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Preface

The k-Cardinality Tree Problem (kCTP) is one of the famous combinatorial op-

timization problems, finding the best solution out of a very large, but finite, number

of possible solutions. Accordingly, the goal of the kCTP is to find a subtree with

exactly k edges in an undirected graph G, such that the sum of edges’ weight is

minimal. It is also a generalized version of the well known minimum spanning tree

(MST) problem when k =|V|-1, where |V| is the number of vertices in the graph.

Owing to its outstanding combinatorial optimal properties for solving real-world

decision making problems, kCTP has been applied in many fields, such as facil-

ity layout, matrix decomposition, telecommunication, and image processing. Ad-

ditionally, since the kCTP is suggested to be NP-hard, i.e., hardly be solved in

polynomial-time, it is also a challenging combinatorial optimization problem pro-

viding excellent benchmarks to estimate the efficiency of optimal approaches. As a

result, the kCTP has attracted the attention of a large number of researchers and

various of approaches have been proposed in last decades.

To solve the kCTP, exact methods (e.g., formulate it into an integer linear pro-

gram with generalized circle elimination constraints, and solve it by branch and

bound method) have been applied. However, as mentioned above, since it is NP-

hard, exact methods could hardly solve complex instances, such as problems with

large graphs, in a reasonable time. “Trial and error”, called heuristics, are then the

most reliable and efficient approach for finding possible answers of such complex

optimization problems. Experimental results show that they are able to find “good”

solution (i.e., low error from the real optimal solution) “quickly”.

In 70s, new kinds of approximate algorithms called metaheuristics were emerged.

They combine heurisictcs in high level frameworks aimed at efficiently and effectively
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exploring the search space. Evolutionary Algorithm (EA), Tabu Search (TS), Sim-

ulated Anealing (SA), Ant Colony Optimization (ACO), and Iterated Local Search

(ILS) are typical metaheuristics. Among those metaheuristics, EA and ACO can be

classified as biological inspired computations, which act after principles that exist in

natural systems. The approaches adopting such principles (e.g., using mechanism of

pheromone evaporation,ACO could generates new solution with high precision and

avoid the convergence to a local optimal solution), are enable to reach solutions with

enhanced robustness and flexibility and are expected to solve complex optimization

problems. Nowadays, it has been shown that a good combination of metaheuristics

can lead to more efficient behavior and greater flexibility for solving combinatorial

optimization problems. Such combination of metaheuristics are called hybrid meta-

heurisitcs. It is a new trend now to focus on hybrid metaheuristic rather than the

scope of single metaheuristic.

In this dissertation, new hybrid metaheuristics combining bio-inspired algorithms

(ACO, Immune algorithm, Memetic Algorithm) with TS and/or Dynamic Program-

ming are proposed for the kCTP. Properties of metaheuristics and hybrid meta-

heuristics and the way to construct an efficient hybrid metaheuristic for kCTP are

also discussed. Numerical results show that proposed algorithms are competitive to

existing algorithms from the viewpoint of solution accuracy and computing time.

More specifically, the proposed algorithms reached or updates almost of all of the

best known solutions in the literature (benchmark instances proposed by Blum et

al.). It also indicates that nothing else matches its balance of diversification strategy

and centralization strategy in hybrid metaheuristics.
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Chapter 1

Introduction

1.1 Introduction and Historical Remarks on k-Cardinality

Tree Problems

The k-cardinality tree problem (kCTP), also referred to as the k-minimum span-

ning tree problem, is a combinatorial optimization problem. It generalizes the

well known Minimum Spanning Tree problem. Let G = (V,E) be an undirected

graph, which is made up by connecting a set of vertices V and edges E. Each

edge e ∈ E is attached with a nonnegative value we, called a weight. The goal

of this problem is to find an acyclic and connected subset with exactly k (k ≤
|V |−1, |V |isthenumberofvertices) edges of which the total weight is minimized [5].

The subset matching these conditions must form a tree, which we call a k-cardinality

tree, denoted by Tk. The problem is mathematically formulated as follows:

minimize w(Tk) =
∑

(u,v)∈Tk

w(u,v)

subject to Tk ∈ Tk

where u ∈ V , v ∈ V , (u, v) ∈ E, Tk is the edges set of a tree, and Tk is a set

containing all feasible solutions in graph G. Figure 1.1 shows an example of a k-

cardinality tree in a connected graph. The figures attached to edges are weights and

the edges in the 4-cardinality tree are shaded. The total weight of the 4-cardinality

tree is 11.
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Figure 1.1: A 4-cardinality tree in a graph.

Owing to its outstanding combinatorial optimal properties for solving real-world

decision making problems, kCTP has been applied in many fields, such as facility

layout [6], matrix decomposition [23], telecommunication [18], and image processing

[26].

The example introduced in Figure 1.1 can be easily solved even by enumerating

all feasible solutions because the size of the graph is small. However, the problem

becomes very complex when the graph is large. Figures 1.2 and 1.3 show a grid

graph and a k-cardinality tree in that graph, respectively. It may cost a huge time

to enumerate all the feasible solutions from such a large graph. In fact, previous

researches have suggested that kCTP is an NP-hard problem [15]. Incidentally, this

problem can be polynomially solved in two cases. One is that there are only two

distinct weights in a graph [15], and the other is that a graph is given as a tree [38].

During the past few years, many algorithms have been proposed to solve kCTP

[37]. The first exact algorithm was presented by Fischetti et al. [9], in which kCTP

was formulated into an integer linear program with generalized circle elimination

constraints. Then, Quintao et al. [43] [52] proposed two integer programming formu-

lations, Multiflow Formulation and a formulation based on the Miller-Tucker-Zemlin

constraints, for solving kCTP.

As has been pointed out that kCTP is NP-hard, it is extremely difficult to find

an optimal solution in polynomial time by exact methods. In other words, though

methods introduced above can reach optimal solutions, their computing time may
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Figure 1.2: g400-4-01.g, a graph with 400 vertices and 800 edges.

be very large when solving complex problems. Therefore, a lot of approaches, called

approximation algorithms, are proposed to find near-optimal solutions in polynomial

time. At first, an O(
√
k)-approximation algorithm for the vertex-weighted problem

on grid graphs was proposed by Woeginger [6]. In 1995 [10], an O(log2k) approxima-

tion was provided for finding the tree that spans k vertices in a graph. [12] proposed

a constant-factor approximation for the problem in the plane. Later, a 2(
√
k) ap-

proximation algorithm was obtained by Ravi et al. [15], and then a 3-approximation

algorithm for a rooted case was proposed by Garg [14]. In [22], an algorithm with
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Figure 1.3: A cardinality tree of g400-4-01.g with k=160.

approximation factor of 2.5 was proposed by using a pruning technique for the case

in which no root vertex is specified. Recently, a polynomial time 2-approximation

algorithm for finding the minimum tour that visits k vertices was proposed by Garg

[35].

However, in real life people usually need a solution with high precision which is

obtained in a reasonable computing time. “Trail and error”, called heuristics, are

then the most reliable and efficient approach for finding possible answers of complex

optimization problems. Various types of heuristic and metaheuristic methods have
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been proposed in recent years. Among them Heuristics based on greedy strategy and

Dynamic Programming (DP) were introduced by Ehrgott et al. [17]. Moreover, a

heuristic based on Variable Neighborhood Decomposition Search, which has a good

performance for problems of small size, was presented by Urosevic et al. [33].

In 2007, Blum [38] proposed an improved dynamic programming approach: after

a minimum spanning tree for a given graph is obtained, DP is applied in order to

obtain an optimal subtree with k edges from the minimum spanning tree. This

algorithm has been proved to be efficient even for problems of large size. DP was

also combined with the evolutionary computation paradigm for the application to

kCTP in [36] [46].

Metaheuristic algorithms, such as Ant System [32] and ACO [29] based on pheromone

have been proposed. More over, Tabu Search (TS), Evolutionary Computation and

ACO for solving kCTP were studied in [34]. It showed that the performances of

these metaheuristics depend on the characteristics of the tackled instances, such as

the graph size, degree (number of edges that one vertex connects), and cardinality

(the value of k).

Among those metaheuristics, EA and ACO can be classified as biological in-

spired computations, which act after principles that exist in natural systems. The

approaches adopting such principles (e.g., using mechanism of pheromone evapora-

tion,ACO could generates new solution with high precision and avoid the conver-

gence to a local optimal solution), enable to reach solutions with enhanced robust-

ness and flexibility and are expected to solve complex optimization problems.

Nowadays, it has been shown that a good combination of metaheuristics can lead

to more efficient behavior and greater flexibility for solving combinatorial optimiza-

tion problems. Such combination of metaheuristics is called hybrid metaheurisitc

[53]. It is a new trend now to focus on hybrid metaheuristic rather than the scope of

single metaheuristic. A hybrid metaheuristic based on TS and ACO was constructed

by Katagiri et al.. Their experimental results using benchmark instances demon-

strated that the hybrid metaheuristic provides a better performance with solution
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accuracy over existing metaheuristics.

However, those metaheuristics mentioned above may not be effective in some

cases, especially for the problems with large size graphs. That is because complexity

of the problem increases significantly with size of the graph. There is still room

for improvement in precision of solutions for those instances with large graphs or

instances various in graph types or cardinalities (k).

In this dissertation, new hybrid metaheuristics combining bio-inspired algorithms

(ACO, Immune Algorithm, Memetic Algorithm) with TS and/or DP are proposed

for the kCTP. Properties of metaheuristics and hybrid metaheuristics for kCTP and

how to construct an efficient hybrid metaheuristic are also discussed. Numerical

results show that proposed algorithms are competitive to existing algorithms from

the viewpoint of solution accuracy and computing time. Specifically, proposed algo-

rithms updates almost all of the best known solutions of large benchmark instances

proposed by Blum et al. (e.g., graphs with more than 5000 edges). It also indicates

that nothing else matches its balance of diversity and centralization of solutions in

hybrid metaheuristics.

1.2 Outline of the Thesis

New hybrid metaheuristics are considered for solving k-cardinality tree problems

in this doctoral dissertation. The organization of each chapter is briefly summarized

as follows.

In Chapter 2, the basic concepts and methods used in our study are introduced

briefly. Firstly, combinatorial optimization concepts, such as NP-hard, benchmark

problems, heuristic and metaheuristic, are outlined by introducing to metaheuristics

and dynamic programming for solving kCTP. Results of experiments applying the

above methods show that heuristics (i.e., Prim algorithm) and metaheuristics (i.e.,

Tabu Search) are not efficient, and that dynamic programming can hardly obtain
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high quality solution to problems with large graphs. Secondly, we introduce the

Biological Inspired Algorithms, which have attracted much attention in recent years.

Finally, basic concepts of Hybrid Metaheuristics, promising methods to obtain high

quality solutions to combinatorial optimization problems in a reasonable time, are

provided.

In Chapter 3, a new hybrid metaheuristic based on TS and ACO is proposed. In

the proposed tabu search, our neighborhood is different from the Blum-Blesa one.

While only the leaf vertices can be selected in the transition of the Blum-Blesa’s

algorithm, all of vertices adjacent to the current tree can be selected in the proposed

algorithm. This extension enables us to strengthen the intensification ability of lo-

cal search. We also propose a diversification algorithm based on ACO by extending

the Blum-Blesa’s algorithm. One of the characteristics in the proposed algorithm

is that our algorithm deposits pheromone on the edges selected in the local opti-

mal solutions which were obtained by the TS-based local search algorithm. This

procedure allows the proposed algorithm to explore a wider search space than the

Tabu-Search-based local search method. To demonstrate efficiency of the proposed

solution method, we have compared the performances of the proposed method with

those of existing algorithms using the well-known benchmark problems. The numer-

ical experimental results show that the proposed method has improved some of the

best known solutions and values with very short computational time, and provides

a better performance with the solution accuracy over existing algorithms.

Chapter 4 focuses on a Hybrid Metaheuristic based on TS and Immune Algo-

rithm. Since TS stops when the length of tabu list reaches its limitation, Immune

Algorithm is applied to enlarge the search area by generating a new initial solution

for TS. In other words, Immune algorithm acts as a diversitification strategy for TS,

and thus the algorithm can search the solution space with a large step size. The pro-

posed immune algorithm is inspired by immune systems, especially the mechanism

of keeping diversity of the immune cells. More specifically, population of antibodies

are constructed with a variety of infeasible solutions. At each step the population-

based algorithm deals with a set of infeasible solutions rather than with a single
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one, providing a natural and intrinsic way to explore the search space. Experimen-

tal results show that Immune Algorithm improves the solution accuracy significantly.

Some best known solutions are also updated by the proposed algorithm. We arrive

at a conclusion that a well-designed hybrid metaheuristic algorithm is efficient for

solving the kCTP.

In Chapter 5, we develop two Hybrid Metaheuristics, both of which are based

on Memeteic Algorithm and TS. In the first one, a Memetic Algorithm based on

TS-based local search is proposed. It has both merits of Evolutionary Computa-

tion and Local Search. Note that a configuration is a list of vertices of a feasible

solution. To enlarge the search area, a crossover operator is applied to combine all

vertices of two configurations and returns a feasible solution with a good objective

function value. Moreover, to find the optimal solution, TS with short-term memory

is applied to each feasible solution generated by crossover. To enhance the quality

of initial population, one configuration of initial population is generated by DP. Ex-

perimental results show that the proposed algorithm has a high solution precision

and a short computing time. That is because the crossover in memetic algorithm

enlarges search area effectively, and local search improves the solution greatly. The

second one is a TS with Memetic Algorithm, which acts as a powerful diversitifica-

tion strategy. In addition, the TS with dynamic tabu list improved the precision of

solution significantly. Experimental results show that the new hybrid metaheuris-

tic is dramatically superior to exiting algorithms in precision. Specifically, some of

our proposed algorithms reach or update almost all of the best known solutions of

large benchmark instances proposed by Blum et al. (e.g., graphs with more than

5000 edges). It also indicates that nothing else matches its balance of diversity and

centralization of solutions in hybrid metaheuristics.

Chapter 6 concludes the doctoral dissertation and briefly summarizes this re-

search.
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Chapter 2

Basic Concepts and Methods

In this chapter, the basic concepts and methods used in our study are introduced

briefly. Firstly, combinatorial optimization concepts, such as NP-hard, benchmark

problems, heuristic and metaheuristic, are outlined by introducing metaheuristics

and dynamic programming for solving k-Cardinality Tree Problems(kCTP). Results

of experiments applying the above methods show that heuristics (i.e., Prim algo-

rithm) and metaheuristics (i.e., Tabu Search) are not efficient, and that dynamic

programming can hardly obtain high quality solution to problems with large graphs.

Secondly, we introduce the Biological Inspired Algorithms, which have attracted

much attention in recent years. Finally, basic concepts of Hybrid Metaheuristics,

promising methods to obtain high quality solutions to combinatorial optimization

problems in a reasonable time, are provided.

