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Cross-sectional optimization of whispering-gallery
mode sensor with

high electric field intensity in the detection domain
Akihiro Takezawa,Member, IEEE, Masanobu Haraguchi,

Toshihiro Okamoto and Mitsuru Kitamura

Abstract—Optimal cross-sectional shapes for whispering-
gallery mode sensors with prescribed emission wavelengths and
resonance modes are generated through topology optimization
based on the finite element method. The sensor is assumed to
detect the state of the domain surrounded by the sensor. We
identified the integral of the square of the electric field intensity
over the detection domain and the quality factor (Q factor), which
should be maximized, as key values for the sensor sensitivity,
representing the detection limit for the relative permittivity
change of the test object. Based on this, the integral of the square
of the electric field intensity over the detection domain and the Q
factor are studied as the optimization targets. In our numerical
study, their optimal configuration characteristics are identified
and analyzed. The resulting device has a small radius, a small
detection domain and a concave shape with a center located
next to the detection domain. We also succeeded in performing
simultaneous optimization of the integral of the square of the
electric field intensity over the detection domain and the Q factor.

I. I NTRODUCTION

Micro-ring resonators with whispering-gallery mode
(WGM) resonance have tremendous potential for applications
in optics [1], [2]. The WGM, which is set up in these devices
by emissions from the input light, forms circular continuous
closed beams governed by internal reflections along the
resonator boundary. Because the light wave is trapped within
a very small volume during WGM emission, a high quality
factor (Q factor) can be achieved in WGM devices.

Since the behavior of the trapped light is very sensitive
to changes in the device’s shape or surroundings, the use of
the WGM resonator as a sensor was studied. These sensors
have been used to detect the condition of a surrounding liquid
[3], [4], [5], [6], temperature [7], force [8], pressure [9] and
the condition of composite materials [10]. The representative
example used here is label-free bio-sensing. The optical path
in the WGM device can be changed even by the binding of
molecules. The variation in the optical path can be detected
as a shift in the resonance wavelength [3], [5].

In this research, to enhance the detection performance for
the state of a surrounding liquid, a sensor for a specified
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domain state is considered, such as a density sensor. In the con-
ventional WGM sensor, sphere, toroidal, ring or disk shapes
are used for ease of manufacturability. However, because these
shapes cover the energy hot spot of the WGM, better shapes
could exist for sensing applications. Although it may cause
the Q factor to decrease, a shape that reveals the WGM hot
spot to the sensing domain is preferable for the sensor. Apart
from their manufacturability, the study of these shapes also
contributes to the WGM sensor device development.

The search for a novel device geometry can be assisted by
accurate numerical performance analysis. The WGM is usually
evaluated through an eigenvalue analysis based on the finite-
element method (FEM). In particular, because of the circular
shape of the device and the optical mode, axisymmetric models
are effective for simulation of the WG resonance mode in ring
resonators. The relevant details are explained in [11]. Although
the FEM has been used before to analyze the electric field
behavior from the top view of the WGM [12], few detailed
numerical studies of the cross-section of the WGM sensor have
previously been performed. Moreover, because variation in the
device shape causes variation in the resulting WGM order and
emission wavelength, a detailed search for an optimal device
shape for a specified wavelength can be quite challenging.
Thus, detailed shape optimization provides a means to develop
high performance devices that would be available for a wide
variety of applications.

Topology optimization [13] has previously contributed to
the optimal design of novel optical devices [14], [15], [16],
[17], [18]. In this approach, the designed devices are repre-
sented by distributions of the dielectric materials or metals
in the analysis model. By updating these distributions using a
gradient-based optimization method, the generated distribution
represents the shapes of devices that attain specific perfor-
mance criteria. In previous research, the authors have applied
topology optimization to the optimization of the fundamental
characteristics of the WGM resonator, maximization of the Q
factor and minimization of the mode volume [19].

In this research, we study and identify the optimal shapes for
WGM sensors using FEM-based topology optimization. This
systematic procedure helps us to find optimal device shapes
with fixed design performance for a prescribed emission
wavelength and WG resonance mode. A sensor sensitivity
criterion, representing the detection limit of the relative per-
mittivity change of the test object, is first formulated using
the integral of the square of the electric field intensity over
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the detection domain and the Q factor. The analysis domains
and the equations of state for the WGM ring resonators are
then considered. Studies of the cross-sectional shapes of the
WGM sensor are performed to formulate the optimization
problem on the basis of the proposed criteria. The integral
of the square of the electric field intensity over the detection
domain and the Q factor are then formulated as objective
functions, while the emission wavelength is formulated as
an equality constraint. The proposed geometrical optimization
is implemented as an optimization of the dielectric material
distribution using the phase field method [20]. The opti-
mization algorithm is constructed based on two-step FEM,
sensitivity analysis of each objective function and density
function constraint, and sequential linear programming (SLP).
Finally, numerical examples are provided for validation of
the proposed methodology. First, the effects of the size and
location of the detection domain on the sensor performance
are studied. Then, the simultaneous optimization of the integral
of the square of the electric field intensity over the detection
domain and the Q factor is considered.

