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Abstract

Conventional SQL queries take exact input and produce complete result
set. However, with massive increase in data volume in different appli-
cations, the large result sets returned by traditional SQL queries are not
well suited for the users to take effective decisions. Therefore, there is an
increasing interest in queries like top-k queries and skyline queries those
produce a more concise result set.

Top-k queries rely on the scores of the objects to evaluate the usefulness
of the objects. In this type of queries, users require to define their own
scoring function by combining their interests. Based on the user defined
scoring function, the system sorts the objects by their scores and outputs
the top-k objects in the ranking list as the result. However, defining a
scoring function by the users is a major draw of the top-k queries as in
the large data sets where there are many conflicting criteria exist, it is very
difficult for the users to define the scoring functions by themselves.

To overcome this disadvantage of top-k queries, skyline queries were pro-
posed. Skyline queries do not rely on scoring functions to retrieve objects.
Instead they use the concept of dominance relation. An object is said to
dominate another object if it is not worse in any of the dimensions and is
better in at least one of the dimensions. Given a set of objects with mul-
tiple dimensions, an object would not be retrieved if it is dominated by
some other objects. From the result of skyline objects the user can choose
promising objects for them and make further inquiries. Therefore, such
skyline query functions are important for several database applications, in-
cluding customer information systems, decision support, data mining and
visualization, and so forth.



From the introduction of skyline queries in 2001, skyline queries are treated
as an important approach for information filtering and there are many re-
search works on skyline queries considering either a sole database or dis-
tributed databases with almost no consideration about the privacy of data.
Although there are few considerations about the privacy of data while
computing skyline queries from a sole database, there is no considera-
tion about individual’s privacy during the computation of skyline results
from distributed databases. However, with the rapid growth of data vol-
ume and network infrastructure, in most cases data are stored at distributed
databases nowadays.

Considering these facts, first part of this dissertation deals with preserv-
ing the privacy of data while computing skyline results from distributed
databases. In this part, at first, we introduce an agent-based parallel com-
putation framework for skyline sets queries from distributed databases.
The computation is performed in such a way that the privacy of individ-
ual’s is preserved. In addition of preserving individual’s privacy, our ap-
proach is robust against the outliers and the frequently update situation.

However, in our above approach there are possibilities of disclosure of
record’s values from the return skyline sets in statistical compromisable
situations. Considering this fact, in this part, we also introduce an efficient
protection mechanism against statistical compromisable situations. In this
part, we also consider the mechanism of dealing with missing values in
the databases during skyline sets queries.

The second part of this dissertation focuses on selecting spatial objects
from spatial databases considering environmental influences such as the
presence of restaurants and supermarkets while selecting skyline hotels.
Here, we utilize the concept of skyline queries. Conventional skyline
queries select such spatial objects like hotels based on non-spatial at-
tributes such as price and rating of hotels and there is no consideration of
utilizing surrounding environments. In this dissertation, we propose two
methods for utilizing surrounding environments. Our first approach con-
siders the best value in each attribute of each surrounding facility, while
our second method considers the number of objects of each type of facility



in the surrounding environments. Our first approach is well suited for ho-
tel recommendation systems, while our second approach can help in real
estate recommendations.

The last part of this dissertation considers a problem of selecting spatial
objects for a group of users located at different positions, since recent
social network services can connect users and make such groups. Here,
we also consider the concept of skyline queries. If a group wants to find
a restaurant to hold a meeting, we have to select a convenient place for all
users. Although there are many research works on spatial skyline queries,
none of them can efficiently compute skyline objects in such a scenario.
Considering this fact, we propose an efficient skyline query algorithm to
select spatial objects, considering both spatial and non-spatial information.

To summarize, this dissertation addresses three different sophisticated in-
formation filtering methods based on the concept of skyline queries: sky-
line sets queries from distributed databases, skyline queries by utilizing
surrounding environments, and spatial skyline queries for a group of users.
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Chapter 1

Introduction

With the increase of data volume in different applications, advanced query operators
are necessary in order to help users to filter the huge amount of available data by se-
lecting a set of promising data objects. Skyline queries can help users in this regard.
Different from traditional SQL queries that return a complete result set, skyline queries
return all non-dominated objects from a given data set. An object is said to be non-
dominated if it is not worse than any other object in any of the attributes and is better
in at least one of the attributes. If we consider the example of Figure 1.1, we can
see that Figure 1.1 (a) consists a list of five hotels, each of which contains two nu-
merical attributes “Price” and “Distance”. In the list, h2 and h5 are dominated by h3,
while others are not dominated by any other hotel. Therefore, the skyline of the list
is {h1,h3,h4}. Such skyline results are important for users to take effective decisions
over complex data having many conflicting criteria. From the introduction of skyline
queries for information filtering by Borzonyi et al. [1] in 2001, it has attracted a lot of
attention in the research community focusing different aspects and solutions of skyline
queries. For information filtering, in this dissertation, we concentrate on three different
problems: (i) privacy preserving skyline queries from distributed databases (ii) skyline
queries considering the influences of the surrounding environments, and (iii) spatial
skyline queries for a group of users.

This chapter is organized as follows. Section 1.1 contains the motivation, followed
by the research question in Section 1.2. Section 1.3 covers the research contributions.
Finally, in Section 1.4, we outline the organization of the dissertation.
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Figure 1.1: Skyline example

1.1 Research Motivation

Nowadays, we are facing a flood of data due to the development of computer tech-
nologies. This flood brings us much more information than ever before and changes
our lives even when we are not aware of it. The volume of data grows dramatically
and comes in various forms, such as scientific tables, commercial records, stock charts,
hypertexts, and multimedia. Possessing an enormous amount of data is meaningless if
we cannot acquire knowledge that is helpful for the users. Skyline queries can filter out
less important information and generate good information for users so that the users
can take correct decisions.

However, it is necessary to consider the privacy issues while filtering data us-
ing skyline queries as privacy of data is very crucial nowadays. From the intro-
duction of skyline queries in 2001 [1], there are many research works on skyline
queries considering either a sole database [2, 3, 4, 5, 6, 7, 8, 9] or distributed databases
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] with almost no consideration
about the privacy of data. Although there is some considerations about the privacy
of data while computing skyline queries from a sole database in [42, 43, 44], there is
no consideration about individual’s privacy during the computation of skyline results
from distributed databases. However, with the rapid growth of data volume and net-
work infrastructures, in most cases data are stored at distributed database nowadays
and security of data in distributed databases are more important than the security of
data in a sole database as data stored in distributed databases may belong to different
data owners. Considering these facts, at first, we were motivated to compute sky-
line sets queries from distributed databases that can preserve individual’s privacy. Let
DB1,DB2, · · · ,DBm be the m databases with same schema. Also, let s is the number
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Figure 1.2: Spatial skyline example

of objects in each set and n is the total number of objects in m databases. Skyline sets
queries return skyline s-sets from m such databases in such a way that the privacy of
individual’s is preserved.

Next, we observed that current skyline query algorithms just focuses on the at-
tributes of the objects and cannot utilize the influences of the surrounding environ-
ments efficiently while computing skyline results. However, when we select a spatial
object in a database, surrounding environments can be as important as other attributes.
As for example, a hotel may be a good candidate if it has good restaurants in its sur-
rounding area although the hotel’s rating is not good. Motivated with this fact, we
consider skyline queries considering the influences of surrounding environments.

Finally, let us consider that we need to recommend some good restaurants for the
members of a multidisciplinary task force team located at different offices those want
to put together in a restaurant to hold a lunch-on meeting. As recent social network
services can connect users and make such groups easily, we need to provide useful
information for such groups. To retrieve accurate skyline results for such a group,
we need to consider a variation of the spatial skyline query [26] that can efficiently
compute the skyline results considering spatial sub-space and can integrate the results
of non-spatial sub-space. The problem of the spatial skyline query can be defined as
follows. Given the two sets P of data points and Q of query points, the spatial skyline of
P with respect to Q is the set of those points in P, which are not spatially dominated by
any other point of P. A data point p1 is said to spatially dominate another point p2 with
respect to Q iff we have d(p1,qi) ≤ d(P2,qi) for all qi ∈ Q and d(p1,q j) < d(p2,q j)

for some q j ∈ Q, where d(p,q) is the Euclidean distance between p and q. Figure 1.2
shows a set of nine points and two query points q1 and q2 in a plane. The point p1

3



1.2 Research Questions

spatially dominates the point p2 since both q1 and q2 are closer to p1 than to p2. The
spatial skyline query returns a set of such non-dominated objects.

However, current spatial skyline query algorithms [26, 27, 28, 29, 30, 31] do not
consider efficient computation of spatial skyline objects based on both spatial and non-
spatial features. Considering this fact, we consider a spatial skyline queries that can
compute accurate results for such groups considering both spatial and non-spatial fea-
tures of objects.

1.2 Research Questions

The research in this dissertation considers several research questions related to infor-
mation filtering using skyline queries and provide their efficient solutions. The list of
research questions addressed in this dissertation are as follows:

• RQ 1. How to compute skyline sets queries from distributed databases effi-
ciently?

RQ 1.2 How to deal with compromisable situations during the skyline sets
queries from distributed databases?

• RQ 2. How to select spatial objects efficiently by using skyline queries consid-
ering surrounding environments?

RQ 2.1 What is the efficient way to compute skyline queries while consid-
ering the best values in the attributes of the surrounding facilities?

RQ 2.2 What is the efficient way of computing skyline queries while con-
sidering the objects count of each surrounding facility?

• RQ 3. How to compute skyline results efficiently for the group of users consid-
ering both spatial and non-spatial features of objects?

In Section 1.3, we present the main contributions presented in this dissertation in
terms of the research questions.

1.3 Research Contributions

In this section, we describe the main contributions in terms of the research questions
of Section 1.2.
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Information Filtering By Using Skyline Sets Queries from Distributed
Databases

Let s be the number of objects in each set and n be the number of objects in the dataset
distributed over m databases. The number of sets in the databases amounts to nCs. We
propose an efficient method for skyline sets queries from nCs sets to retrieve important
information while filtering out less important information without disclosing individual
record’s values. In our approach, we provide a parallel computation framework. We
also provide the solution to prevent the discloser of individual record’s values due to
statistical compromisable situations. We explain these approaches in Chapter 3.

Selection of Spatial Objects Considering Surrounding Environments

We develop two methods based on the concept of skyline queries those utilize the fea-
tures of objects as well as surrounding environments for selecting spatial objects. Our
first approach considers the best value in each attribute of each surrounding facility,
while our second method considers the number of objects of each type of facility in
the surrounding environment. Our first approach is well suited for hotel recommenda-
tion system while our second approach can help in real estate recommendation. For
our first approach, we use a grid-based data structure, while we use the concept of aR-
tree [57] for our second approach. Besides theoretical guarantees, our comprehensive
performance studies indicate that both of our approach are very much efficient. We
present these approaches in Chapter 4.

Selecting Spatial Objects for for a Group of Users

We develop an efficient algorithm for spatial skyline computation for selecting spatial
objects for a group of users considering both spatial and non-spatial features of the
objects. At first, we compute skyline objects based on spatial sub-space. We use the
concept of VoR-tree [58] for computing skyline objects in spatial sub-space. Later,
we use the non-spatial features of skyline objects of spatial sub-space to obtain some
other skyline objects in non-spatial sub-space. Several extensive experiments on real
and synthetic data set shows the effectiveness of our method. This methodology is also
presented in Chapter 4.
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1.4 Thesis Organization

In this section, we outline the organization of the dissertation.
Chapter 1. This chapter presents the motivation, the research questions, and the

contributions achieved during the PhD program.
Chapter 2. In this chapter, at first, we describe the necessity of information filter-

ing. Next, we elaborate the concepts of skyline queries and their variants and provide
a brief review of skyline query algorithms. Finally, we describe different applications
of skyline queries.

Chapter 3. In this chapter, at first, we explain the privacy related issues during
skyline queries. Next, we describe basic concepts of skyline sets queries and its use-
fulness. Later, we explain frameworks for computing skyline sets from distributed
databases.

Chapter 4. In this chapter, we provide approaches of selecting spatial objects by
using skyline queries. Here, we provide three different approaches to compute spatial
objects. First two methods of this chapter utilize the influences of the surrounding
environments while selecting spatial objects. Third method computes spatial objects
for a group of users considering both spatial and non-spatial features of the objects as
well as the locations of the users.

Chapter 5. This chapter concludes the dissertation outlining the main contribu-
tions and future research directions.
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Chapter 2

Information Filtering and Skyline
Query

In this chapter, at first we address the necessity of information filtering. Next, we
elaborate the concepts of skyline queries and their variants. Then, we provide a brief
review of skyline query algorithms. Finally, we describe the applications of skyline
queries.

This chapter is organized as follows. Section 2.1 describes the necessity of infor-
mation filtering. Section 2.2 describes the concept of skyline queries. We also provide
a brief review of existing skyline query algorithms in this section. In Section 2.3, we
present different application areas of skyline queries.

2.1 Necessity of Information Filtering

We live in an information age and different applications produced an overwhelming
amount of data now a days. Efficient filtering of this huge volume of data is very
important to provide users accurate and desirable information within a short period of
time. As for example while booking a hotel, it is very difficult to select a hotel from
a list of hundreds hotels instead of selecting it from ten hotels. Consider the hotel
database as shown in Table 2.1 that has three numerical attributes “Price”, “Rating”,
and “Distance”. Also, consider that smaller values in each attribute is better. If anyone
wants to find best hotels from Table 2.1, it is difficult for him to select such a hotel
quickly. However, if we consider the records of Table 2.2, we can find that it is much
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Table 2.1: Hotel database

ID Price Rating Distance
h1 7 6 8
h2 4 5 4
h3 2 3 3
h4 1 7 4
h5 10 9 3
h6 5 2 3
h7 9 6 5
h8 1 4 4
h9 4 3 9
h10 5 1 7

Table 2.2: Interesting Hotels

ID Price Rating Distance
h3 2 3 3
h6 5 2 3
h8 1 4 4

h10 5 1 7

easier to select interesting hotels from this table. This is because we filtered out less
important information of Table 2.1 and stored only important information in Table 2.2.

Again consider that a company is trying to identify problems in its company by
looking its salary database. As there are many employees in the company, it is difficult
to check all employees salary and experience separately. However, if we can filter
out the information of employees those have good salaries according to the companies
salary policy, we can easily find the employees those cannot meet perform well for the
company. As for example, if we look the records of Table 2.3, we cannot easily find
the problem. However, if we look at Table 2.4 instead of Table 2.3, we can easily find
that there are some problems in the company For example, in there are two employs
whose salaries are very low with regards to their service period. That means these
employees are not doing well for the company. Table 2.4 helps us to find such records
easily because it filtered records from Table 2.3 and presents only a small number of
records from which the salary personnel of the company can take the decision.

Traditional SQL queries cannot perform efficient filtering of such data as they re-
turn a complete result set. Preference queries are also not suitable for filtering such
data as preference queries rely on inputs from the users, while it is often very difficult
for the users to provide their preferences. Skyline queries can help in this regards as
skyline queries can retrieve all interesting results from database. The records in Ta-
ble 2.2 and Table 2.4 are skyline records of the dataset of Table 2.1 and Table 2.3,
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Table 2.3: Salary database

ID Salary Experience
o1 3 9
o2 5 4
o3 7 2
o4 2 9
o5 9 3
o6 4 4
o7 4 5
o8 6 5
o9 8 2
o10 9 1

Table 2.4: Uncommon Records

ID Salary Experience
o3 7 2
o4 2 9
o6 4 4

o10 9 1

respectively.

2.2 Skyline Queries

The basic idea of skyline queries [1] came from some old research topics like contour
problem [60], maximum vector [61], and convex hull [62].

Let us consider a k-dimensional database DB and D1, D2, · · · , Dk are k attributes of
DB. Let O1, O2, · · · , Or be r objects (tuples) of DB. Consider that Oi.D j denotes the
j-th dimension of object Oi.

Definition 2.1 (Dominance) An object Oi is said to dominate another object O j, which
we denote as Oi ≺ O j , if Oi.Ds ≤ O j.Ds for all dimensions Ds (s = 1, · · · ,k) and Oi.Dt

< O j.Dt for at least one dimension Dt , (1 ≤ t ≤ k).

Definition 2.2 (Skyline) An object Oi is said to be in the skyline of DB if there is no
other object O j (i ̸= j) in DB such that O j dominates Oi. If there exist such an O j, we
say that Oi is dominated by O j and Oi is not in the skyline of DB.

The skyline query retrieves the objects those are in the skyline. For example, con-
sider the five different vacation packages as shown in Table 2.5.

From the data of Table 2.5, we can see that P1 dominates P3 and P5 and P2 dominates
P4. P1 and P2 are not dominated by any other object. So, the skyline of the dataset of
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Table 2.5: Skyline Example

Vacation Package Price Hotel Rank Number o f Stops
P1 1600 2 1
P2 2000 1 2
P3 2000 3 2
P4 2500 1 3
P5 2000 3 1

Table 2.5 is SKY (r) = {P1,P2}. Skyline queries retrieve such objects from the given
dataset.

The notion of skyline queries can be extended to subspaces, where a subspace
skyline query [2, 3] only refers to a user-defined subset of attributes. If we consider
our k-dimensional database DB again, a subset u of k (u⊆ k) is referred to as a subspace
of k. Then, we can define the subspace skyline of u as follows.

Definition 2.3 (Subspace Skyline) The subspace skyline of u is a set of objects from
DB that are not dominated by any other object on subspace u.

Consider our three-dimensional dataset as depicted in Table 2.5 again, where the
skyline objects are SKY (r) = {P1,P2}. However, if we consider the subspace u =
{Price, Number o f Stops}, the subspace skyline object is SKYu(r) = {P1}.

Another variation of skyline queries is constrained skyline query [4]. A constrained
skyline query returns the set of skyline points from the dataset those satisfy the given
constraints.

For example, if we consider our dataset of Table 2.5 and assume that a user is
interested in the packages those price are in the range of 2000-2500, then the result of
this constrained skyline query is {P4,P5}.

Another variation of skyline queries is spatial skyline queries [26]. Different from
other skyline queries, a spatial skyline query considers two sets of points: a set of data
points P and a set of query points Q and each point in P and Q has spatial attributes,
which are 2-dimensional coordinate attributes.

Let us consider that the distance function d(p,q) returns the Euclidean distance
between a pair of points p and q, where p ∈ P and q ∈ Q.

Based on the above considerations, we can define “spatial dominance” and “spatial
skyline” as follows.
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Table 2.6: Data points locations

ID x-coordinate y-coordinate
r1 3 9
r2 7 5
r3 7 7
r4 5 1
r5 4 4
r6 4 8
r7 5 6
r8 1 3
r9 5 3
r10 9 3

Table 2.7: Query points locations

ID x-coordinate y-coordinate
u1 4.5 5.5
u2 5 6.8
u3 6 5
u4 5 3.8

Definition 2.4 (Spatial Dominance) We say that a data point p1 “spatially dominates”
another data point p2 if and only if d(p1,q)≤ d(p2,q) for every q ∈ Q, and d(p1,q)<
d(p2,q) for some q ∈ Q.

Definition 2.5 (Spatial Skyline) A point p ∈ P is said to be in the spatial skyline with
respect to Q if and only if p is not spatially dominated by any other point of P.

Consider Figure 2.1 that shows the pictorial representation of data points and query
points of Table 2.6 and Table 2.7, respectively. From Figure 2.1, we can find that r2, r5,
r7, and r9 are not spatially dominated, while all other points are spatially dominated.
So, our spatial skyline result based on the data points of Table 2.6 and query points of
Table 2.7 is SPSKY = {r2, r5, r7, r9}.

Since the introduction of skyline queries [1] in 2001, more than a hundred papers
have been published [25] in reputed journals and conferences. These papers have not
only studied efficient skyline computation in centralized or distributed systems but also
proposed variations of the traditional skyline operator and studied different premises.
Below we provide a brief review of skyline research.
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Figure 2.1: Location of data points and query points

2.2.1 Related Works on Skyline Queries

Block Nested Loops

The basic approach of computing skyline of a given data set D is to check the domi-
nance of each data object of D against all other data objects in D. If we find that the
object is not dominated by any other object, we report the object as a skyline object.
The Block Nested Loops (BNL) [1] is an iterative algorithm that repeatedly scans a
set of records and performs such dominance check to obtain the skyline objects. For
faster dominance check, it maintains a window of candidate skyline objects in the main
memory and evaluate the data objects in the data set one by one. When an object P is
read from the input relation, P is compared with the objects in the window. There will
be one of the three cases for P.

Case 1: P is dominated by an object in the window.
Case 2: P dominates some objects in the window.
Case 3: P is incomparable with all records in the window, i.e. P neither dominates

nor being dominated.
Case 1 indicates that P cannot be in the skyline. In such a situation, P is discarded

without further comparison with other candidate objects. In Case 2 the objects those
are dominated by P are removed from the window. In Case 3 P is either inserted into
the window if there is sufficient room in the window, or written to a temporary file on
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Table 2.8: An example dataset

ID x y
P1 7 6
P2 4 5
P3 2 3
P4 1 7
P5 10 9
P6 5 2)
P7 9 1
P8 1 4
P9 4 2
P10 5 1

disk.
After the dataset is scanned, all the candidate objects in the window which are

processed before the creation of the temporary file are output as part of the skyline.
Then, BNL evaluates all data objects in the temporary file in the same way again until
no temporary file is scanned. Finally, all candidate objects in the window are output as
part of the skyline.

Now, consider the example dataset as shown in Table 2.8. Also consider that the
window size is 3 and smaller value in each dimension is better. From Table 2.8, we
can see that there are ten two-dimensional objects. BNL computes the skyline of these
objects in the following way.

Consider that the objects are processed in sequential order. Initially, P1 is inserted
into the window as the window is empty. Then BNL considers next data object that
is P2. We can see that P1 is dominated by P2. So, P1 is removed and P2 is inserted
into the window. After P3 is processed, only P3 is in the window. Then, P4 is inserted
into the window as it is not dominated by the data object P3 of the window. When
we process P5 and P6 in the same way, we can find that P5 is dominated and P6 is not
dominated by the objects in the window. Hence, P6 is inserted into the window. When
P7 is processed, we can see that it is not dominated by the objects in the window (i.e.,
objects P3, P4, P6) and the window is full. So, P7 is written to the temporary file. Let
us consider that the time stamp of this temporary file is 7.
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Figure 2.2: Skyline of the example dataset of Table 2.8

In the end of this iteration, the data objects in the window are P3, P8, and P9, and the
temporary file contains data objects P7 and P10. Then, the data objects in the window
which is processed before time stamp of the temporary file (i.e., 7) are output as skyline
objects. In this case, P3 is output. After that BNL continues to process the temporary
file in the same way till no data object is required in any temporary file. Finally, we
obtain P3, P8, P9, and P10 as the skyline result as shown in Figure 2.2.

To speed up the comparisons between the data objects in question and the candidate
objects, the window is organized as self-organizing list. In this list, when a candidate
object is found dominating other data objects, it is moved to the beginning of the list.
Consequently, it is first compared when evaluate the next data object. This variant
reduces the number of comparisons as the data objects which dominate more others
may be compared first.

Divide and Conquer

To compute the skyline for a set of data, the Divide and Conquer (D&C) approach
[1] divides the data objects into several parts recursively so that each partition fits in
memory. After all the local skyline are computed, D&C merges theses skylines to
obtain the final skyline result. Now consider the computation of skyline of the dataset
of Table 2.8 using Divide and Conquer approach.
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Figure 2.3: Skyline computation using divide and conquer strategy

First, D&C calculates the median of all the objects on dimension x and divides the
data points into two parts, S1 and S2. S1 contains the data objects whose values on
dimension x are less than the median, i.e. {P2, P3, P4, P8, P9}. S2 contains all others,
i.e. {P1, P5, P6, P7, P10}. Then, skylines of S1 and S2 are computed respectively. This
is done by recursively partitioning each part until only one data object is remained. In
that case, it is easy to compute the skyline. This step of D&C is called divide step.

The local skylines of S1 and S2 are shown in Figure 2.3(a). After all local skylines
are computed, D&C eliminates the data objects in local skyline of S2 which are dom-
inated by the local skyline objects of S1 to obtain the overall skyline (merge step). In
order to do elimination efficiently, the local skyline objects of S1 and S2 are further
partitioned into 2 parts by the median of the local skyline objects of S1 on dimension
y, respectively. The further partitioning technique is shown in Figure Figure 2.3(b).
Clearly, the data objects in S21 have smaller coordinates on dimension y than those of
data objects in S12. As a result, the comparison of S21 with S12 is saved. On the other
hand, the data objects in S22 have greater coordinates on both dimensions x and y than
those of data objects in S11. In other words, all the data objects in S22 are dominated by
any one in S11. So, they are eliminated immediately without comparison. Now, D&C
only needs to compare S21 with S11 to eliminate the non-skyline objects in S21. At the
end of the computation, final skyline result is {P3, P8, P9, P10}.

If the dataset does not fit into main memory, D&C requires to read and write the
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Table 2.9: An example of SFS algorithm

ID x y Normalized value of x Normalized value of y Entropy Value
P1 7 6 0.7 0.6 1.00
P2 4 5 0.4 0.5 0.74
P3 2 3 0.2 0.3 0.44
P4 1 7 0.1 0.7 0.63
P5 10 9 1.0 0.9 1.34
P6 5 2 0.5 0.2 0.59
P7 9 1 0.9 0.1 0.74
P8 1 4 0.1 0.4 0.43
P9 4 2 0.4 0.2 0.52
P10 5 1 0.5 0.1 0.50

dataset times during the partitioning process, thus incurring significant IO overhead. To
improve D&C performance when main memory is limited, M-way D&C algorithm is
introduced [1]. The basic idea of M-way D&C is that during each partitioning process
the dataset is divided into m parts instead of 2 parts such that every part is expected
to fit into main memory. This idea is also applied in merge step such that each part
should occupy at most half of the available main memory. So, no additional IO cost is
required during each comparison.

