSR-Tでは,FEM 解析の座屈・最終強度評価には高度座屈解 析手法を用いることが規定されているため[21],事実上,ノルウェー船級協会(Det Norske Veritas AS; DNV)で開発されたPULS(Panel Ultimate Limit State)[7]を使用することに なるが,PULS はブラックボックス化されたソフトウェアであるため,構造最適化に利用 するのは難しい.そこで,本研究では,構造最適化に利用可能な座屈・最終強度評価法を 構築するために,座屈・最終強度の評価法の簡易化に関する研究について調査し,その概 要と問題点を1.2.5 項で述べる.

1.2.3 部材寸法計算による構造最適化に関する研究

部材寸法計算による構造最適化は,設計変数の組合せ最適化問題と捉えることができ, 非常に多くの設計変数が存在することが特徴である.また,この問題では設計変数を離散 値として扱う場合が多いため,遺伝的アルゴリズムを利用した構造最適化が行われており, 例えば,岡田ら [56],Leeら [27],北村ら [61][63][64],Rigoら [41]の研究によってその有 用性が確認されている.これらの研究は,CSR 適用前の船級規則に基づいているが,近年, 岡田ら [55],中森ら [74][75],船路ら [93]等,CSRを適用した研究例が報告され始めた.し かしながら,CSR に完全適合した構造最適化は未だ困難であると言える.ところで,多く の設計変数が存在する問題では,実用的な時間で最適解を得るのが困難であるため,何ら かの方法で設計変数の数を減らして最適化問題を構築する場合がある.上記の研究例では, 従来の設計や製造の観点から設計変数をグループに分類することにより,設計変数の組合せ数が 減らしている.しかしながら,設計変数の分類により,探索すべき設計変数の組合せ数が 少なくなるため,実用的な時間で解を得ることができるものの,異なるグループに分類された設計変数間の関連性が無視されるため,本来の最適解を得ることができていない可能 性がある.

一方,別のアプローチでこのような問題を克服するために鈴木ら [70] は多段階最適化手 法を提案した.また,Hamadaら[12]は、効率的に最適解を求めるための船体中央横断面 の部分最適設計法を提案した、この方法では、ばら積船の船体中央横断面全体の最適化問 題を、二重底やトップサイドタンクといった部位ごとに分割し、多段階最適化問題として 解いた。しかしこの分割法では、中央横断面の各部位をそのまま部分最適化問題として分 割したのみであり、設計変数の最適化問題に対する影響は必ずしも重視されておらず、計 算効率や最適解の優劣という点で最適な分割法とは言えない、それに対し、設計変数及び 制約条件の最適化問題に対する影響に基づいて分割を行う方法がいくつか提案されている. 例えば, McCulley ら [29], Kusiak ら [26] は, それぞれ Design Structure Matrix (DSM) を用いた問題の分解法を提案した.また,Kimら [22][23] は設計問題を階層的に分解し、下 流問題の解を上位問題と相互に関連付け解を得るターゲットカスケーディング法を提案し た. また, Yoshimura ら [50][51] は製品の特徴・機能に基づく大規模問題の分割法及び解 法を提案した.北村ら [65] は DSM を船体中央横断面の最適設計に適用したが、全ての設 計変数・制約条件を対象とするとマトリックスが極めて大きくなることから、別の判断に より分類している. また, 得られる最終形がマトリックス形式のため, 設計変数の増加に 伴い設計変数の分類の判断も難しくなるなど、大規模問題への適用には問題点が残る.

1.2.4 FEM 解析による構造最適化に関する研究

鈴木 [69] は、構造分野の実務で最適設計が十分使われていない原因を分析した.最適設 計とは解析結果に基づく設計変更のプロセスを自動化する技術であると述べた上で、設計 変更後の構造解析モデルの生成自動化が困難であることを指摘している.また、設計者が 自由に設計できる設計初期段階では、情報が少ないため詳細解析を行うことが不可能であ ることも指摘している.

FEM 解析モデルの自動生成が困難であるという課題に対して,いくつかの既往研究があ る.北村ら [66] は,ばら積貨物船を対象として,独立要素分割と多点拘束 (Multiple Point Constraint; MPC)を用いる最適化手法を提案し,船舶構造二重底部の形状と板厚の最適 設計を実現している.ただし,対象船毎に独立要素分割モデルを手作業で作成する必要が あり,多大な労力が必要であるという問題点が残った.そこで,日本海事協会が開発した CSR 対応の直接強度計算ソフトである PrimeShip-HULL-DSA(PSH-DSA)[79] を利用し, 独立要素分割モデルの作成,MPC の設定及び形状設計変数の変更を自動化するシステム を開発したが,設計変数に板厚を用いていない,制約条件に座屈強度を考慮していない等の課題が残った [24][60].上寺ら [53] は,上記の北村らの研究を発展させて,ばら積貨物船の二重底構造の最適化を行った.すなわち,制約条件に応力と座屈強度を近似式により考慮し,二重底構造の形状及び板厚を同時に設計変数とした場合に大幅な重量削減が可能であることを示した.しかしながら,製作上の制約条件等,未考慮の制約条件が多数存在するため,最適化結果をそのまま実船の設計に取り入れることは不可能であると述べている.

Okada ら [35][37] は、実用的な最適メッシュ生成に関する検討を行い、2 次元平面問題 に適用して一定の成果を得た.また、根木ら [84] は、TRIQUAMESH 法による自動要素 分割を用いたシステムを開発し、コンテナ船のハッチコーナー部形状やロンジ貫通部のス ロット形状等の構造最適化問題に適用して、構造設計上の強力なツールになることを示し た.北村ら [25][59] は、比較的粗い解析モデルにより定められたズーミング境界の変位再 解析式を、詳細なモデル化を行った部分解析領域の境界条件として与えることによって解 析時間の短縮と解析精度の向上を図った.ただし、設計変数が増えるにつれて変位再解析 式を求めるための感度解析を行うことが困難になる問題がある.

FEM 解析による構造最適化は非常に時間がかかるため現実的ではないという課題に対し て、北村ら [62] は、構造最適化の過程で必要な構造評価を FEM 解析の代わりにニューラ ルネットワークで行うことを提案した.ニューラルネットワークの入力因子とする設計変 数を選別することと簡易計算法の計算結果を考慮することにより、コンテナ船の構造最適 設計において FEM 解析とほぼ同等の精度を有することを示した.しかしながら、ニュー ラルネットワークの構築に用いた教師データ以外の入力データにおける FEM 解析との精 度は議論されていない.大岩根ら [54] も、FEM 解析の代わりにニューラルネットワークを 用いてばら積貨物船の二重底の板厚最適化を行っている.ただし、設計変数は板厚のみで あり、制約条件には疲労強度や最終強度が考慮されていない.膨大な荷重ケースに対する FEM 解析を行って応力応答関数を算出する負荷を低減する解析手法として、パターンロー ド合成解析法 [68] や離散化解析法 [57] 等が提案され、実船の疲労解析に適用した例 [94] も 報告されている.

船級ソフトを用いた CSR 準拠の FEM 解析の迅速化に関して,神永ら [58] は,ばら積貨 物船用の PSH-DSA を効率的に自動処理するシステムを開発し,解析準備から終了までの 全作業時間を従来の 6 割程度にまで短縮した.しかしながら,FEM 解析モデルを準備した 上で,自動処理実行前に,PSH-DSA 上で部材定義,荷重・境界条件の定義,座屈強度評価 パネルの作成等を手動で行う必要があるため,構造最適化に利用するためには課題が多い.

7

1.2.5 座屈・最終強度評価法の簡易化に関する研究

藤久保ら [91][92] は、連続防撓パネルを、そのスパン間の連続性を考慮に入れたダブル スパン梁・柱モデルに置き換え、面内圧縮荷重下の SI 崩壊あるいは PI 崩壊による最終強 度を統一的に推定できる簡易最終強度推定法を提案している.さらに、この推定法を、面 内圧縮荷重と同時にパネル側からの横圧を受ける場合に拡張し、パネルの局部座屈後の有 効幅をパネル圧縮荷重の関数として表し、また、パネル・防撓材間の相互影響および防撓 材の曲げ捩り座屈強度を考慮することにより、圧縮最終強度を高精度に推定することが可 能であることを示している [99]. 柳原ら [98] は、積載貨物の重量や慣性力による防撓材側 からの横圧を考慮できるよう、SI 崩壊および HI 崩壊時の降伏判定点を横圧の関数で与え ることにより、従来の簡易推定法を拡張している.上記の簡易推定法は、何らかの手法で 数値計算が必要になり、構造最適化への利用という観点からは簡易算式より見劣る.

原田ら [87] は、上述の最終強度推定法のパネル座屈後の有効幅や曲げ捩れによる反り応 力等を簡易算式で与えることにより、陽表示の最終強度簡易算式を導いている.また、弾 塑性大たわみ解析 [96][97] より求めた最終強度と、簡易算式による最終強度推定値は良い 相関であることを示している.次に、防撓材と直角方向の圧縮と横圧を受ける連続防撓パ ネルの最終強度推定式を、防撓材の捩り剛性の影響を考慮して導いている.また、系統的 な FEM 弾塑性大たわみ解析により、二軸圧縮と横圧下の最終強度相関関係を明らかにし ており、両者を組合せることにより、二軸圧縮と横圧を受ける連続防撓パネルの最終強度 推定式を導いている [86].最後に、二軸圧縮/引張と横圧、さらにせん断応力が加わる連 続防撓パネルの最終強度を FEM 解析により求めて、最終強度相関式を導くと共に、最終 強度に及ぼすせん断応力の影響を明らかにすることで、既存の最終強度推定式を、組合せ 荷重を受ける連続防撓パネルの最終強度推定式に拡張している [88].原田らが提案した最 終強度推定式は、構造最適化への利用に適した陽表示の簡易算式であるが、CSR で規定さ れる高度座屈強度解析法への適合性において問題があると考えられる.

1.3 研究の目的と論文の構成

1.1 節で述べた背景と1.2 節で述べた既往研究の調査結果から,船舶構造の最適設計における課題を整理した.これらの課題を解決して,最適化された船舶構造を迅速に設計することが可能になれば造船会社にとっては非常に有用である.そこで,本研究では,船級規則に適合したより価格競争力のある船舶構造を迅速に設計するための手法を構築することを目的として,それを実現するために必要な研究及び技術開発を行う.研究対象は,CSRの適用対象である油タンカー及びばら積み貨物船の船体中央部の最適設計及び設計迅速化

とする.本論文の構成を以下に示す.

第1章「緒論」では、研究の背景と沿革を述べた上で、本研究の目的と構成を示す.

第2章「部材寸法計算による構造最適化」では、まず、CSRの部材寸法要件に完全適合 した構造最適化を実現するために開発した最適化システムについて述べる.本システムは、 日本海事協会の部材寸法計算ソフトである PrimeShip-HULL-Rules(PSH-Rules)[78]を独 自に改良した機能と島遺伝的アルゴリズムを利用しており、CSRの部材寸法計算プロセス を自動化していることが特徴である.次に、開発した最適化システムを油タンカーの中央 横断面の構造最適化に適用して、船殻重量や建造コストを目的関数とした構造最適化が実 現できることを示す.

第3章「制約条件を考慮した設計変数の分類法」では、まず、膨大な数の設計変数を有 する組合せ最適化問題において、実用的な計算時間で最適解を得るために構築した設計変 数の分類法について述べる.本手法は、設計変数の最適化問題における数学的特性を利用 して設計変数を分類することを特徴とする.次に、本手法を簡易箱船モデルの構造最適化 問題に適用して、設計変数の分類が有効に機能することを示す.最後に、本手法を油タン カーの中央横断面の構造最適化に適用して、設計や製造の観点で設計変数を削減する従来 の最適化モデルの最適化結果と比較することにより、本手法の有効性を示す.

第4章「座屈・最終強度評価法」では、まず、CSRで規定される座屈・最終強度評価法を 概観して、構造最適化における課題を指摘する.次に、CSR-TのFEM解析プロセスを自 動化するための座屈・最終強度の簡易評価法について述べる.座屈強度評価には、二軸圧縮 を受ける矩形平板の座屈強度簡易推定式を用いる.また、最終強度評価には、原田らが提 案した最終強度簡易推定式を修正して用いる.最終強度簡易推定式を概観した後、この式 とPULSのベンチマークを行い、CSR-Tで規定される高度座屈強度解析法への適合性を評 価する.さらに最終強度簡易推定式を高度座屈強度解析法に適合させるための修正方法を 述べる.ここでは、適合性評価の結果から、修正に有効なパラメータを抽出し、最終強度 簡易推定式とPULSの最終強度推定値の差を最小化するように、それらのパラメータの修 正項を最適化手法を用いて同定する.最後に、修正した最終強度簡易推定式とPULSの最 終強度推定値を比較して、修正後の式がCSR-Tの高度座屈強度解析法に適合し、CSR-T のFEM解析プロセスに利用可能であることを示す.なお、付録A「最終強度簡易推定式 とPULSのベンチマーク条件」にベンチマークの詳細を示す.また、付録B「最終強度簡 易推定式の修正項」に同定した修正項の詳細を示す.

第5章「FEM 解析による構造最適化」では,まず,FEM 解析モデルをパラメトリックに 自動生成するための手法を構築し,CSR で規定されるモデル化法に適合した油タンカーや ばら積貨物船の中央部貨物倉のFEM 解析モデルが自動生成できることを示す.次に,CSR で規定される FEM 解析プロセスを自動化するシステムの開発について述べる.本システ ムは、荷重・境界条件等の解析条件の設定から降伏強度・座屈強度等の解析結果の評価まで のプロセスを自動化するだけでなく、CSR で要求される強度基準を満足するまで部材寸法 を更新する機能や船殻重量や建造コスト等の目的関数値を出力する機能など構造最適化に 必要な機能を有する.次に、油タンカーとばら積貨物船を対象に本システムを用いた FEM 解析に基づく構造強度評価を行い、船級ソフトによる評価結果と比較することにより本シ ステムの CSR への適合性を検証する.なお、CSR で規定される座屈評価パネルのモデル 化要領を付録 C 「座屈評価パネルのモデル化要領」に示す.最後に、油タンカーの設計問 題に本システムを適用することによって従来の手作業による FEM 解析では成し得なかっ た、様々な構造最適化が実現できることを示す.

第6章では、以上の研究成果から得られた知見を取り纏めた結論と本研究に関連した今後の研究課題を示す.

第2章 部材寸法計算による構造最適化

2.1 緒言

部材寸法計算は CSR で規定される部材寸法要件 [20][21] に基づき行う. CSR-T に着目 すると,部材寸法要件には大きく6つの項目があり,それらは局部強度,ハルガーダ曲げ 強度,ハルガーダ座屈強度,ハルガーダせん断強度,ハルガーダ最終強度,ハルガーダ疲 労強度である.設計者はそれらの要件を満足するように,かつ船殻重量や建造コストを最 小化するように,設計変数である中央横断面構造の部材寸法を決定する必要がある.しか しながら,1.2 節で述べたように,その決定方法は経験に基づいていたり,試行錯誤的な 方法であったりするため,全ての CSR 要求を満たしながら膨大な数の設計変数を最適化 することは容易ではなく,限られた設計期間の中で検討できる設計案の数は必然的に限ら れてしまう.1.2.3 項で述べたように,部材寸法計算による構造最適化問題は,設計変数の 組合せ最適化問題と捉えることができ,従来から多くの研究がなされてきた.既往研究に よって遺伝的アルゴリズムを適用した構造最適化が非常に有用であることが示されている が,CSR の部材寸法要件を全て取り込んだ検討は未だ困難であるのが現状である.

本章では、CSR-T の全ての部材寸法要件を制約条件として、船体中央横断面の構造部材 寸法の最適化を試みる.通常、部材寸法要件の評価には船級ソフトを利用するが、評価プロ セスには手作業を多く含むため、船級ソフトを構造最適化に適用するには課題がある.そ こで、本研究では日本海事協会の PSH-Rules を独自に改良し、並列計算への適用性が高い 島遺伝的アルゴリズム [47] と組合せた最適化システムを開発する.本システムは、CSR-T の部材寸法計算プロセスを自動化するだけでなく、構造最適化に適用するための制約条件 や目的関数を評価する機能を有する.また、本システムを油タンカーの中央横断面構造の 最適化計算に適用して、構造最適化が実現できることを示す.

2.2 CSRの部材寸法要件に適合した構造最適化システム

CSR-T の部材寸法計算プロセスは, PSH-Rules を利用する場合, Fig. 2.1 に示す流れ になる.計算モデルを手作業で作成して,計算を実行すると,部材寸法計算結果が Excel spread sheet(PSH-Rules-Excel) として出力される.この PSH-Rules-Excel には,計算結果 だけでなく,計算モデルの情報や部材寸法計算プログラムも含まれている.主要目や区画 配置,構造配置,設計縦曲げ荷重等を PSH-Rules-Excel 上で変更することはできないが, 板厚や防撓材寸法を PSH-Rules-Excel 上で変更して再計算を実行すれば,部材寸法要件に 対する再評価を行うことが可能である.

本章では、主要目や区画配置、構造配置等は固定データとして取扱い、それ以外の部材 寸法や材料定数を設計変数として、CSR-Tの部材寸法計算プロセスを自動化する最適化シ ステムを開発した.なお、固定データを変更する場合は、別の最適化計算モデルとして新 たに手作業で PSH-Rules-Excel を作成する.

最適化計算の制御には,遺伝的アルゴリズムを利用するが,計算量が膨大になるため,実 用的な時間で最適解を得ることが困難になることが容易に予想される. 2.3.1 項では,PSH-Rules-Excel と島遺伝的アルゴリズムを組合わせた最適化システムを用いて最適化計算を 行うが,並列計算は行わない. 2.3.2 項では,最適化計算を複数の計算機に分散して並列 化して行うことによって高速化を図る. また,PSH-Rules-Excel による部材寸法計算では, Excel VBA(Visual Basic for Applications)が利用されているため,計算の高速化と並列化 の支障になる. このため, 2.3.2 項では,Excel VBA による部材寸法計算プロセスは,全 て C++プログラムに置き換えている.

開発した構造最適化システムの概要を Fig. 2.2 に示す [13][89]. PSH-Rules-Excel には, 主要目や荷重条件の他に,最適化計算における設計変数や制約条件が記述されている.ま た,それらの情報を利用して目的関数を計算する機能を新たに追加した.最適化計算におい ては,島遺伝的アルゴリズムによって作成される設計案に従って PSH-Rules-Excel 上の設 計変数値を変更し,それに伴って変化した制約条件や目的関数の値を評価するというルー プを指定した回数繰り返して最適解を探索する.

12

Inputting design parameters from GUI by manually

Rule calculation results are output to the Excel files

Fig. 2.1 Rule calculation process using PSH-Rules.

Fig. 2.2 Proposed optimization system using PSH-Rules-Excel.

2.3 部材寸法計算による油タンカーの構造最適化

2.3.1 150KDWT 油タンカーの構造最適化

2.3.1.1 計算ケース及び設計変数

150KDWT 油タンカー (L×B×D=266×48×23(m)) の中央横断面の縦強度部材を対象と して構造最適化を行う.中央横断面は,多数の板と防撓材から構成されており,それらを独 立した設計変数として取り扱うと設計変数の総組合せ数が膨大になるため,構造最適化が 困難になる.そこで,従来の設計や製造の観点を考慮して,大骨間で隣り合う設計変数をグ ループに分類することによって設計変数の数を削減した.板と防撓材の設計変数をグルー プに分類した結果をそれぞれ Fig. 2.3 及び Fig. 2.4 に示す.構造最適化は,Table 2.1 に示 すように,Case Cを基準として,防撓材グループ内の防撓材本数を増減させた Case A か ら Case E の5ケースについて行った.ただし,いくつかの防撓材グループでは,2つのグ ループの合計の防撓材本数を増減させている.例えば,Case A の S₃ + S₄ が-2 とは,防撓 材の設計変数グループ S_3 及び S_4 の防撓材の合計本数を Case C より 2 本削減することを 示す. したがって, Case A の断面全体では防撓材の合計本数を Case C より 26 本削減す ることになり,防撓材間隔は Case A が最も広く, Case E が最も狭くなる.

Fig. 2.3 Design variable group of plates.

Fig. 2.4 Design variable group of stiffeners.

最適化計算においては,各グループ内の部材寸法は全て等しいものとして取扱い,各グ ループの板厚,防撓材寸法,鋼材種類及び貨物倉内の横桁数を設計変数とした.例えば, Case C の板と防撓材の設計変数は Table 2.2, Table 2.3 に示すように 126 個になり,貨物 倉内の横桁数を含めた合計 127 個が設計変数になった.また,設計変数は離散値を採るもの として取扱い,板厚は 10 種類,防撓材寸法は 640 種類,鋼材種類は,降伏強度が 235(MPa) の軟鋼 (Mild steel; MS) と,降伏強度が 315(MPa)(HT32) と 355(MPa)(HT36)の高張力 鋼 (High tensile strength steel; HT) の 3 種類,貨物倉内の横桁数は Table 2.4 に示すよう に Base に対して 1 枚~2 枚増減させ,合計 5 種類の中から選択した.したがって,設計変 数の総組合せ数は,9×10⁸² になった.

Stiff. group	Case A	Case B	Case C	Case D	Case E
$S_3 + S_4$					
$S_6 + S_7$					
$S_{10}+S_{11}$	9	1	Baso	1	1.9
$S_{13} + S_{14}$	-2	-1	Dase	± 1	± 2
$\mathrm{S}_{17} + \mathrm{S}_{18}$					
Others					

Table 2.1 Calculation cases with different number of stiffeners in the group.

Table 2.2 Design variable of plate of Case C.

Plate group	t_p	σ_Y
P_1	x_1	x_{19}
÷	:	÷
P ₁₈	x_{18}	x_{36}

Table 2.3 Design variable of stiffener of Case C.

Stiff. group	h_w	t_w	b_f	t_f	σ_Y
S_1	x_{37}	x_{55}	x_{73}	x_{91}	x_{109}
	:	:		:	:
S_{18}	x_{54}	x_{72}	x_{90}	x_{108}	x_{126}

	Case A	Case B	Case C	Case D	Case E
	-2	-2	-2	-2	-2
Total number of	-1	-1	-1	-1	-1
trans. frames	Base	Base	Base	Base	Base
in one hold	+1	+1	+1	+1	+1
	+2	+2	+2	+2	+2

Table 2.4 Total number of transverse frames in one hold.

2.3.1.2 制約条件

2.1 節で述べたように CSR-T で規定される部材寸法要件には大きく 6 つの項目(Table 2.5 及び Table 2.6 の A から F)があり,それらは更に細分化されている. ここでは, Table 2.5 及び Table 2.6 に示す 30 種類の制約条件を取り扱う.表中には CSR-T の対応す る節を示している.これらの制約条件には,例えば板厚のように個々の設計変数に対する 条件と,断面係数のように中央横断面全体に対する条件がある.また,設計値が規定値以 上になるように規定されている要求値と設計値が規定値以下になるように規定されている 許容値がある.前者の場合,設定した設計変数 x_i によって計算される制約条件 $g_j(x_i)^{\text{act}}$ が CSR の要求値 $g_j(x_i)^{\text{req}}$ を満たす場合には式 (2.1) が成立する.同様に後者の場合,CSR の 許容値 $g_j(x_i)^{\text{allow}}$ を満たす場合には式 (2.2) が成立する.

$$g_j(x_i)^{\text{req}} - g_j(x_i)^{\text{act}} \le 0 \tag{2.1}$$

$$g_j(x_i)^{\text{allow}} - g_j(x_i)^{\text{act}} \ge 0 \tag{2.2}$$

最適化計算においては、制約条件を以下のように変形して扱う.

$$g_j(x_i) = g_j(x_i)^{\text{req}} - g_j(x_i)^{\text{act}} \le 0$$
 (2.3)

または,

$$g_j(x_i) = g_j(x_i)^{\text{act}} - g_j(x_i)^{\text{allow}} \le 0$$

$$(2.4)$$

Category of		<i>a</i> :	Scantling requirements of CSB-T	CSR-T	
requirements		9ງ			
A Loo		1	Thickness of plates	Sec.8.2	
	Local strength	2	Section modulus of stiffener	Sec.8.2	
		3	Web thickness of stiffener	Sec.8.2	
Hull girder		4	Vertical hull girder moment of inertia	Sec.8.1.2	
В	bending	5	Hull girder section modulus at keel	Sec.8.1.2	
	strength	6	Hull girder section modulus at deck	Sec.8.1.2	
	Hull girder buckling strength	7	Thickness of plate	Sec.10.2.2	
С		8	Web thickness of stiffener	Sec.10.2.2	
		9	Flange thickness of stiffener	Sec.10.2.2	
		10	Total flange breadth of stiffener	Sec.10.2.2	
		11	Moment of inertia of stiffener	Sec.10.2.2	
		12	Buckling utilisation factor	Sec.10.3.2	
			of plates for compressive stresses		
		13	Buckling utilisation factor	Sec.10.3.2	
			of plates for shear stresses		
		14	Buckling utilisation factor	Sec 10.2.2	
			of stiffeners for column buckling	Sec.10.3.2	
		15	Buckling utilisation factor	Sec. 10.2.2	
			of stiffeners for torsional buckling	Sec.10.3.2	
			Hull girder ultimate bending moment capacity		
		16	for permissible sagging still water	Sec.9.1	
D	Hull girder		bending moment		
	ultimate		Hull girder ultimate bending moment capacity		
	strength	17	for maximum sagging still water	Sec.9.1	
			bending moment for operational seagoing		
	Hull girder				
Е	fatigue	18	Cumulative fatigue damage ratio	Sec.9.3	
	strength				

Table 2.5 Constraint conditions in accordance with scantling requirements of CSR-T (1).

Category of requirements		g_j	Scantling requirements of CSR-T	CSR-T
			Hull girder shear strength capacity of side shell for maximum permissible positive shear force on seagoing operations	Sec.8.1.3
		20	Hull girder shear strength capacity of inner hull for maximum permissible positive shear force on seagoing operations	Sec.8.1.3
		21	Hull girder shear strength capacity of longitudinal bulkhead for maximum permissible positive shear force on seagoing operations	Sec.8.1.3
		22	Hull girder shear strength capacity of side shell for minimum permissible negative shear force on seagoing operations	Sec.8.1.3
		23	Hull girder shear strength capacity of inner hull for minimum permissible negative shear force on seagoing operations	Sec.8.1.3
	Hull girder	24	Hull girder shear strength capacity of longitudinal bulkhead for minimum permissible negative shear force on seagoing operations	Sec.8.1.3
F	shear strength	r th 25	Hull girder shear strength capacity of side shell for maximum permissible positive shear force on harbour/sheltered water operations	Sec.8.1.3
		26	Hull girder shear strength capacity of inner hull for maximum permissible positive shear force on harbour/sheltered water operations	Sec.8.1.3
		27	Hull girder shear strength capacity of longitudinal bulkhead for maximum permissible positive shear force on harbour/sheltered water operations	Sec.8.1.3
		28	Hull girder shear strength capacity of side shell for minimum permissible negative shear force on harbour/sheltered water operations	Sec.8.1.3
		29	Hull girder shear strength capacity of inner hull for minimum permissible negative shear force on harbour/sheltered water operations	Sec.8.1.3
		30	Hull girder shear strength capacity of longitudinal bulkhead for minimum permissible negative shear force on harbour/sheltered water operations	Sec.8.1.3

Table 2.6 Constraint conditions in accordance with scantling requirements of CSR-T (2).

30 種類の制約条件の詳細を以降に示す.なお、これらの設計変数の中には、個々の設計 変数に対する条件があるため、本項の最適化計算における総制約条件数は 1,705 個になっ た.また、CSR-T の部材寸法要件においてはネット部材寸法で規定されており、適切な腐 食予備厚を加えることによりグロス部材寸法を得る.

板部材のネット板厚は,全ての適用する設計荷重において,式(2.5)により計算した最も 大きい値以上としなければならない.

$$g_1(x_i)^{\text{act}} = t_{net}$$

$$g_1(x_i)^{\text{req}} = 0.0158\alpha_p s \sqrt{\frac{|P|}{C_a \sigma_Y}}$$
(2.5)

ここで,

$$t_{net}$$
: 板部材のネット板厚 (mm)
 α_p : 板のアスペクト比による補正率
 s : 防撓材間隔 (mm)
 P : 水圧 (kN/m²)
 C_a : 許容曲げ応力の係数
 σ_Y : 降伏応力 (N/mm²)

肋骨及び防撓材のネット断面係数は,全ての適用する設計荷重において,式(2.6)により 計算した最も大きい値以上としなければならない.

$$g_2(x_i)^{\text{act}} = Z_{net}$$

$$g_2(x_i)^{\text{req}} = \frac{|P|sl_{bdg}^2}{f_{bdg}C_s\sigma_Y}$$
(2.6)

ここで,

 Znet
 :
 肋骨及び防撓材のネット断面係数 (cm³)

 fbdg
 :
 曲げモーメントの係数

 lbdg
 :
 有効曲げスパン (m)

 Cs
 :
 許容曲げ応力の係数

防撓材のネットウェブ板厚は,全ての適用する設計荷重において,式(2.7)により計算した最も大きい値以上としなければならない.

$$g_3(x_i)^{\text{act}} = t_{w-net}$$

$$g_3(x_i)^{\text{req}} = \frac{f_{shr}|P|sl_{shr}}{d_{shr}C_t\tau_Y}$$
(2.7)

ここで,

$$t_{w-net}$$
 : 防撓材のネットウェブ板厚 (mm)
 f_{shr} : せん断力の係数
 d_{shr} : 防撓材の有効せん断深さ (mm)
 C_t : 許容せん断応力の係数
 l_{shr} : 有効せん断スパン (m)
 $\tau_Y = \frac{\sigma_Y}{\sqrt{3}} (N/mm^2)$

水平中立軸周りのネットハルガーダ断面二次モーメントは,式 (2.8) による最小ハルガー ダ断面二次モーメント以上としなければならない.

$$g_4(\boldsymbol{x})^{\text{act}} = I_{v-net50}$$

$$g_4(\boldsymbol{x})^{\text{req}} = 2.7C_{wv}L_{\text{CSR-T}}^3B(C_b + 0.7)10^{-8}$$
(2.8)

ここで,

Cwv : 波浪係数

L_{CSR-T} : 船の長さ(m)

- B : 船の型幅 (m)
- *C*_b : 船の方形係数

ネットハルガーダ断面係数は, 竜骨と甲板の位置で, 式 (2.9) による最小断面係数以上と しなければならない.

$$g_5(\boldsymbol{x})^{\text{act}} = Z_{v-net50-kl}$$

$$g_6(\boldsymbol{x})^{\text{act}} = Z_{v-net50-dk}$$

$$g_{5-6}(\boldsymbol{x})^{\text{req}} = \min[Z_{v-min}, Z_{v-req}] \qquad (2.9)$$

ここで,

$$Z_{v-net50-kl} : 竜骨位置でのネットハルガーダ断面係数 (m3)$$

$$Z_{v-net50-dk} : 甲板位置でのネットハルガーダ断面係数 (m3)$$

$$Z_{v-min} = 0.9kC_{wv}L_{CSR-T}^2B(C_b + 0.7)10^{-6}(m^3)$$

$$Z_{v-req} = \frac{|M_{sw-perm} + M_{wv-v}|}{\sigma_{perm}}10^{-3}(m^3)$$

k : 材料係数

$$M_{sw-perm}$$
 : ハルガーダ静水中曲げモーメント許容値
 M_{wv-v} : 波浪ハルガーダモーメント (kNm)
 σ_{perm} : 許容ハルガーダ応力 (N/mm²)

板部材及び防撓材のネット板厚と形状は,式(2.10)~式(2.13)による評価基準以上とし なければならない.式(2.10)~式(2.12)から明らかなように,これらの要求板厚は降伏強 度が高い程大きくなる.

$$g_{7}(x_{i})^{\text{act}} = t_{net}$$

$$g_{8}(x_{i})^{\text{act}} = t_{w-net}$$

$$g_{9}(x_{i})^{\text{act}} = t_{f-net}$$

$$g_{10}(x_{i})^{\text{act}} = b_{f-out}$$

$$g_{7}(x_{i})^{\text{req}} = \frac{s}{C}\sqrt{\frac{\sigma_{Y}}{235}}$$

$$(2.10)$$

$$g_8(x_i)^{\text{req}} = \frac{d_w}{C_w} \sqrt{\frac{\sigma_Y}{235}}$$
(2.11)

$$g_9(x_i)^{\text{req}} = \frac{b_{f-out}}{C_f} \sqrt{\frac{\sigma_Y}{235}}$$
(2.12)

$$g_{10}(x_i)^{\text{req}} = 0.25d_w \tag{2.13}$$

ここで,

$$t_{w-net}$$
: 防撓材のウェブプレートのネット板厚 (mm)
 d_w : 防撓材のウェブプレートの深さ (mm)
 t_{f-net} : 防撓材のフランジのネット板厚 (mm)
 b_{f-out} : 防撓材のフランジの幅 (mm)
 C, C_w, C_f : 細長係数

防撓材のネット断面二次モーメントは,式(2.14)による値以上としなければならない.

$$g_{11}(x_i)^{\text{act}} = I_{net}$$

 $g_{11}(x_i)^{\text{req}} = Cl_{stf}^2 A_{net} \frac{\sigma_Y}{235}$
(2.14)

ここで,

lstf : 有効な支持部材間の防撓材の長さ (m)

A_{net} : 防撓材間隔 *s* の 80% の有効幅を持つ板付き防撓材のネット断面積 (cm²)

板部材の一軸方向応力に対する座屈使用係数は,式(2.16)による許容値以下としなけれ ばならない.

$$g_{12}(x_i)^{\text{act}} = \eta = \frac{\sigma_{hg-net50}}{\sigma_{cr}}$$

$$g_{12}(x_i)^{\text{allow}} = \eta_{\text{allow}} = 1.0 (0.5D 及びその上方に位置する板部材の場合) (2.16)$$

$$= 0.9 (0.5D より下方に位置する板部材の場合)$$

ここで,

$$\sigma_{hg-net50}$$
 : ネット断面性能に基づくハルガーダの曲げによる圧縮応力 (N/mm²)
 σ_{cr} : ネット断面性能に基づく限界圧縮応力 (N/mm²)

D : 船の型深さ(m)

板部材のせん断応力に対する座屈使用係数は、0.95以下としなければならない.

$$g_{13}(x_i)^{\text{act}} = \eta = \frac{\tau_{hg-net50}}{\tau_{cr}}$$
 (2.17)

$$g_{13}(x_i)^{\text{allow}} = \eta_{\text{allow}} = 0.95$$
 (2.18)

ここで,

防撓材のコラム座屈に対する座屈使用係数は,式(2.20)による許容値以下としなければ ならない.

$$g_{14}(x_i)^{\text{act}} = \eta = \frac{\sigma_x + \sigma_b}{\sigma_Y}$$
(2.19)

$$g_{14}(x_i)^{\text{allow}} = \eta_{\text{allow}} = 1.0 (0.5D \text{ 及びその上方に位置する板部材の場合})$$
(2.20)

$$= 0.9 (0.5D \text{ より下方に位置する板部材の場合})$$

ここで,

 σ_x : 防撓材長さ中央部付近の軸圧縮応力 (N/mm²) σ_b : 防撓材の長さ中央での曲げ応力 (N/mm²)

防撓材のねじり座屈に対する座屈使用係数は,式(2.22)による許容値以下としなければ ならない.

$$g_{15}(x_i)^{\text{act}} = \eta = \frac{\sigma_x}{C_T \sigma_Y}$$
(2.21)

$$g_{15}(x_i)^{\text{allow}} = \eta_{\text{allow}} = 1.0 (0.5D \text{ 及びその上方に位置する板部材の場合})$$
(2.22)

$$= 0.9 (0.5D \text{ より下方に位置する板部材の場合})$$

ここで,

*C*_T: ねじり座屈係数

サギング状態でのハルガーダ最終強度は,式 (2.23) 及び式 (2.24) による基準以上としな ければならない.

$$g_{16-17}(\boldsymbol{x})^{\text{act}} = M_U$$

$$g_{16}(\boldsymbol{x})^{\text{req}} = \gamma_R(\gamma_S M_{sw} + \gamma_{Wa} M_{wv-sag}) \qquad (2.23)$$

$$g_{17}(\boldsymbol{x})^{\text{req}} = \gamma_R(\gamma_S M_{sw} + \gamma_{Wb} M_{wv-sag})$$
(2.24)

ここで,

$$M_{sw}$$
: サギング状態の静水中モーメント (kNm)
 M_{wv-sag} : サギング状態での波浪ハルガーダモーメント (kNm)
 M_U : サギング状態でのハルガーダ最終強度 (kNm)
 $\gamma_S, \gamma_{Wa}, \gamma_{Wb}, \gamma_R$: 設計荷重の組合せに対する部分安全係数
 $\gamma_S = 1.0$
 $\gamma_{Wa} = 1.2$
 $\gamma_{Wb} = 1.3$
 $\gamma_R = 1.1$

疲労評価は、北大西洋の波浪環境に基づく荷重を用いて行い、船の設計寿命は25年以上 とする.すなわち、超過確率を10⁻⁴相当として荷重の適用及び疲労強度評価を行い、算出 した疲労損傷パラメータ(Palmgren-Minerの累積被害度)*DM*は、船の設計寿命に対し て1以下としなければならない.

$$g_{18}(x_i)^{\text{act}} = DM$$
$$g_{18}(x_i)^{\text{allow}} = 1$$

ここで,

DM: Palmgren-Minerの累積被害度

ハルガーダせん断強度に寄与する全ての板要素(船側外板,二重船側内板,縦通隔壁) に対してネット寸法のハルガーダせん断強度を算出し,それらが,式(2.25)~式(2.28)で 規定される航海中及び港内又は閉囲された水域での許容せん断力の正又は負の値以上とし なければならない.

$$g_{19-30}(\boldsymbol{x})^{\text{act}} = Q_{v-net50}$$
航海中での正の最大許容せん断力の場合,

$$g_{19-21}(\boldsymbol{x})^{\text{req}} = Q_{sw-perm} + Q_{wv-pos}$$
 (2.25)

航海中での負の最小許容せん断力の場合,

$$g_{22-24}(\boldsymbol{x})^{\text{req}} = -Q_{sw-perm} - Q_{wv-neg}$$
 (2.26)

港内又は閉囲された水域での正の最大許容せん断力の場合,

$$g_{25-27}(\boldsymbol{x})^{\text{req}} = Q_{sw-perm}$$
 (2.27)

港内又は閉囲された水域での負の最小許容せん断力の場合,

$$g_{28-30}(\boldsymbol{x})^{\text{req}} = -Q_{sw-perm}$$
 (2.28)

ここで,

2.3.1.3 目的関数

目的関数 $f(\mathbf{x})$ は船殻重量または建造コストとする.最適化計算においては,式 (2.29) で 与えられる拡張目的関数 $\phi(\mathbf{x})$ を導入して,制約条件付き最小化問題を無制約最小化問題に 置き換える.ペナルティ係数は 0.8 としている.

$$\phi(\boldsymbol{x}) = f(\boldsymbol{x}) \left[1 + c_p \sum_{j=1}^{n} \max(0, g_j(\boldsymbol{x})) \right]$$
(2.29)

ここで,

$$g_j(\boldsymbol{x})$$
 : j 番目の制約条件
 c_p : ペナルティ係数

船殻重量は縦強度部材の重量 $W_L(\mathbf{x})$ と横強度部材の重量 $W_T(\mathbf{x})$ から式 (2.30) により算出する.

$$f(\boldsymbol{x}) = W_L(\boldsymbol{x}) + W_T(\boldsymbol{x}) \tag{2.30}$$

ここで,

$$W_L(\mathbf{x}) = A(\mathbf{x}) \times HL$$

 $W_T(\mathbf{x}) = N(\mathbf{x}) \times WT$
 $A(\mathbf{x})$: 断面積
 HL : 貨物倉長さ
 $N(\mathbf{x})$: 1貨物倉内の横桁枚数
 WT : 横桁 1 枚の重量

建造コストは、材料コスト $C_M(x)$ 、溶接コスト $C_W(x)$ 、塗装コスト $C_P(x)$ 、外注コスト $C_S(x)$ 及び横桁部材の製作コスト $C_T(x)$ から式 (2.31) により算出する.

$$f(x) = C_M(x) + C_W(x) + C_P(x) + C_S(x) + C_T(x)$$
(2.31)

ここで,

$$C_M(x) = \sum W_k(x) \times C_{Mk}$$

 $C_W(x) = \sum L_l(x) \times C_{Ll}$
 $C_P(x) = S(x) \times C_P$
 $C_S(x) = W_S(x) \times C_S$
 $C_T(x) = N(x) \times C_T$
 $W_k(x)$: 縦強度部材の鋼材種類 k の重量
 C_{Mk} : 鋼材種類 k の単価
 $L_l(x)$: 建造ステージ l における溶接長
 C_{Ll} : 建造ステージ l における溶接王数単価
 $S(x)$: 塗装面積
 C_P : 塗装工数単価
 $W_S(x)$: 外注する部材の重量
 C_S : 外注単価

*C*_T : 横桁1枚当たりの建造コスト

2.3.1.4 島遺伝的アルゴリズムの設定パラメータ

島遺伝的アルゴリズムの設定パラメータを Table 2.7 に示す. 総計算個体数は, 40,000 個になった.