II. PROBLEM SETTINGS

A. Design target and performance criteria

Using cylindrical coordinates, we model a WGM ring
resonator centered on the origin in free spaceΩ, as shown in
Fig. 1. The coordinate system is composed of the components
(z, ϕ, r), which denote the axial, azimuthal and radial coor-
dinates, respectively. A toroidal detection domainΩdet, which
is used to test a state of a liquid, such as its density, within
the domain is also set in the cylindrical domain around the
resonator. The vertical cross-sectional shape of the device in a
specified domain that does not includeΩdet in thez-r plane is
treated as the design target; we obtain the final axisymmetric
form by generating the corresponding solid of revolution.

z

o

Design domain

r

φ

Resonator (design target)

Detection 
domain

Fig. 1. The analysis and design domain as described in cylindrical
coordinates. The purple toroid indicates the cross-sectional resonator shape
that is the design target. The pink square toroid indicates the detection domain
Ωdet. The cross-sectional resonator shape is designed in a specified domain
on thez-r plane, which is shown as a dotted square.

The sensing mechanism of the WGM biosensor is based on
detection of the resonance wavelength or the frequency shift

caused by a change in the state of the sensor surface [5]. In the
case where the proposed sensor senses a change in state in the
specified domainΩdet, the fractional resonant wavelength shift
δλ caused by the average variation of the relative permittivity
δϵ over the detection domain is formulated as a ratio between
the variation of the local energy of the detection domain and
the total energy of the system [21]:

δλ

λ
= −δω

ω
∼= −δϵEdet

2U
(1)

where

Edet =

∫
Ωdet

|E(x)|2dx (2)

U =

∫
Ω

ϵ(x)|E(x)|2dx (3)

whereEdet is the integral of the square of the electric field
intensity over the detection domain,U is the total electrical
energy of the system,x is the position in the domainΩ and
E andϵ are the electric field and the relative permittivity atx,
respectively. According to (1), a higher energy concentration
is required in the detection domainΩdet to obtain a larger
frequency shift.

(1) can be extended to the criteria representing the permit-
tivity variation detection limit of the test object. Arnold et al.
related the smallest measurable frequency shiftδωmin to the
half width γ of the resonance frequencyω as: δωmin

∼= Fγ,
whereF is a specified measurement acuity factor [22]. From
the definition of the Q factor,Q = ω/γ, |δ|min/ω ∼= F/Q is
obtained. By substituting this into (1), the smallest measurable
relative permittivity changeδϵmin is represented by:

δϵmin
∼= 2F

U

EdetQ
(4)

Because the numerator of (4) is given when the resonant
wavelength is assumed to be fixed, both the integral of the
square of the electric field intensity over the detection domain
Edet and the Q factor should be maximized to minimizeδϵmin.

B. Equations of state of the WGM biosensor

The equations of state of the WGM biosensor form an
eigenvalue problem of the 3D vector Helmholtz equations
within the domain of the sensor device and its surroundings
for calculation of the resonance wavelengths. If the resonator
medium is isotropic, then the Helmholtz equation for the
magnetic fieldH, as derived from Maxwell’s equations, is
written as follows:

∇×
(
1

ϵ
∇×H

)
− 1

c2
∂2H

∂t2
= 0 (5)

whereϵ is the relative permittivity andc is the speed of light.
Here, the time harmonic function is assumed to be in the
form H(x, t) = H(x)eiωt and the above equation is solved
as an eigenvalue problem by FEM, whereω = 2πf is the
angular resonance frequency, given the resonance frequency
f . To suppress any spurious modes in the analysis, a weak
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penalty term [23] is introduced to yield the following modified
equation, as used in [11]:

∇×
(
1

ϵ
∇×H

)
− α∇ (∇ ·H) +

ω2

c2
H = 0 (6)

whereα is a coefficient. The following two types of boundary
conditions are considered for the above equation:

H × n̂ = 0 on Γpmc (7)

n̂×∇×H + ikn̂× n̂×H = 0 on Γabc (8)

where k is the wave number in free space, andn̂ is the
unit vector normal to the boundary; the former describes
perfect magnetic conduction, and the latter describes first-order
absorption on the boundary.

The state variable is the set comprising the time-dependent
radial, azimuthal, and axial components of the magnetic field
vectorH(r, t). We factorize the azimuthal dependence from
the variable using the cylindrical coordinate system; i.e.,

H(r) = eiMϕ[Hr(r, z), iHϕ(r, z),Hz(r, z)]
T (9)

whereM is the azimuthal mode order.
It should be noted that the azimuthal mode orderM is a

given parameter in the state equations above. Therefore, an
appropriateM must be set in the relationship between the
specified wavelength and the device geometry.