2.1 A Review of Heuristics and Dynamic Programming for

k-Cardinality Tree Problems

There are generally three principles to find a solution in an optimization prob-

lem by Heuristic. They are Constructive Heuristic, Improvement Heurisics, and

Metaheuristics which are usually based on the former two heuristics with strategies.

To solve the kCTP, the most often used constructive heurisitc is Prim algorithm, a

greedy heuristic. The edge with the lowest weight is chosen at each construction
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step to extend the current partial solution. In case of improvement heurisitics, local

search starts from an initial solution and tries to find a better solution from the

neighborhood of the current solution. Vertex swap or edge exchange are the com-

monly used for solving kCTPs. Combining basic heuristics in high level frameworks,

metaheuristic could find a better solution efficiently and effectively. For example,

TS is one of well-known metaheuristics for solving combinatorial optimization prob-

lems. It has memory of solution spaces that have been searched, and prevents from

searching those areas again for a while. This mechanism helps local search work

much more efficiently.

Although Dynamic programming is classified to Exact Methods, we also intro-

duce it here since the minimum spanning tree is generated by heuristic in case of

solving kCTPs. In the following parts, we will explain these classical methods in-

troduced above for solving kCTPs.

2.1.1 Prim algorithm

Prim algorithm is usually used to construct a solution for the well known mini-

mum spanning tree problems. It can also quickly grow a k-cardinality tree by adding

one edge at a time. To be more specific, let T be a subset of a k-cardinality tree

Tk. We call an edge a safe edge if T is still a tree after being added with it. More

specifically, it is an edge, one of its vertices belongs to tree T and the other does

not. Firstly, a vertex is selected randomly to be the first component of tree T . Then

in each step, one safe edge should be added to T until there are k edges in the tree

T . The pseudo-code is shown as follows:

Growing a k-cardinality tree

T⇐ select one vertex randomly

while k-cardinality tree is not completed do
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List ← generate list of safe edges

(u, v) ← an edge with minimal weight in the List of safe edges

T← T ∪ (u, v)

Update the List of safe edges

end while

2.1.2 Tabu Search

Metaheuristics are usually developed for solving complex combinatorial optimiza-

tion problems, e.g. the kCTP. TS, offering global search strategy, is one of the most

notable Metaheuristics.

Local Search, an improvement heuristic, is usually used to improve an initial so-

lution. A class of modifications to the current solution is constructed and a

better one or the best one is selected to be new current solution. It stops when

there is no better solution in the neighborhood of the current solution. To solve

kCTPs, vetex exchange and edge exchange are basic modifications. The first

one is to remove a vertex from the current solution and add another vertex

to the tree. Edges connected these vertices are also changed accordingly. In

the later one, edges are removed from the solution and replaced by new edges,

leading to a new k-cardinality tree. Since the later one can only change the

leaf edges, it is hardly able to improve the current solution significantly. In

our research, vertex exchange is applied in local search. Pseudo-codes of local

search are shown in as follows:

Algorithm 1 LocalSearch
Input: T cur

k

Vadd ← VNH (T
cur
k )

TNHbest
k ← T cur

k
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while Vadd ̸= ∅ do
vadd ← argmin {Vadd}
Vadd ← Vadd \ vadd
Eadd1 ← {(v, vadd)|v ∈ V (T cur

k )}
TNH
k+1 ←Construct k-plus-one MinimumSpanningTree(vadd)

Vdel ← VNH (T
cur
k )

while Vdel ̸= ∅ do
vdel ← argmin {Vdel}
Vdel ← Vdel \ vdel
TNH
k ←Construct k MinimumSpanningTree(TNH

k+1, vdel)

if TNH
k ̸= ∅ and f(TNHbest

k ) > f(TNH
k ) and can translate to TNH

k then

TNHbest
k ← TNH

k

end if

end while

end while

Output: TNHbest
k

Algorithm 2 Construct k-plus-one MinimumSpanningTree
Input: vadd

emin1 ← argmine∈Eadd1
{w(e)}

TNH
k+1 ← (V (T cur

k ) ∪ vadd , E(T cur
k ) ∪ emin1 )

Eadd1 ← Eadd1 \ emin1

while Eadd1 ̸= ∅ do
emin1 ← argmine∈Eadd1

{w(e)}
TNH
k+1 ← TNH

k+1 ∪ emin1

Eadd1 ← Eadd1 \ emin1

Eloop ← edges set of loop in TNH
k+1

emax ← argmaxe∈Eloop
{w(e)}

TNH
k+1 ← TNH

k+1 \ emax

if f(TNHbest
k+1 ) > f(TNH

k+1) then

TNHbest
k+1 ← TNH

k+1
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end if

end while

return TNH
k+1

Algorithm 3 Construct k MinimumSpanningTree
Input: TNH

k+1, vdel

edelmin ← argmine∈(vdel ,v){w(e)|v′ ∈ T cur
k }

if f(TNHbest
k ) < (

∑
e∈E(TNH

k+1
) w(e))− w(edelmin) then

return ∅
end if

TNH
k ← TNH

k+1 \ vdel
take subtrees which are generated by deleting vdel from TNH

k+1 as hyper vertices

Sr, r = 0, 1, 2 . . .

Eadd2 ← {(vi, vj)|vi ∈ Sk, vj ∈ Sl, k ̸= l}
repeat

emin2 ← argmine∈Eadd2
{w(e)}

if f(TNHbest
k ) < (

∑
e∈E(TNH

k
) w(e)) + w(emin2 ) then

return ∅
end if

if there is no loop in emin2 ∪ TNH
k then

E(TNH
k )← E(TNH

k ) ∪ emin2

end if

Eadd2 ← Eadd2 \ emin2

until TNH
k is a tree

return TNH
k

Tabu Search, firstly proposed by Glover et al. [2] [19], is one of the mostly used

metaheuristics for solving combinatorial optimization problems. TS enhances

its search ability based on local search. The most important characteristic of

TS is that it uses a concept ofmemory to control movements via a dynamic list
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of forbidden movements. To be more specific, the solutions which have been

searched will be “tabu” (forbidden) from visiting for a while. This mechanism

allows TS to intensify or diversify its search procedure in order to escape from

local optima. Incidentally, TS has also been proved to be effective in solving

kCTPs [34]. The search starts from an initial solution. Parameters and other

details of TS will be proved in Chapter 3. Pseudo-codes of TS are shown as

follows:

Algorithm 4 TabuSearch
Input: a problem instance (G,w, k)

T cur
k ← GenerateInitialSolution()

T gb
k ← T cur

k

while tl ≤ tlmax do

Initialize(InList ,OutList , tl , γe)

T lb
k ← T cur

k

TNHbest
k ←LocalSearch(T cur

k )

T cur
k ← TNHbest

k

if T cur
k ̸= ∅ then

if f(T lb
k ) > f(T cur

k ) then

T lb
k ← T cur

k , nic ← 0

if f(T gb
k ) > f(T cur

k ) then

T gb
k ← T cur

k

end if

else

nic ← nic + 1

end if

if nic > nicmax then

tl ← tl + tl inc

end if

else
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PerformRestart()

nic ← 0

end if

end while

Output: T gb
k

2.1.3 Dynamic Programming

The Dynamic Programming (DP) [11] is a technique based on a very simple idea,

solving the current problem with results of subproblem that has been already solved.

In this chapter DP is applied to the T SP , a minimum spanning tree, for finding out

the best k-cardinality tree. We revisit the DP algorithm of Blum [38] for finding

the best k-cardinality tree in an edge weighted graph that is itself a tree. This

algorithm has polynomial running time. Firstly, a spanning tree is constructed by

the Prim algorithm. Then DP is applied to obtain the best k-cardinality tree in the

constructed spanning tree.

Algorithms of the proposed method are shown as follows.

Algorithm 5 Dynamic programming algorithm for solving kCTP
Input: Graph G, cardinality k

Construct a minimum spanning tree T SP

DP for finding optimal k-cardinality tree in tree T SP

Retrieval of a k-cardinality tree

Output: The k-cardinality tree T

Algorithm 6 Constructing a Minimum spanning tree T SP

Input: Graph G

New vertex : a new vertex selected randomly

for there is vertex (vertices) has not been spanned do
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for all vertices have not yet been spanned do

calculate their costs (edge weights) to connect T

end for

Span the vertex by the edge with smallest cost, and make it as the new vertex

end for

Output: The minimum spanning tree T SP

Algorithm 7 DP for finding optimal k-cardinality trees in trees[38]
Input: A rooted tree T with root node vroot , and a maximum cardinality k ≤ |E(T )|
Color all nodes white

for all leaf nodes vleaf of T do

Solve subproblem (T (vleaf ), 0)

Color vleaf black

end for

while T contains a white node v whose children are all black do

Solve subproblems (T (v), l) for l = 0, . . . ,min{k, |E(T (v))|}
Color v black

end while

Output: The values of the best l-cardinality trees in T (0 ≤ l ≤ k), and the manip-

ulated data structures for their efficient retrieval

where, (T (v), l) is the subproblem of l-cardinality tree problem of subtree T (v)

rooted at v.

• f−(v, l) is the minimum objective function value of l-cardinality tree which

does not contain v in subtree T (v),

• f+(v, l)is the minimum objective function value of l-cardinality tree which

contains v in subtree T (v).
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For the leaf vertex, f−(vleaf , 0)←∞, f+(vleaf , 0)← w(vleaf ). Otherwise,

f−(v, l)← min {f(vci , l)|i = 1, . . . , r} (2.1)

f+(v, l)← min

{
r∑

i=1

(δ(αi)(w(v, v
c
i ) + f+(v

c
i , αi) |

r∑
i=1

αi = l − r, αi ≥ −1
}

(2.2)

where vc means the child vertex of vertex v. Since it costs a lot of time to calculate

f+(v, l), we solve it efficiently by calculating the following values:

f+(v, l)← min
{∑2

i=1(δ(αi)(w(v, v
c
i ) + f+(v

c
i , αi))|

∑2
i=1 αi = l − r, αi ≥ −1

}
for i = 3 to r do

for l = 0 to min{k,∑i
j=1 |E(T (vcj))|+ 1} do

fnew
+ (v, l)← min{f+(v, γ) + (δ(βi)(w(v, v

c
i ) + f+(v

c
i , βi)))|γ + βi = l − 1, γ ≥

0, βi ≥ −1}
end for

f+(v, l)← fnew
+ (v, l)

end for

Although the objective function value of kCTP can be calculated by

f = min{f−(vroot , k), f+(vroot , k)}, we calculate the following variables to find the

tree itself.

• Boolean value s(v, l) is TRUE if vertex v is the root of l-cardinality tree, else

FALSE.

• Pointer n(v, l) indicates which child of v is to move if s(v, l) is FALSE.

• A set c(v, l) of tuples of the form (v′, t). v′ is the child of v, and t ≤ |E(T (v′))|
is an integer number that denotes the size of the subtree to be collected in

T (v′).

In Function 2.2 , if f−(v, l) < f+(v, l) we set s(v, l)← FALSE, n(v, l)← vcj . Other-

wise, we set s(v, l) ← TRUE, c(v, l) ← {(vci , α∗
i )}. Let α∗

i be the values of αi with

which the minimum in Function 2.2 can be obtained.

Algorithm 8 Retrieval of an k-cardinality tree
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Input: A rooted tree T with root node vroot , a cardinality k, and the manipulated

data structures for tree retrieval

vc ← vroot

Tk ← empty tree

while s(vc, k) = FALSE do

vc ← n(vc, k)

end while

AddNext(vc, k)

Output: The optimal k-cardinality tree Tk in T

AddNext()

Input: The current node vc, and an integer number t indicating the size of the

subtree to be retrieved from T (vc)

for all tuples (v, r) in c(vc, t) do

AddNext(v, r)

Add v and (vc, v) to Tk

end for

2.1.4 Experimental results and analysis

We use C as the programming language and compile programs with C-Compiler:

Microsoft Visual C++ 2010 Express. Each algorithm above was tested 30 runs on

a PC with Intel Core i7 2.8 GHz CPU and 6 GB RAM under Microsoft Windows

7. The aim of the experiment is to analyze the properties of those algorithms. Each

algorithm is applied only once at each run.

We use two different kinds of graphs out of the well-known benchmark instances

[1]. They are the grid graph with |V | = 1089, |E| = 2112 and the 4-regular graph

with |V | = 1000, |E| = 2000. Both of them are middle size of benchmark instances

in [1]. Each graph is applied with 5 cardinalities (k), accordingly we get 10 different

instances. Since the range of k is from 1 to |V |−1, cardinalities are chosen as about
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20, 40, 60, 80 and 90 percents of |V |. That is because we want to study the possibly

changing of each algorithm’s performance over the whole range of cardinalities. On

the other hand, by these different instances we can get results with much stronger

persuasion.

In order to analyze the solution quality of each algorithm, the best, mean and

worst objective function values of each algorithm in every run are obtained. The av-

erage computing time when the algorithm reaches the best solution is also recorded.

Based on these results in Tables 2.1 and 2.2, we provide much more intuitive

figures (Figure 2.1) for analysis. We also conclude properties of each algorithm

mainly based on the following 4 aspects.

Best objective function values Since the aim of each algorithm is to find the

best solution of kCTP, best objective function value of each algorithm is com-

pared. We introduce relative error, calculated by (BS − BKS)/BKS, to

evaluate the error of each algorithm to a problem, where BS indicates the

best objective function values of each algorithm, BKS indicates the value of

best known solution given out in [1]. The average relative error of each al-

gorithm to various problems is shown in Figure 2.1 [1]. The horizontal axis

shows each algorithm and vertical axis shows the relative error. The smaller

the relative error is, the higher precision an algorithm has.

Mean objective function values To evaluate the quality of solutions of each al-

gorithm much more precisely, we also compared the mean objective function

values of 30 runs. Similarly as described above, we use relative error, calcu-

lated by (AS−BKS)/BKS to evaluate the solution quality of each algorithm.

AS indicates the average objective function values of each instance obtained

by that algorithm. The mean relative error of benchmark instances for each

algorithm is shown in Figure 2.1 [2].

Standard deviation of objective function values Figure 2.1 [3] shows the av-

erage relative standard deviations of each algorithm to instances. It is calcu-
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lated by (DEV −BKS)/BKS, where DEV means the standard deviation. If

the standard deviation of an algorithm is small, algorithm has strong robust-

ness. On the contrary, we can say that the algorithm has a character of high

diversity if its deviation is large.

Mean computing time One of the most important pointers of an algorithm’s

performance is computing time. In our experiments, we recorded the mean

computing time of 30 runs. Figure 2.1 [4] shows the mean computing time of

each algorithm. The speed of each algorithm can be judged from this figure.
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Figure 2.1: Results

Properties of each single algorithm are given as follows.

Prim’s algorithm At first glance of Figure 2.1, the performance of Prim’s algo-

rithm (PRIM) is the worst one among three algorithms. It has the worst
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precision and the largest standard deviation. However, the computing time of

PRIM is very short. It shows that constructive heuristic is very fast, but it

often returns solutions of low quality compared with the other two algorithms.