Sort Filter Skyline

Sort First Skyline algirithm (SFS) [5] is a variant of BNL. In order to improve BNL,
SFS introduces the entropy value E(p) for each data object P = (P[1], P[2], · · · , P[n]).
The entropy E(p) is represented by the formula as shown in equation (2.1).

E(P) =
n

∑
i=1

ln(P′[i]+1) (2.1)

In equation (2.1), P′[i] is the normalized value of P[i]. Obviously, given two data
objects P1 and P2, P1 cannot dominate P2 if E(P1) is greater than or equal to E(P2).
Based on this observation, SFS first sorts all the data objects in non-decreasing order
of their entropy values. After that, SFS processes the sorted dataset in the same way as
BNL.
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Take the same dataset shown in Table 2.8 as an example. The corresponding nor-
malized values and entropy value of the data objects are listed in Table 2.9. Suppose
the window size is 3 and now after sorting on the entropy values the processing order
of data objects is P8, P3, P10, P9, P6, P4, P2, P7, P1, and P5. Clearly, the first three objects
P8, P3, and P10 do not dominate each other. So, all of them are inserted into the window
and the window is full now. Then, P9 is processed and it is written to the temporary
file as it is not dominated by any data objects in the window. After that, all other data
objects are processed and discarded due to each of them is dominated by one of P8,
P3, and P10. Now, the first iteration is done. In the beginning of the next iteration, all
the data objects in the window are output as the skyline objects as they are processed
before the temporary file. Since O9 is the only data object in the temporary file SFS
terminates after it is processed.

Compared with BNL, SFS has the following advantages.
1. The number of comparisons among data objects is reduced. As the data object

with smaller entropy value is evaluated first, the skyline object could be found ear-
lier. Therefore, the number of comparisons between data objects and the non-skyline
objects in the window, which is unnecessary, is reduced.

2. SFS is an progressive skyline algorithm while BNL is not. When a data object
P is added into the window, it is guaranteed to be a skyline object. This is because all
non-processed data objects do not dominate P as they have greater entropy values than
E(P).

Linear Elimination Sort for Skyline

Linear Elimination Sort for Skyline algorithm (LESS) [6] improves SFS by integrating
external merge sort procedure tightly into skyline computation. Similar to SFS, LESS
first sorts the dataset according to entropy values of all data objects and then computes
the skyline in the same way as BNL. In order to eliminate the data objects efficiently,
LESS makes the following two major changes during external merge sorting proce-
dure.

1. It maintains an elimination-flter (EF) window in pass 0 of the external merge
sort procedure to eliminate some non-skyline data objects; and

2. It combines the final pass of the external merge sort procedure with the skyline
examination procedure of BNL algorithm.
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Specifically, a small EF window is maintained in pass 0 of the external sort routine.
Copies of the data objects with the best entropy values are kept in this window. When
a block of data objects is read in, these data objects are compared against those in the
EF window first. The data objects dominated by those in the EF window are dropped
as well. Then, the data objects in the EF window are replaced by those with the best
entropy values among the surviving new data objects and those in EF window.

The merge passes of the external merge sort procedure in LESS are the same as for
external merge sort, except for the final merge pass which is combined with the initial
skyline examination procedure of BNL. In the final pass, skyline-filter (SF) window
is maintained in which the skyline candidates are stored. Besides sorting, each data
objects processed in the final pass is compared with the data objects in SF window. If
the new data object is dominated by some in SF window, it is discarded immediately.
If the data objects in SF window is dominated by the new data objects, they are dis-
carded as well. If the new data object is not discarded after examination, it is inserted
into SF window as a new candidate. When SF window is full, a temporary file is cre-
ated. Obviously, such integration of the final merge pass and the skyline examination
procedure saves a pass over the data. Note that such optimization is also implemented
in many database systems for the standard two-pass sort-merge join.

Compared with SFS, LESS should consistently perform better because for the fol-
lowing reasons.

(1) The dataset to be processed after pass 0 in LESS is smaller than that of SFS;
this may also cause that more passes are required in SFS to complete the sort;

(2) LESS saves at least one passes since it combines the final merge pass with the
skyline examination procedure.

Bitmap

Bitmap algorithm [7] encodes each data object with a bitmap according to the rank
of its value on each dimension. All the bitmaps enable the algorithm to efficiently
determine whether a data object is a skyline object by bitwise operations (i.e., AND).

Consider a data object P = (P[1], P[2], · · · , P[n]), where n is the dimensionality.
Each coordinate p[i], (1 ≤ i ≤ n) is converted into mi-bit vector, where mi is the num-
ber of distinct values on the i-th dimension, in which the (mi − rank(pi) + 1) most
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Table 2.10: An example of Bitmap algorithm

ID x y Bit vectors for x Bit vectors for y
P1 7 6 1110000 11100000
P2 4 5 1111100 11110000
P3 2 3 1111110 11111100
P4 1 7 1111111 11000000
P5 10 9 1000000 10000000
P6 5 2 1111000 11111110
P7 9 1 1100000 11111111
P8 1 4 1111111 11111000
P9 4 2 1111100 11111110
P10 5 1 1111000 11111111

significant bits are 1 and others are 0. After conversion, every data object is mapped to
an m-bit vector where m is represented by equation (2.2).

m =
n

∑
i=1

mi (2.2)

As an example, Table 2.10 shows the corresponding bit vectors for the data objects
shown in Table 2.8. After converting all data objects to bitmaps, every data object can
be efficiently determined whether it belongs to the skyline by calling bitwise operations
on the bitmaps. Specifically, given a data object P = (P[1], P[2], · · · , P[n]), bitmap
algorithm first generates d bit vectors b1, b2, · · · , bn, where bi(1 ≤ i ≤ n) is juxtaposing
the corresponding rank(p[i]) bits of every data object. The 1’s in the result of b1 & b2

& · · · & bn indicate the data objects which dominate O. Obviously, if there is only
single 1 in the result, the considered data object is a skyline object.

Continuing the above example to check whether P2 is a skyline object. For P2, the
corresponding bit vectors b1 and b2 are 0111000110, and 0010011111, respectively.
Then the result of b1 and b2 is 0010000110, which indicates P2 is dominated by P3 and
P8. As a result, P2 is not a skyline object. On the other hand, for data object P10, the
result of b1 & b2 is 0111010111 & 0000001001 = 0000000001, which has only single
1. Therefore, P10 belongs to the skyline. To obtain the entire skyline, Bitmap algorithm
repeats the same examination for every data object in the dataset.
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Table 2.11: An example of index algorithm

minValue batch minValue batch
1 P8(1, 4) 1 P10(5, 1)
1 P4(1, 7) 1 P7(9, 1)
2 P3(2, 3) 2 P9(4, 2)
2 P6(5, 2) 4 P2(4, 5)
6 P1(7, 6) 9 P5(10, 9)

Index

Given a set S of n-dimensional data objects, Index algorithm [7] organizes S into n B+-
tree indices. A data object P = (P[1], P[2], · · · , P[n]) is assigned to the i-th (1 ≤ i ≤ n)
B+-tree index if and only if P[i] is the minimum coordinate among all coordinates of
P. The key of each B+-tree index is the minimum coordinate (denoted by minValue)
of each data object. The data objects in the same B+-tree index which have same
minValue are maintained in a batch.

To compute skyline, the maximum value of all the coordinates of the current sky-
line objects is maintained, which is denoted by maxValue. Iteratively, Index algorithm
examines each B+-tree index and processes the batch which has the smallest minValue.
minValue of this batch is first compared with maxValue. Obviously, if maxValue is
smaller than or equal to minValue, there should be some skyline object in the current
skyline which dominates the data objects in this batch and all other unprocessed data
objects in the same B+-tree index as well. Therefore, the batch and all other unpro-
cessed data objects in the same B+ tree index can be safely discarded. Otherwise,
within the batch processed, a local skyline is computed first and remove the data ob-
jects which are dominated by others. Then, the remained data objects are compared
with the skyline objects computed so far. If the data object in question is dominated
by some current skyline object, it is discarded. Otherwise, it is inserted into skyline
as a new skyline object. Once a new skyline object is found, maxValue is updated.
Index algorithm returns the skyline result after the batches of all B+-tree indices are
processed.

Consider the same dataset shown in Table 2.8. All the batches in the B+-tree indices
are listed as shown in Table 2.11 in the increasing order of minValue. Initially, Index
algorithm processes the batches with minValue = 1 one by one. At first, data object
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Figure 2.4: A example of NN algorithm

P8is added into the skyline. After that data objects P10 is checked and added to the
skyline as they it not dominated by the current skyline objects. After data objects P4

and P7 are checked, they are not added to the skyline as they are dominated by current
skyline objects. After that, maxValue is updated to 9. Similarly, after processing P3,
P9, and P6, P3 and P9are added into skyline. maxValue is not changed after these two
new skyline objects are found. Then, P2 is examined and discarded as it is dominated
by some current skyline objects (i.e., P8). Index algorithm continues to examine the
remaining batches in the increasing order of its minValue. When P1 is processed,
since its minValue = 9 is equal to maxValue, P1 is discarded immediately without
being evaluated with the current skyline objects. After all batches are processed, Index
algorithm outputs the skyline {P3, P8, P9, P10}.

Nearest Neighbor Skyline

Nearest Neighbor algorithm (NN) [8] is based on the following fundamental observa-
tion.

Observation: Given a dataset and a monotonic distance function f (e.g., Eu-

clidean distance), the nearest neighbor of the origin is a skyline object.

Based on the above observation, to compute the skyline for a given dataset, NN
first finds the nearest neighbor P from the origin. Then, partition the data space into 3
parts with P ( See Figure 2.4(a) for example):
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Part 1: The hyper rectangle with the origin as lower-left corner and P as upper-
right corner (i.e., R1 shown in Figure 2.4(a)). Clearly, P is dominated by the data object
in this region. According to the above observation, this part is empty as no data object
dominates P.

Part 2: The hyper rectangle with P as lower-left corner and the upper-right corner
of the data space as upper-right corner (i.e., R4). Obviously, all data objects in this part
is dominated by P. Therefore, these data objects can be discarded safely.

Part 3: The other regions (i.e., R2 and R3). The property of those regions is that
their local skyline objects belong to the global skyline as P does not dominate any data
object in those regions. As a result, NN is recursively applied to these regions till all
the data space is evaluated.

Take the same dataset shown in Table 2.8 for example. After the nearest neighbor
of the origin, P3, is found, the data space is partitioned into 4 parts, R1, R2, R3, and
R4 (Figure 2.4(a)). As stated above, NN only needs to consider regions R2 and R3.
For each region, NN recursively finds its nearest neighbor to its lower-left corner and
partitions it into sub-regions. After further partitioning R3, we find P8, as a skyline
object and search process in this region is terminated. Similarly, in R2, as shown in
Figure 2.4(b), P9 is found as the nearest neighbor and then it further partitions R22.
After the data object P10 is found as the nearest neighbor of its sub-region, NN ends
and outputs P3, P8, P9, and P10 as the skyline result.

Branch and Bound Skyline

Like NN algorithm, Branch and Bound Skyline algorithm (BBS) [4, 9] is also based on
nearest neighbor search. Assuming the dataset is indexed by an R-tree [59]. BBS is IO
optimal i.e. the number of nodes of R-tree accessed is minimized. To find the skyline,
BBS traverses the R-tree in a best-first manner: it always evaluates and expands the
node that is closest to the origin among all unvisited nodes. To do that, BBS employs
a heap in which the key of each entry (i.e., R-tree node or data object) is its minimum
distance to the origin. Here, the minimum distance of an R-tree node to the origin
is the summation of the coordinates of its lower-left corner. Initially, all child entries
of the root node of the R-tree are inserted into heap. In each iteration, the top entry
e is removed from the heap and examined against the skyline computed so far. If e

is dominated by some current skyline object, e is discarded. Otherwise, e is either
expanded or output as a skyline object based on its types. If e is an R-tree node, it
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Figure 2.5: A example database and its R-tree

is expanded by inserting all its child entries which are not dominated by any current
skyline objects into the heap. If e is a data object, it is output as a new skyline object.
BBS ends when the heap is empty. In order to speed up examination whether the
entry e in question is dominated by the current skyline objects, the current skyline is
maintained by an in-memory R-tree as well.

Consider the dataset as given in Figure 2.5(a), the corresponding R-tree is illus-
trated in Figure 2.5(b). To compute skyline, as listed in Table 2.12, BBS first inserts
entries e1 and e2 into the heap. Then, e1, which is closer to origin than e2, is expanded
to entries e3 and e4. The next top entry is e3 and its data objects P8 and P6 are inserted

Table 2.12: An example of BBS algorithm

Action Heap Content Skyline
initializing (e1, 3), (e2, 7) ⊘
expand e1 (e3, 5), (e4, 6), (e2, 7) ⊘
expand e3 (P8, 5), (e4, 6), (e2, 7), (P6, 9) P8

expand e4 (P9, 7), (e2, 7), (P6, 9), (P10, 10), (P7, 12) P8, P9

expand e2 (e5, 7), (P6, 9), (P10, 10), (P7, 12) P8, P9

expand e5 (P3, 8), (P6, 9), (P10, 10), (P7, 12) P8, P9, P3

examine P6, P10, P7 ⊘ P8, P9, P3, O10
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Figure 2.6: DSL [10] working process

into the heap after processing. After that, P8 is processed. As it is not dominated by
any current skyline object (the current skyline is empty), it is output as a new skyline
object. Similarly, entry e4 is expanded and its data objects are inserted into the heap.
When e2 is expanded, its child entry e6 is found being dominated by one skyline object
(i.e., P8). So, it is discarded. With the same reason, after e5 is processed, only data
object P3 is inserted into heap. Then, BBS continues to examine data objects remained
in the heap one by one till all are processed. Only the data objects which are not dom-
inated by the current skyline objects are output as new skyline objects. Finally, the
skyline result is {P8, P9, P3, P10}.

2.2.2 Skyline in Distributed Environment

As nowadays data are increasingly stored and processed in a distributed way, skyline
processing over distributed data has attracted much attention recently. Below we give
an overview of the existing approaches for skyline query processing in distributed en-
vironments, where each server stores a fraction of the available data. We have adapted
the contents of this section from [25].
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DSL

Distributed Skyline (DSL) proposed by Wu et al. [10]. DSL is used to compute con-
strained skyline queries in CAN networks [65]. Using CAN overlay, DSL maps data
to regions and assign these regions to peers. Based on the constraints peers that do not
contribute data are pruned immediately. Then an ad hoc multicast multi-level hierar-
chical tree is constructed with all remaining peers. Each queried peer then computes
the skyline set on its local data, and intermediate peers merge result sets from their
children. Figure 2.6 shows an example of a hierarchy built at runtime. The query
is propagated along the edges of the hierarchy; peers perform local computation and
propagate the results back on the same paths-on the way back, results are aggregated
exploiting skyline additivity.

At the time of query processing, DSL builds a multicast hierarchy. In the hierar-
chy the peer that is responsible for the region containing the lower left corner of the
constraint is the root. The data points stored at this peer are guaranteed to belong to
the global skyline set because these data points cannot be dominated by points stored
at any other peer. Moreover, the hierarchy is built in such away that peers whose data
points cannot dominate each other are queried in parallel. In general, any peer in the
CAN overlay can decide whether its local skyline points are in the global skyline set by
only consulting a subset of other peers. In DSL, the hierarchy is built dynamically and
each queried peer decides which neighboring peers should be queried next by using
dynamic region partitioning and encoding. Thus, a peer that receives a query along
with the local result set first waits to receive the local skyline sets from all neighboring
peers that precede it in the hierarchy. Then, it computes the skyline set based on its lo-
cal data and the received data points. Thereafter, the local skyline points are forwarded
to the peers responsible for neighboring regions, in such a way that only peers whose
data points cannot dominate each other are queried in parallel. In addition, neighbor-
ing peers that are dominated by the local skyline points are not queried because they
cannot contribute to the global skyline set. Finally, all local result sets are collected at
a peer that cannot forward the query any further, and the global skyline set is reported
back to the query initiator.
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Figure 2.7: Skyframe example [12]

SSP and skyframe

Wang et al. [11] introduced an approach SSP (Skyline Space Partitioning) for dis-
tributed processing of skyline queries in BATON [66] networks. Peers in BATON
are organized in a balanced binary tree structured overlay network, where each peer
is responsible for a region in data space. Techniques for splitting and merging allow
for load balancing among peers. By dynamically sampling load from random peers,
load imbalance can be detected and data may be migrated to other peers in order to
counteract the imbalance. As BATON networks have originally been designed for one-
dimensional data, Wang et al. map the multidimensional data space to one-dimensional
keys using a Z-curve. Figure 2.7 shows an example of the mapping of the data regions
to the peers in the BATON network. Regions in BATON are created by successively
splitting existing regions into two parts with respect to a specific dimension, and each
region is represented by a binary string that identifies the region and is consistent with
the Z-order of the region. Each peer knows the split history (i.e., dimension, split
value) that its region originates from. Based on this information, for a given region,
the identifier is determined. In addition, the routing table of each peer contains links
to other peers (parents, children, adjacent peers, and other peers on the same level), so
that the query is efficiently routed to a particular peer.

Figure 2.7(b) illustrates the principle of routing in BATON overlays. Assume peer
3 needs to retrieve data contained in the region assigned to peer 8. The identifier of the
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responsible region starts with 0 because it is contained in the lower part of the first split
(at 0.45 in the x dimension). Thus, peer 3 forwards the query to a known peer (peer 2)
with a leading 0 in its assigned region. Using the same strategy, peer 2 forwards the
query to peer 4, which again forwards the query to the peer holding the queried data,
namely peer 8.

Skyline processing in BATON networks relies on identifying relevant regions and
routing the query to peers responsible for those regions. More precisely, skyline com-
putation starts at the peer pstart , which is the peer responsible for the region containing
the origin of the data space. Peer pstart computes the local skyline points that are guar-
anteed to be in the global skyline set. Then, pstart selects the most dominating point
pmd (i.e., the point dominating the largest region [15]), which is used to refine the
search space and to prune dominated regions and therefore also the responsible peers
from consideration. A peer can safely be pruned if the best point (i.e., the lower left
corner) of its region is dominated by pmd . Then, the querying peer forwards the query
to the peers that are not pruned and gathers their local skyline sets. Finally, the query
initiator computes the global skyline set by discarding dominated local skyline points.

In [12], Wang et al. generalize SSP by proposing Skyframe. In more detail, Wang
et al. [12] propose an alternative algorithm for skyline processing without the need
to determine a peer pstart before query processing starts. Instead, the querying peer
forwards the query to a set of peers called border peers. A peer that is responsible for
a region with minimum value in at least one dimension is called border peer. In our
example, peers 1, 2, 4, 5, 8, and 10 are the border peers. Once the initiator receives
the local skyline results, it computes pmd and determines whether additional peers
need to be queried. Then, the querying peer queries additional peers, if necessary, and
gathers the local skyline results. When no further peers need to be queried, the query
initiator computes the global skyline set. Wang et al. show in [12] that Skyframe is
also applicable for CAN networks [65].

iSky

Chen et al. [13] proposed the iSky algorithm for skyline computation on structured
peer-to-peer networks. Similar to Skyframe [11, 12], iSky relies on the BATON [66]
overlay. However, iSky employs a different transformation, namely iMinMax, to as-
sign data to BATON peers. In iSky, each multidimensional tuple is mapped to a
one-dimensional value (iMinMax value). For mapping a multidimensional tuple to
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Figure 2.8: iSky example [13]: BATON network and iMinMax ranges assigned to peers

a one-dimensional value it first determines the maximum value for this tuple among all
dimensions.

Assume that the range of each dimension is normalized into (0,1). Then iMinMax

value is defined by the sum of (i) this maximum value and (ii) the number of the dimen-
sion it originates from. Each peer is responsible for a specific non-overlapping range
of iMinMax values, so that each data point is assigned to a specific peer. Figure 2.8
shows an example of a BATON network and also for each peer the range of iMinMax

values which each peer is responsible for. It should be noted that iSky assumes for each
dimension, larger values are preferable.

Based on a skyline query, iSky first determines a set of initial skyline peers. These
peers are chosen because points with maximum value in some dimension are guar-
anteed to be part of the global skyline set. Thereafter, the initial skyline peers are
queried, and their local skyline results are merged into an initial set of skyline points
by discarding dominated local skyline points. Then, the querying peer determines a
threshold and a filter point. In order to define the threshold, the minimum value of all
dimensions for each initial skyline point is computed. Then, the maximum value of
all minimum values of all initial skyline points is selected as a threshold by using its
range of iMinMax values. Any data point can be pruned if its maximum attribute value
in all dimensions is smaller or equal to the received threshold. In addition, the most
dominating point (i.e., the point dominating the largest region [15]) is chosen as filter
point. The threshold and the filter point are attached to the query, which is forwarded
to any neighboring peer that stores interval values larger than the threshold. When a
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peer receives a query, it first uses the threshold to check whether all its data are pruned.
In this case, the peer just forwards the query to its neighboring peers that have interval
values larger than the threshold. Otherwise, the peer processes the query on its local
data and uses the filter point to discard dominated tuples. Finally, each peer refines the
threshold and the filter point before forwarding the query and immediately sends the
local result set to the query initiator, which then merges the local results and obtains
the global skyline set after all queried peers have processed the query.

SSW

SSW (Semantic Small World) was proposed by Li et al. [14]. It is based on an under-
lying semantic overlay network. In such a network, the multidimensional data space
is partitioned into non-overlapping regions, also known as clusters. Peers are assigned
to the non-overlapping regions based on semantic labels. The semantic label of a peer
corresponds to the region, which contains the centroid of its largest data cluster. For
the data not contained in the region corresponding to the semantic label of a peer, for-
eign indexes are created at peers. A peer’s foreign index holds information about data
contained in its region that is stored at remote peers assigned to other regions. Each
peer maintains links to other peers assigned to the same cluster and links to at least one
peer in each neighboring cluster.

The computation of a skyline starts from the region that is guaranteed to contain
skyline points. Then, the skyline query is evaluated over the data provided by peers
of this cluster. The local skyline point that corresponds to the nearest neighbor of the
origin is used as a filter point. In more detail, all regions that are entirely dominated by
the filter point are not considered for further processing. After querying the remaining
regions, reporting back all local result sets to the query initiator, and checking for
mutual dominance, the global skyline set is returned to the user.

Apart from this algorithm, Li et al. [14] also propose an approximate algorithm,
which does not require a semantic overlay network. Still, peers have semantic labels
that are used to process the skyline query. As a peer is assumed to know the semantic
labels of its neighbors, it forwards the query to the neighbor with the best semantic
label, which is defined as the semantic label closer to the origin. Once a peer cannot
find a neighbor with a better semantic label than its own semantic label, skyline com-
putation ends and the result is returned to the user. Another variant of this strategy
(multipath) forwards the query for each dimension to the peer that provides the best
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data, if only this dimension is considered. The peer that initiates the query coordinates
the computation and might optionally issue a stop command when a certain number of
peers have been queried.

Single Filtering Point (SFP)

Huang et al. [15] assume a setting with mobile devices communicating via an ad hoc
network (MANETs) and study skyline queries that involve spatial constraints.

The main feature of SFP is that it uses a point that belongs to the local skyline
set as a filter to discard local skyline points of other peers. The the filter point is
selected based on the volume of the dominating region (Figure 2.9). The dominating
region is the area in data space that is dominated by a skyline point. If we consider a
uniform distribution, a larger dominating region means that there is a higher probability
to dominate other points. After receiving a query request by a peer, the peer first
performs local query processing. It then propagates the query to its neighboring peers
by attaching a filter point to the query. The filter point is used to discard local skyline
points before sending back the local result to the query initiator. Each peer updates the
filter point if a local skyline point has a larger dominating region.

DDS

Hose et al. [16, 17] proposed skyline processing based on DDS (Distributed Data
Summaries)in unstructured P2P networks that uses routing indexes to identify relevant
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peers. Distributed data summaries are summaries of the data accessible via a peer’s
neighbors. This summary in a neighbor not only contains its local data but also the
data of peers that are located several hops away but reachable via the neighbor. Each
peer in the network is assumed to hold such summaries for its neighbors. Hose et al.
consider two variants of data summaries, one based on multidimensional histograms
and the other one based on the QTree, a combination of R-trees and multidimensional
histograms.

Processing skyline queries based on DDS in works as follows: First, the query
initiator computes the skyline set based on its local data. Then, based on its data sum-
maries, it decides the relevancy of its neighbors. This helps the initiator to decide which
neighbors can be pruned. The neighbors those provide only data that are dominated by
local skyline points of the query initiator can be pruned without any further processing.
A data summary based on histograms can be regarded as a set of regions represented
by rectangles. Given a skyline query and a rectangular region, then the best point that
might be contained with respect to domination is the rectangle’s lower left corner. The
best point dominates all data points possibly contained in the region. If the best point
is dominated by a local skyline point, then the region can be pruned. If all regions that
summarize data of a specific neighbor are pruned, then the query is not forwarded to
this neighbor. Otherwise, the query is forwarded and the local skyline points are also
forwarded to the neighboring peer in order to prune its neighbors. To minimize load at
the initiator, local skyline points are routed on the same path the query was propagated
on; a peer merges the local result sets received from its neighbors with its own local
skyline set, checks for mutual dominance, and sends the obtained result to the peer that
it received the query from.