C. Analysis method

We solve the eigenvalue problem in (6) by FEM. To perform
an iterative numerical optimization based on the FEM results,
the target WG eigenmode must be selected automatically from
the numerous resulting eigenmodes, including the spurious
eigenmodes. The two-step analysis that was proposed in [11]
is introduced to specify the target mode during the iterative
optimization process. A small closed finite-element model,
composed of the device surrounded by a perfect magnetic
wall, tends to generate non-spurious modes. First, we solve
this model to obtain the eigenfrequency of the target WG
mode. This model is referred to as the “closed model” in
this paper. Then, we solve for the original model surrounded
by perfectly matched layer (PML) domains [24] to calculate
the Q factor using the specific target eigenfrequency obtained
from the closed model. This second step model is referred to
as the “open model”. All FEM in this paper are performed
using commercial COMSOL Multiphysics software in the
same manner as earlier works [11], [24].

To calculate the Q factor, we consider only the radiation
loss, for whichQrad is calculated as follows [2]:

Qrad =
Re(f)
2Im(f)

(10)

where Re(·) and Im(·) represent the real and imaginary parts
of the variable, respectively. In the analysis of a domain
surrounded by PML domains, the real part of the frequency
represents the total energy of the domain, while the imaginary
part represents the rate of energy absorption by the PML
domain,i.e. the radiation loss (see Chapter 5 in [25]).

We verify the results of our numerical calculation by
comparing them with the results obtained using an analytical
equation based on spherical resonators, as performed in [24].
The analytical equation for the Q factor including the radiation
losses for a spherical resonator is proposed in [26]. We
calculated the Q factor from (10) after solving (6) by FEM
for the TE mode with resonant wavelengths of 850nm and
1550nm for a silica (relative permittivityϵ = 2.09) spherical
resonator. Because the full components of the electric and
magnetic fields are calculated using the Maxwell equation in
the axisymmetric domain in (6), the TE mode mentioned in
this paper is the quasi-mode where the azimuthal component
of the electric field is nearly zero. The sphere diameters are
varied from 6µm to 20µm and from 10µm to 24µm for the
850nm and 1550nm resonant wavelengths, respectively. Fig.
2 shows a comparison between the results of the analytical
solution and those of the numerical solution. A certain level
of agreement was obtained at both resonant wavelengths.
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Fig. 2. Comparison between the Q factor values calculated using the
analytical equation and FEM.

III. STUDY OF THE CROSS-SECTIONAL MODE SHAPES

Before optimization, we performed several numerical stud-
ies of the cross-sectional shape of the WGM biosensor. In
general, the cross-sectional shape of the resonator is not
modified for a particular sensing target. Here, apart from the
practical aspect of manufacturability, we consider the ideal
cross-sectional shape for sensing based on the criteria given
in (4). In particular, in the case where sensing is performed
over a specified domain, such as detection of the density of a
liquid, then the most straightforward idea to obtain a strong
electric field over the domain is to surround the detection
domain by the device. Although such a device shape might
increase energy leakage, which in turn leads to a low Q-
factor, a higherEdet might be promising. Thus, the optimal (i.e.
minimum) δϵmin in (4) might be obtained using such device
shapes. We study this hypothesis numerically. The validity of
this numerical study is confirmed using the analytical resonant
wavelength shift ratio in (1).

Fig. 3(a) shows the analysis domain for this study. A
rectangular-shaped resonator is considered for detection of the
relative permittivity variation over the specified domain. The
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size of each component is as follows. The air domains of the
closed and open models are 1.8µm×3µm and 2.25µm×4µm,
respectively. The thickness of the PML domain that surrounds
the air domain of the open model is 0.15µm. The inner and
outer radii of the square detection domain are labeledrdi
and rdo, respectively, as shown in Fig. 3(a). For the square
detection domain, two cases are considered: (A):(rdi, rdo) =
(1.0µm, 1.05µm) and (B): (rdi, rdo) = (1.0µm, 1.01µm),
with a height of 0.05µm, when assuming the detection of
a homogenous domain state. (B) is considered to be an
approximation of the detection on the device surface. The
inner and outer radii of the square resonator cross-sections
are labeledrri andrro, respectively. The base position of the
dielectric is set to be(rri, rro) = (0.7µm, 1.0µm), with a
height of 0.4µm. In this base position, the detection domain is
located next to the dielectric domain(rro = rdi). The analysis
is performed based on the FEM with triangular elements.
Second-order Lagrange elements are used for the formulation
of each element. The media constituting the resonator and the
surrounding domain are assumed to be isotropic GaAlAs with
ϵ = 11.2896 and air withϵ = 1, respectively. The azimuthal
mode orderM is set to be 10. By considering the case where
the incident light has TE polarization, we focused on the first
order quasi-TE mode, where the azimuthal component of the
electric field is nearly zero, as the study target. Note that,
for optimization stability, i.e., where a lower value ofM is
better for stable analysis during optimization, the device size is
assumed to be too small for use as a sensor. For a largeM , the
solutions to the eigenvalue problem given in (6) contain a large
number of spurious modes that interrupt stable optimization.
We therefore introduced a relatively smallM , which we have
already used successfully in our previous research [19]. Let
us then suppose that this study can be applied to arbitrarily
sized devices.