Number of island	10
Population of island	10
Generation	400
Migration rate	4%
Generation interval of migration	5
Selection method	Tournament
Crossover method	One-point crossover
Crossover rate	100%
Mutation rate	1%
Penalty factor	0.8

Table 2.7 Multi-Island GA parameters.

2.3.1.5 最適化計算結果

Table 2.8 に船殻重量を最小化した場合の最適化計算結果の概要として,ホールド当たり の船殻重量,中央横断面の合計断面積,板部材の合計断面積,防撓材の合計断面積,防撓 材の平均断面積及び防撓材本数を示す.これらの結果は全て Case C との比で整理してい る.ホールド当たりの船殻重量は Case C が最も軽い. Case E は防撓材間隔が最も狭いた め,防撓材の平均断面積(防撓材の平均寸法)は小さくなっているが,ホールド当たりの 船殻重量は Case C より重い.この原因は,防撓材本数の増加率が防撓材の平均断面積の減 少率よりも大きいことによる.板部材の合計断面積は防撓材間隔が広いほど大きくなって おり, Case A や Case B のホールド当たりの船殻重量は他のケースより重い.なお,横桁 枚数の最適値は,いずれのケースも基準値になった.また,Case C の最適化計算時間は, 17時間であった.

Table 2.9 に使用された鋼材種類の重量比を示す. 部材寸法を減らすために多くの設計変数で高張力鋼を選択している. また,全ての設計変数で HT36 を選択する方が部材寸法を小さくできるという考えがあるが,式(2.10)~式(2.12)から明らかなように,降伏強度が高い程要求板厚が大きくなる制約条件があるため,設計変数によっては HT36 が選択されていないことを別途確認している. このように最適化計算において,鋼材種類の選択が適

切に行われていることが確認できた.なお,MSには横強度部材等の設計変数ではない部 材の重量が一定値含まれている.

各ケースの船殻重量の履歴を Case C の最適値との比で Fig. 2.5 に示す.制約条件を満 たすために,初期状態では部材寸法を増やしており船殻重量は増加している.しかしなが ら,船殻重量は徐々に減少して 400 世代までには十分収束している.各ケースの船殻重量 の序列は,最適化計算の過程で変化しており,どのケースの最適解が優れているかを判断 するためには解が収束するまで最適化計算を継続する必要がある.Table 2.10 に主な制約 条件の平均満足率を示す.各ケースの最適解は全ての制約条件を満足しているが,平均満 足率を比較することにより制約条件に対する余剰強度を評価する.平均満足率が 100% 以 上でかつ 100% に近いほど,制約条件を満足した上で余剰強度が少ないことを意味し,よ り最適化されていると評価できる.各ケースの平均満足率はほぼ同じ傾向であり,設計変 数はハルガーダ曲げ強度 g₆ やハルガーダ最終強度 g₁₇,ハルガーダせん断強度 g₂₄ に対し ては比較的余剰強度が少ない.一方,ハルガーダ座屈強度 g₁₂, g₁₄ とハルガーダ疲労強度 g₁₈ に対しては余剰強度が多い.つまり,ハルガーダ座屈強度 g₁₂, g₁₄ とハルガーダ疲労強度 約条件を満足した時点で,座屈強度や疲労強度の制約条件を十分満足する状態になること を示している.なお,設計変数のグループが大まかなため,平均満足率はこれ以上改善さ れない.

	Case A	Case B	Case C	Case D	Case E
	%	%	%	%	%
Hull weight of one hold	104.2	102.2	100.0	101.6	101.5
Total sec. area of midship	105.8	102.9	100.0	101.8	101.7
Total sec. area of plate	112.5	102.3	100.0	95.2	93.6
Total sec. area of stiff.	91.6	104.0	100.0	115.4	118.6
Average sec area of stiff.	118.6	117.4	100.0	103.6	96.6
Total number of stiff.	77.2	88.6	100.0	111.4	122.8

Table 2.8 Summary of optimization results.

Table 2.9 Weight ratio of material grade used.

	Case A	Case B	Case C	Case D	Case E
	%	%	%	%	%
MS	17.3	18.6	18.2	20.4	18.1
HT32	45.4	32.9	28.5	29.9	27.7
HT36	37.3	48.5	53.3	49.6	54.3

Fig. 2.5 History of hull structural weight arranged by the ratio to Case C.

	Case A	Case B	Case C	Case D	Case E
	%	%	%	%	%
g_6	111.6	115.4	107.0	107.4	106.7
g_9	118.7	115.4	118.1	115.3	116.0
g_{10}	158.1	183.5	173.0	182.4	190.9
g_{12}	137.8	136.5	138.8	140.3	143.5
g_{14}	152.9	152.6	154.7	155.0	155.8
g_{17}	106.9	103.5	107.7	108.2	108.3
g_{18}	131.9	133.2	130.4	131.8	131.5
g_{24}	142.3	120.7	111.8	105.3	114.1

Table 2.10 Average satisfactory rate of typical constraint condition.

Table 2.11 に Case C の代表的な制約条件に対する最小満足率を示す. これは全ての設計 変数の中で各制約条件に対して満足率が最小になったものを抽出したものである. 満足率が 100% または 100% に近ければその制約条件はアクティブとなる. これより, ほとんどの制 約条件は全設計変数の中のいずれかに対してアクティブとなっていることが分かり, CSR-T の全ての部材寸法要件を制約条件にする必要があることを示唆している. Table 2.12 に建 造コストを最小化した場合の最適化計算結果の概要として,ホールド当たりの建造コスト, ホールド当たりの船殻重量,中央横断面の合計断面積,板部材の合計断面積,防撓材の合 計断面積,防撓材の平均断面積及び防撓材本数を示す. これらの結果は,船殻重量を最小 化した場合の Case C の最適解との比で示している. 建造コストを最小化した場合は,船 殻重量を最小化した場合よりも板及び防撓材の部材寸法が増加しているため,船殻重量は 約 3% 増加したものの,建造コストは約 3.3% 減少した.

Constraint conditions	Case C (%)	Constraint conditions	Case C (%)
g_1	100.0	g_{11}	100.0
g_2	100.0	g_{12}	101.6
g_3	106.5	g_{13}	108.2
<i>g</i> ₇	111.9	g_{14}	127.7
g_8	225.5	g_{15}	104.0
g_9	100.0	g_{18}	100.1
g_{10}	101.7		

Table 2.11 Minimum satisfactory rate of typical constraint condition of Case C.

Table 2.12 Summary of optimization results.

	Min. cost of Case C (%)	Min. weight of Case C (%)
Total cost of one hold	96.7	100.0
Hull weight of one hold	103.0	100.0
Total sec. area of midship	103.7	100.0
Total sec. area of plate	103.1	100.0
Total sec. area of stiff.	105.0	100.0
Average sec. area of stiff.	105.0	100.0
Total number of stiff.	100.0	100.0

建造コストの内訳として,建造コスト全体に占める材料コスト,溶接コスト,塗装コスト,横桁建造コスト及び外注コストの割合を Fig. 2.6 に示す.建造コストを最小化した場合は,船殻重量を最小化を場合よりも材料コストの割合が減少しており,他のコストの割合は増加している.なお,最適化計算における建造コストの内訳には加工費や利益等が含まれていないため実際の建造コストとは異なる.

Case Cの建造コストを最小化した場合と船殻重量を最小化した場合のそれぞれについて、

鋼材種類の使用比率を重量比によって Fig. 2.7 及び Fig. 2.8 に示す.船殻重量を最小化した 場合は,HT36 をより多く使用して部材寸法を減少させているが,建造コストを最小化した 場合は,鋼材単価の高い HT36 を使用せず,鋼材単価の安い MS を多く使用している.その 結果,建造コストを最小化した場合には,部材寸法が増加しているにもかかわらず材料コ ストは減少した.最適化計算における鋼材単価 (yen/ton) は,MS:80,000,HT32:90,000, HT36:100,000 としている.また,同様に主な制約条件の平均満足率を Table 2.13 に示す. 両ケースの平均満足率はいずれも同じ傾向であるが,ハルガーダ最終強度 g17 とハルガー ダせん断強度 g24 においてその差が大きく,建造コストを最小化した方が余剰強度が少な い.これは降伏強度の低い鋼材の使用割合が増加したことにより,アクティブでない制約 条件に対する余剰強度が平均的に少なくなったことが一因であると推察される.

Fig. 2.6 Breakdown of construction cost.

Fig. 2.7 Use ratio of material grades (min. Fig. 2.8 Use ratio of material grades (min. cost of caseC). weight of case C).

	Min. cost of Case C (%)	Min. weight of Case C (%)
g_6	109.7	107.0
g_9	117.9	118.1
g_{10}	171.7	173.0
g_{12}	136.9	138.8
g_{14}	149.8	154.7
g_{17}	100.0	107.7
g_{18}	134.6	130.4
g_{24}	103.2	111.8

Table 2.13 Average satisfactory rate of typical constraint condition (Case C).

2.3.2 300KDWT 油タンカーの構造最適化

2.3.2.1 計算ケース及び設計変数

ここでは、300KDW 油タンカー (L×B×D=318×60×29.5(m)) の船体中央横断面の縦強 度部材を対象として構造最適化を行う.防撓材間の板及び防撓材を個別の設計変数として 取り扱うと,設計変数の数は合計 329 個(板厚:175 個,防撓材:154 個)になり,これら 全ての設計変数を用いて最適設計を行うと,探索すべき設計変数の組合せ数が膨大になる ため,限られた時間で最適解を得ることが困難である.そこで、2.3.1 項の例と同様に、従 来の設計や製造の観点から,例えば大骨位置や板継位置を考慮して設計変数をグループに 分類することにより,設計変数の数を合計 49 個(板厚:27 個,防撓材:22 個)に削減し た.分類した設計変数を Fig. 2.9 に示す.図中のグループ番号(板)または英文字(防撓 材)が同じ設計変数は、一つの設計変数として取り扱う.板厚は 11.5~26.5(mm)の中か ら 0.5(mm) ピッチで選択し、防撓材寸法は実績船ベースで予め用意した 400 種類のテーブ ルの中から選択する方式に改めた.2.3.1 項の例では、防撓材の高さや幅等を個別の設計変 数として取り扱っていたが、テーブル選択方式により設計変数の数を削減した.その結果、 設計変数の総組合せ数は、 4×10^{62} になり、2.3.1 項の例と比較すると、 $1/10^{20}$ 程度の設計 変数の総組合せ数に削減することができた.

2.3.2.2 制約条件

制約条件は 2.3.1 項の例と同様に CSR-T の部材寸法要件とする.本項の最適化計算にお ける総制約条件数は 1,981 個になった.

Fig. 2.9 Design variable divided into groups.

2.3.2.3 目的関数

目的関数は船殻重量のみとする. 試計算の結果,全ての制約条件を満たす最適解を得る ために拡張目的関数を式 (2.32) に変更し,ペナルティ係数は 50,000 とした.

$$\phi(\boldsymbol{x}) = f(\boldsymbol{x}) + c_p \sum_{j=1}^{n} \max(0, g_j(\boldsymbol{x}))$$
(2.32)

2.3.2.4 島遺伝的アルゴリズムの設定パラメータ

島遺伝的アルゴリズムの設定パラメータを Table 2.14 に示す.総計算個体数は, 2,016,000 個になった.また,ここでは,同じ世代の各個体の計算を 72 個の CPU で分散して行うよ うに制御した.そのため,同じ世代の個体数は 72 の倍数である 504 に設定した.

Table 2.14 Multi-Island GA parameters.

Number of island	4
Population of island	504
Generation	1,000
Migration rate	40%
Generation interval of migration	5
Selection method	Tournament
Crossover rate	100%
Mutation rate	1%

2.3.2.5 計算結果

以上の条件で,目的関数である船殻重量を最小化した結果の一例として,船殻重量の履 歴を Fig. 2.10 に示す. グラフの縦軸は最適解を 100 とした相対構造重量を示す.最適解は, 1,625,993 個目の計算で得られており,予め指定した 2,016,000 個の計算時間は 72CPU を 用いた並列計算で約 120 時間になった.この結果は,第3章において,設計変数の分類法 における従来法の結果として参照する.

Fig. 2.10 History of hull steel weight ratio.

2.3.1 項と本項の構造最適化モデルの計算規模と計算時間を整理して Table 2.15 に示す. 最適化計算の並列化及び計算プログラムの C++への変更の効果によって,150KDWT 油 タンカーと 300KDWT 油タンカーでは,総計算数 (Total number of popurations) が約 50 倍に増加したにも関わらず,計算時間は約 7 倍の増加に留めることができた.しかしなが ら,従来の設計や製造の観点で設計変数を分類して設計変数の数を削減した効果によって, 実用的な時間で最適解を得ることができたものの,異なるグループに分類された設計変数 間の関連性が十分考慮されないため,本来の最適解を得ることができていない可能性があ る.また,全く新しい構造を検討する場合には,合理的に設計変数を決めることが困難に なる問題が考えられる.

Total number	150KDWT Tanker (Case C)	300KDWT Tanker		
Design variables	127	49		
Combinations of design variables	9×10^{82}	4×10^{62}		
Popurations	40,000	2,016,000		
Constraint conditions	1,705	1,981		
Total CPU time (h)	17	120		

Table 2.15 Summary of calculation conditions and CPU time.

2.4 結言

本章では、油タンカーの船体中央横断面の構造最適化を実現するために、CSR-Tの部材 寸法要件に適合した構造最適化システムを、PSH-Rules-Excelの改良プログラムと島遺伝 的アルゴリズムを組合せて開発した.また、開発した構造最適化システムを150KDWT油 タンカー及び300KDWT油タンカーの船体中央横断面の構造最適化問題に適用した.その 結果得られた結論を以下に示す.

- 1. 開発した最適化システムにより, CSR-Tの複雑な部材寸法計算プロセスの自動化を 実現した.また,船体中央横断面の構造最適化問題において, CSR-Tの全ての部材 寸法要件を制約条件として考慮できることを示した.
- 2. 150KDWT 油タンカーの船殻重量を最小化した場合に得られた最適解は,部材寸法 を減らすために高張力鋼が適切に選択されている.また,制約条件の平均満足率を 評価した結果,ハルガーダ曲げ強度やハルガーダ最終強度,ハルガーダせん断強度 に対して比較的余剰強度が少なく,座屈強度と疲労強度に対して余剰強度が多いこ

とが分かった.また,制約条件の最小満足率に着目すると,ほとんどの制約条件は 全設計変数の中のいずれかに対してアクティブになっているため,CSR-Tの全ての 部材寸法要件を制約条件にすることが必要であることを明らかにした.

- 3. 150KDWT 油タンカーの建造コストを最小化した場合に得られた最適解は,船殻重量 最小化の場合よりも部材寸法が増加している.しかしながら,鋼材単価の高いHT36 の使用を控えて,鋼材単価の安い軟鋼の使用率を上げることにより,建造コストの 大部分を占める材料コストを抑制している.制約条件の平均満足率は,船殻重量最 小化の場合と同様の傾向であるが,建造コスト最小化の方がハルガーダ最終強度と ハルガーダせん断強度の余剰強度が少ない.その要因の一つとして降伏強度の低い 鋼材の使用割合が増加したことにより,アクティブでない制約条件に対する余剰強 度が平均的に少なくなったことを推察した.
- 4. 300KDWT 油タンカーの船体中央横断面の構造最適化においては,防撓材寸法を テーブル選択方式に変更することによって,設計変数の総組合せ数を150KDWT 油 タンカーと比較して1/10²⁰ 程度に削減した.また,部材寸法計算プログラムをExcel VBA から C++に置き換えると共に,最適化計算を72 個の CPU に分散して行った. その結果,300KDWT 油タンカーの総計算数は150KDWT 油タンカーの約 50 倍に 増加したにも関わらず,計算時間は約7倍の増加に留めて最適解を得ることができ た.また,このような大規模な構造最適化計算を120時間という実用的な時間で実 行できることを示した.
- 5. 以上の検討結果により,開発した構造最適化システムは,CSR-Tの部材寸法要件に 適合しており,また,建造コストや船殻重量を目的関数とした構造最適化が実現で きることを示した.
- 6. 従来の設計や製造の観点で設計変数の数を削減する手法は、設計者の経験や勘に依存しており、また、設計変数間の関連性が十分考慮されていないため、本来の最適解を得ることができない可能性があるという課題が残った.

第3章 制約条件を考慮した設計変数の分類法

3.1 緒言

第2章の例では,従来の設計や製造の観点から設計変数を分類したが,この手法は,設 計者の経験や勘に依存しており,設計変数間の関連性が十分考慮されていないため,本来 の最適解を得ることができない可能性があるという課題が残った.本章では,主成分分析 に基づいて設計変数が有する特性を分析し,設計変数の分類と構造最適設計を実施する方 法を検討する.

3.2 主成分分析に基づく設計変数の分類法

3.2.1 概要

主成分分析に基づく設計変数の分類の流れを Fig. 3.1 に示す.まず,設計変数の分類に おいて,制約条件に及ぼす設計変数の影響を考慮するために,3.2.2 項に示す影響度行列を 構築する.次に,3.2.3 項に示すように影響度行列の主成分分析を行い,相関行列の構築と 固有値解析を行う.最後に,主成分分析で得られる固有値及び固有ベクトルと3.2.4 項に 示す設計変数の分類のための閾値を用いて,設計変数を分類する.

Fig. 3.1 Classification of design variables based on principal component analysis.

3.2.2 設計変数の制約条件に対する影響度

制約条件と設計変数の関係を評価する指標として,影響度を導入する.影響度の決定に は次の二つの特性を考慮する.すなわち,制約条件に対する設計変数の感度と制約条件を 満足する程度を表す量(制約条件の満足率)である.これにより,制約条件に対する感度 や,制約条件を満足するために必要な量が同等な設計変数は,制約条件に対する影響度も 同等であるという評価がなされる.このような設計変数を同じグループとして取り扱うこ とにより,最適設計の効率化が期待できる.制約条件は,第2章の式(2.3)及び式(2.4)で 表されるが,これらが式(3.1)に示すように設計変数の線形和で表現できると仮定すると, 制約条件に対する設計変数の重回帰係数は感度と捉えることがきる.

$$g_j(x_i) = C_j + \sum_{i=1}^m \alpha_{ij} x_i$$
 (3.1)

ここで,

 x_i : 設計変数 $(i = 1 \sim m)$ $g_j(x_i)$: 制約条件 $(j = 1 \sim n)$ C_j : 定数項 α_{ij} : 制約条件 g_j に対する設計変数 x_i の重回帰係数

制約条件 $g_i(x_i)$ に対する設計変数 x_i の重回帰係数 α_{ij} は式 (3.2) で表される.

$$\alpha_{ij} = \frac{g_j(x_i^{\max}) - g_j(x_i^{\min})}{x_i^{\max} - x_i^{\min}}$$
(3.2)

ここで,

$$x_i^{\max}$$
: 設計変数 x_i の最大値
 x_i^{\min} : 設計変数 x_i の最小値
 $g_j(x_i^{\max})$: 設計変数 x_i が最大値の時の制約条件 g_j の値
 $g_j(x_i^{\min})$: 設計変数 x_i が最小値の時の制約条件 g_j の値

また,設計変数が可動範囲の中間値(基準値)の場合の制約条件の満足率を式 (3.3) で定 義する.制約条件値 $g_j^{\text{act}}(x_i)$ が要求値 $g_j^{\text{req}}(x_i)$ 以上であれば要求を満たし,その場合,制 約条件の満足率は 1.0 以上になる.

$$g_j^{\text{satis}}(\boldsymbol{x}^{\text{base}}) = \left(\frac{g_j^{\text{act}}(\boldsymbol{x}^{\text{base}})}{g_j^{\text{req}}(\boldsymbol{x}^{\text{base}})}\right)$$
(3.3)

ここで,

$$g_j^{\text{satis}}(\boldsymbol{x}^{\text{base}})$$
 : 基準値における制約条件 g_j の満足率
 $g_j^{\text{act}}(\boldsymbol{x}^{\text{base}})$: 基準値における制約条件 g_j の値
 $g_j^{\text{req}}(\boldsymbol{x}^{\text{base}})$: 基準値における制約条件 g_j の要求値
 $\boldsymbol{x}^{\text{base}}$: 設計変数 \boldsymbol{x} の基準値

制約条件の構成を Fig. 3.2 に示す. 重回帰係数 α_{ij} は制約条件 $g_j(x_i)$ の傾きであり,設計変数の制約条件に対する感度を表す. また,制約条件値 $g_j^{\text{act}}(x_i)$ が要求値 $g_j^{\text{req}}(x_i)$ 以上の場合,要求を満足して制約条件 $g_j(x_i)$ は 0.0 以下になる.制約条件の満足率 $g_j^{\text{satis}}(\boldsymbol{x}^{\text{base}})$ は,制約条件値が要求値に対してどの程度離れているかを表す指標となる.

Fig. 3.2 Composition of constraint condition.

上述した感度と満足率を用いて,設計変数の制約条件に対する影響度を式 (3.4) で定義 する.影響度は,感度が大きく満足率が小さい場合,すなわち,最適化時に変更すべき設 計変数に対して値が大きくなるように定義している.ここで,制約条件に対する設計変数 の感度は,目的関数に対する感度で無次元化している.例えば,設計変数の長さが異なれ ば,設計変数が単位量変化した場合の制約条件の変化量は異なる.この影響を排除するた めに,制約条件に対する設計変数の重回帰係数を,目的関数に対する設計変数の重回帰係 数で除している.

$$e_{ij} = \left(\frac{\frac{\alpha_{ij}}{\beta_i}}{g_j^{\text{satis}}(\boldsymbol{x}^{\text{base}})}\right)$$
(3.4)

ここで,

β_i : 目的関数に対する設計変数 x_iの重回帰係数

 e_{ij} を成分とする影響度行列 Eを以下のように定義する.式 (3.5)の右部に示される x_1 $\sim x_m$ は設計変数に関係する行を意味し、上部に示される $g_1 \sim g_n$ は制約条件に関係する列を意味している.

$$\boldsymbol{E} = \begin{bmatrix} e_{11} & \cdots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{m1} & \cdots & e_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
(3.5)

3.2.3 主成分分析

影響度行列 *E*に基づいて,設計変数の相関行列 *R*を定める.式 (3.6)の右部と上部に示 される $x_1 \sim x_m$ は設計変数に関係する行と列を意味している.また,成分 r_{ik} は式 (3.7)~ (3.9)により求められる.相関行列 *R*の成分 $r_{ik}(=r_{ki})$ は設計変数 $x_i \ge x_k$ が全制約条件 に対してどの程度同様な影響度を有するかを示すものになる.対応する影響度行列の成分 $(e_{ij} \ge e_{kj})$ の両者ともに相加平均 $(\bar{e}_i \ge \bar{e}_k)$ よりも大きいなど同じ側に振れる場合,相関行 列の成分 (r_{ik}) は正になり,異なる側に振れる場合は負になる.相関行列 *R*の各成分 (r_{ik}) は-1~1の値を有し, $r_{ik} = 1$ は,対応する 2 つの設計変数 $(x_i \ge x_k)$ が制約条件に対して 同じ度合の影響を持つことを意味し, $r_{ik} = -1$ は,これらの設計変数は逆関係の影響度を 持つことを意味する.

1.2.3 項で指摘したように、影響度行列や相関行列をそのまま利用した場合,設計変数の 分類の判断は難しく、大規模問題への適用には問題点が残る.一方、相関行列 Rのl次の 固有値 λ_l と固有ベクトル v_l は、それぞれ、主成分軸の強さとその軸における各設計変数 の類似性を示す.つまり、固有値が大きい主成分軸ほど全体に与える影響が大きい.また、 固有ベクトルの成分は影響因子の共通性を示す指標になる [73].式(3.6)の相関行列 Rの 固有値はm 個得られ、これはm本の主成因軸で問題を表現することを意味する.一方、m本全ての主成因軸を用いずに、それより少ないq本の主成因軸で元の問題を表現する場合 がある.その際、何本の主成因軸を用いるかを判断する指標として累積寄与率を用い、q 個 の主成分の累積寄与率 C_q は式(3.10)で求められる [73].このような特性を考慮して、固 有値と固有ベクトルの値に基づいて設計変数をグループに分類する方法を提案する.また、 3.2.2節で制約条件を設計変数の線形和で表現しているため、本手法は、設計変数の可動範 囲において制約条件が線形的に変化する問題に適用可能であると考える.

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & \cdots & r_{1m} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mm} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
(3.6)

$$\bar{e_i} = \sum_{j=1}^n \frac{e_{ij}}{n} \tag{3.7}$$

$$V_{ik} = \sum_{j=1}^{n} \frac{(e_{ij} - \bar{e}_i)(e_{kj} - \bar{e}_k)}{n-1}$$
(3.8)

$$r_{ik} = \frac{V_{ik}}{\sqrt{V_{ii}V_{kk}}} \tag{3.9}$$

$$C_q = \sum_{l=1}^q \frac{\lambda_l}{m} \tag{3.10}$$

ここで,

$$e_i$$
: e_{ij} の相加平均
 V_{ik} : e_{ij} の分散・共分散

3.2.4 設計変数の分類のための閾値

主成分分析結果に基づいて設計変数を分類するために,式(3.11)に示す α を導入する. α の値は,固有値や対象の固有ベクトルの最大値と最小値の差及び変化率,対象の設計変 数の個数に応じて変化する.式(3.11)から明らかなように,固有値が大きい場合や,対象 の固有ベクトルの変化が大きい場合,個数が多い場合にαは大きくなり,設計変数を多く のグループに分類することになる.最終的な設計変数の個数は,最適化計算時間と設計の 精度を考慮して,設計者が予め決定する.また,設計変数を分類するための閾値は,δvを 分割数で均等割りして決定する.

$$\alpha = \lambda_l \times \delta v \times v_{rat} \times n_v \tag{3.11}$$

$$\delta v = v_{l_{\max}} - v_{l_{\min}} \tag{3.12}$$

$$v_{rat} = \frac{00}{\max(|v_{l_{\max}}|, |v_{l_{\min}}|)}$$
(3.13)

ここで,

 $v_{l_{max}}$: 対象設計変数のl次の固有ベクトルの最大値

 $v_{l_{min}}$: 対象設計変数のl次の固有ベクトルの最小値

 n_v : 対象設計変数の個数

3.3 簡易モデルによる提案手法の検証

3.3.1 検証モデル

Fig. 3.3 に示す箱船 (L×B×D=318×60×30(m))の構造最適設計例を用いて,主成分分析 に基づく設計変数分類法の妥当性を検証する. 箱船には, Fig. 3.4 に示す水圧荷重を載荷 する. P1 及び P2 は外水圧荷重を, P3 は青波荷重を想定している. 設計変数は合計 59 個 (板厚:30 個,防撓材:29 個)である. 設計変数の内,板厚は 1~20(mm)の中から 1(mm) ピッチで選択し,防撓材は全て T型として,Table 3.1 に示す 21 種類の中から選択した. 制約条件は,第 2 章の式 (2.5)で計算される板に対する要求板厚と式 (2.6)で計算される防 撓材に対する要求断面係数の合計 59 個 (板厚:30 個,防撓材:29 個)とした.なお,式 (2.5)の C_a 及び式 (2.6)の C_s には縦曲げ応力が含まれているため,制約条件を満足する板 厚及び断面係数を一意に求めることはできない.目的関数は船殻重量とした.

Fig. 3.3 Design variables of box type ship (half model).

Fig. 3.4 Loading conditions of box type ship (half model).

ID	h_w	t_w	b_f	t_f	ID	h_w	t_w	b_f	t_f	ID	h_w	t_w	b_f	t_f
1	325	11	125	14	8	450	12	200	20	15	550	13	200	28
2	375	11	125	14	9	450	12	200	24	16	550	13	200	32
3	375	11	150	16	10	450	11	200	28	17	600	14	200	26
4	350	12	150	26	11	475	12	200	26	18	600	14	200	30
5	375	12	180	22	12	475	12	200	30	19	625	14	200	30
6	400	12	180	22	13	500	12	200	30	20	650	14	200	30
7	425	11	180	24	14	525	13	200	28	21	700	13	200	32

Table 3.1 Dimension of stiffeners.

3.3.2 主成分分析結果

前述した主成分分析を行うと,固有値と固有ベクトルが計算される.防撓材の要求断面 係数は板と相関関係があるため,板と防撓材は同時に主成分分析を行っている.この場合, 相関行列 *R*の大きさは(59行 59列)になるため固有値は 59個得られるが,この内,7次 までの固有値及び累積寄与率を Table 3.2 に示す.6次までの累積寄与率は 50% を超え,ま た,7次以降の固有値は 6次の 1/7以下に低下する.したがって,設計変数の分類におけ る7次以降の固有値の重要度は相対的に低いと考えられる.

得られた固有ベクトルの内,板の固有ベクトルの1次成分と2次成分をFig. 3.5 (a)及び Fig. 3.5 (b)に示す.固有ベクトルは影響因子の共通性を示す指標であり,例えば, Fig. 3.5 (a) の船底 (1~10)の固有ベクトルはぼ等しいため,これらは制約条件に対して同程度の影

Order	1	2	3	4	5	6	7
Eigenvalue	7.83	6.60	5.20	4.74	4.48	4.36	0.60
Cumulative cont. ratio (%)	13.26	24.46	33.27	41.30	48.89	56.29	57.30

Table 3.2 Eigenvalue and cumulative contribution ratio of correlation matrix.

響を持っていると判断できる.また,甲板 (21~30)の固有ベクトルも同じように評価できる.一方,船側 (11~20)の固有ベクトルは,線形的に変化しており,船側の設計変数が制約条件に対する影響は一様ではないことを示唆している.これらの傾向は,制約条件の中に含まれる荷重条件の傾向を反映していると考えられる.一方,Fig. 3.5 (b)の船側に着目すると,1次成分とは異なり,2次関数的な変化をしている.これは,制約条件の中に含まれる縦曲げ応力に対する船側部の設計変数の影響が中立軸からの距離の2乗で変化する傾向を反映していると考えられる.防撓材の固有ベクトルの1次成分と2次成分をFig. 3.5 (c)及びFig. 3.5 (d)に示す.防撓材の固有ベクトルも板と同様の傾向を示している.

以上のように、同じ次数の固有ベクトルの値は、制約条件に対する共通性を示している ことが確認でき、固有値が大きい程、制約条件に対する影響が大きいと考えられるため、こ れらの情報を用いて設計変数をグループに分類する.なお、PrimeShip-HULLでは、全荷 重ケースの計算を行った後、最も厳しい状態(これをアクティブな状態と定義する)の荷 重ケースにおける制約条件の結果のみを出力する仕様となっている.これでは制約条件に 対する設計変数の影響を評価する際に、荷重ケースが異なる影響も加味されるため評価結 果に悪影響を及ぼす.そこで、これを補う方法として、荷重ケースに対してアクティブな 制約条件の情報を式(3.5)の影響度行列に加味した.具体的には、共通な荷重ケースに対し てアクティブな状態になる制約条件間に関連性があると捉え、荷重ケースが同じでかつ制 約条件の種類(例えば制約条件「要求板厚」という種類)が同じ場合に、該当する影響度行 列成分を加算した結果を影響度行列の新たな列に加えた.その結果、影響度行列は(m行 n列)から加算した N列分大きくなり、(m行n+N列)になる.Nは考慮した荷重ケー スの数である.本節の例では、設計変数 59 個、制約条件 59 個、荷重ケース6 個(板、防 撓材それぞれ3 個)であるため、影響度行列の大きさは(59 行 65 列)になる.

(d) 2nd order Eigenvector (Stiff.).

Fig. 3.5 Eigenvector of design variables (plate and stiffener).

3.3.3 設計変数の分類例1

具体的に設計変数を分類する例を示す.この例では,設計変数を最終的に12個(板:6個,防撓材:6個)のグループに分類することを目指す.まず,Fig. 3.5 (a)に示す板部材の1次の固有ベクトルに着目すると,その傾向が他と明らかに異なる設計変数が観察され

る. 固有ベクトルの標準偏差を用いて,これらを3個の設計変数グループに分類すると, 設計変数 (1~10),(11~20),(21~30)に分類される.これら3個の設計変数グループはア クティブな荷重ケースが異なり,それぞれ,船底,船側,甲板になった.次に,1次の固 有値及び固有ベクトルから式(3.11)により計算した α に基づきグループを分類する. α の 計算結果を Table 3.3 に示す.Group 2 に着目すると,1次の固有値 λ_1 は7.83,対象の設 計変数の個数 nは11~20の10個,これら10個の設計変数の固有ベクトルの中で最大値 $v_{1_{max}}$ は0.03482,同様に最小値 $v_{1_{min}}$ は-0.02787であり,式(3.11)より α を計算すると約 8.83になる.設計変数の分類方針として, α の大きい設計変数(11~20)を優先的に分類す ることにして,ここではGroup 2を2個のグループに分類する.その結果,Fig. 3.6 に示 すように設計変数(11~20)は,(11~15),(16~20)の2個のグループに分類される. α が 相対的に小さい場合は,設計変数を分類しない.船底外板や甲板には一定の水圧がかかる 条件のため,要求板厚も一定になる.したがって,このような設計変数は,分類せずにそ れぞれ一つの設計変数として取り扱うことは理に適っている.なお,板と同様の主成分分 析を行って防撓材の設計変数を分類した結果もFig. 3.6 に示している.

次に,1次の分類結果を引き継いだ上で,2次の固有値及び固有ベクトルから式(3.11)に よりαを計算して,同様に設計変数をグループに分類する.Table 3.4 と Fig. 3.7 に示すよ うに設計変数(11~15)は,(11~12)と(13~15)の2個のグループに,設計変数(16~20) は,(16~18)と(19~20)の2個のグループにそれぞれ分類され,合計6個のグループに分 類された.ここで,予め決定していた分類数に到達したため,設計変数の分類を終了する. この設計変数グループを最適設計における提案モデルとする.

本研究では,設計変数の分類を終了する条件を設計変数の分類数が規定数に到達することしているが,固有値の寄与率に基づいて,使用する固有値の有意性を評価しながら設計変数を分類することが重要である.

Group	1	2	3
Design variable ID	1~10	$11 \sim 20$	$21 \sim 30$
α	0.024	8.833	0.205
Num. div.	1	2	1

Table 3.3 Division of design variables (1st order).

Fig. 3.6 Division of design variables (1st order).

Table 3.4 Division of design variables (2nd order).

Group	1	2-1	2-2	3
Design variable ID	1~10	$11 \sim 15$	$16 \sim 20$	$21 \sim 30$
α	0.021	0.292	0.335	0.144
Num. div.	1	2	2	1

Fig. 3.7 Division of design variables (2nd order; proposed optimal calculation model).

3.3.4 設計変数の分類例 2

3.3.3 項では *α* の大きい設計変数から優先的に分類して,予め決定していた分類数に到 達した時点で設計変数の分類を終了した.したがって,まず主成分分析の1次の結果を用 いて設計変数を分類し,次に2次の結果を用いて更に分類した.しかしながら,各次数に おける分類数や分類を開始する次数には議論の余地がある.本項では各次数における設計 変数の分類数や分類を開始する次数を変更して,3つの設計変数モデルを作成した.

Case 1 は,主成分分析の 1 次の結果のみを用いて設計変数を分類した. Table 3.3 に示 す主成分分析の 1 次の結果のみを用いて設計変数 (11~20) を 4 個のグループに分類した結 果を Fig. 3.8 に示す.前項の提案モデルと比較すると板の設計変数グループは比較的似て いるが,防撓材の設計変数グループに差が見られる.

Fig. 3.8 Division of design variables (Case 1).

Case 2 は,主成分分析の 2 次の結果のみを用いて設計変数を分類した. Table 3.5 に示 す主成分分析の 2 次の結果のみを用いて設計変数 (11~20) を 4 個のグループに分類した結 果を Fig. 3.9 に示す. 船側部の設計変数の 2 次の固有ベクトルはほぼ上下対称になってい るため,それを反映して船側部の設計変数グループは上下で対になる傾向が確認できる.

Case 3 は,主成分分析の 2 次の結果を用いて設計変数を分類した後,1 次の結果を用い て分類した.まず,Table 3.6 に示す主成分分析の 2 次の結果を用いて,設計変数 (11~20) を Fig. 3.10 に示す 2 個のグループに分類した.次に,上記の分類結果を引き継いだ上で Table 3.7 に示す 1 次の結果を用いて設計変数 (11, 12, 20), (13~19) をそれぞれ 2 個のグ ループに分類した.設計変数の分類結果を Fig. 3.11 に示す. Case 1 とは逆に,板の設計 変数グループに差が見られるが,防撓材の設計変数グループは提案モデルと等しい.

Case 1~Case 3 と提案モデルの設計変数グループを船側部に着目して Fig. 3.12 に示す. このように,主成分分析に基づく設計変数の分類において,各次数における分類数や分類 を開始する次数によって最終的な設計変数の分類結果が異なることが確認できる. 3.3.6 項 において,各ケースの最適設計を行い,適切な分類法を評価する.

Table 3.5 Division of design variables (2nd order; Case 2).

Group	1	2	3
Design variable ID	1~10	$11 \sim 20$	$21 \sim 30$
α	0.021	0.679	0.144
Num. div.	1	4	1

Fig. 3.9 Division of design variables (Case 2).

Table 3.6 Division of design variables (2nd order; Case 3).

Group	1	2	3
Design variable ID	1~10	$11 \sim 20$	$21 \sim 30$
α	0.021	0.679	0.144
Num. div.	1	2	1

Table 3.7 Division of design variables (1st order; Case 3).

Group	1	2-1	2-2	3
Design variable ID	1~10	11, 12, 20	$13 \sim 19$	21~30
α	0.025	2.650	4.568	0.205
Num. div.	1	2	2	1

Fig. 3.10 Division of design variables (2nd order; Case 3).

Fig. 3.11 Division of design variables (Case 3).

3.3.5 設計変数の分類例 3

比較のために Fig. 3.13 に示すように設計変数を設計者の意思で分類した Case 4~Case 6 のモデルを作成した.いずれも,船側部の板厚と防撓材の分類数を4個として,設計変数の合計数(12個)を提案モデルと揃えている.また,船側部の板厚と防撓材をグループに分類しない Case 0 も作成した.この場合,設計変数は23 個になるため参考解として取り扱う.

Fig. 3.12 Optimal calculation models based on principal component analysis.

Fig. 3.13 Optimal calculation models based on designer's consideration.

3.3.6 構造最適設計

3.3.3 項~ 3.3.5 項で作成した設計変数モデルによる最適設計を行い,主成分分析に基づ く設計変数分類法の効果を確認する. 第2章と同様に島遺伝的アルゴリズムによる構造最 適設計を行った. ただし,島遺伝的アルゴリズムの設定パラメータを Table 3.8 のように 変更している. 総計算個体数は, 10,000 個になった. 得られた重量の履歴を Fig. 3.14 及 び Fig. 3.15 に示す.設計変数の合計数を揃えた Case 1~Case 6 及び提案モデルの中では, 提案モデルの最適解が最も軽い.主成分分析の1次の結果のみを用いて設計変数を分類し た Case 1 や, 2 次の結果のみを用いて分類した Case 2, 2 次の結果を用いて分類した後で 1 次の結果を用いて分類した Case 3 のいずれも提案モデルの最適解を上回ることができて いない.単一の次数の結果を用いて設計変数を分類すると,他の主成分を考慮できないた め,設計変数の分類において,設計変数の制約条件に対する影響度が偏って考慮されてし まう.本検証モデルでは1次と2次の固有値,固有ベクトルが重要であったと推察される. また,設計変数の分類には,寄与度の高い低次の固有値,固有ベクトルを優先的に用いる 方が良い最適解を得られていることから,αの計算において固有値を含み,間接的に寄与 度を考慮できる提案手法が有効に機能していることが確認できた.

最適解が上位だった Case 0, 提案モデル, Case 4~Case 6 の設計変数の最適値を Table 3.9 に示す. 表中の設計変数 ID は, Fig. 3.3 を参照している. Case 4~Case 6 及び提案モデルの船側部 (11~20 及び k~s)の最適値を Case 0 の参考最適値と比較すると,提案モデルの最適値は Case 0 の最適値に最も無駄なく追従できており,その結果最も軽い最適解を得られたと推察される.

Number of island	5
Population of island	10
Generation	200
Migration rate	40%
Generation interval of migration	5
Selection method	Tournament
Crossover rate	100%
Mutation rate	1%

Table 3.8 Multi-Island GA parameters.

Fig. 3.14 History of weight(1).