Another merit of PRIM is that the implementation is very easy.

TS Figure 2.1[1][2] shows that TS is of medium solution quality among three al-

gorithms, with relative error of 2% to the best know solution. We take it

for granted that local search updates the initial solution generated by PRIM

remarkably. The standard deviation of objective function values in 2.1[3] indi-

cates TS could generates various solutions. It seems that if TS is given enough

time, the possibility to reach the best solution is very high. However, we can

see from Figure 2.1 [4] that TS has the longest computing time. To solve

real-life problems, it is often desired to reach a high quality solution in a short

time. We conclude that TS has a strong search ability but not efficient.

DP From Figure 2.1 [1] and [2], we can see that the solution quality of DP is

the best among three algorithms, especially about average objective function

values. Its high performance comes from the ability of exploring a large search

space. The minimum spanning tree is constructed by connecting all vertices

in the graph with edges which have small weights. Furthermore, Figure 2.1

[4] indicates that computing time of the DP is very short. That’s due to little

computing time of generating a minimum spanning tree, and DP has a very

good performance. Figure 2.1 [3] shows that DP has the least robustness, and

its standard deviation is nearly 0.

Strong robustness is usually considered as a good property for an algorithm.

However, it may also be a disadvantage, especially when the algorithm can

not reach the best known solutions at the first time. The solution may not

be updated anymore no matter how long the search continues. To testify

our hypothesis, we applied the following experiment. We applied PRIM to

a benchmark problem, the 4-regular graph (|V | = 1000, |E| = 2000) with

k = 600, to construct a k-cardinality trees starting at each vertex. Accordingly,

we get 1000 trees and the frequencies of vertices and edges being used in each
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tree. Comparing to the results of the best known solution, we found there are

6 edges that have never been used in those 1000 trees. In other words, no best

known solution can be reached from these spanning trees. We conclude that

DP can hardly reach the best known solution unless we get a spanning tree

contains all edges contained in best known solution or apply a local search

that could reach to a solution contains such edges.

Table 2.1: Results for instances with Grid graph[1]

Graph k BKS PRIM TS DP

|V | = 1089 200 3303 Best 4245 3506 3400

|E| = 2112 Mean 4488.4 3595.2 3400

d(v) = 3.87 Worst 4793 3784 3400

(bb33x33-1.gg) Time 0.005 9.639 0.042

400 7070 Best 8778 7419 7276

Mean 9031 7500.5 7276

Worst 9843 7586 7276

Time 0.093 72.197 0.109

600 11579 Best 13931 12005 11798

Mean 14020.0 12141.5 11798

Worst 14309 12214 11798

Time 0.016 64.424 0.080

800 17393 Best 19187 17481 17436

Mean 19240.1 17570.6 17436

Worst 19453 17592 17436

Time 0.019 91.552 0.148

900 20919 Best 22292 20947 20926

Mean 22452.8 21154.4 20926

Worst 22519 21175 20926

Time 0.019 49.721 0.100
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Table 2.2: Results for instances with Regular graph [1]

Graph k BKS PRIM TS DP

|V | = 1000 200 3308 Best 3817 3426 3432

|E| = 2000 Mean 3955.6 3477.3 3432.1

d(v) = 4 Worst 4192 3540 3433

(1000-4-01.g) Time 0.002 8.569 0.024

400 7581 Best 8364 7698 7653

Mean 8543.5 7773.8 7657.7

Worst 8712 7854 7658

Time 0.004 42.450 0.046

600 12708 Best 13670 12775 12789

Mean 13780.2 12783.8 12789

Worst 14016 12794 12789

Time 0.007 52.932 0.066

800 19023 Best 19566 19020 19076

Mean 19595.5 19028.9 19076

Worst 19639 19051 19076

Time 0.010 80.054 0.083

900 22827 Best 23160 22827 22830

Mean 23160.2 22827 22830

Worst 23167 22827 22830

Time 0.013 34.078 0.091

2.2 Introduction to Bio-inspired algorithms

Biological inspired computations after principles that exist in natural systems.

The approaches adopting such principles (e.g., using mechanism of pheromone evap-

oration,ACO could generates new solution with high precision and avoid the conver-

gence to a local optimal solution) enable to reach solutions with enhanced robustness

and flexibility and are expected to solve complex optimization problems efficiently.
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In this section, we review some metaheuristics which are classified to Bio-inspired

algorithms, such as evolutionary algorithms, ant colony optimization, and artifi-

cial immune systems. Bio-inspired algorithms can also be considered as heuristics

reconstructed based on strategy learned from nature.

2.3 Basic concepts of Hybrid Metaheuristic

Referring to a dictionary, a hybrid is an animal or a plant that has been bred from

two different species of animals or plants. In case of Hybrid Metaheuristic, it means

a combination of metaheuristics or a metaheuristic with other operation research

technique. For example, TS can be viewed as the hybrid of construction heuristic

and Local Search based on strategy of “tabu”. As we can see from the properties of

algorithms introduced above, each algorithm has its advantage in solution quality or

computing time. Moreover, the heuristic and metaheuristic are easier to implement

than classical gradient-based techniques. By combining metaheuristic and other op-

timization technique based on their advantages, it is desirable to find good solutions

in a significantly reduced amount of time. In other words, hybrid metaheuristics are

good combination of metaheuristics. It has been proved to be much more efficient

than a sole metaheuristic in recent years, and has higher flexibility when dealing

with real-world and large-scale problems [39]. In the following chapters, we will

introduce three hybrid metaheuristics proposed in this research. Experimental re-

sults show that those approaches are competitive with state-of-the-art methods on

Blum’s bench mark instances [1].
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Chapter 3

Hybrid Metaheuristic Based on Tabu Search and

Ant Colony Optimization

3.1 Introduction

In this chapter, a new hybrid metaheuristic based on Tabu Search (TS) and Ant

Colony Optimization (ACO) is presented. The idea is based on approximate solution

methods of Blum and Blesa [34]. They have proposed several metaheuristics such

as evolutionary computation, ACO and TS for solving k cardinality tree problems

(kCTP). They compared their performances through benchmark instances [1] and

suggested that an ACO approach is the best one for relatively small ks, whereas a

TS-based approach has an advantage for large ks with respect to solution accuracy.

In the proposed TS, the neighborhood structure is different from the Blum-Blesa

one. While only the leaf vertices can be selected in the transition of the Blum-Blesa’s

algorithm, all of vertices adjacent to the current tree can be selected in the proposed

algorithm. This extension enables us to strengthen the intensification ability of local

search.

We also propose a diversification algorithm based on ACO by extending the Blum-

Blesa algorithm. One of the characteristics in the proposed algorithm is that our

algorithm deposits pheromone on the edges selected in the local optimal solutions

which were obtained by the Tabu-Search-based local algorithm. This procedure
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allows the proposed hybrid algorithm to explore a wider search space than the TS-

based local search method. It generates new and diversified initial solution for TS.

To demonstrate efficiency of the proposed solution method, we compare the per-

formances of the proposed method with those of existing algorithms using the well-

known benchmark instances [1] that are easily accessible through the internet. The

numerical experimental results imply that the proposed method has improved some

of the best known solutions in very short computational time, and provides a better

performance with the solution accuracy over existing algorithms.

3.2 Hybrid Metaheuristic Based on Tabu Search and Ant

Colony Optimization

Since TS is an extension of local search, its intensification ability, which means

the ability of robustly finding a very good local optimal solution in relatively narrow

search space, is very high. However, the diversification capability of TS, which means

the ability of exploring a wide solution space and covering the whole region to be

searched, is relatively lower. This characteristic of tabu search reflects the fact that

the TS-based algorithm by Blum and Blesa is the best for solving the benchmark

instances of kCTP in the case of large ks.

On the other hand, ACO-based algorithm by Blum and Blesa can seek a very

good solution for kCTP with small ks, which we think is caused by its high diver-

sification capability. In fact, as will be described later in the experimental results,

it is observed that ACO by Blum and Blesa often finds better “best” values than

their TS method, and that some of the “best” values are even better than the pro-

posed method. However, the objective function values obtained through ACO may

quite-variable due to its lower intensification ability than TS. Realizing that TS and

ACO are considered to be complementary to each other, we propose a hybrid algo-

rithm that achieves a balance between the diversification and the intensification by

incorporating the ideas of ACO into a TS algorithm.
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The outline of the proposed algorithm is as follows:

Step 1 (Generation of an initial solution) For a vertex selected at random,

the application of Prim method is continued until a k-subtree is constructed.

Let the obtained k-subtree be an initial solution and the current solution T cur
k .

Step 2 (Initialization of parameters) Initialize the tabu lists and the values of

parameters such as tabu tenure tlten and aspiration criterion levels.

Step 3 (Tabu search-based local search procedure) Search the neighborhood

based TS, and store a set of local minimum solutions. If the current tabu tenure

tlten is greater than ttmax, go to Step 4. Otherwise, return to Step 2.

Step 4 (Ant colony optimization-based diversification procedure) Expand

the exploration area based on ACO to increase the diversity of the solutions.

Step 5 (Terminal condition) If the current computational time is greater than

TimeLimit, terminate the algorithm. Otherwise, return to Step 2.

Let T cur
k , T gb

k and T lb
k be the current solution, the best found solution and local

optimum solution, respectively. Then, we describe the details on the procedures in

Steps 3 and 4.

3.2.1 Tabu search-based local search

In this section, we describe the details on the TS-based local search algorithm

performed in Step 3.

For a set V (Tk) of vertices included in k-subtree Tk, we define

VNH(Tk) := {v|{v, v′} ∈ E(G), v /∈ V (Tk), v
′ ∈ V (Tk)}.

Let TNH
k be a local minimum solution of k-subtree obtained by adding vin ∈ VNH(Tk)

to Tk and deleting vout ∈ V (Tk). Then, the neighborhood of Tk denoted by NH(Tk)

is defined as a whole set of possible TNH
k in G.
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In the proposed local search algorithm, the next solution through transition is

selected as the k-subtree that has the best objective function value of all solutions

TNH
k ∈ N(T cur

k ) as follows:

TNHbest
k := arg min

TNH
k

∈NH(T cur
k

)
{f(TNH

k )}.

It should be stressed here that our neighborhood is different from the Blum-Blesa

one. While only the leaf vertices can be selected in the transition of the Blum-Blesa’s

algorithm, all of vertices adjacent to the current tree can be selected in the proposed

algorithm. This extension enables us to strengthen the intensification ability of local

search, but the computational time for finding the best neighborhood solution may

be longer. One of the promising approaches to decreasing the computational time is

to incorporate the solution algorithm for minimum spanning tree (MST) problems,

which has an advantage that it is solved in a polynomial time. However, a direct

application of the MST algorithms by Prim and Kruskal is not efficient even if it is a

polynomial-time algorithm because so large number of applying the MST algorithm

is needed. Realizing such difficulty, we employ a more efficient method of obtaining

the best neighborhood solution without applying the MST algorithm, which will be

described later in the details of the algorithm. When using a local search algorithm,

there is a problem of how to go out of a local optimal solution or how to avoid cycling

among a set of some solutions. In order to resolve such a problem, we use two tabu

lists InList and OutList, which keep the induces of removed edges and added edges,

respectively. A tabu tenure, denoted by θ, is a period for which it forbids edges in

the tabu lists from deleting or adding. In details, at the beginning, we set an initial

value of the tabu tenure tlten to ttmin which is the minimum tabu tenure defined as

ttmin := min

{⌊
|V |
20

⌋
,
|V | − k

4
,
k

4

}
.

Let nicint be the period of the best found solution T gb
k not being updated. If nicint >

nicmax, then tabu tenure is updated as tlten ← tlten + ttinc, where

nicmax := max {ttinc, 100}, ttinc :=
⌊
ttmax − ttmin

10

⌋
+ 1.
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If the current tabu tenure tlten is greater than ttmax defined as

ttmax :=

⌊
|V |
5

⌋
,

the local search algorithm is terminated, and diversification strategy based on ACO

is performed.

When checking whether the transition from the current solution to some solution

in TNH
k is acceptable, if an edge e in InList or OutList, which is related to the

transition as the added edge or deleted edge, satisfies the condition γe > f(TNH
k ),

then the transition is permitted. The parameter γe called aspiration criterion level

is given to all of edges and is initially set to

γe =

 f(T cur
k ), e ∈ E(T cur

k )

∞, e ̸∈ E(T cur
k ).

(3.1)

In each explored solution Tk, γe is updated as γe ← f(Tk) for every e ∈ E(Tk). The

following are the details on the proposed local search algorithm.

[Tabu search-based local search algorithm]

Step 1 (Initialization of the list of a deleted vertex) Let Vin ← VNH(T
cur
k ).

Step 2 (Decision of a deleted vertex) If Vin = ∅, terminate the algorithm. Oth-

erwise, go to Step 2-1.

Step 2-1 Find

vin := arg min
v∈Vin

{∑
v′∈V (T cur

k
)w(e)

d(v)

∣∣∣∣∣ e = (v, v′)

}

and set Vin ← Vin\vin, where d(v) is the number of edges existing between

v ∈ V and T cur
k . Go to Step 2-2.

Step 2-2 Find Ein1 := {(v, vin) | v ∈ V (T cur
k )} (see Fig. 3.1) and emin1 :=

argmine∈Ein1
{w(e)}. Set TNH

k+1 ← (V (T cur
k ) ∪ vin, E(T cur

k ) ∪ emin1) and

Ein1 ← Ein1\emin1 (see Fig. 3.2), and go to Step 2-3.
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Step 2-3 Find emin1 := argmine∈Ein1
{w(e)}, and set TNH

k+1 ← TNH
k+1 ∪emin1 and

Ein1 ← Ein1\emin1 (see Fig. 3.3). Go to Step 2-4.

Step 2-4 For a set Eloop of edges which compose a loop in Step 2-3, find

emax := argmaxe∈Eloop
{w(e)} and set TNH

k+1 ← TNH
k+1 \emax (see Fig. 3.3).

Step 2-5 If Ein1 = {∅}, then set Vout ← V (T cur
k ) and go to Step 3. Otherwise,

return to Step 2-4.

Step 3 (Decision of an added vertex for constructing TNH
k ) If Vout = {∅},

then return to Step 2. Otherwise, go to Step 3-1.

Step 3-1 Find

vout := arg max
v∈Vout

{∑
v′∈V (T cur

k
) w(e)

d(v)

∣∣∣∣∣ e = (v, v′)

}

and set Vout ← Vout\vout. Go to Step 3-2.

Step 3-2 Find eoutmin := argmine∈{(vout,v′)}{w(e) | v′ ∈ T cur
k }. If f(TNHbest

k ) <(∑
e∈E(TNH

k+1
)w(e)

)
− w(eoutmin) for e

out
min, then return to Step 3. Otherwise,

go to Step 3-3.