Resonator
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PML
z

Detection
domain
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Resonator
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rdo

Offset = rro-rdi
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Fig. 3. The analysis domains used in the study of the WGM sensor cross-
sectional shape. (a) Model outline.rri andrro are the inner and outer radii
of the square resonator cross-sections, respectively.rdi andrdo are the inner
and outer radii of the square detection domain, respectively. (b) Overlap shape
of the WGM sensor over the detection domain. The offset value is calculated
from rro− rdi.

We simplify the state change of the detection domain
as being a change in the relative permittivity. The relative
permittivity of the detection domain is changed from 1 to
1 + 10−4, assuming the detection of the incorporation of

gas in the detection domain. The variation in the resonance
wavelength is then calculated according to this change. These
calculations are performed for several modified devices. For a
fixed detection domain, the device is moved to ther direction
to study the overlapped device shape on the detection domain.
The overlapped detection domain and its right side domain
are regarded as being air, as shown in Fig. 3 (b). This study
is performed for(rri, rro) = (0.7µm, 1.0µm) (the base posi-
tion), (0.75µm, 1.05µm), (0.8µm, 1.1µm), (0.85µm, 1.15µm),
(0.9µm, 1.2µm) and (0.95µm, 1.25µm). The offset values
between the resonator and the detection domain (see Fig.
3(b)) are 0 (base position), 0.05, 0.1, 0.15, 0.2 and 0.25µm,
respectively.

Table I shows the analysis results and contains the Q
factor Qrad, the resonance wavelengthλ, the square of the
electric field intensity of the detection domain

∫
Ωdet

|E|2dx,
the resonance wavelength change ratiosδλ/λ calculated both
directly and from analytical equation (1), and the smallest
measurable relative permittivity changeδϵmin.

First, the directly calculated resonant wavelength change
ratio showed good agreement with the analytical results calcu-
lated using (1). Larger offsets caused the Q factor to decrease
to a greater degree, because larger slits were set based on the
larger offsets, from which the energy leaked. Although the Q
factor was reduced, stronger electric fields were obtained in
the detection domain up to the 0.15µm offset. At the 0.05µm
or 0.1µm offsets, theδϵmin values reached their minimum in
both the domain (A) and domain (B) cases. This showed that
a certain level of overlap between the device and the detection
domain certainly reducedδϵmin. Of course, a lowerδϵmin was
obtained for the case of a wider domain (A).

However, for offsets of more than 0.15µm, Edet and δϵmin

both deteriorated. To enable analysis of the reasons for this
behavior, the energy distributions are shown in Fig. 4 for the
0, 0.1 and 0.2µm offsets with detection domain (A). In Fig.
4(a), the energy hot spot is located inside the device. However,
the hot spot is located next to the detection domain in Fig.
4(b). This might lead to high electric field intensity in the
detection domain. In Fig. 4(c), large grooves divide the mode
into two blocks, composed of the upper and lower sides. In
this mode, the electric field intensity between the two parts
seems to be weak. This mode is therefore inappropriate for
sensing purposes, as we confirmed in Table I. The groove size
should therefore be adjusted to avoid the mode shown in Fig.
4(c) during the optimization.

IV. OPTIMIZATION METHODOLOGY

A. Topology optimization

The topology optimization is performed based on density
or SIMP interpolation schemes, where SIMP stands for solid
isotropic material with penalization [13]. The relative permit-
tivity over the design domain is expressed in terms of the
density functionρ, (0 ≤ ρ ≤ 1):

ϵ = ϵAir + ρ(ϵGaAlAs − ϵAir ). (11)

The optimum cross-sectional shape of the device can then be
specified as a distribution inρ.
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TABLE I
RESONANCE WAVELENGTH SHIFT ANALYSIS RESULTS FOR(A) SQUARE AND (B) THIN DETECTION DOMAINS. THE RELATIVE PERMITTIVITY OF THE

DETECTION DOMAIN CHANGES FROM1 TO 1 + 10−4 .

Offset (µm) 0 0.05 0.1 0.15 0.2 0.25

Qrad 2.13× 106 1.29× 106 7.18× 105 3.57× 105 7.20× 104 2.49× 104

λ (nm) 1349 1354 1355 1335 1336 1309

(A) δλ/λ 6.16× 10−8 3.42× 10−7 6.14× 10−7 7.93× 10−7 2.12× 10−7 1.42× 10−7

Edet/2U 6.18× 10−8 3.44× 10−7 6.15× 10−7 7.93× 10−7 2.14× 10−7 1.45× 10−7

Edet (V2m) 4.08× 10−7 1.86× 10−6 3.06× 10−6 3.91× 10−6 1.61× 10−6 2.33× 10−6

δϵmin (×2F ) 3.80× 10−4 1.13× 10−4 1.13× 10−4 1.77× 10−4 3.24× 10−3 1.39× 10−2

(B) δλ/λ 2.07× 10−8 7.75× 10−7 1.19× 10−7 1.48× 10−7 7.26× 10−8 3.74× 10−8

Edet/2U 2.08× 10−8 7.78× 10−8 1.19× 10−7 1.48× 10−7 7.34× 10−8 3.82× 10−8

Edet (V2m) 1.36× 10−7 4.14× 10−7 5.79× 10−7 7.14× 10−7 5.32× 10−7 5.94× 10−7

δϵmin (×2F ) 1.14× 10−3 5.06× 10−4 5.97× 10−4 9.68× 10−4 9.80× 10−3 5.44× 10−2

(a) (b) (c)