DDS also supports approximate skyline queries mentioned as relaxed skylines. A
relaxed skyline query aims at reducing the computational costs of skyline processing
by representing regions of a peer’s data by a single local skyline point. A region
describing the data of a neighboring peer is represented by only one local skyline
point if any point of the region has a distance to the representative point less than
a given threshold, so a neighbor is pruned if all the regions describing its data are
either dominated or represented by representatives, i.e., local skyline points. Thus,
the query result set does not contain all skyline points, but a subset of skyline points
and additionally representative data points that represent regions that are nearby and
possibly contain further skyline points.
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SKYPEER and SKYPEER+

Vlachou et al. [18] proposed SKYPEER, a distributed framework for efficient com-
putation of subspace skyline processing over a super-peer architecture. In this regard,
the notion of domination is extended by defining the extended skyline set, which con-
tains all data points that are sufficient to answer a skyline query in any arbitrary sub-
space. Each super-peer pre-computes and stores extended skyline sets of its associated
peers. When a super-peer receives a subspace skyline query, SKYPEER propagates the
query to all super-peers and gathers the local skyline sets. In order to facilitate pruning
of dominated data across the peers, SKYPEER also utilizes an efficient thresholding
mechanism. In order to handle threshold-based query processing, data are transformed
into one-dimensional values. Then, during query processing, a threshold value is de-
fined based on already computed subspace skyline points. Then, the threshold is at-
tached to the query before it is propagated in the network. Vlachou et al. explore
different strategies for (i) threshold propagation and (ii) result merging over the P2P
network aiming to reduce both computational time and volume of transmitted data. For
threshold propagation, they considered two strategies, namely fixed threshold and re-
fined threshold. In case of fixed threshold, the query initiator sets the threshold. On the
other hand, in case of refined threshold each super-peer can update the threshold based
on its local result. For merging results, they employed two strategies, namely merg-
ing the local result sets by the query initiator or progressive merging by intermediate
super-peers.

SKYPEER was then extended in [19] leading to SKYPEER+. The goal of SKYPEER+
algorithm is to reduce the number of contacted super-peer during skyline queries. For
achieving this goal, SKYPEER+ establishes a routing mechanism in order to contact
only those super-peers that may contribute to the global skyline set. It works as fol-
lows:

In the preprocessing phase, each super-peer additionally applies a clustering algo-
rithm on its locally stored extended skyline set. Then, the extended skyline set is stored
based on the one-dimensional mapping, as depicted in Figure 2.10. The clusters are
represented by MBRs and each point is mapped to a one-dimensional value, while all
points that belong to the same dashed line have the same one-dimensional value. Then,
based on the threshold employed by SKYPEER+, point p prunes the shadowed area.
The cluster descriptions are broadcast over the super-peer network. Each super-peer
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Figure 2.10: SKYPEER+ example [19]: Indexing of extended skyline points with one-
dimensional mapping

collects the cluster information of all super-peers and builds routing indexes based on
them. The one-dimensional mapping is combined with the clustering information, and
a novel indexing technique is proposed for building the routing indexes, which sup-
port efficiently the thresholding scheme of SKYPEER. During query processing, the
routing indexes are used to propagate the query only to network paths with super-peers
storing data points that may contribute to the skyline set. In addition, the routing in-
formation is used to refine the threshold. Therefore, SKYPEER+ further improves the
thresholding scheme and significantly reduces the amount of transferred data.

BITPEER

Fotiadou et al. [20] proposed BITPEER for subspace skyline queries over a super-peer
architecture. Similar to SKYPEER, each super-peer stores the extended skyline of its
peers. Differently to SKYPEER, Fotiadou et al. focus on distributed skyline compu-
tation based on BITMAP [7]. Therefore, BITPEER uses a bitmap representation that
summarizes all extended skyline points. Given a subspace skyline query, the query
is flooded in the super-peer network, and local results are sent back to the querying
super-peer by using progressive merging at intermediate super-peers. The authors also
discuss caching of subspace skyline points and continuous skyline queries. In order to
enable the reusability of subspace skyline results, during query processing, the query-
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Figure 2.11: PaDSkyline example [21]

ing super-peer gathers the extended subspace skyline [18] instead of the subspace sky-
line. Therefore, BITPEER is able to use a cached skyline set also for subspace skyline
queries that refer to a subspace of the query in the cache.

PaDSkyline

Cui et al. [21] proposed PaDSkyline (Parallel Distributed Skyline query processing)
algorithm. The main idea of PaDSkyline is to determine the peers those can process
the query in parallel under the assumption that the data points of each peer lie only in
a part of the data space.

The querying peer first gathers a set of minimum bounding regions (MBRs) from
each peer that summarizes the data stored at each peer. Subsequently, the querying
peer processes the collected MBRs and groups them into one or more incomparable
groups such that any data point summarized by an MBR of one group cannot be domi-
nated or dominate any data point captured by an MBR of another group. Figure 2.11(a)
depicts a set of MBRs gathered by the querying peer. We can see that there are two
incomparable groups, namely MBRs m1 and m2 form the first group, while the second
group consists of the remaining MBRs. These two incomparable groups can be queried
in parallel without requiring merging of local results. For each incomparable group, a
specific plan is constructed with the aim at maximizing the gain achieved by the filter
points and defines a beneficial order to query the peers. An example of an execution
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order is depicted in Figure 2.11(b). In general, dominated MBRs are discarded, while
MBRs (for example m6) that are partially dominated (for example by m5) are executed
after the partially dominating MBR. For each group, the plan is sent to the peer (head
group) responsible for the head MBR of the plan. The peer that receives a plan pro-
cesses the query locally. Once a peer has processed the query, it removes itself from
the query plan and forwards the query to the next peer indicated by the plan. In order
to reduce network traffic, each peer attaches a set of K filter points to the query for
discarding local skyline points of the peers that belong to the same group. The goal is
to select as filter points the local skyline points that are more likely to dominate many
other points. Two different strategies are studied. The first strategy is to select the K

points with the largest volume of their dominating region [15]. The proposed alterna-
tive is to pick the K points with the maximal distance between them. The aim of this
strategy is to minimize the overlap between the dominating regions of different points.
After the peer has processed the query locally, the results are sent back directly to the
head group, and after discarding all dominated points, the results are sent back to the
querying peer.

AGiDS

Rocha-Junior et al. [22] propose a grid-based approach for distributed skyline process-
ing (AGiDS), which shares assumptions similar to [21]. Differently, AGiDS assumes
that each peer maintains a grid-based data summary structure for describing its data
distribution.

AGiDS assumes that all peers share common cell boundaries for the grid structure
that leads to non-overlapping cells, which increases the probability of domination be-
tween cells and enables efficient merging of local skyline set. The set of cells of a peer
that contain at least one data point and that are not dominated by other cells is called
region-skyline set of the peer. Only these cells of the grid contain data that belong to
the local skyline set. At query time, the query initiator first contacts all peers and gath-
ers the region-skyline sets of all peers. Then, the query initiator merges the collected
cells into a new region-skyline set by discarding dominated cells.

An example of this process is depicted in Figure 2.12. Finally, queries are for-
warded only to peers that correspond to at least one cell in the region-skyline set. The
query initiator requests only a subset of local skyline points, namely those that belong
to the cells of the region-skyline set. After having gathered all relevant points, the
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Figure 2.12: AGiDS example [22]: finding the non-dominating regions of different peers

querying peer computes the global skyline set by testing only the necessary regions for
dominance.

FDS

Zhu et al. [23] propose a feedback-based distributed skyline (FDS) algorithm, which
assumes no particular overlay network. FDS aims at minimizing the network band-
width consumption, measured in the number of tuples transmitted over the network.
FDS requires a scoring function that is used by all peers, and each query is processed
in multiple round trips. In each round trip, all peers send to the querying peer k local
skyline points with the lowest score based on the scoring function. Then, the querying
peer computes the maximum score of all transferred local skyline points and requests
from all peers the remaining local skyline points that have scores smaller than the max-
imum score. Finally, the querying peer merges the local result sets and selects a subset
of the current skyline points as a feedback that is sent to all peers. Peers receiving
the feedback remove from their local data points all points that are dominated by the
points of the feedback.
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p (candidate feedback point) •  •  q (point transferred to the querying server ) 
region that contains the points those have not been transferred to the querying peer 

Figure 2.13: FDS example [23]: example of the feedback algorithm

In the feedback phase, FDS selects filter points for each peer; these are skyline
points that are guaranteed to dominate at least l local data points. To this end, for each
local skyline point, the distance of the l-nearest neighbor is computed and attached to
it before sending it to the querying peer. The distance is combined with the score of the
scoring function in such a way that FDS can decide whether a skyline point satisfies
the condition. An example of the feedback algorithm is depicted in Figure 2.13. The
depicted rectangle is defined by the distance of the l-nearest neighbor based on L∞.
The score of the scoring function used for sorting the data points defines the region
that encloses the points that have not been transferred to the querying peer. Then, if
the dominating region of a skyline point covers this region, it will dominate at least l

points. FDS is efficient in terms of bandwidth consumption. However, several round
trips are required to compute the skyline set. Thus, it may incur high response time.

SkyPlan

For improving the performance of PaDSkyline [21], SkyPlan was proposed in [24] .
Like PaDSkyline, during query processing, each peer reports a set of minimum bound-
ing rectangles (MBRs) to the querying peer as a summarization of its data. SkyPlan
defines the order the query is executed that improves the performance of skyline query
processing. In SkyPlan, it is possible that some peers are not contacted at all. This
situations happens if all points of a peer are dominated by a point stored locally at
another peer. Moreover, there is a significant reduction in data transfer. However, if
the filter points fail to prune any point of a peer, then there is no gain from querying
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Figure 2.14: SkyPlan example [24]

the peers consecutively. In this case, the parallelism should be preserved, in order to
minimize the latency and therefore also the response time.

In SkyPlan, a weighted directed graph (SD-graph) is created by the query orig-
inator that can represent the dominance relationships between the collected MBRs.
Each vertex of the graph represents a non-dominated MBR, while an edge between
two vertices means that one MBR dominates partially the other MBR. The weights
on the graph represent the pruning power those are used to quantify the potential gain
through filtering. For example, consider the MBRs and the graph depicted in Fig-
ure 2.14. MBR m1 partially dominates m2 because the lower left corner of m1 domi-
nates the upper right corner of m2. Thus, a directed edge from m1 to m2 is added to the
graph. Before executing the query, SkyPlan transforms the SD-graph into an execution
plan (one or more directed trees) that maximizes the total pruning power while pre-
serving the parallelism when no significant gain can be obtained from processing the
queries on different peers consecutively. It has been shown that SkyPlan supports also
multi-objective executions plans, in case that additional objectives need to be fulfilled
simultaneously, such as additionally restricting the number of hops that the query is
forwarded.

Finally, the distributed skyline query is processed based on the execution plan. The
querying peer sends the query to the root of every directed tree in the execution plan.
Each queried peer processes the skyline query locally, refines the execution plan, and
selects a set of filter points. The refinement of the execution plan produces a new
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Figure 2.16: B2S2 example [26]: Data points indexed by an R-tree

execution plan that does not contain the MBRs that are dominated by the local skyline
points. The filter points are selected based on the dominating region [15]. Since the
volume of the dominating region does not necessarily relate to the area within the
MBR that is dominated by a filter point, SkyPlan takes into account the MBRs of
the execution plan while selecting the filter points. Eventually, each peer gathers the
local result sets of the peers that had received the query through and merges them by
discarding dominated points. Local processing on peers terminates by returning the
merged skyline points to the previous peer based on the execution plan

2.2.3 Spatial Skyline Computation

Given a set of data points P and a set of query points Q spatial skyline queries retrieve
all data points from P those are not dominated with respect to query points in Q. Below,
we provide a brief review of well known spatial skyline query algorithms.
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Table 2.13: B2S2 for the example of Figure 2.15

Step Heap Contents (entry e, mindist(., .)) S(Q)

1 (e6, 8), (e7, 52) ⊘
2 (e1, 18), (e2, 49), (e7, 52), (e3, 115) ⊘
3 (p2, 38), (p3, 42), (e2, 49), (e7, 52), (p1, 70), (e3, 115) ⊘
4 (e7, 52), (p5, 53), (p1, 70), (e3, 115) p2, p3

5 (p5, 53), (p1, 70), (e3, 115) p2, p3

6 (p1, 70), (e3, 115) p2, p3, p5

B2S2: Branch-and-Bound Spatial Skyline Algorithm

B2S2 algorithm was introduced by Sharifzadeh et al. [26]. It is an improved cus-
tomization of BBS [4, 9] algorithm. In B2S2 algorithm, data points are indexed by a
data partitioning method such as R-tree. Let us consider that mindist(p,A) is the sum
of distances between the data point p and the points in the set Q and mindist(e,Q) is
the sum of minimum distances between the rectangle e and the points of Q.

Now, consider the set of data points P = {p1, p2, · · · , p13} and set of query points
Q = {q1, q2, q3, q4} as shown in Figure 2.15. The indexing of the data points in P by
an R-tree is shown in Figure 2.16.

B2S2 computes spatial skyline points as follows.
At first B2S2 computes the convex hull of Q and determines the set of its vertices

CHv(Q). In our running example vertices on the convex hull are q1, q2 and q3. i.e.,
CHv(Q) = {q1, q2, q3}. Subsequently, B2S2 begins to traverse the R-tree from its root
R down to the leaves. It maintains a minheap H sorted based on the mindist values of
the visited nodes. Table 2.13 shows the contents of H at each step of the computation
procedure. First, B2S2 inserts (e6, mindist(e6, CHv(Q))) and (e7, mindist(e7, CHv(Q)))
corresponding to the entries of the root R into H. Then, e6 with the minimum mindist

is removed from H and its children e1, e2, and e3 together with their mindist values are
inserted into H. Similarly, e1 is removed and the children of e1 are added to H. In the
next iteration, the first entry p2 is inside CH(Q) and hence is added to S(Q) as the first
skyline point.

After obtaining the first skyline point, any entry e must be checked for dominance
before insertion into and after removal from H. If e is dominated by any skyline point
in S(Q), B2S2 discards e. B2S2 applies two simple tests to determine the dominance of
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Figure 2.17: V S2 [26]: Example points for V S2

e. (1)If e does not intersect with the intersection of all MBRs each corresponding to a
current skyline points in S(Q), e is dominated by a point in S(Q). (2) If e is completely
inside the convex hull CH(Q), e is not dominated. If e does not pass either of the above
tests, B2S2 requires to check e against the entire S(Q). B2S2 maintains a rectangle B

corresponding to the intersection area and updates it when a new skyline point is found
(see dotted box in Figure 2.15.

Considering the example of Figure 2.15, B2S2 removes p3 from H. As p3 is inside
B and is not dominated by the current skyline point p2, p3 is added to the skyline points
and the rectangle B is updated. The next step examines e2 which is not dominated by
current skyline points p2 and p3. Among e2’s children, p5 is inserted to H and p4 is is
discarded as p4 is dominated by p3. Then, B2S2 removes e7 and extracts its children e4

and e5 as e7 is not dominated. Here, we can see that e4 does not intersect with B and
e5 is dominated by p2. Hence, B2S2 discards both entries. At this step, p5 is removed
and added to the skyline points. The remaining steps discard both dominated entries
p1 and e3. Finally, we obtain the points p2, p3, and p5 as the final spatial skyline result.

V S2: Voronoi-based Spatial Skyline Algorithm

V S2 algorithm was also proposed [26]. Instead of R-tree data structure, V S2 algorithm
utilizes the Voronoi diagram (i.e., the corresponding Delaunay graph) of the data points
to answer spatial skyline query. In V S2, the adjacency list of the Delaunay graph of the
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Table 2.14: V S2 for the example of Figure 2.17

Step Heap Contents (entry e, mindist(., .)) S(Q)

1 (p1, 24) ⊘
2 (p1, 24), (p3, 28), (p6, 32), (p5, 34), (p4,

38), (p8, 44)
⊘

3 (p3, 28), (p6, 32), (p5, 34), (p4, 38), (p8,
44), (p9, 49), (p10, 49), (p11, 63)

p1

4 (p6, 32), (p5, 34), (p4, 38), (p8, 44), (p7,
46), (p9, 49), (p10, 49), (p11, 63)

p1, p3

5 (p5, 34), (p4, 38), (p8, 44), (p7, 46), (p9,
49), (p10, 49), (p11, 63)

p2, p3, p6, p5, p4, p2

· · · · · · p2, p3, p6, p5, p4, p2

points in P is stored in a flat file. To preserve locality, points are organized in pages
according to their Hilbert values.

V S2 starts traversing the Delaunay graph from a data point closest to a query point
qi). The traversal order is determined by the monotone function mindist(p,CHv(Q)).
V S2 maintains two different lists Visited and Extracted to track the traversal. Visited

contains all visited points and Extracted contains those visited points whose Voronoi
neighbors have also been visited. Similar to B2S2, V S2 also maintains the rectangle B

which includes all candidate skyline points.
For the explanation of V S2 algorithm consider the example as shown in Figure 2.17.
In Figure 2.17, three query points q1, q2, and q3 and the data points are shown as

white and black dots, respectively. Like B2S2, V S2 maintains a heap data structure.
Table 2.14 shows the contents of heap H. First, V S2 adds (p1,midist(p1,CHv(Q))) to
H and marks p1 as visited. B is also initialized accordingly to the dotted box as shown
in Figure 2.17. The first iteration visits p3, p4, p5, p6, and p8 as p1’s Voronoi neighbors
and adds their corresponding entries to H. It also adds p1 to the Extracted list. The
second iteration removes p1 from H as p1 and its neighbors have been already visited.
It also adds p1 to S(Q) as p1 is inside CH(Q). The third iteration adds p9, p10, and p11

as the only unvisited neighbors of p3. The next two iterations immediately remove p3

and then p6 from H and add them to S(Q) as their neighbors have been already visited.
The subsequent iterations add p5, p4, and p2 to the skyline and eliminate the remaining
entries of H as they are all dominated.
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Figure 2.18: VCS2 example [26]: Change patterns of convex hull of Q when the location of q
changes to q′
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Figure 2.19: VCS2 example [26]: Example points for VCS2

VCS2: Voronoi-based Continuous SSQ

For handling the change in locations of query points, Sharifzadeh et al. [26] introduced
VCS2 algorithm. The VCS2 traverse traverses the Delaunay graph of the data points
similar to V S2. It first computes CH(Q′), the convex hull of the latest query set. Then,
it compares CH(Q′) with the old convex hull CH(Q). Depending on how CH(Q′)

differs from CH(Q), VCS2 decides which specific portions of the graph is required to
traverse if necessary and how to update the old skyline S(Q).

It is observed that there are only six change in patterns of the query points as shown
in Figure 2.18(a)- Figure 2.18(f). Each figure illustrates a case where the location of
a query point q changes to q′. The grey and the thickedged polygons show CH(Q)

and CH(Q′) , respectively. VCS2 tries to recognize specific simple patterns and sub-
sequently updates the skyline accordingly. In the patterns of Figure 2.18, the region
labeled by ”++” includes the points inside CH(Q′) and outside CH(Q) and any point
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in this region is a skyline point with respect to Q′ and hence must be added to the
skyline. The points in the regions labeled by ”+” might be skyline points and must
be examined. The regions labeled by ”-” contain the points whose dominator regions
have been expanded and hence might be deleted from the old skyline. The points in
the regions specified by ”” must be examined for inclusion in or exclusion from the
skyline as their dominator regions have changed. Finally, neither q nor q′ affects the
dominance of the points in the unlabeled white region.

Now consider the explanation of VCS2 using the example of Figure 2.19 where
we can see that the query point q′1 is the new location of q1. First, VCS2 computes
the convex hull of Q′ = q′1, q2, q3 and compares it with CH(Q). The change pattern
matches pattern V in Figure 2.18. Therefore, the update to S(Q) involves both insertion
and deletion. Then, VCS2 initializes S(Q′) to the old S(Q) resulted from applying V S2.
It also adds (p8,mindist(p8,CHv(Q′))) into the heap as p8 is the closest point to q′1,
the new location of q1. The second iteration extracts p8 and adds all of its Voronoi
neighbors except p1 into the heap as p1 is not in the candidate region of pattern V of
Figure 2.18 . Similarly, p3 is extracted and all its neighbors except p4 is added in added
to the heap. Next, as p3 is not dominated it remains in S(Q′). In the next two iterations
p8 and p10 are to S(Q′). The sixth iteration, visits p6, the only unvisited Voronoi
neighbor of p7 in B which is subsequently removed from S(Q′) as it is dominated
by p1 ∈ S(Q′). The final four iterations of VCS2 also eliminate remaining points from
heap as they are all dominated. No point in the final skyline set is dominated and hence
VCS2 returns p1, p3, p5, p4, p2, p8, and p10 as the skyline result. Note that in this
example VCS2 avoids dominance checks for points such as p4 outside the candidate
region of the identified change pattern and p1 inside the convex hull of query points.

Enhanced Spatial Skyline (ES)

ES [27] algorithm use R*-tree [56] to store the data points. ES algorithm computes the
Voronoi diagram and the delaunay graph of the data points, and store them in the form
of the file. To find the data point closest to a query point, ES computes the Voronoi cells
intersecting the boundary of the query convex hull and finds all the Voronoi cells lying
in the convex hull by traversing the delaunay graph. As it is necessary to look each
Voronoi cell at most once during traversing the Delaunay graph of the data points,
it can be done by reading it from the file when it is required and deallocate it from
memory after passing it by.
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In ES process, the region to search is restricted to the bounding box containing |Q|
circles for |Q| query points. More precisely, the bounding box is set as the intersection
of all bounding boxes defined by the skyline subset found so far. After that, we obtain
a list of the candidates in this bounding box by using R*-tree. The list is sorted in
ascending order of the candidates’ distances to a query point and process them one
by one in this order. When a new skyline point is found, the size of the size of the
bounding box is reduced by taking the intersection of the current bounding box with
the bounding box of this new skyline point. During the process, if some candidate
point is not contained in the bounding box, we can simply skip the dominance test.

Direction-Based Spatial Skylines (DSS)

Direction-based spatial skylines (DSS) was proposed by Guo et al. [28] where they
proposed a technique to retrieve nearest objects around the user from different direc-
tions. The DSS query compares objects in terms of two spatial properties distances
and direction. The closer object is better than or dominates the further object if they
are in the same direction. The objects that cannot be dominated by any other object
are included in the direction-based spatial skyline(DSS). They proposed snapshot DSS

queries to find spatial skyline objects for DSS query according to the user’s current
position. We can define Snapshot DSS Query as follows.

Definition 2.6 (Snapshot DSS Query [28]) Given a DSS query (Q,θ ), an snapshot
DSS query finds all the objects on the DSS.

Snapshot DSS query computes spatial skyline objects based on the following two
observations.

Observation 1: (Limiting the scope to adjacent objects) The first observation is that
when we determine whether an object is on the DSS, we do not need to check its dom-
inance relationships with all the other objects. To explain the idea, they introduce the
notion of adjacent objects. The objects are adjacent to each other if they are adjacent
in the circular list sorted by the order of directions. When we check an object, we only
need to consider the dominance relationships between its adjacent objects.

Observation 2: (Early termination) The second observation is that we can finish the
process by only checking a subset of the whole object set. This is based on the concept
of partition angle [28]. The partition angle between two objects Oi and O j, where O j

is the successor of Oi is defined by the equation φi j = (ω j −ωi) mod 60◦
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Figure 2.20: Example of a DSS query (θ = π/3) [28]

Based on this observation 1, the following property of DSS query has been derived.
Property 1 [28]: Let the current target object be Oi and Oi’s adjacent objects

among the checked objects be O j and Ok. If both of the included angles λi j and λik

satisfy the properties λi j ≥ θ and λik ≥ θ , Oi is a DSS object. Otherwise, pi is not a
DSS object.

Based on this observation 2, Property 2 has derived as follows.
Property 2 [28]: If all the partition angles for the checked objects are smaller than

2θ , the process can be terminated and we can say that we have obtained all the spatial
skyline objects based on DSS.

Let us consider the computation of DSS objects based on the example of Fig-
ure 2.20 and observation 1 and observation 2 as shown in Figure 2.21 (a) and Fig-
ure 2.21 (b), respectively.

The starting object in Figure 2.20 is the nearest object O1. Here the partition angle
is φO1O1 = 2π . Next, we check the second nearest object O2. The object O2 is not on
the DSS as λO1O2 < θ . The partition angles are φO1O2 < 2θ and φO2O1 > 2θ . Since
the termination condition is not satisfied, the procedure continues. Then, we examine
the third nearest object O4. It is on the DSS due to λO4O2 > θ and λO4O1 > θ . As the
partition angles are φO1O2 < 2θ , φO2O4 < 2θ , and φO4O1 > 2θ , the procedure proceeds.
Next, we check the fourth nearest object O6. It is on the DSS because λO4O6 > θ
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Figure 2.21: Two observations [28]

and λO6O1 > θ . The partition angles are φO1O2 < 2θ , φO2O4 < 2θ , φO4O6 < 2θ and
φO6O1 < 2θ . Thus, the procedure terminates and we have found out all the DSS objects
{O1, O4, O6}.

Guo et al. [28] also proposed a modified version of Snapshot DSS query to handle
the situations where the positions of query point changes frequently.

Spatial Skyline Queries in Distributed Environment [29]

Yoon en al. [29] first considered the computation of distributed spatial skyline query.
They introduced distributed spatial skyline query for wireless sensor networks. There
distributed spatial skyline algorithm consists three different phases.

In the first phase, the algorithm computes query convex hull CH(Q), which is the
convex hull of query points Q and rendezvous point R, which is the centroid of CH(Q)

for partitioning. It then transmits the <CH(Q), R > to each triangle home, t ∈ T , (T is
the set of triangle homes) which is the node closest to each point in CH(Q). In phase
2, the algorithm searches the internal skylines in each t, which are definite skylines
located within or near CH(Q). In phase 3, the algorithm searches external skylines,
the skylines that are located outside of CH(Q). Finally, it returns all spatial skyline
objects.
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Other Spatial Skyline Queries

All of spatial skyline queries discussed above depend on Euclidean distance. As a re-
sult they can not well applicable in road networks as in road networks there are many
constraints. Considering this fact Son et al. [30] introduced a variation of spatial sky-
line queries known as MSSQ that is well applicable to road networks. MSSQ depends
on Manhattan distance instead of Euclidean distance for Spatial Skyline computation.