Step 3-3 For a set of super-vertices Sr, r = 0, 1, 2 · · ·, each of which is a

connected component obtained by deleting vin from TNH
k , find Ein2 :=

{(vi, vj) | vi ∈ Sk, vj ∈ Sl, k ̸= l} (see Fig. 3.4). Go to Step 3-4.

Step 3-4 Find emin2 := argmine∈Ein2
{w(e)}. If f(TNHbest

k ) < w(emin2) +∑
e∈E(TNH

k
)w(e) for emin2 , then return to Step 3. Otherwise, go to Step

3-5.

Step 3-5 If there is no loop in emin2 ∪ TNH
k , then set E(TNH

k ) ← E(TNH
k ) ∪

emin2 and Ein2 ← Ein2\emin2 . Otherwise, set Ein2 ← Ein2\emin2 . Go to

Step 3-6.

Step 3-6 If TNH
k is a tree (see Fig. 3.5), then set f(TNHbest

k ) ← f(T cur
k ) and

return to Step 3. Otherwise, return to Step 3-4.
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Figure 3.1: Current solution (when vin = v8 and Ein1 = {e7, e8, e9, e12, e17, e18})

Figure 3.2: k + 1-subtree TNH
k+1 (e8 is added to the current solution)

As mentioned before, the most important feature of the proposed tabu search-

based local search algorithm is to obtain a minimum spanning tree for every sub-

graph without applying the MST algorithm. This means that every solution ob-

tained in each iteration must be a local optimal solution of kCTP because the

minimum spanning tree for each subgraph obtained is exactly the best solution

among neighborhood. Step 2 suggests how to select a deleted vertex, and Step 3

demonstrates how to choose an added vertex. Through the combination of Steps 2

and 3, a minimum spanning tree for each subgraph, which is the best neighborhood

solution, can be obtained without using a MST algorithm iteratively.
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Figure 3.3: Improvement of k+1-subtree TNH
k+1 (e18 is added, and then e2 is deleted

so that a new k + 1-subtree TNH
k+1 is constructed)

Figure 3.4: Set of super-vertices

3.2.2 Ant colony optimization-based diversification procedure

This section devotes describing the details on the ACO-based diversification pro-

cedure performed in Step 4.
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Figure 3.5: Solution TNH
k in neighborhood NH(Tk)

ACO which was initiated by Dorigo et al. [13, 16] is a metaheuristic approach

for solving hard combinatorial optimization problems. The behavior is based on a

cooperative interaction which leads to the emergence of shortest paths by depositing

a substance, called pheromone, on the ground so as to minimize the length of the path

between nest and food source. Blum and Blesa proposed an ACO-based algorithm

for solving kCTP and showed that the performance of the ACO is better than

those of TS and EC in the case of small k. When the cardinality k is small, the

candidate for the optimal solution exist in wider solution space compared to the case

of large k. With this observation in mind, in this paper, we propose a diversification

algorithm based on ACO by extending the Blum-Blesa algorithm [34]. One of the

characteristics in the proposed algorithm is that our algorithm deposits pheromone

on the edges selected in the local optimal solutions which were obtained by the

TS-based local algorithm. This procedure allows the proposed hybrid algorithm to

explore a wider search space than the TS-based local search method.

Diversification algorithm based on ant colony optimization

Step 1 (Setting of learning rate) Set the learning rate of each solution in Elb

to the value defined by

ρ =


0.15, cf < 0.7

0.1, 0.7 ≤ cf ≤ 0.95

0.05, cf > 0.95,
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where cf is a convergence factor defined by

cf ←
∑

e∈Elb
τe

|Elb| · τmax

.

Step 2 (Update of pheromone) Update the amount of pheromone assigned to

each edge e as follows:

τe = fmmas(τe + ρ(δe − τe))

where

fmmas(x) =


τmin, x < τmin

x, τmin ≤ x ≤ τmax

τmax, x > τmax

, δe =

 1, e ∈ Elb

0, e ̸∈ Elb.

Step 3 (Generation of a k-subtree) Replace the weight attached to each edge

e in G by wd(e) defined as

wd(e)←
w(e)

τe
.

Starting from a randomly selected vertex, a k-subtree Tk is constructed by

applying the Prim method. After that, replace wd(e) by the original weight

w(e), and construct a k-subtree T cur
k by applying the Prim method again to

the subgraph of which vertices and edges are V (Tk) and E(Tk), respectively.

In this paper, we set the initial values of τe, the values of τmin and τmax to 0.5, 0.001

and 0.999, respectively.

3.3 Numerical experiments

In order to compare the performances of our method with two of existing solution

algorithms proposed by Blum and Blesa [34]. We use C as the programming language
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and compiled all software with C-Compiler: Microsoft Visual C++ 7.1. All the

metaheuristic approaches were tested on a PC with Celeron 3.06GHz CPU and

RAM 1GB under Microsoft Windows XP.

The parameter settings as well as the source code used for all the experiments

in this paper are just the same ones provided by Blum and Blesa, which was down-

loaded from their web-site page [1] through the internet. 1 Tables 3.1-3.4 and ??

show the results for several existing instances [1] and our new instances, respectively.

Bold face means that it is the best obtained value among the three algorithms to

be compared. In Tables 3.1-3.4, BKS denotes the best known values which have

been obtained by Blum and Blesa through their tremendous experiment for several

months. The values with ∗ denotes new best known values that are updated by the

proposed algorithm. TSACO, TSB and ACOB represent the proposed algorithm,

TS algorithm [34] and ACO algorithm [34] by Blum and Blesa, respectively. We

executed each method for 30 runs under the condition that TimeLimit = 300(s)

and computed the Best, Mean and Worst objective function values for each method.

We describe ’−’ in the tables when the algorithms do not derive solutions within

the given time limit.

Tables 3.1-3.4 show that the performance of the proposed method is better than

those of the existing algorithms by Blum and Blesa, especially in the case of high

cardinality k and high degree d̄(v). This is due to the effect of the subroutine

through which a minimum spanning tree (a local optimal solution for a subgraph)

is obtained and updated for a new subgraph constructed by swapping a pair of

vertices. As a special case, when k = |V | − 1 which is the maximum value of k

available, the corresponding (|V |−1)-minimum spanning tree problem is equivalent

to a conventional (ordinal) minimum spanning tree problem that can be exactly

solved by the proposed algorithm. In the case of very large ks, even when k is not

the maximum value (= |V | − 1), the performance of the proposed algorithm is also

very high. In addition, the effect of finding a MST for every subgraph increases

1Although the source code for Blum-Blesa’s algorithm could be freely downloaded from their

web-site page before, it can be now obtained only by directly contacting with the authors by e-mail.
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with increasing the graph density. Table ?? shows that the proposed method is the

best for instances of graphs with higher degrees than existing ones. From the aspect

of the real applications of kCTP, we can suggest that if the number of sites (or

facilities) to be connected in the problem of telecommunications (or facility layout)

is large, the proposed algorithm is recommended. In addition, if the number of lines

available to be used for connecting sites or facilities is large, the proposed algorithm

is also promising.

On the other hand, when k is small, the performance of the proposed algorithm

is not so good, and the performance of the ACOB is the best. This is because the

candidates of an optimal solution exist over a wide rage when k is small. Since

the effect of TS is stronger than that of ACO in the proposed hybrid algorithm, the

diversification ability of the proposed method is lower than (non-hybrid) ACO-based

algorithm such as ACOB.

It should be stressed here that as shown in Table 3.1, the proposed method

updates some of best known values despite of very short computational time limit

(300s), while the time limits in the experiments by Blum and Blesa are fairly large,

at most several hours. From these experimental results, we can conclude that the

proposed algorithm is considerably promising for solving kCTPs.

3.4 Conclusion

In this chapter, a new hybrid approximate solution algorithm for kCTP by com-

bining tabu search and ant colony optimization is proposed. Through numerical

experiments for several benchmark instances, we have shown that the performances

of the proposed method are better than those of existing methods. Furthermore, it

has been shown that the proposed method updates some of the best known values.
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Table 3.1: Results for instances with Grid graphs [1]

Graph k BKS TSACO TSB ACOB

|V | = 225 40 695 Best 695 696 695

|E| = 400 Mean 695 696 695.4

d̄(v) = 3.55 Worst 695 696 696

(bb45x5 1.gg) 80 *1552 Best 1552 1579 1572

(1568) Mean 1565.1 1592.7 1581.2

Worst 1572 1615 1593

120 *2444 Best 2444 2546 2457

(2450) Mean 2457.9 2558.5 2520.3

Worst 2465 2575 2601

160 *3688 Best 3688 3724 3700

(3702) Mean 3688 3724.9 3704.7

Worst 3688 3729 3720

200 5461 Best 5461 5462 5461

Mean 5461 5462.4 5469

Worst 5461 5463 5485

|V | = 225 40 654 Best 654 654 654

|E| = 400 Mean 654 654 654

d̄(v) = 3.55 Worst 654 654 654

(bb45x 5 2.gg) 80 1617 Best 1617 1617 1617

Mean 1619.1 1617.1 1626.9

Worst 1620 1619 1659

120 *2632 Best 2632 2651 2637

(2633) Mean 2641.3 2677.9 2664.6

Worst 2648 2719 2706

160 3757 Best 3757 3815 3757

Mean 3764.3 3815.0 3797.6

Worst 3779 3815 3846

200 5262 Best 5262 5262 5262

Mean 5262 5268.6 5272

Worst 5262 5296 5288
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Table 3.2: Results for instances with Regular graphs [1]

Graph k BKS TSACO TSB ACOB

|V | = 1000 200 3308 Best 3393 3438 3312

|E| = 2000 Mean 3453.1 3461.4 3344.1

d(v) = 4 Worst 3517 3517 3379

(1000-4-01.g) 400 7581 Best 7659 7712 7661

Mean 7764 7780.2 7703

Worst 7819 7825 7751

600 12708 Best 12785 12801 12989

Mean 12836.6 12821.8 13115.6

Worst 13048 12869 13199

800 19023 Best 19099 19093 19581

Mean 19101.1 19112.6 19718.7

Worst 19128 19135 19846

900 22827 Best 22827 22843 23487

Mean 22827 22859.2 23643

Worst 22827 22886 23739

|V | = 1000 200 3620 Best 3667 3692 3632

|E| = 2000 Mean 3697.5 3722.0 3670.1

d(v) = 4 Worst 3738 3751 3710

(g400-4-05.g) 400 8206 Best 8323 8358 8376

Mean 8357.1 8385.6 8408.3

Worst 8424 8415 8442

600 13584 Best 13807 13735 14085

Mean 13824.3 13759.4 14164.5

Worst 13900 13820 14235

800 20076 Best 20110 20130 20661

Mean 20129.9 20142.9 20811.3

Worst 20143 20155 20940

900 24029 Best 24035 24044 24782

Mean 24035 24052.6 24916

Worst 24035 24064 25037

　



41

Table 3.3: Results for instances constructed from Steiner tree problems [1]

Graph k BKS TSACO TSB ACOB

|V | = 1000 200 1018 Best 1034 1036 1036

|E| = 5000 Mean 1048.6 1047.3 1045.9

d̄(v) = 10.0 Worst 1063 1056 1056

(steind15.g) 400 2446 Best 2469 2493 2665

Mean 2480.7 2502.5 2806.6

Worst 2492 2524 2928

600 4420 Best 4426 4442 5028

Mean 4433 4454.6 5398.4

Worst 4451 4490 5602

800 7236 Best 7236 7252 8457

Mean 7236.9 7272.8 8839.6

Worst 7237 7308 9006

900 9248 Best 9256 9283 10873

Mean 9256 9294.2 11166.3

Worst 9256 9304 11423

　

Table 3.4: Results for instances constructed from graph coloring problems [1]

Graph k BKS TSACO TSB ACOB

|V | = 450 90 135 Best 135 135 135

|E| = 8168 Mean 135.1 135.3 135.7

d̄(v) = 36.30 Worst 137 136 137

(le450 15a.g) 180 336 Best 336 337 352

Mean 337 337.1 374.4

Worst 337 338 419

270 630 Best 630 630 696

Mean 630.1 630.3 839

Worst 631 633 913

360 1060 Best 1060 1060 1267

Mean 1060 1064.1 1461.2

Worst 1060 1118 1566

405 1388 Best 1388 1388 1767

Mean 1388 1391.1 1888.7

Worst 1388 1392 2015
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Table 3.5: Results for new instances
Graph k TSACO TSB ACOB

|V | = 500 100 Best 1943 1954 1943

|E| = 15000 Mean 1950.5 1990.9 2022.3

d̄(v) = 60 Worst 1966 2023 2241

200 Best 5037 5063 5517

Mean 5047.3 5080.4 7444.4

Worst 5066 5221 9859

300 Best 9758 9821 -

Mean 9769.6 9922.6 -

Worst 9795 11696 -

400 Best 16351 16373 -

Mean 16363.8 16488 -

Worst 16368 17953 -

450 Best 20929 20934 -

Mean 20929 20945.2 -

Worst 20929 20992 -

|V | = 500 100 Best 1294 1319 1398

|E| = 30000 Mean 1303.7 1352.8 1743.5

d̄(v) = 120 Worst 1321 1385 2479

200 Best 3064 3150 4013

Mean 3097.1 3934.4 6861.4

Worst 3127 6032 9623

300 Best 5312 5380 -

Mean 5312.5 6471.9 -

Worst 5318 8308 -

400 Best 8582 8586 -

Mean 8582 9540 -

Worst 8582 11485 -

450 Best 10881 10882 -

Mean 10881 11300.4 -

Worst 10881 13570 -
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Chapter 4

Hybrid Metaheuristic Combining Tabu Search

with Immune Algorithm

4.1 Introduction

In this chapter, we focus on a Hybrid Metaheuristic based on Tabu Search (TS)

and Immune Algorithm(IA). Since TS stops when the length of tabu list reaches

its limitation, IA is applied to enlarge the search area by generating a new initial

solution for TS. In other words, IA acts as a diversitification strategy for TS, and

thus the algorithm can search the solution space with a large step size.

The proposed immune algorithm is inspired by immune systems, especially the

mechanism of keeping diversity of the immune cells. More specifically, population

of antibodies are constructed with a variety of infeasible solutions. At each step the

population-based algorithm deals with a set of infeasible solutions rather than with

a single one, providing a natural and intrinsic way to explore the search space.

Experimental results show that IA improves the solution accuracy significantly.

Some best known solutions are updated by the proposed algorithm. Another feature

of proposed algorithm is that it’s speed is relatively higher than existing algorithms.

We arrive at a conclusion that a well-designed hybrid metaheuristic algorithm is

efficient for solving the k-Cardinality Tree Problem.
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4.2 Tabu search incorporated with Immune Algorithm

Recall that TS, firstly proposed by Glover et al. [2], is one of the mostly used

metaheuristics for solving combinatorial optimization problems. In short, TS aims to

improve a given solution by modified local search. The most important characteristic

of TS is that it uses a concept of memory to control movements via a dynamic list of

forbidden movements. To be more specific, the solutions which have been searched

will be “tabu” (forbidden) from visiting for a while. This mechanism allows TS

to intensify or diversify its search procedure in order to escape from local optima.