Fig. 4. Energy distributions of the first TE mode with (a) no offset shape,
(b) a 0.1µm offset shape, and (c) a 0.2µm offset shape in the resonator. Red
dotted squares indicate the detection domain. The white areas indicate air.

According to our study in Section III, we target the follow-
ing tasks during optimization to increase the sensitivity of the
WGM sensor:

1) Maximization of the integral of the square of the electric
field intensity over the detection domain.

2) Maximization of the Q factor associated with the emis-
sions as expressed by (10).

3) Specification of the emission wavelengthλ = c/Re(f).

For Task 1, the basic purpose of the optimization process is to
increase the electric field intensity in the detection domain.
However, to avoid the split mode shown in Fig. 4(c), the
energy concentration in the domain adjacent to the detection
domain should also be considered as part of the optimization
process. Let us set the domainΩec for the energy concentration
on the left side of the detection domain, as shown in Fig.
5. Unlike the detection domainΩdet, Ωec is included within
the design domain. Task 3 is then assumed to be satisfied
by introducing a corresponding equality constraint. In the
eigenfrequency analysis, assuming the normalized eigenmodes
H (

∫
Ω
|H|2dx = 1), the total electric energy over the analysis

domain is equal to the square of the angular eigenfrequency
(
∫
Ω
ϵ|E|2dx = Re(ω)2) [27]. This means that, by pre-

specifying the emission wavelength and the azimuthal mode
order, the numerator in the expression for the Q-factor remains
constant during optimization. Thus, the objective functions for
Task 1,JE , and Task 2,JQ, and the equality constrainth for

Task 3 are formulated as follows:

minimize
ρ

JE(ρ) = −
∫
Ωdet

|E|2dx−
∫
Ωec

ϵ|E|2dx (12)

or/and

minimize
ρ

JQ(ρ) = Im(f) (13)

subject to

h(ρ) = λ− λ0 = 0 (14)

where λ0 denotes the specified wavelength. Based on the
above formulation, an optimal WGM sensor geometry under
fixed azimuthal order and emission wavelength conditions is
obtained.

Design domain

z

r

Air

Center axis PML

Ωec Ωdet

φ

o

Fig. 5. Outline of the analysis model used in the optimization process. The
gray domains indicate the design domain. The red dotted square indicates the
domain used to display the optimal configuration in the numerical examples.
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B. Numerical implementation and optimization algorithm

The massive scale of the optimization problem means that
the density function must usually be updated using gradient-
based algorithms, and the sensitivities for both objective
functions and the constraint must be calculated. The sensitivity
of the objective function in (13) can be expressed in terms of
the functions of the state variable and its adjoint. Because
the electric fieldE is calculated as an eigenmode of the
eigenvalue problem, the sensitivity and the adjoint equation
are formulated using the expression for the eigenmode studied
in [28]. The sensitivity of the objective function in (13) and
of the equality constraint in (14) can be calculated from state
variables only, without solving the adjoint equation, because
the optimization problem of the eigenfrequency is a self-
adjoint problem [29].

During the optimization process, the first order eigenmode
shape can be switched in the eigenvalue problem. In the case
of this optimization problem, the orders of the eigenmodes
shown in Fig. 4(b) and (c) can be switched. To continue to
track the target eigenmode, we solve the eigenmode problem
by using a closed model for several eigenvalues. We then
specify the target eigenvalue by evaluating the least square
error between the target eigenmode of the previous iteration
and several eigenmodes obtained from the current iteration.
The eigenmode with the lowest error is chosen as the target
of the current iteration.

Fig. 6 shows a flowchart of the optimization procedure.
First, the closed model is solved by FEM to find the eigen-
frequency of the target WG mode. Second, the original open
model is solved by FEM, and the objective function and the
constraint are calculated. Sensitivities for both the objective
function and the constraint must also be calculated. Next, the
adjoint equation is solved by FEM and the sensitivities of the
objective function and the constraint are calculated. Finally, the
density functions are updated by using the phase field method
[20] which is a boundary variation methodology based on the
density function. Topology optimization processes sometimes
encounter problems related to gray unclear domains. It is
difficult to identify whether these domains belong to the
optimal shape or the void. Thus, the phase field method, which
is free of the gray domain problem, is used. These procedures
are repeated until the iteration limit is reached or until certain
specified convergence criteria hold. The converged optimal
solutions are post-processed by thresholding of the density
function with a value of 0.5 to obtain clear black-and-white
shapes. In our previous work, the performance change caused
by this thresholding process was not too large to interrupt a
relative comparison of each of the optimal solutions [30].