Fig. 3.15 History of weight(2).

		Case 0	Prop.	Case 4	Case 5	Case 6	
	Design variable ID	Optim	al value	of plate	thickness	(mm)	
	1~10	9	9	11	9	9	
	11	9	0	10	9	9	
	12	9	9	10	0	8	
	13	7		7	7	9	
	14	7	7			7	
Plate	15	6			7	•	
	16	6		6			
	17	6	6				
	18	6			6	5	
	19	5	4	5	0		
	20	3	- 4				
	$21 \sim 30$	3	3	3	3	4	
	Design variable ID	Optin	mal valu	e of stiffe	ener dime	nsion	
	a~j	18	18	16	18	18	
	k	15	15	19	15	15	
	1	11	15	10	11	12	
	m	9		0	11		
Stiff	n	7	9	9		9	
50111.	0	7		6	7		
	р	5	5	0			
	q	4	0				
	r	3	3	4	4	5	
	S	1	5				
	t~ac	1	1	1	1	1	
	Weight (ton)	328	333	345	337	342	
T	otal number of lesign variable	23	12	12	12	12	

Table 3.9 Optimal results of design variables.

3.3.7 解の収束に関する考察

主成分分析に基づく設計変数分類モデルは,設計変数の制約条件に対する影響を適切に 反映しているため,最適化計算において解の収束が安定し,より速く最適解が得られるこ とが期待できる.3.3.6項において,提案モデルの次に良い最適解が得られた Case 5 につい て,5回の最適化計算を行い最適解の収束性を提案モデルと比較した結果を Table 3.10 に 示す.最適解が得られた時点での計算回数(5回の平均値)は,提案モデルの方が約7%少ないことから,提案モデルの方がより速く収束する傾向が確認できた.ただし,いずれの モデルも最大200世代までの計算で最適解に収束したのは5回中2回の40%であり,両者 の差はなかった.

	Optimal solution (ton)	Num. of times of calc.	Convergency (%)
Proposed	332.59	4231	40
Case 5	337.02	4560	40

Table 3.10 Convergency of the optimal solution (Proposed model and Case 5).

3.4 300KDWT 油タンカーの構造最適化への提案手法の適用

前節までに得られた知見に基づいて、本研究では、制約条件に対する各設計変数の影響 度を対象とする主成分分析を実施し、求められた固有値、固有ベクトルによって設計変数 を分類する.本節では、2.3.2 項で取り上げた 300KDWT 油タンカーの船体中央横断面構 造の最適設計問題に、提案した手法を適用する.影響度に基づく主成分分析を実施した結 果、得られた設計変数グループを Fig. 3.16 に示す.設計変数の合計数は、従来の設計や製 造の観点から設計変数を分類した Fig. 2.9 と同様に 49 個(板:27 個、防撓材:22 個)と している.両者を比較すると、提案モデルは、船底外板の分割数を最小限としている.ま た、船側外板や縦通隔壁など要求寸法が一様ではない深さ方向に伸びる部材は、より多く のグループに分類していることが確認できる.また、制約条件には設計変数の空間的配置 の情報を含まないため、防撓材の設計変数「c」や「e」のように離れた個所の設計変数が 同じグループに分類される場合がある.このことが製造上の問題になる場合には、制約条 件に空間的配置情報を加味することにより回避することが可能である.

提案モデルを第2章と同条件にて最適設計した結果を Fig. 3.17 に示す. また, 最適解 における各部の重量を, 従来モデルの最適値と比較して Table 3.11 に示す. 提案モデルは 従来モデルよりも約 0.3% 軽量化できた. 提案モデルの最適解は, 深さ方向の部材の設計 変数をより多くのグループに分類した効果により,特に縦隔壁の板を軽量化することがで きている. 不足する縦強度は甲板を増厚することで制約条件を満足しているが, 防撓材寸 法を小さくして軽量化している. 板と防撓材の重量比については, 両モデルに大きな違い はない.

従来モデルと提案モデルの縦通隔壁について要求板厚に対する制約条件 g₁の満足率を Table 3.12 及び Table 3.13 に示す.最適解は全ての制約条件を満たしており、満足率が

Fig. 3.16 Design variable divided into groups (proposed model).

100%以上でかつ100%に近いほど,制約条件を満足した上で余剰強度が少ないことを意味 する.これらの結果より,提案モデルの余剰強度は従来モデルよりも少なく,より最適化 されていることが確認できた.

以上より,提案手法は設計変数や制約条件が大幅に増加した大規模最適化問題に適用す ることが可能であり,複雑な制約条件下においても適切な設計変数グループを作成できる. その結果,より高精度な最適設計が実現できることが確認された.

Fig. 3.17 History of hull steel weight ratio.

Structural	Or	·g.	Pro	op.
part	Plate	Stiff.	Plate	Stiff.
Bottom	7.4	4.9	7.2	4.9
Inn. Bottom	5.8	3.5	5.9	3.4
Deck	9.8	3.4	10.5	3.1
Side	7.4	3.6	7.5	3.7
Out. L. Bhd	8.0	3.8	7.6	3.8
Inn. L. Bhd	6.6	4.3	6.3	4.4
Sub total	45.1	23.5	45.0	23.3
Others	31	.4	31	.4
Total	100	0.0	99.	72

Table 3.11 Rate of the hull weight of each structural part.

	Design	Satis
Structural part	Design	Datis.
•	variable ID	rate (%)
	17	100
	18	100
Out. L. Bhd	19	100
	20	100
	21	183
	22	100
	23	100
Inn. L. Bhd	24	100
	25	104
	26	169

Table 3.12 Satisfactory rate of required plate thickness (org.).

Structural part	Design	Satis.
	variable ID	rate (%)
	12	100
	13	100
	14	100
Out I Bhd	15	100
Out. L. Dha	16	100
	17	100
	18	103
	19	166
	20	100
	21	100
	22	100
Inn. L. Bhd	23	100
	24	104
	25	104
	26	124

Table 3.13 Satisfactory rate of required plate thickness (prop.).

3.5 結言

第2章で言及した設計変数の分類法に関する課題を解決するために,本章では,膨大な設計変数及び制約条件を有する構造最適化問題において,数理最適化の観点から設計変数の分類類法を検討し,設計変数の制約条件に対する影響度と主成分分析に基づく設計変数の分類法を構築した.また,構築した手法を水圧荷重を受ける箱船と第2章で用いた300KDWT油タンカーの船体中央横断面の構造最適化問題に適用して構築した手法の妥当性を検証した.その結果得られた結論を以下に示す.

- 設計変数の制約条件に対する影響度を導入し、影響度の主成分分析に基づいて、設計変数と制約条件の関係を整理した.また、主成分軸成分の値に従った設計変数の分類法を構築した.これにより、従来の設計や製造の観点から決定していた設計変数グループを、数理最適化の観点から適切な設計変数グループに分類することが可能になった.その際、寄与度の高い主成分軸と複数の主成分軸を考慮することが重要であることを示した.
- 構築した手法を水圧荷重を受ける簡易箱船モデルの構造最適化問題に適用した結果, 設計変数を各部材の要求寸法に見合った適切な設計変数グループに分類することに より,最も優れた最適解を得ることができ、本手法の妥当性が確認できた.また、構 築した手法による設計変数グループは、従来の設計変数グループと比較すると最適 解に速く収束する傾向が確認できた.
- 3. 構築した手法を用いて,300KDWT 油タンカーの中央横断面の設計変数を分類した 結果,設計変数の合計数は従来手法と等しい49 個としたが,従来の設計変数と比較 すると,船底外板の分類数を最小限として,船側外板や縦通隔壁など要求寸法が一 様ではない深さ方向に伸びる部材は,より多くのグループに分類していることを示 した.
- 4. 構築した手法を用いて決定した設計変数グループは、従来よりも約 0.3% 軽量化された余剰強度の少ない最適解を得ることができた.これは、要求寸法が一様ではない深さ方向に伸びる部材の設計変数を多く分割したように、制約条件に対する影響を適切に考慮した効果であることを示した.
- 5. 構築した手法は,数理最適化の観点から予断のない設計変数グループに分類することが可能であり,経験の浅い設計者が最適設計を行う場合や,新しい構造の最適設計が必要な場合において,有用な手法であると考えられる.
- 制約条件には設計変数の空間的配置の情報を含まないため、離れた個所の設計変数 が同じグループに分類される場合があるが、このことが製造上の問題になる場合に は、制約条件に空間的配置情報を加味することにより回避することが可能である。

第4章 座屈・最終強度の簡易評価法

4.1 緒言

本章では、CSR に適合した構造強度評価に適用可能な座屈・最終強度評価法の構築を目 指す.はじめに CSR で規定される座屈・最終強度評価法を概観して、それを構造最適化に 適用する場合の問題点を示す.次に、構造最適化における座屈・最終強度評価法の構築方 針を示し、座屈強度簡易推定式と1.2.5 項で示した原田らが開発した陽表示の最終強度簡易 推定式を展開する.また、最終強度推定式とPULS のベンチマークを行い、CSR への適合 性を評価する.最後に、原田らの最終強度簡易推定式を CSR に適合するように修正して、 修正後の最終強度簡易推定式が CSR に適合した構造最適化に適用可能であることを示す.

4.2 CSR における座屈・最終強度評価法

CSR-T と CSR-B で規定される座屈・最終強度評価法 [20][21] は,それぞれ別の手法であるが,それらによる座屈・最終強度の推定結果を FEM 解析結果と比較すると,特定の条件下で安全側の評価となるものの,比較的良く一致すると報告されている [83].

4.2.1 CSR-Tで規定される座屈・最終強度評価法

CSR-Tでは,組合せ荷重を受ける板及び防撓板に対して,高度座屈解析法を用いて座屈・ 最終強度を評価することが規定されている [21]. この高度座屈解析法として,DNVで開発 された PULS がある.PULS は半解析的に最終強度を計算するプログラムであり,Steen や Byklum らによる一連の研究に基づいて開発された [3][4][45][46].具体的には,有限要 素法のような数値解析ではなく,弾性大撓み解析解に基づいて,座屈によって生じる板や 防撓板の撓みを算出する.そして,得られた撓みから計算される評価点の応力が,最初に 降伏応力に達した時点の荷重を最終強度とする.また,直接強度解析を用いて座屈・最終 強度を評価する場合に,評価対象部材によって異なる高度座屈解析法の適用方法が規定さ れている.以下に,PULS の概要と適用方法を説明する.
4.2.1.1 座屈モデル

PULSでは,防撓板に生じる座屈変形モードをFig. 4.1 及びFig. 4.2 に示す局部座屈モードと全体座屈モードに分け,それぞれのモードに対して,半解析的に変形や応力を求める弾性大撓み解析モデルを考える.局部座屈モデルでは,防撓材と板の接合線上の撓みを0とする.一方,全体座屈モデルでは,防撓板全体が撓むモードを考える.なお,矩形板を対象とする場合は,防撓材のない局部座屈モデルのみを考える.

Fig. 4.1 Buckling modes assumed in PULS (local buckling mode).

Fig. 4.2 Buckling modes assumed in PULS (overall buckling mode).

局部座屈モデルでは、防撓材で仕切られた矩形板に生じる撓み w^L と初期撓み w₀^L を次 式で表す.

$$w^{L} = \sum_{m} \sum_{n} A_{mn}^{L} \sin \frac{m\pi x}{l} \sin \frac{n\pi y}{s} + \sum_{m} \sum_{n} \frac{B_{mn}^{L}}{2} \sin \frac{m\pi x}{l} \left(1 - \cos \frac{2n\pi y}{s}\right)$$
(4.1)

$$w_0^L = \sum_m \sum_n A_{0mn}^L \sin \frac{m\pi x}{l} \sin \frac{n\pi y}{s} + \sum_m \sum_n \frac{B_{0mn}^L}{2} \sin \frac{m\pi x}{l} \left(1 - \cos \frac{2n\pi y}{s} \right)$$
(4.2)

ここで,上式の1はスパンを,sは防撓材間隔をそれぞれ表している.また,第2項は板と 防撓材の接合線上で固定条件になる撓みモードを表しており (Fig. 4.3(b)),防撓材の捩り 剛性が大きな場合には,このような撓み成分が成長する.また,局部座屈モデルでは,防 撓材ウェブにも座屈による撓みが生じるとし,次式のような撓みvと初期撓みvoを考える.

$$v = \sum_{m} V_{1m} \sin \frac{m\pi x}{l} \left(\frac{z}{h}\right) + \sum_{m} V_{2m} \sin \frac{m\pi x}{l} \left(1 - \cos \frac{\pi z}{2h}\right)$$
(4.3)

$$v_0 = \sum_m V_{01m} \sin \frac{m\pi x}{l} \left(\frac{z}{h}\right) + \sum_m V_{02m} \sin \frac{m\pi x}{l} \left(1 - \cos \frac{\pi z}{2h}\right)$$
(4.4)

ここで, vの第2項はw^Lと同様に板と防撓材の接合線上で固定条件になる撓みモードで あり (Fig. 4.3(c)),板の板厚が防撓材ウェブの板厚に比べて大きな場合にこの成分が成長 する.式(4.1)及び式(4.2)と式(4.3)及び式(4.4)は互いに独立ではなく,板と防撓材がそ の接合線上で直角を保持する条件 (Fig. 4.3)や,板と防撓材で平均ひずみが同じになる条 件など両者の間に関係性が存在する.以上の撓み形状に対して弾性大撓み解析解を導出し, ある荷重の下での撓み係数,撓み係数から計算される応力,座屈後の面内剛性の低下量を 求める.

Fig. 4.3 Deflection-components of local buckling model assumed in PULS.

一方、全体座屈モデルでは、防撓板を等価な異方性板に置き換える.この異方性板には 次式で表す撓み w^G と初期撓み w^G_0 が生じているとする.

$$w^{G} = \sum_{m} \sum_{n} A^{G}_{mn} \sin \frac{m\pi x}{l} \sin \frac{n\pi y}{B} + \sum_{m} \sum_{n} \frac{B^{G}_{mn}}{2} \left(1 - \cos \frac{2m\pi x}{l}\right) \sin \frac{n\pi y}{B}$$
(4.5)

$$w_0^G = \sum_m \sum_n A_{0mn}^G \sin \frac{m\pi x}{l} \sin \frac{n\pi y}{B} + \sum_m \sum_n \frac{B_{0mn}^G}{2} \left(1 - \cos \frac{2m\pi x}{l}\right) \sin \frac{n\pi y}{B} \quad (4.6)$$

ここで,*B*は防撓板の幅を表し,単位幅あたりの曲げ剛性と面内剛性が防撓板のそれと同 じになるように異方性板の剛性を決定する.その際,局部座屈モデルから計算される座屈 後の面内剛性の低下も考慮する.全体座屈モデルについても局部座屈モデルと同様に,あ る荷重の下での撓み係数,応力を計算する.

4.2.1.2 初期不整

PULS では初期不整として, Fig. 4.4 に示すような初期撓みを考える. $\delta_{P0} \ge \delta_{T0}$ は, 局 部座屈モデルに対する板の初期撓みと防撓材の初期捩れの最大値を表している. 一方, δ_{S0} は全体座屈モデルに対する初期撓みの最大値を表している. PULS では式 (4.1)~式 (4.6) の撓み形状に対して座屈固有値解析を実施し,得られた座屈モードを初期撓みモードとし て利用している. つまり,固有値解析より得られた撓み係数と同じ比率の初期撓み係数を 与え,計算される初期撓みの最大値が δ_{P0} , δ_{T0} および δ_{S0} になるように係数の大きさを決 定する. 初期撓みに対する最大値は任意の値を入力することも可能であるが,以下のデフォ ルト値を用いることが推奨されている.

$$\delta_{\rm P0} = \frac{s}{200}, \ \delta_{\rm T0} = \frac{l}{1000}, \ \delta_{\rm S0} = \frac{l}{1000}$$
(4.7)

Fig. 4.4 Initial deflection assumed in PULS.

4.2.1.3 水圧の参考限界値

PULS では水圧に対する参考限界値を以下のように設定している.

$$\sigma_{\rm ref} = 2\sigma_Y \left(\frac{t}{s}\right)^2 \tag{4.8}$$

ここで, *t* は板の板厚を表している. Fig. 4.5 に示すように,防撓材間の板の単位長さ分を 両端固定の梁とみなし,この梁が初期降伏する時の水圧荷重を参考限界値としている.こ の限界値を超えた水圧荷重下でも最終強度推定は可能であるが,推定される最終強度の妥 当性は保証できないとしている.

Fig. 4.5 Beam model to estimate reference pressure.

4.2.1.4 最終強度判定

PULSでは、局部座屈モデルと全体座屈モデルより得られた応力の和が、降伏応力に達 した時点の荷重を最終強度としている.ただし、面内力については局部座屈モデルで考慮 されているため、全体座屈モデルでは曲げ応力のみを考える.すなわち、求める応力は次 式のようになる.

$$\sigma_x = \sigma_{xp}^L + E\bar{z}\kappa_x^G, \ \sigma_y = \sigma_{yp}^L, \ \tau_{xy} = \tau_{xyp}^L \tag{4.9}$$

ここで、 $\sigma_p^L \geq \tau_p^L$ は局部座屈モデルから求められるメンブレン応力を表している.一方、 κ_x^G は全体座屈モデルから得られる曲率であり、zは全断面の中立軸位置からの距離を表し ている.なお、防撓材では σ_x 以外の成分は考えない.次に、式 (4.9)の応力から次式で表 す Von Mises の相当応力を計算する.

$$\sigma_{vm} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2} \tag{4.10}$$

求められた相当応力 σ_{vm} が Fig. 4.6 及び Fig. 4.7 に示すいずれかの点で最初に降伏応力 σ_Y に達した時を最終強度とする.つまり,図の降伏判定点番号に対応した以下の崩壊モー ドを考慮していることになる.

- Mode1:局部座屈による板周縁部降伏
- Mode2:全体座屈による防撓材頂部の引張降伏
- Mode3:全体座屈による板の圧縮降伏
- Mode4:全体座屈による防撓材頂部の圧縮降伏
- Mode5:全体座屈による板の引張降伏
- Mode6:支持辺での防撓材の曲げ降伏

Fig. 4.6 Checking points for yielding (1).

Fig. 4.7 Checking points for yielding (2).

4.2.1.5 適用方法

CSR-Tでは、高度座屈解析法の適用方法が次のように規定されている [21]. 荷重を再 配分し、局部弾性座屈を許容する座屈強度評価法を評価法 1(Method 1; M1) と定義し、 座屈強度は防撓板の任意の箇所で面内応力が最初に降伏応力に達した荷重とする. また、 構造部材間に荷重の再配分を許容せず、理想化した弾性座屈強度及び評価法 1 による座 屈強度の最小値を参照する座屈強度評価法を評価法 2(Method 2; M2) と定義する. 更に、 Fig. 4.8 ~ Fig. 4.10 に示すように評価部材によって座屈・最終強度評価法を使い分ける. 縦 強度部材及び横隔壁の大部分は防撓パネルの評価法 1(SP-M1) に分類され、横桁部材は非防 撓パネルの評価法 2(UP-M2) または防撓パネルの評価法 2(SP-M2) に分類される. CSR-T では,各部材の座屈・最終強度は,式(4.11)で定義する基準を満足する必要があり,上記 の評価法によって各部材の η_{act} を算出する.

$$\eta_{\text{act}} \leq \eta_{\text{allow}}$$

$$\eta_{\text{act}} = \frac{\sqrt{\sigma_{dx}^2 + \sigma_{dy}^2 + \tau_d^2}}{\sqrt{\sigma_{cx}^2 + \sigma_{cy}^2 + \tau_{cr}^2}}$$

$$(4.11)$$

ここで,

 σ_{dx} : x方向の作用軸応力

- σ_{dy} : y方向の作用軸応力
- *τ_d*: 作用せん断応力
- σ_{cx} : x方向圧縮下の座屈強度
- *σ*_{cy} : y方向圧縮下の座屈強度
- *τ_{cr}* : せん断応力下の座屈強度

 η_{allow} : 許容座屈使用係数

 $\eta_{\text{allow}} = 1.0$ S+D (静的荷重及び動的荷重の組合せ)

 $\eta_{\text{allow}} = 0.8$ S(静的な設計荷重の組合せ)

η_{act} : 設計適用荷重に基づく実際の座屈使用係数

Fig. 4.8 Buckling assessment for longitudinal strength members.

Fig. 4.9 Buckling assessment for transverse web frames.

SP-M1	SP-M1			SP-	MI			
SP-M1		SP-M1		SP-	M1			
SP-M1	SP-M1			SP-	M1			
	SP-M1		SP-M1				/	
	12	SP-M1	SP-M1	SP-M1				

Fig. 4.10 Buckling assessment for transverse bulkhead.

4.2.2 CSR-Bで規定される座屈・最終強度評価法

CSR-B では、板及び防撓板に対する最終強度が規定されている [20]. パネル最終強度, 防撓板最終強度(面外座屈),防撓板最終強度(捩り座屈)の3モードが考慮されており, これらの計算結果の内,最も低強度になる値が評価部材の最終強度になる.以下に,各モー ドにおける最終強度算式を示す.

4.2.2.1 板に対する最終強度算式

防撓材により囲まれた板部材に対し、最終強度は式 (4.12) により規定されている.

$$\left(\frac{|\sigma_x|S}{\kappa_x\sigma_Y}\right)^{e_1} + \left(\frac{|\sigma_y|S}{\kappa_y\sigma_Y}\right)^{e_2} - B\left(\frac{\sigma_x\sigma_yS^2}{\sigma_Y^2}\right) + \left(\frac{|\tau|S\sqrt{3}}{\kappa_\tau\sigma_Y}\right)^{e_3} \le 1.0$$
(4.12)

ここで,

$$\sigma_x, \sigma_y$$
: 圧縮応力
 au : せん断応力
 $\kappa_x, \kappa_y, \kappa_{ au}$: 軽減係数
 S : 安全係数
 B, e_1, e_2, e_3 : パネルの形状により定められる係数

さらに、応力成分ごとの最終強度が以下に示すように規定されている.

$$\left(\frac{|\sigma_x|S}{\kappa_x \sigma_Y}\right)^{e1} \le 1.0 \tag{4.13}$$

$$\left(\frac{|\sigma_y|S}{\kappa_y \sigma_Y}\right)^{e^2} \le 1.0 \tag{4.14}$$

$$\left(\frac{|\tau|S\sqrt{3}}{\kappa_{\tau}\sigma_{Y}}\right)^{e^{3}} \le 1.0 \tag{4.15}$$

4.2.2.2 防撓板に対する最終強度算式

防撓板の面外座屈に対し,最終強度は式 (4.16) により規定されている.

$$\frac{\sigma_a + \sigma_b}{\sigma_Y} S \le 1.0 \tag{4.16}$$

$$\sigma_b = \frac{M_0 + M_1}{W_{st} 10^3} \tag{4.17}$$

ここで,

- *σ_b*: 防撓材に作用する曲げ応力
- M0 : 防撓材の変形により生じる曲げモーメント
- M₁: 面外荷重により生じる曲げモーメント
- Wst : 有効幅の板部材を含む防撓材の断面係数

防撓板の捩り座屈に対し,最終強度は式(4.18)により規定されている.

$$\frac{\sigma_x S}{\kappa_T R_{eH}} \le 1.0 \tag{4.18}$$

ここで,

*κ*_T: 捩り座屈強度に関する係数

4.2.3 CSR に適合した構造最適化における座屈・最終強度評価法の問題点

CSR に適合した構造最適化における座屈・最終強度評価法を考える場合,評価の自動化・ 簡易化が必須である. CSR-B の座屈・最終強度評価は,評価算式が明示されているため自 動化が可能である. しかしながら, CSR-T の高度座屈解析法に適合した PULS は,ブラッ クボックス化されたソフトウェアであるため,構造最適化に利用するのは難しい. そこで, CSR-T の UP-M2 及び SP-M2 には,4.3 節に示す座屈強度簡易推定式を用い,SP-M1 に は,4.4 節に示す最終強度簡易推定式を修正して用いることにより,構造最適化における座 屈・最終強度評価法を構築する.

4.3 座屈強度簡易推定式

4.3.1 基礎理論

平板に面内荷重が作用する場合,ある荷重レベルまでは面内の変形が安定な変形状態に なるが,ある荷重レベルを超えると,撓んだ状態が安定な変形状態になる.座屈荷重は,こ のような2つの安定な変形状態の境界の荷重として定義される.ここでは,ひずみエネル ギーの原理に基づいて座屈荷重を計算する方法 [48] を示す.

いま,座屈が発生して,板に撓み w が生じたとする.この撓みが生じたことによって板 に蓄えられるひずみエネルギーは,次式で与えられる.

$$\Delta U_m = \frac{1}{2} \iint D\left[\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)^2 - 2(1-\nu) \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right) \right] dxdy \quad (4.19)$$

一方,板が撓みことにより,板の中央面には次式で表すひずみ増分が生じる.

$$\Delta \varepsilon_x = \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2$$

$$\Delta \varepsilon_y = \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2$$

$$\Delta \tau_{xy} = \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}$$
(4.20)

いま,座屈して板に撓み w が生じる間,面内力は一定に保たれるものとすると,この面 内力が為す仕事は次式になる.

$$\Delta T = -\frac{1}{2} \left(N_x \left(\frac{\partial w}{\partial x} \right)^2 + N_y \left(\frac{\partial w}{\partial y} \right)^2 + 2N_{xy} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right) dxdy$$
(4.21)

座屈に際しては、板が撓むことによって面内力の為す仕事が、板が撓むことによって板 に蓄えられるひずみエネルギーに変換される.すなわち、

$$\Delta U_m = \Delta T \tag{4.22}$$

ここで、単位荷重の下で板に生じる面内力成分を、 N'_x , N'_y および N'_{xy} とする. 座屈が 荷重 λ の時に発生したとすると、この時の面内力はそれぞれ $\lambda N'_x$, $\lambda N'_y$ 及び $\lambda N'_{xy}$ になる. 座屈荷重 λ は、式 (4.22)に式 (4.19)及び式 (4.21)を代入することにより求められ、次式で 与えられる.

$$\lambda = \frac{A_1}{A_2} \tag{4.23}$$

ここに,
$$A_1 = \Delta U_m$$
, $\Delta T/\lambda$ であり, それぞれ次式で表せる.
 $A_1 = \frac{1}{2} \iint D\left[\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)^2 - 2(1-\nu) \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right) \right] dxdy \quad (4.24)$

$$A_{2} = -\frac{1}{2} \left(N_{x}^{\prime} \left(\frac{\partial w}{\partial x} \right)^{2} + N_{y}^{\prime} \left(\frac{\partial w}{\partial y} \right)^{2} + 2N_{xy}^{\prime} \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right) dxdy$$
(4.25)

実際の座屈は,式(4.23)を最小にする荷重 λ_{cr} で発生する.この荷重は,式(4.23)の第 1変分をゼロと置くことにより求めることができる.すなわち,

$$\delta\lambda = \frac{A_2\delta A_1 - A_1\delta A_2}{A_2^2} = 0$$
 (4.26)

ここで,式(4.23)の関係を用いると,次式が得られる.

$$\delta A_1 - \lambda \delta A_2 = 0 \tag{4.27}$$

エネルギー法を適用して座屈荷重を求める場合には, 撓み w を一般的に次式の形で近似 する.

$$w(x, y) = \alpha_1 f_1(x, y) + \alpha_2 f_2(x, y) + \cdots$$
 (4.28)

上式を式 (4.27) に代入すると次式を得る.

$$\left(\frac{\partial A_1}{\partial \alpha_1} - \lambda_{cr}\frac{\partial A_2}{\partial \alpha_1}\right)\delta\alpha_1 + \left(\frac{\partial A_1}{\partial \alpha_2} - \lambda_{cr}\frac{\partial A_2}{\partial \alpha_2}\right)\delta\alpha_2 + \dots = 0$$
(4.29)

上式が任意の変分量 $\delta \alpha_1, \delta \alpha_2, \cdots$ に対して成立するためには

$$\frac{\partial A_1}{\partial \alpha_1} - \lambda_{cr} \frac{\partial A_2}{\partial \alpha_1} = 0$$

$$\frac{\partial A_1}{\partial \alpha_2} - \lambda_{cr} \frac{\partial A_2}{\partial \alpha_2} = 0$$
(4.30)

上式中の A_1 及び A_2 は,式 (4.24) 及び式 (4.25) からも明らかなように, α_1 , α_2 ,…に 関する 2 次の関数となっている.したがって,式 (4.31) は α_1 , α_2 ,…に関する 1 次の連 立方程式になる.これをマトリックスの形で表すと次のようになる.

$$([G_1] - \lambda_{cr} [G_2]) \begin{cases} \alpha_1 \\ \alpha_2 \\ \vdots \\ \vdots \end{cases}$$

$$(4.31)$$

座屈が発生するということは、ゼロでない*δ*α₁, *δ*α₂, … が存在することを意味する.したがって、式 (4.31) が成立するためには.次式が成立しなければならない.

$$|[G_1] - \lambda_{cr}[G_2]| = 0 \tag{4.32}$$

結局,式 (4.32)の固有方程式を解けば,座屈荷重 λ_{cr} が求められる.

4.3.2 面内圧縮荷重を受ける矩形平板の座屈強度

x = 0及びx = lの辺に沿って等分布力 N_x が作用している Fig. 4.11 に示す矩形平板を 考える.板の周辺が単純支持されているとすると、座屈波形は次式の二重三角級数によっ て表される.

Fig. 4.11 Rectangular plate under longitudinal thrust.

この場合,板が座屈して撓みが生じることによるひずみエネルギーは,上式を式 (4.19) に代入して得られる次式になる.

$$\Delta U_m = \frac{slD}{8} \sum_m \sum_n A_{mn}^2 \pi^4 \left(\frac{m^2}{l^2} + \frac{n^2}{s^2}\right)^2 \tag{4.34}$$

一方,座屈による撓みが生じる間に圧縮力 N_x が為す仕事は,式 (4.21)の表示で $N_y = N_{xy} = 0$ と置き,式 (4.33)を用いると次のようになる.

$$\Delta T = \frac{\pi^2 s}{8l} N_x \sum_m \sum_n m^2 A_{mn}^2$$
(4.35)

したがって,座屈荷重 N_{xcr} は次式になる.

$$N_{xcr} = \frac{\frac{slD}{8} \sum_{m} \sum_{n} A_{mn}^2 \pi^4 \left(\frac{m^2}{l^2} + \frac{n^2}{s^2}\right)^2}{\frac{\pi^2 s}{8l} \sum_{m} \sum_{n} m^2 A_{mn}^2}$$
(4.36)

上式は,1つの係数を除く他の全ての係数がゼロの時に極小値を取る.この極小値は次 式で与えられる.

$$N_{xcr} = \frac{\pi^2 l^2 D}{m^2} \left(\frac{m^2}{l^2} + \frac{n^2}{s^2}\right)^2 \tag{4.37}$$

式 (4.37) から明らかなように, *n* = 1 の時に *N_{xcr}* は最小値を取る. このことは, 実際に 生じる座屈波形が荷重方向 (*x* 方向) に *m* 半波, 荷重と直角方向 (*y* 方向) には 1 半波に なることを意味している.式 (4.37) に *n* = 1 を代入すると次式を得る.

$$N_{xcr} = \frac{\pi^2 D}{l^2} \left(m + \frac{l^2}{ms^2} \right)^2$$
(4.38)

上式より,最小の座屈荷重を与える座屈波形の荷重方向の半波数 m は,板のアスペクト 比 *l/s* に依存して変化することが予想される.この座屈波形が変化する境界になる板のア スペクト比は次式より求められる.

$$\left[m + \frac{1}{m}\left(\frac{l}{s}\right)^2\right]^2 = \left[(m+1) + \frac{1}{(m+1)}\left(\frac{l}{s}\right)^2\right]^2 \tag{4.39}$$

これより,

$$\frac{l}{s} = \sqrt{m(m+1)} \tag{4.40}$$

すなわち,最小座屈荷重を与える座屈波形の荷重方向の半波数は,次のようになる.

$$m = 1 \quad \text{when} \quad l/s \le \sqrt{2}$$
$$= 2 \quad \text{when} \quad \sqrt{2} \le l/s \le \sqrt{6}$$
$$= 3 \quad \text{when} \quad \sqrt{6} \le l/s \le \sqrt{12}$$
$$= 4 \quad \text{when} \quad \sqrt{12} \le l/s \le \sqrt{20}$$
$$= 5 \quad \text{when} \quad \sqrt{20} \le l/s \le \sqrt{30}$$
$$\dots$$

式 (4.38) は座屈発生時の *x* 方向の単位幅当たりの面内力を表す. これを板厚 *t* で割ると 座屈応力が求められる. すなわち,

$$\sigma_{xcr} = \frac{\pi^2 kE}{12(1-\nu^2)} \left(\frac{t}{s}\right)^2$$
(4.41)

ここに、kは座屈係数と呼ばれ、次式で与えられる.

$$k = \left(\frac{ms}{l} + \frac{s}{ml}\right)^2 \tag{4.42}$$

次に,2方向に圧縮荷重が作用する矩形平板を考える.この場合,座屈波形として式(4.33)の1項だけ取ると,座屈荷重を与える式(4.22)は次のようになる.

$$N_x \left(\frac{m\pi}{l}\right)^2 + N_y \left(\frac{n\pi}{s}\right)^2 = D\left\{\left(\frac{m\pi}{l}\right)^2 + \left(\frac{n\pi}{s}\right)^2\right\}^2 \tag{4.43}$$

上式を応力で表示すると次のようになる.

$$\sigma_x + \left(\frac{l}{ms}\right)^2 \sigma_y = \frac{\pi^2 E t^2}{12(1-\nu^2)s^2} \left(\frac{l}{ms} + \frac{ms}{l}\right)^2$$
(4.44)

4.3.2.1 座屈強度簡易推定式と PULS のベンチマーク

座屈強度簡易推定式では,式(4.44)の座屈半波数を適当に変えて求めた座屈荷重の最小 値が,2方向の圧縮荷重を受ける矩形平板の座屈強度になる.Table 4.1 に示すアスペクト 比の異なる2種類の矩形平板について,座屈強度簡易推定式とPULSによって推定した座 屈強度を比較した結果をFig. 4.12 及びFig. 4.13 に示す.これより,両者の座屈強度は完 全に一致していることが確認できた.

Table 4.1 Scantling of rectangular plate.

	l(mm)	$s(\mathrm{mm})$	l/s	t(mm)
Case 1	2,700	900	3.0	15.0
Case 2	$5,\!350$	710	7.5	14.5

Fig. 4.12 Comparison of buckling strength of rectangular plate under bi-axial thrust by PULS and formula (Case 1).

Fig. 4.13 Comparison of buckling strength of rectangular plate under bi-axial thrust by PULS and formula (Case 2).

4.4 最終強度簡易推定式

ここでは,原田らが提案した組合せ荷重を受ける連続防撓パネルの最終強度簡易推定式 [85] を展開する.

4.4.1 防撓材方向の圧縮荷重下における最終強度

防撓材方向の圧縮と横圧の組合せ荷重を受ける連続防撓パネルの崩壊モードは、大きく 以下の3つのモードに分けることができる.

- PI崩壊モード (Plate-induced failure mode) パネルが曲げの圧縮側になり、スパン中央のパネル部の降伏が起点になり最終強度 に至る崩壊モードである。
- SI 崩壊モード (Stiffener-induced failure mode)
 防撓材が曲げの圧縮側になり、スパン中央の防撓材頂部の降伏が起点になり最終強 度に至る崩壊モードである.

 HI 崩壊モード (Hinge-induced failure mode)
 スパン中央と両端に塑性関節が生じて最終強度に至る崩壊モードであり、横圧が支 配的な場合に生じる.

上記の崩壊モードに対応する最終強度簡易推定式が提案されており、横圧の大きさによっ て使い分ける.横圧のみでスパン端部の防撓材頂部が降伏する時の横圧を q_{cr} とすると、 $-q_{cr} \leq q \leq q_{cr}$ の場合は、PI 崩壊モードまたは SI 崩壊モードの最終強度の小さい方を、 $q \leq -q_{cr}$ または $q_{cr} \leq q$ の場合は、HI 崩壊モードの最終強度を連続防撓パネルの最終強度 とする.

すなわち, $-q_{cr} \leq q \leq q_{cr}$ の場合

$$\sigma_{U_{xq}} = \min[\sigma_{\mathrm{PI}}, \ \sigma_{\mathrm{SI}}] \tag{4.45}$$

ここで,

$$\begin{aligned} \sigma_{\rm PI} &= \frac{A_e}{2A} \left[K_{\rm PI1} + K_{\rm PI2} - \sqrt{(K_{\rm PI1} + K_{\rm PI2})^2 - \frac{4P_{cr}K_{\rm PI2}}{A_e}} \right] \\ \sigma_{\rm SI} &= \frac{A_e}{2A} \left[K_{\rm SI1} + K_{\rm SI2} - \sqrt{(K_{\rm SI1} + K_{\rm SI2})^2 - \frac{4P_{cr}K_{\rm SI2}}{A_e}} \right] \\ K_{\rm PI1} &= P_{cr} \left(\frac{1}{A_e} + \frac{z_p}{I_e} \left(w_{s1} + \frac{5l^4s|q|}{384EI_e} \right) \right) \\ K_{\rm PI2} &= \left(1 - \frac{\sigma_w}{\sigma_Y} \right) \sigma_Y - \frac{ql^2sz_p}{8I_e} \\ K_{\rm SI1} &= P_{cr} \left(\frac{1}{A_e} + \frac{z_s}{I_e} \left(w_{s1} + \frac{l^4s|q|}{384EI_e} \right) \right) \\ K_{\rm SI2} &= \left(1 - \frac{\sigma_w}{\sigma_Y} \right) \sigma_Y - \frac{ql^2sz_s}{24I_e} \end{aligned}$$

 $q \leq -q_{cr}$ または $q_{cr} \leq q$ の場合

$$\sigma_{U_{xq}} = -\frac{\sigma_{\rm HI}^*}{q_{st} - q_{cr}} (|q| - q_{cr}) + \sigma_{\rm HI}^*$$
(4.46)

ここで,

$$\sigma_{\mathrm{HI}}^{*} = \min \left[\sigma_{\mathrm{PI}(q=qcr)}, \sigma_{\mathrm{SI}(q=qcr)} \right]$$

$$q_{st} = \frac{12\sigma_{Yp}t^{2} \left(\frac{l}{s}\right)^{4}}{l^{2} \left(3 \left(\frac{l}{s}\right)^{2} - 2 \left(\sqrt{1+3 \left(\frac{l}{s}\right)^{2}} - 1\right)\right)}$$

4.4.2 防撓材と直角方向の圧縮荷重下における最終強度

防撓材と直角方向の圧縮と横圧を受ける連続防撓パネルの最終強度 $\sigma_{U_{yq}}$ は、周辺支持条件の連続パネルの最終強度 $\sigma_{U_{yq(p)}}$ 及び周辺固定条件の単独パネルの最終強度 $\sigma_{U_{yq(p)C}}$ のうち、小さい方の値とする [10].

$$\sigma_{U_{yq}} = \min\left[\sigma_{U_{yq(p)}}, \ \sigma_{U_{yq(p)C}}\right]$$
(4.47)

防撓材と直角方向の圧縮を受ける連続防撓パネルの最終強度は,防撓材の影響を考慮した新たなパネル細長比 β_sを導入して次式で表す [85].

$$\sigma_{U_{y(p0)}} = \sigma_{Yp} \left(\left(\frac{2.4}{\beta_s} - \frac{1.4}{\beta_s^2} \right) \frac{s}{l} + \left(\frac{0.06}{\beta_s} + \frac{0.6}{\beta_s^2} \right) \left(1 - \frac{s}{l} \right) \right)$$
(4.48)

防撓材と直角方向の圧縮と横圧を受ける連続防撓パネルの最終強度は、横圧が無い場合 の最終強度を上回ることがないことが確認されていることから [10]、 $\sigma_{U_{yq}} \ge \sigma_{U_{y(p0)}}$ の場合 $\sigma_{U_{yq}} = \sigma_{U_{y(p0)}}$ とする.また、非常に大きな横圧を受ける場合、連続防撓パネルの最終強度 は、周辺固定条件のパネルの屋根型崩壊荷重 q_{pl} あるいは防撓材の 3 点ヒンジ塑性崩壊荷 重 q_{st} でほぼ頭打ちになることが確認されていることから [85]、 $|q| \ge q_{pl}$ または $|q| \ge q_{st}$ の 場合、 $\sigma_{U_{yq}} = 0.0$ とする.