There are several situations where we are interested about non existence of facilities
of the same type. As for example, for selecting a location for establishing a park or a
supermarket, it is more likely that the place where there is no such facilities will be the
interesting location. Considering this fact, You et al. [31] introduced a spatial skyline
query mechanism that can easily select such interesting places.

2.2.4 Other Variants of Skyline Queries

So far all the algorithms discussed above focus on computing skyline from numerical
databases with a fixed set of dimensions. Below we discuss different variants of skyline
queries as well as skyline queries in different domains.

Subspace Skyline

The recent papers on skyline computation in subspaces [2, 3]. Yuan et al. [2] pro-
posed two methods to compute skylines in all the subspaces by traversing the lattice of
subspaces either in a top-down or bottom-up manner. In the bottom- up approach, the
skylines in a subspace are partly derived by merging the skylines from its child sub-
spaces at the lower level. In the top-down approach, the sharing- partition-and-merge
and sharing-parent property of the DC algorithm [1] is exploited to recursively enu-
merate the subspaces and compute their skylines from the top to bottom level, which
turns out to be much more efficient than the bottom-up approach. Since we can get
the skyline frequencies if the skylines in every subspace is available, we compare their
top-down approach with our top-k method in the performance study.

Another study on computing skylines in subspaces is by Pei et al. [3]. They intro-
duced a new concept called skyline group, every entry of which contains the skyline
objects sharing the same values in a corresponding subspace collection. They also pro-
posed an algorithm skyey, which visits all the subspaces along an enumeration tree,
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finds the skylines by sorting and creates a new skyline group if some new skyline ob-
jects are inserted into an old group. The skyline groups found are maintained in a
quotient cube structure for queries on subspace skyline. Their study tries to answer
where and why an object is part of skyline without any accompanying coincident ob-
jects. However, their scheme can not help to solve the skyline frequency problem since
an object can be in exponential number of skyline groups in high dimensional space.

Top-k Frequent Skyline

A team of Chan, et al. [32] proposed a finding of top-k frequent skyline objects in mul-
tidimensional subspaces. The authors introduce the concept of the skyline frequency
of a data object, which compares and ranks the interestingness of data objects based
on how often they are returned in the skyline when different numbers of dimensions
(i.e., subspaces) are considered. Intuitively, an object with a high skyline frequency
is more interesting as it can be dominated on fewer combinations of the dimensions.
Approximate algorithms are developed to address issues involved in high dimensional
spaces, namely the dimensionality curse and the fact that frequent skyline computation
requires that skylines be computed for each of an exponential number of subsets of the
dimensions.

k-Dominant Skyline

In general, skyline query often retrieves too many objects to analyze. With the presence
of a possibly large number of skyline objects, the full skyline may be less informative.
To reduce the number of returned objects and to find more important and meaningful
objects, Chan, et al. considered k-dominant skyline query [33], where we can control
the selectivity by changing k. They relaxed the definition of domination so that an
object is more likely to be dominated by another. Given an n-dimensional database,
an object Pi is said to k-dominates another object Pj (i ̸= j) if there are k (k ≤ n)
dimensions in which Pi is better than or equal to Pj . A k-dominant skyline object is an
object that is not k-dominated by any other object. In Table 2.15, for example, if k = 5,
the 5-dominant skyline query returns two objects: P5 and P7. Objects P1, P2, P3, P4, and
P6 are not in 5-dominant skyline because they are 5-dominated by P7. The 4-dominant
skyline query returns only one object, P7, and the 3-dominant skyline query returns
empty. Conventional skyline objects are n-dominated objects.
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Table 2.15: Symbolic Dataset

ID D1 D2 D3 D4 D5 D6

P1 7 3 5 4 4 3
P2 3 4 4 5 1 3
P3 4 3 2 3 5 4
P4 5 3 5 4 1 2
P5 1 4 1 1 3 4
P6 5 3 4 5 1 5
P7 1 2 5 3 1 2

Table 2.16: Ordered Domination table

ID D1 D2 D3 D4 D5 D6 DP SUM DC IDX
P7 1 2 5 3 1 2 4 14 3 P5

P5 1 4 1 1 3 4 3 14 4 P7

P4 5 3 5 4 1 2 2 20 6 P7

P2 3 4 4 5 1 3 1 20 5 P7

P6 5 3 4 5 1 5 1 23 5 P7

P3 4 3 2 3 5 4 0 21 5 P7

P1 7 3 5 4 4 3 0 26 6 P7

The k-dominant skyline has following property [33].
Any object in Skyk−1(DB) must be an object in Skyk(DB) for any k such that 1 <

k ≤ n. Any object that is not in Skyk(DB) cannot be an object in Skyk−1(DB) for any
k such that 1 < k ≤ n. Similarly, every object that belongs to the k-dominant skyline
also belongs to the skyline, i.e., Skyk(DB)⊆ Skyn(DB).

However, computing k-dominant skyline queries using conventional algorithm [33]
is time consuming. The algorithm proposed by Siddique et al. [34] can compute k-
dominant skyline queries quickly. In order to compute k-dominant skyline efficiently,
Siddique et al. [34] used the concept of domination power of each object. The frame-
work of their computation procedure is explained below.

An object Pi is said to have δ -domination power if there are δ dimensions in which
Pi is better than or equal to all other objects of DB. After obtaining the domination
power of each object, the objects are sorted in descending order by domination power.
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If their is a tie in domination power among several objects, sorting is done in ascend-
ing order of the sum value to break the tie. This order reflects how likely an object
k-dominates other objects. Table 2.16 is the sorted object sequence of Table 2.15, in
which the column “DP” is the domination power and the column “Sum” is the sum
of all values. In the sequence, object P7 has the highest domination power 4. Note
that object P7 dominates all objects lie below it in four attributes, D1, D2, D5, and
D6. After computing the sorted object sequence, we compute dominated counter (DC)
and dominant index (IDX). The dominated counter (DC) indicates the maximum num-
ber of dominated dimensions by another object in DB. The dominant index (IDX) is
the strongest dominator. That means “IDX” keeps the record of the corresponding
strongest dominator for each object.

Skyk(DB) is a set of objects whose DC is less than k. In Table 2.16, for example,
according to the dominated counter, we can see that Sky6(DB) = {P7, P5, P2, P6, P3},
Sky5(DB) = {P7, P5}, and Sky4(DB) = {P7}. Since there is no object whose DC value is
less than 3, thus Sky3(DB) = . Using this table, we can quickly answer the k-dominant
skyline query for a given k.

Skyline Computation over Partial Order Domain

The skyline queries with partially-ordered attributes are different from traditional sky-
line evaluation algorithms. This is because such attributes lack a total ordering. Chan
et al. [35] first address the problem of skyline query evaluation involving partially-
ordered attribute domains. The basic idea of their approach is to (a) transform each
partially-ordered attribute domain into two integer-domain attributes, (b) organize the
transformed attributes in an existing indexing method, and compute the skyline an-
swers via the index.

Based on the above framework, they proposed three algorithms: BBS+, SDC, and
SDC+. BBS+ is a straightforward adaptation of BBS. Because of false positives, BBS+
is no longer progressive, i.e., it needs to find all skyline points before answers can be
returned. The second scheme, SDC (Stratification by Dominance Classification) ex-
ploits the properties of domain mappings to avoid unnecessary dominance checkings.
In particular, it organizes the data into two strata at runtime - points that are definitely
in the skyline and those that may be false positives. In the third scheme, SDC+, the
data is partitioned into two or more strata offline so that points at stratum i cannot
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dominate points at stratum i-1. In this way, skyline points obtained from stratum i - 1
can be returned before points in stratum i are examined.

There are also several considerations [36, 37, 38] about computing skyline queries
from data with partial order attributes. Although each of these works employed a
different technique, the main focus of all of these works is to convert the partial order
domain to its equivalent total order domain efficiently and then computing skyline from
the total order domains.

Skyline Computation over Road Networks

There are several works about skyline computation in road networks. Deng et al.
[39] first proposes multi-source skyline query processing in road network. They pro-
posed three different skyline query processing algorithms for the computation of sky-
line points. These algorithms are the Collaborative Expansion algorithm (CE), the
Euclidean Distance Constraint algorithm (EDC) and the Lower Bound Constraint al-
gorithm (LBC). CE is a straightforward algorithm using an underlying paradigm that
identifies network skyline points by expanding the search space centered around each
query point incrementally. EDC is an approach to control the search directions for
network skyline points by using Euclidean skyline points as a guide. LBC is based on
network nearest neighbor algorithms and uses a novel concept of path distance lower
bound to minimize the cost of network distance computation. The LBC algorithm is
an instance optimal algorithm [39] and it is more than four times more efficient than
CE. In [40], Safar et al. considered nearest neighbour based approach for calculating
skylines over road networks and claimed that their approach performs better than the
approach presented in [39]. Huang et al. [41] proposed two distance-based skyline
queries techniques those can efficiently compute skyline queries over road networks.

Privacy Aware Skyline Computation

Till now there is very little consideration about preserving privacy during skyline com-
putation. Qiao et al. [42] proposed skyline queries that are taking into account of
privacy. They proposed Range to Ranges skyline queries and Point to Ranges skyline
queries for a database containing location information, in which they used cloaking re-
gion of each data to compute skyline queries in stead of using exact location. However,
they did not preserve privacy of non-spatial attributes.
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Su et al. considered top-k combinatorial skyline queries[43]. Their top-k combina-
torial skyline problem is to compute the skyline of all s-sets (s = 1, ...,k). Note that our
skyline k-sets are not a subset of their top-k combinatorial skyline. Their results can
preserve privacy in a sense if they eliminate combinatorial skyline objects with small
cardinality. However, their efficient algorithm is not suitable for privacy-aware dis-
tributed databases since it is an incremental algorithm and requires individual record’s
values to prune unnecessary search.

Siddique et al. [44] introduce the concept of skyline sets queries that can preserve
individual’s privacy while computing skyline sets from a sole database. Later, they
extend the idea for spatio-temporal databases [45] . However, their approach is vul-
nerable against statistical compromisable situations. Moreover, their approach can not
compute skyline sets from distributed databases.

Reverse Skyline

Dellis et al. [46] introduced the idea of reverse skyline queries. The concept of Reverse
Skyline Queries (RSQ) is based on the concept of Dynamic Skyline Queries (DSQ).
Skyline Query becomes dynamic, where the domination is defined with respect to the
users query point. Dynamic skyline corresponds to the skyline of a transformed data
space where the query point becomes the origin and all points are represented by their
coordinate-wise distances to the query point. The reverse skyline query returns the
objects whose dynamic skyline contains the query object. We can formally define
dynamic skyline queries and reverse skyline queries as follows.

Definition 2.7 (Dynamic Skyline Query [46]) Given a query point q & a data set P,
a Dynamic Skyline Query according to q retrieves all data points from P those are not
dynamically dominated. A point p1 ∈ P dynamically dominates another point p2 ∈ P
with regard to the query point q if (1) for all i (i =1 to d): |qi-pi

1| ≤ |qi-pi
2|, & (2) at

least one j ( j ∈ (1, · · · ,d)):|q j-p j
1| < |q j-p j

2|.

Now, consider the example of Figure 2.22(a) where all data points are transformed
in the new data space with origin at point q. The absolute distance of the data points
to q are used as mapping functions. The dynamic skyline according to q consists of
points p7, p6, p2, and p4 as shown in Figure 2.22(a). It is observed that point p8 is not
part of the dynamic skyline because it is dynamically dominated by point p2.
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Figure 2.22: Dynamic and reverse skyline [46]

Definition 2.8 (Reverse Skyline Query [46]) Let P be a d-dimensional data set. A
Reverse Skyline Query (RSQ) according to the query point q retrieves all points p1 ∈ P
where q is in the dynamic skyline of p1. Frmally, a point p1 ∈ P is a reverse skyline
point of point q ∈ P iff ¬∃ p2 ∈ P such that (1) for all i (i =1 to d): |pi

2− pi
1| ≤ |qi-pi

1|,
& (2) at least one j ( j ∈ (1, · · · ,d)):|p j

2-p j
1| < |qi-pi

1|.

Now, considering the example of Figure 2.22(b) that depicts the RSQ of point q. As
illustrated, point p2 is a reverse skyline point of q since, according to above definition,
point q is part of the dynamic skyline of point p2.

In order to compute the reverse skyline of an arbitrary query point, Dellis et al.
[46] proposed several algorithms. Their first algorithm is is Branch and Bound Reverse
Skyline (BBRS) algorithm, which is an improved customization of the original BBS [4,
9] algorithm. To reduce the computational cost of BBRS, they developed an enhanced
algorithm known as RSSA (Reverse Skyline using Skyline Approximations) that is
based on accurate pre-computed approximations of the skylines. These approximations
are used to identify whether a point belongs to the reverse skyline or not.

Interval Skyline Queries

In many applications such as environment surveillance, telecommunication, and fi-
nance market analysis, we need to analyze a large number of time series. Considering
this fact Jiang et al. [47] developed interval skyline queries, a novel type of time series
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Table 2.17: A set of time series data [47]Time series  ID Timestamps 1 2 3 4 5 … s1 4 3 2 5 5 … s2 5 5 1 5 5 … s3 2 2 5 3 4 … s4 1 1 3 4 2 … s5 3 4 4 1 3 …  
Table 2.18: The sorted list of time series

Time series s2 s3 s5 s1 s4

max 5 5 4 4 3
min[2 : 3] 1 2 4 2 1

analysis queries. For a set of time series and a given time interval [i : j], an interval
skyline query returns the time series which are not dominated by any other time series
in the interval.

Jiang et al. [47] proposed two different algorithms for computing interval skyline
queries from a set of time series. Their first approach is on-the-fly method that keeps
the minimum and the maximum values for each time series and computes the interval
skyline at query time.

We can explain on-the-fly method with the help of the example as shown in Ta-
ble 2.17 that shows 5 time series. Suppose currently the data in interval W = [1 : 3] is
maintained. Let us compute the skyline in interval [2 : 3]. Table 2.18 shows the sorted
list L of the 5 time series along with their max and min[2 : 3] values. We first put s2

in the skyline candidate list and update maxmin to 1. Then, we process s3. As s2 and
s3 do not dominate each other in [2 : 3]. Thus, s3 is pushed into the candidate list.
Consequently, maxmin = 2. Next, s5 is processed and becomes a candidate. At this
stage maxmin is updated to 4. The next time series in list L is s1, which is dominated
by s5 and thus discarded. As maxmin is larger than s4 : max, the algorithm terminates
and s2, s3, and s5 is returned as skyline in the interval[2 : 3].
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Table 2.19: An example of non-redundant skylines [47]

Interval non-redundant skyline
[2 : 2] {s2}
[3 : 3] {s3}
[4 : 4] {s1, s2}
[2 : 3] {s5}
[3 : 4] {s4}
[2 : 4] {⊘}

However, above approach cannot provide efficient solution for online Interval Sky-
line Query. To handle such an issue, the authors used a radix priority search tree[] for
each time series. To process a time series, binary tree dimension of a radix priority
search tree i.e. dimension x is used as the time dimension (i.e., the timestamps)and
the heap dimension i.e dimension Y is used for the data values. Then, it is possible to
provide online query answering efficiently.

In addition of on-the-fly method method Jiang et al. [47] also proposed a view-
materialization method. The view-materialization method works as follows. (1) First,
it computes non-redundant interval skylines in all sub-intervals for the set of time series
in the base interval. A time series s is called a non-redundant skyline time series in
interval [i : j] if (a) s is in the skyline in interval [i : j]; and (b) s is not in the skyline
in any subinterval [i′ : j′] ⊂ [i : j]. (2) Next, it takes the union of all non-redundant
interval skylines within the desired interval (3) Finally, it performs false positive check
to obtain the final skyline result.

Now, consider the computation of interval skyline in [3 : 4] based on the base
interval is W = [2 : 4] from Table 2.17 using view-materialization method.

Table 2.19 shows the non-redundant interval skylines in all sub-intervals of W for
the set of time series in Table 2.17. To compute the interval skyline in [3 : 4], we union
the non-redundant interval skylines in [3 : 3], [4 : 4] and [3 : 4] and obtain the result
{s1, s2, s3, s4}. As we can see that s2 is a false positive since it is dominated by s1 in
[3 : 4], we remove s2 to obtain {s1, s3, s4} as the interval skyline result for the interval
[3:4].
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Figure 2.23: A set of uncertain objects [48]

Probabilistic Skyline

There are many situations where the result of conventional skyline queries are not
meaningful. As for example, consider the skyline analysis on NBA players. We can
say that a player U is in the skyline if there exists no another player V such that V is
better than U in one aspect, and is not worst than U in all other aspects. Such skyline
results depend on the annual statistics of certain data and attribute of each players rep-
resents by aggregate function (mean or median). However, players may have different
performances in different games based on different situations. We cannot get benefit
from such statistical information using conventional skyline queries. Considering this
fact, Pei et al. [48] introduced probabilistic nature of uncertain objects into the sky-
line analysis. The probability of an object being in the skyline is the probability that
the object is not dominated by any other objects. Probabilistic skyline queries can be
defined as follows:

Definition 2.9 (Probabilistic Skyline Query [48]) For a set of uncertain objects S and
a probability threshold p (0 ≤ p ≤ 1), the p-skyline is the subset of uncertain objects
in S, each of which takes a probability of at least p to be in the skyline. i.e., Sky(p) =
{U ∈ S|Pr(U)|geqp}

Consider the set of uncertain objects as shown in Figure 2.23 and we want to com-
pute skyline objects with a probability threshold (p ≥ 0.8).

For object A, we can see that every instance of A is not dominated by any instances
of objects B, C or D. Thus, the probability that A is dominated by any object is 0, and
the probability that A is in the skyline is 1. Similarly, the probability that B is in the
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skyline is also 1. For object D, instance d1 is dominated by a1, d2 is dominated by a2,
b1 and b2, and d3 is dominated by a2. Thus, the probability that D is not dominated
by any other object can be calculated as 1/3((1−1/4)+(1−1/4)∗ (1−2/3)+∗1−
1/4)) = 7/12. Thus, D takes a probability of 0.58 to be in the skyline. Hence, we can
say that object A and object B are in the result of probabilistic skyline.

Pei et al. proposed two different approaches for probabilistic skyline queries. These
are bottom-up method and top-down method. Both of these approaches utilize the
concept of bounding− pruning− re f ining iteratively. Their bottom-up approach is
well suited for large data sets while the top-down approach has good scalability with
respect to cardinality of the data sets.

Preference Based Skyline Computation

Till now there is very little consideration about preference based skyline query process-
ing. There is some consideration about preference based skyline queries in [49, 50].
As for the preference issue, authors in [49] presented an approach to recommend items
such as restaurants to a mobile user taking into account his current location and prefer-
ences. In this framework, a user initially provides a profile, which records preferences
as relative orders within predefined categories such as food types and prices. Then, the
system selects skyline items from the database based on the user’s profile as well as the
current location. Wong et al. [50] provides a skyline computation framework consid-
ering dynamic preferences on nominal attributes. In order to compute such preference-
based skyline queries efficiently, they proposed a semi-materialization method called
the IPO-tree search which stores partial useful results only. These partial results can
return skyline results related to each possible preference efficiently.

Keyword-Matched Skyline Query

Consider a situation where a customer wants to find a used car on a shopping web site.
He / she is looking for cars with both lower mileage and lower price and wants a car
equipped with air bags for safety. Consider another situation where a tourist is looking
for a hotel that is cheap and close to the beach having wireless internet and a baby
sitter service facility. Conventional skyline queries cannot handle such type of skyline
queries. Considering this fact Choi et al. [51] introduced the concept of keyword-
matched skyline query. Given a set of query keywords W and a d-dimensional dataset
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Dd , a keyword-matched skyline query retrieves the set of skyline tuples whose each
textual attribute contains all words of W .

They introduces an inverted-index-based keyword skyline search (INKS) method
for retrieving the result of a keyword-matched skyline. INKS consists of two phases:
(1) a keyword search and (2) a skyline search. In the keyword search phase INKS per-
forms simple keyword matching through the inverted index [52, 53, 54], so it obtains
all docIds for each query keyword by fetching both the index file and the posting file.
Next, INKS intersects all docIds according to the given query and then it fetches data
objects corresponding to intersected results from database. In skyline search phase,
INKS passes the fetched data objects to BNL [1]. Then, INKS computes the skyline
tuples by using BNL.

2.3 Skyline Applications

Skyline queries are useful to multi-criteria decision making as they represent the set of
all solutions that the user can safely take without fear that something better is out there.
It can act as a filter to discard sub-optimal objects. The user can then interactively look
at the (smaller) set of skyline objects and further select the ones that fits his/her needs.
Below we provide some such examples.

Salesman

The concept of dominance is very useful from the perspective of customer while se-
lecting the products they like as well as for the salesman is whether his products are
popular with customers compared to their competitors’ products. For example a sales-
man has to visit promising customers without have any knowledge about customers
preferences. However, he can not carry all products. In this situation, he pick up sky-
line products and carry them. Then he visit customers and find their preferences and
pick up recommended products from skyline and sell them.

Cell Phone Finder

Consider a person looking for a suitable cell phone at a website. He/she may care about
a large number of features including weight, size, talk time, standby time, screen size,
screen resolution, data rate, and camera quality in order to pick one that suits him / her.
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There are too many phones at the website for the user to examine them all manually.
Computing the skyline over these cell phone features may remove a large number of
cell phones whose features are “worse” than those in the skyline. This will reduce the
load of manually evaluating a large number of cell phones.

Flight Ticket Reservation

Consider that after completing PhD degree, foreign students need to go back to their
home country. In this situation, they need to select their preferable flight. In general,
the preference of flights varies from student to student. One student may prefer a
flight with low price, while another student may choose a flight having short travel
time, yet another student may make their choice based on minimum number of stops.
Even some other students can make their choice based on more than one of the above
criteria. With the help of skyline queries we can fulfil the needs of all such students by
returning all non-dominated routes to them.

Teaching Doctors

Consider the medical records of patients database of a medical hospital. A professor
of the hospital wants to find rare medical records of heart attack to include in his
lecture. In order to obtain such rare medical records, the Professor can execute a
skyline query looking for records on heart attack in young patients (minimizing age),
with small number of occurrence of heart attack in the immediate relatives (minimizing
number of occurrences), and with high weight (maximizing weight). In this case the
skyline returns the records of patients that are not dominated (worse) by any other in
all attributes of interest.
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Chapter 3

Privacy Preserving Information
Retrieval

Given a set of objects, a skyline query retrieves objects those are not dominated by
another object. A skyline query helps us to filter unnecessary information efficiently
and gives us clues for various decision making tasks. However, most of the existing
skyline algorithms cannot preserve individual’s privacy and are not well suited for data
with outliers and frequently updated data. Considering the issue of privacy, earlier Sid-
dique et al. [44] proposed skyline sets queries from a sole database. However, with the
increase of data volume, in most cases data are stored in distributed databases. Consid-
ering this fact, we expand the idea of skyline sets queries from distributed databases.
We propose an efficient computation framework that can preserve individual’s privacy
while computing skyline set queries from distributed databases. The proposed method
utilizes an agent-based parallel computation framework.

This chapter is organized as follows. In Section 3.1, we describe the privacy prob-
lem and some other related issues related to skyline queries. Section 3.2 describes the
concept of skyline sets queries and its applicability in preserving individual’s privacy.
We also describe its usefulness in some other applications. In Section 3.3, we provide
a review of works related to our work in this chapter. Section 3.4 describes the prelim-
inary concepts related to the work of this chapter. In Section 3.5, we detail the privacy
preserving computation process of skyline sets queries from distributed databases. In
Section 3.6, we present an approach of dealing with missing values during skyline
sets queries. Section 3.7 presents the experimental results. Finally, we conclude the
chapter in Section 3.8.
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3.1 Privacy Problem

3.1 Privacy Problem

Skyline queries retrieve a set of skyline objects so that a user can choose promising
objects or eliminate unnecessary objects. Given a k-dimensional database DB, an ob-
ject p is said to be in skyline of DB if there is no object q in DB such that q is better
than p in all k-dimensions. If there exists such an object q, then we say that p is
dominated by q or q dominates p. Consider the example of Figure 3.1. The table
in Figure 3.1(a) is a list of five records of a hotel database, each of which contains
two numerical attributes “Price” and “Distance”. In the list, the best choice usu-
ally comes from the skyline, i.e., one of {h1, h3, h4} (See Figure 3.1 (b)). A num-
ber of efficient algorithms for computing skyline have been reported in the literature
[1, 4, 5, 7, 8, 11, 14, 15, 16, 18, 20, 24, 63, 64].

However, there is no consideration about the issue of individual’s privacy in these
works. As for example, if we look at the skyline result in Figure 3.1(b), we can see in-
dividual values in each of the three records. However, this type of discloser of records’
values are not allowable as individual record may contain very sensitive and secure
information and discloser of such a record can create problems for the record owner.
Considering such situations, preserving individual’s privacy becomes an important is-
sue in data management. In a database, it might be necessary to hide individual infor-
mation to preserve privacy. People often do not want to disclose their records’ values
during the computation procedure although they want to take benefit from the com-
putation process. In such privacy aware environments, we cannot use conventional
skyline queries. In addition to the privacy issue, there are some other problems of
conventional skyline queries.