However, when the size of the problem is very large, the length of tabu list can

not be increased unlimitedly. The computation time will increase sharply with the

length of tabu list. Therefore, in this paper the maximum length of tabu list is

limited. TS stops when the length of tabu list reaches the limitation. Then IA is

applied to generate a new initial solution to enlarge the search area. Without loss

of generality, the flowchart of the proposed algorithm is shown in Figure 4.1, where

T lb means local solution and T cur means current solution.

4.2.1 Generate the Initial solution

Given a connected graph G = (V,E) with a weight function w : E → R, we wish

to find a k-cardinality tree from G as the initial solution. The algorithm we consider

here uses a greedy heuristic (Prim’s algorithm) to generate a minimum spanning

tree from G. To be specific, all the vertices of V in the graph are connected to be

a spanning tree T SP by Prim’s algorithm. Then dynamic programming algorithm

(DP), originally introduced in [38], is applied to find out the best k-cardinality tree

from the T SP . DP has been proved to be able to construct an initial solution with a

small objective function value in a short computing time even for a problem with a

large size graph [38]. Experimental results show that solutions generated DP have

high precision.
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Start

Generate ini al solu on
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Diversifica on (Immune algorithm)
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End
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Figure 4.1: Proposed Algorithm TS

4.2.2 Length of Tabu List

The core procedure of TS is to forbid some moves based on memory in order

to enlarge the search area. In the proposed algorithm, the “tabu” (forbiddance)

is applied to edges that have been added to or deleted from the k-cardinality tree

recently. Tabu lists are used as a memory to record edges that should be forbidden to

be added or deleted. InList and OutList are adopted to keep the records of removed

edges and added edges, respectively. Tabu tenure, which generally depends on the
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length of tabu lists, is a period during which it forbids edges in the tabu lists from

being added or deleted. The length of tabu lists is dynamically changed in the

proposed algorithm. By adjusting the length of tabu list local search can implement

intensification and diversification strategies. If the best solution in an iteration has

not been updated for nicmax movements, the length of tabu lists will be increased

by tlinc. The search stops if the length of InList or OutList reaches tlmax. Some

parameters can be referred to Chapter 3.

4.2.3 Aspiration Criterion

The “tabu” mechanism, which forbids some of the moves to be employed, helps

the algorithm avoid falling into local optima. However, this mechanism may also

forbid a move that may reach the best solution. In order to avoid such a situation, a

procedure called aspiration criterion is used in the proposed algorithm. That is, if

f(T new
k ) < γe is satisfied, the movement will be acceptable even if edge e is included

in InList or OutList. Parameters γe called aspiration level criterion are given to

all of edges and are initially set to be:

γe =

 f(T cur
k ) e ∈ E(T cur

k )

∞ e /∈ E(T cur
k ).

For each explored solution Tk, γe is updated as γe := f(Tk) for each e ∈ E(Tk).

4.2.4 Local Search

The basic ingredient of TS is local search. Local search is often conducted via

some move operators. A move from the current solution to the candidate solution

is only performed when the objective function value is improved. In this study, we

propose an efficient local search for solving the kCTP. The basic idea is to translate

the current solution Tk to a new one, by exchanging one vertex in Tk with a vertex

not in it. Correspondingly, the edges which connect those vertices in Tk should also

be updated.
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In detail, we define that V (Tk) denotes the vertex set of tree Tk. Neighbourhood

vertex set of Tk was defined as: VADD(Tk) := {v|(v, u) ∈ E, v /∈ V (Tk), u ∈ V (Tk)}.
Edge (v, u) is called a connecting edge. VRMV (Tk) denotes the the vertex set of tree

Tk, which would be removed from Tk after constructing a Tk+1.

The procedure of the local search is showed as follows:

while VADD(Tk) ̸= ∅ do

Growing Tk+1

while VRMV (Tk) ̸= ∅ do

Reconstructing T new
k

Updating T localbest
k

end while

end while

Updating Tk,

where T new
k is the newly constructed k-cardinality tree.

Growing Tk+1 : A tree Tk+1 is constructed by adding vertex vadd ∈ VADD(Tk) as

well as its least weight edge to tree Tk. At the same time, vadd is deleted from

the neighbourhood vertex set VADD(Tk).

Reconstructing T new
k : To reconstruct a new k-cardinality tree T new

k , one vertex

called vrmv should be removed from Tk+1. Correspondingly, the edge (or edges)

connecting to vrmv is (are) also removed from Tk+1. If the vrmv is a leaf vertex

(it connects to the tree by only one edge), we obtain a new k-cardinality

tree without further procedure. If a set of the remaining vertices and edges

becomes a forest, Kruskal’s Aglorithm would be applied to connect the forest

into a tree T new
k . Then, vrmv will be deleted from the neighbourhood vertex
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set VRMV (Tk).

Updating T localbest
k : If T new

k could be constructed successfully and is better than

the local best k-cardinality tree T localbest
k , the latter should be updated by T new

k .

Updating Tk : If the objective function value of local best tree T localbest
k is better

than current tree Tk, the latter should be updated by T localbest
k .

Some parameters and how to select the “necessary” vertices can be referred to

chapter 3.

4.3 Details of Immune Algorithm

As mentioned above, for a problem with a large size graph, the length of tabu

list may become very long in order to enlarge its search area. Accordingly, the

computing time may expand significantly with size of the graph. IA is adopted as a

diversification strategy for further search when the length of tabu list reaches tlmax.

Immune system has a powerful ability to protect our bodies 24 hours a day

against attacks from antigens (i.e., viruses and bacteria). Firstly, it recognizes and

eliminates invading antigens by producing antibodies. For antigens which have been

eliminated before, long lasting cells (also called memory cells ) remember the first

exposure and respond very quickly to the second exposure. Secondly, for an antigen

firstly met, the system can eliminate it with antibodies secreted by a new immune

cell which is usually generated by mutation. Finally, one of the beautiful things

about immune system is that immune cells are able to produce antibodies against

hundreds of thousands of different pathogens that the body will come into contact

with in a lifetime. It benefits from a mechanism that uses suppressor cells to restrain

the excessive proliferation of antibodies and maintains the diversity of immune cells.

The proposed immune algorithm is inspired by immune systems, especially the

mechanism for keeping diversity of the immune cells. More specifically, population
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of antibodies are constructed with a variety of infeasible solutions. At each step

the population-based algorithm deals with a set of infeasible solution rather than

with a single one, providing a natural and intrinsic way to explore the search space.

Representations of the biological immune system are shown as follows: antigens are

defined as kCTPs; antibodies are considered as potential solutions to kCTPs. The

pseudo-code of the proposed IA is shown as follows:

Outline of the Immune Algorithm

Input: set A (antibodies) and set S (suppressors), fq (edge-use-frequency)

if A = ∅ then

A←Generate Initial Population(NA)

end if

for i=1 to 10 do

for each a ∈ A do

c = Concentration (a)

if c > θ then

Update Suppressor(S, a)

end if

end for

for each a ∈ A, s ∈ S do

if a = s then

A← (A \ {a})∪ Generate Solution()

end if
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end for

A′ ← ∅

while |A′| < NAdo

a1 ← Roulette Selection(A)

a2 ← Roulette Selection(A)

A′ ← A′ ∪ { Apply Crossover(a1, a2)}

end while

A← A′

end for

Output: T gb
k

where the parameters is defined as follows:

number of antibodies: NA = 100

number of suppressor: NS = 5

threshold value: θ = 0.5

crossover probability: pc = 0.5.

Generate initial population Initial population consists of feasible solutions (an-

tibodies) constructed by a greedy heuristic algorithm. To generate a k-cardinality

tree, one vertex is selected randomly, then edges and vertices are added to fol-

lowing Prim’s algorithm until the number of edges reaches k. The size of the

population is NA.

Concentration(a) The concentration is used to measure the proportion of a kind

of antibody in population. The concentration is calculated as follows:
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Concentration(a) =

∑
ai∈A

δai,a

NA

δai,a =

 1, if ai = a

0, if ai ̸= a.

Update suppressor If the concentration of an antibody is larger than threshold θ,

we say this kind of antibody has been over proliferated. To keep the diversity

of antibodies in population, we add the proliferated antibody to a set S of

suppressor. Antibodies in S should be restrained. Incidentally, if |S| = NS,

argmin(Hamming distance(a, si)), si ∈ S is used to determine which antibody

should be added to S.

Generate Solution The antibody in suppressor set S should removed from the

population. The space should be filled up with new antibodies generated in

the same way as generating initial population.

Roulette selection As mentioned above, new antibodies are generated by crossover

in the proposed algorithm. Antibodies are selected with probability pa from

population A for generating offspring. In particular, pa of each antibody is

calculated as follows:

pa =

∏
s∈S δa,s
1 + fa

δa,s =

 0.1, a ∈ GNH (s)

1, otherwise

GNH (s) = {g ∈ B|E||Hamming distance(g, s) < ⌊|E|/50⌋}.

As we can see from these functions, an infeasible solution with a smaller object

function value and “far away from” suppressors has a higher probability to be

selected.

Apply Crossover Crossover is applied to generate new immune cells which se-

crete necessary antibodies. In consideration of both continuity and diversity,

antibodies selected by Rouletteselection are applied with crossover with prob-

ability pc for generating offspring. With probability (1 − pc), the selected

antibodies are regarded as offspring directly.
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The crossover is the same as the one introduced by Blum et.al for EC approach

in [34]. It applies two complementary heuristically guided crossover operators,

Union-crossover and Intersection-crossover, to the crossover partners Tk and

T p
k . We present the crossover here only for the sake of completeness. The

pseudo-code of crossover is shown in the followings:

Framework for U-crossover and I-crossover[34]

Input: Two k-cardinality trees Tk and T p
k

E∪ ← E(Tk) ∪ E(T p
k )

E∩ ← E(Tk) ∩ E(T p
k )

t← 1

E(T child
t )← {argmin{w(e = {v, v′})|e ∈ E∩}}

V (T child
t )← {v, v′}

repeat

Choose set EC in follow ways:

U-crossover: EC ← ENH (T
child
t ) ∩ (E∪ \ E∩);

I-crossover: EC ← ENH (T
child
t ) ∩ E∩;

if EC = ∅ then

e = {v, v′} ←

argmin{w(e)|e ∈ ENH (T
child
t ) ∩ E∪}

else

e = {v, v′} ← argmin{w(e)|e ∈ EC}

end if

E(T child
t )← E(T child

t ) ∪ {e}

V (T child
t )← V (T child

t ) ∪ {v, v′}

t← t+ 1

until |E(T child
k )| = k
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Output: T child
k

where the ENH (T ) is defined as follows:

ENH (T ) = {e = (v, v′) ∈ E(G)|v ∈ V (T ), v′ ̸∈ V (T ).} (4.1)

Centralization strategy based on edge frequency Besides the diversitification

strategy of antibodies, centralization strategy is also considered. The basic

idea is that edges that have been selected to construct antibodies at high fre-

quencies are considered as good elements for generating the best k-cardinality

tree. With this consideration in mind, the frequency of each edge fe is used as

a parameter when generating new solutions. “New weight” w̄e for each edge is

fixed based on fe as follows: w̄e =
we

fe
. “New weights” are applied in generate

population and crossover. In particular, the initial value of fe is defined as

f ← 0.5, and then updated in each local search as follows:

fe ← fe + ρ(δ − fe)

δ =

 1, e ∈ E(T cur
k )

0, e ̸∈ E(T cur
k )

where E(T cur
k ) is the edge set of the current solution. The value of ρ is given

as 0.1 in the proposed algorithm.

4.4 Experiments

Two sets of experiments have been carried out for evaluating the efficiency of the

proposed hybrid metaheuristic based on TS and IA (TSIA). Firstly we measured

the efficiency of IA by comparing the results of algorithms with and without IA.

Secondly, TSIA and three state-of-the-art existing algorithms were also comprehen-

sively compared.
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4.4.1 Efficiency of Immune Algorithm

To investigate the efficiency of IA, we compared TSIA with TS in experimental

results. We use C as the programming language and compile the program with

C-Compiler: Microsoft Visual C++ 2010 Express. The experiment was carried out

in famous benchmark instances (bb15x15 1.gg, bb45x5 1.gg, g400-4-01.g, steinc5.g,

steinc15.g, le450 15a.g, bb33x33 1.gg, bb100x10 1.gg, steind5.g, steind15.g, bb50x50 1.gg,

steine5.g) [1]. Sizes of those instances vary from |V | = 225, |E| = 400 to |V | =
2500, |E| = 4900, where |V | means the number of vertices and |E| means the num-

ber of edges. Different instances based on each graph are generated by changing

capacities (the value of k). Cardinalities are chosen as about 10, 20, 30, 40, 50, 60,

70, 80, 90 and 95 percents of |V |, so that we obtain 121 different instances. We

expect results with much stronger persuasion by these differential instances. The

limited running time for graphs with less than 1000 , between 1000 and 2000 and

more than 2000 vertices is 100s, 300s and 900s, respectively.

Each instance is tested 30 runs on a PC with Intel Core i7 2.93 GHz CPU (the

multiprocessor did not process in parallel) and 4 GB RAM under Microsoft Windows

7. The best, mean and worst objective function values of each algorithm in every

run are obtained. Furthermore, the average computing time that an algorithm costs

until the best solution is reached is also recorded.

Due to space limitation we only present the summary of results. The number

of cases that an algorithm beats or equals to the other one is shown in Table 4.1.

We can see from this table that the accuracy of TS is improved significantly by

incorporating IA, considering best objective function values (headed “Best obj.”)

and mean objective function values (headed “Mean obj.”). On the other hand, the

worst objective function values (headed “Worst obj.”) and average computing time

(headed “Mean time”) of the proposed algorithm do not become worse after adding

IA. We can say that the TSIA improves the precision of TS significantly.

Further more, a diagrammatic analysis of the efficiencies of TSIA and TS is given
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Table 4.1: The number of cases that an algorithm beats or equals to the other one

TSIA TS

Best obj. 114 82

Mean obj. 102 69

Worst obj. 107 106

Mean time 62 59
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Figure 4.2: Average Relative Error of each instance

by Figure 4.2. Since the differences among objective function values are extremely

small, we introduce Relative Error to evaluate the performance of each algorithm.

It is calculated by (S−B)/B, where S indicates the objective function values of each

algorithm, and B indicates the better objective function value between TSIA and

TS. Average Relative Error of each instance is shown in this figure. The smaller

the average relative error is, the higher the precision an algorithm has. From this

figure we can say that the performance of TS is significantly improved by applying

IA as a diverstification strategy.

4.4.2 Comparing TSIA to Existing Algorithms

To evaluate the efficiency of the proposed algorithm TSIA, we also compared it

with three state-of-the-art existing algorithms. One algorithm is a Hybrid algorithm

(TSACO) based on the TS and ACO, introduced in Chapter 3. The other two

algorithms are tabu search algorithm (TSB) and ant colony optimization (ACOB),
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both of which are introduced by Blum et al. in [34].