ここで,

$$q_{pl} = \frac{16Z_p \sigma_Y}{l^2 s} \tag{4.49}$$

防撓材と直角方向の圧縮と横圧を受ける周辺支持条件の連続パネルの最終強度は,式 (4.48)に防撓材の影響と横圧の影響を考慮した新たなパネル細長比 β_{sq} を導入して,次式 で表す [85].

$$\sigma_{Uyq(p)} = \frac{\sigma_{Uy(p)}}{1 + A_c \gamma_q^B} \tag{4.50}$$

ここで,

$$\begin{aligned} \sigma_{U_{y(p)}} &= \sigma_{Yp} \left(\left(\frac{2.4}{\beta_{sq}} - \frac{1.4}{\beta_{sq}^2} \right) \frac{s}{l} + \left(\frac{0.06}{\beta_{sq}} + \frac{0.6}{\beta_{sq}^2} \right) \left(1 - \frac{s}{l} \right) \right) \\ A_c &= 0.067 - 0.0121 \left(\frac{l}{s} \right) \\ B &= 0.154 + 0.577 \left(\frac{l}{s} \right) \\ \gamma_q &= \frac{qs^4}{\beta^2 Et^4} \end{aligned}$$

防撓材と直角方向の圧縮と横圧を受ける周辺固定条件の単独パネルの最終強度は、次式 で表す [85].

$$\sigma_{Uyq(p)C} = \sigma_{Uy(p)C} (1 - F\gamma_q + G\gamma_q^2) \tag{4.51}$$

ここで,

$$\begin{aligned} \sigma_{Uy(p)C} &= \left((1.27 - 0.18\beta) \frac{s}{l} + \left(\frac{3.48}{\beta^2} - \frac{0.262}{\beta} \right) \left(1 - \frac{s}{l} \right) \right) \sigma_{Yp} \\ F &= 0.0821 + 0.0191 \frac{l}{s} \\ G &= 0.00495 + 0.000836 \frac{l}{s} \end{aligned}$$

4.4.3 最終強度相関関係式

組合せ荷重を荷重を受ける連続防撓パネルの最終強度は,式(4.52)の相関関係式を解く ことにより求める.また,式中の各係数は,荷重の組合せに応じて異なる.

$$c_1 R_y^{\delta} - c_2 R_y - c_3 R_x R_y + R_x^{\delta} = 1 \tag{4.52}$$

$$R_x = \frac{\sigma_{U_x}^*}{c_z \alpha_x \sigma_Y}, \quad R_y = \frac{\sigma_{U_y}^*}{c_z \alpha_y \sigma_Y}, \quad c_z = \sqrt{1 - \left(\frac{\tau}{\tau_Y}\right)^2}$$
(4.53)

1. 二軸圧縮の場合

$$c_1 = 3.8 - 1.4\beta, \quad c_2 = 2.8 - 1.4\beta, \quad c_3 = 0.0$$

$$\alpha_x = \frac{\sigma_{U_{xq}}}{\sigma_Y}, \quad \alpha_y = \frac{\sigma_{U_{yq}}}{\sigma_Y}, \quad \delta = \frac{\gamma_a}{\beta - 1} \left(\frac{l}{s} - 1\right)$$
(4.54)

ただし,

$$c_1 < 1.0$$
の場合, $c_1 = 1.0$
 $c_2 < 0.0$ の場合, $c_2 = 0.0$
 $\delta > 2.0$ の場合, $\delta = 2.0$

2. 防撓材方向の圧縮とこれに直角方向の引張の場合

$$c_1 = 1.0, \quad c_2 = 0.0, \quad c_3 = 0.0, \quad \delta = 2.0$$

 $\beta > 2.0$ の場合

$$\alpha_x = 1.0, \quad \alpha_y = 1.0$$

 $\beta \leq 2.0$ の場合

$$\alpha_x = \frac{\sigma_{U_{xq}}}{\sigma_Y}, \quad \alpha_y = 1.0,$$

ただし,

 $\sigma^*_{U_x} \le \sigma_{U_{xq}}$

3. 防撓材方向の引張とこれに直角方向の圧縮の場合

$$c_1 = 1.0, \quad c_2 = 0.0, \quad c_3 = 1.0, \quad \alpha_x = 1.0, \quad \alpha_y = 1.0, \quad \delta = 2.0$$

ただし,

$$\sigma_{U_y}^* \le \sigma_{U_{yq}}$$

4. 二軸引張の場合

 $c_1 = 1.0, \quad c_2 = 0.0, \quad c_3 = 1.0, \quad \alpha_x = 1.0, \quad \alpha_y = 1.0, \quad \delta = 2.0$

4.4.4 最終強度簡易推定式におけるパラメータ

組合せ荷重を受ける連続防撓パネルの最終強度簡易推定式で使用されるパラメータを以 下に示す.

> A : 断面積 Ae: 有効断面積 β : 防撓パネルの細長比 $\beta = \frac{s}{t} \sqrt{\frac{\sigma_{Y_p}}{E}}$ β_s:防撓材の影響を考慮した防撓パネルの細長比 $\beta_s = \frac{s}{t} \sqrt{\frac{\sigma_{Y_p}}{E\kappa_y}}$ β_{sq}:防撓材と横圧の影響を考慮した防撓パネルの細長比 $\beta_s = \frac{s}{t} \sqrt{\frac{\sigma_{Y_p}}{E\kappa_y R_q}}$ $R_q = 1 + \frac{\left(\frac{|q|s^4}{Et^4}\right)^{1.75}}{160\left(\frac{l}{s}\right)^{0.95}}$ *b_f* : 防撓材フランジ幅 cz: せん断応力の影響係数 *E* : 防撓パネルのヤング率 γ_a:防撓パネルのコラム細長比 $\gamma_a = \sqrt{\frac{A_e \sigma_Y}{P_{cr}}}$ *h_w*: 防撓材ウェブ深さ *Ie* : 有効断面の断面 2 次モーメント κ_y: 弾性座屈強度に及ぼす防撓材の影響 [76]

l: 防撓パネルの長さ(スパン)

$$P_{cr}$$
: 両端単純支持柱のオイラー座屈強度 $P_{cr} = \frac{\pi^2 E I_e}{l^2}$

Pcrt : 防撓材の曲げ捩り座屈強度 [77]

q:防撓パネルに加わる横圧(パネル側が正)

s : 防撓材の間隔

 $\sigma^*_{U_r}$: 組合せ荷重下における防撓材方向の最終強度

$$\sigma^*_{U_y}$$
: 組合せ荷重下における防撓材と直角方向の最終強度

- σ_{Uxg}: 防撓材方向圧縮荷重下における最終強度
- *σUyq* : 防撓材と直角方向の圧縮荷重下における最終強度
 - σ_w : 反り応力

$$\sigma_w = 0.5E(0.5t_f - h_w)b_f \frac{w_{s2}}{h_w} \left(\frac{\pi}{l}\right)^2 \left(1 - \frac{1}{1 - \frac{0.4\sigma_Y A}{P_{crt}}}\right)$$

1

- σ_x:防撓材方向の面内圧縮応力
- *σ*_y : 防撓材と直角方向の面内圧縮応力
- σγ : 防撓パネルの降伏応力
- σ_{Yp}: 防撓パネルのパネルの降伏応力
 - t: 防撓パネルのパネルの板厚
 - τ : せん断応力
 - 7Y: せん断降伏応力

$$\tau_Y = \frac{\sigma_Y}{\sqrt{3}}$$

t_f: 防撓材フランジ板厚

$$w_{s1}$$
: PULS と等しいパネルの初期撓みの最大値 [7]
 $w_{s1} = \frac{s}{200}$
 w_{s2} : PULS と等しい防撓材の初期撓みの最大値 [7]

$$w_{s2} = \frac{l}{1000}$$

ξ : 荷重比

ξ =
$$\frac{\sigma_y}{\sigma_x}$$
 ($\sigma_x \neq 0, \sigma_y \neq 0$)

 $\sigma^*_{U_y} = \xi \sigma^*_{U_x}$

z_p : 中立軸からパネルの板厚中心までの距離

- Z_p:防撓材の塑性断面係数
- z_s : 中立軸から防撓材フランジ上面または重心までの距離

4.4.5 最終強度簡易推定式と PULS のベンチマーク

組合せ荷重を受ける連続防撓パネルの最終強度を対象として、前項までに展開した最終 強度簡易推定式と PULS のベンチマークを行う.まず、多数の板厚と防撓材寸法を組合せ た連続防撓パネルに対して、板と防撓材の降伏強度、面内荷重比、水圧荷重を変化させて、 組合せ荷重下の最終強度を PULS 及び最終強度簡易推定式を用いて計算する.次に,これ らの結果を防撓材の形状,板と防撓材の降伏強度,荷重比,水圧によって整理して,PULS と最終強度簡易推定式の結果を比較する. 整理したベンチマークケース名を Table 4.2 に 示す. 例えば、ケース名 F0.org.1.Eq は、Flat-bar の水圧 0、オリジナル最終強度簡易推定 式,荷重番号1(防撓材方向圧縮),板と防撓材の降伏強度が等しいことを意味する.両者 のベンチマーク結果を Fig. 4.14 ~ Fig. 4.22 に示す. グラフの横軸は最終強度簡易推定式 による最終強度を、グラフの縦軸は PULS による最終強度をそれぞれ示す。斜め 45 度の直 線に乗れば両者の結果が一致することを意味し,斜め45度の直線の右下側にプロットされ る場合は、最終強度簡易推定式が PULS より高い強度を算出していることを意味する.ま た,図中の (a)(d)(g) は防撓材方向圧縮,(b)(e)(h) は二軸圧縮,(c)(f)(i) は防撓材と直角方 向圧縮の結果をそれぞれ示し, (a)(b)(c)は板と防撓材の降伏強度が等しく, (d)(e)(f)は板 の降伏強度が防撓材より大きく, (g)(h)(i) は板の降伏強度が防撓材より小さい結果をそれ ぞれ示す. (a)~(i)の9個のグラフのセットを水圧毎に整理している.水圧が正の場合,板 側から水圧がかかることを意味する.なお,ベンチマークの詳細条件は付録 A に示す.

Fig. 4.14 より, Flat-bar で水圧無しの場合,二軸圧縮において,最終強度簡易推定式は PULS より高めの最終強度を算出する.防撓材方向圧縮において,板の降伏強度が防撓材よ り大きい場合に最終強度簡易推定式は PULS より高めの最終強度を算出する.防撓材と直 角方向圧縮において,両者は比較的良い一致を示す.Fig. 4.15 より,Flat-bar で水圧正の場 合,両者は比較的良い一致を示すが,防撓材方向圧縮において,板と防撓材の降伏強度が異 なる場合に最終強度簡易推定式は PULS より若干高めの最終強度を算出する.Fig. 4.16 よ り,Flat-bar で水圧負の場合,防撓材方向圧縮及び二軸圧縮において,最終強度簡易推定 式は PULS より高めの最終強度を算出し,水圧正の場合よりも両者の一致度は悪化してい る. この傾向は,板と防撓材の降伏強度の違いによって変化しない.防撓材と直角方向圧 縮において,両者は比較的良い一致を示す.

Fig. 4.17 より, Angle-bar で水圧無しの場合,両者は比較的良い一致を示す. Fig. 4.18 より, Angle-bar で水圧正の場合,防撓材方向及び二軸圧縮において,最終強度簡易推定式は

PULSより高めの最終強度を算出する.この傾向は,板と防撓材の降伏強度の違いによって 変化しない.防撓材と直角方向圧縮において,両者は比較的良い一致を示す.Fig. 4.20よ り,Tee-barで水圧無しの場合,両者は比較的良い一致を示す.

Fig. 4.21 より, Tee-bar で水圧正の場合,防撓材方向圧縮及び二軸圧縮において,最終 強度簡易推定式は PULS より高めの最終強度を算出する.この傾向は,板と防撓材の降伏 強度の違いによって変化しない.防撓材と直角方向圧縮において,両者は比較的良い一致 を示す.Fig. 4.19 より, Angle-bar で水圧負の場合,水圧正の場合と同様の傾向であるが, 一致度は悪化している.Fig. 4.22 より, Tee-bar で水圧負の場合,水圧正の場合と同様の 傾向であるが,一致度は悪化している.

このように、PULS と最終強度簡易推定式の最終強度推定結果の一致度は、防撓材形状 や面内圧縮荷重状態、水圧、降伏強度によって異なり、最終強度簡易推定式は PULS より 高めの最終強度を算出する傾向が強い.逆に言えば、PULS の最終強度は過度に安全側の 推定をしている可能性がある.また、防撓材と直角方向圧縮の一致度は比較的良いことが 分かった.以上より、CSR-T への適合性という面からは最終強度簡易推定式の修正が必要 なことが分かった.

Stiff. type	Yield str.	Load.	W/o lat. press.	Pos. lat. press.	Neg. lat. press.
		1.	F0.org.1.Eq	F+.org.1.Eq	Forg.1.Eq
	$\sigma_{Yp} = \sigma_{Ys}$	2.	F0.org.2.Eq	F+.org.2.Eq	Forg.2.Eq
		3.	F0.org.3.Eq	F+.org.3.Eq	Forg.3.Eq
		1.	F0.org.1.Gt	F+.org.1.Gt	Forg.1.Gt
Flat-bar	$\sigma_{Yp} > \sigma_{Ys}$	2.	F0.org.2.Gt	F+.org.2.Gt	Forg.2.Gt
		3.	F0.org.3.Gt	F+.org.3.Gt	Forg.3.Gt
	$\sigma_{Yp} < \sigma_{Ys}$	1.	F0.org.1.Lt	F+.org.1.Lt	Forg.1.Lt
		2.	F0.org.2.Lt	F+.org.2.Lt	Forg.2.Lt
		3.	F0.org.3.Lt	F+.org.3.Lt	Forg.3.Lt
	$\sigma_{Yp} = \sigma_{Ys}$	1.	L0.org.1.Eq	L+.org.1.Eq	Lorg.1.Eq
		2.	L0.org.2.Eq	L+.org.2.Eq	Lorg.2.Eq
		3.	L0.org.3.Eq	L+.org.3.Eq	Lorg.3.Eq
	$\sigma_{Yp} > \sigma_{Ys}$	1.	L0.org.1.Gt	L+.org.1.Gt	Lorg.1.Gt
Angle-bar		2.	L0.org.2.Gt	L+.org.2.Gt	Lorg.2.Gt
		3.	L0.org.3.Gt	L+.org.3.Gt	Lorg.3.Gt
	$\sigma_{Yp} < \sigma_{Ys}$	1.	L0.org.1.Lt	L+.org.1.Lt	Lorg.1.Lt
		2.	L0.org.2.Lt	L+.org.2.Lt	Lorg.2.Lt
		3.	L0.org.3.Lt	L+.org.3.Lt	Lorg.3.Lt
		1.	T0.org.1.Eq	T+.org.1.Eq	Torg.1.Eq
	$\sigma_{Yp} = \sigma_{Ys}$	2.	T0.org.2.Eq	T+.org.2.Eq	Torg.2.Eq
		3.	T0.org.3.Eq	T+.org.3.Eq	Torg.3.Eq
	$\sigma_{Yp} > \sigma_{Ys}$	1.	T0.org.1.Gt	T+.org.1.Gt	Torg.1.Gt
Tee-bar		2.	T0.org.2.Gt	T+.org.2.Gt	Torg.2.Gt
		3.	T0.org.3.Gt	T+.org.3.Gt	Torg.3.Gt
		1.	T0.org.1.Lt	T+.org.1.Lt	Torg.1.Lt
	$\sigma_{Yp} < \sigma_{Ys}$	2.	T0.org.2.Lt	T+.org.2.Lt	Torg.2.Lt
		3.	T0.org.3.Lt	T+.org.3.Lt	Torg.3.Lt

Table 4.2 Benchmark cases of Harada's formula.

1. Thrust parallel to stiffener

2. Thrust perpecdicular to stiffener

3. Bi-axial thrust

Positive lateral pressure : lateral pressure on plate side

Negative lateral pressure : lateral pressure on stiffener side

Fig. 4.14 Comparisons of ultimate strength of flat-bar under thrust by PULS and Harada's formula

Fig. 4.15 Comparisons of ultimate strength of flat-bar under combined thrust and lateral pressure on positive side by PULS and Harada's formula

Fig. 4.16 Comparisons of ultimate strength of flat-bar under combined thrust and lateral pressure on negative side by PULS and Harada's formula

Fig. 4.17 Comparisons of ultimate strength of angle-bar under thrust by PULS and Harada's formula

Fig. 4.18 Comparisons of ultimate strength of angle-bar under combined thrust and lateral pressure on positive side by PULS and Harada's formula

Fig. 4.19 Comparisons of ultimate strength of angle-bar under combined thrust and lateral pressure on negative side by PULS and Harada's formula

Fig. 4.20 Comparisons of ultimate strength of tee-bar under thrust by PULS and Harada's formula

Fig. 4.21 Comparisons of ultimate strength of tee-bar under combined thrust and lateral pressure on positive side by PULS and Harada's formula

Fig. 4.22 Comparisons of ultimate strength of tee-bar under combined thrust and lateral pressure on negative side by PULS and Harada's formula

4.5 最終強度簡易推定式の修正

4.5.1 最終強度簡易推定式の修正方法

前節で明らかになった問題を解決するために,最終強度簡易推定式を修正する. CSR-T の座屈・最終強度評価においては,引張荷重は考慮しないため,最終強度簡易推定式の内, 一軸圧縮時の最終強度(式 (4.45)及び式 (4.47))と二軸圧縮時の最終強度(式 (4.53))を修正 の対象とする.防撓材形状や面内圧縮荷重状態,水圧,降伏強度等の計算条件によって修 正すべき量が異なるため,様々な条件下で適切な修正が行われる方法が必要である.

最終強度簡易推定式では、板や防撓材の力学的な特性を表現するパラメータを利用して 最終強度を推定している。例えば、防撓パネルの細長比βやコラム細長比λ等である。す なわち、最終強度をこれらのパラメータの関数で表現しているとも言え、最終簡易推定式 の修正においても、これらのパラメータを利用することは理に適っていると考えられる。

本研究では、これらのパラメータで表現される修正係数を計算条件毎に決定して、最終 強度簡易推定式で推定する最終強度の修正を試みる.修正係数とその適用方法は 4.5.2 項 に示す.

4.5.2 修正係数と適用方法

最終強度簡易推定式を CSR に適合させるために,以下に示す修正係数を導入する.修正 係数は,板や防撓材の力学的な特性を表現する β や λ 等のパラメータの関数になっており, それらのパラメータに修正項を乗じて積算する.

修正項の値は,最適化手法を用いて同定する.まず,4.4.5項のベンチマーク条件に基づ き,PULSによる最終強度を計算する.次に修正項を設計変数に,PULSと修正係数導入 後の最終強度簡易推定式の最終強度の差を目的関数にした目的関数最小化問題を逐次二次 計画法によって解き,修正項を同定する.同定した修正項を付録 B に示す.なお,各パラ メータは,計算条件毎(付録 B の Table 毎)の最大値で除しており,修正項は各パラメー タの最終強度に対する感度と捉えることができる.

$$U_{x} = u_{x0} + u_{x1}\bar{\beta} + u_{x2}\bar{\lambda} + u_{x3}\bar{\zeta} + u_{x4}\bar{\gamma} + u_{x5}\bar{\beta}\bar{\lambda}$$

$$+ u_{x6}\bar{\beta}\bar{\zeta} + u_{x7}\bar{\beta}\bar{\gamma} + u_{x8}\bar{\lambda}\bar{\zeta} + u_{x9}\bar{\lambda}\bar{\gamma} + u_{x10}\bar{\zeta}\bar{\gamma}$$

$$+ u_{x11}\bar{\beta}^{2} + u_{x12}\bar{\lambda}^{2} + u_{x13}\bar{\zeta}^{2} + u_{x14}\bar{\gamma}^{2}$$

$$U_{y} = u_{y0} + u_{y1}\bar{\beta} + u_{y2}\bar{\lambda} + u_{y3}\bar{\zeta} + u_{y4}\bar{\gamma} + u_{y5}\bar{\beta}\bar{\lambda}$$

$$+ u_{y6}\bar{\beta}\bar{\zeta} + u_{y7}\bar{\beta}\bar{\gamma} + u_{y8}\bar{\lambda}\bar{\zeta} + u_{y9}\bar{\lambda}\bar{\gamma} + u_{y10}\bar{\zeta}\bar{\gamma}$$

$$+ u_{y11}\bar{\beta}^{2} + u_{y12}\bar{\lambda}^{2} + u_{y13}\bar{\zeta}^{2} + u_{y14}\bar{\gamma}^{2}$$

$$(4.56)$$

 $\sigma_x/\sigma_y \ge 1.0$ の場合

$$U_{xy} = C_{xy} \left(\sin \left(\frac{\pi \eta}{9} + \frac{\pi}{6} \right) \right) + 1 \tag{4.57}$$

 $\sigma_x/\sigma_y < 1.0$ の場合

$$U_{xy} = C_{xy}(\eta^2 - \eta) + 1 \tag{4.58}$$

$$C_{xy} = u_{xy0} + u_{xy1}\bar{\beta} + u_{xy2}\bar{\lambda} + u_{xy3}\bar{\zeta} + u_{xy4}\bar{\gamma} + u_{xy5}\bar{\beta}\bar{\lambda}$$
(4.59)
+ $u_{xy6}\bar{\beta}\bar{\zeta} + u_{xy7}\bar{\beta}\bar{\gamma} + u_{xy8}\bar{\lambda}\bar{\zeta} + u_{xy9}\bar{\lambda}\bar{\gamma} + u_{xy10}\bar{\zeta}\bar{\gamma}$
+ $u_{xy11}\bar{\beta}^2 + u_{xy12}\bar{\lambda}^2 + u_{xy13}\bar{\zeta}^2 + u_{xy14}\bar{\gamma}^2$
 $U_q = 1 + C_{q1}\bar{\mu} + C_{q2}\bar{\mu}^2$ (4.60)

ただし,

$$C_{q1} = u_{q100} + u_{q101}\bar{\beta} + u_{q102}\bar{\lambda} + u_{q103}\bar{\zeta} + u_{q104}\bar{\gamma} + u_{q105}\bar{\beta}\bar{\lambda}$$
(4.61)
+ $u_{q106}\bar{\beta}\bar{\zeta} + u_{q107}\bar{\beta}\bar{\gamma} + u_{q108}\bar{\lambda}\bar{\zeta} + u_{q109}\bar{\lambda}\bar{\gamma} + u_{q110}\bar{\zeta}\bar{\gamma}$
+ $u_{q111}\bar{\beta}^2 + u_{q112}\bar{\lambda}^2 + u_{q113}\bar{\zeta}^2 + u_{q114}\bar{\gamma}^2$

$$C_{q2} = u_{q200} + u_{q201}\bar{\beta} + u_{q202}\bar{\lambda} + u_{q203}\bar{\zeta} + u_{q204}\bar{\gamma} + u_{q205}\bar{\beta}\bar{\lambda}$$

$$+ u_{q206}\bar{\beta}\bar{\zeta} + u_{q207}\bar{\beta}\bar{\gamma} + u_{q208}\bar{\lambda}\bar{\zeta} + u_{q209}\bar{\lambda}\bar{\gamma} + u_{q210}\bar{\zeta}\bar{\gamma}$$

$$+ u_{q211}\bar{\beta}^{2} + u_{q212}\bar{\lambda}^{2} + u_{q213}\bar{\zeta}^{2} + u_{q214}\bar{\gamma}^{2}$$

$$(4.62)$$

ここで,

$$\beta : 防撓パネルの細長比
\beta = \frac{s}{t}\sqrt{\frac{\sigma_{Y_p}}{E}}
\bar{\beta} = \frac{\beta}{\beta_{\max}}
\beta_{\max} : \beta O 最大値
\lambda : コラム細長比
 $\lambda = \frac{l}{r\pi}\sqrt{\frac{\sigma_Y}{E}}$
 $r = \sqrt{\frac{I}{A}}$
 $\bar{\lambda} = \frac{\lambda}{\lambda_{\max}}$
 $\lambda_{\max} : \lambda O$ 最大値
 $\zeta : 板と防撓材の剛性比に関するパラメータ$
 $\zeta = \left(\frac{t_p}{t_w}\right)^3 \left(\frac{h_w}{s}\right)^2$
 $\bar{\zeta} = \frac{\zeta}{\zeta_{\max}}$$$

 $\zeta_{\max}: \zeta$ の最大値

$$\begin{split} \gamma &: 板の曲げ剛性に関するパラメータ \\ \gamma &= \frac{sD_p}{EI} \\ D_p &= \frac{Et^3}{12(1-\nu^2)} \\ \bar{\gamma} &= \frac{\gamma}{\gamma_{\max}} \\ \gamma_{\max} : \gamma \mathcal{O}$$
最大値

$$\mu &: 防撓材の曲げ剛性と水圧に関するパラメータ \\ \mu &= \frac{|q|sl^2 z_{s0}}{\sigma_Y I} \\ \bar{\mu} &= \frac{\mu}{\mu_{\max}} \\ \mu_{\max} : \mu \mathcal{O}$$
最大値

$$\eta &: 面内荷重比に関するパラメータ \\ \eta &= 1 \qquad \left(\sigma_y > 0.0001 \cap \frac{\sigma_x}{\sigma_y} < 0.0001\right) \\ \frac{2tan^{-1}(\xi)}{\pi} \qquad (other) \end{split}$$

上記の修正係数は、以下のように最終強度簡易推定式に適用して、修正後の最終強度簡易 推定式とする.

防撓材方向の圧縮荷重を受ける場合(水圧無し)

$$\sigma_{Uxq-\text{mod}} = U_x \sigma_{Uxq} \tag{4.63}$$

防撓材と直角方向の圧縮荷重を受ける場合(水圧無し)

$$\sigma_{Uyq-\mathrm{mod}} = U_y \sigma_{Uyq} \tag{4.64}$$

二軸圧縮荷重を受ける場合(水圧無し)

$$R_{x-\text{mod}} = \frac{U_{xy}\sigma_{U_x}^*}{c_z\alpha_{x-\text{mod}}\sigma_Y}$$
(4.65)

$$\alpha_{x-\text{mod}} = \frac{\sigma_{Uxq-\text{mod}}}{\sigma_Y} \tag{4.66}$$

$$R_{y-\text{mod}} = \frac{U_{xy}\sigma_{U_y}}{c_z\alpha_{y-\text{mod}}\sigma_Y}$$
(4.67)

$$\alpha_{y-\text{mod}} = \frac{\sigma_{Uyq-\text{mod}}}{\sigma_Y} \tag{4.68}$$

防撓材方向の圧縮荷重を受ける場合(水圧有り)

$$\sigma_{Uxq-\mathrm{mod}} = U_q U_x \sigma_{Uxq} \tag{4.69}$$

防撓材と直角方向の圧縮荷重を受ける場合(水圧有り)

$$\sigma_{Uyq-\mathrm{mod}} = U_q U_y \sigma_{Uyq} \tag{4.70}$$

二軸圧縮荷重を受ける場合(水圧有り)

$$R_{x-\text{mod}} = \frac{U_q U_{xy} \sigma_{U_x}^*}{c_z \alpha_{x-\text{mod}} \sigma_Y}$$
(4.71)

$$\alpha_{x-\text{mod}} = \frac{\sigma_{Uxq-\text{mod}}}{\sigma_Y} \tag{4.72}$$

$$R_{y-\text{mod}} = \frac{U_q U_{xy} \sigma_{U_y}^*}{c_z \alpha_{y-\text{mod}} \sigma_Y}$$
(4.73)

$$\alpha_{y-\text{mod}} = \frac{\sigma_{Uyq-\text{mod}}}{\sigma_Y} \tag{4.74}$$

4.5.3 flat-bar 付防撓パネルの有効断面の修正

日本船舶海洋工学会の ISO18072 シリーズ最終強度算式検証のための研究委員会によっ て各種防撓パネルの最終強度のベンチマークがなされている.例えば,Table 4.3 に示す Flat-bar 付防撓パネルについて FEM 解析や PULS の最終強度推定結果が示されており [83], これに最終強度簡易推定式の結果を追加したものを Fig. 4.23 に示す.このように,背の高 い flat-bar 防撓材が取り付けられ,かつ,パネルの板厚が薄い場合に,原田らが提案した 最終強度簡易推定式による推定値が PULS と比較して過小になる問題が他にも報告されて いる [95].

l (mm)	s (mm)	$t_p \ (\mathrm{mm})$	$h_w \ (\mathrm{mm})$	$t_w (\mathrm{mm})$	q (MPa)
2,550	850	16	550	35	0
2,550	850	16	550	35	0.2

Table 4.3 Dimensions of stiffened panel and lateral pressure.

この原因は、flat-bar 防撓材の有効板厚 t_e が過小に評価されているためである. 原田らは、 t_e を次式で求めている.

$$t_e = 1 - \frac{2\pi^2}{3} \left(\frac{h_w}{s}\right)^2 \left(1 - \frac{s_e}{s}\right) \tag{4.75}$$

ここで、*s_e*はパネルの有効幅を示す.これは、Fig. 4.24 のようにパネルの撓みと防撓材の 撓みが両者の接合線上で直角を保ちながら、かつ、防撓材は直線を保持したまま撓むと考 えている.しかしながら、例えば、ウェブ板厚の厚い防撓材では、防撓材はあまり撓まず、 パネルだけが防撓材の接合線上で固定に近いモードで撓むことになる.この場合、式(4.75) では過小な撓みを考えていることになり、結果として有効板厚が過小評価される.
これを回避する方法として,防撓材の撓みとパネルの撓みは互いに独立と考え,パネルの有効幅の算出方法と同様に,防撓材の座屈後の軸剛性(3辺支持,1辺自由の矩形板の軸 剛性) α_sを用いる方法がある [91]. α_s は次式で与えられる.

$$\alpha_s = \frac{1 + \frac{32}{45} \left(\frac{m\pi h_w}{l}\right)^4}{1 + \frac{72}{45} \left(\frac{m\pi h_w}{l}\right)^4} \tag{4.76}$$

ここで,*m*は座屈半波数を表しており,パネルと防撓材は同じ波数で座屈すると考える. この軸剛性を用いると,防撓材の有効板厚が次式で与えられる.

$$\frac{t_e}{t_w} = \frac{\sigma_{crx}}{\sigma_Y} (1 - \alpha_s) + \alpha_s \tag{4.77}$$

ここで, σ_{crx} は塑性修正をしたパネルの局部座屈応力を表している.

Fig. 4.23 Interaction curve of ultimate strength of stiffened plate under bi-axial thrust (flat-bar)

Fig. 4.24 Deflection mode of plate and stiffener.

修正後の最終強度簡易推定式では,防撓材の座屈後の軸剛性を用いて flat-bar 防撓材の 有効板厚を評価する.

4.5.4 修正後の最終強度簡易推定式と PULS のベンチマーク

4.4.5 項と同条件で PULS と修正後の最終強度簡易推定式のベンチマークを行う. ベンチ マークケース名を Table 4.4 に示す. ベンチマークケース名は修正前の最終強度簡易推定式の ベンチマークと同じ規則で付けている. 両者のベンチマーク結果を Fig. 4.25 ~ Fig. 4.33 に 示す. これより全てのケースで両者の最終強度は良い一致を示すことが確認できた.

なお、最終強度簡易推定式による計算時間は PULS の約 1/240 に短縮された.

一方,本研究では,最終強度簡易推定式を PULS に適合させるように修正項を同定した が,同様の方法を用いることによって,例えば FEM 解析結果や実験結果に一致させるこ とも可能であると考えられる.その際,導入した修正係数に含まれる修正項は,一致度を 向上させるための感度と捉えることができ,その数値が大きい程,修正において有効に機 能していると推察される.一例として板と防撓材の降伏強度が等しいモデルについて,同 定した修正項を降伏強度毎に比較して Fig. 4.34 に示す.この例では, u_x については, u_{x0} , u_{x1} が 3 ケースとも大きい.つまり,防撓材方向圧縮の場合は,基本的には β に関する修 正が有効であることを示唆している. u_y については, 3 ケースとも同様の傾向を示してお り, u_{x0} , u_{x1} , u_{x2} , u_{x3} , u_{x7} , u_{x12} が大きい.つまり, β , λ , ζ 及びそれらの交差項に関する 修正が有効であることを示唆している. u_{xy} については, 3 ケースの傾向は類似しているも のの,特定の修正項において値に乖離がある.これは有効な修正項は類似しているものの, その度合いは計算条件によって異なることを示唆している.このように,最終強度簡易推 定式と PULS の一致度を向上させる感度として修正項を捉え,修正項の傾向を精査するこ とによって修正に有効なパラメータを抽出することが可能であると考えられる.

Stiff. type	Yield str.	Load.	W/o lat. press.	Pos. lat. press.	Neg. lat. press.
Flat-bar	$\sigma_{Yp} = \sigma_{Ys}$	1.	F0.prop.1.Eq	F+.prop.1.Eq	Fprop.1.Eq
		2.	F0.prop.2.Eq	F+.prop.2.Eq	Fprop.2.Eq
		3.	F0.prop.3.Eq	F+.prop.3.Eq	Fprop.3.Eq
	$\sigma_{Yp} > \sigma_{Ys}$	1.	F0.prop.1.Gt	F+.prop.1.Gt	Fprop.1.Gt
		2.	F0.prop.2.Gt	F+.prop.2.Gt	Fprop.2.Gt
		3.	F0.prop.3.Gt	F+.prop.3.Gt	Fprop.3.Gt
	$\sigma_{Yp} < \sigma_{Ys}$	1.	F0.prop.1.Lt	F+.prop.1.Lt	Fprop.1.Lt
		2.	F0.prop.2.Lt	F+.prop.2.Lt	Fprop.2.Lt
		3.	F0.prop.3.Lt	F+.prop.3.Lt	Fprop.3.Lt
Angle-bar	$\sigma_{Yp} = \sigma_{Ys}$	1.	L0.prop.1.Eq	L+.prop.1.Eq	Lprop.1.Eq
		2.	L0.prop.2.Eq	L+.prop.2.Eq	Lprop.2.Eq
		3.	L0.prop.3.Eq	L+.prop.3.Eq	Lprop.3.Eq
	$\sigma_{Yp} > \sigma_{Ys}$	1.	L0.prop.1.Gt	L+.prop.1.Gt	Lprop.1.Gt
		2.	L0.prop.2.Gt	L+.prop.2.Gt	Lprop.2.Gt
		3.	L0.prop.3.Gt	L+.prop.3.Gt	Lprop.3.Gt
	$\sigma_{Yp} < \sigma_{Ys}$	1.	L0.prop.1.Lt	L+.prop.1.Lt	Lprop.1.Lt
		2.	L0.prop.2.Lt	L+.prop.2.Lt	Lprop.2.Lt
		3.	L0.prop.3.Lt	L+.prop.3.Lt	Lprop.3.Lt
Tee-bar	$\sigma_{Yp} = \sigma_{Ys}$	1.	T0.prop.1.Eq	T+.prop.1.Eq	Tprop.1.Eq
		2.	T0.prop.2.Eq	T+.prop.2.Eq	Tprop.2.Eq
		3.	T0.prop.3.Eq	T+.prop.3.Eq	Tprop.3.Eq
	$\sigma_{Yp} > \sigma_{Ys}$	1.	T0.prop.1.Gt	T+.prop.1.Gt	Tprop.1.Gt
		2.	T0.prop.2.Gt	T+.prop.2.Gt	Tprop.2.Gt
		3.	T0.prop.3.Gt	T+.prop.3.Gt	Tprop.3.Gt
	$\sigma_{Yp} < \sigma_{Ys}$	1.	T0.prop.1.Lt	T+.prop.1.Lt	Tprop.1.Lt
		2.	T0.prop.2.Lt	T+.prop.2.Lt	Tprop.2.Lt
		3.	T0.prop.3.Lt	T+.prop.3.Lt	Tprop.3.Lt

Table 4.4 Benchmark cases of modified Harada's formula.

1. Thrust parallel to stiffener

2. Bi-axial thrust

3. Thrust perpecdicular to stiffener

Positive lateral pressure : lateral pressure on plate side

Negative lateral pressure : lateral pressure on stiffener side

Fig. 4.25 Comparisons of ultimate strength of flat-bar under thrust by PULS and modified Harada's formula

Fig. 4.26 Comparisons of ultimate strength of flat-bar under combined thrust and lateral pressure on positive side by PULS and modified Harada's formula

Fig. 4.27 Comparisons of ultimate strength of flat-bar under combined thrust and lateral pressure on negative side by PULS and modified Harada's formula

Fig. 4.28 Comparisons of ultimate strength of angle-bar under thrust by PULS and modified Harada's formula

Fig. 4.29 Comparisons of ultimate strength of angle-bar under combined thrust and lateral pressure on positive side by PULS and modified Harada's formula

Fig. 4.30 Comparisons of ultimate strength of angle-bar under combined thrust and lateral pressure on negative side by PULS and modified Harada's formula

Fig. 4.31 Comparisons of ultimate strength of tee-bar under thrust by PULS and modified Harada's formula

Fig. 4.32 Comparisons of ultimate strength of tee-bar under combined thrust and lateral pressure on positive side by PULS and modified Harada's formula

Fig. 4.33 Comparisons of ultimate strength of tee-bar under combined thrust and lateral pressure on negative side by PULS and modified Harada's formula

Fig. 4.34 Correction coefficient of angle/tee-bar.

4.6 結言

本章では、CSR に適合した構造最適化に適用可能な座屈・最終強度評価法を構築するた めの検討を行った.まず、CSR で規定される座屈・最終強度評価法を概観して、構造最適 化に適用する場合の問題点を示した.次に、座屈強度簡易推定式及び原田らが開発した陽 表示の最終強度簡易推定式を構造最適化に適用可能な状態まで展開した.後者については、 PULS とのベンチマークに基づき、CSR への適合させるための修正を行った.最後に、構 築した座屈・最終強度評価法と PULS とのベンチマークにより、CSR への適合性及び構造 最適化への適用性を評価した.これらの検討の結果得られた結論を以下に示す.

- 1. CSR で規定される座屈・最終強度評価法を調査した結果, CSR に適合する構造最適 化においては, 評価の自動化が必須であるため, CSR-T の高度座屈解析法 (PULS) に適合する新たな評価法が必要であることを示した. また, CSR-B では規則算式を 利用可能であることを確認した.
- 2. 構造最適化における座屈・最終強度評価法としては、CSR-Tの防撓パネルの評価法 1に対して、原田らが開発した最終強度簡易推定式を用い、非防撓パネルの評価法2 に対して、座屈強度簡易推定式を用いることを提案した.
- 3. 座屈強度簡易推定式を展開し、PULS とのベンチマークを行った結果,非防撓パネルの評価法2に関しては、面内圧縮状態において座屈強度簡易推定式がCSR-Tへ 適合することを確認した.
- 4. 最終強度簡易推定式を展開し、PULS とのベンチマークを行った結果、PULS と最終強度簡易推定式の最終強度推定結果の一致度は、防撓材形状や面内圧縮荷重状態、水圧、降伏強度によって異なり、最終強度簡易推定式は PULS より高めの最終強度を推定する傾向が強いことが分かった.また、防撓材と直角方向圧縮の一致度は比較的良いことが分かった.その結果、CSR-T への適合性という面からは最終強度簡易推定式の修正が必要であることを示した.
- 5. 最終強度簡易推定式の修正は、板や防撓材の力学的な特性を表現するパラメータに 修正項を乗じて算出する修正係数を導入して行うことを提案した. 修正項を設計変 数に、PULS と修正係数導入後の最終強度簡易推定式の最終強度の差を目的関数に した目的関数最小化問題を逐次二次計画法によって解き、修正項を同定した. 修正 項は防撓材形状、板と防撓材の降伏強度、面内圧縮荷重比、水圧の条件毎に分類し て同定した. また、背の高い flat-bar 防撓材が取り付けられ、かつ、パネルの板厚 が薄い場合に、最終強度簡易推定式による推定値が PULS や FEM 解析結果と比較 して過小になる問題に対して、防撓材の座屈後の軸剛性を用いて flat-bar 防撓材の 有効板厚を評価するように修正した. 修正後の最終強度簡易推定式と PULS とのべ

ンチマークを行い,修正後の最終強度簡易推定式が CSR-T の高度座屈解析法に適合することを確認した.

- 6. 修正後の最終強度簡易推定式を用いた最終強度推定に要する時間は、従来の船級ソフトを用いる場合と比較して約1/240に短縮できた.また、陽表示の算式に展開されているため評価の自動化も容易で、座屈強度簡易推定式と合わせて構造最適化に適用可能であることが確認できた.
- 7. 提案した最終強度簡易推定式の修正方法は、最終強度簡易推定式を FEM 解析や実験結果に一致させる場合にも応用できると考えられる.また、修正係数を構成する修正項は、最終強度簡易推定式を修正する際の感度と捉えることができ、修正項の数値によって修正に用いるパラメータの有効性を評価できることを示した.
- 8. CSR-T の防撓パネルの評価法2及び非防撓パネルの評価法1については,対応する 適切な簡易評価法を構築できていないため,座屈強度簡易推定式を流用する.また, 非防撓パネルの評価法2でせん断荷重が加わる場合にも対応できていない.これら の場合,提案手法による座屈・最終強度の推定結果は,CSR-Tの高度座屈解析法の 結果と乖離する恐れがある.