V. NUMERICAL EXAMPLES

Some numerical examples are studied based on the optimal
shape of the WGM sensor using the proposed methodology.
The optimization processes are performed using the same
specified quasi-TE modes as those used in the studies in
Sections II and III, where the azimuthal component of the
electric field is nearly zero forM = 10. The material data, the
size of the air space and the PML are also the same. The size of

Set an initial value of density function φ

Calculate the eigenfrequencies and
eigenmodes from the closed model by FEM.

Calculate the eigenfrequency and the eigenmode
of the open model

specifying the target eigenfrequency.

Calculate the objective function and the constraints.

Update the density function
by the phase field method.

Converged?

End
Yes

No

Calculate the sensitivities of
the objective function and the constraint.

Choose the target eigenfrequency and 
eigenmode by the errors between the previous 
target eigenmode and the current eigenmodes.

Fig. 6. Flowchart of the optimization procedure.

the detection domainΩdet is set in each example. The domain
Ωec for the energy concentration in the device is set next to
the left side ofΩdet with a square shape with 0.04µm sides.
The design domain is 1.5µm×2µm. This domain is meshed
using triangular elements. Second-order Lagrange elements are
used for the formulation of each element. The density function
is discretized as a piecewise-constant function in the design
domain by a 75×100 square mesh. By assuming horizontal
mirror symmetry for the optimal shapes, only the upper half
of the design domain is optimized. Thus, 7500 design variables
are updated during the optimization process in this problem.
All optimizations are performed with a specified wavelength
λ0 = 1300nm, assuming that the input is from an InGaAsP/InP
laser.

A. Optimization for high electric field intensity in the detection
domain

The first optimization is performed to improve the electric
field intensity at the specified detection domain by using the
objective function in (12). The detection domain is set to be
the same as domain (A) in the study in Section III, where
(rdi, rdo) = (1.0µm, 1.05µm) in Fig. 1(a). Fig. 7 shows
the convergence history of the objective function and the
resonance wavelength up to 40 iterations. A smooth conver-
gence was obtained, satisfying the constraint. Fig. 8(a) shows
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the optimal configuration obtained at iteration 39, shown in
1.5µm×2µm boxes that were indicated by the red dotted
square in Fig. 5, where the left side of the figure corresponds to
the center axis. The distributions of the electric energy density
ϵ|E|2 and the electric field intensity|E|2 are shown in Fig. 8(a)
and (b). The small squares shown in Fig. 8(a) and (b) represent
the detection domainΩdet and the energy concentration domain
Ωec. Both domains are shown side by side in each figure;
however, one of them is less visible because of the surrounding
colors in Fig. 8(a) and (b). The resultingEdet and Q factor are
Edet = 1.03× 10−5 andQrad = 1.36× 105, respectively. The
optimal shape is concave near the energy concentration domain
to enhance the maximum electric energy. As a result, a strong
electric field can be observed in the detection domain. This
shape is very similar to the optimal shape for minimization of
the mode volume reported in [19].
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Fig. 7. Convergence history of the integral of the square of the electric field
intensity over the detection domainEdet and the wavelength.

Ωdet

(a)

Ωec

(b)

Ωdet

(c)

Fig. 8. (a) Optimal shape shown in the domain represented by the red dotted
square in Fig. 5. The outline of the optimal shape is also shown in (b) and
(c) as a white line. (b) The electric energy densityϵ|E|2 distribution shown
inside the red dotted line domain of (a). The red dotted square indicates the
energy concentration domain. (c) Logarithmic electric field intensity|E|2
distribution shown inside the red dotted line domain of (a), where the white
arrows indicate the magnitude and direction of the electric field in the medial
plane. The blue dotted square indicates the detection domain.

B. Study of size effect of detection domain on optimization
results.

The optimization processes for the electric field intensity
of the detection domain are performed for several detection

domain sizes. First, the detection domain width is changed
from that of the first optimization example. The inner radius
and the height remain fixed. The domain width is changed
from 0.05µm to 0.01µm and 0.1µm. Fig. 9 shows the op-
timal configurations for both optimizations. The shapes of
the device centers were different for the different detection
domain widths. For the wide detection domain, a deep groove
was generated. Table II shows a summary of the performance
criteria for the optimal results. Higher electric field intensities
were obtained for the larger detection domains. However, the
Q factors decreased in the case of the 0.1µm detection domain
width, because a large device surface area was exposed near
the energy hot spot. (Q was slightly higher in the 0.05µm
domain than in the 0.01µm domain, and this might have
been caused by an optimization error that occurred in the
black-and-white post-processing step. Before this process, the
result for the 0.01µm domain was actually approximately 26%
higher for Q than that in the 0.05µm domain.) Comparison
of Edet × Qrad, which is the denominator ofδϵmin, among
these three cases shows that larger detection domains lead to
increases inEdet× Qrad, although expansion of the detection
domain in turn reduces the Q factor.