First, they are not robust in case of databases with outliers, though the existence of
outliers is a common problem and it is very much important to minimize the effect of
outliers in the computation. In different field of computing i.e. ubiquitous computing
and sensor computing, we need to collect data via various sensor devices. In such
situations, there are strong possibilities that some data may be outside of the general
distribution of the data. Use of any conventional skyline query algorithm in such a
data set may retrieve some outliers as skyline. Taking decision based on such skyline
results can create serious problems in decision-making.

Consider the example of Figure 3.2. The table in Figure 3.2 is a list of five records
of a sensor device, each of which contains two numerical attributes “Temperature” and
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Figure 3.1: Hotels data and corresponding skyline

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID Temperature Humidity 

r1 6 25 

r2 15 27 

r3 16 24 

r4 17 9 

r5 19 27 
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Figure 3.2: Sensor data and corresponding skyline

“Humidity”. From the data of Figure 3.2(a), we can see that there are two records r1

and r4 those have wrong values, which we call outliers, in their attributes “Temper-
ature” and “Humidity”, respectively. If we perform a conventional skyline query, it
returns r1, r3, and r4 (see Figure 3.2(b)) as skylines. Note that in the result two records
r1 and r4 have been included. As these two records have outliers in their attributes,
taking decision based on either r1 or r4 will create a great problem.

Second, conventional skyline query algorithms are not stable in case of update
operation. Since skyline takes time to compute, we usually use precompute skyline
results to answer a query quickly. If a record in a database is updated, we have to
recompute the skyline results. However, if records in a database are frequently updated,
we cannot prepare the precomputed results in time.

Consider that the hotel database in Figure 3.1 has been updated and some of its
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(a) Hotels data after update (b) Skyline after update 
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Figure 3.3: Hotels data and corresponding skyline after update

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID Pri Dis 
h123 12 15 
h124 17 14 
h125 15 15 
h134 16 13 
h135 14 14 
h145 19 13 
h234 18 9 
h235 16 10 
h245 21 9 
h345 20 8 

(a) Sets of three hotels before update (b) Skyline of 3- hotels before update 
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Figure 3.4: Three sets of hotels and corresponding skyline 3-sets

records’ values are changed as shown in Figure 3.3. From Figure 3.3, we can easily
find that the result of any conventional skyline query is h2, h3 and h5, which is different
from the result before update. We can see that precomputed skyline {h1, h3, h4} is
meaningless for users who are interested in the cheapest price unless it is recomputed.
This problem has been an important research issue of skyline query.
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ID Tem Hum 
r123 37 75 
r124 38 60 
r125 40 76 
r134 39 58 
r135 41 74 
r145 42 59 
r234 48 59 
r235 50 75 
r245 51 60 
r345 52 58 

(a) 3-sets of sensor data (b) Skyline of 3-sets 
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Figure 3.5: Three sets of sensor data and corresponding skyline 3-sets

3.2 Skyline Sets

Focusing on the privacy issue, for the first time, Siddique et al. [44] proposed the
concept of skyline sets queries from a sole database .

Figure 3.4 is a list of 3-sets, in which all of the combinations of three records of
Figure 3.1(a) are listed. In Figure 3.4(a), “ID” denotes a set of three records and the
attributes “Pri” and “Dis” represent the sums of price and distance of three records
of Figure 3.1(a)), respectively. In the example, h123 denotes a set of three records r1,
r2, and r3. “Pri” and “Dist” of h123 are the sums of the “Price” and “Distance” of
records in the set, respectively. The skyline of the combinations of three records are
{h123, h135, h235, h234, h345} as shown Figure 3.4(b). Note that if one wants to know
the cheapest hotel, she/he can find that the cheapest set is h123 from the skyline and
can easily imagine that the price of the cheapest hotel is around 4, since price of the
cheapest 3-set h123 is 12. Similarly, if one prefers cheaper and closer, she/he may
choose h235 from the skyline and can easily imagine the value of the preferable choice
from the aggregated values. In such a way skyline sets queries proposed in [44] can
preserve individual’s privacy in most of the cases while computing skyline sets from a
sole database.

The work in [44] is also robust to a certain level against data outliers and for fre-
quently updated data.
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ID Pri Dis 
h123 15 17 
h124 20 15 
h125 18 14 
h134 19 16 
h135 17 15 
h145 22 13 
h234 18 12 
h235 16 11 
h245 21 9 
h345 20 10 
(a) Sets of three hotels after update 
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Figure 3.6: Three sets of hotels and corresponding skyline 3-sets after update

As for example, if we look at the result in Figure 3.5(b), we can find that the
skyline 3-sets correspond to the sensor data of Figure 3.2 are r123, r124, and r134. Note
that in temperature sensitive situations if anyone takes decision based on the result of
conventional skyline queries as shown in Figure 3.2, she / he will choose r1 and the
decision will be a wrong one as the value “6” in “Temperature” attribute is an outlier.
On the other hand, it is observed that if the decision is taken based on the result of
skyline sets queries, we can see that the chosen value is around “12” and the decision
is much more accurate. In this way, using skyline set queries we can reduce the effect
of outliers at a certain level.

If we consider the update situation and skyline sets queries with s = 3 from our
examples of Figure 3.1 and Figure 3.3, we can find that the results are {h123, h135,
h235, h234, h345} and {h123, h235, h245, h345} as shown in Figure 3.4 and Figure 3.6,
respectively. From the results of skyline sets of Figure 3.4 and Figure 3.6, we can see
that the result is almost same before and update operation. That means skyline sets
queries are more robust against update than conventional skyline queries.

However, there is no is still consideration of computing skyline sets queries from
distributed databases although due to exponential growth in data volume, data are often
store in distributed databases nowadays. Considering this fact, in this chapter, at first,
we introduce an agent-based parallel computation framework for skyline sets queries
from distributed databases that shows very good computation performance.
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ID a1 a2  ID a1 a2  ID a1 a2 

o1 5 5  o6 1 3  o11 4 2 
o2 1 6  o7 7 2  o12 8 4 
o3 6 4  o8 7 9  o13 4 1 
o4 9 7  o9 4 5  o14 8 7 
o5 6 8  o10 6 7  o15 1 5 

DB1  DB2  DB3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Three databases with same schema

Moreover, the method of [44] cannot protect individual record’s values under sta-
tistically compromisable situations. For example, let us consider the three databases
with same schema (ID, a1, a2) as shown in Figure 3.7. In this example, we assume that
value domain of both a1 and a2 is set to [1 · · · 10].

Skyline sets queries with s = 3 returns the results as shown in Table 3.1 as the
skyline of 3-sets. Notice that the aggregated values in Table 3.1 are disclosed to the
public including database owners.

From the a1 of R1, any user can easily find that individual record’s value in a1 is
1 because the minimum value in a1 is 1. Therefore, the owner of DB1 can find there
are two records whose a1 is 1 in other databases. Similarly, the owner of DB2 and DB3

can find the fact.
From the value of a2 of R2, one can find that one of the three records contains 1 in

a2 since aggregated value of 3 records is 5. Therefore, one can infer that the remaining
two records have values 1 and 3 or 2 and 2 in a2. In this case, the owner of DB3

happens to know that one of others has 2 in a2 and no other has 1 in a2 since DB3 has
1 and 2.

Considering this fact, later on, we provide a framework for detecting such com-
promising skyline s-sets and propose a protection mechanism for such s-sets. We also
introduce an efficient agent-based parallel computation framework that improves the
overall computation performance significantly.
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Table 3.1: Results of skyline sets queries for s = 3 from the databases of Figure 3.7

ID a1 a2

R1 3 14
R2 15 5
R3 6 9
R4 9 6

3.3 Related Work on Privacy Problem

3.3.1 Skyline Query

Borzonyi et al. [1] first introduced the skyline operator into database systems and pro-
posed Block Nested Loop (BNL), Divide-and-Conquer, and B-tree based algorithms.
As a variant of BNL, Chomicki et al. [5] improved BNL algorithm with the help of a
sort-Filter-Skyline (SFS) algorithm. In SFS, data needs to be pre-sorted using a mono-
tone scoring function, which can simplify the selection of skyline objects. Tan et al.
[7] proposed two progressive algorithms: Bitmap and Index. The bitmap algorithm
represents points in bit vectors and performs bit-wise operations. On the other hand,
the index approach uses data transformation and B+-tree indexing. Kossmann et al.
[8] proposed a Nearest Neighbor (NN) method. It selects skyline points by recursively
invoking R*-tree based depth-first NN search over different data portions. Papadias et
al. [4] proposed a Branch-and-Bound Skyline (BBS) method based on the best-first
nearest neighbor algorithm. Godfrey et al. [63] provided a comprehensive analysis
of previous skyline algorithms without indexing supports and proposed a new hybrid
method with improvement. However, none of these works can preserve privacy of
records.

3.3.2 Skyline Query in Distributed Environment

In [10], Wu et al. first address the problem of parallelizing skyline queries over a
shared-nothing architecture. They provided two mechanisms: recursive region par-
titioning and dynamic region encoding for the execution of skyline queries. In their
approach, a server starts the skyline computation on its data after receiving the results
of other servers based on the partial order. It causes a waiting delay of the servers.
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In our work, such problem is localized within the cluster. Park et al. [68] introduced
two parallel skyline algorithms in multicore architectures. The first one is a parallel
version of BBS algorithm. The second one is known as pskyline, which is based on
skeletal parallel programming [72]. Gao et al. [69] proposed parallel computation
of skyline queries in multi-disk environment using parallel R-trees. The core of their
scheme is to visit more entries simultaneously and to enable effective pruning strate-
gies. Cui et al. [70] introduced skyline queries in large-scale distributed environments
without the assumption of any overlay structures and propose PaDSkyline algorithm.
PaDSkyline is an algorithm that significantly reduces the response time by performing
parallel processing over site groups produced by a partition algorithm. Within each
group, it locally optimizes the query processing. It also improves the network trans-
mission efficiency by performing early reduction of skyline candidates. Vlachou et al.
[71] proposed an angle-based space partitioning scheme for parallel computation of
skylines of data points using the hyperspherical coordinates of the data points. In their
approach, data point are almost equally spread among the partitions that increases the
average pruning power of data points.

Huang et al. [15] considered a setting with mobile devices communicating via
an ad-hoc network (MANETs) and studied skyline queries that involved spatial con-
straints. In this approach, queries are forwarded through the whole MANET without
routing information. They proposed a filtering based data reduction technique to re-
duce the data transfer among devices. However, in our work, we assume a wired
large-scale distributed environment in which query results from each cluster are sent
to the coordinator for computing skyline sets. In [18], Vlachou et al. studied the prob-
lem of subspace skyline processing in a super-peer network. In this approach, peers
hold their data in an autonomous manner and collectively process skyline queries on
subspaces. Hose et al. [16] introduced relaxed skylines in Peer Data Management Sys-
tems (PDMS). They proposed a strategy for processing relaxed skylines in distributed
environments using distributed data summaries. For efficient computation of skyline,
Wang et al. [11] use the z-curve method to map the multidimensional data to one di-
mensional values. The one dimensional values are then assigned to peers connected
in a tree overlay like BATON [66]. In this approach, the problem of load balancing
arises. In particular, in their approach the peers near the origin of the axes need to
process most of the queries. Li et al. [14] use a space partitioning method that is
based on an underlying semantic overlay. Their approach shares the same drawbacks
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as [11]. Balke et al. [64] addressed skyline operation over web databases where differ-
ent dimensions are stored in different data sites. Their algorithm first retrieves values
in every dimension from remote data sites using sorted access in round-robin fashion
on all dimensions. This continues until all dimension values of an object, called the
terminating object, have been retrieved. Then, all non-skyline objects are filtered from
all those objects with at least one dimension value retrieved. In [20], Fotiadou et al.
proposed a bitmap approach for efficient subspace skyline computation in a distributed
setting. The bitmap approach computes extended skylines that includes all points nec-
essary for computing the skyline at any subspace. They presented an algorithm for
computing extended skylines using a bitmap representation along with a storage ef-
ficient bucket-based variation of bitmap representation. Rocha et al. [24] introduced
an efficient execution plans for distributed skyline query processing. In this paper,
the authors proposed SkyPlan, a mechanism for querying servers consecutively. Their
approach reduces the amount of transferred data and the number of queried servers.

Most research papers on parallel and distributed skyline query processing so far
have the problem of load balancing. As a result few peers need to carry almost all the
processing burden, while most other peers remain idle. Moreover, there is no consid-
eration about individuals privacy. In contrast, we introduce a parallelizing mechanism
in which every server takes part in the computation simultaneously and preserves indi-
vidual’s privacy.

3.3.3 Privacy Preserving Skyline Query

Qiao et al. [42] proposed skyline queries that are taking into account of privacy. They
proposed Range to Ranges skyline queries and Point to Ranges skyline queries for a
database containing location information, in which they used cloaking region of each
data to compute skyline queries in stead of using exact location. However, they did
not preserve privacy of non-spatial attributes. Su et al. [43] considered top-k com-
binatorial skyline queries. Their top-k combinatorial skyline problem is to compute
the skyline of all s-sets (s = 1, ...,k). Their results can preserve privacy in a sense if
they eliminate combinatorial skyline objects with small cardinality. However, their
efficient algorithm is not suitable for privacy-aware distributed databases since it is
an incremental algorithm and requires individual record’s values to prune unnecessary
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search. The work in [44] can preserve privacy to some extent while computing sky-
line queries from a sole database. They introduced the concept of skyline sets queries.
However, they did not consider the computation of skyline sets queries from distributed
databases.

In this chapter, we extend the idea of [44] for skyline sets queries from distributed
databases. Our framework can compute skyline sets queries from distributed databases
efficiently without disclosing individual record’s.

3.4 Preliminaries

We consider a database DB having k attributes and n objects. Let a1, a2, · · · , ak be the
k attributes of DB. Without loss of generality, we assume that smaller values in each
attribute are better and each attribute contains positive integer values.

3.4.1 Skyline Queries

Let p and q be objects in DB. Let p.al and q.al be the l-th attribute values of p and
q, respectively, where 1 ≤ l ≤ k. An object p is said to dominate another object q, if
p.al ≤ q.al for all the k attributes al , (1≤ l ≤ k) and p.a j < q.a j on at least one attribute
a j, (1 ≤ j ≤ k). The skyline is a set of objects which are not dominated by any other
object in DB.

3.4.2 Skyline Sets Problem

Let |S| = nCs = n!
s!(n−s)! be the number of s-sets that can be composed from n objects.

We assume a virtual database of S on the k dimensional space of DB. Each object of the
database is an s-set whose value of each attribute (dimension) is the sum of s values of
corresponding s objects. An s-set p ∈ S is said to dominate another s-set q ∈ S, denoted
as p ≤ q, if p.al ≤ q.al , 1 ≤ l ≤ k for all k attributes and p.a j < q.a j, 1 ≤ j ≤ k for at
least one attribute. We call such p as dominant s-set and q as dominated s-set between
p and q.

An s-set p ∈ S is said to be a skyline s-set if p is not dominated by any other s-set
in S.
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Figure 3.8: Convex hull and convex skyline

3.4.3 Convex Skyline Sets

Each object in S is a point in k-dimensional vector space. Convex hull for the set
of S points is the minimum convex solid that encloses all of the objects of S. The
dotted line polygon of Figure 3.8 is an example of convex hull in two-dimensional
space. In the Figure 3.8, O1 and O4 are the objects that have the minimum values in
D1 and D2, respectively. Notice that such objects must be in the convex hull. We call
the line between O1 and O4 “the initial facet”. Among all objects in the convex hull,
objects that lie outside of the initial facet are skyline objects and we call such objects
“convex skyline objects”. In k-dimensional space, we compute such initial hyperplane
surrounded by k objects as the initial facet. Then, we compute convex skyline objects
that lie in the convex hull and outside the initial facet.

The definition of convex skyline sets problem can be simplified as follows:
Given a natural number s, find all s-sets those lay in both the convex hull and the

skyline of S.

3.4.4 Algorithm for Computing Convex Skyline Sets

If we compute all of the s-sets from the original database and make a dataset contain-
ing |S| records, the problem can be solved by conventional skyline query algorithms.
However, |S| is unacceptably large when the original database size is large. Therefore,
in [44] we proposed an efficient alternative.
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Table 3.2: Inner product with tangent lines

o (Θ1,o) (Θ2,o) (Θ1,2,o)
h1 -3 -8 -85
h2 -5 -4 -67
h3 -4 -3 -52
h4 -9 -2 -79
h5 -7 -3 -73

Each s-set in S can be represented as a k-dimensional point x = (x1,x2, · · · ,xk)

where xi, (1 ≤ i ≤ k) is the sum of the i-th attribute value of the s objects in DB.
“Touching oracle” function proposed in [44] is a method to compute an s-set on the
convex hull without generating S. It computes the tangent object of the convex hull of
S and a (k-1)-dimensional hyperplane directly from the original n records in DB.

3.4.4.1 Touching Oracle

Assume there is a hyperplane whose normal vector is Θ. In order to find the tangent
point with the hyperplane and the convex hull without precomputing S, we compute
(Θ,o), i.e., inner products of the normal vector and each object o in the database. We
choose s objects whose inner products are the top s. These top s objects compose the
s-set of the tangent point. Consider the hotel example as shown in Figure 3.1. There
are five records in the original database DB as in Figure 3.1(a). Each of the five records
is represented as a two-dimensional point, which we call an atomic point.

Now consider the line whose normal vector is Θ1 = (-1, 0). In order to find the
tangent point corresponding to the line with Θ1, we compute inner products of the
normal vector and each of the five atomic points as shown in the second column of
Table 3.2. Then, we choose the top three inner products, i.e., {h1,h2,h3} if s = 3.
These top three inner products compose the tangent point (12, 15), which is the 3-set,
h123. Similarly, for a line with Θ2 = (0, -1), we can find {h3,h4,h5} as the top three.
Those three points compose the tangent point (20, 8).

As mentioned above, we can compute a tangent point, which is a point on the
convex hull, by giving the normal vector of a tangent line. In k-dimensional case, we
can find a tangent point with a tangent (k -1)-dimensional hyperplane by giving the
normal vector of the tangent (k -1)-dimensional hyperplane.
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The touching oracle function chooses the top-s points from n atomic points in DB.
Since s is a negligible small constant compared with n, we can compute the tangent
point by scanning n atomic points only once, which is O(n).

3.4.4.2 Convex Hull Search

First, we compute initial k tangent objects that can be computed by touching oracle
with initial k vectors Θx = (θ1,θ2, · · · ,θk), where θi = -1 if i = x, otherwise θi = 0
for each x = 1, · · · ,k. Note that those k initial tangent objects are on the horizon of
the initial facet ((k-1)-dimensional hyperplane). Convex skyline s-sets are objects lie
outside of the initial facet and are in the convex hull.

Next, we compute the normal vector of the initial facet. Using the computed normal
vector, we try to find new tangent point. The new tangent point expands the initial facet
into k facets. We recursively compute the touching oracle for each of the expanded
facets until we can find a new tangent object outside the facet.

From Table 3.2, for example, we have obtained two initial tangent points p1 =

(12,15) and p2 = (20,8) with normal vectors θ1 = (−1,0) and θ2 = (0,−1), respec-
tively. These two initial tangent points constructs the initial facet. Using the facet
containing the two initial points, we can compute the normal vector of the facet as
θ1,2 = (−(15− 8),(12− 20)) = (−7,−8), which directs outside of the facet. Using
this normal vector, we can find new tangent point h235, which is (16, 10). The new
tangent point expands the initial facet into two facets, which are the facet surrounded
by p1 = (12,15) and (16, 10) and the facet surrounded by (16, 10) and p2 = (20,8).
We can apply this operation for higher k-dimensional space analogically as follows.

Three Dimensional Case:

Assume we have a facet surrounded by following three points:

P1 = (p11, p12, p13)

P2 = (p21, p22, p23)

P3 = (p31, p32, p33)

We assume that P1, P2 and P3 are clockwise order when we look the facet from outside
of the convex hull. Now, we can compute two edge vectors by using the three points
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as follows. Suppose the edges are following vectors.

V 1 = (v11,v12,v13) = (p21, p22, p23)− (p11, p12, p13)

V 2 = (v21,v22,v23) = (p31, p32, p33)− (p11, p12, p13)

The outside normal vector of this facet is computed as the expansion of the following
symbolic determinant.

V 1⊗V 2 =

∣∣∣∣∣∣
e1 e2 e3

v11 v12 v13
v21 v22 v23

∣∣∣∣∣∣
In the formula, e1, e2, and e3 are the elementary vectors (1,0,0), (0,1,0) and (0,0,1)
respectively. Using this normal vector, we can divide this facet into three facets if we
can find a new tangent point outside of the facet by the touching oracle function. If P
is found outside of the facet, then the three new facets are as follows:

(P1,P,P3)

(P1,P2,P)

(P,P2,P3)

The normal vectors of these three facets are

(P−P1)⊗ (P3−P1)

(P2−P1)⊗ (P−P1)

(P2−P)⊗ (P3−P)

if points in each facet are clockwise order when we look the facet from outside of
convex hull.

Four Dimensional Case:

We can use the idea into higher dimensional case analogically.
Assume that we have a facet surrounded by four points as follows:

P1 = (p11, p12, p13, p14)

P2 = (p21, p22, p23, p24)
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P3 = (p31, p32, p33, p34)

P4 = (p41, p42, p43, p44)

Using similar operations of 3D case, we can compute three vectors as follows:

V 1 = (v11,v12,v13,v14) = P2−P1

V 2 = (v21,v22,v23,v24) = P3−P1

V 3 = (v31,v32,v33,v34) = P4−P1

Then, the normal vector can be computed as the expansion of the following determi-
nant.

V 1⊗V 2⊗V 3 =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4

v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34

∣∣∣∣∣∣∣∣
In the determinant, the value of e1, e2, e3 and e4 are (1,0,0,0), (0,1,0,0), (0,0,1,0), and
(0,0,0,1), respectively. If P is found, then the four new facets are as follows:

(P1,P2,P3,P)

(P1,P2,P,P4)

(P1,P,P3,P4)

(P,P2,P3,P4)

The normal vectors of these four facets are as follows:

(P2−P1)⊗ (P3−P1)⊗ (P−P1)

(P2−P1)⊗ (P−P1)⊗ (P4−P1)

(P−P1)⊗ (P3−P1)⊗ (P4−P1)

(P2−P)⊗ (P3−P)⊗ (P4−P)
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k-Dimensional Case:

We can expand above operations for k-dimensional case. Assume we have a facet
surrounded by following k points.

P1 = (p11, p12, ..., p1k)

P2 = (p21, p22, ..., p2k)

· · ·

Pk = (pk1, pk2, ..., pkk)

We can calculate (k− 1) vectors like V 1, V 2, · · · , V (k− 1). Then, the normal vector
of the facet that directs outside can be computed as the expansion of the following
determinant.

V 1⊗·· ·⊗V (k−1) =

∣∣∣∣∣∣∣∣
e1 · · · ek
v11 · · · v1k
· · · · · · · · ·

v(k−1)1 · · · v(k−1)k

∣∣∣∣∣∣∣∣
If P is found, then the k new facets are as follows:

(P,P2, · · · ,Pk−1,Pk)

(P1,P, · · · ,Pk−1,Pk)

· · ·

(P1,P2, · · · ,Pk−1,P)

The normal vectors of these k facets are as follows:

((P2−P)⊗·· ·⊗ (Pk−1−P)⊗ (Pk−P))

((P−P1)⊗·· ·⊗ (Pk−1−P1)⊗ (Pk−P1))

· · ·

((P2−P1)⊗·· ·⊗ (Pk−1−P1)⊗ (P−P1))

Performance of these higher dimensional computation can be found in [67].
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ID a1 a2  ID a1 a2  ID a1 a2  ID a1 a2 
o1 6 3  o6 7 8  o11 5 5  o16 8 3 
o2 3 5  o7 8 3  o12 2 6  o17 9 4 
o3 7 5  o8 4 9  o13 6 4  o18 6 3 
o4 5 8  o9 3 7  o14 9 7  o19 7 6 
o5 4 6  o10 8 5  o15 6 8  o20 6 6 

DB1  DB2  DB3  DB4 

ID a1 a2  ID a1 a2  ID a1 a2  ID a1 a2 
o21 1 3  o26 3 5  o31 9 3  o36 9 8 
o22 8 4  o27 4 1  o32 4 8  o37 3 4 
o23 7 9  o28 7 2  o33 3 3  o38 6 6 
o24 4 5  o29 2 8  o34 1 5  o39 4 2 
o25 6 7  o30 5 3  o35 8 7  o40 6 7 

DB5  DB6  DB7  DB8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9: Distributed database example

3.5 Secure Parallel Computation of Skyline Sets

3.5.1 Problem Formulation

We assume that there are m databases in a network. Let DB1,DB2, · · · ,DBm be the
databases. Each database has a view table whose schema has following columns: ID,
a1, a2, · · · , ak, where ID is the primary key attribute and ai (i = 1, · · · , k) are k-
dimensional numerical attributes. Assume that we have to compute skyline sets for the
union of m such databases in such a way that the privacy of individual’s is preserved.
Figure 3.9 is an example of a distributed database that consists of eight databases, DB1,
DB2, · · · , and DB8, each of which lies in a different server.

3.5.2 Agent-based Parallel Computation

We assume there is a coordinator who is responsible for performing the convex hull
search, which is mentioned in subsection 3.4.4. The coordinator computes the touch-
ing oracle function, which is to find the top-s inner product values from distributed
databases, by the divide-and-conquer strategy.
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Figure 3.10: Example of divide-and-conquer computation

The coordinator divides the distributed databases into several clusters and creates
sub-coordinators for each cluster. For each cluster, the sub-coordinator computes the
“local” top-s among the databases in the corresponding cluster. After computing all
“local” top-s, the coordinator merges all the “local” top-s and finds “global” top-s.
During the process, agents are used to preserve privacy of all “local” databases. Note
that all the “local” computations are performed simultaneously. Now, consider the
secure computation of skyline 3-set query from the distributed databases of Figure 3.9.
For each cluster, the coordinator asks the sub-coordinator to compute touching oracles
for the two initial normal vectors, i.e., (-1, 0) and (0, -1).