第5章 FEM解析による構造最適化

5.1 緒言

第2章及び第3章の検討によって, CSR の部材寸法要件に適合した船体中央横断面構 造の最適化が可能になった.しかしながら, CSR では FEM 解析による構造強度評価も要 求されているため, FEM 解析を実施しなければ最終的な部材寸法を決定できない.また, 1.2.4 項で述べたように, FEM 解析を CSR に適合した構造最適化に適用するためには以下 の課題を解決する必要がある.

- 1. FEM 解析モデルの自動作成が困難
- 2. 複雑な CSR の FEM 解析プロセス(荷重境界条件等の解析条件の設定,降伏強度や 座屈・最終強度等の解析結果の評価)の自動化が困難
- 3. 船級ソフトを利用した CSR の FEM 解析プロセスには多大な作業工数を要する

本章では、上記課題を解決して、構造最適化に適用可能な FEM 解析による構造強度評価システムを開発する. なお、上記 2. に含まれる CSR-T の座屈・最終強度評価の自動化については、第4章の検討結果を適用することにより解決する.

本システムを適用する設計ステージは、基本設計の初期段階或いは基本計画段階を想定 する.すなわち、設計者は主要目や区画配置、構造配置等の設計パラメータが船舶構造へ 及ぼす影響を、過去の実績や簡易検討によって推定し、如何に決定するか頭を悩ませてい る段階である.通常、このような設計初期段階においてFEM解析による構造強度評価を行 うのは現実的でなく、その主たる要因は人手不足や検討時間不足であると推察される.し かしながら、上記の設計パラメータは船舶構造への影響が非常に大きいため、設計初期段 階でFEM解析を含む詳細検討を行い、その結果に基づいてこれらの設計パラメータを決定 できれば、構造影響の推定精度が向上するだけでなく、船殻重量や建造コストを大幅に削 減できる可能性がある.したがって、本システムを初期設計段階で適用するために、CSR で規定される FEM 解析による構造強度評価プロセスの自動化及び高速化を優先して開発 する.局部詳細メッシュ構造強度解析及び極詳細メッシュ疲労解析は構造影響の大きさと 開発負荷のバランスを考慮して対象外とする.次節以降に、システムの概要を示し、CSR への適合性を評価した後、本システムの構造設計問題への適用を試みる.

5.2 CSR に適合した構造強度評価システム

5.2.1 システムの概要

本システムの流れを Fig. 5.1 に示す [30][90]. FEM 解析に必要な情報(主要目,部材 配置,形状,寸法,設計荷重等)を全て記載する Design data は Excel で作成し,縦強度 部材のデータ入力には PSH-Rules-Excel のフォーマットを流用する.本システムでは,船 体中央横断面の設計に必要なほとんどの設計変数を取り扱うことができるが,現時点では 第2章で開発した部材寸法に基づく構造最適化システムとの自動接続はせず,部材寸法計 算結果を手動で Design data に反映させる.これは部材寸法計算システムに流用している PSH-Rules-Excel が主要目や区画配置,構造配置の変更に手動操作を要することによる.

本システムのプラットフォームには,汎用 FEM pre-processor であるテクノスター社の TSV-Pre を採用した.TSV-Pre はカスタマイズ性に優れており,以下の機能を新たに開発 して TSV-Pre に搭載した.各機能の詳細は次項以降に示す.

- 1. CSR 規定の FEM 解析モデル作成
- 2. CSR 規定の荷重境界条件作成
- 3. CSR 規定の降伏強度評価及び座屈・最終強度強度評価
- 4. 部材寸法更新
- 5. 設計案の船殻重量及び建造コスト算出
- 6. 全ての処理の自動化

Fig. 5.1 Flow of strength assessment system.

5.2.2 FEM 解析モデル自動作成機能

本システムでは, Fig. 5.2 及び Fig. 5.3 に示す 2 次元 CAD イメージのテンプレートを 利用して 3 次元ジオメトリモデルを作成した後 FEM 解析モデルを作成する. Fig. 5.2 は 油タンカーの縦強度部材用のテンプレート, Fig. 5.3 はビルジホッパー内の横桁用のテン プレートである. これらのテンプレートはポイントとラインで構成され, ラインの長さや R 部の半径等は変数として定義される. 変数の値は外部から Design data によって与えら れ, 3 次元ジオメトリモデルの形状は Design data とテンプレートを経由して自由に変更 できる. その際, 3 次元構造全体が矛盾しないように以下のような工夫を施した.

5.2.2.1 Rubber による部材の形状変更

四角形の大きさを変更する場合を考えると, Fig. 5.4 において, 左上四角形の底辺の長 さを変更すれば, 通常右上のように形が歪む. しかし, 左下四角形のように上辺をゴムの ように自由に変形するライン (Rubber と呼ぶ) にすれば, 右下四角形のように形状を保っ たまま大きさを変更できる. Fig. 5.2 及び Fig. 5.3 の灰色線は Rubber で作成している. 構 造の形状を表現するための最小限の骨組みを通常のラインで作成し, その間を Rubber で 繋ぐことにより, 複雑な形状であっても骨組みラインの長さのみを変更することによって 形状を壊すことなく自由に大きさを変更できる.

5.2.2.2 Shadow copy による部材間の整合性維持

テンプレートは部材の纏まり毎に作成する. Fig. 5.3 の白ポイントは Fig. 5.2 の該当箇 所からコピーしたものであるが, Shadow copy と名付けた機能により, Fig. 5.2 でこれら のポイントの間隔が変更された場合, Fig. 5.3 において連動して変化する. 更に Fig. 5.3 の R 部は破線表示されているが, これも Shadow copy 機能により Fig. 5.2 の該当 R 部に連動 して形状が変化する. このように, 部材の形状をテンプレート間で連動して変化させるこ とにより, 一カ所の部材形状を変更しても全体の構造に矛盾が生じないようにしている.

Fig. 5.2 Sample of 2D template of longitudinal member.

Fig. 5.3 2D template of bilge transverse frame.

Fig. 5.4 Concept of Rubber element.

5.2.2.3 3D ジオメトリモデルの作成方法

テンプレートを利用して3次元ジオメトリモデルを作成する際の基本となる考え方は. 線から面の作成,面の配置,部材交差の処理である.3D ジオメトリモデル作成時に使用す る機能の一例を Fig. 5.5 に示す. 例えば, yz 平面上に線として作成したテンプレートを x 方向に引き伸ばして xz 平面上に面を作成することや, yz 平面上に面として作成したテン プレートを x 方向にフレームスペース毎に配置して新たな面を作成することができる.引 き伸ばす方向や配置する方向及び間隔は任意に選択できる.また、引き伸ばした部材同士 が交差する場合に、交差線上でカットして、指定した側の部材を残す機能もある. さらに、 作成した面に防撓材を配置することや knuckle の定義も可能である. これらの方法を組合 せて部材単位でテンプレートを作成する.油タンカーの FEM 解析モデル作成に必要なテ ンプレートの一例を Fig. 5.6 ~ Fig. 5.9 に示す. また, ばら積貨物船のテンプレートの 一例を Fig. 5.10 ~ Fig. 5.13 に示す. 図中の下部がテンプレートを示しており, 上部は テンプレートの部材の船舶構造における位置を示す補助図である。テンプレートは、まず ポイントを定義して、ポイント間をラインで結ぶことによって作成する。ラインにはその 長さを示す変数名を定義する.図中の実線は後に部材となるラインを意味し,灰色の実線 は Rubber で作成されたラインであることを意味する. 破線はテンプレートを作成する際 の補助ラインであるが、緑色の破線は別の実線から平行移動して作成されたラインである ことを意味し、その際、平行移動の距離を変数として定義する.R部の赤色の実線は別の 部材のテンプレートから Shadow copy で作成されたことを意味する.図中の赤色のポイン トは別の部材のテンプレートから Shadow copy で作成されたことを意味し、緑色のポイン トは線と線の交点を意味している. 黒色のポイントはラインを作成するために定義するが, Fig. 5.5 (b) に示すように部材を配置する際の基準点として利用する場合がある.

Longitudinal member や lower stool, corrugated bulkhead はそれぞれ船長方向,船幅方向,深さ方向に引き伸ばして面を作成し,それ以外の部材は面を作成して配置することに

よって 3D ジオメトリモデルを作成している.新規にテンプレートを作成する際には,テ ンプレート間の部材の連携を想像しながら作業を進める必要があるため,多少訓練が必要 であるものの,CSR で規定される FEM 解析モデルに必要なテンプレートは1週間程度で 作成可能である.また,一旦テンプレートが完成すれば,構造様式が変わらない限り他船 へそのまま流用可能である.なお,油タンカーでは 65 個のテンプレートを作成し,ばら積 貨物船では 103 個のテンプレートを作成した.

上述したように、テンプレート内のラインの長さやR部の半径等は、変数として定義され ており、変数の値は Design data 内に記述された値とリンクする.すなわち、Design data 内の数値を変更することにより、テンプレートを介して 3D ジオメトリモデルの形状を変更 することができる.また、longitudinal member 等のテンプレートに表示されている bm1 や bm2 等は各ラインに付与された変数名であり、Design data 内ではこの変数名によって 部材の管理を行う.この部材の変数名は、後工程まで引き続き保持する.つまり FEM の 要素になってもその要素が船舶構造のどの部材なのかを部材の変数名によって判断できる. これにより、部材によって要求値が異なる CSR の複雑な構造強度評価プロセスへの対応、 荷重載荷の際のタンク境界の認識や評価に基づく部材寸法の更新の自動化を実現している. なお、PSH-DSA 等の船級ソフトにおける FEM 要素と部材の関連付けには、手動操作が必 要になる.

Fig. 5.5 Function of creating 3D geometry model.

Fig. 5.6 2D template of longitudinal member (tanker).

Fig. 5.7 2D template of typical transverse frame (tanker).

Fig. 5.8 2D template of bilge transverse frame (tanker).

Fig. 5.9 2D template of horizontal girder (tanker).

Fig. 5.10 2D template of longitudinal member (bulk carrier).

Fig. 5.11 2D template of top side tank transverse frame (bulk carrier).

Fig. 5.12 2D template of lower stool (bulk carrier).

Fig. 5.13 2D template of corrugated bulkhead (bulk carrier).

5.2.2.4 FEM 解析モデルの作成

3 次元ジオメトリモデルを作成した後, Pre FEM 機能を利用して FEM 解析モデルを作 成する. CSR では部材によって使用する要素タイプが規定されているだけでなく, 要素サ イズや要素分割の要領も詳細に規定されている. 本システムでは, CSR の規定 [20][21] に 則って FEM 解析モデルを作成する. 作成した 200KDWT ばら積貨物船の FEM 解析モデ ルの例を Fig. 5.14 に, 油タンカーの FEM 解析モデルの例を Fig. 5.15 及び Fig. 5.16 にそ れぞれ示す.

ところで,既往研究には,既存のFEM 要素を変形させて新たなモデルを作成する例があ るが,形状変更に伴い要素が潰れてしまう問題があった.本システムを用いた形状変更の 例として,ばら積貨物船の二重底高さを変更したFEM 解析モデルを設計変更前後で比較 してFig. 5.17 に示す.このように,本システムでは設計案毎に新たにFEM 要素を作成す るため,要素が潰れてしまう問題は発生しない.また,この変更に必要な操作は,Design data 内で二重底高さを定義している変数 HDB の数値を変更するだけである.

Fig. 5.14 Three cargo hold model of 200KDWT bulk carrier (shows only starboard side of the full breadth model).

Fig. 5.15 Three cargo hold model of 300KDWT tanker (shows only starboard side of the full breadth model).

Fig. 5.16 Three cargo hold model of 150KDWT tanker.

Fig. 5.17 A result of changing design variable (HDB).

5.2.3 荷重境界条件作成機能

本システムでは,FEM 要素が持つ部材の変数名と法線方向に基づきタンク境界の部材や 境界面の方向を自動認識する.また,内圧及び外圧の静的及び動的成分と断面力を計算し てそれらを適切な場所に載荷することにより,CSR で規定される荷重境界条件 [20][21] を 定義する.

2列の油密縦通隔壁を有する油タンカーの積付パターン A5,動的荷重ケース1の荷重条 件を定義したモデルの一例を Fig. 5.18 に示す.積付パターン A5 は、3 タンクの中央部タ ンクを満載にする積付であり、内圧と外圧の静的成分及び動的成分が載荷されている様子 が確認できる.また、境界条件を定義したモデルの一例を Fig. 5.19 に示す.モデル端部の ばね支持や中立軸上の独立点における拘束条件の様子が確認できる.油タンカーの積付及 び荷重ケースの総組合せ数は、2 列の油密縦通隔壁を有する場合は最大 21 ケース、1 列の 油密縦通隔壁を有する場合は最大 23 ケースになる.また、ばら積貨物船では、中央貨物倉 が積付倉の場合は最大 45 ケース、中央貨物倉が空倉の場合は最大 33 ケースになる.本シ ステムではこれら全ての積付及び荷重ケースに対応しており、全ての荷重境界条件を自動 作成する.

本システムで作成した荷重境界条件が CSR-T に適合することを確認するために、本シ ステムと PSH-DSA 及び ABS(American Bureau of Shipping)の直接強度解析システムで ある Tank Check の3者の解析結果を比較した.一例として,1列の船体中心線上にある 油密縦通隔壁を有する油タンカーに積付パターンB1,動的荷重ケース2の場合の荷重境界 条件を載荷した後,FEM 解析を実施して得られた上甲板に発生した応力の船長方向分布を Fig. 5.20 に示す.また,同様に積付パターンB3,動的荷重ケース2の場合の船側外板に 発生した応力の船の深さ方向分布をFig. 5.21 に示す.

同様に、本システムで作成した荷重境界条件が CSR-B に適合することを確認するため に、ばら積貨物船の中央貨物倉を空倉とする場合の隔倉積状態の荷重ケース F2 に対して 内底板及び船側外板に発生した応力の分布を本システムと PSH-DSA の解析結果を比較し て Fig. 5.22 及び Fig. 5.23 に示す.いずれの場合も本システムと船級ソフトの結果は良く 一致している.以上より、本システムで付与した荷重境界条件は CSR に適合していること が確認できた.

Fig. 5.18 Tanker model which had defined load conditions.

Fig. 5.19 Tanker model which had defined boundary conditions.

Fig. 5.20 Comparison of stress in upper deck (tanker).

Fig. 5.21 Comparison of stress in side shell (tanker).

Fig. 5.22 Comparison of stress in inner bottom (bulk carrier).

Fig. 5.23 Comparison of stress in side shell (bulk carrier).

5.2.4 構造強度評価機能

FEM 解析ソルバーには、将来並列計算に対応させる場合のコストパフォーマンスを考 慮して、テクノスター社の TSV-Solver を採用した. TSV-Solver は、MSC 社の Nastran と同じ入出力インターフェイスを有しており、解析結果も同等であることを確認している. FEM 解析を実行した後、CSR で規定される降伏強度評価法と座屈・最終強度評価法に基 づき構造強度評価を行う. CSR-T では、構造強度評価の対象範囲は、「3 タンク FEM モデ ルの中央部タンクとその前後部を含み、横隔壁付水平桁及び端部ブラケットを含む長さ方 向の範囲内にある各構造部材」と規定されており、本システムでは中央部タンクの前後 2 トランススペースを評価対象範囲とする. また、CSR-B では、「3 ホールド(1+1+1)モデ ルの内、横隔壁を含む中央ホールドの全主要支持部材」と規定されており、本システムで も同様の評価対象範囲とする.

5.2.4.1 降伏強度評価

CSR-T 及び CSR-B では降伏強度に対する使用係数に基づき降伏強度評価を行う.

CSR-T では, Table 5.1 に示すように評価対象部材の場所や要素タイプ, 荷重条件(S: 静的な設計荷重の組合せ, S+D:静的荷重及び動的荷重の組合せ)によって降伏強度に対 する使用係数 λ_y の許容値 λ_{allow} が異なる [21]. そのため,降伏強度評価の際は,評価部材 が船舶構造の何処に属するかや使用要素,降伏応力のデータが必要になるため,評価プロ セスは非常に複雑になる. λ_y と λ_{allow} の比を使用係数比 λ_y^{ratio} と定義すれば,式 (5.1) を満 たす場合に CSR-T の要求を満たす.

$$\lambda_y^{\text{ratio}} \le 1.0 \tag{5.1}$$

ここで,

$$\lambda_y^{
m ratio} = \lambda_y / \lambda_{
m allow}$$

一方, CSR-B では、参照応力が許容応力を超えてはならないと規定されている [20].参 照応力は、面要素に対しては要素中心における Von Mises の相当応力 σ_{vm} とし、線要素に 対しては軸応力 σ_n とする. ここでは、参照応力を σ_{ref} ,許容応力を σ_{allow} と称し、これら の比を降伏強度に対する使用係数 λ_y と定義すれば、式 (5.2) を満たす場合に CSR-B の要 求を満たすことを意味する.

$$\lambda_y \le 1.0 \tag{5.2}$$

ここで,

$$\lambda_{y} = \sigma_{ref} / \sigma_{allow}$$

$$\sigma_{ref} = \sigma_{vm} \quad (面要素)$$

$$= \sigma_{n} \quad (線要素)$$

$$\sigma_{allow} = 235/k \quad (5.3)$$

$$k = 1.0 \quad (\sigma_{Y} = 235(\text{MPa}))$$

$$= 0.78 \quad (\sigma_{Y} = 315(\text{MPa}))$$

$$= 0.72 \quad (\sigma_{Y} = 355(\text{MPa}))$$

$$\sigma_{vm} = \sqrt{\sigma_{x}^{2} - \sigma_{x}\sigma_{y} + \sigma_{y}^{2} + 3\tau_{xy}^{2}}$$

$$\sigma_{x}, \sigma_{y} : 要素 \bar{u} \bar{u} \bar{u} \bar{u} (\text{MPa})$$

$$\tau_{xy} : \bar{u} \bar{u} \bar{u} \bar{u} \bar{u} (\text{MPa})$$

本システムでは,評価対象部材毎に全荷重ケースの中で最も厳しい λ_y^{ratio} (油タンカー) または λ_y (ばら積貨物船)を出力する.降伏強度評価結果の例として,300KDWT油タン カーの λ_y^{ratio} の分布及び200KDWTばら積貨物船の λ_y の分布をFig. 5.24 及びFig. 5.25 に 示す. これらの λ_y^{ratio} 及び λ_y は,要素毎に表示されているが,それぞれの荷重ケースは異 なっているため,分布そのものに意味はなく,例えば赤色の場合は要求を満たしていない 等の確認を視覚的に行うために用いる.

Structural component	Yield utilization factor			
Internal s	tructure in tanks			
Plating of all non-tight structural	$\lambda_y \le 1.0$ (load combination S+D)			
members	$\lambda_y \le 0.8$ (load combination S)			
Structure o	n tank boundaries			
Plating of deck, sides, inner sides,				
hopper plate, bilge plate, longitudinal	$\lambda_y \le 0.9$ (load combination S+D)			
bulkheads, tight floors,	$\lambda_y \le 0.72$ (load combination S)			
girders and webs				
Plating of inner bottom, bottom,	$\lambda_y \le 0.8$ (load combination S+D)			
transverse bulkheads	$\lambda_y \le 0.64$ (load combination S)			
	Where:			
	λ_y yield utilization factor			
	$=\sigma_{vm}/\sigma_Y$ for plate elements in general			
	$=\sigma_{rod}/\sigma_Y$ for rod elements in general			
	σ_{vm} Von Mises stress			
	σ_{rod} Axial stress in rod element			

Table 5.1 Maximum Permissible Stresses (CSR-T).

Fig. 5.24 Active yield utilization factor ratio (tanker).

Fig. 5.25 Active yield utilization factor (bulk carrier).

5.2.4.2 座屈·最終強度評価

CSR-T 及び CSR-B では、4.2 節で述べた方法に基づき座屈・最終強度評価を行う.座 屈・最終強度評価は座屈評価パネル単位で行い、通常、座屈評価パネルは主要支持部材で 囲まれる範囲で作成する.船級ソフトを用いる場合、座屈評価パネルを手動で作成するた め多大な作業時間を要するが、本システムでは座屈評価パネルを自動作成する、しかしな がら、桁部材等の非防撓座屈評価パネルは、主要支持部材に囲まれる矩形の座屈パネルと 異なり、その方向が様々で矩形でない場合が多い.このような場合は、CSR では付録 C に 示すように等価な矩形パネルに置き換えて座屈評価パネルを作成し、パネル内の応力等を 再計算して、それらに基づいて座屈・最終強度を評価するように規定されている [20][21]. しかしながら、その規定は複雑なため、本システムと PSH-DSA で作成する座屈評価パネ ルが一致しない場合があり、評価結果に差が生じる原因になる恐れがある.

本システムと CSR-T の座屈・最終強度評価法の対応を Table 5.2 に示す.本システム が CSR-T で規定される評価法に対応する場合は表中に。印を,対応しない場合は×印を それぞれ記載している.本システムでは,防撓パネルの評価法1には,高度座屈強度解析 法の代わりに 4.5 節で述べた修正後の最終強度簡易推定式を利用する.また,非防撓パネ ルの評価法2の弾性座屈強度の評価には4.3 節で述べた座屈簡易推定式を利用する.ただ し,防撓パネルの評価法2の弾性座屈強度には対応していないため,非防撓パネルの評価 法2の弾性座屈強度を流用する.また,非防撓パネルの評価法1にも対応していないため, 同様に非防撓パネルの評価法2の弾性座屈強度を流用する.これらの評価結果は,高度座 屈解析法による評価結果と乖離する恐れがあるが,安全側の評価となり,設計検討には利 用可能であると推察する.本システムでは,座屈評価パネル内の応力や部材寸法情報等の データを座屈・最終強度簡易推定式に受け渡して強度評価を行う.最終的な評価には,降 伏強度評価と同様に使用係数を用いる.油タンカーの座屈・最終強度評価では,式(4.11) に示す許容座屈使用係数 η_{allow} が設計荷重の組合せによって異なるため,設計適用荷重に 基づく実際の座屈使用係数 η_{allow} が設計荷重の組合せによって異なるため,設計適用荷重に 式(5.4)を満たす場合に CSR-T の要求を満たす.本システムでは,座屈強度評価と同様に に全荷重ケースの使用係数を算出した後,最も厳しい使用係数を出力する.

$$\eta^{\text{ratio}} \le 1.0 \tag{5.4}$$

ここで,

 $\eta^{\rm ratio} = \eta_{\rm act} / \eta_{\rm allow}$

Idealisation	Assessment method	CSR-T			Proposed	
Stiffened	Method 1 (M1)	SP-M1			0	
panel (SP)	Mothod 2 (M2)	SP-M2	A: SP-M1		0	
		$\left \text{ (Min. A or B)} \right $		×	use D	
Unstiffened	Method 1 (M1)	-			-	
panel (UP)	Mothod 2 (M2)	UP-M2	C: UP-M1	×	use D	
	Method 2 (M2)	(Min. C or D)	D: EBS		0	
Where:		·	•	•		
EBS: Elastic	buckling strength					

Table 5.2 Assessment method of buckling and ultimate strength for tanker.

ばら積貨物船の場合は主要支持部材の座屈強度評価パネル毎に規定通りの評価を行い[20], 最も厳しい使用係数を出力する.本システムでは,式(4.12)~式(4.15)の左辺を使用係数 *n*と定義して用いる.

座屈・最終強度評価の例として,300KDWT 油タンカー及び 200KDWT ばら積貨物船 の各座屈強度評価パネルの最も厳しい使用係数比及び使用係数の分布を Fig. 5.26 及び Fig. 5.27 に示す.降伏強度評価と同様に η^{ratio} 及び η は,座屈評価パネル毎に表示されて いるが、それぞれの荷重ケースは異なっているため、分布そのものに意味はなく、例えば 赤色の場合は要求を満たしていない等の確認を視覚的に行うために用いる.

Fig. 5.26 Active buckling utilization factor ratio (tanker).

Fig. 5.27 Active buckling utilization factor (bulk carrier).

5.2.5 構造最適化支援機能

構造最適化を実現するために、CSR の構造強度評価プロセスに関する機能に加えて以下 に示す構造最適化支援機能を開発している.

1. 部材寸法の更新

FEM 解析の評価結果が CSR 要求を満足しない場合,部材寸法等を変更して再解析 する必要がある.しかしながら,主要目や区画配置,横桁部材の形状等を変更をせ ずに板厚や面材寸法のみを変更する場合に,FEM 解析モデルを再作成するのは非 効率的である.本システムでは,FEM 解析データ内で部材寸法を変更することによ り効率化を図った.これを実現するためには FEM 解析データ内で部材を認識する 必要があるが,本システムではテンプレートと Design data を利用することにより, 全ての FEM 要素と部材が関連付けられている.そのため,CSR 要求を満足するま で部材寸法変更,再解析,再評価という流れを自動化することが可能になった.ま た,座屈・最終強度評価結果に基づく部材寸法変更では,カーリングを考慮するこ とができる.なお,部材寸法の初期値には CSR の部材寸法計算結果を設定する.

2. 設計データ更新

CSR 要求を満足する設計案ができたとしても、その設計情報はあくまでも FEM 解析 データ上に存在している.このデータを基に本システムの最上流に位置する Design data を更新する機能を開発した.その際、板継情報も織り込むことにより、次工程 の建造コスト評価用データとして利用できる.

3. 建造コスト算出

Design data を基に算出した単位物量(重量,表面積,溶接長等)に単価を乗じて建 造コストを算出する機能を開発した.考慮したコストは,部材寸法計算を用いた構 造最適化と同様に,材料費,溶接費,塗装費,外注費である.

5.3 構造強度評価システムの CSR への適合性検証

油タンカーとばら積貨物船の構造強度評価を本システムと PSH-DSA により行い,両者 の結果を比較することで本システムの CSR への適合性を検証した.次項以降に代表的な部 材について検証結果を示す.各要素に発生する応力は,5.2.3項において CSR へ適合する ことが確認できているので,本節では降伏強度評価及び座屈・最終強度評価に対して使用 係数比及び使用係数の検証を行った.なお,本節で使用するモデルは,システムの検証用 に作成したものであり,CSR の強度要求を満足しない部材が存在する.

5.3.1 150KDWT 油タンカー

150KDWT 油タンカーの横桁及び水平桁について,降伏強度に対する使用係数比を本シ ステムと PSH-DSA で比較して Fig. 5.28 及び Fig. 5.29 に示す. 図中のコンター図 (a) は PSH-DSA の使用係数比分布,コンター図 (b) は本システムの使用係数比分布をそれぞれ 示しており,コンターは青色から赤色に向かって使用係数比が厳しくなり,赤色は CSR 要 求を満足していないことを意味する.また,図中の矢印部の使用係数比をグラフ (c) にプ ロットしている.これより両者の結果は良く一致していることが確認できた.

次に座屈・最終強度に対する使用係数比を本システムと PSH-DSA で比較する. CSR-T では, 4.2.1 項及び 5.2.4 節で述べたように評価部材によって評価方法が異なるため,評 価方法の違いに着目して検証を行った.

横桁の座屈・最終強度評価結果を Fig. 5.30 ~ Fig. 5.32 に示す. 降伏強度に対する使用 係数比と同様にコンターは座屈・最終強度に対する使用係数比を示している.コンターは青 色から赤色に向かって使用係数比が厳しくなり、赤色は CSR 要求を満足していないことを 意味する. Fig. 5.30 の(c)は, 矢印1に該当する部材の使用係数比で, この部材は UP-M2 に分類される.深さ方向の座標 9,000(mm) 付近の差の原因は,PSH-DSA は UP-M1 の評 価結果が採用されているのに対し、本システムは UP-M2 のみで評価しているためであり、 本システムは危険側の評価結果となっている. PSH-DSA で UP-M1 の評価結果が採用さ れた原因は、せん断応力が高いことによる最終強度の低下であると推察される.したがっ て, UP-M2 に分類され比較的せん断応力が高い部材の本システムの評価結果には注意を要 する. 一方, 座標 12,000(mm) 以上で生じている差は, 座屈評価パネルの形状差に起因す る. この例では, 該当部に台形や三角形の要素が含まれるため, 座屈評価パネル内の平均 応力の算出結果に差が生じている.しかしながら、本システムの結果は安全側の評価結果 となっており,実用上は問題無いと言える. Fig. 5.31 の (a) は, Fig. 5.30 の矢印 2 に該当 する部材の使用係数比で、この部材は UP-M2 に分類される.両者の結果は良く一致して いる.Fig. 5.31 の (b) 及び (c) は,Fig. 5.30 の矢印 3 及び矢印 4 に該当する部材の使用係 数比で,これらの部材は SP-M2 に分類される.SP-M2 は防撓パネルとしての座屈・最終 強度を評価するが、本システムでは矩形版の座屈強度を評価するため、本システムの評価 結果は相対的に低く(使用係数比は大きく),安全側になる.しかしながら,この評価結 果の差は実用上は問題無いと言える. Fig. 5.32 は, Fig. 5.30 の矢印5及び矢印6に該当す る部材の使用係数比で、これらの部材は UP-M2 に分類される.両者の結果は比較的良く 一致している.

水平桁の座屈・最終強度評価結果を Fig. 5.33 に示す. この部材は UP-M2 に分類され, 両者の結果は比較的良く一致している.

(c) Yield utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.28 Comparison of yield utilization factor ratio obtained by proposed system and PSH-DSA (Transverse frame of 150KDWT tanker).

(c) Yield utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.29 Comparison of yield utilization factor ratio obtained by proposed system and PSH-DSA (Horizontal girder of 150KDWT tanker).

(c) Buckling utilization factor ratio in the white arrow part of (a)-1 or (b)-1.

Fig. 5.30 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Transverse frame of 150KDWT tanker)(1).

(a) Buckling utilization factor ratio in the white arrow part of (a)-2 or (b)-2.

(b) Buckling utilization factor ratio in the white arrow part of (a)-3 or (b)-3.

(c) Buckling utilization factor ratio in the white arrow part of (a)-4 or (b)-4.

Fig. 5.31 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Transverse frame of 150KDWT tanker)(2).

(a) Buckling utilization factor ratio in the white arrow part of (a)-5 or (b)-5.

(b) Buckling utilization factor ratio in the white arrow part of (a)-6 or (b)-6.

Fig. 5.32 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Transverse frame of 150KDWT tanker)(3).

(c) Buckling utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.33 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Horizontal girder of 150KDWT tanker).

5.3.2 300KDWT 油タンカー

前項では主に横強度部材の強度評価結果の検証を行ったが、本項では 300KDWT 油タン カーの縦強度部材の強度評価結果に着目して検証を行った.

300KDWT 油タンカーの船底外板,船側外板,縦通隔壁及び二重船側バラストタンク 内の水平桁について,降伏強度に対する使用係数比を本システムと PSH-DSA で比較して Fig. 5.34 ~ Fig. 5.37 に示す. いずれの部材も 5.2.4 項で述べた評価対象範囲の結果を表 示している. また,前項と同様に,図中のコンター図 (a)は PSH-DSA の使用係数比分布, コンター図 (b)は本システムの使用係数比分布をそれぞれ示しており,矢印部の使用係数 比をグラフ (c)にプロットしている. これよりいずれの部材も両者の結果は良く一致して いることが確認できた.

同様に座屈・最終強度に対する使用係数比を本システムと PSH-DSA で比較する. 船底外板の座屈・最終強度評価結果を Fig. 5.38 に示す. この部材は SP-M1 に分類され,両者の結果は良く一致している. 船側外板の座屈・最終強度評価結果を Fig. 5.39 に示す. この部材 も SP-M1 に分類され,両者の結果はほぼ一致している. 深さ方向の座標 25,000(mm) 付近の差は,修正後の最終強度簡易推定式の精度に起因するが,実用上は問題無い程度の差であると言える. 縦通隔壁の座屈・最終強度評価結果を Fig. 5.40 に示す. この部材も SP-M1 に分類され,本システムは危険側の評価結果になっている. 最終強度簡易推定式では,面内二軸圧縮にせん断荷重が加わる場合に対応できていない. 縦通隔壁のように比較的せん断応力が大きい部材では,せん断荷重を考慮する PSH-DSA の評価結果と比較すると本システムの使用係数比は小さく危険側の評価結果になる. CSR-T の要求値の範囲内であり実用上の問題は無いと言えるが,せん断応力が比較的大きい部材については評価結果に注意を要する. 二重船側バラストタンク内の水平桁の座屈・最終強度評価結果を Fig. 5.41 に示す. この部材は SP-M2 に分類され,本システムは UP-M2 で評価しているため安全側の評価結果となっているが実用上は問題無いと言える.

147

(b) Proposed system.

(c) Yield utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.34 Comparison of yield utilization factor ratio obtained by proposed system and PSH-DSA (Bottom shell of 300KDWT tanker).

(c) Yield utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.35 Comparison of yield utilization factor ratio obtained by proposed system and PSH-DSA (Side shell of 300KDWT tanker).

(a) PSH-DSA.

(b) Proposed system.

(c) Yield utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.36 Comparison of yield utilization factor ratio obtained by proposed system and PSH-DSA (Longitudinal bulkhead of 300KDWT tanker).

(c) Yield utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.37 Comparison of yield utilization factor ratio obtained by proposed system and PSH-DSA (Side stringer of 300KDWT tanker).

(b) Proposed system.

(c) Buckling utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.38 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Bottom shell of 300KDWT tanker).

(c) Buckling utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.39 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Side shell of 300KDWT tanker).

(b) Proposed system.

(c) Buckling utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.40 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Longitudinal bulkhead of 300KDWT tanker).

Coorinates of ship depth direction (mm)

(c) Buckling utilization factor ratio in the white arrow part of (a) or (b).

Fig. 5.41 Comparison of buckling utilization factor ratio obtained by proposed system and PSH-DSA (Side stringer of 300KDWT tanker).

5.3.3 200KDWT ばら積貨物船

本項では本システムのばら積貨物船の構造強度評価結果を検証する.船底外板の降伏強 度及び座屈・最終強度評価結果を Fig. 5.42 に示す.油タンカーの場合と異なり, (a)の矢 印が評価箇所を示し, (b) に降伏強度評価結果を, (c) に座屈・最終強度評価結果をそれぞ れ示している.降伏強度及び座屈・最終強度共に,本システムと PSH-DSA の評価結果は 良く一致している.

船体中心線上の船底桁の降伏強度及び座屈・最終強度評価結果を Fig. 5.43 に示す.降伏 強度及び座屈・最終強度共に、本システムと PSH-DSA の評価結果は良く一致している.

ビルジホッパー内の横桁の降伏強度及び座屈・最終強度評価結果を Fig. 5.44 に示す.降 伏強度については、本システムと PSH-DSA の評価結果は良く一致している.座屈・最終 強度については、一部に差異が見られるが、この原因は非防撓パネルの座屈評価パネルの 形状の違いに起因して、座屈評価パネル内の平均応力に差が生じるためである.しかしな がら、評価結果は概ね一致しており実用上は問題無いと言える.

波型隔壁の降伏強度及び座屈・最終強度評価結果を Fig. 5.45 に示す. 降伏強度について は、本システムと PSH-DSA の評価結果は良く一致している. 座屈・最終強度については、 座屈評価パネルの形状の違いに起因して一部の評価結果に差異が見られる. PSH-DSA の 標準機能では、波型隔壁のウェブの座屈評価パネルのサイズが CSR-B の規定 (付録 C.2 の 2b×b) と異なっていることを確認しており、本システムの評価結果の方が CSR-B に適合し ていると考えられる.

(c) Buckling utilization factor in the white arrow part of (a).

Fig. 5.42 Comparison of utilization factors obtained by proposed system and PSH-DSA (Bottom shell of 200KDWT bulk carrier).

(c) Buckling utilization factor in the white arrow part of (a).

Fig. 5.43 Comparison of utilization factors obtained by proposed system and PSH-DSA (Center line bottom girder of 200KDWT bulk carrier).

(c) Buckling utilization factor in the white arrow part of (a).

Fig. 5.44 Comparison of utilization factors obtained by proposed system and PSH-DSA (Bilge transverse frame of 200KDWT bulk carrier).

(c) Buckling utilization factor in the white arrow part of (a).

Fig. 5.45 Comparison of utilization factors obtained by proposed system and PSH-DSA (Corrugated bulkhead of 200KDWT bulk carrier).

5.3.4 構造強度評価システムの CSR への適合性検証結果

本節で構造強度評価システムの CSR への適合性を検証した結果を以下に纏める.

- 1. 本システムの油タンカーの降伏強度評価結果は, PSH-DSA の評価結果と良く一致 している.
- 2. 本システムの油タンカーの座屈・最終強度評価結果は、評価対象部材が SP-M1 及び UP-M2 に分類される場合は、PSH-DSA の評価結果と良く一致している. ただし、 SP-M1 に分類される部材で比較的せん断荷重が大きい場合には本システムは危険側 の評価をする場合があるため評価結果には注意を要する. また、UP-M2 に分類される部材で座屈評価パネルを等価な矩形で作成する場合や UP-M1 の評価結果が採 用される場合には、本システムと PSH-DSA の評価結果に差が生じる場合があるが、 実用上は問題無いと言える
- 3. 本システムの油タンカーの座屈・最終強度評価結果は,評価対象部材が SP-M2 に分 類される場合には,PSH-DSA の評価結果と差が生じる場合があるが,本システム の評価結果は安全側になるため実用上は問題無いと言える.
- 4. 本システムのばら積貨物船の降伏強度評価結果は, PSH-DSA の評価結果と良く一 致している.
- 5. 本システムのばら積貨物船の座屈・最終強度評価結果は, PSH-DSA の評価結果と良 く一致している.ただし,座屈評価パネルが矩形でない場合に,座屈評価パネルの 形状の違いに起因して PSH-DSA の評価結果と差が生じる場合がある.ただし,そ の差は実用上問題無いレベルであると言える.また, PSH-DSA の標準機能で作成 した波型隔壁のウェブの座屈評価パネルは, CSR-Bの規定と異なっており,本シス テムの評価結果の方が CSR-B に適合していると考えられる.

以上の検討結果より、開発した構造強度評価システムは、CSR へ概ね適合していることが確認できた.

5.4 FEM 解析による構造最適化

本節では、開発した構造強度評価システムを 300KDWT 油タンカーの設計問題へ適用す る.本システムでは、二つの使用方法を想定しており、一つは前節で用いたように入力し た設計データを CSR 要求に基づき評価する方法、もう一つは、5.2.5 項で述べた構造最適 化支援機能を用いて、CSR 要求を満足するまで入力した設計データを更新する方法である. 本節では後者を用いるため、設計データに含まれる板厚や面材寸法は CSR 要求を満足する ように自動決定される.したがって、本システムで自動決定されない設計データ、すなわ ち,主要目や区画配置,構造配置,設計縦曲げ荷重,横強度部材の形状等を構造最適化に おける設計変数にすることが可能である.これらの中から,本節では設計縦曲げ荷重及び 横強度部材の形状を設計変数とした構造最適化を試みる.

5.4.1 Hogging bending moment の船殻重量への影響把握

船舶構造の軽量化の観点では,設計縦曲げ荷重は可能な限り小さいことが望ましい.し かしながら,設計縦曲げ荷重は積付の汎用性とトレードオフの関係にあるため,設計縦曲 げ荷重を減らすことによるメリットと積付の汎用性を失うデメリットを比較評価して設計 縦曲げ荷重を決定する.このような検討を行うのは設計初期段階であるが,設計縦曲げ荷 重を減らすことによるメリットを示す際に,詳細な FEM 解析に基づく確度の高いデータ を示すことができれば非常に有用である.ここでは,300KDWT 油タンカーの Hogging bending moment を設計変数として 500,000(kN-m) ずつ変化させた4ケースの検討を行っ た.Hogging bending moment 及び部材寸法以外の設計データは固定している.開発した 構造強度評価システムにより求めた CSR 要求を満足する部材寸法における各ケースの船 設重量を比較して Table 5.3 に示す.船殻重量は箱船と仮定したホールド部の重量を見積 もっており,Hogging bending moment が最も大きい Case 1 との差を示している.これに より,設計縦曲げ荷重 500,000(kN-m) あたりの船殻重量への影響量が約 10(ton) であるこ とが把握できたので,積付の汎用性との比較評価を行って設計縦曲げ荷重の目標値を設定 することができる.