(a) (b)

Fig. 9. Optimal shapes for (a) 0.01µm and (b) 0.05µm detection domain
widths.

TABLE II
SUMMARY OF Edet AND Q FACTOR RESULTS FROM THE OPTIMIZATION

PROCESS FOR THREE DIFFERENT DETECTION DOMAIN WIDTHS.

Height of
Ωdet (µm) Edet (V2m) Qrad

Edet×Qrad

(V2m)

0.01 1.82× 10−6 1.22× 105 0.22

0.05 1.03× 10−5 1.36× 105 1.40

0.1 2.61× 10−5 6.49× 104 1.69

Next, the detection domain height is changed with fixed
values for the inner and outer radii. The domain height is
changed from 0.05µm to 0.1µ and 0.2µm. Fig. 10 shows the
optimal configurations for both optimizations. The optimiza-
tion process worked well even for vertically long detection
domains. Table III shows a summary of the performance
criteria for the optimal results. Higher electric field intensities
and lower Q factors were obtained for larger detection domains
for the same reasons as in the previous example. The same can
be said to apply toEdet×Qrad.

To summarize this example, the proposed methodology
works well for an arbitrary detection domain size, and larger
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detection domain sizes lead to increasedEdet × Qrad values,
although the Q factor is reduced by the increase in energy
leakage.

(a) (b)

Fig. 10. Optimal shapes for (a) 0.1µm and (b) 0.15µm high detection
domains.

TABLE III
SUMMARY OF Edet AND Q FACTOR RESULTS FROM THE OPTIMIZATION

PROCESS FOR THREE DIFFERENT DETECTION DOMAIN HEIGHTS.

Height of
Ωdet (µm) Edet (V2m) Qrad

Edet×Qrad

(V2m)

0.05 1.03× 10−5 1.36× 105 1.40
0.1 2.27× 10−5 1.03× 105 2.34
0.15 3.18× 10−5 8.05× 104 2.56

C. Study of effect of detection domain location on optimization
results.

The location of the detection domain is also an important
factor that could seriously affect the sensor performance,
because the analysis and optimization are performed in the
cylindrical coordinate system. The right-and-left locations of
the detection domain could decide the radius of the WGM sen-
sor. While maintaining the cross-sectional size of the detection
domain at 0.05µm×0.05µm, which is the size set in the first
example, the inner radiusrdi in Fig. 3 (a) is set to 0.85µm and
1.15µm. The results for these values are compared with the
results of the first example whererdi=1.0µm. Fig. 11 shows
the optimal configurations for both optimizations. Table IV
shows a summary of the performance criteria for these optimal
results. Under a fixed wavelength and azimuthal order, the
cross-section size of the WGM sensor decreased as the radius
of the device increased, as reported in [19]. In the experiments,
the Q factor generally increases as the device radius increases
under illumination from a fixed light source, because the
number of light waves (the azimuthal orderM in (9)) and the
stored energy increase. However, under the conditions with
the fixed azimuthal order and emission wavelength used for
this optimization in our numerical study, the stored energy is
nearly fixed despite the increase in the device radius. Because
the energy loss increases with increments in the device radius,
the Q factor decreases. Thus, the relationships between the
device radius and Q factor in the general experiments and in
our numerical studies were different. In addition, because the
energy hot spot is exposed to the detection domain, this effect

could be serious for this particular problem.Edet increases
with increases in the inner radius. This is simply because the
integration volume was increased when the detection domain
moved outward. However, because the reduction in the Q
factor was steeper than this increase, a largerEdet×Qrad value
was obtained in the inner location of the detection domain.

(a) (b)

Fig. 11. Optimal shapes for (a) 0.85µm and (b) 0.115µm inner radius
detection domains.

TABLE IV
SUMMARY OF Edet AND Q FACTOR RESULTS FROM THE OPTIMIZATION

PROCESS FOR THREE DIFFERENT DETECTION DOMAIN POSITIONS.

Inner radius of
Ωdet (µm) Edet (V2m) Qrad

Edet×Qrad

(V2m)

0.85 6.30× 10−6 6.35× 105 4.00
1.0 1.03× 10−5 1.36× 105 1.40
1.15 1.26× 10−5 1.06× 104 0.13

D. Simultaneous optimization ofEdet and the Q factor.

Before direct optimization ofEdet × Qrad, simultaneous
optimization ofEdet andQrad is performed using a weighting
coefficient method. The relationship betweenEdet and Qrad

under the same optimization conditions could be identified via
this study. The following objective function is introduced by
integrating (12) and (13) using the weighting factorw (0 ≤
w ≤ 1):

minimize
ρ

J(ρ) =− w ∗
(∫

Ωdet

|E|2dx+

∫
Ωec

ϵ|E|2dx
)

+ (1− w) ∗ Im(f)
(15)