The proposed algorithm was coded in C language and compiled with C-Compiler:

Microsoft Visual C++ 7.1. All of the experiments were performed in the following

computation environment: CPU: Core 2 Duo 2.10 GHz, RAM: 2 GB, the multipro-

cessor did not process in parallel. For TSB and ACOB, the parameter settings as

well as the source code used for all the experiments in this paper are just the same

as those provided by Blum and Blesa [1]. Each algorithm was executed for 30 runs

under the terminate condition TimeLimit = 300 (s) on benchmark instances [1].

Tables 4.2–4.8 show some of the results of these experiments. |V |, |E|, and

d̄(v) indicate the number of vertices, the number of edges and the average number

of edges a vertex connecting in a graph, respectively. k denotes the cardinality of

kCTP. BKS means the best known solutions which have been obtained by Blum and

Blesa through their tremendous experiments [1]. The rows headed “Best”, “Mean”

and “Worst” provide the best, average, and the worst objective function values,

respectively. Results highlighted in bold mean that this algorithm beats others.

The values marked by ∗ denote that the best known solutions were updated by that

algorithm. In addition, columns headed “time” provide the average computing time

that an algorithm costs until the best solution is reached.

We can see from Tables 4.2–4.8, that the performance of the proposed algorithm is

significantly better than existing algorithms considering “Best value”, “Mean value”

and “Worst value”. Furthermore, the proposed algorithm updates 24 best known

solutions out of 63 cases and it’s average computing time is 26% of HybridK’s, 19%

of TSB’s, 12% of ACOB’s. In conclusion, we can say that the proposed algorithm

has a good performance both in terms of solution precision and computing time. We

believe that the diversification strategy based on IA enlarges the search area and

leads to a better solution.
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4.5 Conclusion

We proposed a new hybrid metaheuristic based on TS and IA for solving kCTPs

in this chapter. Computational tests indicate that IA is a good diversity strategy

for TS, because it improves the precision significantly. That is because IA has an

mechanism to generate new but high precision solutions and keeps the diversity of

those solutions. It can be also observed that a proper combination of metaheuristics

is efficient for solving kCTPs.
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Table 4.2: Results for instances with Grid graph
Graph k BKS TSIA TSACO TSB ACOB

|V | = 225 40 695 Best 695 695 696 695

|E| = 400 Mean 695.0 695.0 696.0 695.0

d̄(v) = 3.55 Worst 695 695 696 695

(bb45x5 1.gg) Time 0.0 2.2 3.3 45.0

60 1115 Best *1107 1107 1115 1107

Mean 1107.0 1107.2 1115.0 1117.0

Worst 1107 1114 1115 1129

Time 14.8 55.8 7.0 135.4

80 1568 Best *1552 1553 1579 1572

Mean 1553.5 1557.8 1592.6 1572.3

Worst 1558 1558 1615 1579

Time 87.8 61.0 92.6 118.1

100 1979 Best *1963 1974 2048 1974

Mean 1971.4 1974.0 2048.6 1979.2

Worst 1972 1974 2050 1990

Time 9.7 36.8 126.7 160.6

120 2450 Best *2444 2462 2546 2444

Mean 2448.2 2468.7 2553.2 2474.6

Worst 2455 2470 2575 2516

Time 39.2 25.3 106.1 173.5

140 3028 Best *3024 3025 3060 3024

Mean 3024.0 3025.1 3062.1 3024.3

Worst 3024 3026 3080 3026

Time 63.3 24.9 115.8 98.0

160 3702 Best *3688 3688 3724 3688

Mean 3688.0 3688.0 3724.6 3698.8

Worst 3688 3688 3729 3700

Time 10.5 19.2 141.1 89.4

180 4474 Best *4472 4472 4501 4472

Mean 4472.0 4472.0 4505.1 4472.7

Worst 4472 4472 4526 4490

Time 0.0 0.6 139.3 100.7

200 5461 Best 5461 5461 5462 5461

Mean 5461.0 5461.0 5462.4 5461.0

Worst 5461 5461 5463 5461

Time 0.0 0.0 74.5 65.8
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Table 4.3: Results for instances with Grid graph
Graph k BKS TSIA TSACO TSB ACOB

|V | = 1089 200 3255 Best 3331 3325 3431 3463

|E| = 2112 Mean 3339.6 3388.1 3527.2 3430.9

d̄(v) = 3.87 Worst 3347 3554 3596 3472

(bb33x33 2.gg) Time 10.0 142.7 122.6 233.2

300 5185 Best 5276 5378 5432 5307

Mean 5373.5 5471.3 5540.7 5460.0

Worst 5397 5623 5630 5558

Time 97.2 159.3 167.2 231.7

400 7252 Best 7372 7525 7548 7503

Mean 7431.5 7660.3 7696.7 7589.1

Worst 7507 7929 7953 7844

Time 106.8 152.5 180.7 292.8

500 9465 Best 9527 9722 9939 9825

Mean 9539.6 9901.1 10021.6 9845.2

Worst 9540 9954 10144 10015

Time 45.2 129.2 176.2 273.6

600 11856 Best 11874 12060 12316 12648

Mean 11914.6 12107.5 12425.8 12489.1

Worst 11941 12266 12515 12706

Time 15.9 202.8 162.5 253.3

700 14509 Test *14492 14811 14984 15274

Mean 14492.8 14898.9 15059.4 15311.0

Worst 14493 14949 15108 15478

Time 18.4 166.3 168.9 261.4

800 17542 Best *17511 17708 17834 18487

Mean 17512.5 17790.5 17897.1 18389.5

Worst 17517 17832 17981 18622

Time 24.0 279.0 153.0 261.8

900 20993 Best *20992 21010 21052 21940

Mean 20992.0 21011.1 21079.1 21932.1

Worst 20992 21026 21131 22196

Time 0.4 151.3 151.3 260.3

1000 25273 Best 25273 25274 25307 26321

Mean 25273.8 25274.9 25340.9 26446.4

Worst 25274 25275 25361 26580

Time 36.7 55.2 194.7 273.0
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Table 4.4: Results for instances with Grid graph.
Graph k BKS TSIA TSACO TSB ACOB

|V | = 1000 100 1661 Best 1668 1668 1687 1661

|E| = 1890 Mean 1668.0 1668.9 1690.8 1667.8

d̄(v) = 3.78 Worst 1668 1676 1700 1668

(bb100x10 2.gg) Time 0.0 127.1 154.1 25.6

200 3618 Best 3624 3668 3746 3648

Mean 3624.0 3695.7 3754.2 3707.7

Worst 3624 3724 3764 3942

Time 0.2 159.5 143.9 224.3

300 5435 Best *5424 5585 5692 5890

Mean 5426.3 5785.9 5747.5 5954.8

Worst 5431 6019 5860 6024

Time 1.1 162.0 128.3 243.1

400 7531 Best *7517 7733 7819 7732

Mean 7517.0 8063.8 7966.6 8410.2

Worst 7517 8240 8270 8624

Time 0.8 233.1 166.3 273.3

500 9861 Best *9850 10071 10021 10086

Mean 9850.0 10306.8 10168.3 10292.2

Worst 9850 10407 10628 10536

Time 1.4 224.0 177.4 265.3

600 12481 Best 12512 12597 12733 12716

Mean 12522.6 12698.6 12821.2 12871.8

Worst 12523 12821 12861 13224

Time 3.3 207.4 161.1 273.5

700 15599 Best 15602 15692 15848 15862

Mean 15605.0 15758.7 15919.5 15969.1

Worst 15608 15906 15954 16101

Time 0.8 149.4 168.1 260.7

800 19188 Best *19177 19212 19323 19522

Mean 19182.7 19224.0 19456.0 19730.6

Worst 19187 19277 19507 19833

Time 15.5 113.9 159.9 260.7

900 23481 Best *23476 23476 23489 23969

Mean 23476.0 23476.0 23494.3 24102.3

Worst 23476 23476 23519 24258

Time 0.4 15.2 156.3 272.9
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Table 4.5: Results for instances with Grid graph
Graph k BKS TSIA TSACO TSB ACOB

|V | = 2500 250 3988 Best 4054 4072 4160 3950

|E| = 4900 Mean 4075.3 4172.5 4229.9 4055.8

d̄(v) = 3.78 Worst 4076 4276 4314 4097

(bb50x50 1.gg) Time 2.9 193.1 181.8 192.8

500 8150 Best 8392 8869 8842 8601

Mean 8392.0 9050.9 8964.6 8815.0

Worst 8392 9105 9174 9004

Time 3.4 192.1 160.9 250.7

750 12551 Best 12776 13727 13559 13876

Mean 12778.7 13952.6 13796.3 14179.5

Worst 12789 14311 14091 14456

Time 37.7 265.0 163.9 293.2

1000 17437 Best 17657 19236 18515 19461

Mean 17668.0 19449.2 18956.6 19927.8

Worst 17701 19895 19456 20351

Time 89.2 273.5 205.6 341.5

1250 22823 Best 22862 24581 24048 25638

Mean 22886.6 24778.1 24418.0 26092.4

Worst 22900 25537 24666 26622

Time 95.6 264.9 275.7 310.6

1500 28683 Best *28621 30985 30526 31675

Mean 28627.9 31366.3 30856.9 32215.2

Worst 28636 31474 31178 32853

Time 23.9 258.7 294.2 470.2

1750 35534 Best *35427 37321 37560 39154

Mean 35432.8 37646.5 37851.2 39610.2

Worst 35448 37845 38029 40520

Time 206.1 274.5 293.0 329.0

2000 43627 Best *43574 44899 45103 46663

Mean 43574.0 44991.9 45256.1 47356.0

Worst 43574 45267 45509 47917

Time 16.7 255.3 294.2 397.1

2250 53426 Best *53409 53682 53951 56562

Mean 53411.1 53683.6 54086.9 57269.2

Worst 53413 53725 54242 57633

Time 7.7 284.8 225.4 341.6
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Table 4.6: Results for instances with Regular graph
Graph k BKS TSIA TSACO TSB ACOB

|V | = 1000 100 1652 Best *1651 1649.0 1662 1649

|E| = 2000 Mean 1655.4 1657.2 1664.2 1656.3

d̄(v) = 4 Worst 1660 1664.0 1669 1661

(g1000-4-05.g) Time 130.5 129.0 120.9 170.6

200 3620 Best 3633 3666 3692 3642

Mean 3655.7 3683.9 3720.4 3661.6

Worst 3681 3706 3749 3688

Time 161.1 125.9 140.5 236.7

300 5801 Best 5833 5866 5931 5850

Mean 5851.7 5922.7 5947.5 5890.0

Worst 5860 5968 5967 5922

Time 5.2 58.0 172.7 280.1

400 8206 Best 8230 8333 8357 8327

Mean 8232.2 8365.9 8382.7 8398.8

Worst 8234 8392 8411 8461

Time 2.9 150.7 148.3 278.5

500 10793 Best 10798 10888 10964 11078

Mean 10798.0 10897.5 10989.8 11165.1

Worst 10798 10944 11029 11242

Time 0.9 116.3 165.4 274.1

600 13584 Best 13587 13665 13733 14005

Mean 13587.4 13745.4 13753.3 14125.6

Worst 13588 13806 13790 14253

Time 0.4 99.0 158.1 256.2

700 16682 Best 16682 16710 16800 17162

Mean 16683.9 16721.2 16830.1 17311.3

Worst 16690 16777 16861 17417

Time 0.5 177.2 148.2 251.3

800 20076 Best *20074 20078 20127 20682

Mean 20074.7 20092.6 20143.4 20797.5

Worst 20079 20105 20156 20912

Time 23.5 87.9 164.6 255.6

900 24029 Best 24029 24029 24042 24754

Mean 24029.0 24029.0 24054.5 24861.6

Worst 24029 24029 24063 25012

Time 2.7 32.0 164.9 281.4
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Table 4.7: Results for instances constructed from Steiner tree problems
Graph k BKS TSIA TSACO TSB ACOB

|V | = 1000 100 455 Best *454 462 456 455

|E| = 5000 Mean 455.8 466.0 458.4 455.8

d̄(v) = 10.0 Worst 457 471 461 461

(steind15.g) Time 37.2 132.5 144.3 153.9

200 1018 Best 1029 1035 1042 1033

Mean 1037.1 1043.0 1048.4 1043.3

Worst 1044 1049 1055 1057

Time 41.1 101.5 163.8 283.8

300 1674 Best 1686 1692 1710 1733

Mean 1689.6 1700.3 1720.0 1804.0

Worst 1690 1710 1733 1866

Time 8.1 160.3 150.9 254.4

400 2446 Best 2458 2474 2482 2691

Mean 2458.0 2483.4 2499.0 2832.3

Worst 2459 2488 2512 2978

Time 0.8 115.5 162.4 239.1

500 3365 Best 3372 3390 3397 3802

Mean 3372.1 3399.1 3409.0 4033.8

Worst 3375 3407 3428 4163

Time 0.2 70.9 164.6 259.6

600 4420 Best 4422 4422 4439 5142

Mean 4423.6 4426.5 4453.6 5397.6

Worst 4424 4433 4483 5573

Time 62.2 153.0 152.3 254.5

700 5685 Best 5687 5695 5713 6595

Mean 5689.7 5697.9 5732.3 6942.1

Worst 5690 5698 5751 7163

Time 17.9 64.5 143.0 265.0

800 7236 Best 7236 7237 7254 8551

Mean 7236.0 7237.3 7271.6 8804.2

Worst 7236 7246 7305 9001

Time 0.4 86.8 192.8 275.3

900 9248 Best 9248 9256 9283 10826

Mean 9248.0 9256.0 9292.2 11117.2

Worst 9248 9256 9307 11352

Time 0.3 6.1 149.5 228.6
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Table 4.8: Results for instances constructed from Steiner tree problems
Graph k BKS TSIA TSACO TSB ACOB

|V | = 2500 250 3883 Best 3963 4147 4191 3954

|E| = 3125 Mean 3963.0 4216.9 4246.7 4001.2

d̄(v) = 2.5 Worst 3963 4289 4307 4068

(steine5.g) Time 0.3 131.9 177.5 262.3

500 9306 Best 9382 9836 9875 9825

Mean 9383.4 10020.2 10011.6 9974.1

Worst 9384 10268 10239 10173

Time 0.8 141.6 177.4 253.9

750 15818 Best 15854 16532 16460 16854

Mean 15862.5 16757.5 16872.1 17067.7

Worst 15891 17042 17129 17229

Time 1.6 247.5 170.9 284.4

1000 23528 Best 23553 24604 24131 24948

Mean 23553.8 24810.0 24513.8 25281.6

Worst 23555 24933 24861 25589

Time 3.0 279.5 211.8 296.4

1250 32493 Best 32607 33925 33375 34209

Mean 32608.0 33975.2 33534.7 34590.5

Worst 32608 34141 33871 34923

Time 2.8 273.0 287.0 315.5

1500 42769 Best 42782 44160 43983 44864

Mean 42782.7 44405.4 44157.2 45170.0

Worst 42785 44583 44377 45458

Time 4.5 288.3 278.2 402.7

1750 54763 Best *54762 55978 56004 56627

Mean 54765.7 56327.8 56115.4 57061.6

Worst 54769 56475 56236 57476

Time 27.5 287.2 296.6 448.2

2000 68622 Best 68637 69691 69554 70450

Mean 68637.0 69704.7 69742.2 70905.5

Worst 68637 69876 69912 71159

Time 4.2 269.1 296.6 434.9

2250 85366 Best *85361 85883 85848 87071

Mean 85361.0 85883.0 86080.2 87378.2

Worst 85361 85883 86544 87745

Time 5.3 272.6 266.6 332.2
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Chapter 5

Hybrid Metaheuristics Based on Memeteic

Algorithm and Tabu Search

5.1 Introduction

In this chapter, we develop two Hybrid Metaheuristics, both of which are based

on Memeteic Algorithm (MA) and Tabu Search (TS).