	Case 1	Case 2	Case 3	Case 4
$M_{sw-sea-sag} \ m (kN-m)$	-5,500,000	-5,500,000	-5,500,000	-5,500,000
$M_{sw-sea-hog} \ ({ m kN-m})$	8,000,000	7,500,000	7,000,000	6,500,000
Hull weight difference of Case 1 (ton)	Base	-11	-19	-33

Table	$5.3 \mathrm{Eva}$	aluation	result of	f influence	on hu	ull stee	l weight	of	hogging	bending	moment	j
-------	--------------------	----------	-----------	-------------	-------	----------	----------	----	---------	---------	--------	---

5.4.2 横桁の形状最適化

横桁の板厚や面材寸法は,FEM 解析による構造強度評価によって決定される.油タン カーの横桁深さは比較的自由度が高く,船殻重量削減の可能性を秘めているが,通常の設 計では,船級ソフトを用いた構造強度評価を行うため,横桁の形状をいくつも変更した 検討を行うことは現実的ではなく、実績船に倣った設計に留まることが多い.また、横桁 の形状変更は、これに接続する縦強度部材等への寸法影響もあると推察されるため、横桁 のみを取り出した形状最適化を行っても適切な評価がなされない懸念がある.本項では、 Fig. 5.46 の矢印部の横桁深さを設計変数として、それらを基準から 200(mm) 浅くして組合 せて、Table 5.4 に示す合計 4 ケースの検討を行った. Case 3 は vertical transverse frame の桁深さを浅くした影響を検討し、Case 4 は deck transverse frame の桁深さを浅くした 影響を検討し、Case 2 は上記に加えて bilge transverse frame の桁深さを浅くした検討を 行った. Table 5.4 には、開発した構造強度評価システムにより求めた CSR 要求を満足す る部材寸法における各ケースの船設重量も示している. 船殻重量は横桁 1 枚及びそれに接 続する縦強度部材について見積もっており、横桁の形状が全て基準値である Case 1 との差 を示している.全ての桁深さを浅くした Case 2 の船殻重量が Case 1 と比較して 17.0(ton) 軽くなり、検討した中では最も軽い.また、横桁深さを浅くすることによる縦強度部材へ の重量影響は最大 1.5(ton) と軽微であった.設計者はこれらの結果を基に最終的な横桁形 状を決定することができる.

Design variable difference of Case 1 (mm)	Case 1	Case 2	Case 3	Case 4
Depth of deck transverse frame	Base	-200	Base	-200
Depth of vertical transverse frame	Base	-200	-200	Base
Depth of bilge transverse frame	Base	-200	Base	Base
Hull weight difference of Case 1 (ton/frame)	Case 1	Case 2	Case 3	Case 4
Transverse frame	Base	-15.5	-13.2	-14.6
Longl member	Base	-1.5	-0.4	-0.4
Total	Base	-17.0	-13.6	-15.0

Table 5.4 Shape optimization results of transverse frame (300KDWT tanker).

Fig. 5.46 Design variables of shape optimization of transverse frame (300KDWT tanker).

5.4.3 水平桁の形状最適化

水平桁の板厚や面材寸法も,横桁と同様に FEM 解析による構造強度評価によって決定 される.通常の設計においては,横桁と同様の課題があるが,水平桁は横隔壁に取付けら れる部材であり,横桁よりも物量が少ない.そのため水平桁の形状を検討する機会は,横 桁よりも更に少ないのが現状である.また,水平桁の形状変更は,水平桁が取付けられる 横隔壁への寸法影響があると推察されるため,水平桁のみを取り出した形状最適化を行っ ても適切な評価がなされない懸念がある.

本項では, Fig. 5.47 の矢印部の水平桁深さを設計変数として, それらを変更した4ケースの検討を行った.形状変更の対象とする水平桁は, 横隔壁に取付けられる3枚の水平桁とする. No.1 と No.3 の水平桁は同様の形状である.水平桁の深さは Case 1を基準として, 全ての水平桁の深さを基準から 200(mm), 400(mm), 600(mm) 浅くした合計4ケースの検討を行った.開発した構造強度評価システムにより求めた CSR 要求を満足する部材寸法

における各ケースの船殻重量を比較して Table 5.5 に示す.船殻重量は各水平桁及び横隔 壁について見積もった.検討した中では最も桁深さを浅くした Case 4 の船殻重量が最も軽 い. Case 1 及び Case 4 の水平桁の座屈・最終強度評価結果を Fig. 5.48 に示す.水平桁深 さを浅くすると水平桁の強度評価結果が厳しくなることが予想されたが,桁が浅くなった ことによって横隔壁近傍の座屈評価パネルの形状も小さくなり,座屈・最終強度は Case 1 よりも楽になっている.

Case 1 及び Case 4 の横隔壁の座屈・最終強度評価結果を Fig. 5.49 に示す.水平桁深 さを浅くすることによって横隔壁の応力が上昇するため,特に Wing cargo tank の深さ方 向中央近傍の横隔壁の強度評価結果は Case 1 よりも厳しくなっていることが確認できる. Case 3 及び Case 4 では,横隔壁の座屈補強が必要となり,横隔壁を増厚することによって CSR 要求を満足しているため横隔壁の重量が増加している.設計者はこれらの結果を基に 最終的な水平桁形状を決定することができる.

なお、本システムによる FEM 解析モデルの作成から解析結果の評価までの所要時間は約40分であった.更に、CSR 要求を満足するまで数回の再解析が実行され、各ケースの 最終設計案を出力するまでの全所要時間は、それぞれ約1時間であった.

Design variable difference of Case 1 (mm)	Case 1	Case 2	Case 3	Case 4
Depth of no.1 horizontal girder	Base	-200	-400	-600
Depth of no.2 horizontal girder	Base	-200	-400	-600
Depth of no.3 horizontal girder	Base	-200	-400	-600
Hull weight difference of Case 1 (ton)	Case 1	Case 2	Case 3	Case 4
No.1 horizontal girder	Base	-1.44	-2.20	-2.20
No.2 horizontal girder	Base	-2.43	-3.51	-4.68
No.3 horizontal girder	Base	+0.18	-0.93	-2.17
Transverse bulkhead	Base	0.00	+1.73	+1.73
Total	Base	-3.69	-4.91	-7.32

Table 5.5 Shape optimization results of horizontal girder (300KDWT tanker).

(b) 10.2 horizontai giruer.

Fig. 5.47 Design variable of shape optimization of horizontal girder (300KDWT tanker).

Fig. 5.48 Comparison of buckling utilization factor ratio obtained by proposed system (Horizontal girder of 300KDWT tanker).

(b) Transverse bulkhead of Case 4.

Fig. 5.49 Comparison of buckling utilization factor ratio obtained by proposed system (Transverse bulkhead plate of 300KDWT tanker).
5.5 結言

本章では、CSRで規定される FEM 解析に基づく構造強度評価の構造最適化への適用を 実現するための検討を行った.まず,設計初期段階における構造最適化に適用可能な構造強 度評価システムに必要な機能とそれを実現するための課題を整理した.その結果,取り組 むべき課題として、FEM 解析モデルの自動作成手法の構築,複雑な CSR の FEM 解析プロ セス(荷重境界条件等の解析条件の設定,降伏強度や座屈・最終強度等の解析結果の評価) の自動化及び迅速化が挙げられた.次に,これらの課題を克服して新たに開発した構造強 度評価システムの概要を機能毎に示した.本システムのプラットフォームにはカスタマイ ズ性に優れるテクノスター社の TSV-Pre を採用し、CSR の FEM 解析プロセス及び構造最 適化に必要な各種機能を新たに開発して搭載した.更に,油タンカーとばら積貨物船を対 象に本システムを用いた FEM 解析に基づく構造強度評価を行い,船級ソフトによる評価 結果と比較することにより本システムの CSR への適合性を検証した.最後に、300KDWT 油タンカーの設計問題に本システムを適用して、本システムの構造最適化への適用性を検 証した.これらの検討の結果得られた結論を以下に示す.

- 2次元 CAD イメージのテンプレートと Design data を用いる FEM 解析モデル自動 作成手法を開発した.この手法は、テンプレートを構成するラインの長さや R 部の 半径等を変数として定義していることが最大の特徴であり、これらの変数値は、必 要な情報を Excel 上に記載した Design data によって与えられる.これにより、モ デルの形状を容易に変更でき、その際、構造全体が矛盾しない機能を実現した.更 に、Design data による部材名管理により、部材認識の自動化も可能になった.
- 2. 開発した FEM 解析モデル自動作成機能を用いて、CSR に適合した油タンカーやば ら積貨物船の FEM 解析モデルを作成できることを確認した.また、ばら積貨物船 の二重底高さ変更の例を示し、大規模モデルにおいて形状変更を容易に実現できる ことを示した.本手法では、形状変更後のモデルは、既存の FEM 要素を変形させ るのではなく、新規に作成するため形状変更に伴う要素の潰れ等の問題は生じない ことも示した.
- 3. CSR で規定される荷重境界条件を作成する機能を開発し,油タンカーとばら積貨物 船を対象に本システムと船級ソフトによる解析で得られた応力を比較した結果,本 システムで作成した荷重境界条件が CSR に適合することを確認した.
- 4. CSR で規定される降伏強度評価を行う機能を開発し、油タンカーとばら積貨物船を 対象に本システムと船級ソフトによる解析で得られた降伏強度に対する使用係数比 または使用係数を比較した結果、本システムの降伏強度評価結果が CSR に適合する ことを確認した.

- 5. CSR で規定される座屈・最終強度評価を行う機能として、座屈・最終強度の推定 には第4章で構築した手法を用い,座屈評価パネルを自動作成して,構築した手 法に必要な情報を受け渡す機能と評価結果に基づき座屈・最終強度に対する使用係 数比または使用係数を算出する機能を開発した. 油タンカーとばら積貨物船を対象 に本システムと船級ソフトによる解析で得られた座屈・最終強度に対する使用係数 比または使用係数を比較した結果,油タンカーの場合,評価対象部材が SP-M1 及 び UP-M2 に分類される場合は,PSH-DSA の評価結果と良く一致していることを 確認した.ただし,SP-M1に分類される部材で比較的せん断荷重が大きい場合には 本システムは危険側の評価をする場合があり、評価結果に注意を要することを示し た. また, UP-M2 に分類される部材で座屈評価パネルを等価な矩形で作成する場合 や UP-M1の評価結果が採用される場合には、本システムと PSH-DSA の評価結果 に差が生じる場合があるが実用上は問題無いことを示した。更に、評価対象部材が SP-M2 に分類される場合には、PSH-DSA の評価結果と差が生じる場合があるが、 本システムの評価結果は安全側で実用上は問題無いことを示した. ばら積貨物船の 場合、座屈・最終強度評価結果は PSH-DSA の評価結果と良く一致していることを 確認した.ただし,座屈評価パネルが矩形でない場合に,座屈評価パネルの形状の 違いに起因して PSH-DSA の評価結果と差が生じる場合があるが、その差は実用上 問題無いレベルであることを示した.また,PSH-DSA の標準機能で作成した波型 隔壁のウェブの座屈評価パネルは、CSR-Bの規定と異なっており、本システムの評 価結果の方が CSR-B に適合していると推察した.
- 6. 開発した構造強度評価システムを用いて、300KDWT 油タンカーの設計縦曲げ荷重の船殻重量への影響検討と横桁及び水平桁の形状最適化を行った.その結果、通常の設計における船級ソフトを用いた検討では実施不可能だった検討を行うことが可能になり、設計者の判断に資する定性的かつ定量的に妥当な結果を出力できることを示した.
- 7. CSR に規定される構造強度評価プロセスに加えて、構造最適化を実現するために必要な支援機能も開発した.これにより、CSR 要求を満足するまで部材寸法を更新したり、建造コストを算出するだけでなく、全プロセスの自動化を実現した.
- 8. 本システムによる FEM 解析モデル作成から解析結果評価までの所要時間は約40分であり、更に、CSR 要求を満足するまで数回の再解析を実行し、各ケースの最終設計案を出力するまでの全所要時間は、それぞれ約1時間であったことから、実用的な時間で FEM 解析に基づく構造強度評価が可能になった。
- 9. 以上の検討結果から,開発した構造強度評価システムは,CSR で規定される FEM 解 析に基づく構造強度評価に適合し,構造最適化へ適用が可能であることを確認した.

- 10. 現時点では本システムと第2章で開発した部材寸法要件に適合した構造最適化シス テムとの自動接続を実現していないため,設計縦曲げ荷重が変化する主要目や区画 配置,構造配置の変更は,手動で PSH-Rules のデータを更新した後, Design data にその結果を反映させる必要がある.
- 11. 本システムでは、局部詳細メッシュ構造強度解析及び極詳細メッシュ疲労解析は構 造影響の大きさと開発負荷のバランスを考慮して対象外とした.

第6章 結論

6.1 結論

船舶の受注・設計・建造を取り巻く国際環境は厳しさを増しており,造船会社の構造設 計に対しては,各種規制や規則に適合したより低コストな船舶構造を迅速に設計すること が求められている.このような背景から,本研究では,船級規則に適合したより価格競争 力のある船舶構造を迅速に設計するための手法を構築することを目的として,それを実現 するために必要な研究及び技術開発を行った.本研究によって得られた成果を章毎に纏め て以下に総括する.

第2章「部材寸法計算による構造最適化」では,油タンカーの船体中央横断面の構造最 適化を実現するために,CSR-Tの部材寸法要件に適合した構造最適化システムを,PSH-Rules-Excelの改良プログラムと島遺伝的アルゴリズムを組合せて開発した.開発した構造 最適化システムを150KDWT油タンカー及び300KDWT油タンカーの船体中央横断面の 構造最適化問題に適用した結果,開発した構造最適化システムは,CSR-Tの部材寸法要件 に適合しており,また,建造コストや船殻重量を目的関数とした構造最適化が実現できる ことを示した.

第3章「制約条件を考慮した設計変数の分類法」では、従来の設計や製造の観点による 設計変数の分類法に関する課題を解決するために、設計変数の制約条件に対する影響度と 主成分分析に基づく設計変数の分類法を構築した.また、構築した手法を水圧荷重を受け る簡易箱船モデルと 300KDWT 油タンカーの船体中央横断面の構造最適化問題に適用し て構築した手法が有効に機能して従来よりも優れた最適解が得られることを示した.また、 構築した手法は、数理最適化の観点から予断のない設計変数グループに分類することが可 能であり、経験の浅い設計者が最適設計を行う場合や、新しい構造の最適設計が必要な場 合において、有用な手法であることを示した.

第4章「座屈・最終強度評価法」では、CSR に適合した構造最適化に適用可能な座屈・ 最終強度評価法を構築するための検討を行った.まず、CSR で規定される座屈・最終強度 評価法を概観して、それらを構造最適化に適用する場合には、CSR-T の高度座屈解析法に 適合する新たな評価法が必要であることを示した.次に、座屈強度簡易推定式及び原田ら が開発した陽表示の最終強度簡易推定式を構造最適化に適用可能な状態まで展開した.後 者については,板や防撓材の力学的な特性を表現するパラメータに修正項を乗じて算出す る修正係数を導入することにより,CSR-Tの高度座屈解析法に適合することを確認した. また,提案した最終強度簡易推定式の修正方法は,最終強度簡易推定式をFEM解析や実 験結果に一致させる場合にも応用できることに言及し,その際,修正係数を構成する修正 項の数値によって,修正に対する有効性を評価できることを示した.

第5章「FEM 解析による構造最適化」では、CSR で規定される FEM 解析に基づく構 造強度評価の構造最適化への適用を実現するための検討を行った.まず、設計初期段階に おける構造最適化に適用可能な構造強度評価システムに必要な機能とそれを実現するため の課題を整理して、FEM 解析モデルの自動作成手法の構築、複雑な CSR の FEM 解析プ ロセス(荷重境界条件等の解析条件の設定、降伏強度や座屈・最終強度等の解析結果の評 価)の自動化及び迅速化が必要であることを示した. FEM 解析モデルの自動作成手法につ いては、2 次元 CAD イメージのテンプレートを用いる手法を構築し、CSR で規定される モデル化法に適合した油タンカーやばら積貨物船の中央部貨物倉の FEM 解析モデルを自 動生成できるだけでなく,形状変更も容易に行うことができることを示した.また,CSR の FEM 解析プロセスを自動化する機能を開発し、その一部に含まれる座屈・最終強度評 価機能には第4章で構築した手法を用いた.油タンカーとばら積貨物船を対象に,開発し た構造強度評価システムと船級ソフトによる評価結果を比較することにより本システムが CSR へ適合することを示した. 最後に, 本システムを 300KDWT 油タンカーの設計最適 化問題に適用した結果、通常の設計における船級ソフトを用いた検討では実施不可能だっ た検討を実用的な時間で行うことが可能になり、設計者の判断に資する定性的かつ定量的 に妥当な結果を出力できることが確認できた.以上の検討結果から,開発した構造強度評 価システムは、CSR で規定される FEM 解析に基づく構造強度評価に適合し、構造最適化 へ適用可能であることを確認した.

6.2 今後の課題

また、本研究に関連した今後の研究課題を以下に示す.

- 1. CSR-T の座屈・最終強度評価手法の一部について,適切な簡易評価法を構築できて いないため,今後の開発が望まれる.その対象は,防撓パネルの評価法2,非防撓 パネルの評価法1及び防撓パネルの評価法1でせん断荷重が加わる場合である.
- 2. 現時点では構造強度評価システムと部材寸法要件に適合した構造最適化システムとの自動接続を実現していないため、設計縦曲げ荷重が変化する主要目や区画配置、構造配置の変更は、手動で PSH-Rules のデータを更新した後、Design data にその結果を反映させる必要がある.しかしながら、これらの設計パラメータは船舶構造へ

の影響が大きいため、両システムの自動接続を実現する意義は大きい.そのために は、部材寸法要件に適合した構造最適化システム側に、配置データ設定の柔軟性を 持たせることや設計縦曲げ荷重の計算機能等を開発する必要がある.

3. 開発した構造強度評価システムでは,局部詳細メッシュ構造強度解析及び極詳細メッシュ疲労解析機能は対象外としたが,開発した機能を拡張することによって比較的容易に実現できると考えられる.また,荷重境界条件作成機能と構造強度評価機能の一部を修正することによって調和 CSR に対応させることも比較的容易に実現でき,既に開発に着手している.

参考文献

- Beckers P.: Recent developments in shape sensitivity analysis: the physical approach, Eng. Opt., 18, pp.67-78, 1991.
- [2] Bendsoe M.P., Kikuchi N.: Generating optimal topologies in structural design using a homogenization method, Comp. Methods in Appl. Mech. Eng., 71, pp.197-224, 1988.
- [3] Byklum E., Amdahl J.: A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling, Thin-Walled Struct., Vol.40, pp.925-953, 2002.
- [4] Byklum E., Steen E., and Amdahl J.: A semi-analytical model for global buckling and postbuckling analysis of stiffened panels, Thin-Walled Struct., Vol.42, pp.701-717, 2004.
- [5] Catley D. et al.: Design optimization. (Report of ISSC Committee V.5), Proc. 10th ISSC Conf., pp.179-221, 1988.
- [6] Catley D., Hage A. et al.: Design method. (Report of ISSC Committee IV.2), Proc. 13th ISSC Conf., pp.407-473, 1997.
- [7] Det Norske Veritas: Nauticus hull user manual PULS, 2009.
- [8] Ennis K., Dougherty J., Lamb T., Greenwell C., Zimmerman R.: Product-oriented design and construction cost model, J. Ship Prod., 14, 1, pp.41-58, 1998.
- [9] Evans. J.H., Khoushy D.: Optimized design of midship section structure, Trans. SNAME, 71, pp.144-191, 1963.
- [10] Fujikubo M., Yao T., and Khedmati M.R.: Estimation of ultimate strength of ship bottom plating under combined transverse thrust and lateral pressure, J.S.N.A. Japan, Vol.186, pp.621-630, 1999.

- [11] Goldberd D.E.: Genetic algorithms in search, Optimization and machine learning, Addison-Wesley Publishing Company, 1989.
- [12] Hamada K., Takezawa A., Kitamura M., and Kanaikari K.: A multi-step design optimization method for mid-ship sections, Ship Tech. Res., Vol.56, pp.110-120, 2009.
- [13] Hirakawa S., Kitamura M., and Maki M.: Application of genetic algorithm to structural design of 150KDWT tanker using PrimeShip-HULL rule calculation software, Proc. of the 21st Int. Off. and Pol. Eng. Conf., Vol.4, pp.845-851, 2011.
- [14] Hughes O.F.: Ship structural design: A rationally-based, Computer-aided optimization Approach, SNAME, 1988.
- [15] Hughes O.F., Mistree F., Zanic V.: A practical method for the rational design of ship structures, J. Ship Res., 24, pp.101-113, 1980.
- [16] Hung C.F.: Computer aided design of complex ship structure based on finite element and multilevel optimization methods, Proc. PRADS'87, pp.845-860, 1987.
- [17] IMO MSC 87/WP.4: Consideration and adoption of amendments to mandatory instruments, goal-based new ship construction standards, report of the GBS working group
- [18] IMO Resolution MEPC.203(62): Amendments to the annex of the protocol of 1997 to amend the international convention for the prevention of pollution from ships, 1973, as modified by the protocol of 1978 relating thereto, 2011.
- [19] IMO Resolution MEPC.212(63): 2012 guidelines on the method of calculation of the attained energy efficiency design index (EEDI) for new ships, 2012.
- [20] International Association of Classification Societies: Common structural rules for bulk carriers, 2012.
- [21] International Association of Classification Societies: Common structural rules for double hull oil tankers, 2012.
- [22] Kim H.M., Michelena N.F., Papalambros P.Y., and Jiang T.: Target cascading in optimal system design, J. of Mech. Des., Vol.125, pp.474-480, 2003.

- [23] Kim H.M., Rideout D.G., Papalambros P.Y., and Stein J.L.: Analytical target cascading in automotive vehicle design, J. of Mech. Des., Vol.125, pp.481-489, 2003.
- [24] Kitamura M., Hamada K., Takezawa A., and Uedera T.: Shape optimization of double bottom structure in cooperation with individual mesh sub-division and multi-point constraint, Proc. of the 19th Int. Off. and Pol. Eng. Conf., pp.714-719, 2009.
- [25] Kitamura M., Uedera T.: Optimization of ship structure based on zooming finite element analysis with sensitivities, Int. J. of Off. and Pol. Eng., Vol.13, No.1, pp.60-65, 2003.
- [26] Kusiak A., Chow W.S.: Efficient solving of the group technology problem, J. Manuf. Syst., Vol.6, No.2, pp.117-124, 1987.
- [27] Lee K.Y., Roh M.I.: An efficient genetic algorithm using gradient information for ship structural design optimization., Ship Tech. Res., Vol.48, pp.161-170, 2001.
- [28] Lyon T.: A calculator-based preliminary ship design procedure, Mar. Tech., 19, 2, pp.140-158, 1982.
- [29] McCulley C., Bloebaum C.L.: A genetic tool for optimal design sequencing in complex engineering systems, Struct. Opt., 12, pp.186-201, 1996.
- [30] Miyoshi Y., Fujii T., Maki M., Hirakawa S., Fujita D., and Kamimaru Y.: Advanced ship direct strength analysis system in full compliance with common structural rules (TCAD-DSA/CSR), using parametric modelling application TCAD, Proc. of the Int. Conf. on Comp. Appl. in Shipbuild., Vol.3, pp.43-47, 2013.
- [31] Moan T. et al.: Design philosophy. (Report of ISSC Committee IV.1), Proc. 11th ISSC Conf., pp.575-644, 1991.
- [32] Moe J., Lund S.: Cost and weight minimization of structures with special emphasis on longitudinal strength members of tankers, Trans. RINA, 110, pp.43-70, 1968.
- [33] Nobukawa H., Zhou G., Kitamura M., Kobayashi S.: Structural optimization for small containership with large hatch opening, J. S. N. A. West Japan, 90, pp.181-197, 1995.

- [34] Nowacki H., Brusis F., Swift P.M.: Tanker preliminary design An optimization problem with constraints, Trans. SNAME, 78, pp.357-390, 1970.
- [35] Okada T., Neki I.: Optimum mesh generation for the finite element method (2nd report), J. Kansai S. N. A., No.213, pp.129-135, 1990.
- [36] Okada T., Neki I.: Utilization of genetic algorithm for optimizing the design of ship hull structure, J. S. N. A. Japan, 31, pp.71-83, 1993.
- [37] Okada T., Sasajima H., and Neki I.: Optimum mesh generation for the finite element method (1st report), J. Kansai S. N. A., No.211, pp.139-146, 1989.
- [38] Rigo P.: Optimization of ship structure minimum cost., Proc. 2nd Int. Shipbuild. Conf., Sec. C, pp.304-311, 1998.
- [39] Rigo P.: Least-cost structural optimization oriented preliminary design., J. of Ship Prod., Vol.17, No.4, pp.202-215, 2001.
- [40] Rigo P., Fleury C.: Scantling optimization based on convex linearization and a dual approach, Mar. Struct., 14, pp.631-649, 2001.
- [41] Rigo P., Matagne J., Toderan C., and Caprace J.D.: Least Construction Cost of FSO Offshore Structures and LNG Gas Carriers, Proceedings of the 15th International Offshore and Polar Engineering Conference, Vol.1, pp.722-729, 2005.
- [42] Sen P., Yang J.B.: An investigation into the influence of preference modeling in ship design with multiple objectives, Proc. PRADS'95, 2, pp.1252-1263, 1995.
- [43] Sen P., Yang J.B.: Multiple criteria decision support in engineering, Springer-Verlag London Ltd., 1998.
- [44] Southern G.: Work content estimating from a ship steelwork database, Trans. RINA, 121, pp.339-347, 1980.
- [45] Steen E., Byklum E.: Ultimate strength and postbuckling stiffness of plate panels subjected to combined loads using semi-analytical models, Proc. of Int. Conf. on Marine Res. and Trans., 2005.
- [46] Steen E., Byklum E., Vilming K.G., and Østvold T.K.: Computerized buckling models for ultimate strength assessment of stiffened ship hull panels, Proc. of the 9th Int. Symp. on Prac. Des. of Ships and Other Floating, pp.235-242, 2004.

- [47] Tanase M.: Distributed genetic algorithm, Proc. 3rd Int. Conf. Genetic Algorithm, pp.434-439, 1989.
- [48] Timoshenko S.P., Gere J.M.: Theory of elastic stability 2nd edition, McGraw-Hill, 1961.
- [49] Winkle I.E., Baird D.: Towards more effective structural design through synthesis and optimisation of relative fabrication costs, Trans. RINA, 128, pp.313-336, 1986.
- [50] Yoshimura M., Izui K.: Smart optimization of machine systems using hierarchical genotype representations, J. of Mech. Des., Vol.124, pp.375-384, 2002.
- [51] Yoshimura M., Taniguchi M., Izui K., and Nishiwaki S.: Hierarchical arrangement of characteristics in product design optimization, J. of Mech. Des., Vol.128, pp.701-709, 2006.
- [52] Zanic V., Jancuev T., Andrie J.: Mathematical models for analysis and optimization in concept and preliminary ship structural design, Proc. IMAM'2000, pp.15-22, 2000.
- [53] 上寺哲也, 北村充, 濱田邦裕, 大槻康明: 降伏及び座屈応力を考慮した船体二重底部構造最適化に関する研究, 日本船舶海洋工学会論文集, 第14号, pp.1-8, 2011.
- [54] 大岩根慎也, 横田一平, 森茂博, 前田正広, 吉川孝男: 遺伝的アルゴリズムならびに ニューラルネットワークを適用した船体中央横断面構造の最適化について, 日本船舶 海洋工学会講演会論文集, 第6号, pp.375-378, 2008.
- [55] 岡田哲男, 豊田昌信, 小林英資: 船体構造の初期計画における実用的な最適化の適用 例, 日本船舶海洋工学会講演会論文集, 第3号, pp.135-136, 2006.
- [56] 岡田哲男, 根木勲: 遺伝的アルゴリズムによる船体構造最適設計, 日本造船学会論文集, 第 171 号, pp.259-266, 1992.
- [57] 川村昭宣,橋本州史,井上俊司,倉本美男,土岐直二: 波浪外力総合評価による船体構 造設計(第1報),日本造船学会論文集,第160号,pp.246-258,1986.
- [58] 神永肇, 望月幸司: 船舶構造設計効率化のための自動処理システムの開発, 三井造船 技報, No.204, 2011.
- [59] 北村充, 上寺哲也: ズーミング境界に変位再解析式を用いた構造最適設計に関する研究, 西部造船会々報, 第 102 号, pp.361-369, 2001.

- [60] 北村充, 上寺哲也, 濱田邦裕, 竹澤晃弘: 部材認識機能を利用した船体構造の形状最適 化システムに関する研究, 日本船舶海洋工学会論文集, 第8号, pp.281-289, 2008.
- [61] 北村充, カハルディン・ジェノド, 中森隆一, 山中一樹, 山本元道: 遺伝的アルゴリズ ムを用いた船体構造の最適設計と解の収束に関する研究, 西部造船会々報, 第 101 号, pp.185-194, 2000.
- [62] 北村充, カハルディン・ジェノド, 濱田邦裕: 有限要素解析に基づいた構造評価用 ニューラルネットワークの構築とコンテナ船の最適設計への利用, 日本造船学会論文 集, 第 192 号, pp.661-668, 2002.
- [63] 北村充, 中森隆一: 遺伝的アルゴリズムを用いた船体構造の最適設計と制約条件に関する研究, 西部造船会々報, 第 102 号, pp.371-380, 2001.
- [64] 北村充, 信川寿, カハルディン・ジェノド: コンテナ船の構造最適設計に関する研究, 日本造船学会論文集, 第 186 号, pp.353-360, 1999.
- [65] 北村充,濱田邦裕,鈴木博喜,矢野佳苗,徳岡慶輔,大槻康明:船体中央断面最適設計の実用化と高速最適化システムの開発に関する研究,日本船舶海洋工学会論文集,第 6号,pp.141-149,2007.
- [66] 北村充, 濱田邦裕, 竹澤晃弘, 高木貴弘, 金谷勲平, 大槻康明: 独立要素分割と多点拘 束を利用した船体構造二重底部の形状および寸法最適設計に関する研究, 日本船舶海 洋工学会論文集, 第7号, pp.89-96, 2008.
- [67] 柴崎公太: 船体構造設計を取り巻く状況と関連規則の今後の方向性について,ユニバーサル造船テクニカルレビュー,第6号,2010.
- [68] (社) 日本造船研究協会: 波浪中の船体構造の安全性評価の研究, 第 228 研究部会平成 10 年度報告書, 1999.
- [69] 鈴木克幸:構造分野への最適設計手法の適用 -なぜ最適設計は実務に使われない か-, TECHNO MARINE, 第 859 号, pp.65-71, 2001.
- [70] 鈴木克幸, 大坪英臣: 多段階最適化手法による船体構造最適設計, 日本造船学会論文集, 第 178 号, pp.405-411, 1995.
- [71] 造船テキスト研究会: 商船設計の基礎 (上巻), 成山堂書店, 1979.
- [72] 造船テキスト研究会: 新訂 商船設計の概要, 成山堂書店, 1995.

- [73] 寺野寿郎: システム工学入門 あいまい問題への挑戦 -, 共立出版, 1985.
- [74] 中森隆一, 北村充, 濱田邦裕: 区画変更を考慮した船体中央横断面の最適設計に関す る研究, 日本船舶海洋工学会講演会論文集, 第 10 号, pp.221-224, 2010.
- [75] 中森隆一, 北村充, 濱田邦裕: 3D プロダクトモデルを利用した船体中央横断面の総合 的最適化に関する研究, 日本船舶海洋工学会論文集, 第 11 号, pp.229-238, 2010.
- [76] 日本海事協会: 直接強度計算ガイドライン, pp.26, 2001.
- [77] 日本海事協会: 鋼船規則 C 編, pp.75-77, 2002.
- [78] 日本海事協会:二重船殻油タンカー版 CSR 算式計算ソフト (Ver.3.0.0) 操作マニュア ル, 2009.
- [79] 日本海事協会: PrimeShip-HULL(CSR) 直接強度計算システム二重船殻油タンカー 版 (Ver.3.00) 操作マニュアル, 2009.
- [80] 日本海事協会: 「特集」GHG 排出削減に関する MARPOL 条約発効に向けた NK の 取組み, 日本海事協会誌, No.301, IV, pp.235-244, 2012.
- [81] 日本海事協会: 「特集 (II)」調和 CSR 開発における NK の取組み, 日本海事協会誌, No.301, I, pp.79-85, 2013.
- [82] 日本船舶海洋工学会:船体構造国際標準規則研究委員会報告書,2008.
- [83] 日本船舶海洋工学会: ISO18072 シリーズ最終強度算式検証のための研究委員会報告書, 2011.
- [84] 根木勲, 岡田哲男:遺伝的アルゴリズムと有限要素法を組み合わせた構造最適設計, 日本造船学会論文集, 第 177 号, pp.328-338, 1995.
- [85] 原田実:船体構造要素の実用的最終強度推定法に関する研究,広島大学博士論文,2004.
- [86] 原田実, 藤久保昌彦, 柳原大輔:二軸圧縮と横圧を受ける連続防撓パネルの最終強度 推定法に関する研究, 日本造船学会論文集, 第 196 号, pp.189-198, 2004.
- [87] 原田実,藤久保昌彦,柳原大輔:横圧と面内圧縮荷重を受ける連続防撓パネルの最終 強度簡易算式の開発,関西造船協会論文集,第 241 号, pp.159-168, 2004.
- [88] 原田実,藤久保昌彦,柳原大輔:組み合わせ荷重を受ける連続防撓パネルの最終強度 推定式の開発に関する研究,日本船舶海洋工学会論文集,第2号, pp.387-395, 2005.

- [89] 平川真一, 牧美津栄: 遺伝的アルゴリズムによるタンカーの構造最適化, ユニバーサ ル造船テクニカルレビュー, 第7号, 2011.
- [90] 平川真一,牧美津栄,神丸泰典,北村充: CSR に適合した構造強度評価システムの開発,日本船舶海洋工学会講演会論文集,第14号,pp.229-238,2012.
- [91] 藤久保昌彦, 柳原大輔, 矢尾哲也:連続防撓パネルの圧壊強度の推定法, 日本造船学会 論文集, 第 185 号, pp.203-212, 1999.
- [92] 藤久保昌彦, 柳原大輔, 矢尾哲也:連続防撓パネルの圧壊強度の推定法 (第2報), 日本 造船学会論文集, 第186号, pp.631-638, 1999.
- [93] 船路進,前田泰自,喜多代顕彦,平山明仁,安東潤: CSR 適用バルクキャリアの波形横 隔壁最適化の検討,日本船舶海洋工学会講演会論文集,第4号, pp.331-334, 2007.
- [94] 水上優, 谷川雅之, 平川真一, 山脇義朗, 園井雅博: パターンロード合成解析法による トランス構造の疲労損傷の検討, 関西造船協会論文集, 第 237 号, pp.223-227, 2002.
- [95] 安岡彩,田中智行,岡澤重信,矢尾哲也:面内圧縮荷重を受ける防撓材本数の影響を 考慮した防撓パネルの崩壊挙動と最終強度について,日本船舶海洋工学会講演会論文 集,第13号,pp.345-348,2011.
- [96] 矢尾哲也,藤久保昌彦,柳原大輔,大野禎久:防撓パネルの圧壊挙動に関する研究(第 1報),日本造船学会論文集,第178号,pp.451-462,1995.
- [97] 矢尾哲也,藤久保昌彦,柳原大輔,久間康充:防撓パネルの圧壊挙動に関する研究(第2報),日本造船学会論文集,第180号,pp.435-446,1996.
- [98] 柳原大輔, 藤久保昌彦, 原田実: 横圧と面内圧縮荷重を受ける連続防撓パネルの最終 強度推定法, 日本造船学会論文集, 第 194 号, pp.161-170, 2003.
- [99] 柳原大輔, 藤久保昌彦, 森田竜太郎, 瀬戸山雄:水圧と面内圧縮荷重を受ける連続防撓 パネルの最終強度推定法, 日本造船学会論文集, 第 192 号, pp.697-705, 2002.

謝辞

本研究は,著者がジャパンマリンユナイテッド株式会社に在籍しながら広島大学大学院 工学研究科博士課程後期輸送・環境システム専攻に進学して,同大学院工学研究院教授の 北村充博士の御指導の下で行われたものである.

北村充博士には,本研究の計画,実施,結果の検討など本研究の全般に渡って終始絶え 間ない御指導と御鞭撻を賜った.また,同大学院工学研究院教授の濱田邦裕博士,同准教 授の岡澤重信博士,同准教授の竹澤晃弘博士には,御多忙の折,貴重な御助言を頂いた.さ らに,同大学院工学研究科輸送・環境システム専攻及び同工学部第四類輸送機器環境工学 プログラムの構造設計研究室の野波諒太氏や松島加奈氏を始めとする在学生の方々や卒業 生の三宅広剛氏,水元香里氏には数々の御協力を頂いた.

愛媛大学大学院理工学研究科准教授の柳原大輔博士には,座屈・最終強度簡易評価法の 構築において貴重な御助言を頂いた.また,広島大学大学院工学研究院助教の田中智行博 士,同大学院工学研究科輸送・環境システム専攻構造システム研究室卒業生の安岡彩氏に は,座屈・最終強度簡易評価法の構築において御協力を頂いた.

ジャパン マリンユナイテッド株式会社の松本光一郎博士,中村哲也氏,瀬崎良明氏,島 崎克教氏には,大学院進学の機会を与えて頂いた.また,同社の柴崎公太氏,三浦康史氏, 牧美津栄氏には設計者の観点から貴重な御助言を頂いた.さらに,同社の小河寛明氏には 構造強度評価の実施において御協力を頂いた.

株式会社NTTデータエンジニアリングシステムズの田中準二氏には,各種計算や解析の 実務において多大なる御協力を頂いた.株式会社テクノスター社長の立石勝氏を始め,関 係社員の皆様には構造強度評価システムの開発に関して多大なる御協力を頂いた.一般財 団法人日本海事協会の佐々木吉通氏,鈴木章太氏には,PrimeShip-HULLの使用に対して 御協力を頂いた.

本研究は、以上の方々を始め多数の方々の御協力によって成し得たものであり、御協力 頂いた全ての方々に心からの謝意を表します.

最後に、私生活を支え終始暖かく見守ってくれた家族にも感謝します.

本研究に関連した発表論文

- 1. 平川真一, 北村充, 牧美津栄, 野波諒太: 制約条件に対する影響度を考慮した設計変数の分類と構造最適設計一船体中央横断面の構造最適設計への応用-, 日本船舶海洋工学会論文集, 第19号, 2014. (印刷中)
- Hirakawa S., Maki M., Kitamura M., and Nonami R.: Classification of design variables based on constraint conditions and structural optimal design Application to structural optimal design of midship section -, Ship Tech. Res. Schiffstechnik, Vol.61(1), pp.34-47, 2014.
- Hirakawa S., Kitamura M., and Maki M.: Application of genetic algorithm to structural design of 150KDWT tanker using PrimeShip-HULL rule calculation software, Proc. of the 21st Int. Off. and Pol. Eng. Conf., Vol.4, pp.845-851, 2011.
- 4. Miyoshi Y., Fujii T., Maki M., Hirakawa S., Fujita D., and Kamimaru Y.: Advanced ship direct strength analysis system in full compliance with common structural rules (TCAD-DSA/CSR), using parametric modelling application TCAD, Proc. of the Int. Conf. on Comp. Appl. in Shipbuilding, Vol.3, pp.43-47, 2013.
- 5. 水上優, 谷川雅之, 平川真一, 山脇義朗, 園井雅博:パターンロード合成解析法による トランス構造の疲労損傷の検討, 関西造船協会論文集, 第 237 号, pp.223-227, 2002.

付録A 最終強度簡易推定式とPULSのベンチマーク条件

A.1 ベンチマークに使用した防撓パネルの部材寸法

最終強度簡易推定式と PULS のベンチマークに使用した防撓パネルの部材寸法を防撓材の形状毎に纏めて Table A.1 ~ Table A.6 に示す.

No.	l	s	t_p	h_w	t_w	b_f	t_f
1	1730	750	13.0	247	12.5	Ő	Ő
2	1780	890	13.0	197	9.0	0	0
3	1780	900	13.0	197	9.0	0	0
4	2475	900	16.0	392	21.0	0	0
5	2480	900	15.5	277	12.5	0	0
6	2600	1000	10.0	247	11.5	0	0
7	2675	890	11.5	197	9.0	0	0
8	2675	940	13.5	247	11.5	0	0
9	2680	900	14.5	277	12.5	0	0
10	2680	920	11.5	197	11.5	0	0
11	2680	920	12.0	197	11.0	0	0
12	2680	920	12.5	247	11.0	0	0
13	2680	920	12.5	247	13.0	0	0
14	2680	970	9.0	196	10.0	0	0
15	2680	970	10.5	196	10.5	0	0
16	3000	900	16.0	347	16.0	0	0
17	3000	900	16.5	347	16.0	0	0
18	3000	920	12.5	247	13.0	0	0
19	3000	920	12.5	297	13.0	0	0
20	3000	920	14.0	297	13.0	0	0
21	3000	940	20.5	347	16.0	0	0
22	3000	940	21.0	347	16.0	0	0
23	3000	1000	10.5	246	12.0	0	0
24	3300	940	13.0	247	13.0	0	0
25	3300	940	13.0	297	16.0	0	0
26	3300	940	15.5	297	16.0	0	0
27	3300	940	15.5	347	16.0	0	0
28	3300	940	17.5	347	16.0	0	0
29	3300	1030	12.0	246	14.0	0	0
30	4950	900	16.0	392	21.0	0	0
31	5200	750	13.0	247	12.5	0	0
32	5200	1000	10.0	247	11.5	0	0
33	5350	890	11.5	197	9.0	0	0
34	5350	890	13.0	197	9.0	0	0
35	5350	900	13.0	197	9.0	0	0
36	5350	940	13.5	247	11.5	0	0

Table A.1 Scantling of stiffened panels (Flat-bar).