3.5.2.1 Computation in Each Cluster

In order to minimize idle time, the sub-coordinator divides databases into several
groups. In general, the number of groups depends on the number of different nor-
mal vectors, which are in the process. However, if the number of databases in a cluster
is less than the number of normal vectors, we set the number of groups to the number of
databases. For example, if we are processing the two initial normal vectors, databases
of the cluster are divided into two groups as in Figure 3.10.

For each group, the sub-coordinator creates two agents one of which is for (−1,0)
and the other is for (0,−1). Each agent has a normal vector and a priority queue,
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Figure 3.11: Computation in group one of cluster one with Θ1 = (−1,0)

also known as “heap data structure” that keeps the top-3 inner product values and their
corresponding record values.

Figure 3.11 shows the computation process of the agent with normal vector Θ1 =

(−1,0) in group 1 of cluster 1. When an agent arrives at a database of a group, it
sends the normal vector of the database. Next, the database computes inner product
for each record of the database. Finally, the database pushes the local top-3 records
along with inner product values to the agent. Note that during this computation the
database cannot see the contents of the priority queue of the agent.

In the example of Figure 3.11, it is observed DB1 pushes three triplets, i,e., inner
product value (IP), a1 value, and a2 value, (IP,a1,a2) = ((-3, 3, 5), (-4, 4, 6), (-5, 5, 8))
to the agent. Next, the agent goes to DB2. DB2 pushes (IP,a1,a2) = ((-3, 3, 7), (-4, 4,
9), (-7, 7, 8)) to the agent. After visiting all databases in the cluster, agent with normal
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Figure 3.12: Computation in group one of cluster one with Θ2 = (0,−1)

vector Θ1 = (−1,0) contains (IP,a1,a2) = ((-3, 3, 5), (-3, 3, 7), (-4, 4, 6)) in its priority
queue and returns back to the sub-coordinator. During the top-3 computation the agent
keeps track about the owner of each of the three objects. As for example, we can see
that two objects are from DB1 and one object from DB2 in Figure 3.11.

Figure 3.12 shows similar computation in the group 1 of cluster 1 with normal
vector Θ2 = (0,−1). Here, in order to minimize idle time, the agent travels from DB2

and goes to DB1. After the computation, the agent contains (IP,a1,a2) = ((-3, 6, 3),
(-3, 8, 3), (-5, 8, 5)) in its priority queue and goes to the sub-coordinator and reports
the results.

During these processes, the sub-coordinator computes the local top-3 in the group 2
simultaneously. After the agent-based computation in two groups, the sub-coordinator
merges the local top-3 priority queues for each normal vector. Figure 3.13 shows the
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Figure 3.13: Merging process at cluster one

merge process of cluster 1.
Algorithm 3.1 shows the procedure for local top-s computation within a cluster.

First, it creates necessary groups and divides the databases among the groups (lines
5-12). Next, it computes top-s values for each normal vector from the groups (lines
13-16). Finally, it calculates local top-s for the normal vectors in the cluster (line 17).

3.5.2.2 Global Merging

After the computation of local top-s for a normal vector in a cluster, the result is sent
to the coordinator for global merging. In global merging, local top-s results from the
clusters are merged to obtain global top-s results. For example, local top-3 results
corresponds to each normal vector from two clusters of Figure 3.10 are merged into
global top-3 as shown in Figure 3.14. These merge processes are carried out among
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Algorithm 3.1 ComputationWithinCluster
1: Input: Normal vectors θs, set size s
2: Output: Local top-s for each normal vector
3: begin
4: Let (θ1,θ2, · · · ,θv) be the given v normal vectors, (DB1,DB2, · · · ,DBz) be z

databases in the cluster
5: if z < v then
6: Create z groups
7: else
8: Create v groups
9: end if

10: for each i (i = 1 to z) do
11: Assign DBi to group (i % v)
12: end for
13: for each group do
14: Create agents ag(θt), (1 ≤ t ≤ v) // Each ag(θt) is an agent with θt

15: ag(θt) travels DBs in the group and compute top-s of the group
16: end for
17: Sub-Coordinator receives top-s of θt , (1 ≤ t ≤ v) for each group and computes

top-s of θt in the cluster
18: end

the agents so that the coordinator does not see the individual record’s values of the
agents. The agent then returns the aggregated values to the coordinator.

From the example of Figure 3.9, we get 3-set corresponds to normal vector (-1,
0) is {o12,o21,o34}, whose coordinate values in the two-dimensional space is (4, 14)
and the 3-set corresponds to normal vector (0, -1) is {o27,o28,o39} whose coordinate
values is (15, 5).

The global merging procedure is given in Algorithm 3.2. The algorithm first
computes global top-s from local top-s of the clusters (lines 4-6). Next, it calculates
aggregated values of attributes of top-s and returns the result to the coordinator (lines
7-10).
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Figure 3.14: Merging process at the coordinator

3.5.2.3 Facet Expansion

After receiving all surrounding points of a facet, the coordinator computes the normal
vector of the facet by using the surrounding points. In the example, P1 = (4,14),
which is found by normal vector θ1 = (−1,0) and P2 = (15,5), which is found by
normal vector θ2 =(0,−1), are two surrounding points of the initial facet (line segment
between P1 and P2). The coordinator computes the normal vector θ1,2 = (−9,−11) =
(−(14−5),(4−15)) from the facet as shown in Figure 3.15. Then, the normal vector
θ1,2 = (−9,−11) is sent to the sub-coordinator of each cluster and the agent-based
parallel touching oracle finds P1,2 = (9,6), which is composed of {o21,o27,o39}. This
point expands the initial facet (line segment between P1 and P2) into two facets, which
are the line segment between P1 and P1,2 and the line segment between P1,2 and P2 as
shown in Figure 3.15.
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Algorithm 3.2 GlobalMerging

1: Input: Local top-s of θt , (1 ≤ t ≤ v) for each cluster
2: Output: Aggregated values correspond to each θt , (1 ≤ t ≤ v)
3: begin
4: for each t (t = 1 to v) do
5: Compute “global” top-s of θt from “local” top-s for each cluster
6: end for
7: for each θt , (1 ≤ t ≤ v) do
8: Compute the summation of values of each dimension of top-s objects
9: return the aggregated values to the coordinator

10: end for
11: end
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Figure 3.15: Facet expansion

We recursively compute tangent points for each of the expanded facet. If we find
a new point outside the facet, we expand the facet further. We continually adopt the
recursive operation while we can find new tangent point outside the facet. Finally, we
can find all the points of convex skyline s-sets.

3.5.3 Compromisable Situations in Skyline Sets Queries

Let us assume that domains of the numerical attributes are specified. Let mini and maxi

be the minimum and maximum values of an attribute ai, (i = 1, · · · ,k). Let valuei be
the aggregated value of ai in an s-set. We can say that a skyline s-set is a compromised
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ID a1 a2  ID a1 a2  ID a1 a2 

o1 5 5  o6 1 8  o11 8 2 
o2 1 9  o7 8 1  o12 8 4 
o3 6 4  o8 9 2  o13 4 6 
o4 9 7  o9 4 5  o14 8 7 
o5 1 8  o10 8 5  o15 2 5 

DB1  DB2  DB3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16: Example of three databases having compromisable 3-sets

Table 3.3: Some skyline 3-sets in the databases of Figure 3.16

ID a1 a2

Q1 3 25
Q2 25 5
Q3 14 11
Q4 18 8
Q5 4 21

s-set if it contains at least one aggregated value valuei such that we can find exact
ai’s value of a member record of an s-set from valuei. Formally, we can say that a
skyline s-set is a compromised if (valuei − s ∗mini) < s or (s ∗maxi − valuei) < s, in
an attribute ai, (i = 1, · · · ,k). For example, assume that s = 3 and min1 = 1. If we have
an s-set whose value1 is 4, one can find that three member values in a1 are 1, 1, and 2.
Note that this example satisfies the condition (valuei − s ∗mini) < s. Similarly, if s =
4, max1 = 5, value1 = 17, we can find that there is at least one record whose ai’s value
is 5 in the s-set.

Now, consider an example of three databases as shown Figure 3.16. We assume that
domain of a1 and a2 are [1 · · · 9], i.e., min1 =min2 = 1 and max1 =max2 = 9. Table 3.3
shows partial results of skyline sets queries with s = 3. According to the definition of
compromised s-sets, we can find that skyline 3-sets Q1 = (3,25), Q2 = (25,5), and
Q5 = (4,21) are compromised 3-sets. However, Q3 and Q4 are not compromised 3-
sets.

We considered a perturbation method to prevent the compromised skyline s-sets.
The coordinator performs the detection of compromised s-sets and perturbation of
them using Algorithm 3.3. Algorithm 3.3 first checks whether there is any com-
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Algorithm 3.3 Perturbation
1: Input: Skyline s-sets
2: Output: Perturbed s-sets
3: begin
4: for each skyline s-set do
5: for each attribute ai do
6: if ((valuei − s∗mini)< s) then
7: return valuei = (s+ s∗mini)

8: else if ((s∗maxi − valuei)< s) then
9: return valuei = (s∗maxi − s)

10: else
11: return valuei

12: end if
13: end for
14: end for
15: end

promised value (line 6 and line 8) in the corresponding skyline s-set. If the algorithm
detects a compromised value, it replaces the value with a new value (line 7 and line 9).

Now, consider compromised 3-sets Q1, Q2, and Q5 of Table 3.3. From Q1, we
can see that it has a value 3 at attribute a1 that satisfies line 6 of Algorithm 3.3. So,
Algorithm 3.3 replaces the value 3 with a value (3+ 3 ∗ 1) = 6 (line 7). Like this,
Algorithm 3.3 replaces any value valuei that satisfies the condition of line 6 with a
value equal to (s+ s∗mini).

We can further observe that the value 25 of Q1 at attribute a2 satisfies line 8 of the
Algorithm 3.3. So, the algorithm replaces the value 25 with a value (3 ∗ 9 - 3) = 24
(line 9). Algorithm 3.3 performs the replacement of any such value with a value equal
to (s∗maxis). After such replacements Q1 has values 6 and 24 in its attributes a1 and
a2 respectively. Note that after replacement, from Q1 no one can infer a member value
exactly. Similarly, after perturbation, Q2 and Q5 are modified to (24, 6) and (6, 21),
respectively and no one can exactly identify a member value from Q2 or Q5.

If we consider the distributed database example of Figure 3.9, we can find that sky-
line 3-sets correspond to normal vectors θ1 = (−1,0) and θ2 = (0,−1) are P1 = (4,14)
and P2 = (15,5), respectively. We can see that both P1 and P2 are compromised 3-sets.
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3.6 Dealing with Missing Values

Algorithm 3.4 Data Preprocessing
Input: Incomplete Data Set S, value value j that will replace missing values in attribute
j. Here, j = 1 to k
Output: Complete Data Set T

1: begin
2: repeat
3: read point pi, (1 ≤ i ≤ n) from input S
4: for each pi do
5: check every dimension j, j = 1 to k.
6: replace each missing value with value j.
7: end for
8: until end of input S
9: end

ID a1 a2  ID a1 a2 
o1 - 1  o6 1 - 
o2 1 3  o7 - 1 
o3 2 -  o8 3 1 
o4 - 3  o9 2 - 
o5 6 2  o10 - 1 

DB1  DB2                      

Figure 3.17: Example of two databases with missing values

So, Algorithm 3.3 modifies the values of P1 and P2 to (6, 14) and (15, 6), respectively.
For preserving individual’s privacy, the coordinator sends the perturbed 3-sets (6, 14)
and (15, 6) to the user instead of original 3-sets (4, 14) and (15, 5). The coordinator
uses the original values of skyline s-sets for facet expansion. As for example, the coor-
dinator uses (4, 14) and (15, 5) for facet expansion instead of perturbed 3-sets (6, 14)
and (15, 6).

3.6 Dealing with Missing Values

Our above approach of skyline sets queries consider that there are no missing values
in the attributes of the database. However, such an assumption of completeness is not
practical in many cases. For example, consider a movie rating application where each
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ID a1 a2  ID a1 a2 
o1 10 1  o6 1 10 
o2 1 3  o7 10 1 
o3 2 10  o8 3 1 
o4 10 3  o9 2 10 
o5 6 2  o10 10 1 

DB1  DB2  
Figure 3.18: Example of two databases without missing values

Table 3.4: Convex Skyline 3-sets in the databases of Figure 3.18

ID a1 a2

P1 6 23
P2 23 6
P3 10 6
P4 6 14
P5 14 6

user rates movies from thousands of movies. It is highly unlikely that every single user
will rate all movies. Instead, a user will rate only the movies that interest her / him. As
a result, each movie will be represented as a D-dimensional point with several blank
(i.e., missing) dimensions. Another example is from the hotel application where some
hotels may not disclose some of their properties. These undisclosed properties are rep-
resented as incomplete entries within the hotel multi-dimensional point representation.
In such a situation, we need some preprocessing tasks before applying skyline sets
query algorithm. This is described below.

In data preprocessing phase, we first search the databases for obtaining missing
values of the records in each attribute. Then, we replace the missing values of the
records in an attribute with a value outside the domain values. The choice of such a
value for an attribute depends on the nature of the data in that attribute. If smaller
values are better for an attribute, we shall replace missing values in that attribute with
a value larger than the domain value and vice versa. Algorithm 3.4 shows such
replacement procedure.

Figure 3.17 shows two databases, each of which contains two attributes with some
missing values in each attribute. Let us assume that smaller values in each attribute are
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preferable and the value domain in each attribute is 0 to 9. Using Algorithm 3.4, we
can replace the missing values of both attributes of both databases with a value, say 10
as it is out side the value domain of each attribute and it is larger than any value of the
attributes.

After replacement, we obtain the databases with no missing values as shown in
Figure 3.18. From Figure 3.18, we can see that now there is no missing values. After
obtaining such a table, we can apply the skyline sets query and perturbation algorithms
and can return the results as shown in Table 3.4 to the user.

Note that in our result of Table 3.4, some of the skyline 3-sets contain inserted
value in an attribute. We do not need any postprocessing of such s-sets to remove the
inserted value. This is because if someone wants to hide some attributes’ values of
some records they should not get priority in those attributes. Moreover, from Table 3.4
we can find that we perform perturbation before returning the results to the users.

3.7 Experiments

We have implemented the proposed parallel computation of the skyline sets queries in
a distributed database using Java Agent Development Framework. We have performed
the experiment in a simulation environment of fifty databases created by ten PCs run-
ning on windows OS and are connected by an Ethernet switch. Each of the PCs has an
Intel(R) Core2 Duo, 2 GHz CPU, and 3 GB main memory. We evaluate our proposed
privacy preserving skyline sets queries algorithm in distributed environment on syn-
thetic datasets. As benchmark databases, we use the databases proposed by Borzsonyi,
et al. [1], in which there are three types of synthetic data distributions: “correlated”,
“anticorrelated”, and “independent”. We consider data dimensionality between 2 to 5.

We first evaluate the effect of set size. Figure 3.19 shows the results of 2D, 3D, 4D,
and 5D cases for datasets with 2500k data distributed among fifty databases. Databases
are distributed among five clusters and each database contains around 50k data. We
observe that with the increases of s, query time also increases. This is because as s

increases, the number of sets in convex skyline also increases.
In the next experiment, we evaluate the effect of data size. We used data with car-

dinality 500k, 1000k, 1500k, 2000k, and 2500k. Same as the previous experiment fifty
databases are distributed among five clusters and each cluster contains ten databases.
In case of 500k, each database contains at least 10k data. Similarly, for datasets 1000k,
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Figure 3.19: Time varying set size
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Figure 3.20: Time varying data size

1500k, 2000k, and 2500k each database has at least 20k, 30k, 40k, and 50k data re-
spectively. In this experiment, we set s to 10. Figure 3.20 shows the results. In this
experiment, it is observed that response time increases with the increase of data set
size. It is also observed that response time gradually increases if the dimension in-
creases.

Next, we conduct the experiment to examine the effect of the number of DBs in
the computation process. In this experiment, we distribute 2500k data to m = 10, 20,
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Figure 3.21: Time varying number of databases
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Figure 3.22: Comparison between parallel and pipeline computation

30, 40, 50 databases. Here, we fix the number of clusters to five. For 10, 20, 30,
40, and 50 databases, each cluster contains two , four, six, eight, and ten databases
respectively. In this experiment, we set s to 4 and examine 2D, 3D, 4D, and 5D cases.
Figure 3.21 shows the result. We find that the computation time is almost independent
of the number of databases.

Finally, we conduct an experiment to examine the comparative performance of our
method and pipeline computation method, a method where later agents need to wait
for the completion of tasks by earlier agents that dramatically reduces the computation
performance if there are many databases involved in the computation process. Same as
the previous experiment, we distribute 2500k data to m = 10, 20, 30, 40, 50 databases.
In this experiment, we set s to 4 and examine 2D and 5D cases. From the result of Fig-
ure 3.22, it is found that when the number of databases are relatively small the compu-
tation time is almost same in our method and pipeline computation method. However,
as the number of databases increases, the pipeline execution method becomes slower
while our proposed parallel computation method shows almost similar performance.
The waiting delay of the later agents for the completion of tasks by the earlier agents
is one reason of slowing down the computation. Another reason is that, in pipeline
execution approach many databases become idle due to the lack

3.8 Conclusion

In privacy aware environment in which we are only allowed to disclose aggregated
values of objects, skyline sets queries can be a promising alternative for analyzing
and making important decisions. With the rapid growth of network infrastructure,
distributed databases are becoming popular. In privacy aware environment, each owner
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of the distributed databases does not want to disclose the attribute’s values of her/his
databases to others. Therefore, we proposed an agent-based algorithm for computing
skyline sets queries in a parallel manner from distributed databases in this chapter.

The proposed algorithm can efficiently calculate skyline sets from the distributed
databases. Experimental results demonstrate that the proposed algorithm for skyline
sets queries is scalable enough to handle large and high dimensional datasets. The per-
formance of our proposed approach is almost independent of the number of databases
involve in skyline sets queries. We have also proposed a privacy protection mecha-
nism in which we detect compromisable sets and perturb such sets so that individual’s
records values cannot be identified. We additionally provided a solution of skyline sets
queries from databases with missing values.

In this work, we assume that all the attributes of the databases are numerical. In
future, we hope to develop parallel algorithms for skyline sets queries from databases
with categorical attributes and from spatio-temporal databases. Moreover, we hope to
compute subspace skyline sets queries.
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Chapter 4

Selecting Spatial Objects

Recently, GPS devices and location based services become popular and we have databases
containing spatial information. Considering this fact, in this chapter, we provide sev-
eral approaches of selecting spatial objects by using skyline queries. Here, we provide
three different approaches to compute spatial objects. First two methods of this chapter
utilize the influences of the surrounding environments while selecting spatial objects.
Third method computes spatial objects for a group of users considering both spatial
and non-spatial features of the objects as well as the locations of the users.

This chapter is organized as follows. In Section 4.1, at first we present importance
of considering surrounding environments during skyline computation. In this section,
we also introduce the importance of skyline queries for groups. In Section 4.2, we
provide a review of works related to our work in this chapter. Section 4.3 details
the computation process of skyline considering the best value of each surrounding
facility. In Section 4.4, we present the skyline query mechanism based on objects
count. Section 4.5 describes skyline query mechanism for selecting spatial objects for
a group of users. We conclude this chapter in Section 4.6.

4.1 Introduction

Conventional skyline queries select objects based on non-spatial attributes such as
price and rating. With rapid growth of location-based services and geographic in-
formation systems, recently skyline queries for spatial databases [26, 27, 28, 29, 29,
39, 40, 41, 49, 77] have become an important research topic in many fields of computer
science. Most of the current spatial skyline queries algorithms consider the distances
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from a user to the target spatial objects. There are many options for computing dis-
tances: the Euclidean distance, the distance in a road network, and a sophisticated
adaptive distance.

In general, surrounding environments of objects can play a vital role while selecting
an object. Considering this fact, in this chapter, at first, we propose two methods to
select spatial objects considering surrounding facilities. Both of our approaches utilize
the concepts of skyline queries. Our first approach considers the best value in each
attribute of each surrounding facility while our second method considers the objects
count of each type of facility in the surrounding environment. Our first approach is
well suited for hotel recommendation systems while our second approach is applicable
for real estate recommendation.

In this chapter, we also consider the selection of spatial objects for a group of users.
We consider this problem because there are situations where a group of users at differ-
ent locations may want to choose a particular object that can fulfil the group’s needs.
For example, assume that members of a multidisciplinary task force team located at
different offices want to put together in a restaurant to hold a lunch-on meeting. Con-
ventional spatial skyline query cannot take into account the group’s convenience.

4.2 Related Works

Spatial query processing was first studied for ranking neighboring objects. Several
works [73, 74, 75] considered spatial query mechanism for ranking neighboring objects
using the distance to a single query point. Papadias et al. [76] considered ranking of
objects using aggregate distance of multiple query points.

Sharifzadeh et al. [26] first addressed the problem of spatial skyline queries. They
proposed two algorithms, B2S2 and V S2, for static query points and one algorithm,
VCS2, for the query points whose locations change over time. VCS2 exploits the pat-
tern of change in query points to avoid unnecessary re-computation of the skyline. The
main limitation of V S2 algorithm is that it can not deliver correct results in every situ-
ation. To overcome the limitation of V S2 algorithm, Son et al. [27] presented a simple
and efficient algorithm that can compute the correct results. Guo et al. [28] introduced
the framework for direction-based spatial skyline computation that can retrieve nearest
objects around the user from different directions. They also developed an algorithm
to support continuous queries. However, their algorithm for direction-based spatial
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4.3 Spatial Objects Selection Considering Best Values of Surrounding Objects

ID Price Rating  ID Price Rating  ID Price Rating 

h1 9 8  r1 3 5  s1 4 5 
h 2 5 7  r2 3 6  s2 5 6 
h 3 3 7  r3 8 5  s3 4 4 
h 4 5 2  r4 2 4  s4 3 2 
h 5 4 2  r5 9 6  s5 6 2 
h 6 9 6  r6 4 4  s6 5 3 
h 7 6 8  r7 4 6  s7 7 4 
h 8 7 4  r8 7 4  s8 3 3 
h 9 8 5  r9 6 5  s9 6 5 

                    

(b) Hotels (c) Restaurants (a) Supermarkets 
Figure 4.1: Non-spatial databases

skyline can not handle more than one query point. Kodama et al. [49] proposed ef-
ficient algorithms to compute spatial objects based on a single query point and some
non-spatial attributes of the objects.

There are some considerations about spatial skyline computation in road networks.
Deng et al. [39] first proposed multi-source skyline query processing in road network
and proposed three different spatial skyline query processing algorithms for the com-
putation of skyline points in road networks. In [40], Safar et al. considered nearest
neighbour based approach for calculating skylines over road networks. They claimed
that their approach performs better than the approach presented in [39]. Zhang et al.
[77] proposed two distance-based skyline query techniques those can efficiently com-
pute skyline queries over road networks. Huang al. [41] proposed a query processing
method to produce spatial skylines for location-based services. They focus on location-
dependent spatial queries (LDSQ) and consider a continually changing user location
(query point). In their approach, it is not easy to decide how often the skyline result
needs to be updated.

4.3 Spatial Objects Selection Considering Best Values
of Surrounding Objects

4.3.1 Problem Formulation

Let us consider the spatial information of three different facilities as shown in Ta-
ble 4.1. Also, consider the non-spatial attributes of the three facilities as shown in Fig-
ure 4.1. Figure 4.2 shows the location of these spatial objects in a map. In Figure 4.2, h,
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Table 4.1: Spatial Database 1
   

ID Longitude Latitude Type 
h1 5 1 Hotel 
h2 6 10 Hotel 
h3 10 2 Hotel 
h4 6 7 Hotel 
h5 1 2 Hotel 
h6 2 6 Hotel 
h7 9 6 Hotel 
h8 1 3 Hotel 
h9 6 1 Hotel 
r1 2 5 Restaurant 
r2 11 7 Restaurant 
r3 7 1 Restaurant 
r4 1 6 Restaurant 
r5 7 7 Restaurant 
r6 5 7 Restaurant 
r7 3 3 Restaurant 
r8 11 11 Restaurant 
r9 11 3 Restaurant 
s1 10 9 Supermarket 
s2 1 7 Supermarket 
s3 2 1 Supermarket 
s4 6 3 Supermarket 
s5 2 7 Supermarket 
s6 5 2 Supermarket 
s7 5 6 Supermarket 
s8 5 11 Supermarket 
s9 7 10 Supermarket     r, s represent hotel, restaurant, and supermarket, respectively. For simplicity, consider

that smaller values in each non-spatial attribute is better and 1 unit Euclidean distance
equivalent to 100 meters.

We used a grid-based data structure to keep the spatial information. Figure 4.3
shows the distribution of objects among nine grids G11,G13, · · · ,G33. Each grid size is
1 square kilo meter.

4.3.2 Query Processing

For each grid of Figure 4.3, we pre-compute best value for each attribute as shown
in Figure 4.4 of each facility and keep this information in the memory. In the table,
R−Price and R−Rating represents best price and best rating of restaurants, respec-
tively. Similarly, S−Price and S−Rating represents best price and best ratings of
supermarkets, respectively. Note that there is no object in G31. Therefore, we exclude
records of the empty grids from the table.
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Figure 4.2: Location of spatial objects

Table 4.2: Hotel information of G11

ID H −Price H −Rating R−Price R−Rating S−Price S−Rating
h8 7 4 3 5 4 4
h5 4 2 4 6 4 4

Assume that a user want to retrieve hotels in A city. The city A is covered by four
grids, G11, G12, G21, and G22 as shown in Figure 4.3.