The detection domain is set to be the same as domain (A) in
the study in Section III, where(rdi, rdo) = (1.0µm, 1.05µm)
in Fig. 3 (a). By varying the weighting coefficient from 0
to 1, five optimal results are found; see Fig. 12. Result (a)
corresponds to that shown in Fig. 8. A trade-off relationship
between the electric field intensity and the Q-factor can be
seen in these results, i.e., where a larger electric field intensity
must lead to a lower Q factor and vice versa, given the
same wavelength and azimuthal mode order conditions. The
characteristics of these shapes can be found by analysis of the
energy distribution. In Fig. 12 (b), a similar energy distribution
to that of result (a) can be obtained, because the Q factor term
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in the objective function was weaker. In Fig. 12 (c), although
the energy hot spot is next to the detection domain, relatively
high energy concentrations can be observed in both the upper
and lower sides of the cross-section. In Fig. 12 (d) and (e),
the hot spot moved away from the detection domain to reduce
the energy losses. The dielectric is connected between the hot
spot and the detection domain to transfer the electric energy.
These results show that an optimization process to produce
both high electric field intensity and a high Q factor could be
performed using the proposed methodology. Table V shows a
summary of the performance criteria for these optimal results.
Optimal shape (d) has the largest value forEdet×Qrad.

Finally, direct optimization ofEdet×Qrad is performed under
the same conditions that were used in Section V-D. According
to (4),δϵmin is minimized by maximizingEdet and the Q factor
at a fixed resonant frequency. In this case, the numerator of
(10) is also fixed. Thus, the variable ofEdet × Qrad during
the optimization isEdet/Im(f). Based on this, the following
objective function is introduced by integrating (12) and (13):

minimize
ρ

J(ρ) =

∫
Ωdet

|E|2dx+
∫
Ωec

ϵ|E|2dx
Im(f)

(16)

Fig. 13 shows the optimal configuration, the distribution of
the electric energy densityϵ|E|2 and the electric field intensity
|E|2. This optimal shape has a shape similar to optimal shape
(d) in Fig. 12. These results were also shown in Fig. 12 and
Table V along with the previous results. The largestEdet×Qrad

value was certainly obtained via this study.

TABLE V
SUMMARY OF RESULTS OF SIMULTANEOUS OPTIMIZATION OFEdet AND Q

FACTOR.

Fig. No. w in (15) Edet (V2m) Qrad

Edet×Qrad

(V2m)

Figs. 8
and 12 (a) 1.00 1.03× 10−5 1.36× 105 1.40

Fig. 12 (b) 0.05 4.63× 10−6 1.49× 105 0.69

(c) 0.025 2.56× 10−6 3.01× 105 0.77

(d) 0.01 1.99× 10−6 1.40× 106 2.79

(e) 0.005 6.35× 10−7 1.93× 106 1.22

Fig. 13 (a) - 3.63× 10−6 1.09× 106 3.96

VI. CONCLUSION

In this research, we studied and identified optimal shapes
for WGM micro-ring sensors with high detection sensitivity.
As criteria for the high sensitivity characteristics of the WGM
sensor, we defined the smallest measurable relative permittivity
change that was calculated from the integral of the square of
the electric field over the detection domain and the Q factor.
Our systematic procedure helps us to find optimal device
shapes with specifically-designed performance levels given
a prescribed emission wavelength and WG resonance mode.
As a basic principle for WGM sensor design, we found that
concave shapes produced high electric field intensities near the
cross-sectional centers of the devices. We confirmed several
relationships between the detection domain size and location

and the sensor performance. Larger detection domains were
likely to lead to better smallest measurable relative permittivity
values, although the corresponding Q factors decrease because
of the increased energy leakage. As a result, the optimum
device was found to have a small radius, a large detection
domain and a concave shape with its center located next to
the detection domain with its prescribed emission wavelength
and WGM azimuthal order. We also succeeded in direct
optimization of the sensor sensitivity by considering both the
integral of the square of the electric field intensity over the
detection domain and the Q factor. When we consider sensor
manufacturability, the concave shape might prove impractical.
Although the shape itself is formed by step-by-step lamination,
it may be very costly to manufacture. However, the funda-
mental findings that we have obtained from the optimization
process performed here will enable improved practical shape
design, such as a spherical resonator with a small groove, in
our future work.
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Fig. 12. Optimal results obtained by maximizingEdet and the Q factor using
different weighting factor settings in (15). The left figure shows the optimal
configuration. The figures in the center and on the right show the energy
distribution and the logarithmic electric field intensity distribution within the
red dotted line domain of the left figure corresponding to each setting. The
white lines indicate the outlines of the optimal shape.

(a) (b) (c)

Fig. 13. Optimal results obtained by maximizing bothEdet and theQrad
in (16). Part (a) shows the optimal configuration. Parts (b) and (c) show
the energy distribution and the logarithmic electric field intensity distribution
within the red dotted line domain of (a) corresponding to each setting. The
white lines indicate the outlines of the optimal shape.
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