In the first one, a MA based on TS is proposed. It has both merits of EC and

Local Search. Note that a configuration is a list of vertices of a feasible solution.

To enlarge the search area, a crossover operator is applied to combine all vertices

of two configurations and returns a feasible solution with a good objective function

value. Moreover, to find the optimal solution, TS with short-term memory is applied

to each feasible solution generated by crossover. To enhance the quality of initial

population, one configuration of initial population is generated by DP. Experimental

results show that the proposed algorithm has a high solution precision and a short

computing time. This is because the crossover in memetic algorithm enlarges search

area effectively, and local search improves the solution greatly.

The second one is a TS with MA, which acts as a powerful diversitification

strategy. In addition, the TS with dynamic tabu list improved the precision of

solution significantly. Experimental results show that the new hybrid metaheuristic

is dramatically superior to exiting algorithms in precision. Specifically, some of
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our proposed algorithm updates all the best known solutions of large benchmark

instances proposed by Blum et al. (e.g., graphs with more than 5000 edges). It

also indicates that nothing else matches its balance of diversity and centralization

of solutions in hybrid metaheuristics.

5.2 Memetic Algorithm

Traditional Evolutionary Computation (eg. Genetic Algorithm) has been applied

widely to solve optimization problems because of their good search abilities. On

the other hand, they may not be efficient to some problems that contain many local

optima. For example, it seems difficult to reach the best solution x∗ by Evolutionary

Computation directly for a minimization problem in Figure 5.1. However, it is easy

to find the best solution by local search if the search starts from B. In our study,

MA is used as a diversification strategy to reach B easily. Then TS is applied to

find optimal solution efficiently.

MA was firstly introduced by Moscato in 1989 [3]. It has both merits of Evo-

lutionary Computation and local search. In this section, we present a new MA

based on TS for solving the kCTP. One of the core ideas is that vertices in a fea-

sible solution (k-cardinality tree) with a good objective function value are usually

good components for constructing an optimal solution. Note that a configuration

is a list of vertices of a feasible solution. Firstly, we pay attention to the diversity

of configurations in each generation. When generating a new generation, repeated

configurations should be gotten rid of from the population and the space would be

filled up with new configurations. Secondly, to enlarge the search area, crossover is

applied to combine all vertices of two configurations and returns a feasible solution

with a good objective function value. Finally, in order to find the optimal solution,

TS is applied to each feasible solution generated by crossover. Moreover, to enhance

the quality of initial population, one configuration of initial population is generated

by Dynamic Programming [38].
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Figure 5.1: A Minimization Problem

The pseudocode of proposed MA is shown in the following:

Memetic Algorithm

P:= Generating Initial Population

while stop criterion not satisfied do

P ′ := Crossover (P )

P ′ := Renew (P ′)

P ′′ := Tabu Search (P ′)

P := Renew (P ′′)

end while

return the best k-cardinality tree in P ,

where P means the population of configurations. Renew (P ) := P/ Prepeated ∪ Pnew.

Prepeated and Pnew are repeated configurations and configurations generated in the

way of Section 5.2.1, respectively.

Generating Initial Population According to numeral experiments beforehand,

we find that the performance of the algorithm is high if there is a configuration

with high precision in the initial population. The first configuration is obtained
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by DP, originally introduced in [38]. It has a good objective function value and

is considered to be able to improve the quality of the population P . In order

to keep the diversity of configuration in the population, others are generated

under the procedure described in Section 5.2.1. Additionally, in order to make

sure that the structures of all the individuals are not the same, we compared

the newly generated configuration (a list of vertices) with the existing ones. If

they are reduplicate, new configuration should be regenerated with p′ := 1−p′

momentarily.

Stopping criteria of Memetic Algorithm We define a generation as an idle

generation if the best objective function value is not improved in that genera-

tion. MA stops if idle generation occurs continuously for several times. In this

way, the algorithm makes sure there is enough chance for the improvement of

solution.

Crossover In our study, a genetic operation, crossover, is applied for generating

new configuration. Crossover has been adopted in many Evolutionary Com-

putations. It enlarges the explored domain, so that the search can escape from

local optima easily. The crossover operator is completed by the following two

procedures:

Step one, generate spanning tree based on two configurations. Two individ-

uals in P are considered to be parents TC
k and Tk. If Tk and its cross part-

ner TC
k have at least one common vertex, a vertex set V (GC) is defined as:

V (GC) = V (Tk)
∪
V (TC

k ). Otherwise, edges and vertices should be added to

Tk until at least one common vertex is found with p′ := 1− p′ momentarily. A

spanning tree T SP , which contains all vertices of V (GC), is constructed under

the procedure we introduced in Section 5.2.1.

Step two, generate k-cardinality tree from T SP . DP [38] is applied to the

T SP for finding out the best k-cardinality tree. Since DP is very efficient, the

crossover operator will help us get a feasible solution with a good objective

function value in a very short computing time.
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5.2.1 Growing a k-cardinality tree

The algorithm we consider here uses a semi-greedy approach to solve problems.

It grows a k-cardinality tree one edge at a time. Let T be a subset of a k-cardinality

tree Tk. We call an edge a safe edge if T is still a tree after being added with it.

Firstly, a vertex is selected randomly to be the first component of tree T . Then in

each step, one safe edge should be added to T until there are k edges in the tree T .

To obtain various k-cardinality trees, a real number p ∈ (0, 1) is generated ran-

domly at each step. If p ≤ p′, the edge with smallest weight in safe edges will be

selected and added to T , else one edge would be selected randomly from safe edges.

The value p′ determines the range of the heuristic bias. In an extreme case of p′ = 1,

at each step the edge added to T is the best edge in safe edges, thus the construction

would be equivalent to Prim’s algorithm. It tends to reach k-cardinality trees with

a smaller objective function value, but these trees tend to be less diversified. On the

contrary, in case p′ = 0, a k-cardinality tree would be constructed randomly. In this

case, it would not be a good initial solution for further searching. It is expected to

attain a good balance between the goodness of initial solutions and their diversity

by a proper value p′. In this research, we determine the value p′ = 0.85 due to the

results of preliminary numeral experiments.

The pseudo-code is shown in the following:

Growing a k-cardinality tree

T⇐ select one vertex randomly

while k-cardinality tree is not completed do

List ← generate list of safe edges

p ← generate a value randomly in (0,1)

if p ≤ p′
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(u, v) ← an edge with minimal weight in List of safe edges

T← T ∪ (u, v)

else

(u, v) ← an edge randomly selected form List of safe edges

T← T ∪ (u, v)

Update the List of safe edges

end while

5.2.2 Details of Tabu Search with short-term memory

After crossover, each offspring should be further improved by local search.In the

proposed algorithm, we found TS-based local search effective. That is because the

most important characteristic of TS is that it uses a concept of memory to control

movements via a dynamic list of forbidden movements. To be more specific, the

solutions which have been searched will be “tabu” (forbidden) from visiting for a

while. This mechanism allows TS to intensify or diversify its search procedure in

order to escape from local optima. Incidentally, TS has also been proved to be

effective in solving kCTPs [34].

The basic ingredient of TS is local search. Local search is often conducted via

some move operators. A move from the current solution to the candidate solution

is only performed when the objective function value is improved. Local search we

used here is the same with the one introduced in Chapter 3.

Length of Tabu List The core procedure of TS is to forbid some moves based on

memory in order to enlarge the search area. In the proposed algorithm, the

“tabu” (forbiddance) is applied to edges that have been added to or deleted

from the k-cardinality tree recently. Tabu lists are used as a memory to record
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edges that should be forbidden to be added or deleted. InList and OutList are

adopted to keep the records of removed edges and added edges, respectively.

Tabu tenure, which generally depends on the length of tabu lists, is a period

during which it forbids edges in the tabu lists from being added or deleted. The

lengths of tabu lists are not dynamically changed in the proposed algorithm,

since the computing time will explode as the length increases. The length of

tabu list (tl) is defined as follows:

tl := min

{⌊
|V |
20

⌋
,
|V | − k

4
,
k

4

}
,

where |V | is the number of vertices in G, k is the value of cardinality.

Aspiration Criterion The “tabu” mechanism, which forbids some of the moves

to be employed, helps the algorithm avoid falling into local optima. However,

this mechanism may also forbid a move that may reach the best solution. In

order to avoid such a situation, a procedure called aspiration criterion is used

in the proposed algorithm. That is, if f(T new
k ) < γe is satisfied, the movement

will be acceptable even if edge e is included in InList or OutList. Parameters

γe called aspiration level criterion are given to all of edges and are initially

set to be:

γe =

 f(T cur
k ) e ∈ E(T cur

k )

∞ e /∈ E(T cur
k ).

For each explored solution Tk, γe is updated as γe := f(Tk) for each e ∈ E(Tk).

5.2.3 Experimental study

To evaluate the efficiency of MA, we compared the proposed method (MA) with

three state-of-the-art existing algorithms. One algorithm is a Hybrid algorithm

(TSACO) based on the TS and ACO, introduced in Chapter 3. The other two

algorithms are tabu search algorithm (TSB) and ant colony optimization (ACOB),

both of which are introduced by Blum et al. in [34].

We use C as the programming language and compile the program with C-Compiler:
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Microsoft Visual C++ 2010 Express. MA is tested 10 runs on a PC with Intel Core

i7 2.8 GHz CPU (the multi-processor did not process in parallel) and 8 GB RAM

under Microsoft Windows 7. The best, mean and worst objective function values

and computing time are obtained. Accordingly, the results of existing algorithms are

referred to Chapter 3. They executed each method for 30 runs under the condition

that TimeLimit = 300 (s). All the metaheuristic approaches were tested on a PC

with Celeron 3.06 GHz CPU and RAM 1 GB under Microsoft Windows XP.

The experiments were applied to several famous instances [1] and instances pro-

posed in Chapter 3, respectively. Tables 5.1-5.6 show the results of these experi-

ments. |V |, |E|, and d̄(v) indicate the number of vertices, the number of edges and

the average number of edges a vertex connecting in a graph, respectively. k denotes

the cardinality of kCTP. BKS means the best known solutions which have been

obtained by Blum and Blesa through their tremendous experiments [1]. The rows

headed “Best”, “Mean” and “Worst” provide the best, average, and worst objec-

tive function values, respectively. “–” indicates that the algorithm does not derive

solutions within the given time limit. Results highlighted in bold mean that this

algorithm beats others. The values marked by ∗ denote that the best known solu-

tions were updated by that algorithm. In addition, columns headed “time” provide

the average computing time to reach the best solution.

From Table 5.1 we can see that the precision of MA is not so good, even worse

than ACOB in cases of the best objective function values when the graph size is

small. However, comparing Tables 5.1 with 5.2 and 5.3, we find that as the size of

graph becomes large the performance of MA establishes total supremacy to rivals

considering “Best value”, “Mean value” and “Worst value”. We believe that the

diversification strategy based on MA enlarges the search area and leads to a better

solution, especially when the graph size is large.

The d̄(v)s of instances in Tables 5.4, 5.5, and 5.6 are larger than those of instances

in Tables 5.1, 5.2 and 5.3. In these instances with large d̄(v)s, the performance of

MA is also outstanding, especially considering the mean objective function values.
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Furthermore, the MA’s deviation between “Best”, “Mean” and “Worst” is relatively

smaller than those of other algorithms. It can be thought that the MA has a strong

robustness.

In consideration of terminate condition is 300 (s) for other algorithms, the com-

puting time of the proposed algorithm is relatively short (most of them are less than

1 second). We can conclude that the proposed MA is good in solution precision and

is high-speed.

5.3 Tabu Search combined with Memeteic Algorithm

Though the proposed MA is powerful in diversification and is better in precision

for some benchmark problems than existing algorithms, its precision is poor in some

case compared to the best known solutions in literature [1]. One possible reason is

that graphs in those benchmark instances are different in size, degree and weights.

It has been pointed out that characteristics of a problem instance as well as the

size of the cardinality have a high influence on the behavior of algorithm. To solve

this problem, hybrid algorithm are considered. The basic idea is that different

algorithms have their superiorities for some kinds of benchmark instances and have

different features in searching. Different algorithms may be complementary in a

hybrid algorithm.

As we have summarized before, if there is a solution with high precision in initial

population, the performance will be improved significantly. On the other hand, MA

also maintains the diversity of individuals in the population. Among the metaheuris-

tics proposed for solving kCTP, we find TS has both the search ability to generate

a solution with high precision and short coming in keeping diversity of solutions.

Based on these considerations, we propose a hybrid metaheuristic in which MA acts

as diversification strategy for TS. It is expected to be a metaheuristic which has the

highest precision for almost all of the benchmark instances in [1].
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Pseudo-codes of hybrid algorithm proposed are shown in the following:

Input a problem instance (G,w, k)

s∗ ←∞

s← Dynamic Programming()

s∗ ← s if f(s) < f(s∗)

s′ ← Tabu Search(s∗)

s∗ ← s′ if f(s′) < f(s∗)

while Terminate condition not met do

s′′ ← Memetic Algorithm(s∗, s1, s2, ..., sn)

s∗ ← s′′ if f(s′′) < f(s∗)

s′′′ ← Tabu Search(s∗)

s∗ ← s′′ if f(s′′) < f(s∗)

end while

Output s∗ (or Tk),

where s, s′, s′′, s′′′ indicate feasible solutions (or a k-tree Tk). s
∗ means the solution

with global best objective function value. Function f(•) computes the objective

function value. s1, s2, ..., sn indicates the population of solutions in MA.

As we have given experiment results of TS in Figure 2.1 in Chapter 2, the comput-

ing time of TS is significantly large compared with DP. In which the initial solution

for TS is generated by Prim algorithm which is poor in precision (Figure 2.1). Re-

ferring to Algorithm 4 in Chapter 2, the length of tabu list in proposed TS increases

when the solution is not improved for several iterations until the determined length.