No.	l	s	t_p	h_w	t_w	b_f	t_f
37	1783	890	13.0	250	8.0	90	13.0
38	1783	900	13.0	250	8.0	90	13.0
39	2675	890	11.5	250	7.0	90	12.0
40	2675	890	15.0	400	8.5	100	13.0
41	2675	890	15.5	350	8.0	100	14.0
42	2675	900	11.5	250	7.0	90	12.0
43	2675	900	15.0	400	8.5	100	13.0
44	2675	900	15.5	350	8.0	100	14.0
45	2675	905	16.0	350	8.0	100	14.0
46	2675	905	17.0	350	8.0	100	14.0
47	5200	750	13.0	350	9.0	100	17.0
48	5200	750	14.0	300	9.0	90	17.0
49	5350	750	14.0	300	9.0	90	14.0
50	5350	750	14.0	350	8.0	100	14.0
51	5350	890	11.5	250	7.0	90	12.0
52	5350	890	13.0	250	8.0	90	13.0
53	5350	890	15.0	400	8.5	100	13.0
54	5350	890	15.5	350	8.0	100	14.0
55	5350	900	11.5	250	7.0	90	12.0
56	5350	900	13.0	250	8.0	90	13.0
57	5350	900	15.0	400	8.5	100	13.0
58	5350	900	15.5	350	8.0	100	14.0
59	5350	905	16.0	350	8.0	100	14.0
60	5350	905	17.0	350	8.0	100	14.0

Table A.2 Scantling of stiffened panels (Angle-bar).

No.	l	s	t_p	h_w	t_w	b_f	t_f	No.	l	s	t_p	h_w	t_w	b_f	t_f
61	1940	855	15.0	570	8.5	180	20.0	108	4950	900	18.5	649	9.5	200	19.0
62	1950	900	10.5	566	9.0	180	16.0	109	4950	910	12.5	361	8.0	125	11.0
63	2000	900	10.5	564	9.0	180	14.0	110	4950	910	13.0	362	8.5	125	11.5
64	2060	830	16.0	666	10.0	180	16.0	111	4950	910	13.0	364	8.5	125	13.5
65	2085	855	10.5	570	8.5	180	20.0	112	4950	910	12.5	367	9.0	125	17.0
66	2325	855	15.0	570	8.5	180	20.0	113	4950	910	12.5	387	9.0	150	17.0
67	2325	900	15.0	570	8.5	180	20.0	114	4950	910	14.0	366	8.0	125	16.0
68	2390	900	10.5	566	9.0	180	16.0	115	4950	910	15.5	361	8.0	125	11.0
69	2403	850	16.0	666	10.0	180	16.0	116	4950	910	15.0	362	7.0	125	12.0
70	2475	793	12.5	311	8.0	125	11.0	117	4950	910	16.5	364	8.5	125	13.5
71	2475	900	15.5	649	9.5	200	19.0	118	4950	940	13.0	362	8.5	125	11.5
72	2600	900	21.5	638	9.5	200	23.0	119	4950	940	12.5	367	8.0	125	17.0
73	2600	965	16.5	565	9.0	200	15.0	120	4950	940	13.0	368	9.5	125	17.5
74	2600	965	20.0	422	9.0	150	22.0	121	4950	940	12.5	417	9.0	150	17.0
75	2675	900	15.0	621	9.5	200	22.0	122	4950	940	13.0	418	9.5	150	17.5
76	2675	900	16.0	647	9.5	200	22.0	123	4950	940	12.5	387	9.0	150	17.0
77	2675	900	16.0	651	9.5	200	26.0	124	4950	940	12.5	389	9.0	150	19.0
78	2675	900	15.5	617	9.5	200	22.0	125	4950	940	13.5	418	9.5	150	17.5
79	2675	900	19.0	621	9.5	150	22.0	126	4950	940	12.5	419	9.0	180	19.0
80	2675	940	16.5	516	9.0	200	16.0	127	4950	940	13.5	417	9.0	150	17.0
81	2675	940	16.0	412	8.0	125	12.0	128	4950	940	14.5	418	9.5	150	17.5
82	2675	940	18.0	652	10.0	200	22.0	129	4950	940	14.5	468	9.5	150	17.5
83	2675	940	21.5	646	9.5	200	26.0	130	4950	940	14.0	419	9.0	180	19.0
84	2675	940	21.0	652	10.0	200	22.0	131	4950	990	14.5	266	7.0	125	16.0
85	2675	945	22.0	413	9.0	125	13.0	132	5200	900	15.5	638	9.5	200	23.0
86	2675	976	19.0	571	9.0	200	21.0	133	5200	900	16.0	621	9.5	200	21.0
87	2814	940	16.0	666	10.0	180	16.0	134	5200	900	17.0	638	9.5	200	23.0
88	2860	900	10.5	570	8.5	180	20.0	135	5200	900	17.5	638	9.5	200	23.0
89	2860	900	15.0	570	8.5	180	20.0	136	5200	900	17.5	652	9.5	200	27.0
90	2950	900	10.5	564	9.0	180	14.0	137	5200	900	18.0	638	9.5	200	23.0
91	4950	793	12.5	311	8.0	125	11.0	138	5200	900	19.0	471	8.0	180	21.0
92	4950	870	14.5	362	7.0	125	12.0	139	5200	900	19.0	621	9.5	200	21.0
93	4950	900	14.0	468	9.5	150	17.5	140	5200	900	21.0	638	9.5	200	23.0
94	4950	900	14.0	508	9.5	150	17.5	141	5200	900	21.5	638	9.5	200	23.0
95	4950	900	13.5	649	9.5	200	19.0	142	5200	920	11.5	361	8.0	150	11.0
96	4950	900	14.5	468	9.5	150	17.5	143	5200	920	11.5	413	8.0	150	13.0
97	4950	900	14.5	436	9.0	200	26.0	144	5200	920	13.0	413	8.0	150	13.0
98	4950	900	14.5	591	9.0	200	26.0	145	5200	920	13.5	416	8.5	150	15.5
99	4950	900	14.5	686	9.0	200	26.0	146	5200	920	13.5	418	8.5	150	17.5
100	4950	900	14.0	617	9.5	200	17.0	147	5200	920	13.0	463	8.0	150	13.0
101	4950	900	14.5	362	7.0	150	12.0	148	5200	920	13.5	470	8.5	150	19.5
102	4950	900	15.5	467	9.0	150	17.0	149	5200	920	14.5	362	8.5	150	11.5
103	4950	900	15.5	507	9.0	150	17.0	150	5200	920	14.5	364	8.5	150	13.5
104	4950	900	15.5	649	9.5	200	19.0	151	5200	920	14.5	416	8.5	150	15.5
105	4950	900	16.0	507	9.0	150	17.0	152	5200	920	14.0	463	8.0	150	13.0
106	4950	900	16.0	617	9.5	200	17.0	153	5200	920	14.0	465	8.0	150	15.0
107	4950	900	17.5	649	9.5	200	19.0	154	5200	920	14.5	467	8.0	150	17.0

Table A.3 Scantling of stiffened panels (Tee-bar)(1).

No.	l	s	t_p	h_w	t_w	b_f	t_f	No.	l	s	t_p	h_w	t_w	b_f	t_f
155	5200	920	15.0	470	8.5	150	19.5	202	5350	900	15.0	517	9.5	180	16.5
156	5200	920	14.5	515	8.0	150	15.0	203	5350	900	15.0	517	8.5	180	16.5
157	5200	920	14.5	465	8.0	150	15.0	204	5350	900	15.5	717	10.5	200	22.0
158	5200	920	14.5	519	8.0	150	19.0	205	5350	900	15.0	621	9.5	200	22.0
159	5200	920	15.0	567	8.0	180	17.0	206	5350	900	15.0	621	9.5	150	22.0
160	5200	920	15.5	572	9.0	200	22.0	207	5350	900	16.0	647	9.5	200	22.0
161	5200	920	15.5	672	10.0	200	22.0	208	5350	900	16.0	647	9.5	200	22.0
162	5200	920	16.5	470	8.5	150	19.5	209	5350	900	16.0	651	9.5	200	26.0
163	5200	920	15.5	519	8.0	150	19.0	210	5350	900	15.5	611	9.5	200	16.0
164	5200	920	15.5	567	8.0	180	17.0	211	5350	900	15.5	617	9.5	200	22.0
165	5200	920	16.5	568	9.5	200	17.5	212	5350	900	16.5	642	9.5	200	17.0
166	5200	920	16.5	568	9.5	150	17.5	213	5350	900	16.5	647	9.5	175	22.0
167	5200	920	17.0	361	8.0	150	11.0	214	5350	900	17.0	649	9.5	200	29.0
168	5200	920	16.5	463	8.0	150	13.0	215	5350	900	17.0	418	8.0	180	18.0
169	5200	920	17.0	672	10.0	200	22.0	216	5350	900	17.5	418	8.0	150	18.0
170	5200	920	17.0	719	11.0	200	19.0	217	5350	900	19.0	611	9.5	200	16.0
171	5200	920	19.5	719	11.0	200	19.0	218	5350	900	19.0	621	9.5	150	22.0
172	5200	965	16.5	565	9.0	200	15.0	219	5350	900	20.0	642	9.5	200	17.0
173	5200	965	16.5	567	9.0	200	17.0	220	5350	900	20.0	647	9.5	200	22.0
174	5200	965	16.5	569	9.0	200	19.0	221	5350	900	20.0	647	9.5	175	22.0
175	5200	965	20.0	422	9.0	150	22.0	222	5350	900	20.0	647	9.5	200	22.0
176	5200	965	20.0	569	9.0	200	19.0	223	5350	905	16.0	536	9.0	200	16.0
177	5200	1000	16.0	360	7.0	150	10.0	224	5350	905	16.0	566	9.0	200	16.0
178	5200	1000	16.0	412	8.0	150	12.0	225	5350	905	17.0	536	9.0	200	16.0
179	5200	1000	16.5	412	8.0	150	12.0	226	5350	905	17.0	566	9.0	200	16.0
180	5200	1000	16.5	463	8.0	150	13.0	227	5350	920	11.0	413	9.0	125	13.0
181	5200	1000	18.0	362	8.5	150	11.5	228	5350	920	11.0	413	8.0	125	13.0
182	5200	1000	16.5	412	8.0	150	12.0	229	5350	920	11.0	416	9.0	150	16.0
183	5200	1000	19.0	471	8.0	180	21.0	230	5350	920	11.0	416	9.0	125	16.0
184	5350	800	14.0	364	8.0	150	14.0	231	5350	920	11.0	416	8.0	150	16.0
185	5350	825	19.0	362	8.0	150	12.0	232	5350	920	11.0	416	8.0	125	16.0
186	5350	830	19.0	414	8.0	150	14.0	233	5350	920	12.5	416	9.0	180	16.0
187	5350	840	15.5	366	9.5	150	15.5	234	5350	920	12.5	416	9.0	150	16.0
188	5350	840	15.5	366	9.5	125	15.5	235	5350	920	12.5	416	8.0	180	16.0
189	5350	850	15.5	712	10.5	200	22.0	236	5350	920	12.5	416	8.0	150	16.0
190	5350	850	19.0	414	8.0	150	14.0	237	5350	920	12.5	466	8.0	200	16.0
191	5350	870	15.5	647	9.5	200	22.0	238	5350	920	14.0	466	8.0	200	16.0
192	5350	890	15.5	647	9.5	200	22.0	239	5350	920	14.5	467	9.5	125	16.5
193	5350	890	15.5	649	9.5	200	23.5	240	5350	920	14.5	467	8.5	150	16.5
194	5350	890	17.0	418	8.0	180	18.0	241	5350	920	14.5	416	9.0	180	16.0
195	5350	890	17.5	418	8.0	150	18.0	242	5350	920	14.5	441	9.0	180	16.0
196	5350	900	14.5	517	9.5	180	16.5	243	5350	920	15.0	467	9.5	180	16.5
197	5350	900	14.5	517	8.5	180	16.5	244	5350	920	15.0	467	9.5	150	16.5
198	5350	900	14.5	537	9.5	200	16.5	245	5350	920	15.0	467	9.5	125	16.5
199	5350	900	14.5	537	9.5	200	16.5	246	5350	920	15.0	467	8.5	180	16.5
200	5350	900	14.5	587	9.5	200	16.5	247	5350	920	15.0	467	8.5	150	16.5
201	5350	900	14.5	587	9.5	200	16.5	248	5350	920	14.5	463	9.0	125	13.0

Table A.4 Scantling of stiffened panels (Tee-bar)(2).

No.	l	s	t_p	h_w	t_w	b_f	t_f	No.	l	s	t_p	h_w	t_w	b_f	t_f
249	5350	920	14.5	463	8.0	125	13.0	296	5350	940	17.5	617	10.0	200	17.0
250	5350	920	14.5	466	9.0	180	16.0	297	5350	940	17.5	617	9.0	180	17.0
251	5350	920	14.5	466	9.0	150	16.0	298	5350	940	18.0	646	9.5	200	26.0
252	5350	920	14.5	466	8.0	200	16.0	299	5350	940	18.0	571	9.0	180	21.0
253	5350	920	14.5	466	8.0	180	16.0	300	5350	940	18.0	617	10.0	200	17.0
254	5350	920	14.5	466	8.0	150	16.0	301	5350	940	17.5	652	10.0	200	22.0
255	5350	920	15.0	463	9.0	125	13.0	302	5350	940	18.0	661	10.0	180	21.0
256	5350	920	15.0	463	8.0	125	13.0	303	5350	940	18.0	652	10.0	200	22.0
257	5350	920	15.0	466	9.0	200	16.0	304	5350	940	19.5	661	10.0	180	21.0
258	5350	920	15.0	466	8.0	200	16.0	305	5350	940	19.5	681	10.0	200	21.0
259	5350	920	15.0	469	8.0	200	19.0	306	5350	940	19.0	414	8.0	150	14.0
260	5350	920	17.0	412	8.0	125	12.0	307	5350	940	20.5	646	9.5	200	26.0
261	5350	920	17.0	412	7.0	125	12.0	308	5350	940	21.5	646	9.5	200	26.0
262	5350	940	13.0	413	9.0	125	13.0	309	5350	940	21.0	652	10.0	200	22.0
263	5350	940	13.0	515	9.0	180	15.0	310	5350	945	19.0	571	9.0	200	21.0
264	5350	940	13.0	565	9.0	180	15.0	311	5350	945	19.0	621	9.5	200	21.0
265	5350	940	13.0	567	9.0	200	17.0	312	5350	945	22.0	413	9.0	125	13.0
266	5350	940	14.5	466	9.5	180	15.5	313	5350	945	22.0	621	9.5	200	21.0
267	5350	940	14.5	468	9.5	180	17.5	314	5350	945	22.0	646	9.5	200	21.0
268	5350	940	14.5	515	9.0	180	15.0	315	5350	950	15.5	502	9.0	200	22.0
269	5350	940	15.5	366	9.5	150	15.5	316	5350	950	15.5	592	9.0	200	22.0
270	5350	940	15.5	416	9.5	150	15.5	317	5350	950	15.5	662	10.5	200	22.0
271	5350	940	15.5	466	9.5	180	15.5	318	5350	950	15.5	712	10.5	200	22.0
272	5350	940	15.5	466	9.5	150	15.5	319	5350	955	15.0	516	8.0	200	16.0
273	5350	940	15.5	502	8.0	200	22.0	320	5350	955	15.0	536	9.0	200	16.0
274	5350	940	16.0	518	9.5	180	17.5	321	5350	955	17.0	418	8.0	180	18.0
275	5350	940	16.0	568	9.5	180	17.5	322	5350	960	13.0	414	9.5	125	13.5
276	5350	940	15.5	592	9.0	200	22.0	323	5350	960	13.0	414	8.5	125	13.5
277	5350	940	15.5	647	10.5	200	22.0	324	5350	960	13.0	417	9.5	150	16.5
278	5350	940	15.5	717	10.5	200	22.0	325	5350	960	13.0	417	8.5	125	16.5
279	5350	940	16.0	515	9.0	180	15.0	326	5350	960	13.5	414	9.5	125	13.5
280	5350	940	16.0	517	9.0	180	17.0	327	5350	960	13.5	417	9.5	125	16.5
281	5350	940	16.0	567	9.0	200	17.0	328	5350	960	14.5	417	8.5	125	16.5
282	5350	940	16.5	516	9.0	200	16.0	329	5350	960	15.5	365	8.0	125	15.0
283	5350	940	16.5	536	9.0	200	16.0	330	5350	960	17.0	414	8.5	125	13.5
284	5350	940	16.0	412	8.0	125	12.0	331	5350	960	17.0	417	9.5	150	16.5
285	5350	940	17.0	415	9.0	150	15.0	332	5350	960	17.0	417	9.5	150	16.5
286	5350	940	17.0	567	9.0	180	17.0	333	5350	960	17.0	417	9.5	125	16.5
287	5350	940	18.0	568	9.5	180	17.5	334	5350	960	15.5	468	10.5	200	18.0
288	5350	940	18.0	618	9.5	200	17.5	335	5350	970	15.0	462	8.0	150	12.0
289	5350	940	18.0	618	9.5	180	17.5	336	5350	970	14.5	462	8.0	125	12.0
290	5350	940	18.0	642	9.5	200	21.5	337	5350	970	15.0	463	9.0	125	13.0
291	5350	940	18.0	567	9.0	200	17.0	338	5350	1030	17.0	414	8.0	150	14.0
292	5350	940	17.5	567	9.0	150	17.0	339	5350	1045	17.0	415	8.0	125	15.0
293	5350	940	17.5	567	9.0	180	17.0	340	5350	1045	17.0	415	8.0	125	15.0
294	5350	940	18.0	617	10.0	200	17.0	341	5350	1115	16.0	416	8.0	150	16.0
295	5350	940	18.0	617	9.0	180	17.0	342	5400	900	14.0	570	9.5	180	19.5

Table A.5 Scantling of stiffened panels (Tee-bar)(3).

No.	l	s	t_p	h_w	t_w	b_f	t_f
343	5400	900	17.5	568	9.5	180	17.5
344	5520	900	14.0	568	9.5	180	17.5
345	5520	900	14.0	573	9.5	180	22.5
346	5520	900	15.0	568	9.5	180	17.5
347	5520	900	15.0	573	9.5	180	22.5
348	5520	900	15.5	568	9.5	180	17.5
349	5520	900	15.5	573	9.5	180	22.5
350	5520	900	15.5	573	9.5	180	22.5
351	5640	830	19.0	672	10.5	180	21.5
352	5640	850	19.0	672	10.5	180	21.5
353	5640	940	19.0	672	10.5	180	21.5
354	6440	855	10.5	572	10.0	180	21.5
355	6440	855	12.0	572	10.0	180	21.5
356	6440	855	14.0	570	9.5	180	19.5
357	6440	855	16.5	572	10.0	180	21.5
358	6440	855	17.5	568	9.5	180	17.5
359	6440	855	17.5	572	9.5	180	21.5
360	6440	900	14.0	568	9.5	180	17.5
361	6440	900	14.0	570	9.5	180	19.5
362	6440	900	15.0	568	9.5	180	17.5
363	6440	900	15.5	568	9.5	180	17.5
364	6440	900	16.5	572	10.0	180	21.5
365	6440	900	17.5	568	9.5	180	17.5
366	6440	900	17.5	572	9.5	180	21.5
367	6520	900	12.0	566	10.5	180	15.5
368	6580	830	15.0	668	11.5	180	17.5
369	6580	830	17.5	672	10.5	180	21.5
370	6580	850	15.0	668	11.5	180	17.5
371	6580	850	17.5	672	10.5	180	21.5
372	6580	940	15.0	668	11.5	180	17.5
373	6580	940	17.5	672	10.5	180	21.5
374	6720	900	10.5	572	10.0	180	21.5
375	6720	900	12.5	572	10.0	180	21.5
376	7220	940	13.5	666	10.0	180	16.0
377	7220	940	15.0	668	11.5	180	17.5
378	7220	940	16.0	666	10.0	180	16.0
379	7220	940	17.5	668	11.5	180	17.5
380	7520	900	12.0	568	10.5	180	17.5
381	7520	900	14.0	568	10.5	180	17.5
	1		1		1		

Table A.6 Scantling of stiffened panels (Tee-bar)(4).

A.2 ベンチマークのための計算条件

A.1 節で示した 381 種類の部材寸法に基づく連続防撓パネルに対して,板と防撓材の降 伏強度 (7 種類),面内荷重比 (7 種類),水圧荷重 (17 種類)を変化させて,組合せ荷重下の 最終強度を PULS 及び最終強度簡易推定式を用いて計算した.計算条件を Table A.7 に示 す.総計算数は 317,373 になった.

Coontling	Yield	stress	Load	l ratio	Lateral pressure	Total
Scanning	$\sigma_{Yp}(MPa)$	$\sigma_{Ys}(MPa)$	x	у	(MPa)	Total
	235	235	100	0	0	
	315	315	100	20	0.05	
	355	355	100	30	0.1	
	315	235	100	41	0.15	
	355	315	100	100	0.2	
	235	315	41	100	0.25	
	315	355	0	100	0.3	
					0.35	
					0.4	
					-0.05	
					-0.1	
					-0.15	
					-0.2	
					-0.25	
					-0.3	
					-0.35	
					-0.4	
381	,	7		7	17	317,373

Table A.7 Calculation condition for benchmark.

付録B 最終強度簡易推定式の修正項

4.5.2 項で示した最終強度簡易推定式の修正係数を構成する修正項を,防撓材形状及び板 と防撓材の降伏強度毎に整理して Table B.1 ~ Table B.14 に示す. 表の上段には水圧無 し,中段には水圧正,下段には水圧負の修正項を示し左列から右列に向かって面内荷重比 が変化する.

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.815	1.264	0.371	0.007				
1	0.572	-0.686	0.414	-0.706				
2	-0.339	0.738	-0.370	-1.880				
3	0.512	-0.208	-1.091	-6.570				
4	-0.652	-0.237	-1.427	6.652				
5	0.573	0.594	0.344	-1.972				
6	-0.516	0.417	0.591	3.532				
7	0.702	-0.676	0.717	-4.417				
8	-0.078	-1.064	-0.567	2.098				
9	0.349	1.544	2.115	-3.281				
10	-0.017	0.056	0.565	-3.709				
11	-0.672	0.167	-0.765	2.222				
12	-0.401	-1.764	-1.392	4.362				
13	0.095	0.263	0.288	3.884				
14	-0.009	0.191	-0.427	1.471				
	σ_y	= 0	σ_x	= 0	$\sigma_x \ge$	$\geq \sigma_y$	$\sigma_x <$	$< \sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-4.692	-65.624	-12.405	0.280	5.639	-41.780	2.654	1.797
1	19.065	-31.136	-4.502	-0.047	-46.627	-28.320	-0.272	0.176
2	-3.940	-5.893	11.363	-0.040	34.505	-3.663	4.853	0.256
3	-20.763	-25.186	0.413	-0.741	69.102	-12.432	-1.163	0.812
4	6.113	-14.348	-0.288	-0.008	20.721	-17.901	-1.984	0.256
5	-1.664	-2.783	9.125	-0.261	21.286	0.494	-0.454	-0.022
6	7.408	-35.842	5.529	0.383	-24.190	-33.942	-4.577	0.812
7	-12.007	-13.707	0.355	-0.292	-17.086	-11.114	-4.985	-0.022
8	13.318	-20.483	9.947	0.394	-5.942	-2.778	1.924	0.176
9	28.832	-0.248	2.555	0.033	-49.744	1.863	-2.742	-0.024
10	11.934	-21.038	-2.747	0.211	-28.923	-7.364	2.379	0.812
11	-10.045	-11.685	-2.168	-0.280	24.892	-2.812	-0.737	-0.022
12	13.968	-0.268	5.576	0.004	-1.601	2.536	-0.421	-0.024
13	0.284	-12.668	-2.370	0.014	-13.575	-2.790	0.788	0.812
14	-11.292	9.632	-1.175	0.059	32.649	0.032	4.519	0.256
a < 0		21	21	21	210 20	21		21
q < 0	10.075	0.502	8 313	0.857	6 000	1 1 1 8	2.406	0.016
1	-10.975	-0.302	-0.515	0.001	-0.003	1.410	0.741	0.010
1 - 2	-0.639	-0.072	-3.029	0.490	0.037	-1.341	1 206	0.003
2	-0.052	-0.001	9.990	0.035	1.951	1.064	-1.550	-0.112
	-2.295	-0.045	1 208	0.078	1.201	-1.004	0.010	-0.109
4	-0.099	0.004	-1.308	0.219	1.100	-0.001	0.312	-0.112
	1.100	0.004	2.671	0.045	0.102	-0.220	-2.239	-0.112
	-2.092	-0.040	0.079	0.700	1.009	-1.320	2.033	-0.109
(0.459	0.127	-0.072	-0.070	-1.080	-0.831	-0.774	-0.112
8	-0.005	-0.001	8.863	0.097	2.480	-0.228	-0.863	-0.112
9	0.636	-0.001	2.692	0.201	-1.290	-0.160	-1.552	-0.112
10	0.633	0.069	-2.780	0.001	0.324	-0.890	0.294	-0.112
11	0.381	0.051	-1.676	0.428	2.370	-0.220	-0.532	0.000
12	0.924	-0.001	5.087	0.518	-0.392	-0.034	-1.512	-0.112
13	1.859	0.065	-2.127	0.504	-5.651	-0.721	-2.744	-0.112
14	-0.142	0.064	-0.206	0.040	-0.529	-0.227	0.958	-0.112

Table B.1 Correction coefficient(flat-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = MS$)

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.550	0.619	0.329	0.000				
1	0.487	0.594	0.866	-0.954				
2	0.215	0.588	-0.353	-0.083				
3	0.751	0.675	-1.320	-0.582				
4	-0.075	0.416	-1.409	0.001				
5	-0.161	-0.019	0.514	0.618				
6	-0.303	-0.283	0.579	0.487				
7	0.042	-0.619	0.992	-0.544				
8	-0.149	0.013	-0.002	0.093				
9	0.072	-0.006	0.909	0.357				
10	-0.002	-0.325	0.483	-0.240				
11	-0.066	-0.351	-1.151	0.953				
12	-0.145	-0.416	-1.101	-0.157				
13	-0.158	-0.148	0.309	0.075				
14	0.068	0.243	-0.229	0.387				
	σ_y	= 0	σ_x	= 0	σ_x	$\geq \sigma_y$	$\sigma_x <$	$< \sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-5.622	-11.946	-7.970	8.028	2.136	-10.418	0.442	2.460
1	-0.057	-7.160	-0.005	7.731	1.006	-5.761	-0.028	0.056
2	6.361	-3.877	18.517	-8.465	3.743	-4.431	3.442	-6.479
3	-0.059	-5.902	-6.637	1.520	1.748	-7.488	8.832	5.864
4	1.536	-2.968	6.216	-2.192	1.600	0.485	-2.197	0.430
5	6.908	-2.701	27.361	-4.749	-4.230	-1.168	2.010	-5.813
6	-2.174	-6.975	5.443	4.477	0.564	-7.957	-6.975	5.808
7	3.500	-2.405	-1.216	-0.131	-5.914	0.752	-7.493	-0.466
8	4.523	-6.528	1.386	-13.314	1.033	-8.061	0.036	-2.777
9	-4.051	-1.884	-4.494	-2.728	4.670	-0.090	16.507	0.786
10	1.470	-3.503	-0.052	-4.534	-4.461	-0.329	-3.140	0.873
11	-3.022	-4.523	-14.199	6.682	-0.076	-2.796	1.880	0.239
12	-1.988	-2.866	-31.070	-8.501	2.546	0.727	-12.745	-4.769
13	-2.185	-4.076	1.223	0.440	-0.130	-0.329	-1.112	3.476
14	-2.462	-2.387	-1.891	-0.624	3.936	-0.100	3.477	1.896
a < 0	21-	11-	11-	11-	11-	11-	11-	11-
q < 0	-5.825	-3.917	-5 287	2159	-0.165	-2 195	-1 594	10.577
1	0.587	-1.836	-1 735	2.105	3 688	-0.804	4 515	8 802
2	5 148	-0.941	11 423	-2.840	-3.030	-0.258	14 400	-14 470
3	1 266	-3 185	-2 476	_0.429	-1 953	-0.256	-9 557	5 662
<u> </u>	-0.357	-0.327	1 072	-0.425	0.111	0.387	2 123	-1 702
5	-0.557	0.341	15 202	-1.702	4 016	1 000	2.120	-1.702 8 801
6	-2 020	-3 600	2 277	0.846	3 70/	0 / 21	1 07/	8 077
7	1.000	-5.000	0.704	1.244	7 957	0.401	9 166	0.911
8	3.065	3.000	2 620	-1.244	-1.001	0.007	-0.100	15 806
0	5.000	-0.201	2.029	-4.000 0.150	-4.494 19.669	-0.209	-2.221	6 050 -19:900
9 10	-0.020	-0.290	-10.970	-2.102	2.003	0.207	22.009 0.279	-0.239
10	-1.000	-1.201	-1.110	-2.803	3.038	0.387	-0.378	-1.911
11	-2.032	-1.001	-0.970	1.003	2.040	-1.300	-13.099	14.027
12	-4.3/3	-0.700	-11.24(-2.8/1	-0.201	-0.340	-41.804	-14.937
13	-0.559	-2.531	-0.730	-0.498	0.073	0.101	5.898	3.400
14	2.224	0.355	3.644	-1.283	-0.101	1.214	-3.123	0.168

Table B.2 Correction coefficient(angle/tee-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = MS$)

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.746	1.253	0.204	0.000				
1	0.761	-0.516	0.318	0.623				
2	-0.229	0.798	-0.575	-0.524				
3	0.691	-0.575	-0.918	-5.320				
4	-0.407	-0.727	-0.101	2.097				
5	0.492	0.402	-0.021	-0.076				
6	-0.707	0.607	0.676	3.103				
7	0.542	-0.260	-0.120	-1.716				
8	-0.047	-1.112	-0.298	-0.467				
9	0.496	1.815	1.140	-0.117				
10	0.194	0.166	0.058	-0.728				
11	-0.722	0.064	-0.351	-0.383				
12	-0.562	-1.916	-0.558	1.368				
13	-0.190	0.426	0.293	2.408				
14	-0.247	0.098	-0.213	-0.025				
	σ_y	= 0	σ_x	= 0	$\sigma_x \ge$	σ_y	$\sigma_x <$	$< \sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-2.437	-42.510	-8.928	0.291	2.132	-9.010	0.803	3.666
1	5.203	-20.868	-4.303	-0.030	-4.029	-3.384	1.096	1.832
2	-6.839	-10.110	9.959	-0.043	16.043	-1.172	9.181	0.421
3	-1.267	-15.974	0.557	0.115	3.116	-5.602	-4.651	0.933
4	-1.273	-10.644	-0.139	-0.038	-3.762	-4.133	-1.179	0.380
5	4.549	-1.634	7.565	-0.095	4.807	-0.917	0.889	0.421
6	5.277	-21.413	3.523	0.205	-8.302	-6.386	-3.724	0.947
7	7.541	-10.406	0.271	-0.036	-13.679	-2.949	-9.094	0.335
8	3.368	-9.613	8.374	0.122	13.875	-0.648	5.333	0.210
9	19.686	-1.917	2.758	-0.116	-5.103	-0.704	-6.638	-0.041
10	-12.951	-10.572	-2.487	-0.136	7.028	-4.789	10.605	0.380
11	-6.004	-13.193	-2.842	-0.202	0.145	-0.223	-0.267	0.421
12	7.443	-0.501	5.363	0.015	3.033	-0.248	-0.273	-0.041
13	9.906	-5.318	-2.054	-0.145	-4.520	-4.153	-4.878	0.007
14	0.093	0.992	-0.687	-0.033	9.874	-1.161	1.356	0.335
q < 0	u_{a}	u_{a}	u_{a}	u_{a}	u_{a}	u_a	u_{a}	u_{a}
0	-9.900	-2.300	-5.437	0.223	0.247	-1.838	1.035	0.131
1	-2.342	-1.080	-3.674	0.666	0.756	-0.580	0.515	0.055
2	-0.117	-0.372	9.872	0.974	-2.255	-0.341	0.106	0.001
3	-1.095	-0.544	0.462	0.122	-0.496	-0.333	0.289	0.024
4	-1.385	-0.322	-1.326	0.084	-2.237	-0.329	-0.004	0.007
5	1.789	-0.375	6.736	0.859	-1.254	-0.342	-0.030	0.000
6	0.744	-0.522	1.625	0.267	-2.425	-0.344	0.472	0.025
7	0.993	-0.321	-0.635	0.081	-1.519	-0.341	-0.228	0.001
8	1.478	-0.366	7.731	0.124	-0.217	-0.342	0.094	0.001
9	1.776	-0.324	2.628	0.082	0.344	-0.258	-0.256	0.000
10	_1 990	-0.357	_2.941	0.085	0.08/	-0.371	0.200	0.000
11	0 171	-0.357	-2.241	0.000	1 700	-0.371	0.030	0.002
19	1 023	-0.373	4 830	0.432	-0.003	-0.529	-0.168	0.010
12	0.274	-0.373	-1 520	_0 1//	1 457	-0.200	-0.100	_0.000
14	_0.078	-0.300	0 502	0.068	2 5 8 1	-0.942	-0.102	0.004
1.4	-0.010	-0.011	0.034	0.000	0.001	-0.210	-0.202	0.000

Table B.3 Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{HT32})$

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.543	0.606	0.441	0.062				
1	0.584	0.576	0.526	-0.550				
2	0.292	0.711	-1.087	0.218				
3	0.150	0.663	0.126	-1.297				
4	0.100	0.299	-1.116	0.247				
5	-0.229	-0.001	0.558	0.360	1			
6	0.128	-0.328	-0.308	0.756				
7	-0.048	-0.552	0.990	-0.501				
8	-0.179	0.023	0.244	0.052				
9	0.079	0.146	0.656	0.527				
10	-0.040	-0.265	0.206	-0.161				
11	-0.187	-0.319	-0.877	0.581				
12	-0.137	-0.711	-0.485	-0.463				
13	-0.017	-0.127	-0.183	0.392				
14	0.019	0.204	-0.232	-0.020				
	σ_y	= 0	σ_x	= 0	$\sigma_x \ge$	$\geq \sigma_y$	$\sigma_x <$	$< \sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-3.816	-6.886	-4.867	5.046	2.018	-1.340	1.193	1.393
1	-0.042	-3.884	-0.556	6.497	-0.086	-0.629	0.443	-0.455
2	3.490	-1.719	9.788	-12.029	-0.047	-0.905	-3.912	-2.415
3	-1.019	-3.426	-0.414	1.769	1.177	-1.237	2.987	4.081
4	1.206	-1.889	1.180	-0.140	-0.845	-0.716	0.832	1.166
5	3.951	-0.977	22.598	-6.073	-0.822	-0.312	-0.347	-2.438
6	-0.791	-3.880	0.640	3.486	0.838	-1.722	-3.074	3.907
7	3.329	-0.457	-0.987	1.809	-4.025	-0.865	-2.607	0.125
8	2.733	-3.300	2.056	-15.304	-0.913	-1.997	-0.040	0.685
9	-1.601	-0.119	1.990	-2.134	2.715	-0.318	3.234	1.783
10	2.178	-0.182	-1.216	-2.535	-0.397	-0.721	-0.511	1.533
11	-1.822	-2.157	-10.575	6.685	-0.032	-0.432	0.900	-0.756
12	-1.106	-1.052	-20.746	-9.836	1.534	0.572	1.833	0.287
13	-1.108	-2.043	-0.638	5.069	-0.165	-1.035	-0.648	3.133
14	-3.998	-0.429	-0.084	2.470	4.024	-0.307	0.063	1.072
a < 0	11	11	11	11	11	11	11	21
0	-4 937	-2.048	-3.361	$\frac{a_q}{2.045}$	$\frac{u_q}{1.191}$	-1 015	1074	2.355
1	3 133	-0.921	-1.500	2.010	1.101	-1.386	0.433	1 704
2	2 751	-0.021	6 521	-2.072	-2 768	-1 230	2 731	-10.602
3	1 /10	-3.076	-0.732	_0.122	-0.300	-0.153	-1 /03	5 927
	-1 9/5	0.288	0.102	-0.122	-0.240	-0.100	-0.502	-1 703
5	3 756	0.287	0.334	-0.010	3 513	1 075	12 800	-1.705
6	-1 9/2	-3 /197	1 515	0.024	1 600	-1.075	-0.637	6 730
7	2 0 0 0 0	-0.427	0.805	0.942	5.466	-0.045	-0.007	0.100
	2.020	0.900	1.090	4.016	3 /05	0.109	-1.202	6 152
	1.1(4	-2.017	6.979	-4.010	-3.403	1.02	-0.090	-0.100
10	-2.070	0.529	-0.273	-1.295 1 F1C	9.044	1.920	0.446	-1.700
	0.000	-0.794	-0.423	-1.010	1.379	-0.103	-0.440	-0.900
	-4.289	-0.087	-4.090	2.017	2.178	-1.291	-0.009	1.390
12	-2.031	-0.007	-0.032	-2.123	-0.794	0.107	-10.029	-8.0/4
13	-0.801	-2.573	-0.683	-0.474	0.391	-0.133	1.216	5.199
14	0.359	0.383	2.068	-0.314	-0.172	1.976	-0.841	2.031

Table B.4 Correction coefficient(angle/tee-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{HT32}$)

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	ry				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.839	1.275	0.191	0.000				
1	0.604	-0.591	0.164	0.673				
2	-0.247	0.830	-0.995	-0.447				
3	0.611	-0.621	-0.678	-3.937				
4	-0.397	-0.799	0.221	1.525				
5	0.419	0.355	-0.058	0.269				
6	-0.746	0.636	0.611	2.703				
7	0.514	-0.195	-0.129	-1.569				
8	0.091	-1.123	-0.049	-1.546				
9	0.320	1.953	0.573	0.344				
10	0.291	0.153	-0.029	-0.864				
11	-0.563	0.144	-0.148	-0.580				
12	-0.535	-2.047	-0.016	1.473				
13	-0.289	0.457	0.121	2.195				
14	-0.173	0.091	-0.242	0.385				
	σ_y	= 0	σ_x :	= 0	$\sigma_x \ge$	$\geq \sigma_y$	$\sigma_x <$	$< \sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-1.285	-30.717	-7.608	0.109	-4.056	-19.605	0.479	0.577
1	0.768	-16.194	-3.082	-0.023	1.831	-2.845	0.626	0.411
2	2.348	-5.598	7.033	0.191	20.040	-2.646	-0.920	-0.007
3	0.173	-13.472	0.625	0.160	0.118	-13.364	0.029	0.137
4	0.344	-9.489	-0.512	-0.015	1.609	-3.184	-0.382	0.130
5	5.388	-6.020	5.976	0.038	13.725	0.548	-0.431	-0.007
6	0.440	-16.406	2.212	0.162	4.985	-13.640	-0.200	0.479
7	6.887	-4.997	0.574	0.038	6.288	-2.915	-0.461	-0.007
8	4.772	-8.063	6.233	0.148	5.142	-2.694	-1.398	-0.007
9	13.582	0.057	1.953	-0.021	2.934	-0.188	-1.071	-0.007
10	-12.747	-11.291	-1.509	-0.041	-19.382	-6.249	0.228	0.225
11	-5.264	-9.404	-1.409	-0.147	-11.653	0.603	0.893	0.137
12	1.644	1.472	3.611	-0.024	-45.616	-0.720	-1.845	-0.017
13	10.422	-6.933	-1.032	-0.195	12.705	-2.917	0.460	0.137
14	1.387	-2.749	-0.642	-0.005	5.972	-2.058	0.574	-0.007
a < 0	u_{σ}	11 _a	u_{α}	u_{σ}	u_{σ}	u_{σ}	n.	11.4
0	-6.952	-0.613	-5.036	0.718	-0.074	-17.099	0.660	0.054
1	-2.469	-0.365	-2.260	0.211	2.820	-9.339	2.164	0.034
2	0.037	-0.091	6.747	0.216	-0.056	-5.432	-3.586	0.007
3	-1 636	-0.370	0.305	0.148	-3 915	-5.378	0.700	0.058
4	-0.620	-0.059	-0.717	0.150	-6 263	-4 494	-0.412	0.002
5	0.020	-0.088	4 907	0.189	0.200	-5.498	-2 429	-0.002
6	-2.347	-0.369	1 413	0.105	-0.894	-9 154	2.125	0.001
7	0.184	-0.059	-0.003	0.153	-1 532	-5 /02	0.226	-0.001
8	0.104	-0.009	5 542	0.100	9.418	-0.402	-2 70/	0.001
0	0.239	-0.000	1 510	0.210	3.410	-1.00	-2.194	0.010
9 10	0.079	-0.013	1 /02	0.000	6 109	1 762	-2.000	0.000
10	0.300	-0.030	-1.490	0.190	-0.100	6 111	0.009	0.000
10	-0.114	-0.000	-1.004 2 501	0.070	0.009	-0.111	4 009	0.019
12	1.965	-0.004	0.709	0.012	-0.000	1 595	-4.900	-0.013
10	1.303	-0.020	-0.195	0.144	0.211	-1.000	-0.040	0.075
14	0.109	-0.050	-0.289	0.080	10.335	-1.999	1.113	0.007