We assume that the user prefers a hotel that has a good restaurant and/or a super-
market within 250 meters. For each grid, we collect hotels and their information of
surrounding facilities as follows. In G11 of Figure 4.3, we can find there are two hotels
h5 and h8. Now, consider the collection of surrounding facilities’ information for h8.
The grid G11 has R−Price = 4, R−Rating = 6, S−Price = 4, S−Rating = 4. Since
r7 and s3, which relate to the best values for restaurants and supermarkets of this grid,
are within 1km from h8, we set their values as the best values for h8.

Since the grids G12, G22, and G21 are adjacent for h8, we have to examine those
adjacent grids. From Figure 4.4, we can see that best values in this grid for R−Price,
R−Rating, S−Price, and S−Rating are 8(r3), 5(r3), 2(s4), and 3(s4), respectively.
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Figure 4.3: Grid wise distribution of spatial objects

Table 4.3: Hotel information of G12

ID H −Price H −Rating R−Price R−Rating S−Price S−Rating
h1 9 8 8 5 3 2
h9 8 5 8 5 3 2

From these values, we find that R−Price, R−Rating are worst than the corresponding
current values for h8. So, we do not need any further consideration of R − Price,
R−Rating of this grid. If we look at S−Price, and S−Rating, we can see that they
are better than the current values of S−Price, and S−Rating for h8. We also find
that both S−Price, and S−Rating are related to s4. Therefore, we need to compute
the distance of s4 from h8. As the distance is greater than the user specified distance
of 1 kilo meter, we cannot update the values in S−Price, and S−Rating of h8 with
the values of s4. As there is another supermarket s6 in this grid which has Price, and
Rating 5 and 3, respectively. However, the distance of s6 from h8 is also more than 1
kilo meter. As a result the values for h8 will as it is after visiting adjacent grid G12.
When we visit G22 we can see that none of the values for this grid is better than the
corresponding values for h8. Hence, there is no change in the values of h8. After

99



4.3 Spatial Objects Selection Considering Best Values of Surrounding Objects

Grids Restaurants Supermarkets

R-Price R-Rating S-Price S-Rating

G11 4 (r7) 6 (r7) 4 (s3) 4 (s3)
G12 8 (r3) 5 (r3) 3 (s4) 2 (s4)
G13 6 (r9) 5 (r9) -- --
G21 2 (r4) 4 (r4) 5 (s2) 2 (s5)
G22 4 (r6) 4 (r6) 7 (s7) 4 (s7)
G23 3 (r2) 6 (r2) -- --
G32 -- -- 3 (s8) 3(s8)
G33 -- -- 4 (s1) 5 (s1)

Figure 4.4: Best values of grids

Table 4.4: Hotel information of G22

ID H −Price H −Rating R−Price R−Rating S−Price S−Rating
h4 5 2 4 4 7 4

visiting G21, we can see that this grid has values 2(r4), 4(r4), 3(s2), and 2(s5), for
R−Price, R−Rating, S−Price, and S−Rating, respectively. However, r4, s2, and s5

are not within the user specified distance of 1 kilo meter. Hence, we cannot update the
values of h8 with any of these values. Now, we need further checking of other objects
in this grid and find that r1 is within the user specified distance that has values Price

= 3 and Rating = 5 those are better than R−Price, and R−Rating of h8. Hence, the
value in h8 will be updated as R−Price = 3, and R−Rating = 5. As there is no more
grid to check we can stop the computation for h8 after traversing G21. We can continue
same procedure for hotels h5, h1, h9, h4 and h6 as all these hotels are within city A.

Finally, we get the hotels’ information in each of the four grids considering the
surrounding objects as shown in Table 4.2, Table 4.3, Table 4.4, and Table 4.5.

Finally, making the union of the information of Table 4.2, Table 4.3, Table 4.4, and
Table 4.5, we obtain Table 4.6. Algorithm 4.1 shows the computation process of the
surrounding environment information.

After obtaining Table 4.6, we use Sort Filter Skyline (SFS) [5] algorithm to obtain

Table 4.5: Hotel information of G21

ID H −Price H −Rating R−Price R−Rating S−Price S−Rating
h6 9 6 2 4 5 2
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Table 4.6: Hotel information of City A

ID H −Price H −Rating R−Price R−Rating S−Price S−Rating
h1 9 8 8 5 3 2
h4 5 2 4 4 7 4
h5 4 2 4 6 4 4
h6 9 6 2 4 5 2
h8 7 4 3 5 4 4
h9 8 5 8 5 3 2

Table 4.7: Parameters and Values

Parameters Values Default Value
Raw data size of each facility 10k, 20k, 30k,

40k, 50k
20k

Types of surrounding facilities 1, 2, 3, 4, 5 2
Number of grids 50, 100, 150,

200, 250
100

Number of dimension of each object in
each facility

2D, 3D, 4D, 5D 2D

Considerable distance of each
surrounding facility from main facility in

meters

200, 400, 600,
800, 1000

400

h4, h5, h6, h8, and h9 as final skyline objects. Note that if we use conventional skyline
query, only hotel h5 is in the skyline. However, hotels h4, h6, h8, and h9 will not be in
the skyline, although they have good surrounding facilities. However, in our approach
all such types of hotels will be retrieved as skyline objects.

4.3.3 Experiments

We have simulated the proposed skyline queries algorithm in a Mac PC having Intel
core i5 processor, 2.3 GHz CPU, and 4 GB main memory. We evaluated our skyline
queries algorithm on synthetic datasets. As benchmark databases, we use the databases
containing synthetic data with “anti-correlated” distribution. The parameters and val-
ues those have been used in our experiments are given Table 4.7.
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Algorithm 4.1 Computation
Consideration: Consider that cur be the best value in the computation so far, best is
the best value in an attribute of a facility in a grid G, usd be the user specified distance,
grd is the distance between an object oi of the main facility and an adjacent grid.

1: begin
2: for each grid G adjacent for oi do
3: for each surrounding facility Sl do
4: for each attribute m j of Sl do
5: find the best value best in m j

6: if (cur ≤ best ) then
7: proceed to the next grid.
8: else
9: compute Euclidean distance D between object oi and the objects that

owns best
10: if (D ≤ usd) then
11: replace the value of cur with the best
12: else if ((D > usd) and (grd < usd)) then
13: compute the best value within usd
14: if (newly computed value < cur) then
15: replace the value cur with newly computed value
16: end if
17: end if
18: end if
19: end for
20: end for
21: end for
22: end
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Figure 4.5: Preprocessing time
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05001000150020002500
50 100 150 200 250Time (ms) Number of grids

2D 3D4D 5D
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Figure 4.8: Time vs facilities

We first evaluate the cost of calculating best object of each facility in each di-
mension in each grid considering uniform distribution of data among 1600 grids and
number of facilities seven. Figure 4.5 shows the results of 2D, 3D, 4D, and 5D cases.
From the result, we observe that there is an increase in preprocessing time with the
increase of data size. Also the preprocessing time increases with the increase in data
dimensionality. As such computation is performed in off line, this will not effect the
performance of our system.

In the next experiment, we evaluate the retrieval time of skyline results with varying
data size. Figure 4.6 shows the results. In this experiment, it is observed that response
time increases with the increase of data size. It is also observed that response time
gradually increases if the dimension increases.

Next, we conduct the experiment to examine the effect of the number of grids in the
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Figure 4.9: Time vs distance
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Figure 4.10: Comparative results

computation process. The result is shown in Figure 4.7. We find that the computation
time increases with the increase of the number of grids. Also, there is an increase in
computation time with increase in in data dimensionality.

Next experiment shows the effect of the number of surrounding facilities. Fig-
ure 4.8 shows the result. We find that the computation time increases with the increase
in the number of surrounding facilities. This is because with the increase of surround-
ing facilities we need to consider more objects.

Our next experiment showed the effect of query time with varying distance between
requested and surrounding facilities. The result is shown in Figure 4.9. From the figure,
we find that the query time increases with the increase of distance between requested
facility and surrounding facilities. This is because with the increase in distance, we
need to consider more objects in skyline computation..

Our final experiment result is shown in Figure 4.10. It shows the comparative
analysis of the retrieval of skyline points with and without considering surrounding
facilities. Here, we can see that if we consider surrounding facilities more skyline
objects are retrieved. Thus a user has more option in his decision making.

4.4 Spatial Objects Selection Based on Surrounding Ob-
jects Count

The second method of this chapter selects spatial objects, such as houses, based on
the objects count in the surrounding areas. In our life, selecting a good house is very
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Figure 4.11: Three different facilities in a location

important for us. If we use the conventional skyline query for selecting houses, we
can filter many dominated houses based on features of the houses, such as price, age,
and so on. However, the location is a very important factor for selecting a house.
For example, a house is convenient if there are many supermarkets within a walking
distance. Motivated with such influences of surrounding facilities while selecting a
house, in this section we provide a framework for selecting good houses based on the
features of the houses as well as objects count in the surrounding areas.

In our method, a user specifies a list of surrounding facilities within a specified
distance with favourable conditions for the objects. Similarly, a user can specify un-
favourable conditions for the objects of the facilities if necessary. A user may specify
the conditions of favourable and unfavourable.

For each specified surrounding facility, we count the number of objects those sat-
isfy user defined distance and conditions. We, then, add a new attribute for each chosen
surrounding facility that contains the number of objects those satisfies the conditions.
Then, we compute the skyline result from the extended database.

For simplicity, in this section, we consider larger values are preferable and 1 unit
distance Euclidean distance equals to 200 meters.
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Table 4.8: Spatial Database 2

ID Longitude Latitude Type 
h1 2 5 House 
h2 4 6 House 
h3 11 5 House 
h4 4 12 House 
h5 12 6 House 
h6 5 14 House 
h7 12 11 House 
h8 13 5 House 
h9 14 11 House 
h10 14 10 House 
s1 3 6 Supermarket 
s2 4 7 Supermarket 
s3 17 7 Supermarket 
s4 14 8 Supermarket 
s5 16 3 Supermarket 
s6 15 2 Supermarket 
s7 8 5 Supermarket 
s8 9 4 Supermarket 
r1 4 3 Restaurant 
r2 10 11 Restaurant 
r3 6 12 Restaurant 
r4 5 14 Restaurant 
r5 12 15 Restaurant 
r6 2 4 Restaurant 
r7 15 6 Restaurant 
r8 14 4 Restaurant 
r9 13 7 Restaurant 
r10 10 15 Restaurant  

4.4.1 Problem Formulation

Let us consider the spatial information of three different facilities of Figure 4.11 as
shown in Table 4.8 and non-spatial features information of these facilities as shown in
Figure 4.12. We used a variant of R-tree index structure called aR-tree [57] to keep
both spatial and non-spatial information of each facility.

Our method is based on four computation steps. First, a user specifies a place Q

and distance (ε1). Based on this information, at first we select spatial objects of the
target facility like houses within the specified distance from Q. Second, the user spec-
ifies preferable surrounding facilities and conditions those influence the quality of the
selected objects. We, then, count the number of such objects for each selected house.
Third, we combine the count of surrounding facilities and the non-spatial information.
. Finally, we perform skyline queries to select spatial objects from the combined table.
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 ID a1 a2 h1 5 8 h2 2 3 h3 4 4 h4 5 6 h5 3 5 h6 4 6 h7 2 3 h8 5 4 h9 3 7 h10 7 6 (a) Houses 

ID a1 a2 s1 3 6 s2 4 5 s3 6 7 s4 7 6 s5 3 4 s6 5 5 s7 6 4 s8 3 5 (b) Supermarkets 
ID a1 a2 r1 2 8 r2 6 7 r3 5 6 r4 6 8 r5 4 2 r6 6 4 r7 2 3 r8 4 5 r9 7 5 r10 1 3 (c) Restaurants  

Figure 4.12: Databases showing non-spatial features of three facilities

4.4.2 aR-Tree Indexing

The aggregation R-tree (aR-tree [57]) is an R-tree each node of which corresponds
to minimum bounding rectangle (MBR) that contains objects in a plane. Figure 4.13
depicts the MBRs and corresponding aR-tree for the houses h1, · · · ,h10. A leaf node
in the aR-tree contains objects and their corresponding information. An internal node
contains the minimum value in each attribute of its descendent objects and total number
of descendent objects. For example, in Figure 4.13, the left most leaf node contains
the information of h1. The parent node e4, which is MBR e4, contains two objects h1

and h2. The minimum values of e4 in attributes a1 and a2 are 2 and 3, respectively.
Therefore, the node has an entry (e4,2,3,2). Similarly, the root node has an entry
(e1,2,3,10).

We can construct the aR-trees for restaurants and supermarkets as shown in Fig-
ure 4.14 and 4.15, respectively.

4.4.3 Computing Candidate Objects of Target Facility

We first select spatial objects of the target facility that are within the specified distance
(ε1) from a given query point. We call such spatial objects as “candidate objects”. We
are considering that the houses those are within 1200 meters from Q are “candidate
objects”. We can select candidate objects efficiently by using the aR-tree.

If a point p is given, we find a top most MBR that contains p and an internal node e

that corresponds to the MBR. Let mindist(p,e) and maxdist(p,e) denote the minimum
and maximum possible distance between p and any point in e.

In order to find objects that are within a user specified distance (ε1) from a query
point p, we first check mindist(p,eroot). If we find the mindist(p,eroot) is less than or
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Figure 4.13: aR-tree for houses

                           

                5 10 15 20 0 

15 20 
10 5 

�  

�  

�  

�  

�  
�  

�  

�  

�  
�   

r9 
r6 

r1 r8 r7 
r4 r2 

r3 r10 r5 

e1, 1, 2, 10 
r5, 4, 2, 1 e3, 1, 2, 6 

r3, 5, 6, 1 r4, 6, 8, 1 
e2, 2, 4, 4 

r10, 1, 3, 1 e6, 1, 2, 3 
r7, 2, 3, 1 r8, 4, 5, 1 r9, 7, 5, 1 e7, 2, 3, 3 

r1, 2, 8, 1 e4, 2, 4, 2 e5, 5, 6, 2 
r6, 6, 4, 1 r2, 6, 7, 1 

e7 
e6 e3 e5 

e4 e2 
e1 

Figure 4.14: aR-tree for restaurants

equal to ε1, we recursively continue the searching the child nodes. An MBR having
mindist(p,e) larger than ε1 will be pruned and will not be considered for the further
processing. When we reach at a leaf node, we select spatial objects based on the
distance from p.

Figure ?? shows the exploration of the nodes of the aR-tree when we search houses
that are within 1200 meters from Q. From the aR-tree in Figure ??, shaded rectangles
satisfy the condition. In this step, we find h1,h2,h3,h4,h5 as the candidate houses.

4.4.4 Calculating Surrounding Facility Count

Let us consider that a user specify S favourable surrounding facilities for selecting
spatial objects. For selecting such spatial objects, we count the number of objects
of the favourable facilities such as restaurants and supermarkets from each candidate
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Figure 4.16: Candidate objects selection

object within the the user specified distance ε2.
We use the aR-tree to compute the surrounding facilities count for each candi-

date object. For an object p in the candidate, we compute the surrounding facility
count by traversing nodes from the root of the aR-tree. In a node e of the tree, (1) if
mindist(p,e) > ε2, we prune the subtree of the node. (2) If maxdist(p,e) < ε2 and
value in each attribute satisfies favourable condition, we increment the surrounding
facility count by the node’s count without traversing its subtree. (3) Otherwise, we
recursively traverse each child of e.

Figure 4.17 and Figure 4.19 illustrate the computation process of “surrounding
supermarkets count” for h3. In this example, we assume that ε2 = 4 and values in each
attribute not less than 3 is favourable. The search procedure starts from the root e1 of
the aR-tree as shown in Figure 4.17. Since mindist(h3,e1) = 3 and maxdist(h3,e1) =
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Figure 4.17: aR-tree search for supermar-
kets count
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Figure 4.18: aR-tree search for restaurants
count

8.54, we examine the children, e2 and e3. In e2, we recursively examine the children
and can find that e5 satisfies the condition (2) i.e. maxdist(h3,e5) = 3.16 < ε2 = 4 and
there no object with value less than 3 in any of their attributes.

Therefore, we increment the count by 2. Note that we can skip the children, which
are s7 and s8, of e5. We continue the process from the next node similarly.

Figure 4.18 shows the tree structure for the search procedure for the restaurants
count.

After this process, we get the counts of restaurants and supermarkets for each can-
didate object of target facility as shown in third and fifth columns of Figure 4.20.
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4.4 Spatial Objects Selection Based on Surrounding Objects CountStep Heap contents(entry e: mindist(. , .), maxdist(. , .)) Influence 1 (e1: 3, 8.54)  0 2 (e2: 2, 8.25), (e3: 3, 6.70)  0 3 (e5: 2, 3.16), (e3: 3, 6.70), (e4: 7.07, 8.25) 0 4 (e3: 3, 6.70), (e4: 7.07, 8.25) 2 5 (e6: 3.16, 6.70), (e7: 4.47, 5.83), (e4: 7.07, 8.25) 2 6 (s4: 4.24, 4.24), (e7: 4.47, 5.83), (s3: 6.32, 6.32), (e4: 7.07, 8.25) 2 7 φ 2  
Figure 4.19: Computation process of the supermarket counts for h3  ID Restaurants Supermarkets Objects Total count Objects Total count 

h1  r6 1 s1, s2 2 
h2 r6 1 s1, s2 2 
h3 r8, r9 2 s7, s8 2 
h4 r3, r4 2 -- 0 
h5  r8, r9 2  s4, s8 2                      

Figure 4.20: Surrounding facilities satisfying both the distance and the condition

4.4.5 Combining Information and Generation of Final Result

After computing the count information, we extend the table of candidates by adding
the count information. Table 4.9 is the example of the extended table of houses. In
the table, there are five candidates of the target facility (house). First two numeri-
cal attributes represent their non-spatial attributes, while last two are for the count of
restaurants and supermarkets. After obtaining such a table, we use Sort Filter Skyline
(SFS) [5] algorithm to obtain h1, h3, h4 and h5 as final skyline objects.

Table 4.9: Database containing non-spatial information of target facility and surrounding in-
formation

SID Price Age Restaurants-count Supermarkets-count
h1 5 8 1 2
h2 2 3 1 2
h3 4 4 2 2
h4 5 6 2 0
h5 3 5 2 2
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Table 4.10: Parameters and Values

Parameters Values Default Value
Raw data size of each facility 20k, 40k, 60k,

80k, 100k
40k

Types of surrounding facilities 1, 2, 3, 4, 5 2
Number of dimension of each object in

each facility
2D, 3D, 4D, 5D 2D

Considerable distance from query point
to the target facility in meters

500, 1000, 1500,
2000, 2500

1000

 05000100001500020000250003000035000
20k 40k 60k 80k 100kPreprocessing Time (ms) Raw data size

2D 3D4D 5D
Figure 4.21: Cost for aR-tree indexing
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Figure 4.22: time vs data size

4.4.6 Experiments

The environmental setting for the experiment of this method is same as our previous
method of this chapter. However, the parameters and values are different as shown in
Table 4.10.

We first evaluate the cost of building the aR-tree index structure for for each facility.
Figure 4.21 shows the results. Here, we consider 2D, 3D, 4D and 5D cases for each
facility type and varied the data size for each facility from 20k to 100k. From the result,
we observe that there is an increase in time in building the index structure with the
increase of data size. Also the time increases with the increase in data dimensionality.
As such index is built in off line, this will not effect the performance of our system.

In the next experiment, we evaluate the retrieval time of the results with varying
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Figure 4.23: time vs facilities
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Figure 4.24: time vs distance

data size. Figure 4.22 shows the results. In this experiment, it is observed that response
time increases with the increase of data size. It is also observed that response time
gradually increases if the dimension increases.

Next, experiment shows the effect of the number of requested surrounding facili-
ties. Figure 4.23 shows the result. We find that the computation time increases with the
increase in the number of surrounding facilities as we need to consider more objects
when there are more surrounding facilities.

Our next experiment shows the effect of query time with varying distance between
query point and requested target facility. The result is shown in Figure 4.24. From
the figure, we find that the query time increases with the increase of distance between
query point and requested target facility. This is because with the increase in distance,
we need to consider more objects in computation.

Our final experiment result is shown in Figure 4.25. It shows the comparative
analysis of the retrieval of points with and without considering surrounding facilities.
Here, we can see that if we consider surrounding facilities more objects are retrieved.
Thus a user has more option in his decision making.

4.5 Spatial Objects Selection for a Group of Users

In this section, we consider the problem of selecting spatial objects for a group of
users located at different positions by utilizing skyline queries since there are situations
where a group of users at different locations may want to choose a particular object that
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Figure 4.25: Comparative results  
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Figure 4.26: Example of an R-tree

can fulfil the group’s needs. For example, assume that members of a multidisciplinary
task force team located at different offices want to put together in a restaurant to hold
a lunch-on meeting.

4.5.1 Preliminary Concepts

4.5.1.1 R-Tree

R-tree [59] is the most prominent index structure widely used for spatial query process-
ing. Figure 4.26 shows an R-tree containing P = {p1,· · · ,p14}. We set the capacity of
each node to three. The leaf nodes N1, ..., N5 store the coordinates of the grouped points
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Figure 4.27: Example of a Voronoi diagram

together with optional pointers to their corresponding records. Each intermediate node
contains the Minimum Bounding Rectangle (MBR) of the sub-tree of the nodes. For
example, node e1 corresponds to MBR N1, which covers the points, p1, p2, and p3.
Similarly, node e6 and node e7 correspond to MBR N6 and MBR N7, respectively.

4.5.1.2 Voronoi Diagram

Let P is the set of n distinct data points on the plane. The Voronoi diagram of P is the
subdivision of the plane into n cells. Each cell contains only one point of P, which is
called the Voronoi point of the cell. We denote V (p j) as a cell of a Voronoi point p j,
p j ∈ P, and V N(p j) as a set of cells that are adjacent to V (p j).

Assume that P contains fourteen data points {p1, p2, · · · , p14} and two query points
q1 and q2. Figure 4.27 shows the Voronoi diagram of the points in P. We can say that
a query point is nearest to a data point if the query point is within Voronoi cell of the
data point. As for example, from the Voronoi diagram of Figure 4.27, we can find that
the nearest Voronoi point of the query point q1 is p8, since q1 is within the Voronoi cell
of p8. Similarly, the nearest Voronoi point of query point q2 is p1.

Voronoi diagram provides an efficient data structure to compute the nearest Voronoi
point for a given query point q. We use Fortune’s algorithm [78] to construct Voronoi
diagram for a set of points. Fortune’s algorithm is a sweep line algorithm for generating
a Voronoi diagram from a set of points in a plane. Though the worst time complexity
for constructing Voronoi diagram for a set of n points using Fortune’s algorithm is
O(n2), the expected time complexity is O(n logn).
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Figure 4.28: (a) Voronoi diagram (b) VoR-tree (adapted from [58])

4.5.1.3 VoR-Tree

A VoR-tree [58] is a variation of R-tree that index the data points using the concepts
of Voronoi diagram and R-tree. Each leaf node stores a subset of data points. Each
leaf node also includes the data records containing extra information about the corre-
sponding points. In the record of a data point p j in a VoR-tree, we store the pointer to
the location of Voronoi neighbors V N(p j) and the vertices of V (p j), i.e., vertices of
the Voronoi cell of p j. Here, a vertex represents a common endpoint of two edges of a
Voronoi cell.

For constructing VoR-tree, at first, we index the data points using an R-tree. Then,
we use the Voronoi diagram of the data points to find the Voronoi neighbors and ver-
tices of a Voronoi cell for each data point p j. Next, we store both information as a
record associated with each data point p j. Each Voronoi neighbor of p j in this record
is a pointer to the disk block storing the information of that Voronoi neighbor. A disk
block also known as a sector is a sequence of bytes for storing and retrieving data.

Figure 4.28(b) shows an example of VoR-tree for the data points of Figure 4.26.
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Each rectangular in Figure 4.28 is a node of the VoR-tree. In Figure 4.28, rectangular
N2 contains three points, i.e., p4, p5, and p6. N2 and two other rectangular boxes N1

and N3 are contained by the parent, which is the rectangular N6. For simplicity, we
show only the contents of the records of the data points of node N2. From Figure 4.28
(b), we can see that data point p5, p6, p7, p8, p12, and p14 are Voronoi neigbors of p4

and its Voronoi cell has vertices a, b, c, d, e, and f .
Since the expected time complexity for constructing a Voronoi diagram using For-

tune’s algorithm is O(n logn), we can expect to construct the VoR-tree with a time-
complexity very close to O(n logn). Since the locations of spatial objects, such as
restaurants, are static, we can construct VoR-tree before processing the groups’ skyline
query.

VoR-tree provides us an efficient way to search non-dominated objects in spatial
sub-space, since we can find the nearest spatial object in VoR-tree from a given query
point in O(logn) time. Using VoR-tree, we can significantly reduce the search space
that dramatically improves the performance while computing skyline objects at spatial
sub-space.

4.5.2 Problem Formulation

Assume that there is a database of restaurants as in Table 4.11. The database has two
non-spatial attributes: “Rating” and “Price”, in addition to the “Location” attribute.
We assume that lower value is better in each of the non-spatial attributes. We also
assume there are four users u1, u2, u3, and u4, whose current locations are at (4.5, 5.5),
(5, 6.8), (6, 5), and (5, 3.8), respectively, as in Table 4.12.

To select a good restaurant for the four users, at first, we calculate the Euclidean
distance of each restaurant from each of the four users (query points) and construct the
table as shown in Table 4.13. In the table, the attribute r-u1 represents Euclidean dis-
tances of the restaurants from user u1. Similarly, r-u2, r-u3, and r-u4 are the Euclidean
distances of restaurants from u2, u3, and u4, respectively. Sum-Distance attribute in Ta-
ble 4.13 contains the sum of Euclidean distances of each data point (restaurant) from
the users u1, u2, u3, and u4.