If the initial solution is poor in precision, process of increasing tabu length may slow,

and the number of times of local search becomes large. Accordingly the computing
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time of TS becomes long. In order to make the computing time shorter, we use

the solution generated by DP, which gives a solution with high precision fleetly, as

the initial solution. In other words, a good initial solution helps TS converge in a

shorter computing time. On the other hand, according to the results in Table 2.1

and 2.2 in Chapter 2, the results obtained by DP are better when cardinality (k)

are small. Hybrid algorithm is considered to achieve expectable solutions of varied

cardinalities.

As we have introduced above, MA acts by updating population of solutions.

Varied individuals (solutions) in the population and the crossover operator between

two individuals keep the diversification of solutions. Knowing this feature, the hybrid

algorithm applies the MA after TS. The MA makes the solution generated by one of

the individuals and newly generates other individuals under the way we introduced

in Chapter 5.2.1. To explore the search area thoroughly, TS is applied once again.

In this way, MA acts as the diversification strategy for TS.

In the proposed algorithm, the procedure combined MA and TS terminates if the

solution have not been improved for 5 iterations or two times of iterations in which

solution has been improved. In such way the algorithm make sure there is enough

chance for the solution improving when a problem is complex.

Details of the TS and MA can be referred to the chapter 3 and this chapter,

respectively. Since TS and MA can generate “good” solution for each other, combing

these two different search methods to solve the kCTP, it is desirable to reach a high

performance.

5.3.1 Experiments and results

In order to evaluate the performance of the proposed hybrid metaheuristic algo-

rith, we did experiments of the proposed algorithm. Looking for a hybrid algorithm

of the highest precision, we compare the results of proposed hybrid metaheuristic

(HyTSMA) with the best known solutions (BKS) given in literature [1]. We select

the most kinds of benchmark instances in [1]. They are instances with regular graph,
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grid graph and instances constructed from Steiner problems. Since the complexity

of instance increases as the size of graph becomes large, we choose the largest graph

of each kind of instance. The cardinalities are nearly 20%, 40%, 60%, 80% and 90 %

of the number of vertices of the graph. We use C as the programming language and

compile the program with C-Compiler: Microsoft Visual C++ 2010 Express. MA

is tested 30 runs on a PC with Intel Core i7 2.93 GHz CPU (the multi-processor

did not process in parallel) and 4 GB RAM under Microsoft Windows 7. The best,

mean and worst objective function values and computing time are obtained. For an

instance, if the number of edges is not more than 2000 the limited time condition is

set to be 900s. For a graph is larger, the limited time condition is set to be 7200s.

Tables 5.7 to 5.10 show the results of experiments. |V | indicates the number of

vertices in a graph, and k denotes the cardinality of kCTP. BKS means the best

known solutions which have been obtained by Blum and Blesa through their tremen-

dous experiments [1]. The rows headed “Best”, “Mean” and “Worst” provide the

best, mean, and worst objective function values, respectively. The values marked by

∗ denote that the best known solutions were equal to or updated by that algorithm.

We can see from the results that, the precision of HyTSMA establishes total

supremacy to rivals considering “Best value”, “Mean value” and “Worst value”.

Considering the precision is hard to be improved for an instance with large graph

(eg. 2500 vertices and 4900 edges), the proposed algorithm improved the BKS

significantly. Furthermore, the hybrid algorithm is robust since the instances include

almost all kinds of instances in [1]. Based on those results, we can say that the

proposed algorithm has the highest precision among approximate algorithms.

5.4 Conclusion

In this chapter we proposed a MA and a hybrid algorithm based on MA and TS

for kCTP. The proposed algorithm enhances the diversity of the configurations in

each generation, which helps search escape from local optima even the size of the
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graph is large. The experiments applied in existing benchmark instances show that

MA is able to find optimal (near-optimal) solutions for larger instances within short

running time. The high precision of proposed hybrid algorithm can be observed that

a proper combination of metaheuristics is efficient for solving kCTPs.

Table 5.1: Results on grid graph.
Graph k BKS MA time (s) TSACO TSB ACOB

|V | = 225 40 695 Best 695 0.008 695 696 695

|E| = 400 Mean 699.6 0.029 695.0 696.0 695.4

d̄(v) = 3.55 Worst 728 0.052 695 696.0 696.0

(bb45x5 1.gg) 80 *1552 Best 1618 0.013 1552 1579 1572

(1568) Mean 1636.9 0.029 1565.1 1592.7 1581.2

Worst 1639 0.104 1572 1615 1593

120 *2444 Best 2456 0.038 2444 2546 2457

(2450) Mean 2468.7 0.092 2457.9 2558.5 2520.3

Worst 2477 0.154 2465 2575 2601

160 *3688 Best 3701 0.027 3688 3724 3700

(3702) Mean 3714.1 0.085 3688.0 3724.9 3704.7

Worst 3724 0.260 3688 3729 3720

200 5461 Best 5461 0.032 5461 5462 5461

Mean 5461.0 0.055 5461.0 5462.4 5469.0

Worst 5461 0.154 5461 5463 5485



78 5. Hybrid Metaheuristics Based on Memeteic Algorithm and Tabu Search

Table 5.2: Results on regular graph
Graph k BKS MA time (s) TSACO TSB ACOB

|V | = 1000 200 3308 Best 3421 0.186 3393 3438 3312

|E| = 2000 Mean 3423.7 0.202 3453.1 3461.4 3344.1

d̄(v) = 4 Worst 3424 0.226 3517 3517 3379

(g1000-4-01.g) 400 7581 Best 7600 1.021 7659 7712 7661

Mean 7621.8 1.926 7764.0 7780.2 7703.0

Worst 7636 3.220 7819 7825 7751

600 12708 Best 12733 0.982 12785 12801 12989

Mean 12746 2.035 12836.6 12821.8 13115.6

Worst 12759 4.001 13048 12869 13199

800 19023 Best 19033 1.496 19099 19093 19581

Mean 19047.1 3.682 19101.1 19112.6 19718.7

Worst 19060 12.872 19128 19135 19846

900 22827 Best 22827 0.072 22827 22843 23487

Mean 22829.7 0.176 22827.0 22859.2 23643

Worst 22830 1.006 22827 22886 23739

Table 5.3: Results on regular graph
Graph k BKS MA time (s) TSACO TSB ACOB

|V | = 1000 200 1018 Best 1018 0.166 1034 1036 1036

|E| = 5000 Mean 1024.2 0.451 1048.6 1047.3 1045.9

d̄(v) = 10.0 Worst 1036 0.849 1063 1056 1056

(steind15.g) 400 2446 Best 2448 0.883 2469 2493 2665

Mean 2452.4 1.331 2480.7 2502.5 2806.6

Worst 2458 2.206 2492 2524 2928

600 4420 Best 4420 0.553 4426 4442 5028

Mean 4420.7 0.934 4433.0 4454.6 5398.4

Worst 4423 1.772 4451 4490 5602

800 7236 Best 7236 1.736 7236 7252 8457

Mean 7237.8 2.356 7237.0 7272.8 8839.6

Worst 7239 3.741 7237 7308 9006

900 9248 Best 9248 0.068 9256 9283 10873

Mean 9248 0.080 9256.0 9294.2 11166.3

Worst 9248 0.097 9256 9304 11423
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Table 5.4: Results on instances constructed from graph coloring problems
Graph k BKS MA time (s) TSACO TSB ACOB

|V | = 450 90 135 Best 135 0.006 135 135 135

|E| = 8168 Mean 135 0.010 135.1 135.3 135.7

d̄(v) = 36.30 Worst 135 0.034 137 136 137

(le450 15a.g) 180 336 Best 336 0.008 336 337 352

Mean 336.5 0.071 337 337.1 374.4

Worst 337 0.268 337 338 419

270 630 Best 630 0.163 630 630 696

Mean 630 0.175 630.1 630.3 839.0

Worst 630 0.196 631 633 913

360 1060 Best 1060 0.014 1060 1060 1267

Mean 1060 0.020 1060.0 1064.1 1461.2

Worst 1060 0.060 1060 1118 1566

405 1388 Best 1388 0.014 1388 1388 1767

Mean 1388 0.018 1388 1391.1 1888.7

Worst 1388 0.030 1388 1392 2015

Table 5.5: Results on new instances (1)

Graph k MA time (s) TSACO TSB ACOB

|V | = 500 100 best 1943 0 1943 1954 1943

|E| = 15000 mean 1943 0.008 1950.5 1990.9 2022.3

d̄(v) = 60 worst 1943 0.016 1966 2023 2241

200 best 5062 0 5037 5063 5517

mean 5062.8 0.066 5047.3 5080.4 7444.4

worst 5063 0.312 5066 5221 9859

300 best 9760 0.577 9758 9821 -

mean 9761.7 0.716 9769.6 9922.6 -

worst 9763 0.998 9795 11696 -

400 best 16351 0.015 16351 16373 -

mean 16351.0 0.017 16363.8 16488 -

worst 16351 0.031 16368 17953 -

450 best 20929 0.015 20929 20934 -

mean 20929 0.019 20929 20945.2 -

worst 20929 0.032 20929 20992 -
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Table 5.6: Results on new instances (2)

Graph k MA time (s) TSACO TSB ACOB

|V | = 500 100 best 1306 0.171 1294 1319 1398

|E| = 30000 mean 1319 0.278 1303.7 1352.8 1743.5

d̄(v) = 120 worst 1322 0.780 1321 1385 2479

200 best 3007 0.250 3064 3150 4013

mean 3012.4 0.700 3097.1 3934.4 6861.4

worst 3020 1.154 3127 6032 9623

300 best 5304 0.452 5312 5380 -

mean 5304.0 0.479 5312.5 6471.9 -

worst 5304 0.515 5318 8308 -

400 best 8582 0.015 8582 8586 -

mean 8582 0.017 8582 9540 -

worst 8582 0.031 8582 11485 -

450 best 10881 0.015 10881 10882 -

mean 10881 0.020 10881 11300.4 -

worst 10881 0.032 10881 13570 -

　

Table 5.7: Results for instances with Regular graph [1]

Graph k BKS HyTSMA

|V | = 1000 200 3308 Best *3308

|E| = 2000 Mean 3308.4

d(v) = 4 Worst 3318

(g1000-4-01.g) 400 7581 Best 7586

Mean 7589.1

Worst 7596

600 12708 Best *12705

Mean *12705.8

Worst 12709

800 19023 Best *19015

Mean *19015.6

Worst *19017

900 22827 Best *22827

Mean *22827

Worst *22827
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Table 5.8: Results for instances with Regular graph [1]

Graph k BKS HyTSMA

|V | = 1000 200 3620 Best *3618

|E| = 2000 Mean 3621.9

d(v) = 4 Worst 3635

(g1000-4-05.g) 400 8206 Best *8197

Mean *8200.6

Worst *8206

600 13584 Best *13580

Mean *13580.1

Worst *13582

800 20076 Best *20074

Mean *20074

Worst *20074

900 24029 Best *24029

Mean *24029

Worst *24029

Table 5.9: Results for instances with Grid graph
Graph k BKS HyTSMA

|V | = 2500 500 8150 best *8088

|E| = 4900 mean *8127.4

d̄(v) = 3.78 worst *8135

(bb50x50 1.gg) 1000 17437 best *17381

mean *17424.8

worst 17480

1500 28683 best *28502

mean *28517.3

worst *28528

2000 43627 best *43541

mean *43549.6

worst *43558

2250 53426 best *53407

mean *53407.3

worst *53409
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Table 5.10: Results for instances constructed from Steiner problems
Graph k BKS HyTSMA

|V | = 2500 500 9306 Best *9299

|E| = 3125 Mean *9299.7

d̄(v) = 2.5 Worst 9312

(steine5.g) 1000 23528 Best *23500

Mean *23501.8

Worst *23511

1500 42769 Best *42735

Mean *42737.0

Worst *42746

2000 68622 Best *68618

Mean *68618

Worst *68618

2250 85366 Best *85360

Mean *85360.2

Worst *85361
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Chapter 6

Conclusion

In this doctoral dissertation we have proposed new hybrid metaheuristics combin-

ing bio-inspired algorithms with Tabu Search (TS) and/or Dynamic Programming

(DP) for the k-Cardinality Tree Problem (kCTP) . Properties of each sole algo-

rithm as well as those hybrid metaheuristics have been analyzed. Furthermore, how

to construct an efficient hybrid metaheuristic is also discussed.

To be more precise, in Chapter 3, a new hybrid algorithm for kCTP by combining

TS and ACO was proposed. We have shown that the performances of the proposed

method are better than those of existing methods. Furthermore, it has been shown

that the proposed method updates some of the best known values. In Chapter 4,

we proposed a new hybrid metaheuristic based on TS and Immune Algorithm (IA)

for solving kCTPs. It indicates that IA is a good diversity strategy for TS, since it

improves the precision significantly. In Chapter 5, we proposed a MA based on TS

for kCTP. The proposed algorithm enhances the diversity of the configurations in

each generation, which helps search escape from local optima even the size of the

graph is large. It can be also observed that a proper combination of metaheuristics

is efficient for solving kCTPs.

Numerical results show that proposed algorithms are competitive to existing al-

gorithms from the viewpoint of solution accuracy and computing time. Specifically,

some of our proposed algorithm updates all the best known solutions of large bench-

mark instances proposed by Blum et al. (e.g., graphs with more than 5000 edges).

Based on large amounts of experiments and their results of proposed hybrid meta-
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heuristics, we conclude the following points, which should be paid attention to, for

solving kCTP. Hoping these advices would be helpful in developing hybrid meta-

heuristics for other combinatorial optimal problems.

Bio-inspired techniques provide powerful strategies. Using ACO as diversi-

fication strategy, the algorithm restarts and further improves the solution.

In IA, the mechanism that maintains the diversity of individuals helps the

algorithm avoid falling into these traps of local optimal. Additionally, MA ef-

fectively enlarges the search area by using population of individuals, crossover

and tabu search with short-term memory.

To visit new solutions, worse solution should also be admitted. Since local

search always take the better or the best solution in neighborhood as the cur-

rent solution, in the proposed algorithm even a worse solution is used as an

initial solution when restarting the TS. Those “worse” initial solutions, gen-

erated by ACO or IA, may have very different structures comparing to the

current solution.

Crossover operator is efficient to enlarge the search area. Crossover plays an

important role both in IA and MA. The idea of Crossover is that a good off-

spring is often generated by on good parents. Further more, two individuals

far away in the search area may generate an offspring located between them,

as a result of enlarging the search area.

Hybrid algorithm doubles powerfulness of sole metaheuristic. For a meta-

heuristic algorithm with defects in structure, e.g. the computing cost of TS

may extremely large if the length of tabu list is very long, hybrid algorithm is

one of the best ways of filling that gap by combing with MA or IA. The results

of experiments show that the hybrid algorithm beats state-of-the-art meta-

heuristics in precision of solution. It also indicates that nothing else matches

its balance of diversity and centralization of solutions in hybrid metaheuristics.
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