Table B.5 Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT36}, \sigma_{Ys} = \text{HT36})$

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.582	0.589	0.379	0.005				
1	0.641	0.567	0.178	0.122				
2	-0.086	0.769	-0.912	0.188				
3	-0.068	0.673	0.659	-2.060				
4	0.342	0.249	-0.722	0.048				
5	0.138	0.020	0.260	0.370				
6	0.248	-0.338	-0.454	1.061				
7	-0.237	-0.521	0.841	-0.460				
8	-0.083	0.021	0.130	0.168				
9	0.107	0.216	0.493	0.470				
10	-0.144	-0.245	0.101	-0.086				
11	-0.308	-0.298	-0.488	-0.019				
12	-0.107	-0.852	-0.285	-0.508				
13	0.020	-0.130	-0.332	0.695				
14	0.015	0.187	-0.328	0.147				
	σ_y :	= 0	σ_x	= 0	$\sigma_x \ge$	$\geq \sigma_y$	$\sigma_x <$	σ_y
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-3.736	-5.110	-2.842	2.582	0.581	2.355	0.782	1.713
1	0.359	-2.500	-3.430	3.216	-0.063	3.255	-0.263	1.052
2	3.758	-0.912	7.271	-3.780	1.794	-4.207	0.873	-8.970
3	-0.175	-3.234	0.460	0.309	4.814	-0.130	-1.981	5.379
4	1.170	-1.876	1.115	-0.460	1.647	-5.105	-0.453	1.470
5	3.910	-0.080	12.345	-1.697	-2.769	-2.811	7.935	-6.675
6	0.748	-3.130	0.815	1.486	-3.326	0.019	-0.700	5.667
7	2.526	-1.208	1.422	0.305	-5.682	-3.914	-4.047	0.296
8	0.414	-2.988	0.085	-5.386	1.978	-8.385	1.152	-4.439
9	-1.165	-0.830	-5.753	-1.765	11.637	-0.866	9.920	1.151
10	2.382	-1.301	0.146	-1.469	-2.085	-4.298	-1.699	1.771
11	-2.696	-1.129	-5.698	3.369	2.216	6.236	-1.332	1.147
12	-0.639	-0.509	-6.956	-3.605	-6.217	-1.117	-12.016	-5.719
13	-1.060	-2.165	-0.628	0.172	-1.419	-0.644	1.140	4.847
14	-3.031	-1.629	0.452	0.313	0.781	-3.488	0.537	3.104
a < 0	21	21	21	21	21	21	21	21
q < 0	-2.000	-1.625	-4 569	2.080	$\frac{a_q}{0.506}$	-0.852	2000	1 903
1	-2.333	-1.025	3 025	5.436	1.604	1 308	2.009	0.357
1 9	2.176	0.556	0.246	0.008	2 0/3	-1.508	2.050	5.036
2	2.170	1.025	0.517	-9.098	-2.945	-0.803	-2.000	-0.900
	0.729	-1.233	-0.317	0.070	0.544	0.014	0.909	1 969
4 F	-0.705	-0.073	15 527	4.205	-0.307	0.600	0.122 2.710	-1.300
0 6	2.399	-0.070	10.007	-4.020	-1.090	-0.099 0.521	0.710	-0.101 6 450
0	-0.809	-1.408	0.307	1.395	2.072	0.331	-0.320	0.400
(1.390	0.362	-2.310	2.822	-4.172	0.484	1.201	-0.924
8	0.552	-1.401	1.861	-12.217	-4.321	-0.002	-1.314	-0.702
9	-1.713	-0.175	2.554	0.098	6.820	0.636	0.916	-0.905
10	-0.065	-0.504	-1.114	-1.315	2.962	0.512	0.509	1.089
11	-2.040	-0.299	-9.203	6.409	2.116	-1.104	2.295	-0.592
12	-1.516	-0.477	-17.214	-7.991	0.011	-1.125	-1.288	-2.918
13	-0.329	-0.842	0.203	0.201	-0.672	-0.256	-0.829	5.498
14	-0.234	0.198	1.036	2.952	0.037	1.054	-1.339	-1.259

Table B.6 Correction coefficient (angle/tee-bar; $\sigma_{Yp} = \text{HT36}, \sigma_{Ys} = \text{HT36}$)

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.882	0.832	0.228	0.201				
1	0.552	0.816	0.108	0.814				
2	-0.371	0.761	-1.288	-0.095				
3	0.188	0.307	-1.193	-4.673				
4	-0.620	-1.420	0.982	0.189				
5	0.507	0.276	0.114	-0.801				
6	-0.450	-0.098	0.872	2.149				
7	0.663	0.340	-0.914	-0.140				
8	0.021	-0.843	-0.117	0.493				
9	0.277	1.966	0.643	1.137				
10	0.316	0.432	-0.281	-0.750				
11	-0.696	-0.768	-0.015	-0.598				
12	-0.370	-2.135	0.143	0.185				
13	-0.123	0.052	0.467	2.340				
14	-0.184	-0.031	-0.043	-0.083				
	σ_y	= 0	σ_x :	= 0	$\sigma_x \ge$	$\geq \sigma_y$	$\sigma_x <$	σ_y
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	1.230	-52.817	-9.401	0.210	3.569	-27.564	2.519	1.409
1	2.060	-29.742	-2.845	0.002	-6.657	-13.953	-1.951	0.443
2	0.748	-10.113	7.348	0.096	16.134	-0.941	5.173	0.377
3	2.137	-22.488	0.895	0.106	5.061	-13.561	-1.209	0.459
4	-9.821	-17.817	-0.192	-0.043	1.301	-9.052	-0.892	0.350
5	4.092	-8.043	6.035	0.015	0.023	1.174	2.129	0.375
6	-3.500	-29.188	4.714	0.220	-12.842	-17.750	-4.465	0.844
7	1.086	-14.425	0.917	-0.044	-9.716	-2.236	-4.020	0.350
8	17.702	-10.472	6.391	0.103	26.133	-3.978	3.392	0.347
9	18.907	-2.579	1.385	0.005	-6.355	1.390	-0.946	0.373
10	-13.521	-16.447	-1.942	-0.076	11.466	-9.905	2.686	0.457
11	-0.320	-16.651	-0.512	-0.080	3.810	-7.506	-1.802	0.375
12	6.798	-1.173	3.563	0.006	-0.931	0.007	0.525	0.000
13	8.286	-10.641	-2.337	-0.143	-12.334	-9.354	-0.552	0.375
14	12.976	-4.194	-1.105	-0.042	-0.628	0.691	1.629	0.340
a < 0			21	21	21	21		21
q < 0	0.373	2.071	$\frac{u_q}{5.041}$	0.400	0.503	8 087	0.046	$\frac{a_q}{0.047}$
1	2 750	-2.071	3 157	0.430	-0.555	-0.001	0.040	0.047
1 0	-2.100	-1.140	-3.137 8.401	0.045	-1.400	9 171	0.104	0.047
2	1.010	-0.313	0.491	0.100	-0.420	-3.171	0.045	0.012
3	-1.010	-0.700	0.090	0.100	6.820	-3.719	-0.090	0.012
-4- 5	-1.330	-0.073	-1.012	-0.045	-0.829	-3.007	0.023	0.012
0 6	1.079	-0.241	0.921	0.104	1.020	-0.094	0.080	0.012
0	-0.308	-1.124	2.000	0.301	-2.840	-4.921	-0.041	0.012
(0.858	-0.230	-0.255	-0.039	-2.(24	-3.094	0.026	0.012
8	2.095	-0.303	(.338	0.001	8.922	-2.980	0.025	0.012
9	1.579	-0.198	2.113	-0.091	1.422	0.089	0.025	0.000
10	-1.123	-0.889	-2.131	-0.049	-4.447	-3.033	-0.032	0.012
11	-0.088	-0.915	-1.803	0.099	3.810	-3.061	0.106	0.012
12	1.183	-0.201	4.693	0.000	-0.321	0.089	0.046	0.000
13	0.319	-0.289	-2.156	-0.147	1.479	-3.099	-0.096	0.000
14	0.212	-0.189	-0.074	-0.039	10.953	0.118	0.026	0.012

Table B.7 Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT36}, \sigma_{Ys} = \text{HT32}$)

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	ry				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.553	0.636	0.457	0.282				
1	0.512	0.316	0.353	-0.827				
2	0.238	0.854	-1.283	0.166				
3	0.117	0.582	0.477	-2.209				
4	0.110	0.303	-0.947	0.167				
5	-0.231	-0.162	0.558	0.208				
6	0.160	-0.205	-0.407	1.254				
7	-0.054	-0.467	0.787	-0.461				
8	-0.165	-0.002	0.171	0.167				
9	0.099	-0.005	0.765	0.043				
10	-0.068	-0.257	0.130	-0.131				
11	-0.172	-0.095	-0.626	0.637				
12	-0.086	-0.641	-0.396	0.060				
13	-0.057	-0.139	-0.296	0.613				
14	-0.013	0.188	-0.200	0.188				
	σ_u	= 0	σ_x	= 0	$\sigma_x >$	$> \sigma_u$	σ_x ·	$< \sigma_u$
q > 0	C_{q1}	C_{a2}	C_{q1}	C_{a2}	C_{q1}	C_{a2}	C_{q1}	C_{a2}
-	u_a	u_{q}	u_q	u_q	u_a	u_a	u_{a}	u_{q}
0	-2.085	-12.015	-2.422	3.112	1.634	-3.027	0.983	2.755
1	0.129	-5.796	-3.441	4.596	0.000	-0.335	1.066	1.926
2	5.099	-2.177	7.053	-6.158	0.000	0.281	-4.854	-13.250
3	-0.097	-9.648	-0.148	1.117	0.000	-0.014	1.082	6.953
4	-2.581	-2.037	0.126	-1 220	2 571	0.035	4 000	4 308
5	6.911	-0.408	17 707	-2.398	-3 949	0.000	10.672	-8.820
6	-2.357	-10 573	1 331	2.278	1 715	-0.029	-3.900	7 705
7	2.001	-1.0/8	1.001	0.617	_3 08/	0.020	-8 /19	1.681
8	5 775	-7.962	-0.384	-7 927	-2 790	-2 3/1	2 023	-10.136
9	-1.644	-0.917	-3 396	-1.875	7 754	-2.011	10 795	10.100
10	0.083	3 3 3 5	0.700	2 221	2 7/0	0.013	3 /05	1.101
10	3 271	-0.000	7.850	4.060	1 167	-0.013	1 802	2 5 2 8
11	-0.071	-2.048	-7.850	4.900 5.200	0.419	1.550	-1.092	1 599
12	-2.947	-0.000	-11.654	-0.062	0.412	0.174	-9.007	-4.000
13	-1.377	-1.292	-0.370	1.727	2.427	0.174	0.319	0.004
14	1.020	-0.009	0.120	-0.052	-3.437	-2.003	0.257	4.700
q < 0	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-3.953	-1.803	-2.075	3.326	-0.048	-1.046	2.020	1.467
1	1.928	-0.599	0.888	6.781	1.072	-1.223	-5.417	-1.071
2	2.247	-0.353	6.968	-9.841	-2.743	-0.249	-2.525	-7.342
3	0.045	-2.792	-3.757	-0.052	0.553	-0.271	2.418	8.650
4	-2.595	-0.152	-2.881	-0.652	0.332	0.655	2.104	0.447
5	2.687	0.172	19.217	-4.541	-1.952	-0.782	6.603	-5.379
6	-0.846	-3.021	0.930	2.068	2.838	-0.636	-0.541	8.316
7	0.405	0.373	-0.498	1.102	-3.169	0.484	-0.136	0.404
8	1.684	-2.518	2.329	-13.316	-4.361	-0.040	-1.880	-0.583
9	-1.312	0.020	5.365	-1.588	5.854	2.135	-1.259	-0.240
10	-0.264	-0.732	-0.105	-2.494	3.348	0.502	-0.235	1.910
11	-2.889	-0.172	-10.132	7.932	2.112	-0.813	2.767	-1.651
12	-2.131	-0.125	-19.930	-8.173	1.060	-0.108	-2.193	-3.067
13	-0.229	-2.274	1.385	0.328	-0.378	0.000	-1.623	7.624
14	2.453	0.295	1.089	0.382	-1.475	0.149	-0.901	0.096

Table B.8 Correction coefficient (angle/tee-bar; $\sigma_{Yp}=\text{HT36},\sigma_{Ys}=\text{HT32})$

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	ry				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.743	0.823	0.136	0.000				
1	0.492	1.040	0.516	0.218				
2	-0.359	-0.110	-0.670	-0.107				
3	0.595	0.380	-1.075	-2.584				
4	-0.599	-1.097	-0.058	-0.818				
5	0.527	0.328	0.337	-1.005				
6	-0.558	-0.366	0.884	0.248				
7	0.602	0.466	-0.426	1.267				
8	-0.072	0.013	-0.884	3.515				
9	0.429	0.901	1.689	-0.899				
10	0.241	0.050	0.153	-1.053				
11	-0.609	-0.821	-0.631	0.351				
12	-0.332	-1.345	-0.584	-0.313				
13	-0.248	0.146	0.448	1.151				
14	-0.216	0.172	-0.187	0.335				
	σ_y	= 0	σ_x :	= 0	$\sigma_x \ge$	$\geq \sigma_y$	$\sigma_x <$	$< \sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-0.875	-29.518	-10.906	1.112	8.394	-53.921	-0.088	1.493
1	6.473	-14.887	-1.753	-0.433	-2.585	-27.147	-1.462	0.220
2	11.423	-4.360	4.057	-0.215	36.325	-13.155	9.814	0.346
3	-14.141	-13.080	0.060	-0.578	-2.312	-22.729	0.738	0.097
4	-14.308	-10.846	0.539	-0.279	-5.608	-18.797	-0.604	0.293
5	8.424	-3.918	4.289	-0.227	8.684	-11.109	5.148	0.293
6	3.107	-15.114	7.833	-0.363	-15.211	-29.988	-3.781	0.072
7	-15.433	-4.252	-0.051	-0.279	-30.657	-15.889	-1.828	-0.187
8	19.167	-3.821	5.362	-0.180	31.854	-11.052	5.862	0.097
9	10.992	-0.976	-1.248	-0.215	0.808	0.962	1.663	0.000
10	7.027	-5.096	-0.285	-0.472	5.338	-18.095	-1.104	0.000
11	-3.233	-9.704	0.954	-0.227	-3.947	-17.602	-5.021	-0.329
12	11.016	-0.296	1.805	-0.016	6.176	1.084	4.251	0.293
13	-0.482	-4.477	-5.610	-0.627	-4.672	-13.224	0.789	0.097
14	14.457	-2.076	-1.268	-0.267	18.277	-11.494	-0.287	0.293
a < 0	u_{a}	u_{a}	u_{a}	u_{a}	u_{a}	u_{a}	u_{a}	u_{a}
0	-10.695	-0.776	-6.829	-0.205	-3.838	-3.944	0.106	-0.864
1	-3.167	-0.544	-3.880	-0.185	0.301	-1.819	2.015	-0.546
2	-0.110	-0.002	10.677	0.031	2.423	-1.184	-3.299	-0.546
3	-2.224	-0.534	0.836	0.026	-0.623	-1.650	-0.351	-0.611
4	-1.043	-0.469	-0.086	0.010	-8 783	-1 403	-4 240	-0.546
5	1 185	0.049	7 933	-0.182	1 714	-1.023	-4 352	-0.631
6	-2.849	-0.591	3 689	0.162	4 759	-1.841	7 444	-0.611
7	-0.044	-0 444	0.106	-0.175	-5 234	-1 287	-5.017	-0.546
8	0.044	-0.012	8 617	0.045	7 985	-1.052	1 073	-0.013
9	0.369	0.012	2 737	0.040	-0.548	0.000	-4 698	-0.548
10	0.303	_0.451	_2.101	_0.170	-0.601	-1 08/	2 108	0.040
10	0.721	-0.401	-2.119	-0.170	3 810	-1.004	4 849	-0.621
19	0.330	0.004	5 313	0.103	0.526	0.050	-4 251	-0.001
12	1 7/7	_0.000	_3 0.910	-0.000	_3 084	_1 154	-7.201	-0.200
10	1.141	-0.000	1.905	-0.203	-0.004	-1.104	5 200	-0.013
14	-0.064	0.071	-1.090	0.014	10.010	0.009	0.049	-0.010

Table B.9 Correction coefficient(flat-bar; $\sigma_{Yp} = \text{HT32}, \sigma_{Ys} = \text{MS})$

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.597	0.592	0.548	0.732				
1	0.527	0.533	0.586	-2.758				
2	-0.328	0.707	-1.194	0.616				
3	-0.124	0.650	-0.278	-3.600				
4	0.281	0.387	-1.579	1.187				
5	0.279	-0.110	0.260	0.184				
6	0.172	-0.266	-0.159	2.257				
7	-0.320	-0.493	1.009	-1.483				
8	-0.020	0.013	0.172	0.097				
9	0.087	-0.148	1.133	0.134				
10	-0.165	-0.297	0.499	-0.010				
11	-0.294	-0.200	-0.730	1.925				
12	-0.012	-0.455	-0.440	1.006				
10	0.000	0.19/	-0.232	0.203				
17	0.110	0.134	-0.202	0.200				
~ > 0	σ_y	= 0	σ_x	=0	$\sigma_x \leq C$	$\geq \sigma_y$	$\sigma_x < C$	$< \sigma_y$
q > 0		C_{q2}			C_{q1}	C_{q2}		C_{q2}
0	u_q	u_q	u_q	u_q	u_q	u_q		u_q
1	0.381	-22.092	-2.018	2.320	4.800	-42.307	0.000	6.011
1	-1.639	-10.009	-4.770	2.078	-0.348	2.214	-1.803	0.211
2	0.100	-1.104	10.955	-1.740	10.378	20.400	0.070	-10.021
3	-0.199	-10.520	-0.198	0.322	2 200	-22.024 E EE 4	-12.775	11.301
4	-4.201	-3.000	0.000	-1.905	-3.399	22.052	0.001	-1.109
5	0.720	-0.170	0.000	-0.420	0.705	41 770	7 941	-11.010
7	-0.132	-12.099	0.000	1.200	-0.795	-41.770	15 614	10.220 0 FEG
	0.303	-3.209	2.005	-1.104	-4.435	9.000	1 205	-2.000
0	9.000	-9.120	15.870	-3.708	33.064	-41.107	-1.200	-10.109
9 10	-3.929	-2.391	-10.079	-2.910	0 200	0.209	1 027	-2.229
10	-0.000	-4.000	-1.497	-2.570	-0.328	-0.099	-1.937	-0.115
11	-2.241	-10.343	-7.105	2.009	-2.101	21 526	-2.094	4.074
12	0.007	-2.414	-9.555	-2.010	-44.705	21.000	-30.773	-13.300
10	4 205	-0.412	5 244	-0.247	-7.003	-24.450	1 269	0.540
14	4.000	-1.431	0.044	-1.091	-1.992	0.230	-4.302	0.507
q < 0	u_q	u_q	u_q		u_q			u_q
0	-6.366	-3.336	-3.600	7.828	0.426	-1.172	-1.378	3.290
1	4.204	-1.224	0.921	10.598	0.400	0.064	-3.188	-0.249
2	4.267	-0.508	12.230	-9.029	-0.739	-0.003	10.771	-13.189
3	0.762	-4.743	-8.246	-2.027	1.801	0.013	0.960	10.484
4	-4.193	0.373	-0.114	-3.289	0.944	0.016	9.380	-2.334
5	3.585	0.054	24.962	-4.531	-4.147	-0.949	13.649	-9.102
0	-2.381	-4.900	4.709	3.079	-1.112	0.013	1.03/	11./31
	0.493	0.907	-2.304	-0.470	-3.823	-0.882	-8.047	-2.384
8	3.554	-3.940	1.564	-15.567	-2.515	0.013	-3.492	-2.600
9	-0.251	0.042	4.983	-3.002	0.001	0.016	8.026	-4.243
10	-1.085	-1.275	0.522	-5.348	1.(22	0.016	-2.057	-1.194
11	-4.070	-0.217	-12.859	10.980	2.097	-0.400	0.033	0.919
12	-3.824	-0.155	-30.830	-8.080	0.279	0.000	-29.029	-10.381
13	-0./11	-4.041	2.795	-1.519	0.777	0.016	0.010	8.239
14	3.090	1.897	0.563	-0.465	0.099	0.016	-2.689	-0.967

Table B.10 Correction coefficient (angle/tee-bar; $\sigma_{Yp} = \mathrm{HT32}, \sigma_{Ys} = \mathrm{MS})$

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.615	1.273	0.156	0.022				
1	0.959	-0.584	0.179	0.857				
2	0.013	0.810	-0.317	-1.492				
3	0.632	-0.572	-0.078	-5.001				
4	-0.094	-0.688	-0.311	1.780				
5	0.669	0.411	0.120	0.572				
6	-0.672	0.602	0.329	3.168				
7	0.320	-0.271	0.059	-1.387				
8	-0.125	-1.106	-0.331	-0.615				
9	0.770	1.766	1.179	-0.248				
10	0.237	0.167	-0.183	-0.837				
11	-0.861	0.099	-0.337	-0.747				
12	-1.047	-1.908	-0.918	1.776				
13	-0.176	0.415	0.113	2.373				
14	-0.401	0.092	0.017	0.106				
	σ_y	= 0	σ_x	= 0	$\sigma_x \ge$	σ_y	$\sigma_x <$	$<\sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-5.390	-0.859	-8.224	0.255	1.507	-0.151	-0.026	0.292
1	-1.779	-0.730	-3.685	0.079	0.634	-0.034	1.543	0.105
2	2.853	-0.390	7.819	0.097	-1.261	-0.127	-1.651	0.018
3	1.772	-0.099	0.547	0.278	0.647	-0.056	-0.245	0.020
4	-2.122	-0.739	-0.454	0.077	0.031	-0.116	-0.362	0.018
5	4.731	0.061	6.357	-0.035	-1.140	-0.060	-0.741	0.018
6	2.242	-0.721	2.418	0.365	-0.135	-0.115	0.374	0.020
7	1.320	-0.739	0.593	0.036	-0.219	-0.121	-0.163	0.019
8	4.012	-0.380	6.926	0.203	-1.165	-0.097	-1.801	0.018
9	4.045	0.032	2.920	-0.035	-0.767	-0.058	-1.619	0.013
10	-3.973	-0.763	-1.995	0.019	0.489	-0.096	0.640	0.020
11	-0.161	-0.129	-1.909	-0.084	0.509	-0.053	1.864	0.022
12	4.801	0.144	4.957	-0.031	-2.198	-0.061	-2.737	0.182
13	0.097	0.067	-1.044	0.054	1.602	0.006	0.891	0.020
14	2.210	-0.144	-0.504	-0.155	-0.138	-0.060	0.175	0.019
q < 0	u _a	u _a	u_{a}	u_{a}	u _a	u _a	u _a	u _a
0	-2.008	-30.612	-5.395	0.470	-1.853	-2.634	-3.572	20.624
1	-1.886	-16.359	-2.352	0.245	4.905	-1.446	3.095	7.533
2	-11.629	-2.264	6.431	0.305	-3.409	-1.117	15.972	-0.600
3	1.283	-12,493	-0.231	0.355	-8.352	0.453	-8.050	12.512
4	-13.422	-2.357	-1.048	0.147	5.324	0.615	7.697	-0.405
5	3.895	-1.268	5.261	0.286	-4.187	-0.955	3.375	0.107
6	-2 212	-16 416	1.825	0.482	0.278	0.126	3 590	9 290
7	1 256	-1.801	-0.064	0.102	-3 532	0.120	5.047	-0.730
8	2.541	-1 497	6.018	0.316	4 303	0.108	-0.536	0.107
<u>a</u>	9.807	-0.803	1 1 9/	0.010	-1.351	0.100	-12 717	0.101
10	_3 /11	_1.065	_1 561	0.001	1/ 018	1.676	5 710	_0.500
11	_0 750	-1.303	-1.017	0.020	2 8 8 2	_0 580	_/ 811	4 246
19	8 270	-4.102	3 600	0.119	_2.000	-1.054	-36 691	-1 210
12	3 060	1 209	0.507	0.223	7 610	0.096	1 170	0.920
14	0.009	-1.002	0.307	0.100	-12 002	0.920	-10.468	0.230
14	9.900	-1.000	0.414	0.110	-12.090	0.400	-10.400	0.101

Table B.11 Correction coefficient (flat-bar; $\sigma_{Yp}={\rm HT32}, \sigma_{Ys}={\rm HT36})$

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.513	0.598	0.405	0.177				
1	0.567	0.580	0.535	-0.702				
2	0.249	0.735	-1.028	0.083				
3	0.198	0.641	0.412	-1.550				
4	0.150	0.298	-0.844	0.282				
5	-0.044	-0.059	0.183	0.360				
6	0.075	-0.307	-0.458	0.832				
7	-0.026	-0.532	0.978	-0.363				
8	-0.157	0.020	0.276	0.158				
9	0.263	0.106	0.249	0.210				
10	-0.010	-0.258	0.142	-0.209				
11	-0.221	-0.313	-0.814	0.626				
12	-0.276	-0.660	-0.014	-0.247				
13	-0.044	-0.123	-0.268	0.477				
14	-0.089	0.202	-0.270	-0.019				
	σ_y	= 0	σ_x	= 0	$\sigma_x \ge$	$\geq \sigma_y$	$\sigma_x <$	$< \sigma_y$
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-5.420	-6.472	-3.534	1.750	1.649	0.908	0.465	3.924
1	3.221	-3.673	-3.507	2.174	0.108	0.959	-0.306	2.883
2	4.491	0.478	6.976	-1.878	2.054	-1.197	3.107	-11.320
3	-0.333	-4.388	0.525	0.598	-0.369	1.133	0.270	5.736
4	1.530	1.441	1.139	-1.115	-0.660	0.031	1.049	1.162
5	3.367	0.741	9.868	-0.480	-2.104	0.139	10.821	-7.413
6	1.876	-4.485	0.067	1.345	-1.455	1.214	-1.392	6.327
7	2.116	1.582	1.922	-0.199	-4.785	-0.593	-5.298	1.310
8	0.353	-2.556	1.758	-2.875	0.912	-0.096	-0.117	-9.223
9	-3.762	1.210	-8.373	-1.920	8.530	-0.114	13.569	0.194
10	1.284	-0.081	-0.874	-1.163	-1.709	0.045	-1.267	0.993
11	-3.816	-2.504	-4.148	2.185	1.114	1.532	-2.940	2.822
12	-1.329	0.989	-3.842	-2.220	-6.004	0.352	-17.516	-7.902
13	-0.718	-3.072	-0.947	0.292	0.652	1.019	0.616	4.278
14	-1.679	0.807	2.035	-0.406	1.986	-0.113	-1.987	3.794
a < 0	11.4	11 _a	11 _a	11 a	11.0	11.0	u_{σ}	11.2
	-2.611	-5.881	-3 151	1228	0.704	0.178	0.851	4534
1	-0.131	-3.623	-1.703	1.980	0.883	0.133	-0.536	3.315
2	2.084	-1.183	6.441	-1.988	-1.743	-0.014	2.721	-10.671
3	-0.020	-2.964	-0.270	-0.070	-0.208	0.527	-1 552	6.014
4	0.851	0.177	0.594	-0.192	-2.833	0.869	-1.312	0.525
5	2.261	-0.297	8 783	-0.430	-0.140	0.005	9.726	-6.890
6	-0.051	-3.608	0.813	0.340	1.711	0.333	-0.258	7.300
7	2 5/18	0.000	0.610	0.940	3 714	0.555	1 753	1.000
8	0.805	-2 124	1 1/16	_3 786	-1 /02	-0.083	-1.705	-6 002
0	_3.840	-2.104	_5 026	-1.037	1 251	1 010	10 552	-0.332
10	0.662	0.651	0.520	1 /66	0.070	0.275	0.102	0.175
11	1 /10	2 260	2 490	-1.400 2.128	1 568	0.373	3 380	2.055
10	-1.410	-2.309	-0.429 5.009	2.100	2.000	0.310	-0.009	2.000
12	-0.340	-0.100	-5.002	-2.300	-2.401	0.209	-14.900 1 1 1 0	-0.701
1.0	-0.427	-1.040	-0.709	-0.089	0.033	0.424	1.112	4.004
14	-2.042	-0.044	2.058	0.071	4.470	2.21(-1.909	1.739

Table B.12 Correction coefficient (angle/tee-bar; $\sigma_{Yp}={\rm HT32}, \sigma_{Ys}={\rm HT36})$
	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{z}	xy				
	u_x	u_y	u_{xy}	u_{xy}				
0	0.705	1.286	0.285	0.150				
1	0.343	-0.777	0.210	-1.266				
2	0.042	0.790	0.293	-1.434				
3	0.505	-0.237	-0.139	-4.984				
4	-0.342	-0.210	-1.392	5.461				
5	0.865	0.613	0.680	-1.157				
6	-0.492	0.436	0.315	2.491				
7	0.765	-0.684	0.449	-3.293				
8	-0.004	-1.058	-0.732	2.211				
9	0.001	1.461	2.303	-3.156				
10	-0.168	0.060	0.335	-2.797				
11	-0.656	0.204	-0.727	2.189				
12	-0.681	-1.771	-2.267	2.965				
13	0.163	0.261	0.039	2.690				
14	-0.030	0.201	-0.141	0.991				
	$\sigma_y = 0$		$\sigma_x = 0$		$\sigma_x \ge \sigma_y$		$\sigma_x < \sigma_y$	
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-4.850	-0.344	-11.997	0.626	2.531	1.874	0.293	0.024
1	0.311	-0.074	-5.030	-0.100	-0.253	0.931	0.097	0.004
2	-2.424	-0.044	12.483	0.070	5.776	0.783	0.069	0.004
3	0.151	-0.163	0.146	-0.037	-3.544	-0.720	0.204	0.004
4	1.447	-0.013	-0.782	0.073	-0.097	0.063	-0.079	0.004
5	0.062	0.022	9.729	0.022	1.212	0.783	-0.004	0.001
6	2.144	-0.182	4.158	-0.038	-2.694	0.008	0.141	0.005
7	2.238	0.032	0.226	0.073	-9.055	0.021	-0.159	0.004
8	-0.051	-0.154	11.114	0.116	4.553	-0.038	0.095	0.004
9	2.121	0.437	3.515	0.085	-2.452	0.002	-0.088	0.001
10	-1.149	-0.133	-2.471	-0.083	8.837	0.790	0.032	0.004
11	1.369	0.001	-3.090	0.022	0.026	0.927	0.027	0.004
12	0.116	-0.016	7.539	0.088	0.766	-0.044	0.010	0.000
13	0.693	-0.122	-2.330	-0.086	-5.134	-1.388	0.172	0.004
14	-2.774	-0.007	-0.594	-0.068	0.747	0.019	-0.115	0.001
a < 0	11 _a	1/2	11 a	11 _m	1/2	11.0	11.0	11.7
	6738	-142754	-7 972	0.101	-3 522	-0.587	-4 788	16.922
1	11 717	-85 910	-3 467	-0.001	3 720	0.029	5 472	9 609
2	-33 467	-6.333	10.037	0.001	-2 254	-0.010	10 571	8 767
3	-8 89/	-66 164	0.190	0.048	-7.057	1 285	0.504	10.035
	-23 503	-21.077	-2 205	0.018	12 077	1.200	1 828	10.305
5	-20.000	3 284	7 754	0.010	2 200	0.110	2 118	2 078
6	4 194	-9.204	3 976	0.021	0.114	2846	_1 200	10.005
7	4.134	-04.001	0.207	0.219	0.114	2.040	11 560	0.000
	4.440	-9.007	8.0491	0.010	-2.704	2.170	4 721	9.990
0	25.040	-0.914	0.940	0.007	-1.000	1.203	4.701	9.140
9	0 507	-0.910	0.110	0.000	-0.420	1 504	-10.042	-0.209
10	-0.097	-19.008	-2.312	0.033	10.279	4.090	14.499	10.030
	-2.484	-10.004	-2.181	-0.013	2.028	1.020	-0.007	9.317
12	0.470	3.509	0.4/1	0.003	-3.380	-0.024	2.855	-0.259
13	7.322	-6.729	-1.737	-0.176	-10.017	1.373	-11.357	8.555
14	7.017	4.648	0.057	-0.078	-18.209	1.929	-0.925	4.368

Table B.13 Correction coefficient(flat-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = HT32$)

	$\sigma_y = 0$	$\sigma_x = 0$	$\sigma_x \ge \sigma_y$	$\sigma_x < \sigma_y$				
q = 0	U_x	U_y	U_{xy}					
	u_x	u_y	u_{xy}	u_{xy}				
0	0.446	0.620	0.401	0.011				
1	0.392	0.588	0.761	-0.995				
2	0.304	0.571	-0.192	-0.214				
3	0.590	0.681	-1.079	-0.545				
4	0.007	0.418	-0.991	-0.117				
5	-0.303	-0.016	-0.010	0.812				
6	-0.175	-0.291	0.294	0.473				
7	0.198	-0.607	0.778	-0.004				
8	-0.148	0.017	0.218	0.093				
9	-0.035	-0.011	0.829	-0.293				
10	0.075	-0.316	0.333	-0.160				
11	-0.003	-0.347	-1.032	0.884				
12	0.050	-0.399	-0.718	0.057				
13	-0.148	-0.153	0.287	0.036				
14	-0.054	0.231	-0.353	0.271				
	$\sigma_u = 0$		$\sigma_x = 0$		$\sigma_x \ge \sigma_y$		$\sigma_x < \sigma_y$	
q > 0	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}	C_{q1}	C_{q2}
_	u_q	u_q	u_q	u_q	u_q	u_q	u_q	u_q
0	-6.144	-10.304	-5.758	2.637	1.670	1.658	0.836	4.820
1	2.730	-5.017	-3.240	2.632	0.822	0.882	1.613	3.092
2	5.417	-1.260	9.056	-2.195	0.075	0.154	3.827	-12.532
3	0.979	-7.190	-0.465	1.125	-0.857	0.037	1.694	6.545
4	2.891	2.944	2.153	-1.535	-1.368	-0.085	-1.804	2.112
5	5.303	-0.261	11.953	-0.644	0.088	0.168	17.063	-6.835
6	2.085	-7.866	0.868	2.015	0.077	0.139	-3.018	7.466
7	1.871	3.000	2.502	-0.284	-2.389	-0.085	-4.479	3.156
8	-0.042	-6.440	2.873	-3.628	-0.053	-0.674	-0.752	-10.810
9	-4.655	1.747	-10.343	-2.576	1.086	0.056	13.356	2.499
10	2 428	0.136	-1 039	-2.342	-1.521	-0.025	-0.915	0.379
11	-3 667	-2.612	-5 163	2.012	-0 779	0.505	-7 776	2 553
12	-2 630	0.461	-5.140	-2.630	-1.246	0.000	-22/135	-7 763
12	-1.485	-4.642	-1 147	0.426	0.027	-0.539	1.014	4.618
14	2 508	2 550	2 102	0.420	3 /28	0.050	0.704	5 563
14	-2.090	2.009	2.192	-0.703	3.420	0.050	-0.704	0.000
q < 0		u_q		u_q	u_q			u_q
0	-5.146	-16.086	-10.582	4.063	2.623	-2.719	2.225	4.983
1	2.646	-8.538	9.099	3.299	-0.813	-0.339	-2.736	2.544
2	5.057	1.070	14.762	-10.926	0.695	0.265	-3.070	-3.890
3	3.782	-11.344	-1.302	1.617	4.375	-1.467	4.791	6.889
4	2.159	5.444	4.396	4.733	-7.122	1.559	-4.237	-4.212
5	3.663	2.229	20.613	-6.972	4.384	1.592	5.663	-1.331
6	0.973	-13.976	2.587	3.711	-4.120	-2.228	-4.509	7.394
7	2.576	5.566	-3.934	3.558	1.760	-1.137	3.210	-2.067
8	-0.409	-6.721	1.084	-14.488	0.118	-0.648	0.161	-0.397
9	-5.461	2.695	1.084	0.994	-7.393	1.979	-0.869	-1.725
10	3.213	1.051	-1.390	-0.939	-1.690	0.159	0.129	-2.852
11	-2.552	-4.450	-13.765	1.948	-1.488	-1.381	-0.903	1.665
12	-2.156	3.331	-23.125	-8.935	-2.202	0.627	-0.674	-1.772
13	-2.445	-8.142	0.218	2.243	-0.069	-2.907	-1.841	4.935
14	-3.797	3.171	-0.427	6.887	8.626	6.542	1.941	-3.228

Table B.14 Correction coefficient (angle/tee-bar; $\sigma_{Yp} = MS, \sigma_{Ys} = HT32$)

付録C 座屈評価パネルのモデル化要領

C.1 CSR-Tの座屈評価パネルのモデル化要領

CSR-T では不規則な形状を有する非防撓パネルの座屈評価パネルのモデル化要領は以下 のように規定されている [21].

- 1. 多角形プレートにおいて, 最も 90 度に近い 4 つのコーナーを特定する (Fig. C.1 (a)).
- 2. 多角形の境界に沿ってコーナー間の直線距離を計算する (Fig. C.1 (b)).
- 3. 向かい合う辺の合計した長さの内の小さい方を特定する.

$$\min(d_1 + d_3, d_2 + d_4)$$

- 4. 選んだ向かい合う辺のそれぞれ中間の点を直線で結ぶ (Fig. C.1 (c)). この線分を 座屈評価パネルの長辺方向と定義し、この線分の長さを座屈評価パネルの長さ *l*₁ と する.
- 5. 座屈評価パネルの幅 l₂ を以下のように求める (Fig. C.1 (d)).

$$l_2 = A_{pl}/l_1$$

 A_{pl} : プレート面積

6. FEM 解析から求まる応力は,座屈評価パネルの座標系で再計算しなければならない. 再計算した応力を座屈・最終強度評価に用いる.

Fig. C.1 Modelling of an unstiffened panel with irregular geometry

C.2 CSR-Bの座屈評価パネルのモデル化要領

CSR-B では矩形でない座屈評価パネルのモデル化要領は以下のように規定されている [20].

- 1. 原型パネルが四辺形パネルの場合, Fig. C.2 に示すように, いびつな形状の原型パ ネルを完全に囲む矩形パネルを検討し, その矩形の面積が最小となる矩形パネルを 考慮する.更に,このパネルを,アスペクト比及び図心が変化しないように原型パ ネルと同じ面積となるまで縮小する.以上により,長辺*a*,短辺*b*の最終的な矩形パ ネルを決定する.
- 2. 原型パネルが台形パネルの場合, Fig. C.3 に示すように, 上底及び下底の平均値を *a*とし, 原型パネルの高さを*b*とする矩形パネルとする.
- 原型パネルが直角三角形パネルの場合, Fig. C.4 に示すように、三角パネルは、直 角を成す2辺をそれぞれ√0.5 倍し、面積及びアスペクト比が同じとなる矩形パネ ルとする.
- 4. 原型パネルが直角三角形以外の三角形パネルの場合、1.の規定による.

Original irregular panel (---) Intermediate rectangles (---) Rectangle with smallest area (---) Final rectangle (----)

Fig. C.2 Approximation of non rectangular elementary plate panels.

Fig. C.3 Approximation of trapezoidal elementary plate panels.

Fig. C.4 Approximation of right triangle.

また,波型隔壁の座屈評価パネルのモデル化要領は以下のように規定されている. なお, パネルの幅 b は Fig. C.5 に規定する値としなければならない.

- 1. 面材を評価する場合,座屈評価パネルのサイズは*b×b*とする.また,考慮する板厚 は最大の垂直応力が生じる位置における値とする.
- 2. ウェブを評価する場合,座屈評価パネルのサイズは 2b×bとする.また,考慮する板 厚は,それぞれ最大圧縮応力又はせん断応力が生じる位置における値とする.

Fig. C.5 Measuring b of corrugated bulkheads.