Note that a restaurant that is the closest from one user can be an attractive candi-
date. In addition, a restaurant whose sum of Euclidean distances from the four users is
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Table 4.11: Restaurant database

ID Location Rating Price
r1 (3, 9) 3 2
r2 (7, 5) 2 2
r3 (7, 7) 3 4
r4 (5, 1) 3 2
r5 (4, 4) 2 3
r6 (4, 8) 3 3
r7 (5, 6) 3 1
r8 (1, 3) 3 2
r9 (5, 3) 2 2
r10 (9, 3) 1 1

Table 4.12: Users’ location database

ID Location
u1 (4.5, 5.5)
u2 (5, 6.8)
u3 (6, 5)
u4 (5, 3.8)

smallest must be an attractive candidate. Therefore, we use those five spatial attributes
for the four users problem.

Next, we join the non-spatial attributes of Table 4.11 and spatial information of
Table 4.13 and obtain the information of Table 4.14. After computing Table 4.14, we
can get the skyline for the four users by using conventional skyline query, which are
r2, r5, r7, r9, and r10. However, we have to compute spatial features like Table 4.13 for
each of different query, which are time-consuming and not affordable.

Considering this fact, we consider an efficient method for computing such a spatial
skyline query without constructing all the information of Table 4.14 for a group of
users of different locations. Instead, we only compute necessary spatial information
for each of different query (group) efficiently. For simplicity, we consider the above
examples as running examples in the following subsections.
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Table 4.13: Spatial attributes of restaurants

ID r-u1 r-u2 r-u3 r-u4 Sum-Distance
r1 3.81 2.97 5.12 5.57 17.47
r2 2.55 2.69 1 2.33 8.57
r3 2.92 2.01 2.24 3.77 10.94
r4 4.53 5.8 4.12 2.8 17.25
r5 1.58 2.97 2.24 1.02 7.81
r6 2.55 1.56 3.61 4.32 12.04
r7 0.71 0.89 1.41 1.48 4.49
r8 4.30 5.52 5.39 4.08 19.29
r9 2.54 3.8 2.24 0.8 9.38
r10 5.15 5.18 3.61 4.08 18.38

4.5.3 Query Processing

It is possible to calculate skyline query after constructing a table like Table 4.14 by
conventional skyline queries. However, the number of data points such as restaurants
is too large that the construction of a table like Table 4.14 and computation of sky-
line result from such a table using any conventional skyline query algorithm are not
affordable.

Considering this fact, we compute the skyline results in two phases.
In the first phase, we compute skyline results in the spatial sub-space like (r−u1,

r − u2, r − u3, r − u4, Sum-Distance) of Table 4.14. We utilize the concept of Sum-
Distance for spatial processing which can easily eliminate a large number of objects
during the computation of skyline objects in the spatial sub-space.

Based on the skyline result of the spatial sub-space, the second phase efficiently
computes whether some other objects can be in the skyline in the non-spatial sub-space
like (Rating, Price) of Table 4.14. In this phase, we check the dominance of non-
skyline objects of spatial sub-space against the skyline objects of spatial sub-space.
Such an approach can easily eliminate many objects from domination check.

4.5.3.1 Spatial Processing

We say that an object is “spatially dominated” if the object is dominated in the spa-
tial sub-space. For example, we can say that a restaurant in Table 4.13 is “spatially
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Table 4.14: Non-spatial and spatial attributes of restaurants

ID Rating Price r-u1 r-u2 r-u3 r-u4 Sum-Distance
r1 3 2 3.81 2.97 5.12 5.57 17.47 dominated by r2, r7

r2 2 2 2.55 2.69 1 2.33 8.57 not dominated
r3 3 4 2.92 2.01 2.24 3.77 10.4 dominated by r7

r4 3 2 4.53 5.8 4.12 2.8 17.25 dominated by r7

r5 2 3 1.58 2.97 2.24 1.02 7.81 not dominated
r6 3 3 2.55 1.56 3.61 4.32 12.04 dominated by r7

r7 3 1 0.71 0.89 1.41 1.48 4.49 not dominated
r8 3 2 4.30 5.52 5.39 4.08 19.29 dominated by r2, r7, r9

r9 2 2 2.54 3.8 2.24 0.8 9.38 not dominated
r10 1 1 5.15 5.18 3.61 4.08 18.38 not dominated

dominated”, if the restaurant is dominated in its sub-space {r-u1, r-u2, r-u3, r-u4, Sum-
Distance}.

For selecting non-dominated objects in spatial sub-space, at first, we select the
Voronoi point (restaurant) that is nearest to the centroid of the query points (user loca-
tions). For example, if we consider the users (query points) of Table 4.12, we can find
that the centroid of r-u1, r-u2, r-u3, and r-u4 is (5.13, 5. 28). From Table 4.11, we can
find that r j is nearest to (5.13, 5. 28). So, we select r7. Next, for each of the user, we
draw a circle. The radius of each circle is the Euclidean distance from the user and r j.
Let C(ui,r j) be a circle whose center is the position of user ui. The radius of C(ui,r j)

is the Euclidean distance from ui to data point r j. We denote this distance by D(ui,r j).
We call the region within the union of the circles of r j as the “search region” of r j.

We, then, search for the data points within the “search region”. To obtain the data
points within the “search region”, we just consider the Voronoi cells those are either
completely inside the “search region” or those have some intersections with any of
the circles. If a Voronoi cell is completely inside the search region, we can say that
corresponding data point is within the “search region”. If a Voronoi cell intersects with
any of the circles, we need to check the distance of the corresponding data point from
the center of the circles. If we find that the Euclidean distance is less than or equal to
the radius of any of the circles, we can decide that the data point is inside the “search
region”. Otherwise, it is outside the “search region”.
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Figure 4.29: (a) Location of users and restaurants (b) VoR-tree

Later, we compute the sum of Euclidean distances of a data point (restaurant) from
the query points (users). We call this distance “Sum Distance”.

We can efficiently compute the set of objects those are not spatially dominated
using “search region”, “Sum Distance” and VoR-tree that incrementally returns the
skyline points as explain below.

First, we compute the sum of Euclidean distances for each data point within the
“search region”. Then, we pick the data point, say rk that has minimum “Sum Dis-
tance” and add rk along with its “Sum Distance” to a heap. Next, we examine the
Voronoi neighbours of rk, V N(rk) and add the Voronoi neighbors within the search
region in the heap in increasing order of their “Sum Distance”. When a data point rk is
explored, we pop it from the heap and add it to the skyline list if it is not dominated in
spatial sub-space by some other objects already in the skyline. We continue the process
until the heap becomes empty.

Now, consider the computation process of skyline objects in spatial sub-space from
the example as shown in Figure 4.29. In the Figure 4.29(a), white dots are locations of
four users and black dots are locations of restaurants. We first pick up r7 and compute
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Table 4.15: Spatial information of the data points within search region

ID r-u1 r-u2 r-u3 r-u4 Sum-Distance
r2 2.55 2.69 1 2.33 8.57
r5 1.58 2.97 2.24 1.02 7.81
r7 0.71 0.89 1.41 1.48 4.49
r9 2.54 3.8 2.24 0.8 9.38

Table 4.16: Heap for traversing VoR-tree

Step Heap content Skyline S
1 (r7, 4.49) ⊘
2 (r7, 4.49), (r5, 7.81), (r2, 8.57), (r9, 9.38) ⊘
3 (r5, 7.81), (r2, 8.57), (r9, 9.38) {r7}
4 (r2, 8.57), (r9, 9.38) {r7, r5}
5 (r9, 9.38) {r7, r5, r2}
6 ⊘ {r7, r5, r2, r9}

C(ui,r7) for each user ui (i = 1, ...,4) to get the “search region”. We, then, find that
restaurants r2, r5, r7, and r9 are within the “search region” of r7. Next, we compute
the “Sum Distance” for each of these restaurants and construct the table as shown in
Table 4.15. In the process, we keep the heap data structure like Table 4.16.

Looking at the information of Table 4.15, we can find that returant r7 has minimum
“Sum Distance”. So, we add (r7,dist(r7,U)) to the heap and marks r7 as “checked”.
Next, we collect the Voronoi neighbors of r7 and find that its Voronoi neighbors r2, r5,
and r9 are inside the “search region” (union of C(ui,r7) for user ui (i = 1, ...,4)). Then,

Table 4.17: Non-spatial information of dominated objects in spatial sub-space

ID Rating Price
r1 3 2
r3 3 4
r4 3 2
r6 3 3
r8 3 2
r10 1 1
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Table 4.18: Non-spatial information of the skyline objects in spatial sub-space

ID Rating Price
r2 2 2
r5 2 3
r7 3 1
r9 2 2

we add (r2,dist(r2,U)), (r5,dist(r5,U)) and (r9,dist(r9,U)), to the heap in ascending
order of their “Sum Distance”.

After the steps, restaurant r7 is added to the skyline list S as shown in step-3 of
Table 4.16. Next, we pick the top element r5 from the heap and find that its Voronoi
neighbours are r1, r6, r7, r8 and r9. Among them r1, r6 and r8 are outside the search
region and r7 and r9 are already checked. Therefore, no new entry is added in the
heap by r5. After that, we examine the spatial dominance of r5 against r7. Since r5 is
not spatially dominated by r7, we add r5 in S as in step-4. Similarly, we continue the
process and add r2 and r9 to the skyline. After the process of r9, the heap becomes
empty. Finally, we get S = {r2, r5, r7, r9} as skyline result based on spatial sub-space.

Since the “search region” is relatively very small compared with the whole space,
such computation is very much efficient with respect to space and time.

4.5.3.2 Non-spatial Processing

In non-spatial processing, at first, we collect all dominated data points at spatial sub-
space. Table 4.17 shows such data points with non-spatial information. From Ta-
ble 4.17, we can see that data points r1, r3, r4, r6, r8, and r10 are spatially dominated.
So, we need to check their dominance in the non-spatial sub-space.

To obtain non-dominated objects at non-spatial sub-space, we check their domi-
nance against the skyline objects r2, r5, r7, and r9 of spatial sub-space. Table 4.18
shows non-spatial information of these skyline objects in spatial sub-space. Note that
objects of Table 4.18 are in the final skyline as well.

If we check the objects of Table 4.17 against the objects of Table 4.18, we can find
that r7 also dominates r1, r3, r4, r6, r8 in non-spatial sub-space. So, they are not in the
skyline. However, object r10 is not dominated in its non-spatial sub-subspace by any
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object of Table 4.18 and there is no other non-dominated object in Table 4.17. So, r10

is also in the skyline. Finally, we find r2, r5, r7, r9 and r10 as final skyline result.
Algorithm 4.2 shows the proposed computation procedure of the spatial skyline

queries. It first computes “spatially dominated” objects based on spatial sub-space
(line 3-20). Then, Algorithm 4.2 computes whether there are skyline objects among
the “spatially dominated” objects by examining non-spatial sub-space (line 21-29).
Finally, the algorithm returns the spatial skyline objects (line 30).

4.5.4 Correctness of Algorithm

The correctness of Algorithm 4.2 follows some basic properties of geometry and
skyline query. From Algorithm 4.2, we can see that for a set of query points Q, it first
adds the data point r j with minimum “Sum Distance” to the skyline S. All the Voronoi
neighbors of r j are then checked and added to the heap in increasing order of their their
“Sum Distance” if they are within the “search region”.

The traversal started from the data point with minimum “Sum Distance” towards
the Voronoi neighbors in increasing order of “Sum Distance” and we can find that
the data point r j with minimum “Sum Distance” is in the skyline S. The reason is
that “Sum Distance” is considered as an attribute in the spatial sub-space. During
the consideration of Voronoi neighbors of a data point, we just consider the Voronoi
neighbors within the “search region”. We can easily ignore the Voronoi neighbors
of a data point those are outside the “search region”. This is because, the Euclidean
distances between a Voronoi neighbor that is outside the “search region” and query
points must be larger than the Eucledian distances between r j and query points. Hence,
any Voronoi neighbor that is outside the “search region” will never be in the skyline
in the spatial sub-space. However, the Voronoi neighbors those are within the “search
region” can be in the skyline of spatial sub-space. So, Algorithm 4.2 further checks
such Voronoi neighbors against the data points in S to determine whether they are in
the skyline of the spatial sub-space or not.

Line 21-29 of Algorithm 4.2 shows the computation of skyline objects in non-
spatial sub-space. The correctness of Algorithm 4.2 for computing skyline objects in
non-spatial sub-space comes from the basic idea of skyline. If an object is in the skyline
of d − i ( i = 1 to d -1) dimensions, it will also be in the skyline of d dimensions.
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Algorithm 4.2 Computation
Input: Set of query points U = {u1,u2, · · · ,ui} and data points R = {r1,r2, · · · ,r j}
Output: Spatial skyline objects Set S, S ⊆ R

1: begin
2: set D,(D ⊆ R) = the set of dominated objects in spatial sub-space
3: select a data point r j that is closest to the centroid of the query points U =

{u1,u2, · · · ,ui}
4: compute the search region of r j

5: obtain the data points set, say T within the “search region“, T ⊆ R
6: compute the “Sum Distance” distk of each data point rk, rk ∈ T
7: select the data point rk that has minimum “Sum Distance”
8: add (rk, distk ) to the heap H
9: select the Voronoi neighbors of rk those are within the “search region” and add

them to H in increasing order of their “Sum Distance”
10: remove (rk, distk ) from H and add rk to S
11: repeat
12: choose the top element, say rl from H
13: select the Voronoi neighbors of rl those are within the “search region” and add

them to H in increasing order of their “Sum Distance”
14: pop (rl,distl) from H
15: if rl is not dominated by some other objects in S in spatial sub-space then
16: add rl to S
17: else
18: add rl to D
19: end if
20: until H becomes empty
21: for each data point rm ∈ D do
22: if rm is dominated by some other objects of S in non-spatial sub-space then
23: rm /∈ S
24: else if rm is dominated by some other objects of D in non-spatial sub-space then
25: rm /∈ S
26: else
27: add rm to S
28: end if
29: end for
30: return S as the spatial skyline result
31: end
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Table 4.19: Datasets for experiments

Datasets Total Objects Density
r 50,747 –
s1 80,000 0.08
s2 50,000 0.05
s3 20,000 0.02
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Figure 4.30: No. of skyline objects
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Figure 4.31: time vs group size

4.5.5 Performance Evaluation

To evaluate the efficiency and effectiveness of the proposed skyline queries algorithm,
we conducted extensive experiments. We implemented all algorithms using Microsoft
Visual C++ V6.0, and conducted the experiments on a PC with Intel core i5 processor,
2.3 GHz CPU, 4G main memory and 200G hard disk, running Microsoft Windows 7
Professional Edition.

4.5.5.1 Experimental Setup

We implemented the experiments by deploying both real and synthetic datasets. The
real datasets came from line segment data of Long Beach from the TIGER database
[79]. We made this point set by extracting the midpoint for each road line segment.
The set consists of 50,747 points normalized in [0,1000] × [0, 1000] space. There are
three synthetic datasets s1, s2, and s3 with different densities normalized in [0,1000]
× [0,1000] space as in Table 4.19. In Table 4.19, r stands for real dataset of TIGER
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database and density means how many points fall into one square unit in average.
The points in each synthetic dataset are distributed randomly. We indexed all datasets
by using a VoR-tree. By default, we consider a location attribute and two category
attributes for each data set.

4.5.5.2 Experimental Results

The first experiment studies the numbers of skyline objects under different densities
and different group size. Figure 4.30 shows the total numbers of skyline objects from
datasets r, s1, s2, and s3. From Figure 4.30, we can see that total number of skyline
objects increases with the increase in density and group size.

The second experiment explores the performance of the algorithm under different
group size and different densities. From Figure 4.31, we can observe that the running
time increases with the increase in group size. Also, it is observed that running time
increases if the density of data points increases.

Next experiment shows the effect of the increase in the number of category at-
tributes while keeping the group size to 32. In this experiment, we considered three
synthetic datasets. Figure 4.32 shows result. From the result, we can see that there is
an increase in computation time with the increase in the number of category attributes.

In the fourth experiment, we compared our algorithm with BBS approach using
the dataset r. Although there are some other spatial skyline query algorithms, we
considered BBS algorithm for comparison due to its effectiveness in handling both
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spatial and non-spatial attributes. From the result of Figure 4.33, we can see that our
algorithm (VR) significantly outperforms BBS algorithm.

Next experimental results are shown in Figure 4.34. It shows the relative domi-
nance check between our algorithm and BBS algorithm. From Figure 4.34, we can
see that our algorithm constantly performs less number of dominance check compared
with BBS algorithm.

Figure 4.35 shows the results of our sixth experiment. It shows the effectiveness
of our algorithm while there is an increase in the number of category attributes. In this
experiment, we considered the synthetic dataset s1 and group size 2. From the result
of Figure 4.35, we can see that in case of fixed number of users and more category
attributes, the performance of our algorithm is still better than BBS algorithm.

The final experiment shows the effectiveness of our algorithm in case of large num-
ber of category attributes while there is an increase in group size. In this experiment,
we considered ten category attributes. From the result of Figure 4.36, we can find that
our algorithm becomes comparatively better than BBS algorithm with an increase in
group size.

4.6 Conclusion

In this chapter, we have three different approaches for selecting spatial objects. First
two approaches of skyline queries based on surrounding environments. Third approach
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Figure 4.36: Comparative running vs group size for large number of category attributes

considered spatial objects selection for a group of users. Our first approach considered
the best values in each attribute of each surrounding facility. This approach is appli-
cable for hotel recommendation. In this approach, we used a grid-based approach for
materialization so that we can compute the result quickly and efficiently. Second ap-
proach considered objects count of the facilities in the surrounding environments. This
approach is suitable for real estate recommendations. For efficient computation, we
have utilized aR-tree indexing mechanism. Our third approach combined spatial and
non-spatial features while selecting spatial objects as both of these features are impor-
tant to describe a spatial object. In this framework, we utilized VoR-tree and “Sum
Distance” to calculate spatial skyline objects for a group of users of different locations
efficiently. Experimental results demonstrate that effectiveness of all three approaches

In our first two approaches, we did not consider any weighting mechanism for the
surrounding facilities. However, we have noticed that we should weight each surround-
ing facility based on distance, quality, and user’s preferences in order to improve the
result. To use a proper weighting is one of an important open problem of the works
presented in this chapter.

In our third method, we have considered static query points, which mean all query
points do not move. However, in general, query points are not static. Therefore, we
have to develop an efficient algorithm that can handle the change in the locations of
query points in our future works.
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Chapter 5

Conclusions

The main focus of this dissertation is on information filtering of very large databases
by using skyline queries. In particular, this dissertation covered three different types of
information filtering mechanisms using skyline queries. These are skyline sets queries
in distributed databases, skyline queries by utilizing surrounding environments, and
spatial skyline queries for groups of users. For efficient computation of skylines in
each of the above situations, we proposed novel methods, efficient algorithms, and
processing techniques. We showed the efficiency of our approaches through extensive
experiments.

The remaining of this chapter is organized as follows. In Section 5.1, we provide
the application areas of our developed algorithms. Then, in Section 5.2, we present
the contributions of this dissertation. Finally, we present some future directions derived
from this work in Section 5.3.

5.1 Application of the Proposed Skyline Queries

With the increase of data volume in different applications, methods for ranking the
usefulness of query results are highly desirable, in particular in case of large amount
data that often generates long result against any query. Such an approach could bridge
the gap between the two alternative paradigms of skyline queries and rank-aware query
processing.

In this dissertation, at first, we proposed skyline sets queries from distributed databases
in Chapter 3. This type of information filtering mechanism deals with data that are
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combination of raw data and is applicable to different application areas. For exam-
ple, in the field of stock investment, it is very likely that an investor will not invest
all his money in just one stock, but many stocks distributed at different geographic
locations, which allows the investor to obtain a higher return and/or a lower risk. In
such a situation, our proposed skyline sets queries can efficiently help the investors.
Moreover, consider a global web information application distributed among several
servers around the world that help different companies to perform their online busi-
ness. Each server locally stores the data of the company at its location. In general, the
data belongs to a company is very useful for the company and leaks of valuable data
might be a big problem for the company. However, the company wants to continue its
business while preserving the privacy of data. In such a situation, our proposed skyline
set queries can be an effective solution for the company as our developed skyline sets
query mechanism does not disclose individual record’s values. In addition, our skyline
sets queries are useful for data with outliers and in frequently update situations. As
for example, in environment sensitive situations where data are collected using many
sensors, its is important to take decisions by combining the data of several sensors
to minimize the effect of outliers in sensor data. We can apply our proposed skyline
sets queries in such environment sensitive situations. Also, in case of applications like
hotel recommendation systems where data are frequently updated, we can apply the
proposed system as it will provide the user some alternatives.

Next part of this dissertation considers spatial objects selection using skyline queries
considering surrounding environments. Using this type of skyline queries, we can rec-
ommend good hotels and/or houses based on not only their features but also their
surrounding environments. Such type of skyline queries are mainly applicable in two
different application areas: hotel recommendations and real estate recommendations.
In case of booking a hotel, a user may want to stay in a hotel that has bars and restau-
rants in its surrounding areas, although the features of the hotel is not good. In such
a situation, our first approach presented in Chapter 4 is helpful. In our life, selecting
a good house is very important for us. The location is a very important factor for us
during the selection of a house. For example, a house is convenient if there are many
supermarkets within a walking distance. Our second approach presented in Chapter 4
can recommend users such houses to the users so that the users can make decision
during buying their houses.
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The last part of this dissertation also presented at Chapter 4 that considered the
group needs. Consider that the people of a multidisciplinary task force located at dif-
ferent places are looking for a suitable place such as restaurants to hold a lunch-on
meeting. Social network services can connect such users and make such groups. Se-
lection of such a restaurant not only depends on its location but also its non-spatial
features, such as price and rating. In such a situation, our spatial skyline queries pre-
sented in Chapter 4 is highly applicable. Is is also applicable to many other applications
such as disaster management and attack planning during war. As for example, during a
disaster, there are many locations under critical situations. We can apply our approach
to find the locations of such critical places those are easily reachable by the people of
the rescue team located at different places. We can also use our method to plan an
attack based on the solders locations and importance of the opposition’s camp.

5.2 Contributions

Due to the rapid increase in data volume in present days, efficient filtering of informa-
tion is very important. Skyline queri mechanism is an efficient tool in this regard. In
this dissertation, we studied information filtering by using skyline queries in three dif-
ferent domains: (i) privacy preserving information retrieval from distributed databases,
(ii) skyline queries for selecting spatial objects by utilizing surrounding environments
and (iii) spatial skyline queries for spatial object selection for a group of users. The
main contributions of them are stated below.

5.2.1 Privacy Preserving Information Retrieval

In Chapter 3, we provided an agent-based parallel computation framework for secure
retrieval of information from distributed databases by using skyline sets queries. The
approach is well applicable for large-scale distributed databases. Moreover, this ap-
proach can preserve privacy under statistical compromisable situations. As a result
the proposed mechanism can retrieve information without the discloser of individual’s
information. We performed several experiments to show the effectiveness of our algo-
rithms. Experimental evaluation demonstrates that the proposed framework is mean-
ingful and scalable enough to handle large and high dimensional datasets.
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5.2.2 Spatial Objects Selection by Utilizing Surrounding Environ-

ments

Conventional skyline queries select objects based on non-spatial attributes such as
price and rating. However, surrounding environments of objects can play a vital role
while selecting an object. Considering this fact, in Chapter 4, we proposed two meth-
ods to compute skyline objects considering surrounding facilities. Our first approach
in Chapter 4 considered the best value in each attribute of each surrounding facility
while our second method considered the objects count of each type of facility in the
surrounding environment. Besides theoretical guarantees, our comprehensive perfor-
mance study indicate that the techniques are very effective and efficient.

5.2.3 Spatial Objects Selection for a Group of Users

Recently, GPS devices and location based services become popular and we have databases
containing spatial information. Considering this fact, in Chapter 4, we also presented
an efficient method for selecting spatial objects for a group of users considering both
spatial and non-spatial features of the objects in Chapter 4. Due to the current avail-
ability of social network services, nowadays we can connect users and make such
groups. If a group wants to find a restaurant to hold a meeting, we have to select a
convenient place for all users. In such cases, proposed skyline query algorithm se-
lects a set of spatial objects, which are not dominated by other spatial objects, for the
group. We performed several extensive experiments to show the effectiveness of our
approach.

5.3 Future Research Direction

In the following, we outline some possibilities for extending the work presented in this
dissertation.
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5.3.1 On Sets Skyline Query

The work on skyline sets queries in this dissertation assumes that all the attributes of
the databases are numerical having static dataset. Development of efficient skyline
sets query mechanism for frequently update data can be a promising future research.
Moreover, development of algorithms for skyline sets queries from databases with cat-
egorical attributes can be another future research. Another interesting future research
is the efficient computation of sub-space skyline sets and k-dominant skyline sets.

5.3.2 On Spatial Objects Selection by Utilizing Surrounding Envi-

ronments

Our skyline queries for selecting spatial objects by utilizing surrounding facilities con-
sidered uniform weights of all facilities in the surrounding areas. However, we have
noticed that we should weight each surrounding facility based on distance, quality, and
user’s preferences in order to improve the result. To use a proper weighting is one of
an important open problem of the works presented in this dissertation.

5.3.3 On Selecting Spatial Objects for a Group of Users

In this dissertation, we used numerical attributes to describe the features of spatial
objects. However, features of the objects can be nominal and skyline computation of
spatial objects based on users locations and nominal features of the objects can be
one future research. In this dissertation, we just considered static query points, which
mean all query points do not move. However, in general, query points are not static.
Therefore, we want to develop an efficient algorithm that can handle the change in the
locations of query points in our future works.
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